This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 52
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7699.77 52
DPE-MVS99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 88
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8899.76 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6799.76 57
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6799.73 72
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5799.77 52
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 68
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 7999.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 128
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 121
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7399.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11699.76 57
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 10999.69 92
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8299.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 86
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 10999.66 102
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 115
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6799.73 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8599.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9899.64 10999.36 146
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7699.74 68
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 132
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9299.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15399.17 156
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9099.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10599.52 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8899.75 64
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12098.92 3499.78 2899.90 3
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11395.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 68
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9199.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13899.07 163
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13499.82 23
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11199.71 6799.76 57
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7799.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11699.58 115
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 7999.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 98
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12499.58 115
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 102
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 105
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 109
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 7999.57 120
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8198.88 5198.99 2999.74 4499.86 15
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7499.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 115
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8299.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10199.48 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8296.28 13997.47 3999.58 894.70 5998.99 3399.85 4097.24 11399.55 1099.34 997.73 19799.56 121
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11499.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11498.11 8699.40 16599.28 149
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9299.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9699.14 160
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9599.06 3899.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7498.94 5198.14 2698.59 11593.62 8296.61 10699.76 4899.03 5297.77 12197.45 11699.57 13898.89 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16298.92 5899.22 2798.84 4199.76 3599.56 121
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8898.82 5498.87 3899.81 1699.89 6
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 30
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 38
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16098.59 7498.55 5799.29 17299.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 14099.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18299.48 136
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 132
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 11094.01 7296.88 9998.40 6898.48 7999.09 3599.42 599.83 899.80 30
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 7999.42 140
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9897.85 9799.68 8899.15 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8897.06 12394.09 6898.72 11195.14 5298.47 5896.29 9198.43 8098.65 6697.44 11799.45 15798.94 166
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10393.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10797.65 10091.68 10598.00 14297.01 3197.72 8194.83 10998.85 6598.44 8398.86 3999.41 16399.52 128
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 13092.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 30
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12193.39 8399.35 2894.40 6798.79 4499.59 5394.24 18098.04 10698.29 7799.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10098.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7896.61 15595.43 16697.74 19597.93 188
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9893.71 7998.47 12495.75 4298.78 4593.20 12898.91 6098.52 7898.44 6299.81 1699.53 125
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14798.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9598.44 6299.76 3599.87 12
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12197.80 9493.05 9398.76 10794.39 6899.07 3197.03 8598.55 7698.31 8797.61 10699.43 16099.21 155
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
baseline97.45 7298.70 5995.99 9495.89 10599.36 7498.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9398.60 7298.60 5599.42 16299.86 15
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14393.75 7799.26 4093.38 8693.73 14499.35 5696.47 13598.96 4298.46 6199.77 3399.90 3
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9393.22 8898.82 9791.40 10996.94 9698.56 6695.70 15299.14 3399.41 699.79 2599.75 64
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13699.16 4397.66 12799.05 2499.76 3599.90 3
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8698.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10199.78 44
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12593.23 8699.17 5192.60 9898.75 4896.19 9398.17 8398.19 9396.10 15299.72 5799.77 52
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12693.23 8699.15 5292.56 9998.74 4996.12 9698.17 8398.21 9196.10 15299.73 5199.78 44
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13698.63 6392.10 9798.68 11295.96 4199.23 1891.79 13396.87 12198.76 5997.37 12199.57 13899.68 97
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10292.04 9898.48 12388.03 12498.39 6299.91 3194.03 18399.33 2399.23 1799.81 1699.25 152
