| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 60 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 14 |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 69 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 20 |
|
| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 3 | 88.44 27 | 88.09 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 64 | 87.85 5 | 85.03 38 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 120 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 66 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 36 | 89.70 16 | 79.85 5 | 91.48 1 | 88.19 22 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 79 | 60.01 46 | 86.19 17 | 83.93 56 | 73.19 1 | 77.08 31 | 91.21 15 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 35 | 89.22 5 |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 28 | 86.64 21 | 60.02 45 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 15 | 78.70 13 | 88.32 31 | 86.79 68 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 67 | 65.37 13 | 78.78 22 | 90.64 19 | 58.63 25 | 87.24 54 | 79.00 12 | 90.37 14 | 85.26 131 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 36 | 85.03 38 | 66.96 5 | 77.58 27 | 90.06 36 | 59.47 21 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 60 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 72 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 16 | 54.26 55 | 90.06 13 | 78.42 19 | 89.02 23 | 87.69 39 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 44 | 83.03 57 | 85.33 27 | 62.86 54 | 80.17 17 | 90.03 38 | 61.76 14 | 88.95 24 | 74.21 45 | 88.67 26 | 88.12 25 |
|
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 44 | 82.88 74 | 57.83 80 | 84.99 32 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 18 | 57.96 26 | 87.09 62 | 77.08 26 | 90.18 15 | 87.87 31 |
|
| ZNCC-MVS | | | 78.82 13 | 78.67 17 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 42 | 90.47 26 | 53.96 60 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 58 |
|
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 29 | 85.44 45 | 61.04 31 | 83.84 49 | 85.16 32 | 62.88 53 | 78.10 24 | 91.26 13 | 52.51 82 | 88.39 30 | 79.34 8 | 90.52 13 | 86.78 69 |
|
| MVS_0304 | | | 78.73 16 | 78.75 15 | 78.66 30 | 80.82 101 | 57.62 83 | 85.31 30 | 81.31 118 | 70.51 2 | 74.17 60 | 91.24 14 | 54.99 47 | 89.56 17 | 82.29 2 | 88.13 34 | 88.80 7 |
|
| NCCC | | | 78.58 17 | 78.31 19 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 31 | 84.42 47 | 66.73 8 | 74.67 53 | 89.38 49 | 55.30 44 | 89.18 21 | 74.19 46 | 87.34 43 | 86.38 79 |
|
| DeepC-MVS | | 69.38 2 | 78.56 18 | 78.14 22 | 79.83 7 | 83.60 63 | 61.62 23 | 84.17 42 | 86.85 6 | 63.23 46 | 73.84 65 | 90.25 32 | 57.68 29 | 89.96 14 | 74.62 43 | 89.03 22 | 87.89 29 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 26 | 84.96 52 | 61.41 26 | 84.03 45 | 83.82 65 | 59.34 119 | 79.37 19 | 89.76 45 | 59.84 16 | 87.62 50 | 76.69 27 | 86.74 52 | 87.68 40 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| MP-MVS-pluss | | | 78.35 20 | 78.46 18 | 78.03 40 | 84.96 52 | 59.52 53 | 82.93 59 | 85.39 26 | 62.15 67 | 76.41 34 | 91.51 11 | 52.47 84 | 86.78 68 | 80.66 4 | 89.64 19 | 87.80 35 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 71 | 63.89 37 | 73.60 67 | 90.60 20 | 54.85 50 | 86.72 69 | 77.20 25 | 88.06 37 | 85.74 110 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 29 | 63.56 41 | 74.29 59 | 90.03 38 | 52.56 81 | 88.53 29 | 74.79 42 | 88.34 29 | 86.63 75 |
|
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 48 | 60.61 89 | 79.05 21 | 90.30 30 | 55.54 43 | 88.32 32 | 73.48 53 | 87.03 45 | 84.83 143 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 49 | 62.82 55 | 73.96 63 | 90.50 24 | 53.20 74 | 88.35 31 | 74.02 48 | 87.05 44 | 86.13 93 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 50 | 62.82 55 | 73.55 68 | 90.56 22 | 49.80 116 | 88.24 33 | 74.02 48 | 87.03 45 | 86.32 87 |
|
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 34 | 83.87 62 | 60.37 96 | 79.89 18 | 89.38 49 | 54.97 48 | 85.58 99 | 76.12 31 | 84.94 66 | 86.33 85 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 52 | 62.81 57 | 73.30 70 | 90.58 21 | 49.90 114 | 88.21 34 | 73.78 50 | 87.03 45 | 86.29 90 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 45 | 86.67 20 | 58.36 76 | 83.22 55 | 86.93 5 | 56.91 161 | 74.91 47 | 88.19 62 | 59.15 23 | 87.68 48 | 73.67 51 | 87.45 42 | 86.57 76 |
|
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 60 | 85.08 35 | 62.57 60 | 73.09 79 | 89.97 41 | 50.90 109 | 87.48 52 | 75.30 36 | 86.85 50 | 87.33 55 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 33 | 84.85 42 | 61.98 74 | 73.06 80 | 88.88 55 | 53.72 68 | 89.06 23 | 68.27 79 | 88.04 38 | 87.42 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| XVS | | | 77.17 31 | 76.56 34 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 57 | 64.55 23 | 72.17 98 | 90.01 40 | 47.95 136 | 88.01 40 | 71.55 65 | 86.74 52 | 86.37 81 |
|
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 74 | 62.44 64 | 72.68 89 | 90.50 24 | 48.18 134 | 87.34 53 | 73.59 52 | 85.71 62 | 84.76 147 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 46 | 83.96 62 | 59.60 51 | 82.95 58 | 86.50 13 | 60.78 87 | 75.27 39 | 84.83 137 | 60.76 15 | 86.56 75 | 67.86 86 | 87.87 41 | 86.06 95 |
|
| MTAPA | | | 76.90 34 | 76.42 35 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 211 | 80.97 130 | 65.13 15 | 75.77 36 | 90.88 17 | 48.63 129 | 86.66 71 | 77.23 24 | 88.17 33 | 84.81 144 |
|
| PGM-MVS | | | 76.77 35 | 76.06 38 | 78.88 27 | 86.14 35 | 62.73 9 | 82.55 67 | 83.74 66 | 61.71 76 | 72.45 96 | 90.34 29 | 48.48 132 | 88.13 35 | 72.32 58 | 86.85 50 | 85.78 104 |
|
| mPP-MVS | | | 76.54 36 | 75.93 40 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 96 | 62.90 52 | 71.77 101 | 90.26 31 | 46.61 160 | 86.55 76 | 71.71 63 | 85.66 63 | 84.97 140 |
|
| CANet | | | 76.46 37 | 75.93 40 | 78.06 39 | 81.29 93 | 57.53 85 | 82.35 69 | 83.31 80 | 67.78 3 | 70.09 116 | 86.34 103 | 54.92 49 | 88.90 25 | 72.68 57 | 84.55 69 | 87.76 37 |
|
| CDPH-MVS | | | 76.31 38 | 75.67 44 | 78.22 37 | 85.35 48 | 59.14 62 | 81.31 86 | 84.02 53 | 56.32 174 | 74.05 61 | 88.98 54 | 53.34 73 | 87.92 43 | 69.23 76 | 88.42 28 | 87.59 44 |
|
| train_agg | | | 76.27 39 | 76.15 37 | 76.64 55 | 85.58 43 | 61.59 24 | 81.62 81 | 81.26 121 | 55.86 182 | 74.93 45 | 88.81 56 | 53.70 69 | 84.68 120 | 75.24 38 | 88.33 30 | 83.65 184 |
|
| CS-MVS | | | 76.25 40 | 75.98 39 | 77.06 50 | 80.15 117 | 55.63 120 | 84.51 35 | 83.90 59 | 63.24 45 | 73.30 70 | 87.27 79 | 55.06 46 | 86.30 85 | 71.78 62 | 84.58 68 | 89.25 4 |
|
| casdiffmvs_mvg |  | | 76.14 41 | 76.30 36 | 75.66 74 | 76.46 221 | 51.83 186 | 79.67 111 | 85.08 35 | 65.02 19 | 75.84 35 | 88.58 60 | 59.42 22 | 85.08 110 | 72.75 56 | 83.93 76 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| SR-MVS | | | 76.13 42 | 75.70 43 | 77.40 48 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 97 | 59.99 106 | 75.10 41 | 90.35 28 | 47.66 141 | 86.52 77 | 71.64 64 | 82.99 82 | 84.47 153 |
|
| ACMMP |  | | 76.02 43 | 75.33 46 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 46 | 63.04 49 | 69.80 126 | 89.74 46 | 45.43 173 | 87.16 59 | 72.01 60 | 82.87 87 | 85.14 133 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| PHI-MVS | | | 75.87 44 | 75.36 45 | 77.41 46 | 80.62 107 | 55.91 113 | 84.28 39 | 85.78 20 | 56.08 180 | 73.41 69 | 86.58 95 | 50.94 108 | 88.54 28 | 70.79 68 | 89.71 17 | 87.79 36 |
