This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVS98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 71
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8699.37 16
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15199.04 63
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 64
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11499.59 7
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8698.39 111
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10097.38 5199.24 7299.62 3
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9898.01 123
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 10998.85 86
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14298.11 2998.15 3297.62 3999.45 3099.19 39
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 67
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11296.03 3998.24 892.11 4895.80 3998.64 3295.51 8398.95 698.66 596.78 18499.20 38
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9397.65 136
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11698.14 122
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11597.55 139
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 77
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13497.03 6897.03 5998.61 14799.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8898.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13189.09 9089.85 9796.65 5096.90 5894.97 13294.89 11699.08 9998.38 112
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9191.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9489.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13798.99 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 82
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15496.10 6591.07 5596.53 3396.34 5595.61 8097.65 5096.95 6296.21 18597.49 140
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11588.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 135
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9291.12 8794.13 10887.50 10091.23 8194.45 6694.17 10298.45 1898.50 799.65 299.23 33
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10890.70 9195.34 8589.67 8091.66 7893.84 6795.42 8597.32 5897.00 6099.58 699.47 12
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11297.94 2999.54 1399.50 10
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11891.52 8296.23 5990.03 7392.87 6496.10 5986.28 18196.68 7996.60 7099.16 8999.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12197.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11197.59 5295.88 9199.00 11098.50 103
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9295.78 11296.08 8198.27 16298.97 75
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9698.54 100
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10297.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8296.13 10395.61 9799.00 11095.73 171
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9797.99 4594.54 4597.81 1685.88 10796.73 3181.28 14696.99 5696.29 9695.21 10998.76 13696.73 162
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10097.23 5692.24 7196.43 5491.77 5092.69 6584.31 12796.06 7295.52 11895.03 11299.31 6199.06 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12191.84 7694.93 9590.37 6885.04 13094.99 6390.87 14998.12 3697.30 5499.30 6399.45 13
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 14996.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11896.03 8599.06 10499.33 20
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 11991.99 7395.32 8691.31 5395.47 4383.44 13496.02 7496.56 8395.23 10898.69 14096.67 163