Anonymous2023121197.10 8197.06 11797.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16294.58 11498.90 6197.72 12598.10 8799.71 6799.75 64
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14396.53 13493.42 8299.04 7393.02 9298.03 7294.32 11797.47 10997.93 11297.77 10299.75 3999.88 10
FMVSNet397.02 8398.12 7995.73 10093.59 15497.98 15798.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10598.61 7098.62 5399.61 11699.65 105
GBi-Net96.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
test196.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9793.22 8898.98 7892.64 9694.97 13291.71 13498.93 5798.62 6998.52 6099.82 1099.72 83
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8798.05 10597.91 9499.74 4499.73 72
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 7998.06 9093.22 8899.43 2192.30 10296.90 9889.83 14498.55 7698.00 10998.14 8399.64 10999.70 88
TSAR-MVS + COLMAP96.79 8996.55 12897.06 6297.70 7098.46 13899.07 4596.23 4499.38 2391.32 11098.80 4385.61 16898.69 7097.64 13096.92 12899.37 16799.06 164
thres20096.76 9096.53 12997.03 6496.31 9299.67 1298.37 7293.99 7197.68 15894.49 6395.83 12486.77 15699.18 4098.26 8897.82 9999.82 1099.66 102
tfpn200view996.75 9196.51 13197.03 6496.31 9299.67 1298.41 6993.99 7197.35 16294.52 6195.90 12186.93 15499.14 4498.26 8897.80 10099.82 1099.70 88
CLD-MVS96.74 9296.51 13197.01 6896.71 8698.62 12798.73 6094.38 6498.94 8294.46 6497.33 8587.03 15298.07 8997.20 14596.87 12999.72 5799.54 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90096.72 9396.47 13497.00 6996.31 9299.52 5398.28 7894.01 6997.35 16294.52 6195.90 12186.93 15499.09 4998.07 10197.87 9699.81 1699.63 111
thres40096.71 9496.45 13697.02 6696.28 9599.63 2598.41 6994.00 7097.82 15394.42 6695.74 12586.26 16399.18 4098.20 9297.79 10199.81 1699.70 88
thres600view796.69 9596.43 13897.00 6996.28 9599.67 1298.41 6993.99 7197.85 15294.29 6995.96 11985.91 16699.19 3898.26 8897.63 10599.82 1099.73 72
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10295.86 14590.82 12298.38 12792.54 10096.66 10497.33 7995.75 15097.75 12398.34 7299.60 12499.40 144
ACMM96.26 996.67 9796.69 12596.66 7597.29 7898.46 13896.48 13595.09 5199.21 4693.19 8898.78 4586.73 15798.17 8397.84 11896.32 14499.74 4499.49 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet_DTU96.64 9899.08 3993.81 12397.10 8299.42 6698.85 5690.01 13499.31 3179.98 17499.78 299.10 6097.42 11098.35 8598.05 8999.47 15599.53 125
FMVSNet296.64 9897.50 9795.63 10293.81 14897.98 15798.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9698.63 6898.80 4699.68 8899.67 98
ACMP96.25 1096.62 10096.72 12496.50 8396.96 8498.75 11897.80 9494.30 6698.85 9093.12 8998.78 4586.61 15997.23 11497.73 12496.61 13699.62 11499.71 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14198.96 10597.46 10591.75 10397.86 15190.07 11596.02 11897.25 8296.21 13998.04 10698.38 6799.60 12499.65 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268896.41 10296.99 11995.74 9998.01 6699.72 697.70 9990.78 12499.13 6090.03 11687.35 19095.36 10398.33 8298.59 7498.91 3699.59 13099.87 12
HQP-MVS96.37 10396.58 12696.13 8997.31 7798.44 14098.45 6895.22 5098.86 8888.58 12198.33 6487.00 15397.67 10497.23 14396.56 13899.56 14199.62 112
baseline296.36 10497.82 9094.65 11194.60 14099.09 9896.45 13689.63 14298.36 12891.29 11197.60 8494.13 12096.37 13698.45 8197.70 10399.54 14799.41 141
EPNet_dtu96.30 10598.53 6293.70 12798.97 5098.24 15197.36 10794.23 6798.85 9079.18 17899.19 1998.47 6794.09 18297.89 11598.21 8098.39 18898.85 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LGP-MVS_train96.23 10696.89 12195.46 10397.32 7598.77 11498.81 5893.60 8098.58 11685.52 14099.08 3086.67 15897.83 10297.87 11697.51 11099.69 7999.73 72