|
| EC-MVSNet | | | 75.84 45 | 75.87 42 | 75.74 72 | 78.86 146 | 52.65 168 | 83.73 50 | 86.08 17 | 63.47 42 | 72.77 88 | 87.25 80 | 53.13 75 | 87.93 42 | 71.97 61 | 85.57 64 | 86.66 73 |
|
| 3Dnovator+ | | 66.72 4 | 75.84 45 | 74.57 54 | 79.66 9 | 82.40 76 | 59.92 48 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 162 | 89.24 51 | 42.03 204 | 89.38 19 | 64.07 120 | 86.50 57 | 89.69 2 |
|
| CS-MVS-test | | | 75.62 47 | 75.31 47 | 76.56 58 | 80.63 106 | 55.13 130 | 83.88 48 | 85.22 28 | 62.05 71 | 71.49 105 | 86.03 113 | 53.83 64 | 86.36 83 | 67.74 88 | 86.91 49 | 88.19 22 |
|
| DPM-MVS | | | 75.47 48 | 75.00 49 | 76.88 51 | 81.38 92 | 59.16 59 | 79.94 102 | 85.71 22 | 56.59 169 | 72.46 94 | 86.76 85 | 56.89 34 | 87.86 45 | 66.36 102 | 88.91 25 | 83.64 185 |
|
| APD-MVS_3200maxsize | | | 74.96 49 | 74.39 56 | 76.67 54 | 82.20 78 | 58.24 77 | 83.67 51 | 83.29 81 | 58.41 135 | 73.71 66 | 90.14 33 | 45.62 166 | 85.99 89 | 69.64 72 | 82.85 88 | 85.78 104 |
|
| TSAR-MVS + GP. | | | 74.90 50 | 74.15 58 | 77.17 49 | 82.00 81 | 58.77 72 | 81.80 78 | 78.57 169 | 58.58 132 | 74.32 58 | 84.51 147 | 55.94 41 | 87.22 55 | 67.11 96 | 84.48 71 | 85.52 116 |
|
| casdiffmvs |  | | 74.80 51 | 74.89 52 | 74.53 100 | 75.59 233 | 50.37 205 | 78.17 132 | 85.06 37 | 62.80 58 | 74.40 56 | 87.86 70 | 57.88 27 | 83.61 140 | 69.46 75 | 82.79 89 | 89.59 3 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DELS-MVS | | | 74.76 52 | 74.46 55 | 75.65 75 | 77.84 181 | 52.25 177 | 75.59 195 | 84.17 51 | 63.76 38 | 73.15 75 | 82.79 176 | 59.58 20 | 86.80 67 | 67.24 95 | 86.04 61 | 87.89 29 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| OPM-MVS | | | 74.73 53 | 74.25 57 | 76.19 63 | 80.81 102 | 59.01 67 | 82.60 66 | 83.64 68 | 63.74 39 | 72.52 92 | 87.49 74 | 47.18 151 | 85.88 92 | 69.47 74 | 80.78 105 | 83.66 183 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| mamv4 | | | 74.72 54 | 74.09 59 | 76.61 56 | 79.86 121 | 53.06 162 | 79.89 105 | 85.13 34 | 55.66 191 | 72.81 85 | 85.24 133 | 53.83 64 | 88.07 38 | 67.77 87 | 86.63 56 | 88.71 9 |
|
| sasdasda | | | 74.67 55 | 74.98 50 | 73.71 123 | 78.94 144 | 50.56 202 | 80.23 95 | 83.87 62 | 60.30 100 | 77.15 29 | 86.56 96 | 59.65 17 | 82.00 176 | 66.01 106 | 82.12 93 | 88.58 12 |
|
| canonicalmvs | | | 74.67 55 | 74.98 50 | 73.71 123 | 78.94 144 | 50.56 202 | 80.23 95 | 83.87 62 | 60.30 100 | 77.15 29 | 86.56 96 | 59.65 17 | 82.00 176 | 66.01 106 | 82.12 93 | 88.58 12 |
|
| MVSMamba_pp | | | 74.64 57 | 74.07 60 | 76.35 61 | 79.76 123 | 53.09 161 | 79.97 101 | 85.21 29 | 55.21 203 | 72.81 85 | 85.37 132 | 53.93 61 | 87.17 58 | 67.93 85 | 86.46 58 | 88.80 7 |
|
| baseline | | | 74.61 58 | 74.70 53 | 74.34 104 | 75.70 229 | 49.99 214 | 77.54 149 | 84.63 45 | 62.73 59 | 73.98 62 | 87.79 73 | 57.67 30 | 83.82 136 | 69.49 73 | 82.74 90 | 89.20 6 |
|
| SR-MVS-dyc-post | | | 74.57 59 | 73.90 62 | 76.58 57 | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 113 | 58.07 141 | 73.14 76 | 90.07 34 | 44.74 180 | 85.84 93 | 68.20 80 | 81.76 100 | 84.03 163 |
|
| dcpmvs_2 | | | 74.55 60 | 75.23 48 | 72.48 156 | 82.34 77 | 53.34 155 | 77.87 138 | 81.46 109 | 57.80 150 | 75.49 37 | 86.81 84 | 62.22 13 | 77.75 255 | 71.09 67 | 82.02 96 | 86.34 83 |
|
| ETV-MVS | | | 74.46 61 | 73.84 64 | 76.33 62 | 79.27 135 | 55.24 129 | 79.22 116 | 85.00 40 | 64.97 21 | 72.65 90 | 79.46 251 | 53.65 72 | 87.87 44 | 67.45 94 | 82.91 85 | 85.89 101 |
|
| HQP_MVS | | | 74.31 62 | 73.73 65 | 76.06 64 | 81.41 90 | 56.31 102 | 84.22 40 | 84.01 54 | 64.52 25 | 69.27 134 | 86.10 110 | 45.26 177 | 87.21 56 | 68.16 82 | 80.58 109 | 84.65 148 |
|
| HPM-MVS_fast | | | 74.30 63 | 73.46 69 | 76.80 52 | 84.45 60 | 59.04 66 | 83.65 52 | 81.05 127 | 60.15 103 | 70.43 112 | 89.84 43 | 41.09 220 | 85.59 98 | 67.61 91 | 82.90 86 | 85.77 107 |
|
| MVS_111021_HR | | | 74.02 64 | 73.46 69 | 75.69 73 | 83.01 72 | 60.63 40 | 77.29 157 | 78.40 180 | 61.18 82 | 70.58 111 | 85.97 115 | 54.18 57 | 84.00 133 | 67.52 93 | 82.98 84 | 82.45 211 |
|
| bld_raw_dy_0_64 | | | 74.00 65 | 73.69 67 | 74.93 86 | 80.28 109 | 50.00 213 | 77.56 147 | 85.20 31 | 55.84 184 | 72.52 92 | 84.05 155 | 53.90 62 | 86.60 72 | 67.59 92 | 86.28 60 | 88.18 24 |
|
| MG-MVS | | | 73.96 66 | 73.89 63 | 74.16 109 | 85.65 42 | 49.69 219 | 81.59 83 | 81.29 120 | 61.45 78 | 71.05 108 | 88.11 63 | 51.77 96 | 87.73 47 | 61.05 149 | 83.09 80 | 85.05 137 |
|
| alignmvs | | | 73.86 67 | 73.99 61 | 73.45 136 | 78.20 167 | 50.50 204 | 78.57 124 | 82.43 94 | 59.40 117 | 76.57 32 | 86.71 89 | 56.42 38 | 81.23 193 | 65.84 109 | 81.79 99 | 88.62 10 |
|
| MSLP-MVS++ | | | 73.77 68 | 73.47 68 | 74.66 93 | 83.02 71 | 59.29 58 | 82.30 74 | 81.88 101 | 59.34 119 | 71.59 104 | 86.83 83 | 45.94 164 | 83.65 139 | 65.09 114 | 85.22 65 | 81.06 239 |
|
| iter_conf05 | | | 73.64 69 | 73.08 72 | 75.33 81 | 78.05 174 | 50.61 199 | 79.76 108 | 84.74 44 | 55.66 191 | 72.19 97 | 85.10 134 | 53.98 58 | 87.65 49 | 68.56 78 | 79.69 121 | 87.73 38 |
|
| iter_conf05_11 | | | 73.59 70 | 72.85 75 | 75.78 69 | 79.66 127 | 52.10 179 | 77.08 163 | 85.14 33 | 53.83 230 | 71.33 106 | 82.77 177 | 52.74 79 | 88.08 37 | 66.45 101 | 86.68 55 | 87.17 57 |
|
| HQP-MVS | | | 73.45 71 | 72.80 76 | 75.40 79 | 80.66 103 | 54.94 131 | 82.31 71 | 83.90 59 | 62.10 68 | 67.85 157 | 85.54 128 | 45.46 171 | 86.93 64 | 67.04 97 | 80.35 113 | 84.32 155 |
|
| CLD-MVS | | | 73.33 72 | 72.68 77 | 75.29 84 | 78.82 148 | 53.33 156 | 78.23 129 | 84.79 43 | 61.30 81 | 70.41 113 | 81.04 219 | 52.41 85 | 87.12 60 | 64.61 119 | 82.49 92 | 85.41 124 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Effi-MVS+ | | | 73.31 73 | 72.54 79 | 75.62 76 | 77.87 179 | 53.64 147 | 79.62 113 | 79.61 148 | 61.63 77 | 72.02 100 | 82.61 182 | 56.44 37 | 85.97 90 | 63.99 123 | 79.07 134 | 87.25 56 |
|
| UA-Net | | | 73.13 74 | 72.93 74 | 73.76 119 | 83.58 64 | 51.66 187 | 78.75 119 | 77.66 190 | 67.75 4 | 72.61 91 | 89.42 47 | 49.82 115 | 83.29 145 | 53.61 202 | 83.14 79 | 86.32 87 |
|
| EPNet | | | 73.09 75 | 72.16 82 | 75.90 67 | 75.95 227 | 56.28 104 | 83.05 56 | 72.39 260 | 66.53 10 | 65.27 210 | 87.00 81 | 50.40 111 | 85.47 104 | 62.48 137 | 86.32 59 | 85.94 98 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvsmconf_n | | | 73.01 76 | 72.59 78 | 74.27 107 | 71.28 303 | 55.88 114 | 78.21 131 | 75.56 220 | 54.31 223 | 74.86 48 | 87.80 72 | 54.72 51 | 80.23 217 | 78.07 21 | 78.48 143 | 86.70 70 |
|
| nrg030 | | | 72.96 77 | 73.01 73 | 72.84 149 | 75.41 236 | 50.24 206 | 80.02 99 | 82.89 90 | 58.36 137 | 74.44 55 | 86.73 87 | 58.90 24 | 80.83 203 | 65.84 109 | 74.46 185 | 87.44 48 |
|
| test_fmvsmconf0.1_n | | | 72.81 78 | 72.33 81 | 74.24 108 | 69.89 323 | 55.81 115 | 78.22 130 | 75.40 223 | 54.17 225 | 75.00 44 | 88.03 68 | 53.82 66 | 80.23 217 | 78.08 20 | 78.34 146 | 86.69 71 |
|
| CPTT-MVS | | | 72.78 79 | 72.08 84 | 74.87 89 | 84.88 57 | 61.41 26 | 84.15 43 | 77.86 186 | 55.27 200 | 67.51 168 | 88.08 65 | 41.93 206 | 81.85 179 | 69.04 77 | 80.01 117 | 81.35 232 |
|
| LPG-MVS_test | | | 72.74 80 | 71.74 86 | 75.76 70 | 80.22 112 | 57.51 86 | 82.55 67 | 83.40 76 | 61.32 79 | 66.67 184 | 87.33 77 | 39.15 236 | 86.59 73 | 67.70 89 | 77.30 159 | 83.19 195 |
|
| h-mvs33 | | | 72.71 81 | 71.49 90 | 76.40 59 | 81.99 82 | 59.58 52 | 76.92 168 | 76.74 206 | 60.40 93 | 74.81 49 | 85.95 117 | 45.54 169 | 85.76 95 | 70.41 70 | 70.61 241 | 83.86 172 |
