This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5699.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7099.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
Regformer-499.59 399.54 499.73 5899.76 5299.41 9499.58 8399.49 12899.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5799.39 20898.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12599.60 7099.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12499.61 6999.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8899.37 22299.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
Regformer-399.57 799.53 599.68 6599.76 5299.29 10699.58 8399.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
Regformer-299.54 999.47 999.75 5199.71 8699.52 8299.49 13399.49 12898.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7699.51 10298.62 5799.79 2699.83 4299.28 399.97 1098.48 13399.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9199.49 13399.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11798.81 4599.94 5398.79 9099.86 5199.84 18
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5697.72 15299.76 3799.75 11199.13 1099.92 7999.07 5099.92 1199.85 14
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 14099.06 1399.96 1898.69 10399.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 14098.95 2899.96 1898.69 10399.87 4099.84 18
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6799.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11199.87 4099.84 18
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 7198.36 7899.79 2699.82 4998.86 4099.95 4298.62 11199.81 8099.78 61
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9699.05 26399.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5599.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9899.90 2399.82 36
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14499.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10298.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12099.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22699.28 2999.84 6599.63 122
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.53 7299.95 4298.61 11499.81 8099.77 63
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8399.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15099.87 4099.83 29
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8998.07 11599.53 9599.63 17098.93 3599.97 1098.74 9499.91 1699.83 29
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6399.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 12899.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9599.47 15797.45 18099.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4498.13 10399.82 2099.81 6298.60 6999.96 1898.46 13799.88 3699.79 53
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11198.78 4899.97 1098.57 12299.89 3399.83 29
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7099.56 5698.28 8699.74 4199.79 8898.53 7299.95 4298.55 12899.78 8999.79 53
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6799.14 24699.53 8399.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7699.62 3498.21 9699.73 4399.79 8898.68 6399.96 1898.44 13999.77 9299.79 53
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10399.67 2297.83 13899.68 5399.69 14099.06 1399.96 1898.39 14199.87 4099.84 18
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20498.79 4799.52 9799.62 17598.91 3699.90 10598.64 10999.75 9699.82 36
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 12098.70 5399.77 3399.49 22098.21 9699.95 4298.46 13799.77 9299.88 5
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7499.50 12399.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7197.59 16399.68 5399.63 17098.91 3699.94 5398.58 12099.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22499.52 8998.82 4299.39 12799.71 12998.96 2599.85 13198.59 11999.80 8499.77 63
SD-MVS99.41 4299.52 699.05 16399.74 7099.68 4999.46 14799.52 8999.11 799.88 599.91 599.43 197.70 33998.72 9899.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8498.94 29399.85 698.82 4299.65 6799.74 11798.51 7599.80 16198.83 8499.89 3399.64 118
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8898.95 29199.85 698.82 4299.54 9399.73 12498.51 7599.74 17698.91 6799.88 3699.77 63
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7099.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14399.86 5199.81 41
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15899.51 10298.68 5599.27 15399.53 20798.64 6899.96 1898.44 13999.80 8499.79 53
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8899.54 7197.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8997.18 20599.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25899.33 23999.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13399.47 14499.93 297.66 15999.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15499.63 12299.80 49
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11798.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13798.94 15498.97 28699.46 16798.92 3599.71 4699.24 28299.01 1699.98 599.35 1999.66 11798.97 208
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
PHI-MVS99.30 5599.17 6299.70 6499.56 14199.52 8299.58 8399.80 897.12 21199.62 7499.73 12498.58 7099.90 10598.61 11499.91 1699.68 102
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11399.62 6399.55 6498.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12399.50 12097.16 20799.77 3399.82 4998.78 4899.94 5397.56 21699.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 6099.12 6799.74 5699.18 23499.75 3899.56 9599.57 5198.45 6999.49 10399.85 2997.77 11099.94 5398.33 15099.84 6599.52 146
ETV-MVS99.26 6299.21 5899.40 12299.46 16599.30 10599.56 9599.52 8998.52 6399.44 11299.27 27998.41 8599.86 12599.10 4799.59 12699.04 200
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14598.91 15899.02 27299.45 17998.80 4699.71 4699.26 28098.94 3199.98 599.34 2399.23 14698.98 207