OPM-MVS96.22 10795.85 14796.65 7697.75 6898.54 13399.00 5095.53 4796.88 17589.88 11795.95 12086.46 16198.07 8997.65 12996.63 13599.67 9698.83 173
ET-MVSNet_ETH3D96.17 10896.99 11995.21 10588.53 20498.54 13398.28 7892.61 9498.85 9093.60 8399.06 3290.39 13898.63 7395.98 17796.68 13399.61 11699.41 141
Vis-MVSNetpermissive96.16 10998.22 7493.75 12495.33 12999.70 1197.27 11190.85 12198.30 13085.51 14195.72 12796.45 8793.69 18998.70 6499.00 2899.84 599.69 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18297.15 11789.19 14799.08 6588.23 12294.97 13294.73 11197.84 10197.86 11798.26 7899.60 12499.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11197.94 8793.89 12193.60 15398.67 12496.62 13190.30 13398.76 10788.62 12095.57 13097.63 7794.48 17697.97 11097.48 11499.71 6799.52 128
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11797.27 11186.97 16799.09 6389.83 11893.51 14797.78 7596.18 14197.53 13495.71 16399.35 16898.41 179
HyFIR lowres test95.99 11296.56 12795.32 10497.99 6799.65 1796.54 13288.86 14998.44 12589.77 11984.14 19997.05 8499.03 5298.55 7698.19 8299.73 5199.86 15
Effi-MVS+95.81 11497.31 11294.06 11995.09 13299.35 7797.24 11388.22 15898.54 11985.38 14298.52 5588.68 14698.70 6898.32 8697.93 9299.74 4499.84 18
FMVSNet195.77 11596.41 13995.03 10693.42 15597.86 16497.11 12089.89 13798.53 12092.00 10589.17 17493.23 12798.15 8698.07 10198.34 7299.61 11699.69 92
Effi-MVS+-dtu95.74 11698.04 8293.06 14193.92 14499.16 9597.90 9188.16 16099.07 7082.02 16298.02 7394.32 11796.74 12598.53 7797.56 10899.61 11699.62 112
testgi95.67 11797.48 9993.56 13095.07 13399.00 10095.33 15688.47 15598.80 10086.90 13297.30 8792.33 13095.97 14797.66 12797.91 9499.60 12499.38 145
MDTV_nov1_ep1395.57 11897.48 9993.35 13895.43 12698.97 10497.19 11683.72 18898.92 8587.91 12697.75 7996.12 9697.88 9996.84 15495.64 16497.96 19398.10 184
test_part195.56 11995.38 15195.78 9696.07 9998.16 15497.57 10190.78 12497.43 16193.04 9189.12 17789.41 14597.93 9496.38 16397.38 12099.29 17299.78 44
TAMVS95.53 12096.50 13394.39 11593.86 14799.03 9996.67 12989.55 14497.33 16490.64 11393.02 15691.58 13596.21 13997.72 12597.43 11899.43 16099.36 146
test-LLR95.50 12197.32 10993.37 13695.49 12498.74 11996.44 13790.82 12298.18 13582.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
FMVSNet595.42 12296.47 13494.20 11692.26 16795.99 20395.66 14887.15 16697.87 15093.46 8596.68 10393.79 12397.52 10697.10 14997.21 12399.11 17996.62 202
ACMH+95.51 1395.40 12396.00 14194.70 11096.33 9098.79 11196.79 12791.32 11498.77 10687.18 13095.60 12985.46 16996.97 11897.15 14696.59 13799.59 13099.65 105
Fast-Effi-MVS+-dtu95.38 12498.20 7592.09 15293.91 14598.87 10897.35 10885.01 18199.08 6581.09 16698.10 6996.36 9095.62 15598.43 8497.03 12599.55 14399.50 134
Fast-Effi-MVS+95.38 12496.52 13094.05 12094.15 14399.14 9797.24 11386.79 16898.53 12087.62 12894.51 13787.06 15198.76 6698.60 7298.04 9099.72 5799.77 52
CVMVSNet95.33 12697.09 11593.27 13995.23 13098.39 14595.49 15292.58 9597.71 15783.00 15694.44 13993.28 12693.92 18697.79 11998.54 5999.41 16399.45 138
ACMH95.42 1495.27 12795.96 14394.45 11496.83 8598.78 11394.72 17091.67 10698.95 7986.82 13396.42 11283.67 17997.00 11797.48 13696.68 13399.69 7999.76 57
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs495.09 12895.90 14494.14 11792.29 16697.70 16895.45 15390.31 13198.60 11490.70 11293.25 15089.90 14296.67 12897.13 14795.42 16799.44 15999.28 149