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 11994.91 11089.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12095.02 11398.43 15997.09 151
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 155
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11590.72 8995.69 8086.90 10493.80 5589.44 9294.74 9096.98 7094.86 11799.19 8598.85 86
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11790.72 8995.61 8286.84 10593.78 5689.26 9594.74 9097.02 6994.86 11799.20 8498.87 84
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10090.99 8894.42 10385.02 11090.88 8894.65 6588.01 17198.17 3198.37 1699.57 898.53 101
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10696.89 6293.98 4895.94 7183.68 11495.01 4884.46 12695.58 8195.47 12094.85 12099.07 10199.00 68
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9595.85 9792.09 7295.74 7789.12 8995.14 4682.62 14094.77 8995.73 11494.67 12199.14 9299.06 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11594.88 11193.54 5296.41 5590.16 7092.31 6983.11 13696.32 6996.22 9994.65 12299.22 7897.35 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 93
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12896.01 7596.05 10496.41 7399.05 10898.79 90
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9797.40 5591.84 7694.66 9881.09 12895.70 4183.36 13595.10 8796.36 9495.71 9599.32 5899.03 64
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 12996.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8691.63 18290.44 18595.27 19793.94 188
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15389.36 9395.48 8496.33 9596.27 7799.17 8698.78 91
UA-Net93.96 8895.95 6191.64 11196.06 7698.59 7695.29 10290.00 9991.06 15182.87 11790.64 8998.06 4086.06 18298.14 3498.20 1999.58 696.96 156
CANet_DTU93.92 8996.57 5190.83 12195.63 8198.39 7996.99 6087.38 13196.26 5771.97 17496.31 3493.02 7194.53 9697.38 5796.83 6698.49 15497.79 128
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11894.29 12291.13 8693.84 11388.26 9590.40 9185.23 12294.65 9596.54 8595.31 10599.38 4999.28 24
GBi-Net93.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
test193.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
FMVSNet393.79 9394.17 9193.35 9891.21 15395.99 13896.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10395.96 10596.67 6899.07 10197.79 128
tfpn200view993.64 9492.57 11394.89 6895.33 8798.94 4896.82 6592.31 6792.63 12788.29 9287.21 11178.01 15697.12 5396.82 7195.85 9299.45 3098.56 98
thres20093.62 9592.54 11494.88 6995.36 8698.93 5096.75 6992.31 6792.84 12488.28 9486.99 11377.81 15897.13 5196.82 7195.92 8899.45 3098.49 104
OPM-MVS93.61 9692.43 12195.00 6596.94 6797.34 10397.78 4894.23 4789.64 16385.53 10888.70 10482.81 13896.28 7096.28 9795.00 11599.24 7297.22 148
thres40093.56 9792.43 12194.87 7095.40 8598.91 5396.70 7192.38 6692.93 12388.19 9686.69 11677.35 15997.13 5196.75 7695.85 9299.42 4298.56 98
thres100view90093.55 9892.47 12094.81 7295.33 8798.74 6396.78 6892.30 7092.63 12788.29 9287.21 11178.01 15696.78 6196.38 9195.92 8899.38 4998.40 110
Anonymous2023121193.49 9992.33 12594.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17189.18 9696.73 6294.82 13395.51 10098.67 14199.24 32
thres600view793.49 9992.37 12494.79 7395.42 8498.93 5096.58 7592.31 6793.04 12187.88 9786.62 11776.94 16297.09 5496.82 7195.63 9699.45 3098.63 95
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10683.26 20797.66 9696.72 7089.89 10295.62 8187.17 10296.00 3783.69 13396.99 5693.78 14895.34 10499.06 10498.18 121
FMVSNet293.30 10293.36 10893.22 10091.34 15095.86 14596.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 9996.77 7596.98 6199.21 8197.79 128