CANet99.25 6499.14 6499.59 8499.41 17699.16 12099.35 19799.57 5198.82 4299.51 9999.61 17996.46 14999.95 4299.59 199.98 299.65 112
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24799.66 5499.84 699.74 1099.09 1098.92 22299.90 795.94 16699.98 598.95 6199.92 1199.79 53
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10297.45 18099.61 7699.75 11198.51 7599.91 9097.45 22899.83 7299.71 93
CS-MVS99.21 6699.13 6599.45 11599.54 14499.34 9999.71 3199.54 7198.26 8998.99 21299.24 28298.25 9499.88 11898.98 5799.63 12299.12 189
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8698.96 28799.56 5698.34 8099.01 20599.52 21098.68 6399.83 14597.96 17899.74 9999.74 73
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18199.94 5399.50 899.97 399.89 2
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 10999.42 16599.54 7197.29 19599.41 12099.59 18598.42 8499.93 6898.19 15899.69 10999.73 80
EIA-MVS99.18 7199.09 7199.45 11599.49 15899.18 11799.67 4299.53 8397.66 15999.40 12599.44 23598.10 10199.81 15698.94 6299.62 12499.35 175
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24099.68 4999.81 1299.51 10299.20 498.72 24899.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
MVSFormer99.17 7399.12 6799.29 14099.51 14998.94 15499.88 199.46 16797.55 16899.80 2499.65 15897.39 11799.28 26799.03 5299.85 5899.65 112
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3497.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 7999.41 16899.50 12097.03 22199.04 20299.88 1597.39 11799.92 7998.66 10799.90 2399.87 10
baseline99.15 7699.02 8299.53 9899.66 10999.14 12599.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12898.46 6899.72 4599.71 12996.50 14899.88 11899.31 2699.11 15599.67 105
CNLPA99.14 7798.99 8799.59 8499.58 13599.41 9499.16 24099.44 18798.45 6999.19 17599.49 22098.08 10299.89 11397.73 19999.75 9699.48 157
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24499.41 19896.60 25299.60 8099.55 19898.83 4399.90 10597.48 22399.83 7299.78 61
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12099.56 9599.50 12098.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
jason99.13 7999.03 7999.45 11599.46 16598.87 16199.12 24899.26 26298.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
lupinMVS99.13 7999.01 8699.46 11499.51 14998.94 15499.05 26399.16 27297.86 13399.80 2499.56 19597.39 11799.86 12598.94 6299.85 5899.58 136
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13499.81 1299.33 23997.43 18399.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
MG-MVS99.13 7999.02 8299.45 11599.57 13798.63 18399.07 25899.34 23298.99 2599.61 7699.82 4997.98 10599.87 12297.00 25399.80 8499.85 14
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15299.51 10297.29 19599.59 8399.74 11798.15 10099.96 1896.74 26899.69 10999.81 41
CHOSEN 280x42099.12 8599.13 6599.08 15999.66 10997.89 22998.43 33299.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5196.40 27099.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13099.68 4099.66 2798.49 6599.86 1199.87 2094.77 20799.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 8599.08 7299.24 14799.46 16598.55 18999.51 11799.46 16798.09 11099.45 10899.82 4998.34 8999.51 22798.70 10098.93 17099.67 105
VNet99.11 9098.90 10099.73 5899.52 14799.56 7299.41 16899.39 20899.01 1899.74 4199.78 9595.56 17999.92 7999.52 698.18 20799.72 86
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 8999.59 7699.49 12897.03 22199.63 7099.69 14097.27 12499.96 1897.82 19099.84 6599.81 41
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9799.02 27299.91 397.67 15899.59 8399.75 11195.90 16999.73 18399.53 599.02 16599.86 11
MVS_Test99.10 9398.97 9199.48 10999.49 15899.14 12599.67 4299.34 23297.31 19399.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
112199.09 9498.87 10499.75 5199.74 7099.60 6499.27 21699.48 13996.82 23799.25 16099.65 15898.38 8699.93 6897.53 21999.67 11699.73 80
CDS-MVSNet99.09 9499.03 7999.25 14599.42 17398.73 17599.45 14899.46 16798.11 10799.46 10799.77 10198.01 10499.37 24998.70 10098.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30899.91 396.74 23999.67 5999.49 22097.53 11499.88 11898.98 5799.85 5899.60 128
OMC-MVS99.08 9699.04 7799.20 15099.67 10098.22 21299.28 21299.52 8998.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 14999.60 6499.23 22999.44 18797.04 21999.39 12799.67 15198.30 9199.92 7997.27 23599.69 10999.64 118
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12099.37 18899.56 5698.04 12199.53 9599.62 17596.84 13699.94 5398.85 7998.49 19499.72 86
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10199.75 2599.20 26998.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9199.39 18099.38 21497.70 15499.28 15099.28 27698.34 8999.85 13196.96 25799.45 13299.69 98
API-MVS99.04 10199.03 7999.06 16199.40 18199.31 10499.55 10399.56 5698.54 6199.33 14299.39 24998.76 5399.78 16896.98 25599.78 8998.07 324
mvs_anonymous99.03 10398.99 8799.16 15499.38 18598.52 19599.51 11799.38 21497.79 14499.38 13099.81 6297.30 12299.45 23199.35 1998.99 16799.51 152
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26399.41 19896.28 27498.95 21799.49 22098.76 5399.91 9097.63 20799.72 10399.75 69
canonicalmvs99.02 10498.86 10899.51 10599.42 17399.32 10199.80 1699.48 13998.63 5699.31 14498.81 31697.09 12899.75 17599.27 3197.90 21799.47 162
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 13999.24 22899.52 8996.85 23399.27 15399.48 22698.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6098.99 27999.40 20496.26 27798.87 23099.49 22098.77 5199.91 9097.69 20499.72 10399.75 69
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14199.54 7699.18 23899.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22399.77 9299.55 139
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13799.25 22699.48 13997.23 20299.13 18399.58 18896.93 13599.90 10598.87 7498.78 18199.84 18
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11598.75 31199.55 6497.25 19999.47 10599.77 10197.82 10899.87 12296.93 26099.90 2399.54 141
