This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29796.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16698.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12897.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13098.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10997.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17897.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15795.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22494.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14696.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22098.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
DELS-MVS96.61 4896.38 5197.30 5797.79 12093.19 7295.96 23298.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15898.09 10586.63 26196.00 23098.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 18097.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16696.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20598.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
CANet96.39 5596.02 5997.50 5097.62 12893.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19798.02 8888.58 21796.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 21898.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21398.00 9388.76 21495.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 23196.64 5597.70 8991.18 6399.67 4992.44 12599.47 3699.48 41
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20093.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
ETV-MVS96.02 6495.89 6296.40 9697.16 14292.44 9297.47 10297.77 11594.55 3796.48 6394.51 25091.23 6298.92 15195.65 5598.19 10597.82 166
canonicalmvs96.02 6495.45 7197.75 3797.59 13195.15 2198.28 2597.60 13594.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20597.88 10686.98 26196.65 5497.89 7291.99 4399.47 9992.26 12699.46 3899.39 54
UA-Net95.95 6795.53 6797.20 6697.67 12592.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16597.35 12999.11 78
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
alignmvs95.87 6995.23 7897.78 3397.56 13395.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
CS-MVS95.80 7095.65 6696.24 11097.32 13691.43 12698.10 3997.91 10393.38 6995.16 10794.57 24890.21 7998.98 14795.53 6498.67 9498.30 145
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26297.62 13490.43 16995.55 9997.07 12591.72 4899.50 9689.62 17998.94 8698.82 106
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22495.09 10897.65 9489.97 8399.48 9892.08 13598.59 9798.44 135
casdiffmvs95.64 7395.49 6996.08 11496.76 16590.45 16097.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22697.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
baseline95.58 7595.42 7396.08 11496.78 16290.41 16297.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24295.17 10698.03 6687.09 11899.61 6293.51 10999.42 4399.02 83
EIA-MVS95.53 7795.47 7095.71 13397.06 15089.63 17797.82 6497.87 10893.57 6193.92 12795.04 22690.61 7498.95 14994.62 8898.68 9398.54 120
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15695.34 1398.48 1597.87 10894.65 3688.53 25698.02 6783.69 16099.71 3893.18 11798.96 8599.44 47
PS-MVSNAJ95.37 7995.33 7695.49 14797.35 13590.66 15595.31 25997.48 14693.85 5296.51 6195.70 20188.65 9499.65 5394.80 8498.27 10396.17 210
MVSFormer95.37 7995.16 8095.99 12096.34 18691.21 13398.22 3297.57 13891.42 13496.22 7297.32 11386.20 13097.92 25094.07 9699.05 8198.85 103
xiu_mvs_v2_base95.32 8195.29 7795.40 15297.22 13890.50 15895.44 25397.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 210
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12198.25 3390.21 17194.18 12197.27 11587.48 11299.73 3293.53 10897.77 11798.55 119
diffmvs95.25 8395.13 8195.63 13696.43 18289.34 19395.99 23197.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13489.56 18198.67 597.00 20490.69 15694.24 12097.62 9989.79 8598.81 16093.39 11496.49 14998.92 96
EPNet95.20 8694.56 9397.14 6892.80 31992.68 8497.85 6294.87 30896.64 192.46 15597.80 8486.23 12799.65 5393.72 10698.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17393.36 6998.65 698.36 1694.12 4689.25 24098.06 6482.20 19399.77 2993.41 11399.32 5399.18 69
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19597.57 13892.04 11894.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 17091.71 11396.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12397.73 11991.80 12392.93 15296.62 15389.13 8899.14 13089.21 19197.78 11698.97 90
lupinMVS94.99 9394.56 9396.29 10696.34 18691.21 13395.83 23896.27 24988.93 20596.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
Effi-MVS+94.93 9494.45 9996.36 10196.61 16791.47 12396.41 19797.41 16691.02 15194.50 11595.92 18487.53 11098.78 16293.89 10296.81 14098.84 105
IS-MVSNet94.90 9594.52 9696.05 11797.67 12590.56 15698.44 1696.22 25293.21 7593.99 12497.74 8785.55 13898.45 19089.98 16897.86 11399.14 73
MVS_Test94.89 9694.62 9195.68 13496.83 16089.55 18296.70 17497.17 18591.17 14695.60 9896.11 17887.87 10498.76 16593.01 12297.17 13698.72 112
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18895.47 25298.36 1688.84 20894.36 11796.09 17988.02 10099.58 7093.44 11198.18 10698.40 138
jason94.84 9894.39 10196.18 11295.52 21990.93 14696.09 22496.52 24089.28 19396.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10997.80 6697.48 14689.19 19694.81 11196.71 13988.84 9199.17 12688.91 19798.76 9196.53 201