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10196.07 8893.17 6095.40 8483.86 11383.76 13988.72 10093.87 10794.25 14494.11 13998.87 12295.28 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline293.01 10494.17 9191.64 11192.83 13897.49 9993.40 13387.53 12993.67 11586.07 10691.83 7686.58 10991.36 13896.38 9195.06 11198.67 14198.20 120
Effi-MVS+92.93 10593.86 9791.86 10794.07 12198.09 9095.59 9985.98 14794.27 10679.54 13591.12 8581.81 14396.71 6396.67 8096.06 8399.27 6798.98 71
CDS-MVSNet92.77 10693.60 10391.80 10992.63 14096.80 11595.24 10489.14 11390.30 16084.58 11186.76 11490.65 8490.42 15795.89 10796.49 7198.79 13398.32 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive92.77 10695.00 7890.16 13094.10 12098.79 6094.76 11488.26 12292.37 13679.95 13188.19 10991.58 7884.38 19297.59 5297.58 4299.52 1498.91 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268892.66 10892.49 11792.85 10297.13 6598.89 5695.90 9288.50 12095.32 8683.31 11671.99 19088.96 9994.10 10496.69 7896.49 7198.15 16499.10 51
IterMVS-LS92.56 10993.18 10991.84 10893.90 12294.97 17594.99 10786.20 14494.18 10782.68 11885.81 12687.36 10894.43 9795.31 12496.02 8698.87 12298.60 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu92.45 11095.02 7789.46 13998.02 5395.47 16094.79 11392.62 6594.97 9470.11 18594.76 5192.61 7584.07 19595.94 10695.56 9897.15 18195.82 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test92.03 11191.55 13592.58 10397.13 6598.72 6694.65 11686.54 14093.58 11782.56 11967.75 20190.47 8695.67 7895.87 10895.54 9998.91 11998.93 76
test0.0.03 191.97 11293.91 9589.72 13593.31 13296.40 13091.34 17187.06 13593.86 11181.67 12491.15 8489.16 9786.02 18395.08 12995.09 11098.91 11996.64 165
Fast-Effi-MVS+91.87 11392.08 12891.62 11392.91 13697.21 10794.93 10984.60 16593.61 11681.49 12683.50 14078.95 15196.62 6596.55 8496.22 7999.16 8998.51 102
MS-PatchMatch91.82 11492.51 11591.02 11795.83 8096.88 11195.05 10684.55 16793.85 11282.01 12182.51 14591.71 7790.52 15695.07 13093.03 16198.13 16594.52 179
Effi-MVS+-dtu91.78 11593.59 10489.68 13892.44 14297.11 10894.40 12084.94 16192.43 13275.48 15691.09 8683.75 13293.55 11596.61 8195.47 10197.24 18098.67 93
IB-MVS89.56 1591.71 11692.50 11690.79 12395.94 7998.44 7887.05 19391.38 8593.15 12092.98 4184.78 13185.14 12378.27 20092.47 17194.44 13499.10 9799.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-test91.63 11793.82 9989.08 14392.02 14596.40 13093.26 13687.26 13293.72 11477.26 14388.61 10689.86 9085.50 18595.72 11695.02 11399.16 8997.44 142
test-LLR91.62 11893.56 10589.35 14293.31 13296.57 12492.02 16287.06 13592.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
MDTV_nov1_ep1391.57 11993.18 10989.70 13693.39 13096.97 10993.53 13080.91 18495.70 7881.86 12292.40 6889.93 8993.25 12091.97 18090.80 18395.25 19894.46 181
FMVSNet191.54 12090.93 14192.26 10590.35 16095.27 16895.22 10587.16 13491.37 14887.62 9975.45 16683.84 13194.43 9796.52 8696.30 7498.82 12697.74 134
ACMH90.77 1391.51 12191.63 13491.38 11495.62 8296.87 11391.76 16689.66 10691.58 14678.67 13786.73 11578.12 15493.77 11094.59 13594.54 13098.78 13498.98 71
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+90.88 1291.41 12291.13 13891.74 11095.11 9696.95 11093.13 13889.48 11092.42 13379.93 13285.13 12978.02 15593.82 10993.49 15593.88 14598.94 11697.99 124
test_part191.21 12389.47 15193.24 9994.26 11795.45 16195.26 10388.36 12188.49 17390.04 7272.61 18782.82 13793.69 11393.25 15994.62 12497.84 17299.06 58
Fast-Effi-MVS+-dtu91.19 12493.64 10188.33 15192.19 14496.46 12793.99 12581.52 18292.59 12971.82 17592.17 7085.54 11891.68 13595.73 11494.64 12398.80 13198.34 113