CANet_DTU98.97 11198.87 10499.25 14599.33 19598.42 20699.08 25799.30 25499.16 599.43 11399.75 11195.27 18999.97 1098.56 12599.95 699.36 174
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7498.64 32199.10 27897.93 12999.42 11699.55 19898.67 6699.80 16195.80 29099.68 11499.61 126
114514_t98.93 11398.67 12899.72 6199.85 2599.53 7999.62 6399.59 4492.65 32899.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29698.53 19199.78 1999.54 7198.07 11599.00 21099.76 10599.01 1699.37 24999.13 4497.23 24998.81 219
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 26999.47 15796.98 22399.15 18199.23 28496.77 14099.89 11398.83 8498.78 18199.86 11
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9599.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
UGNet98.87 11698.69 12699.40 12299.22 22598.72 17699.44 15299.68 1999.24 399.18 17899.42 24092.74 26199.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18299.43 24197.91 18299.11 15599.62 124
test_yl98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
mvs-test198.86 11998.84 11098.89 19199.33 19597.77 23599.44 15299.30 25498.47 6699.10 19099.43 23796.78 13899.95 4298.73 9699.02 16598.96 210
EPNet98.86 11998.71 12499.30 13797.20 34098.18 21399.62 6398.91 30099.28 298.63 26699.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 11998.80 11599.03 16699.76 5298.79 17299.28 21299.91 397.42 18599.67 5999.37 25397.53 11499.88 11898.98 5797.29 24898.42 309
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11599.44 15299.54 7197.77 14699.30 14599.81 6294.20 22999.93 6899.17 4098.82 17899.49 156
MAR-MVS98.86 11998.63 13399.54 9299.37 18799.66 5499.45 14899.54 7196.61 25099.01 20599.40 24597.09 12899.86 12597.68 20699.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15399.88 1198.53 19199.34 20099.59 4497.55 16898.70 25599.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17399.08 13299.62 6399.36 22397.39 18899.28 15099.68 14596.44 15199.92 7998.37 14598.22 20399.40 172
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24898.32 33599.60 4197.86 13399.50 10099.57 19296.75 14199.86 12598.56 12599.70 10899.54 141
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10799.06 26199.77 997.74 15199.50 10099.53 20795.41 18399.84 13697.17 24699.64 12099.44 167
Effi-MVS+98.81 13098.59 14399.48 10999.46 16599.12 12998.08 34199.50 12097.50 17699.38 13099.41 24396.37 15399.81 15699.11 4698.54 19199.51 152
alignmvs98.81 13098.56 14599.58 8799.43 17299.42 9399.51 11798.96 29398.61 5899.35 13898.92 31394.78 20499.77 17099.35 1998.11 21399.54 141
DeepPCF-MVS98.18 398.81 13099.37 1997.12 30899.60 13291.75 34198.61 32299.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
PMMVS98.80 13398.62 13899.34 12799.27 21398.70 17798.76 31099.31 25097.34 19099.21 16999.07 30097.20 12599.82 15298.56 12598.87 17599.52 146
Effi-MVS+-dtu98.78 13498.89 10298.47 24099.33 19596.91 27299.57 8899.30 25498.47 6699.41 12098.99 30796.78 13899.74 17698.73 9699.38 13698.74 232
FIs98.78 13498.63 13399.23 14999.18 23499.54 7699.83 999.59 4498.28 8698.79 24299.81 6296.75 14199.37 24999.08 4996.38 26698.78 222
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22399.41 17696.99 26699.52 11299.49 12898.11 10799.24 16199.34 26296.96 13499.79 16497.95 18099.45 13299.02 203
FC-MVSNet-test98.75 13798.62 13899.15 15699.08 25699.45 9099.86 599.60 4198.23 9398.70 25599.82 4996.80 13799.22 27899.07 5096.38 26698.79 221
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23798.92 29499.55 6498.52 6399.45 10899.84 3895.27 18999.91 9098.08 17198.84 17799.00 204
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6499.16 24099.45 17995.42 30299.27 15399.60 18297.39 11799.91 9095.36 30199.83 7299.70 95
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 14999.28 10799.52 11299.47 15796.11 29199.01 20599.34 26296.20 15899.84 13697.88 18498.82 17899.39 173
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23699.12 24899.54 7198.44 7299.42 11699.71 12994.20 22999.92 7998.54 13098.90 17499.00 204
131498.68 14298.54 14699.11 15898.89 28098.65 18199.27 21699.49 12896.89 23197.99 30199.56 19597.72 11299.83 14597.74 19899.27 14498.84 217
EI-MVSNet98.67 14398.67 12898.68 22099.35 19097.97 22399.50 12399.38 21496.93 23099.20 17299.83 4297.87 10699.36 25398.38 14397.56 22998.71 236
test_djsdf98.67 14398.57 14498.98 17298.70 30798.91 15899.88 199.46 16797.55 16899.22 16699.88 1595.73 17599.28 26799.03 5297.62 22498.75 229
QAPM98.67 14398.30 16099.80 4099.20 22999.67 5299.77 2199.72 1194.74 31098.73 24799.90 795.78 17399.98 596.96 25799.88 3699.76 68
nrg03098.64 14698.42 15199.28 14299.05 26299.69 4799.81 1299.46 16798.04 12199.01 20599.82 4996.69 14399.38 24699.34 2394.59 30598.78 222
PAPR98.63 14798.34 15699.51 10599.40 18199.03 13698.80 30699.36 22396.33 27199.00 21099.12 29898.46 7999.84 13695.23 30399.37 14099.66 108
RRT_MVS98.60 14898.44 14999.05 16398.88 28199.14 12599.49 13399.38 21497.76 14799.29 14899.86 2395.38 18499.36 25398.81 8997.16 25398.64 269
CVMVSNet98.57 14998.67 12898.30 25999.35 19095.59 30499.50 12399.55 6498.60 5999.39 12799.83 4294.48 22199.45 23198.75 9398.56 19099.85 14
MVSTER98.49 15098.32 15899.00 17099.35 19099.02 13799.54 10699.38 21497.41 18699.20 17299.73 12493.86 24199.36 25398.87 7497.56 22998.62 279
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26399.53 7999.82 1099.72 1194.56 31398.08 29699.88 1594.73 21099.98 597.47 22599.76 9599.06 199
IterMVS-LS98.46 15298.42 15198.58 22599.59 13498.00 22199.37 18899.43 19496.94 22999.07 19699.59 18597.87 10699.03 30498.32 15295.62 28698.71 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 15398.28 16198.94 17898.50 32298.96 14999.77 2199.50 12097.07 21698.87 23099.77 10194.76 20899.28 26798.66 10797.60 22598.57 294
jajsoiax98.43 15498.28 16198.88 19498.60 31798.43 20499.82 1099.53 8398.19 9798.63 26699.80 7693.22 25199.44 23699.22 3497.50 23598.77 225