|
| PAPM_NR | | | 72.63 82 | 71.80 85 | 75.13 85 | 81.72 85 | 53.42 154 | 79.91 104 | 83.28 82 | 59.14 121 | 66.31 191 | 85.90 118 | 51.86 94 | 86.06 86 | 57.45 170 | 80.62 107 | 85.91 100 |
|
| VDD-MVS | | | 72.50 83 | 72.09 83 | 73.75 121 | 81.58 86 | 49.69 219 | 77.76 143 | 77.63 191 | 63.21 47 | 73.21 73 | 89.02 53 | 42.14 203 | 83.32 144 | 61.72 144 | 82.50 91 | 88.25 19 |
|
| 3Dnovator | | 64.47 5 | 72.49 84 | 71.39 93 | 75.79 68 | 77.70 184 | 58.99 68 | 80.66 93 | 83.15 85 | 62.24 66 | 65.46 206 | 86.59 94 | 42.38 202 | 85.52 100 | 59.59 161 | 84.72 67 | 82.85 204 |
|
| MGCFI-Net | | | 72.45 85 | 73.34 71 | 69.81 217 | 77.77 183 | 43.21 289 | 75.84 192 | 81.18 124 | 59.59 115 | 75.45 38 | 86.64 90 | 57.74 28 | 77.94 250 | 63.92 124 | 81.90 98 | 88.30 17 |
|
| MVS_Test | | | 72.45 85 | 72.46 80 | 72.42 160 | 74.88 242 | 48.50 235 | 76.28 180 | 83.14 86 | 59.40 117 | 72.46 94 | 84.68 139 | 55.66 42 | 81.12 194 | 65.98 108 | 79.66 122 | 87.63 42 |
|
| EI-MVSNet-Vis-set | | | 72.42 87 | 71.59 87 | 74.91 87 | 78.47 157 | 54.02 141 | 77.05 164 | 79.33 154 | 65.03 18 | 71.68 103 | 79.35 254 | 52.75 78 | 84.89 116 | 66.46 100 | 74.23 189 | 85.83 103 |
|
| ACMP | | 63.53 6 | 72.30 88 | 71.20 98 | 75.59 78 | 80.28 109 | 57.54 84 | 82.74 63 | 82.84 91 | 60.58 90 | 65.24 214 | 86.18 107 | 39.25 234 | 86.03 88 | 66.95 99 | 76.79 166 | 83.22 193 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PS-MVSNAJss | | | 72.24 89 | 71.21 97 | 75.31 82 | 78.50 155 | 55.93 112 | 81.63 80 | 82.12 98 | 56.24 177 | 70.02 120 | 85.68 124 | 47.05 153 | 84.34 126 | 65.27 113 | 74.41 188 | 85.67 111 |
|
| Vis-MVSNet |  | | 72.18 90 | 71.37 94 | 74.61 96 | 81.29 93 | 55.41 126 | 80.90 89 | 78.28 182 | 60.73 88 | 69.23 137 | 88.09 64 | 44.36 185 | 82.65 164 | 57.68 168 | 81.75 102 | 85.77 107 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test_fmvsmconf0.01_n | | | 72.17 91 | 71.50 89 | 74.16 109 | 67.96 340 | 55.58 123 | 78.06 135 | 74.67 238 | 54.19 224 | 74.54 54 | 88.23 61 | 50.35 113 | 80.24 216 | 78.07 21 | 77.46 155 | 86.65 74 |
|
| API-MVS | | | 72.17 91 | 71.41 92 | 74.45 102 | 81.95 83 | 57.22 89 | 84.03 45 | 80.38 139 | 59.89 110 | 68.40 146 | 82.33 191 | 49.64 117 | 87.83 46 | 51.87 216 | 84.16 75 | 78.30 274 |
|
| EPP-MVSNet | | | 72.16 93 | 71.31 96 | 74.71 90 | 78.68 152 | 49.70 217 | 82.10 75 | 81.65 105 | 60.40 93 | 65.94 196 | 85.84 120 | 51.74 97 | 86.37 82 | 55.93 179 | 79.55 125 | 88.07 28 |
|
| DP-MVS Recon | | | 72.15 94 | 70.73 106 | 76.40 59 | 86.57 24 | 57.99 79 | 81.15 88 | 82.96 87 | 57.03 158 | 66.78 180 | 85.56 125 | 44.50 183 | 88.11 36 | 51.77 218 | 80.23 116 | 83.10 199 |
|
| EI-MVSNet-UG-set | | | 71.92 95 | 71.06 101 | 74.52 101 | 77.98 177 | 53.56 149 | 76.62 173 | 79.16 155 | 64.40 27 | 71.18 107 | 78.95 259 | 52.19 89 | 84.66 122 | 65.47 112 | 73.57 200 | 85.32 127 |
|
| VDDNet | | | 71.81 96 | 71.33 95 | 73.26 143 | 82.80 75 | 47.60 247 | 78.74 120 | 75.27 225 | 59.59 115 | 72.94 82 | 89.40 48 | 41.51 214 | 83.91 134 | 58.75 165 | 82.99 82 | 88.26 18 |
|
| EIA-MVS | | | 71.78 97 | 70.60 107 | 75.30 83 | 79.85 122 | 53.54 150 | 77.27 158 | 83.26 83 | 57.92 147 | 66.49 186 | 79.39 252 | 52.07 91 | 86.69 70 | 60.05 155 | 79.14 133 | 85.66 112 |
|
| LFMVS | | | 71.78 97 | 71.59 87 | 72.32 161 | 83.40 67 | 46.38 256 | 79.75 109 | 71.08 269 | 64.18 32 | 72.80 87 | 88.64 59 | 42.58 199 | 83.72 137 | 57.41 171 | 84.49 70 | 86.86 65 |
|
| test_fmvsm_n_1920 | | | 71.73 99 | 71.14 99 | 73.50 133 | 72.52 280 | 56.53 101 | 75.60 194 | 76.16 210 | 48.11 296 | 77.22 28 | 85.56 125 | 53.10 76 | 77.43 259 | 74.86 40 | 77.14 161 | 86.55 77 |
|
| PAPR | | | 71.72 100 | 70.82 104 | 74.41 103 | 81.20 97 | 51.17 189 | 79.55 114 | 83.33 79 | 55.81 186 | 66.93 179 | 84.61 143 | 50.95 107 | 86.06 86 | 55.79 182 | 79.20 131 | 86.00 96 |
|
| IS-MVSNet | | | 71.57 101 | 71.00 102 | 73.27 142 | 78.86 146 | 45.63 267 | 80.22 97 | 78.69 166 | 64.14 35 | 66.46 187 | 87.36 76 | 49.30 120 | 85.60 97 | 50.26 229 | 83.71 78 | 88.59 11 |
|
| MAR-MVS | | | 71.51 102 | 70.15 117 | 75.60 77 | 81.84 84 | 59.39 55 | 81.38 85 | 82.90 89 | 54.90 213 | 68.08 154 | 78.70 260 | 47.73 139 | 85.51 101 | 51.68 220 | 84.17 74 | 81.88 222 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVSFormer | | | 71.50 103 | 70.38 112 | 74.88 88 | 78.76 149 | 57.15 94 | 82.79 61 | 78.48 173 | 51.26 258 | 69.49 129 | 83.22 171 | 43.99 188 | 83.24 146 | 66.06 104 | 79.37 126 | 84.23 158 |
|
| PVSNet_Blended_VisFu | | | 71.45 104 | 70.39 111 | 74.65 94 | 82.01 80 | 58.82 71 | 79.93 103 | 80.35 140 | 55.09 206 | 65.82 202 | 82.16 197 | 49.17 123 | 82.64 165 | 60.34 153 | 78.62 142 | 82.50 210 |
|
| OMC-MVS | | | 71.40 105 | 70.60 107 | 73.78 117 | 76.60 217 | 53.15 158 | 79.74 110 | 79.78 144 | 58.37 136 | 68.75 141 | 86.45 101 | 45.43 173 | 80.60 207 | 62.58 135 | 77.73 151 | 87.58 45 |
|
| mvsmamba | | | 71.15 106 | 69.54 125 | 75.99 65 | 77.61 193 | 53.46 152 | 81.95 77 | 75.11 231 | 57.73 151 | 66.95 178 | 85.96 116 | 37.14 259 | 87.56 51 | 67.94 84 | 75.49 181 | 86.97 61 |
|
| UniMVSNet_NR-MVSNet | | | 71.11 107 | 71.00 102 | 71.44 180 | 79.20 137 | 44.13 279 | 76.02 188 | 82.60 93 | 66.48 11 | 68.20 149 | 84.60 144 | 56.82 35 | 82.82 160 | 54.62 193 | 70.43 243 | 87.36 54 |
|
| hse-mvs2 | | | 71.04 108 | 69.86 120 | 74.60 97 | 79.58 128 | 57.12 96 | 73.96 227 | 75.25 226 | 60.40 93 | 74.81 49 | 81.95 202 | 45.54 169 | 82.90 153 | 70.41 70 | 66.83 292 | 83.77 177 |
|
| GeoE | | | 71.01 109 | 70.15 117 | 73.60 131 | 79.57 129 | 52.17 178 | 78.93 118 | 78.12 183 | 58.02 143 | 67.76 165 | 83.87 160 | 52.36 86 | 82.72 162 | 56.90 173 | 75.79 176 | 85.92 99 |
|
| fmvsm_l_conf0.5_n | | | 70.99 110 | 70.82 104 | 71.48 178 | 71.45 296 | 54.40 138 | 77.18 160 | 70.46 275 | 48.67 287 | 75.17 40 | 86.86 82 | 53.77 67 | 76.86 270 | 76.33 30 | 77.51 154 | 83.17 198 |
|
| PCF-MVS | | 61.88 8 | 70.95 111 | 69.49 127 | 75.35 80 | 77.63 188 | 55.71 117 | 76.04 187 | 81.81 103 | 50.30 269 | 69.66 127 | 85.40 131 | 52.51 82 | 84.89 116 | 51.82 217 | 80.24 115 | 85.45 120 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| test_fmvsmvis_n_1920 | | | 70.84 112 | 70.38 112 | 72.22 163 | 71.16 304 | 55.39 127 | 75.86 190 | 72.21 262 | 49.03 283 | 73.28 72 | 86.17 108 | 51.83 95 | 77.29 262 | 75.80 32 | 78.05 148 | 83.98 166 |
|
| 114514_t | | | 70.83 113 | 69.56 124 | 74.64 95 | 86.21 31 | 54.63 136 | 82.34 70 | 81.81 103 | 48.22 294 | 63.01 247 | 85.83 121 | 40.92 221 | 87.10 61 | 57.91 167 | 79.79 118 | 82.18 216 |
|
| FIs | | | 70.82 114 | 71.43 91 | 68.98 230 | 78.33 164 | 38.14 332 | 76.96 166 | 83.59 70 | 61.02 83 | 67.33 170 | 86.73 87 | 55.07 45 | 81.64 182 | 54.61 195 | 79.22 130 | 87.14 59 |
|
| ACMM | | 61.98 7 | 70.80 115 | 69.73 122 | 74.02 111 | 80.59 108 | 58.59 74 | 82.68 64 | 82.02 100 | 55.46 197 | 67.18 173 | 84.39 149 | 38.51 241 | 83.17 148 | 60.65 151 | 76.10 173 | 80.30 251 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| diffmvs |  | | 70.69 116 | 70.43 110 | 71.46 179 | 69.45 328 | 48.95 229 | 72.93 243 | 78.46 175 | 57.27 155 | 71.69 102 | 83.97 159 | 51.48 100 | 77.92 252 | 70.70 69 | 77.95 150 | 87.53 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UniMVSNet (Re) | | | 70.63 117 | 70.20 115 | 71.89 166 | 78.55 154 | 45.29 270 | 75.94 189 | 82.92 88 | 63.68 40 | 68.16 151 | 83.59 166 | 53.89 63 | 83.49 143 | 53.97 198 | 71.12 236 | 86.89 64 |