test_yl94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12291.22 13196.85 16097.10 19191.23 14495.71 9196.93 12984.30 15299.31 11593.10 11895.12 17098.75 108
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22697.73 11981.56 32395.68 9397.85 7890.23 7899.65 5387.68 21999.12 7898.73 111
WTY-MVS94.71 10294.02 10496.79 7697.71 12492.05 10696.59 18897.35 17390.61 16394.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 20998.06 7388.94 20494.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
CANet_DTU94.37 10593.65 11396.55 8496.46 18092.13 10496.21 21996.67 23294.38 4293.53 13597.03 12779.34 24099.71 3890.76 15998.45 10097.82 166
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 18897.81 11489.87 17792.15 16597.06 12683.62 16199.54 8589.34 18598.07 10997.70 170
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 18896.88 21590.13 17491.91 17097.24 11785.21 14199.09 13687.64 22297.83 11497.92 158
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10397.67 8197.47 14988.13 23393.00 14795.84 18884.86 14699.51 9387.99 20998.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 10993.42 12496.48 9097.64 12791.42 12795.55 24897.71 12688.99 20192.34 16195.82 19089.19 8699.11 13286.14 24797.38 12798.90 98
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19195.18 26698.48 1485.60 28193.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16997.61 12987.92 23298.10 3995.80 26592.22 10993.02 14697.45 10984.53 15097.91 25388.24 20597.97 11199.02 83
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19391.46 12496.33 20897.04 20088.97 20393.56 13296.51 15787.55 10997.89 25489.80 17395.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 14096.69 17697.39 16787.29 25691.37 17896.71 13988.39 9899.52 9287.33 22997.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 11493.70 11095.27 15495.70 21392.03 10798.10 3998.68 793.36 7290.39 19896.70 14187.63 10897.94 24792.25 12890.50 23995.84 224
PVSNet_BlendedMVS94.06 11593.92 10594.47 18998.27 8989.46 18896.73 17198.36 1690.17 17294.36 11795.24 22088.02 10099.58 7093.44 11190.72 23594.36 303
nrg03094.05 11693.31 12696.27 10795.22 24194.59 2898.34 2097.46 15192.93 9191.21 18896.64 14687.23 11798.22 20394.99 7785.80 28195.98 219
UGNet94.04 11793.28 12796.31 10396.85 15791.19 13697.88 5897.68 12794.40 4093.00 14796.18 17273.39 29999.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 11893.46 12095.64 13596.16 19590.45 16096.71 17396.89 21489.27 19493.46 13796.92 13287.29 11597.94 24788.70 20195.74 16098.53 121
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11797.46 10497.96 10077.99 33993.00 14797.57 10386.14 13299.33 11389.22 19099.15 7398.94 94
FC-MVSNet-test93.94 12093.57 11495.04 16295.48 22191.45 12598.12 3898.71 593.37 7090.23 20196.70 14187.66 10697.85 25691.49 14890.39 24095.83 225
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14692.49 9195.64 24696.64 23389.05 19993.00 14795.79 19485.77 13699.45 10289.16 19494.35 18297.96 155
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17597.06 15088.53 21695.28 26097.45 15791.68 12694.08 12397.68 9182.41 18998.90 15493.84 10492.47 20596.98 188
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17397.72 7695.85 26392.43 10495.86 8698.44 2868.42 32399.39 10996.31 2894.85 17498.71 114
mvs_anonymous93.82 12393.74 10994.06 20496.44 18185.41 27995.81 23997.05 19889.85 18090.09 21296.36 16687.44 11397.75 26793.97 9896.69 14599.02 83
HQP_MVS93.78 12593.43 12294.82 17396.21 19089.99 16997.74 7197.51 14494.85 2491.34 17996.64 14681.32 20798.60 17993.02 12092.23 20895.86 221
PS-MVSNAJss93.74 12693.51 11894.44 19093.91 29389.28 19897.75 7097.56 14192.50 10389.94 21596.54 15688.65 9498.18 20993.83 10590.90 23395.86 221
XVG-OURS93.72 12793.35 12594.80 17797.07 14788.61 21394.79 27097.46 15191.97 12193.99 12497.86 7781.74 20298.88 15692.64 12492.67 20396.92 192
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17494.58 27498.49 1285.06 29093.78 12995.78 19582.86 17798.67 17391.77 14095.71 16299.07 82
mvs-test193.63 12993.69 11193.46 23796.02 20284.61 29197.24 12396.72 22493.85 5292.30 16295.76 19683.08 17098.89 15591.69 14496.54 14896.87 194
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 13097.94 5493.39 33190.57 16696.29 7098.31 4769.00 31999.16 12794.18 9595.87 15799.12 77
F-COLMAP93.58 13192.98 13195.37 15398.40 7888.98 20697.18 13297.29 17887.75 24590.49 19597.10 12485.21 14199.50 9686.70 23896.72 14497.63 172
ab-mvs93.57 13292.55 14696.64 7897.28 13791.96 11195.40 25497.45 15789.81 18293.22 14596.28 16979.62 23799.46 10090.74 16093.11 19798.50 125
LS3D93.57 13292.61 14496.47 9197.59 13191.61 11797.67 8197.72 12285.17 28890.29 20098.34 4184.60 14899.73 3283.85 27998.27 10398.06 154
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16390.03 16696.81 16697.13 18888.19 22791.30 18294.27 26686.21 12998.63 17687.66 22196.46 15198.12 150
QAPM93.45 13592.27 15696.98 7496.77 16392.62 8798.39 1998.12 5684.50 29888.27 26297.77 8582.39 19099.81 2685.40 26098.81 8998.51 124
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 15095.34 23092.83 8097.17 13398.58 1092.98 8990.13 20795.80 19188.37 9997.85 25691.71 14283.93 30895.73 234
1112_ss93.37 13692.42 15296.21 11197.05 15290.99 14296.31 21096.72 22486.87 26489.83 21996.69 14386.51 12499.14 13088.12 20793.67 19198.50 125
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22493.34 7097.39 10998.71 593.14 8090.10 21194.83 23587.71 10598.03 23391.67 14683.99 30795.46 243