tttt051798.42 15598.14 16799.28 14299.66 10998.38 20799.74 2896.85 34497.68 15699.79 2699.74 11791.39 29499.89 11398.83 8499.56 12799.57 137
BH-untuned98.42 15598.36 15398.59 22499.49 15896.70 27999.27 21699.13 27697.24 20198.80 24099.38 25095.75 17499.74 17697.07 25199.16 15099.33 178
D2MVS98.41 15798.50 14798.15 27099.26 21596.62 28399.40 17699.61 3697.71 15398.98 21399.36 25696.04 16199.67 20498.70 10097.41 24498.15 322
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17698.83 16899.30 20698.77 31097.70 15498.94 21999.65 15892.91 25799.74 17696.52 27699.55 12999.64 118
mvs_tets98.40 15998.23 16398.91 18698.67 31098.51 19799.66 4699.53 8398.19 9798.65 26499.81 6292.75 25999.44 23699.31 2697.48 23998.77 225
XXY-MVS98.38 16098.09 17399.24 14799.26 21599.32 10199.56 9599.55 6497.45 18098.71 24999.83 4293.23 24999.63 21798.88 7096.32 26898.76 227
ACMM97.58 598.37 16198.34 15698.48 23699.41 17697.10 25599.56 9599.45 17998.53 6299.04 20299.85 2993.00 25399.71 19398.74 9497.45 24098.64 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10696.75 34697.53 17399.73 4399.65 15891.25 29799.89 11398.62 11199.56 12799.48 157
tpmrst98.33 16398.48 14897.90 28699.16 24294.78 32299.31 20499.11 27797.27 19799.45 10899.59 18595.33 18799.84 13698.48 13398.61 18499.09 194
baseline198.31 16497.95 18899.38 12599.50 15698.74 17499.59 7698.93 29598.41 7399.14 18299.60 18294.59 21699.79 16498.48 13393.29 32299.61 126
PatchmatchNetpermissive98.31 16498.36 15398.19 26799.16 24295.32 31299.27 21698.92 29797.37 18999.37 13299.58 18894.90 19899.70 19997.43 23099.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 16697.98 18499.26 14499.57 13798.16 21499.41 16898.55 32696.03 29699.19 17599.74 11791.87 28299.92 7999.16 4298.29 20299.70 95
VPA-MVSNet98.29 16797.95 18899.30 13799.16 24299.54 7699.50 12399.58 5098.27 8899.35 13899.37 25392.53 27099.65 21099.35 1994.46 30698.72 234
UniMVSNet (Re)98.29 16798.00 18299.13 15799.00 26899.36 9899.49 13399.51 10297.95 12798.97 21599.13 29596.30 15599.38 24698.36 14893.34 32198.66 265
HQP_MVS98.27 16998.22 16498.44 24599.29 20896.97 26899.39 18099.47 15798.97 3099.11 18799.61 17992.71 26499.69 20297.78 19397.63 22298.67 257
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27898.98 14299.48 13999.53 8397.76 14798.71 24999.46 23396.43 15299.22 27898.57 12292.87 32898.69 244
LPG-MVS_test98.22 17098.13 16898.49 23499.33 19597.05 26199.58 8399.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
RPSCF98.22 17098.62 13896.99 30999.82 3791.58 34299.72 2999.44 18796.61 25099.66 6499.89 1095.92 16799.82 15297.46 22699.10 15899.57 137
ADS-MVSNet98.20 17398.08 17498.56 22899.33 19596.48 28799.23 22999.15 27396.24 27999.10 19099.67 15194.11 23399.71 19396.81 26599.05 16299.48 157
OPM-MVS98.19 17498.10 17098.45 24298.88 28197.07 25999.28 21299.38 21498.57 6099.22 16699.81 6292.12 27999.66 20798.08 17197.54 23198.61 288
SCA98.19 17498.16 16598.27 26499.30 20495.55 30599.07 25898.97 29197.57 16699.43 11399.57 19292.72 26299.74 17697.58 21199.20 14899.52 146
miper_ehance_all_eth98.18 17698.10 17098.41 24799.23 22197.72 23898.72 31499.31 25096.60 25298.88 22899.29 27497.29 12399.13 29197.60 20995.99 27598.38 314
CR-MVSNet98.17 17797.93 19198.87 19899.18 23498.49 19999.22 23499.33 23996.96 22599.56 8899.38 25094.33 22599.00 30994.83 30998.58 18799.14 186
miper_enhance_ethall98.16 17898.08 17498.41 24798.96 27597.72 23898.45 33199.32 24796.95 22798.97 21599.17 29097.06 13099.22 27897.86 18695.99 27598.29 317
CLD-MVS98.16 17898.10 17098.33 25499.29 20896.82 27598.75 31199.44 18797.83 13899.13 18399.55 19892.92 25599.67 20498.32 15297.69 22198.48 300
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 18097.79 20299.19 15199.50 15698.50 19898.61 32296.82 34596.95 22799.54 9399.43 23791.66 29099.86 12598.08 17199.51 13199.22 183
pmmvs498.13 18197.90 19398.81 20998.61 31698.87 16198.99 27999.21 26896.44 26699.06 20099.58 18895.90 16999.11 29697.18 24596.11 27198.46 306
WR-MVS_H98.13 18197.87 19898.90 18899.02 26698.84 16599.70 3399.59 4497.27 19798.40 28199.19 28995.53 18099.23 27598.34 14993.78 31798.61 288
cl_fuxian98.12 18398.04 17898.38 25199.30 20497.69 24198.81 30599.33 23996.67 24498.83 23699.34 26297.11 12798.99 31097.58 21195.34 29298.48 300
ACMH97.28 898.10 18497.99 18398.44 24599.41 17696.96 27099.60 7099.56 5698.09 11098.15 29499.91 590.87 30199.70 19998.88 7097.45 24098.67 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 18597.68 21799.34 12799.66 10998.44 20399.40 17699.43 19493.67 32099.22 16699.89 1090.23 30799.93 6899.26 3298.33 19799.66 108
CP-MVSNet98.09 18597.78 20599.01 16898.97 27499.24 11299.67 4299.46 16797.25 19998.48 27799.64 16593.79 24299.06 30098.63 11094.10 31398.74 232
DU-MVS98.08 18797.79 20298.96 17598.87 28598.98 14299.41 16899.45 17997.87 13298.71 24999.50 21794.82 20199.22 27898.57 12292.87 32898.68 249
v2v48298.06 18897.77 20798.92 18298.90 27998.82 16999.57 8899.36 22396.65 24699.19 17599.35 25994.20 22999.25 27397.72 20194.97 30098.69 244
V4298.06 18897.79 20298.86 20198.98 27298.84 16599.69 3599.34 23296.53 25799.30 14599.37 25394.67 21399.32 26297.57 21594.66 30398.42 309
test-LLR98.06 18897.90 19398.55 23098.79 29397.10 25598.67 31797.75 33797.34 19098.61 26998.85 31494.45 22299.45 23197.25 23799.38 13699.10 190
WR-MVS98.06 18897.73 21399.06 16198.86 28899.25 11199.19 23799.35 22897.30 19498.66 25899.43 23793.94 23899.21 28398.58 12094.28 31098.71 236
ACMP97.20 1198.06 18897.94 19098.45 24299.37 18797.01 26499.44 15299.49 12897.54 17198.45 27899.79 8891.95 28199.72 18797.91 18297.49 23898.62 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 19397.96 18698.33 25499.26 21597.38 24698.56 32799.31 25096.65 24698.88 22899.52 21096.58 14599.12 29597.39 23295.53 28998.47 302
EPNet_dtu98.03 19497.96 18698.23 26598.27 32695.54 30799.23 22998.75 31199.02 1597.82 30699.71 12996.11 15999.48 22893.04 32799.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 19497.76 21098.84 20599.39 18498.98 14299.40 17699.38 21496.67 24499.07 19699.28 27692.93 25498.98 31197.10 24896.65 25898.56 295