|
| xiu_mvs_v2_base | | | 70.52 118 | 69.75 121 | 72.84 149 | 81.21 96 | 55.63 120 | 75.11 205 | 78.92 160 | 54.92 212 | 69.96 123 | 79.68 246 | 47.00 157 | 82.09 175 | 61.60 146 | 79.37 126 | 80.81 244 |
|
| PS-MVSNAJ | | | 70.51 119 | 69.70 123 | 72.93 147 | 81.52 87 | 55.79 116 | 74.92 211 | 79.00 158 | 55.04 211 | 69.88 124 | 78.66 261 | 47.05 153 | 82.19 173 | 61.61 145 | 79.58 123 | 80.83 243 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 120 | 70.27 114 | 71.18 190 | 71.30 302 | 54.09 140 | 76.89 169 | 69.87 278 | 47.90 300 | 74.37 57 | 86.49 99 | 53.07 77 | 76.69 275 | 75.41 35 | 77.11 162 | 82.76 205 |
|
| v2v482 | | | 70.50 120 | 69.45 129 | 73.66 126 | 72.62 277 | 50.03 212 | 77.58 145 | 80.51 137 | 59.90 107 | 69.52 128 | 82.14 198 | 47.53 144 | 84.88 118 | 65.07 115 | 70.17 250 | 86.09 94 |
|
| v1144 | | | 70.42 122 | 69.31 130 | 73.76 119 | 73.22 265 | 50.64 198 | 77.83 141 | 81.43 110 | 58.58 132 | 69.40 132 | 81.16 216 | 47.53 144 | 85.29 109 | 64.01 122 | 70.64 239 | 85.34 126 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 123 | 70.10 119 | 71.17 191 | 78.64 153 | 42.97 292 | 76.53 175 | 81.16 126 | 66.95 6 | 68.53 145 | 85.42 130 | 51.61 99 | 83.07 149 | 52.32 210 | 69.70 262 | 87.46 47 |
|
| v8 | | | 70.33 124 | 69.28 131 | 73.49 134 | 73.15 267 | 50.22 207 | 78.62 123 | 80.78 133 | 60.79 86 | 66.45 188 | 82.11 200 | 49.35 119 | 84.98 113 | 63.58 129 | 68.71 277 | 85.28 129 |
|
| Fast-Effi-MVS+ | | | 70.28 125 | 69.12 134 | 73.73 122 | 78.50 155 | 51.50 188 | 75.01 208 | 79.46 152 | 56.16 179 | 68.59 142 | 79.55 249 | 53.97 59 | 84.05 129 | 53.34 204 | 77.53 153 | 85.65 113 |
|
| X-MVStestdata | | | 70.21 126 | 67.28 175 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 57 | 64.55 23 | 72.17 98 | 6.49 406 | 47.95 136 | 88.01 40 | 71.55 65 | 86.74 52 | 86.37 81 |
|
| v10 | | | 70.21 126 | 69.02 135 | 73.81 116 | 73.51 264 | 50.92 193 | 78.74 120 | 81.39 111 | 60.05 105 | 66.39 189 | 81.83 205 | 47.58 143 | 85.41 107 | 62.80 134 | 68.86 276 | 85.09 136 |
|
| QAPM | | | 70.05 128 | 68.81 139 | 73.78 117 | 76.54 219 | 53.43 153 | 83.23 54 | 83.48 72 | 52.89 239 | 65.90 198 | 86.29 104 | 41.55 213 | 86.49 79 | 51.01 223 | 78.40 145 | 81.42 226 |
|
| DU-MVS | | | 70.01 129 | 69.53 126 | 71.44 180 | 78.05 174 | 44.13 279 | 75.01 208 | 81.51 108 | 64.37 28 | 68.20 149 | 84.52 145 | 49.12 126 | 82.82 160 | 54.62 193 | 70.43 243 | 87.37 52 |
|
| AdaColmap |  | | 69.99 130 | 68.66 143 | 73.97 113 | 84.94 54 | 57.83 80 | 82.63 65 | 78.71 165 | 56.28 176 | 64.34 228 | 84.14 152 | 41.57 211 | 87.06 63 | 46.45 261 | 78.88 135 | 77.02 293 |
|
| v1192 | | | 69.97 131 | 68.68 142 | 73.85 114 | 73.19 266 | 50.94 191 | 77.68 144 | 81.36 113 | 57.51 153 | 68.95 140 | 80.85 226 | 45.28 176 | 85.33 108 | 62.97 133 | 70.37 245 | 85.27 130 |
|
| Anonymous20240529 | | | 69.91 132 | 69.02 135 | 72.56 154 | 80.19 115 | 47.65 245 | 77.56 147 | 80.99 129 | 55.45 198 | 69.88 124 | 86.76 85 | 39.24 235 | 82.18 174 | 54.04 197 | 77.10 163 | 87.85 32 |
|
| patch_mono-2 | | | 69.85 133 | 71.09 100 | 66.16 264 | 79.11 141 | 54.80 135 | 71.97 259 | 74.31 243 | 53.50 234 | 70.90 109 | 84.17 151 | 57.63 31 | 63.31 343 | 66.17 103 | 82.02 96 | 80.38 250 |
|
| FA-MVS(test-final) | | | 69.82 134 | 68.48 146 | 73.84 115 | 78.44 158 | 50.04 211 | 75.58 197 | 78.99 159 | 58.16 139 | 67.59 166 | 82.14 198 | 42.66 197 | 85.63 96 | 56.60 174 | 76.19 172 | 85.84 102 |
|
| FC-MVSNet-test | | | 69.80 135 | 70.58 109 | 67.46 246 | 77.61 193 | 34.73 363 | 76.05 186 | 83.19 84 | 60.84 85 | 65.88 200 | 86.46 100 | 54.52 54 | 80.76 206 | 52.52 209 | 78.12 147 | 86.91 63 |
|
| v144192 | | | 69.71 136 | 68.51 145 | 73.33 141 | 73.10 268 | 50.13 209 | 77.54 149 | 80.64 134 | 56.65 163 | 68.57 144 | 80.55 229 | 46.87 158 | 84.96 115 | 62.98 132 | 69.66 263 | 84.89 142 |
|
| test_yl | | | 69.69 137 | 69.13 132 | 71.36 184 | 78.37 162 | 45.74 263 | 74.71 215 | 80.20 141 | 57.91 148 | 70.01 121 | 83.83 161 | 42.44 200 | 82.87 156 | 54.97 189 | 79.72 119 | 85.48 118 |
|
| DCV-MVSNet | | | 69.69 137 | 69.13 132 | 71.36 184 | 78.37 162 | 45.74 263 | 74.71 215 | 80.20 141 | 57.91 148 | 70.01 121 | 83.83 161 | 42.44 200 | 82.87 156 | 54.97 189 | 79.72 119 | 85.48 118 |
|
| VNet | | | 69.68 139 | 70.19 116 | 68.16 240 | 79.73 125 | 41.63 305 | 70.53 278 | 77.38 196 | 60.37 96 | 70.69 110 | 86.63 92 | 51.08 105 | 77.09 265 | 53.61 202 | 81.69 104 | 85.75 109 |
|
| jason | | | 69.65 140 | 68.39 152 | 73.43 138 | 78.27 166 | 56.88 98 | 77.12 161 | 73.71 251 | 46.53 315 | 69.34 133 | 83.22 171 | 43.37 192 | 79.18 230 | 64.77 116 | 79.20 131 | 84.23 158 |
| jason: jason. |
| Effi-MVS+-dtu | | | 69.64 141 | 67.53 165 | 75.95 66 | 76.10 225 | 62.29 15 | 80.20 98 | 76.06 214 | 59.83 111 | 65.26 213 | 77.09 287 | 41.56 212 | 84.02 132 | 60.60 152 | 71.09 237 | 81.53 225 |
|
| fmvsm_s_conf0.5_n | | | 69.58 142 | 68.84 138 | 71.79 170 | 72.31 286 | 52.90 164 | 77.90 137 | 62.43 336 | 49.97 273 | 72.85 84 | 85.90 118 | 52.21 88 | 76.49 278 | 75.75 33 | 70.26 249 | 85.97 97 |
|
| lupinMVS | | | 69.57 143 | 68.28 153 | 73.44 137 | 78.76 149 | 57.15 94 | 76.57 174 | 73.29 254 | 46.19 318 | 69.49 129 | 82.18 194 | 43.99 188 | 79.23 229 | 64.66 117 | 79.37 126 | 83.93 167 |
|
| fmvsm_s_conf0.5_n_a | | | 69.54 144 | 68.74 141 | 71.93 165 | 72.47 282 | 53.82 144 | 78.25 128 | 62.26 338 | 49.78 275 | 73.12 78 | 86.21 106 | 52.66 80 | 76.79 272 | 75.02 39 | 68.88 274 | 85.18 132 |
|
| NR-MVSNet | | | 69.54 144 | 68.85 137 | 71.59 177 | 78.05 174 | 43.81 283 | 74.20 223 | 80.86 132 | 65.18 14 | 62.76 249 | 84.52 145 | 52.35 87 | 83.59 141 | 50.96 225 | 70.78 238 | 87.37 52 |
|
| MVS_111021_LR | | | 69.50 146 | 68.78 140 | 71.65 175 | 78.38 160 | 59.33 56 | 74.82 213 | 70.11 277 | 58.08 140 | 67.83 161 | 84.68 139 | 41.96 205 | 76.34 282 | 65.62 111 | 77.54 152 | 79.30 267 |
|
| v1921920 | | | 69.47 147 | 68.17 154 | 73.36 140 | 73.06 269 | 50.10 210 | 77.39 152 | 80.56 135 | 56.58 170 | 68.59 142 | 80.37 231 | 44.72 181 | 84.98 113 | 62.47 138 | 69.82 258 | 85.00 138 |
|
| test_djsdf | | | 69.45 148 | 67.74 158 | 74.58 98 | 74.57 252 | 54.92 133 | 82.79 61 | 78.48 173 | 51.26 258 | 65.41 207 | 83.49 169 | 38.37 243 | 83.24 146 | 66.06 104 | 69.25 269 | 85.56 115 |
|
| fmvsm_s_conf0.1_n | | | 69.41 149 | 68.60 144 | 71.83 168 | 71.07 305 | 52.88 165 | 77.85 140 | 62.44 335 | 49.58 277 | 72.97 81 | 86.22 105 | 51.68 98 | 76.48 279 | 75.53 34 | 70.10 252 | 86.14 92 |
|
| fmvsm_s_conf0.1_n_a | | | 69.32 150 | 68.44 150 | 71.96 164 | 70.91 307 | 53.78 145 | 78.12 133 | 62.30 337 | 49.35 279 | 73.20 74 | 86.55 98 | 51.99 92 | 76.79 272 | 74.83 41 | 68.68 279 | 85.32 127 |
|
| Anonymous20231211 | | | 69.28 151 | 68.47 148 | 71.73 172 | 80.28 109 | 47.18 251 | 79.98 100 | 82.37 95 | 54.61 216 | 67.24 171 | 84.01 157 | 39.43 231 | 82.41 171 | 55.45 187 | 72.83 214 | 85.62 114 |
|
| EI-MVSNet | | | 69.27 152 | 68.44 150 | 71.73 172 | 74.47 253 | 49.39 224 | 75.20 203 | 78.45 176 | 59.60 112 | 69.16 138 | 76.51 298 | 51.29 101 | 82.50 168 | 59.86 160 | 71.45 233 | 83.30 190 |
|
| v1240 | | | 69.24 153 | 67.91 157 | 73.25 144 | 73.02 271 | 49.82 215 | 77.21 159 | 80.54 136 | 56.43 172 | 68.34 148 | 80.51 230 | 43.33 193 | 84.99 111 | 62.03 142 | 69.77 261 | 84.95 141 |
|