TESTMET0.1,191.07 12593.56 10588.17 15390.43 15796.57 12492.02 16282.83 17692.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
test-mter90.95 12693.54 10787.93 16390.28 16196.80 11591.44 16882.68 17792.15 14174.37 16789.57 9988.23 10690.88 14896.37 9394.31 13697.93 17197.37 144
SCA90.92 12793.04 11188.45 14993.72 12797.33 10492.77 14276.08 19896.02 6778.26 13991.96 7390.86 8293.99 10690.98 18690.04 18895.88 18994.06 187
EPMVS90.88 12892.12 12789.44 14094.71 10797.24 10593.55 12976.81 19395.89 7281.77 12391.49 8086.47 11193.87 10790.21 18990.07 18795.92 18893.49 194
CostFormer90.69 12990.48 14690.93 11994.18 11896.08 13794.03 12478.20 18993.47 11889.96 7590.97 8780.30 14793.72 11187.66 19988.75 19295.51 19496.12 167
USDC90.69 12990.52 14590.88 12094.17 11996.43 12895.82 9886.76 13793.92 11076.27 15286.49 11874.30 17293.67 11495.04 13193.36 15498.61 14794.13 184
PatchmatchNetpermissive90.56 13192.49 11788.31 15293.83 12596.86 11492.42 15076.50 19595.96 7078.31 13891.96 7389.66 9193.48 11690.04 19189.20 19195.32 19593.73 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs490.55 13289.91 14891.30 11690.26 16294.95 17692.73 14487.94 12693.44 11985.35 10982.28 14676.09 16493.02 12393.56 15392.26 17798.51 15396.77 161
TAMVS90.54 13390.87 14390.16 13091.48 14896.61 12393.26 13686.08 14587.71 17981.66 12583.11 14384.04 12990.42 15794.54 13694.60 12598.04 16995.48 175
FMVSNet590.36 13490.93 14189.70 13687.99 19592.25 20092.03 16183.51 17192.20 14084.13 11285.59 12786.48 11092.43 12694.61 13494.52 13198.13 16590.85 200
UniMVSNet_NR-MVSNet90.35 13589.96 14790.80 12289.66 16995.83 14892.48 14890.53 9590.96 15379.57 13379.33 15777.14 16093.21 12192.91 16594.50 13399.37 5299.05 61
IterMVS-SCA-FT90.24 13692.48 11987.63 16892.85 13794.30 19193.79 12781.47 18392.66 12669.95 18684.66 13388.38 10489.99 16295.39 12394.34 13597.74 17797.63 137
IterMVS90.20 13792.43 12187.61 16992.82 13994.31 19094.11 12381.54 18192.97 12269.90 18784.71 13288.16 10789.96 16395.25 12594.17 13897.31 17997.46 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPMNet90.19 13892.03 13088.05 15893.46 12895.95 14293.41 13274.59 20492.40 13475.91 15484.22 13686.41 11292.49 12594.42 14093.85 14798.44 15796.96 156
CR-MVSNet90.16 13991.96 13188.06 15793.32 13195.95 14293.36 13475.99 19992.40 13475.19 16083.18 14185.37 11992.05 12995.21 12694.56 12898.47 15697.08 153
thisisatest051590.12 14092.06 12987.85 16490.03 16496.17 13587.83 19087.45 13091.71 14577.15 14485.40 12884.01 13085.74 18495.41 12293.30 15798.88 12198.43 106
dps90.11 14189.37 15490.98 11893.89 12396.21 13493.49 13177.61 19191.95 14292.74 4588.85 10278.77 15392.37 12787.71 19887.71 19695.80 19094.38 182
UniMVSNet (Re)90.03 14289.61 15090.51 12689.97 16696.12 13692.32 15289.26 11190.99 15280.95 12978.25 16075.08 16991.14 14193.78 14893.87 14699.41 4399.21 37
ADS-MVSNet89.80 14391.33 13788.00 16194.43 11496.71 12092.29 15474.95 20396.07 6677.39 14288.67 10586.09 11493.26 11988.44 19589.57 19095.68 19193.81 191
CVMVSNet89.77 14491.66 13387.56 17193.21 13495.45 16191.94 16589.22 11289.62 16469.34 19183.99 13885.90 11684.81 19094.30 14395.28 10696.85 18397.09 151
DU-MVS89.67 14588.84 15690.63 12589.26 17995.61 15492.48 14889.91 10091.22 14979.57 13377.72 16171.18 18693.21 12192.53 16994.57 12799.35 5599.05 61
testgi89.42 14691.50 13687.00 17892.40 14395.59 15689.15 18785.27 15892.78 12572.42 17291.75 7776.00 16584.09 19494.38 14193.82 14998.65 14596.15 166
TinyColmap89.42 14688.58 15890.40 12793.80 12695.45 16193.96 12686.54 14092.24 13976.49 14980.83 15070.44 18993.37 11794.45 13993.30 15798.26 16393.37 195