ADS-MVSNet298.02 19698.07 17797.87 28799.33 19595.19 31599.23 22999.08 28196.24 27999.10 19099.67 15194.11 23398.93 32096.81 26599.05 16299.48 157
HQP-MVS98.02 19697.90 19398.37 25299.19 23196.83 27398.98 28399.39 20898.24 9098.66 25899.40 24592.47 27299.64 21297.19 24397.58 22798.64 269
LTVRE_ROB97.16 1298.02 19697.90 19398.40 24999.23 22196.80 27699.70 3399.60 4197.12 21198.18 29399.70 13391.73 28699.72 18798.39 14197.45 24098.68 249
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl-mvsnet_98.01 19997.84 20098.55 23099.25 21997.97 22398.71 31599.34 23296.47 26598.59 27299.54 20395.65 17899.21 28397.21 23995.77 28198.46 306
cl-mvsnet198.01 19997.85 19998.48 23699.24 22097.95 22798.71 31599.35 22896.50 25898.60 27199.54 20395.72 17699.03 30497.21 23995.77 28198.46 306
miper_lstm_enhance98.00 20197.91 19298.28 26399.34 19497.43 24598.88 29899.36 22396.48 26398.80 24099.55 19895.98 16298.91 32197.27 23595.50 29098.51 298
BH-w/o98.00 20197.89 19798.32 25799.35 19096.20 29699.01 27798.90 30296.42 26898.38 28299.00 30695.26 19199.72 18796.06 28498.61 18499.03 201
v114497.98 20397.69 21698.85 20498.87 28598.66 18099.54 10699.35 22896.27 27699.23 16599.35 25994.67 21399.23 27596.73 26995.16 29698.68 249
EU-MVSNet97.98 20398.03 17997.81 29298.72 30496.65 28299.66 4699.66 2798.09 11098.35 28599.82 4995.25 19298.01 33297.41 23195.30 29398.78 222
tpmvs97.98 20398.02 18197.84 28999.04 26394.73 32399.31 20499.20 26996.10 29598.76 24599.42 24094.94 19699.81 15696.97 25698.45 19598.97 208
NR-MVSNet97.97 20697.61 22499.02 16798.87 28599.26 11099.47 14499.42 19697.63 16197.08 31899.50 21795.07 19599.13 29197.86 18693.59 31898.68 249
v897.95 20797.63 22398.93 18098.95 27698.81 17199.80 1699.41 19896.03 29699.10 19099.42 24094.92 19799.30 26596.94 25994.08 31498.66 265
Patchmatch-test97.93 20897.65 22098.77 21499.18 23497.07 25999.03 26999.14 27596.16 28698.74 24699.57 19294.56 21899.72 18793.36 32399.11 15599.52 146
PS-CasMVS97.93 20897.59 22798.95 17798.99 26999.06 13499.68 4099.52 8997.13 20998.31 28799.68 14592.44 27699.05 30198.51 13194.08 31498.75 229
TranMVSNet+NR-MVSNet97.93 20897.66 21998.76 21598.78 29698.62 18499.65 5399.49 12897.76 14798.49 27699.60 18294.23 22898.97 31898.00 17692.90 32698.70 240
v14419297.92 21197.60 22598.87 19898.83 29198.65 18199.55 10399.34 23296.20 28299.32 14399.40 24594.36 22499.26 27296.37 28195.03 29998.70 240
ACMH+97.24 1097.92 21197.78 20598.32 25799.46 16596.68 28199.56 9599.54 7198.41 7397.79 30899.87 2090.18 30899.66 20798.05 17597.18 25298.62 279
LFMVS97.90 21397.35 25899.54 9299.52 14799.01 13999.39 18098.24 33097.10 21599.65 6799.79 8884.79 33999.91 9099.28 2998.38 19699.69 98
Anonymous2023121197.88 21497.54 23198.90 18899.71 8698.53 19199.48 13999.57 5194.16 31698.81 23899.68 14593.23 24999.42 24298.84 8194.42 30898.76 227
OurMVSNet-221017-097.88 21497.77 20798.19 26798.71 30696.53 28599.88 199.00 28897.79 14498.78 24399.94 391.68 28799.35 25797.21 23996.99 25698.69 244
v7n97.87 21697.52 23298.92 18298.76 30098.58 18799.84 699.46 16796.20 28298.91 22399.70 13394.89 19999.44 23696.03 28593.89 31698.75 229
baseline297.87 21697.55 22898.82 20799.18 23498.02 22099.41 16896.58 34896.97 22496.51 32399.17 29093.43 24699.57 22297.71 20299.03 16498.86 215
thres600view797.86 21897.51 23498.92 18299.72 8097.95 22799.59 7698.74 31497.94 12899.27 15398.62 32391.75 28499.86 12593.73 32098.19 20698.96 210
cl-mvsnet297.85 21997.64 22298.48 23699.09 25497.87 23098.60 32499.33 23997.11 21498.87 23099.22 28592.38 27799.17 28798.21 15795.99 27598.42 309
v1097.85 21997.52 23298.86 20198.99 26998.67 17999.75 2599.41 19895.70 29998.98 21399.41 24394.75 20999.23 27596.01 28694.63 30498.67 257
GA-MVS97.85 21997.47 23899.00 17099.38 18597.99 22298.57 32599.15 27397.04 21998.90 22599.30 27289.83 31099.38 24696.70 27198.33 19799.62 124
tfpnnormal97.84 22297.47 23898.98 17299.20 22999.22 11499.64 5599.61 3696.32 27298.27 29099.70 13393.35 24899.44 23695.69 29295.40 29198.27 318
VPNet97.84 22297.44 24699.01 16899.21 22798.94 15499.48 13999.57 5198.38 7599.28 15099.73 12488.89 31899.39 24499.19 3793.27 32398.71 236
LCM-MVSNet-Re97.83 22498.15 16696.87 31399.30 20492.25 34099.59 7698.26 32997.43 18396.20 32699.13 29596.27 15698.73 32698.17 16298.99 16799.64 118
XVG-ACMP-BASELINE97.83 22497.71 21598.20 26699.11 24996.33 29299.41 16899.52 8998.06 11999.05 20199.50 21789.64 31299.73 18397.73 19997.38 24698.53 296
IterMVS97.83 22497.77 20798.02 27799.58 13596.27 29499.02 27299.48 13997.22 20398.71 24999.70 13392.75 25999.13 29197.46 22696.00 27498.67 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 22797.75 21198.06 27499.57 13796.36 29199.02 27299.49 12897.18 20598.71 24999.72 12892.72 26299.14 28897.44 22995.86 28098.67 257
EPMVS97.82 22797.65 22098.35 25398.88 28195.98 29999.49 13394.71 35297.57 16699.26 15899.48 22692.46 27599.71 19397.87 18599.08 16099.35 175
MVP-Stereo97.81 22997.75 21197.99 28097.53 33396.60 28498.96 28798.85 30697.22 20397.23 31599.36 25695.28 18899.46 23095.51 29699.78 8997.92 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 22997.44 24698.91 18698.88 28198.68 17899.51 11799.34 23296.18 28499.20 17299.34 26294.03 23699.36 25395.32 30295.18 29598.69 244
v192192097.80 23197.45 24198.84 20598.80 29298.53 19199.52 11299.34 23296.15 28899.24 16199.47 22993.98 23799.29 26695.40 29995.13 29798.69 244
v14897.79 23297.55 22898.50 23398.74 30197.72 23899.54 10699.33 23996.26 27798.90 22599.51 21494.68 21299.14 28897.83 18993.15 32598.63 277
thres40097.77 23397.38 25498.92 18299.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.96 210
thres100view90097.76 23497.45 24198.69 21999.72 8097.86 23299.59 7698.74 31497.93 12999.26 15898.62 32391.75 28499.83 14593.22 32498.18 20798.37 315