| IterMVS-LS | | | 69.22 154 | 68.48 146 | 71.43 182 | 74.44 255 | 49.40 223 | 76.23 181 | 77.55 192 | 59.60 112 | 65.85 201 | 81.59 211 | 51.28 102 | 81.58 185 | 59.87 159 | 69.90 257 | 83.30 190 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| VPA-MVSNet | | | 69.02 155 | 69.47 128 | 67.69 244 | 77.42 199 | 41.00 310 | 74.04 225 | 79.68 146 | 60.06 104 | 69.26 136 | 84.81 138 | 51.06 106 | 77.58 257 | 54.44 196 | 74.43 187 | 84.48 152 |
|
| v7n | | | 69.01 156 | 67.36 172 | 73.98 112 | 72.51 281 | 52.65 168 | 78.54 126 | 81.30 119 | 60.26 102 | 62.67 251 | 81.62 208 | 43.61 190 | 84.49 123 | 57.01 172 | 68.70 278 | 84.79 145 |
|
| OpenMVS |  | 61.03 9 | 68.85 157 | 67.56 162 | 72.70 153 | 74.26 259 | 53.99 142 | 81.21 87 | 81.34 117 | 52.70 240 | 62.75 250 | 85.55 127 | 38.86 239 | 84.14 128 | 48.41 245 | 83.01 81 | 79.97 256 |
|
| XVG-OURS-SEG-HR | | | 68.81 158 | 67.47 168 | 72.82 151 | 74.40 256 | 56.87 99 | 70.59 277 | 79.04 157 | 54.77 214 | 66.99 176 | 86.01 114 | 39.57 230 | 78.21 247 | 62.54 136 | 73.33 206 | 83.37 189 |
|
| BH-RMVSNet | | | 68.81 158 | 67.42 169 | 72.97 146 | 80.11 118 | 52.53 172 | 74.26 222 | 76.29 209 | 58.48 134 | 68.38 147 | 84.20 150 | 42.59 198 | 83.83 135 | 46.53 260 | 75.91 174 | 82.56 206 |
|
| UGNet | | | 68.81 158 | 67.39 170 | 73.06 145 | 78.33 164 | 54.47 137 | 79.77 107 | 75.40 223 | 60.45 92 | 63.22 241 | 84.40 148 | 32.71 306 | 80.91 202 | 51.71 219 | 80.56 111 | 83.81 173 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| XVG-OURS | | | 68.76 161 | 67.37 171 | 72.90 148 | 74.32 258 | 57.22 89 | 70.09 284 | 78.81 162 | 55.24 201 | 67.79 163 | 85.81 123 | 36.54 266 | 78.28 246 | 62.04 141 | 75.74 177 | 83.19 195 |
|
| V42 | | | 68.65 162 | 67.35 173 | 72.56 154 | 68.93 334 | 50.18 208 | 72.90 244 | 79.47 151 | 56.92 160 | 69.45 131 | 80.26 235 | 46.29 162 | 82.99 150 | 64.07 120 | 67.82 284 | 84.53 150 |
|
| PVSNet_Blended | | | 68.59 163 | 67.72 159 | 71.19 189 | 77.03 209 | 50.57 200 | 72.51 251 | 81.52 106 | 51.91 247 | 64.22 234 | 77.77 280 | 49.13 124 | 82.87 156 | 55.82 180 | 79.58 123 | 80.14 254 |
|
| xiu_mvs_v1_base_debu | | | 68.58 164 | 67.28 175 | 72.48 156 | 78.19 168 | 57.19 91 | 75.28 200 | 75.09 232 | 51.61 249 | 70.04 117 | 81.41 213 | 32.79 302 | 79.02 237 | 63.81 126 | 77.31 156 | 81.22 234 |
|
| xiu_mvs_v1_base | | | 68.58 164 | 67.28 175 | 72.48 156 | 78.19 168 | 57.19 91 | 75.28 200 | 75.09 232 | 51.61 249 | 70.04 117 | 81.41 213 | 32.79 302 | 79.02 237 | 63.81 126 | 77.31 156 | 81.22 234 |
|
| xiu_mvs_v1_base_debi | | | 68.58 164 | 67.28 175 | 72.48 156 | 78.19 168 | 57.19 91 | 75.28 200 | 75.09 232 | 51.61 249 | 70.04 117 | 81.41 213 | 32.79 302 | 79.02 237 | 63.81 126 | 77.31 156 | 81.22 234 |
|
| PVSNet_BlendedMVS | | | 68.56 167 | 67.72 159 | 71.07 194 | 77.03 209 | 50.57 200 | 74.50 219 | 81.52 106 | 53.66 233 | 64.22 234 | 79.72 245 | 49.13 124 | 82.87 156 | 55.82 180 | 73.92 193 | 79.77 262 |
|
| WR-MVS | | | 68.47 168 | 68.47 148 | 68.44 237 | 80.20 114 | 39.84 316 | 73.75 235 | 76.07 213 | 64.68 22 | 68.11 153 | 83.63 165 | 50.39 112 | 79.14 235 | 49.78 230 | 69.66 263 | 86.34 83 |
|
| AUN-MVS | | | 68.45 169 | 66.41 192 | 74.57 99 | 79.53 130 | 57.08 97 | 73.93 230 | 75.23 227 | 54.44 221 | 66.69 183 | 81.85 204 | 37.10 261 | 82.89 154 | 62.07 140 | 66.84 291 | 83.75 178 |
|
| c3_l | | | 68.33 170 | 67.56 162 | 70.62 201 | 70.87 308 | 46.21 259 | 74.47 220 | 78.80 163 | 56.22 178 | 66.19 192 | 78.53 266 | 51.88 93 | 81.40 187 | 62.08 139 | 69.04 272 | 84.25 157 |
|
| BH-untuned | | | 68.27 171 | 67.29 174 | 71.21 188 | 79.74 124 | 53.22 157 | 76.06 185 | 77.46 195 | 57.19 156 | 66.10 193 | 81.61 209 | 45.37 175 | 83.50 142 | 45.42 276 | 76.68 168 | 76.91 297 |
|
| jajsoiax | | | 68.25 172 | 66.45 188 | 73.66 126 | 75.62 231 | 55.49 125 | 80.82 90 | 78.51 172 | 52.33 244 | 64.33 229 | 84.11 153 | 28.28 340 | 81.81 181 | 63.48 130 | 70.62 240 | 83.67 181 |
|
| v148 | | | 68.24 173 | 67.19 181 | 71.40 183 | 70.43 313 | 47.77 244 | 75.76 193 | 77.03 201 | 58.91 124 | 67.36 169 | 80.10 238 | 48.60 131 | 81.89 178 | 60.01 156 | 66.52 295 | 84.53 150 |
|
| CANet_DTU | | | 68.18 174 | 67.71 161 | 69.59 220 | 74.83 244 | 46.24 258 | 78.66 122 | 76.85 203 | 59.60 112 | 63.45 240 | 82.09 201 | 35.25 274 | 77.41 260 | 59.88 158 | 78.76 139 | 85.14 133 |
|
| mvs_tets | | | 68.18 174 | 66.36 194 | 73.63 129 | 75.61 232 | 55.35 128 | 80.77 91 | 78.56 170 | 52.48 243 | 64.27 231 | 84.10 154 | 27.45 346 | 81.84 180 | 63.45 131 | 70.56 242 | 83.69 180 |
|
| SDMVSNet | | | 68.03 176 | 68.10 156 | 67.84 242 | 77.13 205 | 48.72 233 | 65.32 321 | 79.10 156 | 58.02 143 | 65.08 217 | 82.55 184 | 47.83 138 | 73.40 294 | 63.92 124 | 73.92 193 | 81.41 227 |
|
| miper_ehance_all_eth | | | 68.03 176 | 67.24 179 | 70.40 205 | 70.54 311 | 46.21 259 | 73.98 226 | 78.68 167 | 55.07 209 | 66.05 194 | 77.80 277 | 52.16 90 | 81.31 190 | 61.53 148 | 69.32 266 | 83.67 181 |
|
| mvs_anonymous | | | 68.03 176 | 67.51 166 | 69.59 220 | 72.08 288 | 44.57 277 | 71.99 258 | 75.23 227 | 51.67 248 | 67.06 175 | 82.57 183 | 54.68 52 | 77.94 250 | 56.56 175 | 75.71 178 | 86.26 91 |
|
| ET-MVSNet_ETH3D | | | 67.96 179 | 65.72 206 | 74.68 92 | 76.67 215 | 55.62 122 | 75.11 205 | 74.74 236 | 52.91 238 | 60.03 279 | 80.12 237 | 33.68 292 | 82.64 165 | 61.86 143 | 76.34 170 | 85.78 104 |
|
| thisisatest0530 | | | 67.92 180 | 65.78 205 | 74.33 105 | 76.29 222 | 51.03 190 | 76.89 169 | 74.25 245 | 53.67 232 | 65.59 204 | 81.76 206 | 35.15 275 | 85.50 102 | 55.94 178 | 72.47 219 | 86.47 78 |
|
| PAPM | | | 67.92 180 | 66.69 185 | 71.63 176 | 78.09 172 | 49.02 227 | 77.09 162 | 81.24 123 | 51.04 261 | 60.91 273 | 83.98 158 | 47.71 140 | 84.99 111 | 40.81 308 | 79.32 129 | 80.90 242 |
|
| tttt0517 | | | 67.83 182 | 65.66 207 | 74.33 105 | 76.69 214 | 50.82 195 | 77.86 139 | 73.99 248 | 54.54 219 | 64.64 226 | 82.53 187 | 35.06 276 | 85.50 102 | 55.71 183 | 69.91 256 | 86.67 72 |
|
| tt0805 | | | 67.77 183 | 67.24 179 | 69.34 225 | 74.87 243 | 40.08 313 | 77.36 153 | 81.37 112 | 55.31 199 | 66.33 190 | 84.65 141 | 37.35 254 | 82.55 167 | 55.65 185 | 72.28 224 | 85.39 125 |
|
| ECVR-MVS |  | | 67.72 184 | 67.51 166 | 68.35 238 | 79.46 131 | 36.29 355 | 74.79 214 | 66.93 302 | 58.72 127 | 67.19 172 | 88.05 66 | 36.10 267 | 81.38 188 | 52.07 213 | 84.25 72 | 87.39 50 |
|
| eth_miper_zixun_eth | | | 67.63 185 | 66.28 198 | 71.67 174 | 71.60 294 | 48.33 237 | 73.68 236 | 77.88 185 | 55.80 187 | 65.91 197 | 78.62 264 | 47.35 150 | 82.88 155 | 59.45 162 | 66.25 296 | 83.81 173 |
|
| UniMVSNet_ETH3D | | | 67.60 186 | 67.07 183 | 69.18 229 | 77.39 200 | 42.29 296 | 74.18 224 | 75.59 219 | 60.37 96 | 66.77 181 | 86.06 112 | 37.64 250 | 78.93 242 | 52.16 212 | 73.49 202 | 86.32 87 |
|
| VPNet | | | 67.52 187 | 68.11 155 | 65.74 273 | 79.18 138 | 36.80 347 | 72.17 256 | 72.83 257 | 62.04 72 | 67.79 163 | 85.83 121 | 48.88 128 | 76.60 277 | 51.30 221 | 72.97 213 | 83.81 173 |
|
| cl22 | | | 67.47 188 | 66.45 188 | 70.54 203 | 69.85 324 | 46.49 255 | 73.85 233 | 77.35 197 | 55.07 209 | 65.51 205 | 77.92 273 | 47.64 142 | 81.10 195 | 61.58 147 | 69.32 266 | 84.01 165 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 189 | 65.33 212 | 73.48 135 | 72.94 272 | 57.78 82 | 77.47 151 | 76.88 202 | 57.60 152 | 61.97 262 | 76.85 291 | 39.31 232 | 80.49 211 | 54.72 192 | 70.28 248 | 82.17 218 |
|
| MVS | | | 67.37 189 | 66.33 195 | 70.51 204 | 75.46 235 | 50.94 191 | 73.95 228 | 81.85 102 | 41.57 355 | 62.54 255 | 78.57 265 | 47.98 135 | 85.47 104 | 52.97 207 | 82.05 95 | 75.14 310 |