OPM-MVS93.28 13992.76 13694.82 17394.63 27290.77 15296.65 17997.18 18393.72 5791.68 17397.26 11679.33 24198.63 17692.13 13292.28 20795.07 267
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21392.39 9397.86 5998.66 992.30 10792.09 16895.37 21580.49 21998.40 19293.95 9985.86 28095.75 232
RRT_MVS93.21 14192.32 15595.91 12294.92 25694.15 4396.92 15596.86 21891.42 13491.28 18596.43 16179.66 23698.10 21893.29 11590.06 24295.46 243
MVSTER93.20 14292.81 13594.37 19496.56 17389.59 18097.06 13997.12 18991.24 14391.30 18295.96 18282.02 19698.05 22993.48 11090.55 23795.47 242
HQP-MVS93.19 14392.74 13994.54 18895.86 20589.33 19496.65 17997.39 16793.55 6290.14 20395.87 18680.95 21098.50 18692.13 13292.10 21395.78 228
CHOSEN 280x42093.12 14492.72 14094.34 19696.71 16687.27 24390.29 33797.72 12286.61 26891.34 17995.29 21784.29 15498.41 19193.25 11698.94 8697.35 184
Effi-MVS+-dtu93.08 14593.21 12892.68 26596.02 20283.25 30597.14 13796.72 22493.85 5291.20 18993.44 29783.08 17098.30 19991.69 14495.73 16196.50 203
test_djsdf93.07 14692.76 13694.00 20793.49 30688.70 21298.22 3297.57 13891.42 13490.08 21395.55 20982.85 17897.92 25094.07 9691.58 22095.40 249
VDDNet93.05 14792.07 15996.02 11896.84 15890.39 16398.08 4295.85 26386.22 27395.79 8998.46 2667.59 32699.19 12394.92 7894.85 17498.47 130
thisisatest053093.03 14892.21 15795.49 14797.07 14789.11 20497.49 10192.19 33890.16 17394.09 12296.41 16376.43 27999.05 14290.38 16495.68 16398.31 144
EI-MVSNet93.03 14892.88 13493.48 23595.77 21086.98 25296.44 19397.12 18990.66 15991.30 18297.64 9786.56 12298.05 22989.91 17090.55 23795.41 246
CLD-MVS92.98 15092.53 14894.32 19796.12 19989.20 20095.28 26097.47 14992.66 9989.90 21695.62 20480.58 21798.40 19292.73 12392.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 15192.33 15494.87 17297.11 14587.16 24997.97 5292.09 33990.63 16193.88 12897.01 12876.50 27699.06 14190.29 16795.45 16598.38 140
ACMM89.79 892.96 15192.50 15094.35 19596.30 18888.71 21197.58 9197.36 17291.40 13790.53 19496.65 14579.77 23398.75 16691.24 15491.64 21895.59 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 15392.56 14594.10 20296.16 19588.26 22297.65 8497.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
BH-untuned92.94 15392.62 14393.92 21697.22 13886.16 27096.40 20096.25 25190.06 17589.79 22096.17 17483.19 16698.35 19687.19 23297.27 13297.24 185
DU-MVS92.90 15592.04 16095.49 14794.95 25492.83 8097.16 13498.24 3493.02 8390.13 20795.71 19983.47 16297.85 25691.71 14283.93 30895.78 228
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 15095.27 26297.18 18387.96 23591.86 17295.68 20280.44 22098.99 14684.01 27597.54 12196.89 193
PMMVS92.86 15792.34 15394.42 19394.92 25686.73 25794.53 27696.38 24584.78 29594.27 11995.12 22583.13 16998.40 19291.47 14996.49 14998.12 150
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 23092.73 8398.27 2698.12 5684.86 29385.78 29997.75 8678.89 25199.74 3187.50 22698.65 9596.73 198
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15389.97 17295.53 25096.64 23385.38 28489.65 22595.18 22185.86 13499.10 13387.70 21693.58 19698.49 127
baseline192.82 16091.90 16695.55 14297.20 14090.77 15297.19 13194.58 31392.20 11192.36 15996.34 16784.16 15598.21 20489.20 19283.90 31197.68 171
131492.81 16192.03 16195.14 15995.33 23389.52 18596.04 22697.44 16187.72 24686.25 29695.33 21683.84 15898.79 16189.26 18897.05 13897.11 186
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14297.38 11196.08 25782.38 31689.29 23797.87 7583.77 15999.69 4481.37 29996.69 14598.89 100
BH-RMVSNet92.72 16391.97 16494.97 16797.16 14287.99 23196.15 22295.60 27390.62 16291.87 17197.15 12278.41 25898.57 18283.16 28197.60 12098.36 142
ACMP89.59 1092.62 16492.14 15894.05 20596.40 18388.20 22597.36 11297.25 18191.52 12988.30 26096.64 14678.46 25698.72 17091.86 13991.48 22295.23 263
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 16592.52 14992.44 26896.82 16181.89 31496.92 15593.71 32792.41 10584.30 31294.60 24785.08 14397.03 30891.51 14797.36 12898.40 138
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15994.76 26592.07 10597.53 9598.11 5992.90 9289.56 22896.12 17583.16 16797.60 28089.30 18683.20 31795.75 232
thres600view792.49 16791.60 17595.18 15797.91 11489.47 18697.65 8494.66 31092.18 11593.33 14094.91 23078.06 26599.10 13381.61 29394.06 18896.98 188
thres100view90092.43 16891.58 17694.98 16697.92 11389.37 19297.71 7894.66 31092.20 11193.31 14194.90 23178.06 26599.08 13881.40 29694.08 18596.48 204
jajsoiax92.42 16991.89 16794.03 20693.33 31188.50 21797.73 7397.53 14292.00 12088.85 24796.50 15875.62 28598.11 21793.88 10391.56 22195.48 240
thres40092.42 16991.52 17995.12 16197.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.98 188
tfpn200view992.38 17191.52 17994.95 16997.85 11789.29 19697.41 10594.88 30592.19 11393.27 14394.46 25578.17 26199.08 13881.40 29694.08 18596.48 204
WR-MVS92.34 17291.53 17894.77 17995.13 24690.83 14996.40 20097.98 9891.88 12289.29 23795.54 21082.50 18697.80 26189.79 17485.27 28895.69 235
NR-MVSNet92.34 17291.27 18995.53 14394.95 25493.05 7597.39 10998.07 7092.65 10084.46 31095.71 19985.00 14497.77 26689.71 17583.52 31495.78 228
mvs_tets92.31 17491.76 16993.94 21493.41 30888.29 22097.63 8997.53 14292.04 11888.76 25196.45 16074.62 28998.09 22293.91 10191.48 22295.45 245