NR-MVSNet89.34 14888.66 15790.13 13390.40 15895.61 15493.04 14089.91 10091.22 14978.96 13677.72 16168.90 19789.16 16794.24 14593.95 14399.32 5898.99 69
GA-MVS89.28 14990.75 14487.57 17091.77 14696.48 12692.29 15487.58 12890.61 15765.77 19684.48 13476.84 16389.46 16595.84 10993.68 15098.52 15297.34 146
Baseline_NR-MVSNet89.27 15088.01 16690.73 12489.26 17993.71 19592.71 14589.78 10590.73 15481.28 12773.53 18172.85 17892.30 12892.53 16993.84 14899.07 10198.88 82
TranMVSNet+NR-MVSNet89.23 15188.48 16090.11 13489.07 18595.25 16992.91 14190.43 9690.31 15977.10 14576.62 16471.57 18491.83 13392.12 17594.59 12699.32 5898.92 77
pm-mvs189.19 15289.02 15589.38 14190.40 15895.74 15292.05 16088.10 12586.13 18977.70 14073.72 18079.44 15088.97 16895.81 11194.51 13299.08 9997.78 133
PatchT89.13 15391.71 13286.11 18592.92 13595.59 15683.64 20175.09 20291.87 14375.19 16082.63 14485.06 12492.05 12995.21 12694.56 12897.76 17497.08 153
TDRefinement89.07 15488.15 16390.14 13295.16 9496.88 11195.55 10190.20 9789.68 16276.42 15076.67 16374.30 17284.85 18993.11 16191.91 17998.64 14694.47 180
MIMVSNet88.99 15591.07 13986.57 18186.78 20195.62 15391.20 17475.40 20190.65 15676.57 14884.05 13782.44 14191.01 14495.84 10995.38 10398.48 15593.50 193
anonymousdsp88.90 15691.00 14086.44 18288.74 19295.97 14090.40 18182.86 17588.77 17067.33 19481.18 14981.44 14590.22 16096.23 9894.27 13799.12 9599.16 46
tpm cat188.90 15687.78 17290.22 12993.88 12495.39 16493.79 12778.11 19092.55 13089.43 8281.31 14879.84 14991.40 13784.95 20286.34 20194.68 20494.09 185
tpmrst88.86 15889.62 14987.97 16294.33 11595.98 13992.62 14676.36 19694.62 10076.94 14685.98 12582.80 13992.80 12486.90 20187.15 19894.77 20293.93 189
tfpnnormal88.50 15987.01 18190.23 12891.36 14995.78 15192.74 14390.09 9883.65 19876.33 15171.46 19369.58 19491.84 13295.54 11794.02 14299.06 10499.03 64
UniMVSNet_ETH3D88.47 16086.00 19091.35 11591.55 14796.29 13292.53 14788.81 11585.58 19382.33 12067.63 20266.87 20294.04 10591.49 18395.24 10798.84 12598.92 77
SixPastTwentyTwo88.37 16189.47 15187.08 17690.01 16595.93 14487.41 19185.32 15590.26 16170.26 18386.34 12371.95 18290.93 14592.89 16691.72 18098.55 15097.22 148
V4288.31 16287.95 16888.73 14689.44 17495.34 16592.23 15687.21 13388.83 16874.49 16674.89 17073.43 17790.41 15992.08 17892.77 16898.60 14998.33 114
v2v48288.25 16387.71 17388.88 14489.23 18395.28 16692.10 15887.89 12788.69 17173.31 17075.32 16771.64 18391.89 13192.10 17792.92 16398.86 12497.99 124
v888.21 16487.94 16988.51 14889.62 17095.01 17492.31 15384.99 16088.94 16674.70 16575.03 16873.51 17690.67 15392.11 17692.74 16998.80 13198.24 118
v1088.00 16587.96 16788.05 15889.44 17494.68 18292.36 15183.35 17289.37 16572.96 17173.98 17872.79 17991.35 13993.59 15092.88 16498.81 12998.42 108
tpm87.95 16689.44 15386.21 18492.53 14194.62 18591.40 16976.36 19691.46 14769.80 18987.43 11075.14 16791.55 13689.85 19390.60 18495.61 19296.96 156
WR-MVS_H87.93 16787.85 17088.03 16089.62 17095.58 15890.47 18085.55 15287.20 18476.83 14774.42 17572.67 18086.37 18093.22 16093.04 16099.33 5698.83 88
WR-MVS87.93 16788.09 16487.75 16589.26 17995.28 16690.81 17786.69 13888.90 16775.29 15974.31 17673.72 17585.19 18892.26 17293.32 15699.27 6798.81 89
v114487.92 16987.79 17188.07 15589.27 17895.15 17192.17 15785.62 15188.52 17271.52 17673.80 17972.40 18191.06 14393.54 15492.80 16698.81 12998.33 114
CP-MVSNet87.89 17087.27 17688.62 14789.30 17795.06 17290.60 17985.78 14987.43 18375.98 15374.60 17268.14 19990.76 15093.07 16393.60 15199.30 6398.98 71
pmmvs587.83 17188.09 16487.51 17389.59 17295.48 15989.75 18584.73 16386.07 19171.44 17780.57 15270.09 19290.74 15294.47 13892.87 16598.82 12697.10 150