EPMVS95.05 12996.86 12392.94 14395.84 10798.96 10596.68 12879.87 19599.05 7190.15 11497.12 9395.99 9897.49 10895.17 18694.75 18497.59 19996.96 198
IB-MVS93.96 1595.02 13096.44 13793.36 13797.05 8399.28 8690.43 19793.39 8398.02 14196.02 3994.92 13492.07 13283.52 20595.38 18295.82 16099.72 5799.59 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SCA94.95 13197.44 10292.04 15395.55 12199.16 9596.26 14079.30 19999.02 7485.73 13998.18 6797.13 8397.69 10396.03 17594.91 17997.69 19897.65 190
TESTMET0.1,194.95 13197.32 10992.20 15092.62 15998.74 11996.44 13786.67 17098.18 13582.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
IterMVS-SCA-FT94.89 13397.87 8991.42 16694.86 13797.70 16897.24 11384.88 18298.93 8375.74 19094.26 14098.25 7096.69 12698.52 7897.68 10499.10 18099.73 72
test-mter94.86 13497.32 10992.00 15592.41 16498.82 11096.18 14286.35 17498.05 14082.28 16096.48 11194.39 11695.46 16298.17 9496.20 14899.32 17099.13 161
IterMVS94.81 13597.71 9291.42 16694.83 13897.63 17597.38 10685.08 17998.93 8375.67 19194.02 14197.64 7696.66 12998.45 8197.60 10798.90 18399.72 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchmatchNetpermissive94.70 13697.08 11691.92 15895.53 12298.85 10995.77 14679.54 19798.95 7985.98 13698.52 5596.45 8797.39 11195.32 18394.09 18997.32 20197.38 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RPMNet94.66 13797.16 11491.75 16294.98 13498.59 13097.00 12478.37 20697.98 14383.78 14796.27 11494.09 12296.91 12097.36 13996.73 13199.48 15399.09 162
ADS-MVSNet94.65 13897.04 11891.88 16195.68 11598.99 10295.89 14479.03 20299.15 5285.81 13896.96 9598.21 7297.10 11594.48 19494.24 18897.74 19597.21 194
dps94.63 13995.31 15493.84 12295.53 12298.71 12296.54 13280.12 19497.81 15597.21 2896.98 9492.37 12996.34 13892.46 20191.77 20197.26 20397.08 196
thisisatest051594.61 14096.89 12191.95 15792.00 17198.47 13792.01 19290.73 12698.18 13583.96 14494.51 13795.13 10693.38 19097.38 13894.74 18599.61 11699.79 38
UniMVSNet_NR-MVSNet94.59 14195.47 15093.55 13191.85 17697.89 16395.03 15892.00 9997.33 16486.12 13493.19 15187.29 15096.60 13196.12 17296.70 13299.72 5799.80 30
UniMVSNet (Re)94.58 14295.34 15293.71 12692.25 16898.08 15694.97 16091.29 11897.03 17387.94 12593.97 14386.25 16496.07 14496.27 16995.97 15799.72 5799.79 38
CR-MVSNet94.57 14397.34 10791.33 16994.90 13598.59 13097.15 11779.14 20097.98 14380.42 17096.59 10993.50 12596.85 12298.10 9697.49 11299.50 15299.15 157
MIMVSNet94.49 14497.59 9690.87 17891.74 17998.70 12394.68 17278.73 20497.98 14383.71 15097.71 8294.81 11096.96 11997.97 11097.92 9399.40 16598.04 185
pm-mvs194.27 14595.57 14992.75 14492.58 16098.13 15594.87 16590.71 12796.70 18183.78 14789.94 17089.85 14394.96 17397.58 13297.07 12499.61 11699.72 83
USDC94.26 14694.83 15893.59 12996.02 10098.44 14097.84 9288.65 15398.86 8882.73 15994.02 14180.56 19596.76 12497.28 14296.15 15199.55 14398.50 177
CostFormer94.25 14794.88 15793.51 13395.43 12698.34 14896.21 14180.64 19297.94 14794.01 7298.30 6586.20 16597.52 10692.71 19992.69 19597.23 20498.02 186
tpm cat194.06 14894.90 15693.06 14195.42 12898.52 13596.64 13080.67 19197.82 15392.63 9793.39 14995.00 10796.06 14591.36 20491.58 20396.98 20596.66 201
NR-MVSNet94.01 14994.51 16493.44 13492.56 16197.77 16595.67 14791.57 10897.17 16885.84 13793.13 15380.53 19695.29 16697.01 15096.17 14999.69 7999.75 64
TinyColmap94.00 15094.35 16793.60 12895.89 10598.26 14997.49 10488.82 15098.56 11883.21 15391.28 16180.48 19796.68 12797.34 14096.26 14799.53 14998.24 182