PEN-MVS97.76 23497.44 24698.72 21798.77 29998.54 19099.78 1999.51 10297.06 21898.29 28999.64 16592.63 26798.89 32398.09 16793.16 32498.72 234
Baseline_NR-MVSNet97.76 23497.45 24198.68 22099.09 25498.29 20999.41 16898.85 30695.65 30098.63 26699.67 15194.82 20199.10 29898.07 17492.89 32798.64 269
TR-MVS97.76 23497.41 25198.82 20799.06 25997.87 23098.87 30098.56 32596.63 24998.68 25799.22 28592.49 27199.65 21095.40 29997.79 21998.95 213
Patchmtry97.75 23897.40 25298.81 20999.10 25298.87 16199.11 25499.33 23994.83 30898.81 23899.38 25094.33 22599.02 30696.10 28395.57 28798.53 296
dp97.75 23897.80 20197.59 29999.10 25293.71 33299.32 20298.88 30496.48 26399.08 19599.55 19892.67 26699.82 15296.52 27698.58 18799.24 182
TAPA-MVS97.07 1597.74 24097.34 26198.94 17899.70 9397.53 24299.25 22699.51 10291.90 33099.30 14599.63 17098.78 4899.64 21288.09 34199.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 24197.35 25898.88 19499.47 16497.12 25499.34 20098.85 30698.19 9799.67 5999.85 2982.98 34199.92 7999.49 1298.32 20199.60 128
MIMVSNet97.73 24197.45 24198.57 22699.45 17197.50 24399.02 27298.98 29096.11 29199.41 12099.14 29490.28 30398.74 32595.74 29198.93 17099.47 162
tfpn200view997.72 24397.38 25498.72 21799.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.37 315
RRT_test8_iter0597.72 24397.60 22598.08 27299.23 22196.08 29899.63 5799.49 12897.54 17198.94 21999.81 6287.99 32999.35 25799.21 3696.51 26398.81 219
CostFormer97.72 24397.73 21397.71 29699.15 24594.02 32999.54 10699.02 28794.67 31199.04 20299.35 25992.35 27899.77 17098.50 13297.94 21699.34 177
FMVSNet297.72 24397.36 25698.80 21199.51 14998.84 16599.45 14899.42 19696.49 25998.86 23599.29 27490.26 30498.98 31196.44 27896.56 26198.58 293
test0.0.03 197.71 24797.42 25098.56 22898.41 32597.82 23398.78 30898.63 32397.34 19098.05 30098.98 31094.45 22298.98 31195.04 30697.15 25498.89 214
v124097.69 24897.32 26498.79 21298.85 28998.43 20499.48 13999.36 22396.11 29199.27 15399.36 25693.76 24499.24 27494.46 31295.23 29498.70 240
cascas97.69 24897.43 24998.48 23698.60 31797.30 24798.18 34099.39 20892.96 32798.41 28098.78 31993.77 24399.27 27098.16 16398.61 18498.86 215
pm-mvs197.68 25097.28 26798.88 19499.06 25998.62 18499.50 12399.45 17996.32 27297.87 30499.79 8892.47 27299.35 25797.54 21893.54 32098.67 257
GBi-Net97.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
test197.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
tpm97.67 25397.55 22898.03 27599.02 26695.01 31899.43 15898.54 32796.44 26699.12 18599.34 26291.83 28399.60 22097.75 19796.46 26499.48 157
PCF-MVS97.08 1497.66 25497.06 27499.47 11299.61 12999.09 13198.04 34299.25 26491.24 33498.51 27599.70 13394.55 21999.91 9092.76 32999.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
our_test_397.65 25597.68 21797.55 30198.62 31494.97 31998.84 30299.30 25496.83 23698.19 29299.34 26297.01 13299.02 30695.00 30796.01 27398.64 269
testgi97.65 25597.50 23598.13 27199.36 18996.45 28899.42 16599.48 13997.76 14797.87 30499.45 23491.09 29898.81 32494.53 31198.52 19299.13 188
thres20097.61 25797.28 26798.62 22299.64 11698.03 21999.26 22498.74 31497.68 15699.09 19498.32 33091.66 29099.81 15692.88 32898.22 20398.03 326
PAPM97.59 25897.09 27399.07 16099.06 25998.26 21198.30 33699.10 27894.88 30798.08 29699.34 26296.27 15699.64 21289.87 33698.92 17299.31 179
VDDNet97.55 25997.02 27599.16 15499.49 15898.12 21899.38 18599.30 25495.35 30399.68 5399.90 782.62 34399.93 6899.31 2698.13 21299.42 169
TESTMET0.1,197.55 25997.27 26998.40 24998.93 27796.53 28598.67 31797.61 34096.96 22598.64 26599.28 27688.63 32299.45 23197.30 23499.38 13699.21 184
DWT-MVSNet_test97.53 26197.40 25297.93 28399.03 26594.86 32199.57 8898.63 32396.59 25598.36 28498.79 31789.32 31499.74 17698.14 16598.16 21199.20 185
pmmvs597.52 26297.30 26698.16 26998.57 31996.73 27799.27 21698.90 30296.14 28998.37 28399.53 20791.54 29399.14 28897.51 22195.87 27998.63 277
LF4IMVS97.52 26297.46 24097.70 29798.98 27295.55 30599.29 21098.82 30998.07 11598.66 25899.64 16589.97 30999.61 21997.01 25296.68 25797.94 330
DTE-MVSNet97.51 26497.19 27198.46 24198.63 31398.13 21799.84 699.48 13996.68 24397.97 30299.67 15192.92 25598.56 32796.88 26492.60 33198.70 240
SixPastTwentyTwo97.50 26597.33 26398.03 27598.65 31196.23 29599.77 2198.68 32297.14 20897.90 30399.93 490.45 30299.18 28697.00 25396.43 26598.67 257
JIA-IIPM97.50 26597.02 27598.93 18098.73 30297.80 23499.30 20698.97 29191.73 33198.91 22394.86 34495.10 19499.71 19397.58 21197.98 21599.28 181
ppachtmachnet_test97.49 26797.45 24197.61 29898.62 31495.24 31398.80 30699.46 16796.11 29198.22 29199.62 17596.45 15098.97 31893.77 31995.97 27898.61 288
test-mter97.49 26797.13 27298.55 23098.79 29397.10 25598.67 31797.75 33796.65 24698.61 26998.85 31488.23 32699.45 23197.25 23799.38 13699.10 190
tpm297.44 26997.34 26197.74 29599.15 24594.36 32699.45 14898.94 29493.45 32598.90 22599.44 23591.35 29599.59 22197.31 23398.07 21499.29 180
tpm cat197.39 27097.36 25697.50 30399.17 24093.73 33199.43 15899.31 25091.27 33398.71 24999.08 29994.31 22799.77 17096.41 28098.50 19399.00 204
USDC97.34 27197.20 27097.75 29499.07 25795.20 31498.51 32999.04 28697.99 12598.31 28799.86 2389.02 31699.55 22595.67 29497.36 24798.49 299
UniMVSNet_ETH3D97.32 27296.81 27898.87 19899.40 18197.46 24499.51 11799.53 8395.86 29898.54 27499.77 10182.44 34499.66 20798.68 10597.52 23299.50 155
MVS97.28 27396.55 28199.48 10998.78 29698.95 15199.27 21699.39 20883.53 34498.08 29699.54 20396.97 13399.87 12294.23 31599.16 15099.63 122
DSMNet-mixed97.25 27497.35 25896.95 31197.84 33193.61 33499.57 8896.63 34796.13 29098.87 23098.61 32594.59 21697.70 33995.08 30598.86 17699.55 139
MS-PatchMatch97.24 27597.32 26496.99 30998.45 32493.51 33598.82 30499.32 24797.41 18698.13 29599.30 27288.99 31799.56 22395.68 29399.80 8497.90 333
TransMVSNet (Re)97.15 27696.58 28098.86 20199.12 24798.85 16499.49 13398.91 30095.48 30197.16 31799.80 7693.38 24799.11 29694.16 31791.73 33398.62 279