|
| test1111 | | | 67.21 191 | 67.14 182 | 67.42 247 | 79.24 136 | 34.76 362 | 73.89 232 | 65.65 311 | 58.71 129 | 66.96 177 | 87.95 69 | 36.09 268 | 80.53 208 | 52.03 214 | 83.79 77 | 86.97 61 |
|
| GBi-Net | | | 67.21 191 | 66.55 186 | 69.19 226 | 77.63 188 | 43.33 286 | 77.31 154 | 77.83 187 | 56.62 166 | 65.04 219 | 82.70 178 | 41.85 207 | 80.33 213 | 47.18 255 | 72.76 215 | 83.92 168 |
|
| test1 | | | 67.21 191 | 66.55 186 | 69.19 226 | 77.63 188 | 43.33 286 | 77.31 154 | 77.83 187 | 56.62 166 | 65.04 219 | 82.70 178 | 41.85 207 | 80.33 213 | 47.18 255 | 72.76 215 | 83.92 168 |
|
| cl____ | | | 67.18 194 | 66.26 199 | 69.94 212 | 70.20 316 | 45.74 263 | 73.30 238 | 76.83 204 | 55.10 204 | 65.27 210 | 79.57 248 | 47.39 148 | 80.53 208 | 59.41 164 | 69.22 270 | 83.53 187 |
|
| DIV-MVS_self_test | | | 67.18 194 | 66.26 199 | 69.94 212 | 70.20 316 | 45.74 263 | 73.29 239 | 76.83 204 | 55.10 204 | 65.27 210 | 79.58 247 | 47.38 149 | 80.53 208 | 59.43 163 | 69.22 270 | 83.54 186 |
|
| MVSTER | | | 67.16 196 | 65.58 209 | 71.88 167 | 70.37 315 | 49.70 217 | 70.25 283 | 78.45 176 | 51.52 252 | 69.16 138 | 80.37 231 | 38.45 242 | 82.50 168 | 60.19 154 | 71.46 232 | 83.44 188 |
|
| miper_enhance_ethall | | | 67.11 197 | 66.09 201 | 70.17 209 | 69.21 331 | 45.98 261 | 72.85 245 | 78.41 179 | 51.38 255 | 65.65 203 | 75.98 306 | 51.17 104 | 81.25 191 | 60.82 150 | 69.32 266 | 83.29 192 |
|
| Baseline_NR-MVSNet | | | 67.05 198 | 67.56 162 | 65.50 276 | 75.65 230 | 37.70 338 | 75.42 198 | 74.65 239 | 59.90 107 | 68.14 152 | 83.15 174 | 49.12 126 | 77.20 263 | 52.23 211 | 69.78 259 | 81.60 224 |
|
| WR-MVS_H | | | 67.02 199 | 66.92 184 | 67.33 250 | 77.95 178 | 37.75 336 | 77.57 146 | 82.11 99 | 62.03 73 | 62.65 252 | 82.48 188 | 50.57 110 | 79.46 225 | 42.91 296 | 64.01 313 | 84.79 145 |
|
| anonymousdsp | | | 67.00 200 | 64.82 217 | 73.57 132 | 70.09 319 | 56.13 107 | 76.35 178 | 77.35 197 | 48.43 292 | 64.99 222 | 80.84 227 | 33.01 299 | 80.34 212 | 64.66 117 | 67.64 286 | 84.23 158 |
|
| FMVSNet2 | | | 66.93 201 | 66.31 197 | 68.79 233 | 77.63 188 | 42.98 291 | 76.11 183 | 77.47 193 | 56.62 166 | 65.22 216 | 82.17 196 | 41.85 207 | 80.18 219 | 47.05 258 | 72.72 218 | 83.20 194 |
|
| BH-w/o | | | 66.85 202 | 65.83 204 | 69.90 215 | 79.29 133 | 52.46 174 | 74.66 217 | 76.65 207 | 54.51 220 | 64.85 223 | 78.12 267 | 45.59 168 | 82.95 152 | 43.26 292 | 75.54 180 | 74.27 323 |
|
| Anonymous202405211 | | | 66.84 203 | 65.99 202 | 69.40 224 | 80.19 115 | 42.21 298 | 71.11 272 | 71.31 268 | 58.80 126 | 67.90 155 | 86.39 102 | 29.83 328 | 79.65 222 | 49.60 236 | 78.78 138 | 86.33 85 |
|
| CDS-MVSNet | | | 66.80 204 | 65.37 210 | 71.10 193 | 78.98 143 | 53.13 160 | 73.27 240 | 71.07 270 | 52.15 246 | 64.72 224 | 80.23 236 | 43.56 191 | 77.10 264 | 45.48 274 | 78.88 135 | 83.05 200 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TAMVS | | | 66.78 205 | 65.27 213 | 71.33 187 | 79.16 140 | 53.67 146 | 73.84 234 | 69.59 282 | 52.32 245 | 65.28 209 | 81.72 207 | 44.49 184 | 77.40 261 | 42.32 300 | 78.66 141 | 82.92 201 |
|
| FMVSNet1 | | | 66.70 206 | 65.87 203 | 69.19 226 | 77.49 197 | 43.33 286 | 77.31 154 | 77.83 187 | 56.45 171 | 64.60 227 | 82.70 178 | 38.08 248 | 80.33 213 | 46.08 264 | 72.31 223 | 83.92 168 |
|
| ab-mvs | | | 66.65 207 | 66.42 191 | 67.37 248 | 76.17 224 | 41.73 302 | 70.41 281 | 76.14 212 | 53.99 227 | 65.98 195 | 83.51 168 | 49.48 118 | 76.24 283 | 48.60 243 | 73.46 204 | 84.14 161 |
|
| PEN-MVS | | | 66.60 208 | 66.45 188 | 67.04 251 | 77.11 207 | 36.56 349 | 77.03 165 | 80.42 138 | 62.95 50 | 62.51 257 | 84.03 156 | 46.69 159 | 79.07 236 | 44.22 280 | 63.08 323 | 85.51 117 |
|
| TAPA-MVS | | 59.36 10 | 66.60 208 | 65.20 214 | 70.81 197 | 76.63 216 | 48.75 231 | 76.52 176 | 80.04 143 | 50.64 266 | 65.24 214 | 84.93 136 | 39.15 236 | 78.54 243 | 36.77 330 | 76.88 165 | 85.14 133 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| TR-MVS | | | 66.59 210 | 65.07 215 | 71.17 191 | 79.18 138 | 49.63 221 | 73.48 237 | 75.20 229 | 52.95 237 | 67.90 155 | 80.33 234 | 39.81 228 | 83.68 138 | 43.20 293 | 73.56 201 | 80.20 252 |
|
| CP-MVSNet | | | 66.49 211 | 66.41 192 | 66.72 253 | 77.67 186 | 36.33 352 | 76.83 172 | 79.52 150 | 62.45 63 | 62.54 255 | 83.47 170 | 46.32 161 | 78.37 244 | 45.47 275 | 63.43 320 | 85.45 120 |
|
| PS-CasMVS | | | 66.42 212 | 66.32 196 | 66.70 255 | 77.60 195 | 36.30 354 | 76.94 167 | 79.61 148 | 62.36 65 | 62.43 259 | 83.66 164 | 45.69 165 | 78.37 244 | 45.35 277 | 63.26 321 | 85.42 123 |
|
| FMVSNet3 | | | 66.32 213 | 65.61 208 | 68.46 236 | 76.48 220 | 42.34 295 | 74.98 210 | 77.15 200 | 55.83 185 | 65.04 219 | 81.16 216 | 39.91 225 | 80.14 220 | 47.18 255 | 72.76 215 | 82.90 203 |
|
| ACMH+ | | 57.40 11 | 66.12 214 | 64.06 221 | 72.30 162 | 77.79 182 | 52.83 166 | 80.39 94 | 78.03 184 | 57.30 154 | 57.47 307 | 82.55 184 | 27.68 344 | 84.17 127 | 45.54 271 | 69.78 259 | 79.90 257 |
|
| cascas | | | 65.98 215 | 63.42 232 | 73.64 128 | 77.26 203 | 52.58 171 | 72.26 255 | 77.21 199 | 48.56 288 | 61.21 271 | 74.60 319 | 32.57 311 | 85.82 94 | 50.38 228 | 76.75 167 | 82.52 209 |
|
| FE-MVS | | | 65.91 216 | 63.33 234 | 73.63 129 | 77.36 201 | 51.95 185 | 72.62 248 | 75.81 215 | 53.70 231 | 65.31 208 | 78.96 258 | 28.81 337 | 86.39 81 | 43.93 285 | 73.48 203 | 82.55 207 |
|
| thisisatest0515 | | | 65.83 217 | 63.50 231 | 72.82 151 | 73.75 262 | 49.50 222 | 71.32 266 | 73.12 256 | 49.39 278 | 63.82 236 | 76.50 300 | 34.95 278 | 84.84 119 | 53.20 206 | 75.49 181 | 84.13 162 |
|
| DP-MVS | | | 65.68 218 | 63.66 229 | 71.75 171 | 84.93 55 | 56.87 99 | 80.74 92 | 73.16 255 | 53.06 236 | 59.09 293 | 82.35 190 | 36.79 265 | 85.94 91 | 32.82 353 | 69.96 255 | 72.45 337 |
|
| HyFIR lowres test | | | 65.67 219 | 63.01 238 | 73.67 125 | 79.97 120 | 55.65 119 | 69.07 293 | 75.52 221 | 42.68 349 | 63.53 239 | 77.95 271 | 40.43 223 | 81.64 182 | 46.01 265 | 71.91 227 | 83.73 179 |
|
| DTE-MVSNet | | | 65.58 220 | 65.34 211 | 66.31 260 | 76.06 226 | 34.79 360 | 76.43 177 | 79.38 153 | 62.55 61 | 61.66 267 | 83.83 161 | 45.60 167 | 79.15 234 | 41.64 307 | 60.88 338 | 85.00 138 |
|
| GA-MVS | | | 65.53 221 | 63.70 228 | 71.02 195 | 70.87 308 | 48.10 239 | 70.48 279 | 74.40 241 | 56.69 162 | 64.70 225 | 76.77 292 | 33.66 293 | 81.10 195 | 55.42 188 | 70.32 247 | 83.87 171 |
|
| CNLPA | | | 65.43 222 | 64.02 222 | 69.68 218 | 78.73 151 | 58.07 78 | 77.82 142 | 70.71 273 | 51.49 253 | 61.57 269 | 83.58 167 | 38.23 246 | 70.82 307 | 43.90 286 | 70.10 252 | 80.16 253 |
|
| MVP-Stereo | | | 65.41 223 | 63.80 226 | 70.22 206 | 77.62 192 | 55.53 124 | 76.30 179 | 78.53 171 | 50.59 267 | 56.47 316 | 78.65 262 | 39.84 227 | 82.68 163 | 44.10 284 | 72.12 226 | 72.44 338 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| IB-MVS | | 56.42 12 | 65.40 224 | 62.73 242 | 73.40 139 | 74.89 241 | 52.78 167 | 73.09 242 | 75.13 230 | 55.69 189 | 58.48 301 | 73.73 324 | 32.86 301 | 86.32 84 | 50.63 226 | 70.11 251 | 81.10 238 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test2506 | | | 65.33 225 | 64.61 218 | 67.50 245 | 79.46 131 | 34.19 367 | 74.43 221 | 51.92 374 | 58.72 127 | 66.75 182 | 88.05 66 | 25.99 357 | 80.92 201 | 51.94 215 | 84.25 72 | 87.39 50 |
|
| pm-mvs1 | | | 65.24 226 | 64.97 216 | 66.04 268 | 72.38 283 | 39.40 322 | 72.62 248 | 75.63 218 | 55.53 195 | 62.35 261 | 83.18 173 | 47.45 146 | 76.47 280 | 49.06 240 | 66.54 294 | 82.24 215 |