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17996.79 16797.65 13181.83 32091.52 17597.23 11887.94 10298.91 15371.31 34198.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 17691.30 18795.25 15596.60 16888.90 20894.36 28392.32 33787.92 23693.43 13894.57 24877.28 27299.00 14589.42 18395.86 15897.86 162
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24895.27 23785.52 27797.03 14096.63 23692.09 11689.11 24295.14 22380.33 22398.08 22387.54 22594.74 17996.03 218
IterMVS-LS92.29 17691.94 16593.34 24296.25 18986.97 25396.57 19197.05 19890.67 15789.50 23194.80 23786.59 12197.64 27589.91 17086.11 27995.40 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 17991.74 17293.73 22297.77 12183.69 30292.88 31896.72 22487.91 23793.00 14794.86 23378.51 25599.05 14286.53 23997.45 12698.47 130
VPNet92.23 18091.31 18694.99 16495.56 21790.96 14497.22 12997.86 11192.96 9090.96 19096.62 15375.06 28798.20 20691.90 13683.65 31395.80 227
thres20092.23 18091.39 18294.75 18197.61 12989.03 20596.60 18795.09 29692.08 11793.28 14294.00 27878.39 25999.04 14481.26 30094.18 18496.19 209
test_part192.21 18291.10 19695.51 14497.80 11992.66 8598.02 4697.68 12789.79 18388.80 25096.02 18076.85 27498.18 20990.86 15784.11 30695.69 235
anonymousdsp92.16 18391.55 17793.97 21092.58 32389.55 18297.51 9697.42 16589.42 19088.40 25794.84 23480.66 21697.88 25591.87 13891.28 22694.48 299
XXY-MVS92.16 18391.23 19194.95 16994.75 26690.94 14597.47 10297.43 16489.14 19788.90 24496.43 16179.71 23498.24 20189.56 18087.68 26395.67 237
BH-w/o92.14 18591.75 17093.31 24396.99 15585.73 27495.67 24395.69 26988.73 21589.26 23994.82 23682.97 17598.07 22685.26 26296.32 15296.13 214
Anonymous20240521192.07 18690.83 20595.76 12798.19 10088.75 21097.58 9195.00 29986.00 27693.64 13197.45 10966.24 33599.53 8890.68 16292.71 20199.01 87
WR-MVS_H92.00 18791.35 18393.95 21295.09 24889.47 18698.04 4598.68 791.46 13288.34 25894.68 24385.86 13497.56 28285.77 25584.24 30494.82 284
Anonymous2024052991.98 18890.73 20995.73 13298.14 10389.40 19097.99 4797.72 12279.63 33393.54 13497.41 11169.94 31799.56 8091.04 15691.11 22898.22 146
PatchmatchNetpermissive91.91 18991.35 18393.59 23095.38 22584.11 29693.15 31495.39 27989.54 18692.10 16793.68 29082.82 17998.13 21384.81 26695.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CP-MVSNet91.89 19091.24 19093.82 21995.05 24988.57 21497.82 6498.19 4491.70 12588.21 26495.76 19681.96 19797.52 28887.86 21184.65 29795.37 252
SCA91.84 19191.18 19493.83 21895.59 21584.95 28794.72 27195.58 27590.82 15292.25 16393.69 28875.80 28298.10 21886.20 24595.98 15498.45 132
FMVSNet391.78 19290.69 21195.03 16396.53 17592.27 9997.02 14396.93 20889.79 18389.35 23494.65 24577.01 27397.47 29186.12 24888.82 25295.35 253
AUN-MVS91.76 19390.75 20894.81 17597.00 15488.57 21496.65 17996.49 24189.63 18592.15 16596.12 17578.66 25398.50 18690.83 15879.18 33097.36 183
X-MVStestdata91.71 19489.67 25397.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35791.70 5099.80 2795.66 5299.40 4599.62 13
MVS91.71 19490.44 21995.51 14495.20 24391.59 11996.04 22697.45 15773.44 34687.36 28195.60 20585.42 13999.10 13385.97 25297.46 12295.83 225
EPNet_dtu91.71 19491.28 18892.99 25493.76 29883.71 30096.69 17695.28 28693.15 7987.02 28895.95 18383.37 16597.38 29979.46 31196.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 19790.86 20193.94 21494.33 28286.32 26495.92 23491.64 34389.37 19186.94 28994.69 24281.62 20498.69 17188.64 20294.57 18196.81 196
miper_ehance_all_eth91.59 19891.13 19592.97 25595.55 21886.57 26294.47 27796.88 21587.77 24388.88 24694.01 27786.22 12897.54 28489.49 18186.93 27094.79 289
v2v48291.59 19890.85 20393.80 22093.87 29588.17 22796.94 15496.88 21589.54 18689.53 22994.90 23181.70 20398.02 23489.25 18985.04 29495.20 264
V4291.58 20090.87 20093.73 22294.05 29088.50 21797.32 11696.97 20588.80 21389.71 22194.33 26182.54 18598.05 22989.01 19585.07 29294.64 297
PCF-MVS89.48 1191.56 20189.95 24196.36 10196.60 16892.52 9092.51 32497.26 17979.41 33488.90 24496.56 15584.04 15799.55 8377.01 32497.30 13197.01 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
bset_n11_16_dypcd91.55 20290.59 21494.44 19091.51 33190.25 16492.70 32193.42 33092.27 10890.22 20294.74 24078.42 25797.80 26194.19 9487.86 26295.29 262
PS-CasMVS91.55 20290.84 20493.69 22694.96 25388.28 22197.84 6398.24 3491.46 13288.04 26895.80 19179.67 23597.48 29087.02 23584.54 30195.31 255
miper_enhance_ethall91.54 20491.01 19793.15 24995.35 22987.07 25193.97 29596.90 21286.79 26589.17 24193.43 29986.55 12397.64 27589.97 16986.93 27094.74 293
PAPM91.52 20590.30 22595.20 15695.30 23689.83 17593.38 31096.85 21986.26 27288.59 25495.80 19184.88 14598.15 21275.67 32895.93 15697.63 172
ET-MVSNet_ETH3D91.49 20690.11 23595.63 13696.40 18391.57 12195.34 25693.48 32990.60 16575.58 34395.49 21280.08 22796.79 31794.25 9289.76 24698.52 122
TR-MVS91.48 20790.59 21494.16 20196.40 18387.33 24195.67 24395.34 28587.68 24791.46 17695.52 21176.77 27598.35 19682.85 28593.61 19496.79 197
tpmrst91.44 20891.32 18591.79 28595.15 24479.20 33693.42 30995.37 28188.55 22093.49 13693.67 29182.49 18798.27 20090.41 16389.34 24997.90 159
test-LLR91.42 20991.19 19392.12 27594.59 27380.66 32194.29 28792.98 33391.11 14890.76 19292.37 31179.02 24698.07 22688.81 19896.74 14297.63 172
MSDG91.42 20990.24 22994.96 16897.15 14488.91 20793.69 30396.32 24785.72 28086.93 29096.47 15980.24 22498.98 14780.57 30295.05 17396.98 188