TransMVSNet (Re)87.73 17286.79 18388.83 14590.76 15494.40 18891.33 17289.62 10784.73 19575.41 15872.73 18571.41 18586.80 17794.53 13793.93 14499.06 10495.83 169
LTVRE_ROB87.32 1687.55 17388.25 16286.73 17990.66 15595.80 15093.05 13984.77 16283.35 19960.32 20783.12 14267.39 20093.32 11894.36 14294.86 11798.28 16198.87 84
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v119287.51 17487.31 17587.74 16689.04 18694.87 18092.07 15985.03 15988.49 17370.32 18272.65 18670.35 19091.21 14093.59 15092.80 16698.78 13498.42 108
v14887.51 17486.79 18388.36 15089.39 17695.21 17089.84 18488.20 12487.61 18177.56 14173.38 18370.32 19186.80 17790.70 18792.31 17598.37 16097.98 126
v14419287.40 17687.20 17887.64 16788.89 18794.88 17991.65 16784.70 16487.80 17871.17 18073.20 18470.91 18790.75 15192.69 16792.49 17298.71 13898.43 106
PS-CasMVS87.33 17786.68 18688.10 15489.22 18494.93 17790.35 18285.70 15086.44 18874.01 16873.43 18266.59 20590.04 16192.92 16493.52 15299.28 6598.91 80
v192192087.31 17887.13 17987.52 17288.87 18994.72 18191.96 16484.59 16688.28 17569.86 18872.50 18870.03 19391.10 14293.33 15792.61 17198.71 13898.44 105
PEN-MVS87.22 17986.50 18888.07 15588.88 18894.44 18790.99 17686.21 14286.53 18773.66 16974.97 16966.56 20689.42 16691.20 18593.48 15399.24 7298.31 117
v124086.89 18086.75 18587.06 17788.75 19194.65 18491.30 17384.05 16887.49 18268.94 19271.96 19168.86 19890.65 15493.33 15792.72 17098.67 14198.24 118
EG-PatchMatch MVS86.68 18187.24 17786.02 18690.58 15696.26 13391.08 17581.59 18084.96 19469.80 18971.35 19475.08 16984.23 19394.24 14593.35 15598.82 12695.46 176
DTE-MVSNet86.67 18286.09 18987.35 17488.45 19494.08 19390.65 17886.05 14686.13 18972.19 17374.58 17466.77 20487.61 17490.31 18893.12 15999.13 9397.62 138
v7n86.43 18386.52 18786.33 18387.91 19694.93 17790.15 18383.05 17386.57 18670.21 18471.48 19266.78 20387.72 17294.19 14792.96 16298.92 11898.76 92
MDTV_nov1_ep13_2view86.30 18488.27 16184.01 19187.71 19894.67 18388.08 18976.78 19490.59 15868.66 19380.46 15480.12 14887.58 17589.95 19288.20 19495.25 19893.90 190
gg-mvs-nofinetune86.17 18588.57 15983.36 19393.44 12998.15 8896.58 7572.05 20774.12 21049.23 21464.81 20590.85 8389.90 16497.83 4696.84 6598.97 11397.41 143
pmnet_mix0286.12 18687.12 18084.96 18989.82 16794.12 19284.88 19986.63 13991.78 14465.60 19780.76 15176.98 16186.61 17987.29 20084.80 20496.21 18594.09 185
pmmvs685.98 18784.89 19587.25 17588.83 19094.35 18989.36 18685.30 15778.51 20775.44 15762.71 20675.41 16687.65 17393.58 15292.40 17496.89 18297.29 147
EU-MVSNet85.62 18887.65 17483.24 19488.54 19392.77 19987.12 19285.32 15586.71 18564.54 19978.52 15975.11 16878.35 19992.25 17392.28 17695.58 19395.93 168
MVS-HIRNet85.36 18986.89 18283.57 19290.13 16394.51 18683.57 20272.61 20688.27 17671.22 17968.97 19781.81 14388.91 16993.08 16291.94 17894.97 20189.64 203
N_pmnet84.80 19085.10 19484.45 19089.25 18292.86 19884.04 20086.21 14288.78 16966.73 19572.41 18974.87 17185.21 18788.32 19686.45 19995.30 19692.04 197
CMPMVSbinary65.18 1784.76 19183.10 19786.69 18095.29 9095.05 17388.37 18885.51 15380.27 20571.31 17868.37 19973.85 17485.25 18687.72 19787.75 19594.38 20588.70 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS84.72 19284.47 19685.03 18884.67 20391.57 20286.27 19582.31 17987.65 18070.62 18176.54 16556.41 21388.75 17092.59 16889.85 18997.54 17896.66 164
pmmvs-eth3d84.33 19382.94 19885.96 18784.16 20490.94 20386.55 19483.79 16984.25 19675.85 15570.64 19556.43 21287.44 17692.20 17490.41 18697.97 17095.68 172
Anonymous2023120683.84 19485.19 19382.26 19587.38 19992.87 19785.49 19783.65 17086.07 19163.44 20368.42 19869.01 19675.45 20393.34 15692.44 17398.12 16794.20 183