|
| ACMH | | 55.70 15 | 65.20 227 | 63.57 230 | 70.07 210 | 78.07 173 | 52.01 184 | 79.48 115 | 79.69 145 | 55.75 188 | 56.59 313 | 80.98 221 | 27.12 349 | 80.94 199 | 42.90 297 | 71.58 231 | 77.25 291 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PLC |  | 56.13 14 | 65.09 228 | 63.21 236 | 70.72 200 | 81.04 99 | 54.87 134 | 78.57 124 | 77.47 193 | 48.51 290 | 55.71 319 | 81.89 203 | 33.71 291 | 79.71 221 | 41.66 305 | 70.37 245 | 77.58 285 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CHOSEN 1792x2688 | | | 65.08 229 | 62.84 240 | 71.82 169 | 81.49 89 | 56.26 105 | 66.32 310 | 74.20 246 | 40.53 360 | 63.16 244 | 78.65 262 | 41.30 215 | 77.80 254 | 45.80 267 | 74.09 190 | 81.40 229 |
|
| TransMVSNet (Re) | | | 64.72 230 | 64.33 220 | 65.87 272 | 75.22 238 | 38.56 328 | 74.66 217 | 75.08 235 | 58.90 125 | 61.79 265 | 82.63 181 | 51.18 103 | 78.07 249 | 43.63 289 | 55.87 359 | 80.99 241 |
|
| EG-PatchMatch MVS | | | 64.71 231 | 62.87 239 | 70.22 206 | 77.68 185 | 53.48 151 | 77.99 136 | 78.82 161 | 53.37 235 | 56.03 318 | 77.41 285 | 24.75 364 | 84.04 130 | 46.37 262 | 73.42 205 | 73.14 329 |
|
| LS3D | | | 64.71 231 | 62.50 244 | 71.34 186 | 79.72 126 | 55.71 117 | 79.82 106 | 74.72 237 | 48.50 291 | 56.62 312 | 84.62 142 | 33.59 294 | 82.34 172 | 29.65 374 | 75.23 183 | 75.97 301 |
|
| 1314 | | | 64.61 233 | 63.21 236 | 68.80 232 | 71.87 292 | 47.46 248 | 73.95 228 | 78.39 181 | 42.88 348 | 59.97 280 | 76.60 297 | 38.11 247 | 79.39 227 | 54.84 191 | 72.32 222 | 79.55 263 |
|
| HY-MVS | | 56.14 13 | 64.55 234 | 63.89 223 | 66.55 256 | 74.73 247 | 41.02 307 | 69.96 285 | 74.43 240 | 49.29 280 | 61.66 267 | 80.92 223 | 47.43 147 | 76.68 276 | 44.91 279 | 71.69 229 | 81.94 220 |
|
| testing91 | | | 64.46 235 | 63.80 226 | 66.47 257 | 78.43 159 | 40.06 314 | 67.63 301 | 69.59 282 | 59.06 122 | 63.18 243 | 78.05 269 | 34.05 286 | 76.99 267 | 48.30 246 | 75.87 175 | 82.37 213 |
|
| sd_testset | | | 64.46 235 | 64.45 219 | 64.51 286 | 77.13 205 | 42.25 297 | 62.67 335 | 72.11 263 | 58.02 143 | 65.08 217 | 82.55 184 | 41.22 219 | 69.88 315 | 47.32 253 | 73.92 193 | 81.41 227 |
|
| XVG-ACMP-BASELINE | | | 64.36 237 | 62.23 247 | 70.74 199 | 72.35 284 | 52.45 175 | 70.80 276 | 78.45 176 | 53.84 229 | 59.87 282 | 81.10 218 | 16.24 381 | 79.32 228 | 55.64 186 | 71.76 228 | 80.47 247 |
|
| testing99 | | | 64.05 238 | 63.29 235 | 66.34 259 | 78.17 171 | 39.76 318 | 67.33 306 | 68.00 295 | 58.60 131 | 63.03 246 | 78.10 268 | 32.57 311 | 76.94 269 | 48.22 247 | 75.58 179 | 82.34 214 |
|
| CostFormer | | | 64.04 239 | 62.51 243 | 68.61 235 | 71.88 291 | 45.77 262 | 71.30 267 | 70.60 274 | 47.55 304 | 64.31 230 | 76.61 296 | 41.63 210 | 79.62 224 | 49.74 232 | 69.00 273 | 80.42 248 |
|
| 1112_ss | | | 64.00 240 | 63.36 233 | 65.93 270 | 79.28 134 | 42.58 294 | 71.35 265 | 72.36 261 | 46.41 316 | 60.55 275 | 77.89 275 | 46.27 163 | 73.28 295 | 46.18 263 | 69.97 254 | 81.92 221 |
|
| baseline1 | | | 63.81 241 | 63.87 225 | 63.62 290 | 76.29 222 | 36.36 350 | 71.78 262 | 67.29 299 | 56.05 181 | 64.23 233 | 82.95 175 | 47.11 152 | 74.41 291 | 47.30 254 | 61.85 332 | 80.10 255 |
|
| pmmvs6 | | | 63.69 242 | 62.82 241 | 66.27 262 | 70.63 310 | 39.27 323 | 73.13 241 | 75.47 222 | 52.69 241 | 59.75 286 | 82.30 192 | 39.71 229 | 77.03 266 | 47.40 252 | 64.35 312 | 82.53 208 |
|
| Vis-MVSNet (Re-imp) | | | 63.69 242 | 63.88 224 | 63.14 295 | 74.75 246 | 31.04 381 | 71.16 270 | 63.64 326 | 56.32 174 | 59.80 284 | 84.99 135 | 44.51 182 | 75.46 286 | 39.12 317 | 80.62 107 | 82.92 201 |
|
| baseline2 | | | 63.42 244 | 61.26 260 | 69.89 216 | 72.55 279 | 47.62 246 | 71.54 263 | 68.38 293 | 50.11 270 | 54.82 330 | 75.55 311 | 43.06 195 | 80.96 198 | 48.13 248 | 67.16 290 | 81.11 237 |
|
| thres400 | | | 63.31 245 | 62.18 248 | 66.72 253 | 76.85 212 | 39.62 319 | 71.96 260 | 69.44 285 | 56.63 164 | 62.61 253 | 79.83 241 | 37.18 256 | 79.17 231 | 31.84 359 | 73.25 208 | 81.36 230 |
|
| thres600view7 | | | 63.30 246 | 62.27 246 | 66.41 258 | 77.18 204 | 38.87 325 | 72.35 253 | 69.11 289 | 56.98 159 | 62.37 260 | 80.96 222 | 37.01 263 | 79.00 240 | 31.43 366 | 73.05 212 | 81.36 230 |
|
| thres100view900 | | | 63.28 247 | 62.41 245 | 65.89 271 | 77.31 202 | 38.66 327 | 72.65 246 | 69.11 289 | 57.07 157 | 62.45 258 | 81.03 220 | 37.01 263 | 79.17 231 | 31.84 359 | 73.25 208 | 79.83 259 |
|
| test_0402 | | | 63.25 248 | 61.01 263 | 69.96 211 | 80.00 119 | 54.37 139 | 76.86 171 | 72.02 264 | 54.58 218 | 58.71 296 | 80.79 228 | 35.00 277 | 84.36 125 | 26.41 385 | 64.71 307 | 71.15 355 |
|
| tfpn200view9 | | | 63.18 249 | 62.18 248 | 66.21 263 | 76.85 212 | 39.62 319 | 71.96 260 | 69.44 285 | 56.63 164 | 62.61 253 | 79.83 241 | 37.18 256 | 79.17 231 | 31.84 359 | 73.25 208 | 79.83 259 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 250 | 61.23 261 | 68.92 231 | 76.57 218 | 47.80 242 | 59.92 351 | 76.39 208 | 54.35 222 | 58.67 297 | 82.46 189 | 29.44 332 | 81.49 186 | 42.12 301 | 71.14 235 | 77.46 286 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| F-COLMAP | | | 63.05 251 | 60.87 266 | 69.58 222 | 76.99 211 | 53.63 148 | 78.12 133 | 76.16 210 | 47.97 299 | 52.41 349 | 81.61 209 | 27.87 342 | 78.11 248 | 40.07 311 | 66.66 293 | 77.00 294 |
|
| testing11 | | | 62.81 252 | 61.90 251 | 65.54 275 | 78.38 160 | 40.76 311 | 67.59 303 | 66.78 304 | 55.48 196 | 60.13 277 | 77.11 286 | 31.67 317 | 76.79 272 | 45.53 272 | 74.45 186 | 79.06 268 |
|
| IterMVS | | | 62.79 253 | 61.27 259 | 67.35 249 | 69.37 329 | 52.04 183 | 71.17 269 | 68.24 294 | 52.63 242 | 59.82 283 | 76.91 290 | 37.32 255 | 72.36 298 | 52.80 208 | 63.19 322 | 77.66 284 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 62.49 254 | 61.52 255 | 65.40 278 | 71.99 290 | 50.80 196 | 71.15 271 | 69.63 281 | 45.71 324 | 60.61 274 | 77.93 272 | 37.45 252 | 65.99 335 | 55.67 184 | 63.50 319 | 79.42 265 |
|
| tfpnnormal | | | 62.47 255 | 61.63 254 | 64.99 283 | 74.81 245 | 39.01 324 | 71.22 268 | 73.72 250 | 55.22 202 | 60.21 276 | 80.09 239 | 41.26 218 | 76.98 268 | 30.02 372 | 68.09 282 | 78.97 271 |
|
| MS-PatchMatch | | | 62.42 256 | 61.46 256 | 65.31 280 | 75.21 239 | 52.10 179 | 72.05 257 | 74.05 247 | 46.41 316 | 57.42 309 | 74.36 320 | 34.35 284 | 77.57 258 | 45.62 270 | 73.67 197 | 66.26 372 |
|
| Test_1112_low_res | | | 62.32 257 | 61.77 252 | 64.00 289 | 79.08 142 | 39.53 321 | 68.17 297 | 70.17 276 | 43.25 344 | 59.03 294 | 79.90 240 | 44.08 186 | 71.24 306 | 43.79 288 | 68.42 280 | 81.25 233 |
|
| D2MVS | | | 62.30 258 | 60.29 268 | 68.34 239 | 66.46 351 | 48.42 236 | 65.70 313 | 73.42 252 | 47.71 302 | 58.16 303 | 75.02 315 | 30.51 321 | 77.71 256 | 53.96 199 | 71.68 230 | 78.90 272 |
|
| testing222 | | | 62.29 259 | 61.31 258 | 65.25 281 | 77.87 179 | 38.53 329 | 68.34 296 | 66.31 308 | 56.37 173 | 63.15 245 | 77.58 283 | 28.47 338 | 76.18 285 | 37.04 328 | 76.65 169 | 81.05 240 |
|
| thres200 | | | 62.20 260 | 61.16 262 | 65.34 279 | 75.38 237 | 39.99 315 | 69.60 288 | 69.29 287 | 55.64 194 | 61.87 264 | 76.99 288 | 37.07 262 | 78.96 241 | 31.28 367 | 73.28 207 | 77.06 292 |
|
| tpm2 | | | 62.07 261 | 60.10 269 | 67.99 241 | 72.79 274 | 43.86 282 | 71.05 274 | 66.85 303 | 43.14 346 | 62.77 248 | 75.39 313 | 38.32 244 | 80.80 204 | 41.69 304 | 68.88 274 | 79.32 266 |
|