cl_fuxian91.38 21190.89 19992.88 25895.58 21686.30 26594.68 27296.84 22088.17 22988.83 24994.23 26985.65 13797.47 29189.36 18484.63 29894.89 279
GA-MVS91.38 21190.31 22494.59 18394.65 27087.62 23994.34 28496.19 25490.73 15590.35 19993.83 28271.84 30297.96 24487.22 23193.61 19498.21 147
v114491.37 21390.60 21393.68 22793.89 29488.23 22496.84 16297.03 20288.37 22389.69 22394.39 25782.04 19597.98 23787.80 21385.37 28694.84 281
GBi-Net91.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
test191.35 21490.27 22794.59 18396.51 17691.18 13797.50 9796.93 20888.82 21089.35 23494.51 25073.87 29397.29 30386.12 24888.82 25295.31 255
UniMVSNet_ETH3D91.34 21690.22 23294.68 18294.86 26187.86 23597.23 12897.46 15187.99 23489.90 21696.92 13266.35 33398.23 20290.30 16690.99 23197.96 155
FMVSNet291.31 21790.08 23694.99 16496.51 17692.21 10097.41 10596.95 20688.82 21088.62 25394.75 23973.87 29397.42 29685.20 26388.55 25795.35 253
D2MVS91.30 21890.95 19892.35 27194.71 26885.52 27796.18 22198.21 4088.89 20686.60 29393.82 28479.92 23197.95 24689.29 18790.95 23293.56 317
v891.29 21990.53 21893.57 23294.15 28688.12 22997.34 11397.06 19788.99 20188.32 25994.26 26883.08 17098.01 23587.62 22383.92 31094.57 298
CVMVSNet91.23 22091.75 17089.67 31895.77 21074.69 34596.44 19394.88 30585.81 27892.18 16497.64 9779.07 24395.58 33388.06 20895.86 15898.74 110
cl-mvsnet291.21 22190.56 21793.14 25096.09 20186.80 25594.41 28196.58 23987.80 24188.58 25593.99 27980.85 21597.62 27889.87 17286.93 27094.99 270
PEN-MVS91.20 22290.44 21993.48 23594.49 27687.91 23497.76 6998.18 4691.29 13987.78 27395.74 19880.35 22297.33 30185.46 25982.96 31895.19 265
Baseline_NR-MVSNet91.20 22290.62 21292.95 25693.83 29688.03 23097.01 14795.12 29588.42 22289.70 22295.13 22483.47 16297.44 29489.66 17883.24 31693.37 321
cascas91.20 22290.08 23694.58 18794.97 25289.16 20393.65 30597.59 13779.90 33289.40 23292.92 30375.36 28698.36 19592.14 13194.75 17896.23 207
RRT_test8_iter0591.19 22590.78 20692.41 27095.76 21283.14 30697.32 11697.46 15191.37 13889.07 24395.57 20670.33 31298.21 20493.56 10786.62 27595.89 220
CostFormer91.18 22690.70 21092.62 26694.84 26281.76 31594.09 29394.43 31584.15 30192.72 15493.77 28679.43 23998.20 20690.70 16192.18 21197.90 159
v119291.07 22790.23 23093.58 23193.70 29987.82 23696.73 17197.07 19587.77 24389.58 22694.32 26380.90 21497.97 24086.52 24085.48 28494.95 271
v14419291.06 22890.28 22693.39 23993.66 30187.23 24696.83 16397.07 19587.43 25289.69 22394.28 26581.48 20598.00 23687.18 23384.92 29694.93 275
v1091.04 22990.23 23093.49 23494.12 28788.16 22897.32 11697.08 19488.26 22688.29 26194.22 27182.17 19497.97 24086.45 24284.12 30594.33 304
eth_miper_zixun_eth91.02 23090.59 21492.34 27295.33 23384.35 29294.10 29296.90 21288.56 21988.84 24894.33 26184.08 15697.60 28088.77 20084.37 30395.06 268
v14890.99 23190.38 22192.81 26193.83 29685.80 27396.78 16996.68 23089.45 18988.75 25293.93 28182.96 17697.82 26087.83 21283.25 31594.80 287
LTVRE_ROB88.41 1390.99 23189.92 24294.19 19996.18 19389.55 18296.31 21097.09 19387.88 23885.67 30095.91 18578.79 25298.57 18281.50 29489.98 24394.44 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl-mvsnet190.97 23390.33 22292.88 25895.36 22886.19 26994.46 27996.63 23687.82 23988.18 26594.23 26982.99 17397.53 28687.72 21485.57 28394.93 275
cl-mvsnet_90.96 23490.32 22392.89 25795.37 22786.21 26894.46 27996.64 23387.82 23988.15 26694.18 27282.98 17497.54 28487.70 21685.59 28294.92 277
pmmvs490.93 23589.85 24594.17 20093.34 31090.79 15194.60 27396.02 25884.62 29687.45 27795.15 22281.88 20097.45 29387.70 21687.87 26194.27 308
XVG-ACMP-BASELINE90.93 23590.21 23393.09 25194.31 28485.89 27295.33 25797.26 17991.06 15089.38 23395.44 21468.61 32198.60 17989.46 18291.05 22994.79 289
v192192090.85 23790.03 24093.29 24493.55 30286.96 25496.74 17097.04 20087.36 25489.52 23094.34 26080.23 22597.97 24086.27 24385.21 28994.94 273
CR-MVSNet90.82 23889.77 24993.95 21294.45 27887.19 24790.23 33895.68 27186.89 26392.40 15692.36 31480.91 21297.05 30781.09 30193.95 18997.60 177
v7n90.76 23989.86 24493.45 23893.54 30387.60 24097.70 7997.37 17088.85 20787.65 27594.08 27681.08 20998.10 21884.68 26883.79 31294.66 296
DWT-MVSNet_test90.76 23989.89 24393.38 24095.04 25083.70 30195.85 23794.30 32188.19 22790.46 19692.80 30473.61 29798.50 18688.16 20690.58 23697.95 157
RPSCF90.75 24190.86 20190.42 31196.84 15876.29 34395.61 24796.34 24683.89 30491.38 17797.87 7576.45 27798.78 16287.16 23492.23 20896.20 208
MVP-Stereo90.74 24290.08 23692.71 26393.19 31388.20 22595.86 23696.27 24986.07 27584.86 30894.76 23877.84 26897.75 26783.88 27898.01 11092.17 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 24389.65 25593.96 21194.29 28589.63 17797.79 6796.82 22189.07 19886.12 29895.48 21378.61 25497.78 26486.97 23681.67 32294.46 300
v124090.70 24489.85 24593.23 24693.51 30586.80 25596.61 18597.02 20387.16 25989.58 22694.31 26479.55 23897.98 23785.52 25885.44 28594.90 278
EPMVS90.70 24489.81 24793.37 24194.73 26784.21 29493.67 30488.02 35089.50 18892.38 15893.49 29577.82 26997.78 26486.03 25192.68 20298.11 153
Anonymous2023121190.63 24689.42 25794.27 19898.24 9389.19 20298.05 4497.89 10479.95 33188.25 26394.96 22772.56 30098.13 21389.70 17685.14 29095.49 239
DTE-MVSNet90.56 24789.75 25193.01 25393.95 29187.25 24497.64 8897.65 13190.74 15487.12 28495.68 20279.97 23097.00 31283.33 28081.66 32394.78 291