gm-plane-assit83.26 19585.29 19280.89 19689.52 17389.89 20670.26 21178.24 18877.11 20858.01 21174.16 17766.90 20190.63 15597.20 6196.05 8498.66 14495.68 172
test20.0382.92 19685.52 19179.90 19987.75 19791.84 20182.80 20382.99 17482.65 20360.32 20778.90 15870.50 18867.10 20692.05 17990.89 18298.44 15791.80 198
new_pmnet81.53 19782.68 19980.20 19783.47 20689.47 20782.21 20578.36 18787.86 17760.14 20967.90 20069.43 19582.03 19789.22 19487.47 19794.99 20087.39 205
MDA-MVSNet-bldmvs80.11 19880.24 20179.94 19877.01 21093.21 19678.86 20885.94 14882.71 20260.86 20479.71 15651.77 21583.71 19675.60 20786.37 20093.28 20692.35 196
MIMVSNet180.03 19980.93 20078.97 20072.46 21390.73 20480.81 20682.44 17880.39 20463.64 20157.57 20764.93 20776.37 20191.66 18191.55 18198.07 16889.70 202
pmmvs379.16 20080.12 20278.05 20279.36 20886.59 20978.13 20973.87 20576.42 20957.51 21270.59 19657.02 21184.66 19190.10 19088.32 19394.75 20391.77 199
new-patchmatchnet78.49 20178.19 20378.84 20184.13 20590.06 20577.11 21080.39 18579.57 20659.64 21066.01 20355.65 21475.62 20284.55 20380.70 20596.14 18790.77 201
FPMVS75.84 20274.59 20477.29 20386.92 20083.89 21185.01 19880.05 18682.91 20160.61 20665.25 20460.41 20963.86 20775.60 20773.60 20987.29 21180.47 208
Gipumacopyleft68.35 20366.71 20670.27 20474.16 21268.78 21463.93 21471.77 20883.34 20054.57 21334.37 21131.88 21768.69 20583.30 20485.53 20288.48 21079.78 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 20466.39 20768.30 20577.98 20960.24 21559.53 21576.82 19266.65 21160.74 20554.39 20859.82 21051.24 21073.92 21070.52 21083.48 21279.17 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND66.17 20594.91 7932.63 2111.32 21996.64 12291.40 1690.85 21794.39 1052.20 22090.15 9595.70 612.27 21696.39 9095.44 10297.78 17395.68 172
PMMVS264.36 20665.94 20862.52 20767.37 21477.44 21264.39 21369.32 21261.47 21234.59 21546.09 21041.03 21648.02 21374.56 20978.23 20691.43 20882.76 207
E-PMN50.67 20747.85 21053.96 20864.13 21650.98 21838.06 21669.51 21051.40 21424.60 21729.46 21424.39 21956.07 20948.17 21259.70 21171.40 21470.84 212
EMVS49.98 20846.76 21153.74 20964.96 21551.29 21737.81 21769.35 21151.83 21322.69 21829.57 21325.06 21857.28 20844.81 21356.11 21270.32 21568.64 213
MVEpermissive50.86 1949.54 20951.43 20947.33 21044.14 21759.20 21636.45 21860.59 21341.47 21531.14 21629.58 21217.06 22148.52 21262.22 21174.63 20863.12 21675.87 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 21016.94 2126.42 2123.15 2186.08 2199.51 2203.84 21521.46 2165.31 21927.49 2156.76 22210.89 21417.06 21415.01 2135.84 21724.75 214
test1239.58 21113.53 2134.97 2131.31 2205.47 2208.32 2212.95 21618.14 2172.03 22120.82 2162.34 22310.60 21510.00 21514.16 2144.60 21823.77 215
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def63.50 202
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
Anonymous20240521192.18 12695.04 9898.20 8596.14 8591.79 7893.93 10974.60 17288.38 10496.48 6795.17 12895.82 9499.00 11099.15 47
our_test_389.78 16893.84 19485.59 196
ambc73.83 20576.23 21185.13 21082.27 20484.16 19765.58 19852.82 20923.31 22073.55 20491.41 18485.26 20392.97 20794.70 178
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 219
tmp_tt66.88 20686.07 20273.86 21368.22 21233.38 21496.88 4780.67 13088.23 10878.82 15249.78 21182.68 20577.47 20783.19 213
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 96
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86
Patchmtry95.96 14193.36 13475.99 19975.19 160
DeepMVS_CXcopyleft86.86 20879.50 20770.43 20990.73 15463.66 20080.36 15560.83 20879.68 19876.23 20689.46 20986.53 206