DU-MVS93.98 15194.44 16693.44 13491.66 18197.77 16595.03 15891.57 10897.17 16886.12 13493.13 15381.13 19496.60 13195.10 18897.01 12799.67 9699.80 30
PatchT93.96 15297.36 10690.00 18594.76 13998.65 12590.11 20078.57 20597.96 14680.42 17096.07 11794.10 12196.85 12298.10 9697.49 11299.26 17499.15 157
GA-MVS93.93 15396.31 14091.16 17393.61 15298.79 11195.39 15590.69 12898.25 13373.28 19996.15 11688.42 14794.39 17897.76 12295.35 16899.58 13499.45 138
Baseline_NR-MVSNet93.87 15493.98 17693.75 12491.66 18197.02 19595.53 15191.52 11197.16 17087.77 12787.93 18883.69 17896.35 13795.10 18897.23 12299.68 8899.73 72
tpmrst93.86 15595.88 14591.50 16595.69 11498.62 12795.64 14979.41 19898.80 10083.76 14995.63 12896.13 9597.25 11292.92 19892.31 19797.27 20296.74 199
tfpnnormal93.85 15694.12 17193.54 13293.22 15698.24 15195.45 15391.96 10194.61 20183.91 14590.74 16481.75 19297.04 11697.49 13596.16 15099.68 8899.84 18
TranMVSNet+NR-MVSNet93.67 15794.14 16993.13 14091.28 19597.58 18095.60 15091.97 10097.06 17184.05 14390.64 16782.22 18996.17 14294.94 19196.78 13099.69 7999.78 44
WR-MVS_H93.54 15894.67 16292.22 14891.95 17297.91 16294.58 17688.75 15196.64 18283.88 14690.66 16685.13 17294.40 17796.54 15995.91 15999.73 5199.89 6
TransMVSNet (Re)93.45 15994.08 17292.72 14592.83 15797.62 17894.94 16191.54 11095.65 19883.06 15588.93 17883.53 18094.25 17997.41 13797.03 12599.67 9698.40 181
SixPastTwentyTwo93.44 16095.32 15391.24 17192.11 16998.40 14492.77 18888.64 15498.09 13977.83 18393.51 14785.74 16796.52 13496.91 15294.89 18299.59 13099.73 72
WR-MVS93.43 16194.48 16592.21 14991.52 18897.69 17094.66 17489.98 13596.86 17683.43 15190.12 16885.03 17393.94 18596.02 17695.82 16099.71 6799.82 23
CP-MVSNet93.25 16294.00 17592.38 14791.65 18397.56 18294.38 17989.20 14696.05 19283.16 15489.51 17281.97 19096.16 14396.43 16196.56 13899.71 6799.89 6
UniMVSNet_ETH3D93.15 16392.33 19694.11 11893.91 14598.61 12994.81 16790.98 11997.06 17187.51 12982.27 20376.33 20997.87 10094.79 19297.47 11599.56 14199.81 28
anonymousdsp93.12 16495.86 14689.93 18791.09 19698.25 15095.12 15785.08 17997.44 16073.30 19890.89 16390.78 13795.25 16897.91 11395.96 15899.71 6799.82 23
V4293.05 16593.90 17992.04 15391.91 17397.66 17294.91 16289.91 13696.85 17780.58 16989.66 17183.43 18295.37 16495.03 19094.90 18099.59 13099.78 44
TDRefinement93.04 16693.57 18392.41 14696.58 8798.77 11497.78 9691.96 10198.12 13880.84 16789.13 17679.87 20187.78 20196.44 16094.50 18799.54 14798.15 183
v892.87 16793.87 18091.72 16492.05 17097.50 18594.79 16888.20 15996.85 17780.11 17390.01 16982.86 18695.48 16095.15 18794.90 18099.66 10199.80 30
LTVRE_ROB93.20 1692.84 16894.92 15590.43 18292.83 15798.63 12697.08 12287.87 16297.91 14868.42 20793.54 14679.46 20396.62 13097.55 13397.40 11999.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114492.81 16994.03 17491.40 16891.68 18097.60 17994.73 16988.40 15696.71 18078.48 18188.14 18584.46 17795.45 16396.31 16895.22 17199.65 10599.76 57
EU-MVSNet92.80 17094.76 16090.51 18091.88 17496.74 20092.48 19088.69 15296.21 18779.00 17991.51 15887.82 14891.83 19895.87 17996.27 14599.21 17598.92 170
v1092.79 17194.06 17391.31 17091.78 17897.29 19494.87 16586.10 17596.97 17479.82 17588.16 18484.56 17695.63 15496.33 16795.31 16999.65 10599.80 30
v2v48292.77 17293.52 18691.90 16091.59 18697.63 17594.57 17790.31 13196.80 17979.22 17788.74 18081.55 19396.04 14695.26 18494.97 17899.66 10199.69 92