TinyColmap97.12 27796.89 27797.83 29099.07 25795.52 30898.57 32598.74 31497.58 16597.81 30799.79 8888.16 32799.56 22395.10 30497.21 25098.39 313
K. test v397.10 27896.79 27998.01 27898.72 30496.33 29299.87 497.05 34397.59 16396.16 32799.80 7688.71 31999.04 30296.69 27296.55 26298.65 267
PatchT97.03 27996.44 28398.79 21298.99 26998.34 20899.16 24099.07 28392.13 32999.52 9797.31 33894.54 22098.98 31188.54 33998.73 18399.03 201
FMVSNet196.84 28096.36 28498.29 26099.32 20297.26 25099.43 15899.48 13995.11 30598.55 27399.32 26983.95 34098.98 31195.81 28996.26 26998.62 279
test_part196.83 28196.34 28598.33 25499.46 16596.71 27899.52 11299.63 3391.48 33297.75 30999.76 10587.49 33299.44 23698.37 14593.55 31998.82 218
MVS_030496.79 28296.52 28297.59 29999.22 22594.92 32099.04 26899.59 4496.49 25998.43 27998.99 30780.48 34699.39 24497.15 24799.27 14498.47 302
RPMNet96.72 28395.90 29399.19 15199.18 23498.49 19999.22 23499.52 8988.72 34099.56 8897.38 33694.08 23599.95 4286.87 34598.58 18799.14 186
test_040296.64 28496.24 28697.85 28898.85 28996.43 28999.44 15299.26 26293.52 32296.98 32099.52 21088.52 32399.20 28592.58 33197.50 23597.93 331
X-MVStestdata96.55 28595.45 29999.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 35698.81 4599.94 5398.79 9099.86 5199.84 18
pmmvs696.53 28696.09 28997.82 29198.69 30895.47 30999.37 18899.47 15793.46 32497.41 31299.78 9587.06 33399.33 26196.92 26292.70 33098.65 267
ET-MVSNet_ETH3D96.49 28795.64 29799.05 16399.53 14598.82 16998.84 30297.51 34197.63 16184.77 34499.21 28892.09 28098.91 32198.98 5792.21 33299.41 171
UnsupCasMVSNet_eth96.44 28896.12 28897.40 30598.65 31195.65 30299.36 19299.51 10297.13 20996.04 32998.99 30788.40 32498.17 33096.71 27090.27 33698.40 312
FMVSNet596.43 28996.19 28797.15 30699.11 24995.89 30199.32 20299.52 8994.47 31598.34 28699.07 30087.54 33197.07 34292.61 33095.72 28498.47 302
new_pmnet96.38 29096.03 29097.41 30498.13 32995.16 31799.05 26399.20 26993.94 31797.39 31398.79 31791.61 29299.04 30290.43 33595.77 28198.05 325
Anonymous2023120696.22 29196.03 29096.79 31597.31 33894.14 32899.63 5799.08 28196.17 28597.04 31999.06 30293.94 23897.76 33886.96 34495.06 29898.47 302
IB-MVS95.67 1896.22 29195.44 30098.57 22699.21 22796.70 27998.65 32097.74 33996.71 24197.27 31498.54 32686.03 33599.92 7998.47 13686.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune96.17 29395.32 30198.73 21698.79 29398.14 21699.38 18594.09 35391.07 33698.07 29991.04 34989.62 31399.35 25796.75 26799.09 15998.68 249
test20.0396.12 29495.96 29296.63 31697.44 33495.45 31099.51 11799.38 21496.55 25696.16 32799.25 28193.76 24496.17 34687.35 34394.22 31198.27 318
PVSNet_094.43 1996.09 29595.47 29897.94 28299.31 20394.34 32797.81 34399.70 1597.12 21197.46 31198.75 32089.71 31199.79 16497.69 20481.69 34699.68 102
EG-PatchMatch MVS95.97 29695.69 29696.81 31497.78 33292.79 33899.16 24098.93 29596.16 28694.08 33599.22 28582.72 34299.47 22995.67 29497.50 23598.17 321
Patchmatch-RL test95.84 29795.81 29595.95 32095.61 34190.57 34398.24 33798.39 32895.10 30695.20 33198.67 32294.78 20497.77 33796.28 28290.02 33799.51 152
MVS-HIRNet95.75 29895.16 30297.51 30299.30 20493.69 33398.88 29895.78 34985.09 34398.78 24392.65 34691.29 29699.37 24994.85 30899.85 5899.46 164
MIMVSNet195.51 29995.04 30396.92 31297.38 33595.60 30399.52 11299.50 12093.65 32196.97 32199.17 29085.28 33896.56 34588.36 34095.55 28898.60 291
MDA-MVSNet_test_wron95.45 30094.60 30698.01 27898.16 32897.21 25399.11 25499.24 26593.49 32380.73 34998.98 31093.02 25298.18 32994.22 31694.45 30798.64 269
TDRefinement95.42 30194.57 30797.97 28189.83 35196.11 29799.48 13998.75 31196.74 23996.68 32299.88 1588.65 32199.71 19398.37 14582.74 34598.09 323
YYNet195.36 30294.51 30897.92 28497.89 33097.10 25599.10 25699.23 26693.26 32680.77 34899.04 30492.81 25898.02 33194.30 31394.18 31298.64 269
pmmvs-eth3d95.34 30394.73 30597.15 30695.53 34395.94 30099.35 19799.10 27895.13 30493.55 33697.54 33488.15 32897.91 33494.58 31089.69 33997.61 335
MDA-MVSNet-bldmvs94.96 30493.98 31097.92 28498.24 32797.27 24999.15 24499.33 23993.80 31980.09 35099.03 30588.31 32597.86 33693.49 32294.36 30998.62 279
N_pmnet94.95 30595.83 29492.31 32698.47 32379.33 35199.12 24892.81 35793.87 31897.68 31099.13 29593.87 24099.01 30891.38 33396.19 27098.59 292
new-patchmatchnet94.48 30694.08 30995.67 32195.08 34492.41 33999.18 23899.28 26094.55 31493.49 33797.37 33787.86 33097.01 34391.57 33288.36 34097.61 335
testing_294.44 30792.93 31398.98 17294.16 34699.00 14199.42 16599.28 26096.60 25284.86 34396.84 33970.91 34899.27 27098.23 15696.08 27298.68 249
OpenMVS_ROBcopyleft92.34 2094.38 30893.70 31196.41 31997.38 33593.17 33699.06 26198.75 31186.58 34194.84 33498.26 33181.53 34599.32 26289.01 33897.87 21896.76 339
CMPMVSbinary69.68 2394.13 30994.90 30491.84 32797.24 33980.01 35098.52 32899.48 13989.01 33891.99 34099.67 15185.67 33799.13 29195.44 29797.03 25596.39 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 31093.25 31296.60 31794.76 34594.49 32498.92 29498.18 33389.66 33796.48 32498.06 33286.28 33497.33 34189.68 33787.20 34297.97 329
UnsupCasMVSNet_bld93.53 31192.51 31496.58 31897.38 33593.82 33098.24 33799.48 13991.10 33593.10 33896.66 34074.89 34798.37 32894.03 31887.71 34197.56 337
PM-MVS92.96 31292.23 31595.14 32295.61 34189.98 34599.37 18898.21 33194.80 30995.04 33397.69 33365.06 35097.90 33594.30 31389.98 33897.54 338
Gipumacopyleft90.99 31390.15 31693.51 32398.73 30290.12 34493.98 34899.45 17979.32 34692.28 33994.91 34369.61 34997.98 33387.42 34295.67 28592.45 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS286.87 31485.37 31891.35 32990.21 35083.80 34698.89 29797.45 34283.13 34591.67 34195.03 34248.49 35594.70 34885.86 34677.62 34795.54 342
LCM-MVSNet86.80 31585.22 31991.53 32887.81 35280.96 34998.23 33998.99 28971.05 34890.13 34296.51 34148.45 35696.88 34490.51 33485.30 34496.76 339
FPMVS84.93 31685.65 31782.75 33486.77 35363.39 35798.35 33498.92 29774.11 34783.39 34698.98 31050.85 35492.40 35084.54 34794.97 30092.46 344