ACMH87.59 1690.53 24889.42 25793.87 21796.21 19087.92 23297.24 12396.94 20788.45 22183.91 31996.27 17071.92 30198.62 17884.43 27289.43 24895.05 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-090.51 24990.19 23491.44 29493.41 30881.25 31896.98 15096.28 24891.68 12686.55 29496.30 16874.20 29297.98 23788.96 19687.40 26895.09 266
miper_lstm_enhance90.50 25090.06 23991.83 28295.33 23383.74 29893.86 29896.70 22987.56 25087.79 27293.81 28583.45 16496.92 31487.39 22784.62 29994.82 284
COLMAP_ROBcopyleft87.81 1590.40 25189.28 26093.79 22197.95 11087.13 25096.92 15595.89 26282.83 31486.88 29297.18 11973.77 29699.29 11778.44 31693.62 19394.95 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT90.31 25289.81 24791.82 28395.52 21984.20 29594.30 28696.15 25590.61 16387.39 28094.27 26675.80 28296.44 32087.34 22886.88 27494.82 284
MS-PatchMatch90.27 25389.77 24991.78 28694.33 28284.72 29095.55 24896.73 22386.17 27486.36 29595.28 21971.28 30697.80 26184.09 27498.14 10892.81 326
tpm90.25 25489.74 25291.76 28893.92 29279.73 33293.98 29493.54 32888.28 22591.99 16993.25 30077.51 27197.44 29487.30 23087.94 26098.12 150
AllTest90.23 25588.98 26493.98 20897.94 11186.64 25896.51 19295.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
ACMH+87.92 1490.20 25689.18 26293.25 24596.48 17986.45 26396.99 14896.68 23088.83 20984.79 30996.22 17170.16 31598.53 18484.42 27388.04 25994.77 292
test-mter90.19 25789.54 25692.12 27594.59 27380.66 32194.29 28792.98 33387.68 24790.76 19292.37 31167.67 32598.07 22688.81 19896.74 14297.63 172
IterMVS90.15 25889.67 25391.61 29095.48 22183.72 29994.33 28596.12 25689.99 17687.31 28394.15 27475.78 28496.27 32386.97 23686.89 27394.83 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 25989.42 25791.97 27894.41 28080.62 32394.29 28791.97 34187.28 25790.44 19792.47 31068.79 32097.67 27288.50 20496.60 14797.61 176
tpm289.96 26089.21 26192.23 27494.91 25981.25 31893.78 30094.42 31680.62 32991.56 17493.44 29776.44 27897.94 24785.60 25792.08 21597.49 181
IB-MVS87.33 1789.91 26188.28 27394.79 17895.26 24087.70 23895.12 26893.95 32689.35 19287.03 28792.49 30970.74 31099.19 12389.18 19381.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 26288.68 26893.53 23395.86 20584.89 28890.93 33395.07 29783.23 31291.28 18591.81 32179.01 24897.85 25679.52 30891.39 22497.84 163
FMVSNet189.88 26388.31 27294.59 18395.41 22391.18 13797.50 9796.93 20886.62 26787.41 27994.51 25065.94 33797.29 30383.04 28387.43 26695.31 255
pmmvs589.86 26488.87 26692.82 26092.86 31786.23 26796.26 21495.39 27984.24 30087.12 28494.51 25074.27 29197.36 30087.61 22487.57 26494.86 280
tpmvs89.83 26589.15 26391.89 28094.92 25680.30 32793.11 31595.46 27886.28 27188.08 26792.65 30680.44 22098.52 18581.47 29589.92 24496.84 195
tfpnnormal89.70 26688.40 27193.60 22995.15 24490.10 16597.56 9398.16 5087.28 25786.16 29794.63 24677.57 27098.05 22974.48 33084.59 30092.65 329
ADS-MVSNet289.45 26788.59 26992.03 27795.86 20582.26 31390.93 33394.32 32083.23 31291.28 18591.81 32179.01 24895.99 32479.52 30891.39 22497.84 163
Patchmatch-test89.42 26887.99 27593.70 22595.27 23785.11 28388.98 34494.37 31881.11 32487.10 28693.69 28882.28 19197.50 28974.37 33294.76 17798.48 129
test0.0.03 189.37 26988.70 26791.41 29592.47 32485.63 27595.22 26592.70 33591.11 14886.91 29193.65 29279.02 24693.19 34778.00 31789.18 25095.41 246
SixPastTwentyTwo89.15 27088.54 27090.98 30193.49 30680.28 32896.70 17494.70 30990.78 15384.15 31595.57 20671.78 30397.71 27084.63 26985.07 29294.94 273
RPMNet88.98 27187.05 28694.77 17994.45 27887.19 24790.23 33898.03 8477.87 34192.40 15687.55 34280.17 22699.51 9368.84 34593.95 18997.60 177
TransMVSNet (Re)88.94 27287.56 27993.08 25294.35 28188.45 21997.73 7395.23 29087.47 25184.26 31395.29 21779.86 23297.33 30179.44 31274.44 33993.45 320
USDC88.94 27287.83 27792.27 27394.66 26984.96 28693.86 29895.90 26187.34 25583.40 32195.56 20867.43 32798.19 20882.64 28989.67 24793.66 316
dp88.90 27488.26 27490.81 30494.58 27576.62 34292.85 31994.93 30385.12 28990.07 21493.07 30175.81 28198.12 21680.53 30387.42 26797.71 169
PatchT88.87 27587.42 28093.22 24794.08 28985.10 28489.51 34294.64 31281.92 31992.36 15988.15 34080.05 22897.01 31172.43 33793.65 19297.54 180
MVS_030488.79 27687.57 27892.46 26794.65 27086.15 27196.40 20097.17 18586.44 26988.02 26991.71 32356.68 34997.03 30884.47 27192.58 20494.19 309
our_test_388.78 27787.98 27691.20 29992.45 32582.53 30993.61 30795.69 26985.77 27984.88 30793.71 28779.99 22996.78 31879.47 31086.24 27694.28 307
EU-MVSNet88.72 27888.90 26588.20 32293.15 31474.21 34696.63 18494.22 32285.18 28787.32 28295.97 18176.16 28094.98 33785.27 26186.17 27795.41 246
Patchmtry88.64 27987.25 28292.78 26294.09 28886.64 25889.82 34195.68 27180.81 32887.63 27692.36 31480.91 21297.03 30878.86 31485.12 29194.67 295
MIMVSNet88.50 28086.76 28893.72 22494.84 26287.77 23791.39 32894.05 32386.41 27087.99 27092.59 30863.27 34195.82 32977.44 31892.84 20097.57 179
tpm cat188.36 28187.21 28491.81 28495.13 24680.55 32492.58 32395.70 26874.97 34387.45 27791.96 31978.01 26798.17 21180.39 30488.74 25596.72 199
ppachtmachnet_test88.35 28287.29 28191.53 29192.45 32583.57 30393.75 30195.97 25984.28 29985.32 30594.18 27279.00 25096.93 31375.71 32784.99 29594.10 310
JIA-IIPM88.26 28387.04 28791.91 27993.52 30481.42 31789.38 34394.38 31780.84 32790.93 19180.74 34779.22 24297.92 25082.76 28691.62 21996.38 206
testgi87.97 28487.21 28490.24 31392.86 31780.76 32096.67 17894.97 30191.74 12485.52 30195.83 18962.66 34394.47 34176.25 32588.36 25895.48 240