PS-CasMVS92.72 17393.36 18791.98 15691.62 18597.52 18494.13 18388.98 14895.94 19581.51 16587.35 19079.95 20095.91 14896.37 16496.49 14099.70 7699.89 6
PEN-MVS92.72 17393.20 18992.15 15191.29 19397.31 19294.67 17389.81 13896.19 18881.83 16388.58 18179.06 20495.61 15695.21 18596.27 14599.72 5799.82 23
pmmvs592.71 17594.27 16890.90 17791.42 19097.74 16793.23 18586.66 17195.99 19478.96 18091.45 15983.44 18195.55 15797.30 14195.05 17699.58 13498.93 167
MVS-HIRNet92.51 17695.97 14288.48 19393.73 15198.37 14690.33 19875.36 21298.32 12977.78 18489.15 17594.87 10895.14 17097.62 13196.39 14298.51 18597.11 195
EG-PatchMatch MVS92.45 17793.92 17890.72 17992.56 16198.43 14294.88 16484.54 18497.18 16779.55 17686.12 19783.23 18393.15 19397.22 14496.00 15499.67 9699.27 151
pmnet_mix0292.44 17894.68 16189.83 18892.46 16397.65 17489.92 20290.49 13098.76 10773.05 20091.78 15790.08 14194.86 17494.53 19391.94 20098.21 19198.01 187
MDTV_nov1_ep13_2view92.44 17895.66 14888.68 19191.05 19797.92 16192.17 19179.64 19698.83 9576.20 18891.45 15993.51 12495.04 17195.68 18193.70 19297.96 19398.53 176
v119292.43 18093.61 18291.05 17491.53 18797.43 18894.61 17587.99 16196.60 18376.72 18687.11 19282.74 18795.85 14996.35 16695.30 17099.60 12499.74 68
DTE-MVSNet92.42 18192.85 19291.91 15990.87 19896.97 19694.53 17889.81 13895.86 19781.59 16488.83 17977.88 20795.01 17294.34 19596.35 14399.64 10999.73 72
v14419292.38 18293.55 18591.00 17591.44 18997.47 18794.27 18087.41 16596.52 18578.03 18287.50 18982.65 18895.32 16595.82 18095.15 17399.55 14399.78 44
tpm92.38 18294.79 15989.56 18994.30 14297.50 18594.24 18278.97 20397.72 15674.93 19597.97 7482.91 18496.60 13193.65 19794.81 18398.33 18998.98 165
v192192092.36 18493.57 18390.94 17691.39 19197.39 19094.70 17187.63 16496.60 18376.63 18786.98 19382.89 18595.75 15096.26 17095.14 17499.55 14399.73 72
v14892.36 18492.88 19191.75 16291.63 18497.66 17292.64 18990.55 12996.09 19083.34 15288.19 18380.00 19992.74 19493.98 19694.58 18699.58 13499.69 92
N_pmnet92.21 18694.60 16389.42 19091.88 17497.38 19189.15 20489.74 14197.89 14973.75 19787.94 18792.23 13193.85 18796.10 17393.20 19498.15 19297.43 192
v124091.99 18793.33 18890.44 18191.29 19397.30 19394.25 18186.79 16896.43 18675.49 19386.34 19681.85 19195.29 16696.42 16295.22 17199.52 15099.73 72
pmmvs691.90 18892.53 19591.17 17291.81 17797.63 17593.23 18588.37 15793.43 20680.61 16877.32 20787.47 14994.12 18196.58 15795.72 16298.88 18499.53 125
v7n91.61 18992.95 19090.04 18490.56 19997.69 17093.74 18485.59 17795.89 19676.95 18586.60 19578.60 20693.76 18897.01 15094.99 17799.65 10599.87 12
gg-mvs-nofinetune90.85 19094.14 16987.02 19694.89 13699.25 8898.64 6276.29 21088.24 21057.50 21479.93 20595.45 10295.18 16998.77 5898.07 8899.62 11499.24 153
CMPMVSbinary70.31 1890.74 19191.06 19890.36 18397.32 7597.43 18892.97 18787.82 16393.50 20575.34 19483.27 20184.90 17492.19 19792.64 20091.21 20496.50 20794.46 205
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 19293.93 17786.92 19790.21 20296.79 19890.30 19986.61 17296.05 19269.25 20588.46 18284.86 17585.86 20397.11 14896.47 14199.30 17197.80 189
test20.0390.65 19393.71 18187.09 19590.44 20096.24 20189.74 20385.46 17895.59 19972.99 20190.68 16585.33 17084.41 20495.94 17895.10 17599.52 15097.06 197
new_pmnet90.45 19492.84 19387.66 19488.96 20396.16 20288.71 20584.66 18397.56 15971.91 20485.60 19886.58 16093.28 19196.07 17493.54 19398.46 18694.39 206
pmmvs-eth3d89.81 19589.65 20190.00 18586.94 20695.38 20591.08 19386.39 17394.57 20282.27 16183.03 20264.94 21293.96 18496.57 15893.82 19199.35 16899.24 153