tmp_tt82.80 31781.52 32086.66 33066.61 35868.44 35692.79 35097.92 33568.96 34980.04 35199.85 2985.77 33696.15 34797.86 18643.89 35295.39 343
E-PMN80.61 31879.88 32182.81 33390.75 34976.38 35497.69 34495.76 35066.44 35183.52 34592.25 34762.54 35287.16 35268.53 35161.40 34984.89 350
EMVS80.02 31979.22 32282.43 33591.19 34876.40 35397.55 34692.49 35866.36 35283.01 34791.27 34864.63 35185.79 35365.82 35260.65 35085.08 349
ANet_high77.30 32074.86 32484.62 33275.88 35677.61 35297.63 34593.15 35688.81 33964.27 35389.29 35036.51 35783.93 35475.89 34952.31 35192.33 346
MVEpermissive76.82 2176.91 32174.31 32584.70 33185.38 35576.05 35596.88 34793.17 35567.39 35071.28 35289.01 35121.66 36287.69 35171.74 35072.29 34890.35 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 32274.97 32379.01 33670.98 35755.18 35893.37 34998.21 33165.08 35361.78 35493.83 34521.74 36192.53 34978.59 34891.12 33589.34 348
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 32341.29 32836.84 33786.18 35449.12 35979.73 35122.81 36027.64 35425.46 35728.45 35721.98 36048.89 35555.80 35323.56 35512.51 353
testmvs39.17 32443.78 32625.37 33936.04 36016.84 36198.36 33326.56 35920.06 35538.51 35667.32 35229.64 35915.30 35737.59 35439.90 35343.98 352
test12339.01 32542.50 32728.53 33839.17 35920.91 36098.75 31119.17 36119.83 35638.57 35566.67 35333.16 35815.42 35637.50 35529.66 35449.26 351
cdsmvs_eth3d_5k24.64 32632.85 3290.00 3400.00 3610.00 3620.00 35299.51 1020.00 3570.00 35899.56 19596.58 1450.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.30 32711.06 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35899.58 1880.00 3630.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas8.27 32811.03 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 35899.01 160.00 3580.00 3560.00 3560.00 354
uanet_test0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS99.71 8699.79 3099.61 3696.84 23499.56 8899.54 20398.58 7099.96 1896.93 26099.75 96
RE-MVS-def99.34 2699.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.75 5698.61 11499.81 8099.77 63
IU-MVS99.84 3299.88 799.32 24798.30 8599.84 1398.86 7799.85 5899.89 2
OPU-MVS99.64 7799.56 14199.72 4299.60 7099.70 13399.27 499.42 24298.24 15599.80 8499.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11799.20 599.76 173
9.1499.10 6999.72 8099.40 17699.51 10297.53 17399.64 6999.78 9598.84 4299.91 9097.63 20799.82 78
save fliter99.76 5299.59 6799.14 24699.40 20499.00 22
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
test_0728_SECOND99.91 299.84 3299.89 399.57 8899.51 10299.96 1898.93 6499.86 5199.88 5
test072699.85 2599.89 399.62 6399.50 12099.10 899.86 1199.82 4998.94 31
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20099.52 146
sam_mvs94.72 211
ambc93.06 32592.68 34782.36 34798.47 33098.73 31995.09 33297.41 33555.55 35399.10 29896.42 27991.32 33497.71 334
MTGPAbinary99.47 157
test_post199.23 22965.14 35594.18 23299.71 19397.58 211
test_post65.99 35494.65 21599.73 183
patchmatchnet-post98.70 32194.79 20399.74 176
GG-mvs-BLEND98.45 24298.55 32098.16 21499.43 15893.68 35497.23 31598.46 32789.30 31599.22 27895.43 29898.22 20397.98 328
MTMP99.54 10698.88 304
gm-plane-assit98.54 32192.96 33794.65 31299.15 29399.64 21297.56 216
test9_res97.49 22299.72 10399.75 69
TEST999.67 10099.65 5799.05 26399.41 19896.22 28198.95 21799.49 22098.77 5199.91 90
test_899.67 10099.61 6299.03 26999.41 19896.28 27498.93 22199.48 22698.76 5399.91 90
agg_prior297.21 23999.73 10299.75 69
agg_prior99.67 10099.62 6099.40 20498.87 23099.91 90
TestCases99.31 13399.86 2198.48 20199.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
test_prior499.56 7298.99 279
test_prior298.96 28798.34 8099.01 20599.52 21098.68 6397.96 17899.74 99
test_prior99.68 6599.67 10099.48 8699.56 5699.83 14599.74 73
旧先验298.96 28796.70 24299.47 10599.94 5398.19 158
新几何299.01 277
新几何199.75 5199.75 6299.59 6799.54 7196.76 23899.29 14899.64 16598.43 8199.94 5396.92 26299.66 11799.72 86
旧先验199.74 7099.59 6799.54 7199.69 14098.47 7899.68 11499.73 80
无先验98.99 27999.51 10296.89 23199.93 6897.53 21999.72 86
原ACMM298.95 291
原ACMM199.65 7299.73 7599.33 10099.47 15797.46 17799.12 18599.66 15798.67 6699.91 9097.70 20399.69 10999.71 93
test22299.75 6299.49 8598.91 29699.49 12896.42 26899.34 14199.65 15898.28 9399.69 10999.72 86
testdata299.95 4296.67 273
segment_acmp98.96 25
testdata99.54 9299.75 6298.95 15199.51 10297.07 21699.43 11399.70 13398.87 3999.94 5397.76 19599.64 12099.72 86
testdata198.85 30198.32 84
test1299.75 5199.64 11699.61 6299.29 25999.21 16998.38 8699.89 11399.74 9999.74 73
plane_prior799.29 20897.03 263
plane_prior699.27 21396.98 26792.71 264
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 257
plane_prior499.61 179
plane_prior397.00 26598.69 5499.11 187
plane_prior299.39 18098.97 30
plane_prior199.26 215
plane_prior96.97 26899.21 23698.45 6997.60 225
n20.00 362
nn0.00 362
door-mid98.05 334
lessismore_v097.79 29398.69 30895.44 31194.75 35195.71 33099.87 2088.69 32099.32 26295.89 28794.93 30298.62 279
LGP-MVS_train98.49 23499.33 19597.05 26199.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
test1199.35 228
door97.92 335
HQP5-MVS96.83 273
HQP-NCC99.19 23198.98 28398.24 9098.66 258
ACMP_Plane99.19 23198.98 28398.24 9098.66 258
BP-MVS97.19 243
HQP4-MVS98.66 25899.64 21298.64 269
HQP3-MVS99.39 20897.58 227
HQP2-MVS92.47 272
NP-MVS99.23 22196.92 27199.40 245
MDTV_nov1_ep13_2view95.18 31699.35 19796.84 23499.58 8595.19 19397.82 19099.46 164
MDTV_nov1_ep1398.32 15899.11 24994.44 32599.27 21698.74 31497.51 17599.40 12599.62 17594.78 20499.76 17397.59 21098.81 180
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56
ITE_SJBPF98.08 27299.29 20896.37 29098.92 29798.34 8098.83 23699.75 11191.09 29899.62 21895.82 28897.40 24598.25 320
DeepMVS_CXcopyleft93.34 32499.29 20882.27 34899.22 26785.15 34296.33 32599.05 30390.97 30099.73 18393.57 32197.77 22098.01 327