LF4IMVS87.94 28587.25 28289.98 31592.38 32780.05 33194.38 28295.25 28987.59 24984.34 31194.74 24064.31 34097.66 27484.83 26587.45 26592.23 334
gg-mvs-nofinetune87.82 28685.61 29594.44 19094.46 27789.27 19991.21 33284.61 35580.88 32689.89 21874.98 34971.50 30497.53 28685.75 25697.21 13496.51 202
pmmvs687.81 28786.19 29192.69 26491.32 33286.30 26597.34 11396.41 24480.59 33084.05 31894.37 25967.37 32897.67 27284.75 26779.51 32994.09 312
K. test v387.64 28886.75 28990.32 31293.02 31679.48 33496.61 18592.08 34090.66 15980.25 33594.09 27567.21 32996.65 31985.96 25380.83 32694.83 282
Patchmatch-RL test87.38 28986.24 29090.81 30488.74 34678.40 34088.12 34693.17 33287.11 26082.17 32689.29 33581.95 19895.60 33288.64 20277.02 33398.41 137
FMVSNet587.29 29085.79 29491.78 28694.80 26487.28 24295.49 25195.28 28684.09 30283.85 32091.82 32062.95 34294.17 34278.48 31585.34 28793.91 314
Anonymous2023120687.09 29186.14 29289.93 31691.22 33380.35 32596.11 22395.35 28283.57 30984.16 31493.02 30273.54 29895.61 33172.16 33886.14 27893.84 315
EG-PatchMatch MVS87.02 29285.44 29691.76 28892.67 32185.00 28596.08 22596.45 24283.41 31179.52 33793.49 29557.10 34897.72 26979.34 31390.87 23492.56 330
TinyColmap86.82 29385.35 29891.21 29894.91 25982.99 30793.94 29694.02 32583.58 30881.56 32794.68 24362.34 34498.13 21375.78 32687.35 26992.52 331
TDRefinement86.53 29484.76 30391.85 28182.23 35384.25 29396.38 20395.35 28284.97 29284.09 31694.94 22865.76 33898.34 19884.60 27074.52 33892.97 323
test_040286.46 29584.79 30291.45 29395.02 25185.55 27696.29 21294.89 30480.90 32582.21 32593.97 28068.21 32497.29 30362.98 34988.68 25691.51 339
DSMNet-mixed86.34 29686.12 29387.00 32789.88 34070.43 34994.93 26990.08 34877.97 34085.42 30492.78 30574.44 29093.96 34374.43 33195.14 16996.62 200
CL-MVSNet_2432*160086.31 29785.15 29989.80 31788.83 34581.74 31693.93 29796.22 25286.67 26685.03 30690.80 32678.09 26494.50 33974.92 32971.86 34393.15 322
pmmvs-eth3d86.22 29884.45 30491.53 29188.34 34787.25 24494.47 27795.01 29883.47 31079.51 33889.61 33469.75 31895.71 33083.13 28276.73 33591.64 337
test20.0386.14 29985.40 29788.35 32090.12 33780.06 33095.90 23595.20 29188.59 21681.29 32893.62 29371.43 30592.65 34871.26 34281.17 32592.34 333
UnsupCasMVSNet_eth85.99 30084.45 30490.62 30889.97 33982.40 31293.62 30697.37 17089.86 17878.59 34092.37 31165.25 33995.35 33682.27 29170.75 34494.10 310
DIV-MVS_2432*160085.95 30184.95 30088.96 31989.55 34379.11 33795.13 26796.42 24385.91 27784.07 31790.48 32770.03 31694.82 33880.04 30572.94 34292.94 324
YYNet185.87 30284.23 30690.78 30792.38 32782.46 31193.17 31295.14 29482.12 31867.69 34692.36 31478.16 26395.50 33577.31 32079.73 32894.39 302
MDA-MVSNet_test_wron85.87 30284.23 30690.80 30692.38 32782.57 30893.17 31295.15 29382.15 31767.65 34792.33 31778.20 26095.51 33477.33 31979.74 32794.31 306
CMPMVSbinary62.92 2185.62 30484.92 30187.74 32489.14 34473.12 34894.17 29096.80 22273.98 34473.65 34594.93 22966.36 33297.61 27983.95 27791.28 22692.48 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 30583.64 30890.92 30295.27 23779.49 33390.55 33695.60 27383.76 30783.00 32489.95 33171.09 30797.97 24082.75 28760.79 35195.31 255
MDA-MVSNet-bldmvs85.00 30682.95 31091.17 30093.13 31583.33 30494.56 27595.00 29984.57 29765.13 35092.65 30670.45 31195.85 32773.57 33577.49 33294.33 304
MIMVSNet184.93 30783.05 30990.56 30989.56 34284.84 28995.40 25495.35 28283.91 30380.38 33392.21 31857.23 34793.34 34670.69 34482.75 32193.50 318
KD-MVS_2432*160084.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
miper_refine_blended84.81 30882.64 31191.31 29691.07 33485.34 28191.22 33095.75 26685.56 28283.09 32290.21 32967.21 32995.89 32577.18 32262.48 34992.69 327
OpenMVS_ROBcopyleft81.14 2084.42 31082.28 31390.83 30390.06 33884.05 29795.73 24294.04 32473.89 34580.17 33691.53 32559.15 34697.64 27566.92 34789.05 25190.80 342
PM-MVS83.48 31181.86 31588.31 32187.83 34977.59 34193.43 30891.75 34286.91 26280.63 33189.91 33244.42 35495.84 32885.17 26476.73 33591.50 340
new-patchmatchnet83.18 31281.87 31487.11 32686.88 35075.99 34493.70 30295.18 29285.02 29177.30 34188.40 33765.99 33693.88 34474.19 33470.18 34591.47 341
new_pmnet82.89 31381.12 31788.18 32389.63 34180.18 32991.77 32792.57 33676.79 34275.56 34488.23 33961.22 34594.48 34071.43 34082.92 31989.87 344
MVS-HIRNet82.47 31481.21 31686.26 32995.38 22569.21 35288.96 34589.49 34966.28 34880.79 33074.08 35168.48 32297.39 29871.93 33995.47 16492.18 335
UnsupCasMVSNet_bld82.13 31579.46 31890.14 31488.00 34882.47 31090.89 33596.62 23878.94 33675.61 34284.40 34556.63 35096.31 32277.30 32166.77 34891.63 338
pmmvs379.97 31677.50 32087.39 32582.80 35279.38 33592.70 32190.75 34770.69 34778.66 33987.47 34351.34 35293.40 34573.39 33669.65 34689.38 345
N_pmnet78.73 31778.71 31978.79 33292.80 31946.50 36194.14 29143.71 36378.61 33780.83 32991.66 32474.94 28896.36 32167.24 34684.45 30293.50 318
LCM-MVSNet72.55 31869.39 32282.03 33070.81 35965.42 35590.12 34094.36 31955.02 35265.88 34981.72 34624.16 36289.96 34974.32 33368.10 34790.71 343
FPMVS71.27 31969.85 32175.50 33474.64 35559.03 35791.30 32991.50 34458.80 35157.92 35288.28 33829.98 35885.53 35353.43 35182.84 32081.95 348
PMMVS270.19 32066.92 32380.01 33176.35 35465.67 35486.22 34787.58 35264.83 35062.38 35180.29 34826.78 36088.49 35163.79 34854.07 35285.88 346