PM-MVS89.55 19690.30 20088.67 19287.06 20595.60 20490.88 19584.51 18596.14 18975.75 18986.89 19463.47 21594.64 17596.85 15393.89 19099.17 17899.29 148
gm-plane-assit89.44 19792.82 19485.49 20091.37 19295.34 20679.55 21382.12 18991.68 20964.79 21187.98 18680.26 19895.66 15398.51 8097.56 10899.45 15798.41 179
MIMVSNet188.61 19890.68 19986.19 19981.56 21195.30 20787.78 20685.98 17694.19 20472.30 20378.84 20678.90 20590.06 19996.59 15695.47 16599.46 15695.49 204
pmmvs388.19 19991.27 19784.60 20285.60 20893.66 20985.68 20881.13 19092.36 20863.66 21389.51 17277.10 20893.22 19296.37 16492.40 19698.30 19097.46 191
MDA-MVSNet-bldmvs87.84 20089.22 20286.23 19881.74 21096.77 19983.74 20989.57 14394.50 20372.83 20296.64 10564.47 21492.71 19581.43 20992.28 19896.81 20698.47 178
new-patchmatchnet86.12 20187.30 20384.74 20186.92 20795.19 20883.57 21084.42 18692.67 20765.66 20880.32 20464.72 21389.41 20092.33 20389.21 20598.43 18796.69 200
FPMVS83.82 20284.61 20482.90 20390.39 20190.71 21190.85 19684.10 18795.47 20065.15 20983.44 20074.46 21075.48 20781.63 20879.42 21091.42 21287.14 210
Gipumacopyleft81.40 20381.78 20580.96 20583.21 20985.61 21479.73 21276.25 21197.33 16464.21 21255.32 21155.55 21686.04 20292.43 20292.20 19996.32 20893.99 207
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 20479.47 20774.70 20776.00 21488.37 21374.22 21476.34 20978.31 21254.13 21569.96 20952.50 21770.14 21184.83 20788.71 20697.35 20093.58 208
PMVScopyleft72.60 1776.39 20577.66 20874.92 20681.04 21269.37 21868.47 21580.54 19385.39 21165.07 21073.52 20872.91 21165.67 21380.35 21076.81 21188.71 21385.25 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND69.11 20698.13 7835.26 2113.49 22098.20 15394.89 1632.38 21798.42 1265.82 22196.37 11398.60 645.97 21698.75 6197.98 9199.01 18198.61 174
E-PMN68.30 20768.43 20968.15 20874.70 21671.56 21755.64 21777.24 20777.48 21439.46 21751.95 21441.68 21973.28 20970.65 21279.51 20988.61 21486.20 212
EMVS68.12 20868.11 21068.14 20975.51 21571.76 21655.38 21877.20 20877.78 21337.79 21853.59 21243.61 21874.72 20867.05 21376.70 21288.27 21586.24 211
MVEpermissive67.97 1965.53 20967.43 21163.31 21059.33 21774.20 21553.09 21970.43 21366.27 21543.13 21645.98 21530.62 22070.65 21079.34 21186.30 20783.25 21689.33 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 21040.15 21220.86 21212.61 21817.99 21925.16 22013.30 21548.42 21624.82 21953.07 21330.13 22228.47 21442.73 21437.65 21320.79 21751.04 214
test12326.75 21134.25 21318.01 2137.93 21917.18 22024.85 22112.36 21644.83 21716.52 22041.80 21618.10 22328.29 21533.08 21534.79 21418.10 21849.95 215
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def69.05 206
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13493.55 14594.41 11598.88 6498.04 10698.24 7999.75 3999.76 57
our_test_392.30 16597.58 18090.09 201
ambc80.99 20680.04 21390.84 21090.91 19496.09 19074.18 19662.81 21030.59 22182.44 20696.25 17191.77 20195.91 20998.56 175
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 216
tmp_tt82.25 20497.73 6988.71 21280.18 21168.65 21499.15 5286.98 13199.47 985.31 17168.35 21287.51 20683.81 20891.64 211
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
abl_698.09 4099.33 4299.22 9298.79 5994.96 5498.52 12297.00 3297.30 8799.86 3798.76 6699.69 7999.41 141
mPP-MVS99.53 3099.89 34
NP-MVS98.57 117
Patchmtry98.59 13097.15 11779.14 20080.42 170
DeepMVS_CXcopyleft96.85 19787.43 20789.27 14598.30 13075.55 19295.05 13179.47 20292.62 19689.48 20595.18 21095.96 203