Gipumacopyleft67.86 32165.41 32475.18 33592.66 32273.45 34766.50 35594.52 31453.33 35357.80 35366.07 35330.81 35689.20 35048.15 35378.88 33162.90 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high63.94 32259.58 32577.02 33361.24 36166.06 35385.66 34987.93 35178.53 33842.94 35571.04 35225.42 36180.71 35452.60 35230.83 35584.28 347
PMVScopyleft53.92 2258.58 32355.40 32668.12 33751.00 36248.64 35978.86 35287.10 35446.77 35435.84 35974.28 3508.76 36386.34 35242.07 35473.91 34069.38 350
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 32452.56 32855.43 33974.43 35647.13 36083.63 35176.30 35942.23 35542.59 35662.22 35528.57 35974.40 35631.53 35631.51 35444.78 353
MVEpermissive50.73 2353.25 32548.81 33066.58 33865.34 36057.50 35872.49 35470.94 36140.15 35739.28 35863.51 3546.89 36573.48 35838.29 35542.38 35368.76 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 32651.31 32954.39 34072.62 35845.39 36283.84 35075.51 36041.13 35640.77 35759.65 35630.08 35773.60 35728.31 35729.90 35644.18 354
tmp_tt51.94 32753.82 32746.29 34133.73 36345.30 36378.32 35367.24 36218.02 35850.93 35487.05 34452.99 35153.11 35970.76 34325.29 35740.46 355
wuyk23d25.11 32824.57 33226.74 34273.98 35739.89 36457.88 3569.80 36412.27 35910.39 3606.97 3627.03 36436.44 36025.43 35817.39 3583.89 358
cdsmvs_eth3d_5k23.24 32930.99 3310.00 3450.00 3660.00 3670.00 35797.63 1330.00 3620.00 36396.88 13484.38 1510.00 3630.00 3610.00 3610.00 359
testmvs13.36 33016.33 3334.48 3445.04 3642.26 36693.18 3113.28 3652.70 3608.24 36121.66 3582.29 3672.19 3617.58 3592.96 3599.00 357
test12313.04 33115.66 3345.18 3434.51 3653.45 36592.50 3251.81 3662.50 3617.58 36220.15 3593.67 3662.18 3627.13 3601.07 3609.90 356
ab-mvs-re8.06 33210.74 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36396.69 1430.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.39 3339.85 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36388.65 940.00 3630.00 3610.00 3610.00 359
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.05 4194.59 2898.08 6489.22 19597.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
IU-MVS99.42 695.39 997.94 10290.40 17098.94 597.41 799.66 899.74 5
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7398.23 3891.28 14297.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18098.45 132
sam_mvs81.94 199
ambc86.56 32883.60 35170.00 35185.69 34894.97 30180.60 33288.45 33637.42 35596.84 31682.69 28875.44 33792.86 325
MTGPAbinary98.08 64
test_post192.81 32016.58 36180.53 21897.68 27186.20 245
test_post17.58 36081.76 20198.08 223
patchmatchnet-post90.45 32882.65 18498.10 218
GG-mvs-BLEND93.62 22893.69 30089.20 20092.39 32683.33 35687.98 27189.84 33371.00 30896.87 31582.08 29295.40 16694.80 287
MTMP97.86 5982.03 357
gm-plane-assit93.22 31278.89 33984.82 29493.52 29498.64 17587.72 214
test9_res94.81 8399.38 4899.45 45
TEST998.70 6094.19 4096.41 19798.02 8888.17 22996.03 7897.56 10592.74 2499.59 67
test_898.67 6294.06 4996.37 20498.01 9188.58 21795.98 8397.55 10792.73 2599.58 70
agg_prior293.94 10099.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
TestCases93.98 20897.94 11186.64 25895.54 27685.38 28485.49 30296.77 13770.28 31399.15 12880.02 30692.87 19896.15 212
test_prior493.66 5996.42 196
test_prior296.35 20592.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
旧先验295.94 23381.66 32197.34 3498.82 15992.26 126
新几何295.79 240
新几何197.32 5698.60 6893.59 6197.75 11781.58 32295.75 9097.85 7890.04 8299.67 4986.50 24199.13 7598.69 115
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
无先验95.79 24097.87 10883.87 30699.65 5387.68 21998.89 100
原ACMM295.67 243
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25395.22 10597.68 9190.25 7799.54 8587.95 21099.12 7898.49 127
test22298.24 9392.21 10095.33 25797.60 13579.22 33595.25 10497.84 8188.80 9299.15 7398.72 112
testdata299.67 4985.96 253
segment_acmp92.89 22
testdata95.46 15198.18 10288.90 20897.66 12982.73 31597.03 4798.07 6390.06 8198.85 15789.67 17798.98 8498.64 117
testdata195.26 26493.10 82
test1297.65 4498.46 7494.26 3797.66 12995.52 10290.89 6999.46 10099.25 6599.22 67
plane_prior796.21 19089.98 171
plane_prior696.10 20090.00 16781.32 207
plane_prior597.51 14498.60 17993.02 12092.23 20895.86 221
plane_prior496.64 146
plane_prior390.00 16794.46 3991.34 179
plane_prior297.74 7194.85 24
plane_prior196.14 198
plane_prior89.99 16997.24 12394.06 4792.16 212
n20.00 367
nn0.00 367
door-mid91.06 346
lessismore_v090.45 31091.96 33079.09 33887.19 35380.32 33494.39 25766.31 33497.55 28384.00 27676.84 33494.70 294
LGP-MVS_train94.10 20296.16 19588.26 22297.46 15191.29 13990.12 20997.16 12079.05 24498.73 16792.25 12891.89 21695.31 255
test1197.88 106
door91.13 345
HQP5-MVS89.33 194
HQP-NCC95.86 20596.65 17993.55 6290.14 203
ACMP_Plane95.86 20596.65 17993.55 6290.14 203
BP-MVS92.13 132
HQP4-MVS90.14 20398.50 18695.78 228
HQP3-MVS97.39 16792.10 213
HQP2-MVS80.95 210
NP-MVS95.99 20489.81 17695.87 186
MDTV_nov1_ep13_2view70.35 35093.10 31683.88 30593.55 13382.47 18886.25 24498.38 140
MDTV_nov1_ep1390.76 20795.22 24180.33 32693.03 31795.28 28688.14 23292.84 15393.83 28281.34 20698.08 22382.86 28494.34 183
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93
ITE_SJBPF92.43 26995.34 23085.37 28095.92 26091.47 13187.75 27496.39 16571.00 30897.96 24482.36 29089.86 24593.97 313
DeepMVS_CXcopyleft74.68 33690.84 33664.34 35681.61 35865.34 34967.47 34888.01 34148.60 35380.13 35562.33 35073.68 34179.58 349