| miper_lstm_enhance | | | 62.03 262 | 60.88 265 | 65.49 277 | 66.71 348 | 46.25 257 | 56.29 367 | 75.70 217 | 50.68 264 | 61.27 270 | 75.48 312 | 40.21 224 | 68.03 324 | 56.31 177 | 65.25 303 | 82.18 216 |
|
| EPNet_dtu | | | 61.90 263 | 61.97 250 | 61.68 303 | 72.89 273 | 39.78 317 | 75.85 191 | 65.62 312 | 55.09 206 | 54.56 334 | 79.36 253 | 37.59 251 | 67.02 329 | 39.80 314 | 76.95 164 | 78.25 275 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| LCM-MVSNet-Re | | | 61.88 264 | 61.35 257 | 63.46 291 | 74.58 251 | 31.48 380 | 61.42 342 | 58.14 353 | 58.71 129 | 53.02 348 | 79.55 249 | 43.07 194 | 76.80 271 | 45.69 268 | 77.96 149 | 82.11 219 |
|
| MSDG | | | 61.81 265 | 59.23 273 | 69.55 223 | 72.64 276 | 52.63 170 | 70.45 280 | 75.81 215 | 51.38 255 | 53.70 341 | 76.11 302 | 29.52 330 | 81.08 197 | 37.70 323 | 65.79 300 | 74.93 315 |
|
| SixPastTwentyTwo | | | 61.65 266 | 58.80 278 | 70.20 208 | 75.80 228 | 47.22 250 | 75.59 195 | 69.68 280 | 54.61 216 | 54.11 338 | 79.26 255 | 27.07 350 | 82.96 151 | 43.27 291 | 49.79 376 | 80.41 249 |
|
| CL-MVSNet_self_test | | | 61.53 267 | 60.94 264 | 63.30 293 | 68.95 333 | 36.93 346 | 67.60 302 | 72.80 258 | 55.67 190 | 59.95 281 | 76.63 294 | 45.01 179 | 72.22 301 | 39.74 315 | 62.09 331 | 80.74 245 |
|
| RPMNet | | | 61.53 267 | 58.42 281 | 70.86 196 | 69.96 321 | 52.07 181 | 65.31 322 | 81.36 113 | 43.20 345 | 59.36 289 | 70.15 350 | 35.37 273 | 85.47 104 | 36.42 337 | 64.65 308 | 75.06 311 |
|
| pmmvs4 | | | 61.48 269 | 59.39 272 | 67.76 243 | 71.57 295 | 53.86 143 | 71.42 264 | 65.34 313 | 44.20 335 | 59.46 288 | 77.92 273 | 35.90 269 | 74.71 289 | 43.87 287 | 64.87 306 | 74.71 319 |
|
| OurMVSNet-221017-0 | | | 61.37 270 | 58.63 280 | 69.61 219 | 72.05 289 | 48.06 240 | 73.93 230 | 72.51 259 | 47.23 310 | 54.74 331 | 80.92 223 | 21.49 374 | 81.24 192 | 48.57 244 | 56.22 358 | 79.53 264 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 271 | 58.81 276 | 68.64 234 | 74.63 250 | 52.51 173 | 78.42 127 | 73.30 253 | 49.92 274 | 50.96 354 | 81.51 212 | 23.06 367 | 79.40 226 | 31.63 363 | 65.85 298 | 74.01 326 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| XXY-MVS | | | 60.68 272 | 61.67 253 | 57.70 330 | 70.43 313 | 38.45 330 | 64.19 329 | 66.47 305 | 48.05 298 | 63.22 241 | 80.86 225 | 49.28 121 | 60.47 352 | 45.25 278 | 67.28 289 | 74.19 324 |
|
| SCA | | | 60.49 273 | 58.38 282 | 66.80 252 | 74.14 261 | 48.06 240 | 63.35 332 | 63.23 329 | 49.13 282 | 59.33 292 | 72.10 333 | 37.45 252 | 74.27 292 | 44.17 281 | 62.57 326 | 78.05 278 |
|
| K. test v3 | | | 60.47 274 | 57.11 289 | 70.56 202 | 73.74 263 | 48.22 238 | 75.10 207 | 62.55 333 | 58.27 138 | 53.62 344 | 76.31 301 | 27.81 343 | 81.59 184 | 47.42 251 | 39.18 389 | 81.88 222 |
|
| UWE-MVS | | | 60.18 275 | 59.78 270 | 61.39 308 | 77.67 186 | 33.92 370 | 69.04 294 | 63.82 324 | 48.56 288 | 64.27 231 | 77.64 282 | 27.20 348 | 70.40 312 | 33.56 350 | 76.24 171 | 79.83 259 |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 276 | 58.14 285 | 65.69 274 | 70.47 312 | 44.82 272 | 75.33 199 | 70.86 272 | 45.04 327 | 56.06 317 | 76.00 303 | 26.89 352 | 79.65 222 | 35.36 342 | 67.29 288 | 72.60 334 |
|
| CR-MVSNet | | | 59.91 277 | 57.90 287 | 65.96 269 | 69.96 321 | 52.07 181 | 65.31 322 | 63.15 330 | 42.48 350 | 59.36 289 | 74.84 316 | 35.83 270 | 70.75 308 | 45.50 273 | 64.65 308 | 75.06 311 |
|
| PatchmatchNet |  | | 59.84 278 | 58.24 283 | 64.65 285 | 73.05 270 | 46.70 254 | 69.42 290 | 62.18 339 | 47.55 304 | 58.88 295 | 71.96 335 | 34.49 282 | 69.16 317 | 42.99 295 | 63.60 317 | 78.07 277 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| WTY-MVS | | | 59.75 279 | 60.39 267 | 57.85 328 | 72.32 285 | 37.83 335 | 61.05 347 | 64.18 322 | 45.95 323 | 61.91 263 | 79.11 257 | 47.01 156 | 60.88 351 | 42.50 299 | 69.49 265 | 74.83 316 |
|
| WB-MVSnew | | | 59.66 280 | 59.69 271 | 59.56 312 | 75.19 240 | 35.78 357 | 69.34 291 | 64.28 321 | 46.88 313 | 61.76 266 | 75.79 307 | 40.61 222 | 65.20 338 | 32.16 355 | 71.21 234 | 77.70 283 |
|
| CVMVSNet | | | 59.63 281 | 59.14 274 | 61.08 310 | 74.47 253 | 38.84 326 | 75.20 203 | 68.74 291 | 31.15 377 | 58.24 302 | 76.51 298 | 32.39 313 | 68.58 320 | 49.77 231 | 65.84 299 | 75.81 303 |
|
| ETVMVS | | | 59.51 282 | 58.81 276 | 61.58 305 | 77.46 198 | 34.87 359 | 64.94 326 | 59.35 348 | 54.06 226 | 61.08 272 | 76.67 293 | 29.54 329 | 71.87 303 | 32.16 355 | 74.07 191 | 78.01 282 |
|
| tpm cat1 | | | 59.25 283 | 56.95 292 | 66.15 265 | 72.19 287 | 46.96 252 | 68.09 298 | 65.76 310 | 40.03 364 | 57.81 305 | 70.56 345 | 38.32 244 | 74.51 290 | 38.26 321 | 61.50 335 | 77.00 294 |
|
| test_vis1_n_1920 | | | 58.86 284 | 59.06 275 | 58.25 323 | 63.76 363 | 43.14 290 | 67.49 304 | 66.36 307 | 40.22 362 | 65.89 199 | 71.95 336 | 31.04 318 | 59.75 357 | 59.94 157 | 64.90 305 | 71.85 346 |
|
| pmmvs-eth3d | | | 58.81 285 | 56.31 299 | 66.30 261 | 67.61 342 | 52.42 176 | 72.30 254 | 64.76 317 | 43.55 341 | 54.94 329 | 74.19 322 | 28.95 334 | 72.60 297 | 43.31 290 | 57.21 353 | 73.88 327 |
|
| tpmvs | | | 58.47 286 | 56.95 292 | 63.03 297 | 70.20 316 | 41.21 306 | 67.90 300 | 67.23 300 | 49.62 276 | 54.73 332 | 70.84 343 | 34.14 285 | 76.24 283 | 36.64 334 | 61.29 336 | 71.64 347 |
|
| PVSNet | | 50.76 19 | 58.40 287 | 57.39 288 | 61.42 306 | 75.53 234 | 44.04 281 | 61.43 341 | 63.45 327 | 47.04 312 | 56.91 310 | 73.61 325 | 27.00 351 | 64.76 339 | 39.12 317 | 72.40 220 | 75.47 308 |
|
| tpmrst | | | 58.24 288 | 58.70 279 | 56.84 332 | 66.97 345 | 34.32 365 | 69.57 289 | 61.14 344 | 47.17 311 | 58.58 300 | 71.60 338 | 41.28 217 | 60.41 353 | 49.20 238 | 62.84 324 | 75.78 304 |
|
| Patchmatch-RL test | | | 58.16 289 | 55.49 305 | 66.15 265 | 67.92 341 | 48.89 230 | 60.66 349 | 51.07 378 | 47.86 301 | 59.36 289 | 62.71 380 | 34.02 288 | 72.27 300 | 56.41 176 | 59.40 345 | 77.30 288 |
|
| test-LLR | | | 58.15 290 | 58.13 286 | 58.22 324 | 68.57 335 | 44.80 273 | 65.46 318 | 57.92 354 | 50.08 271 | 55.44 322 | 69.82 352 | 32.62 308 | 57.44 367 | 49.66 234 | 73.62 198 | 72.41 339 |
|
| ppachtmachnet_test | | | 58.06 291 | 55.38 306 | 66.10 267 | 69.51 326 | 48.99 228 | 68.01 299 | 66.13 309 | 44.50 332 | 54.05 339 | 70.74 344 | 32.09 315 | 72.34 299 | 36.68 333 | 56.71 357 | 76.99 296 |
|
| gg-mvs-nofinetune | | | 57.86 292 | 56.43 298 | 62.18 301 | 72.62 277 | 35.35 358 | 66.57 307 | 56.33 363 | 50.65 265 | 57.64 306 | 57.10 386 | 30.65 320 | 76.36 281 | 37.38 325 | 78.88 135 | 74.82 317 |
|
| CMPMVS |  | 42.80 21 | 57.81 293 | 55.97 301 | 63.32 292 | 60.98 378 | 47.38 249 | 64.66 327 | 69.50 284 | 32.06 376 | 46.83 370 | 77.80 277 | 29.50 331 | 71.36 305 | 48.68 242 | 73.75 196 | 71.21 354 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MIMVSNet | | | 57.35 294 | 57.07 290 | 58.22 324 | 74.21 260 | 37.18 341 | 62.46 336 | 60.88 345 | 48.88 285 | 55.29 325 | 75.99 305 | 31.68 316 | 62.04 348 | 31.87 358 | 72.35 221 | 75.43 309 |
|
| tpm | | | 57.34 295 | 58.16 284 | 54.86 342 | 71.80 293 | 34.77 361 | 67.47 305 | 56.04 366 | 48.20 295 | 60.10 278 | 76.92 289 | 37.17 258 | 53.41 383 | 40.76 309 | 65.01 304 | 76.40 300 |
|
| Patchmtry | | | 57.16 296 | 56.47 297 | 59.23 315 | 69.17 332 | 34.58 364 | 62.98 333 | 63.15 330 | 44.53 331 | 56.83 311 | 74.84 316 | 35.83 270 | 68.71 319 | 40.03 312 | 60.91 337 | 74.39 322 |
|
| AllTest | | | 57.08 297 | 54.65 310 | 64.39 287 | 71.44 297 | 49.03 225 | 69.92 286 | 67.30 297 | 45.97 321 | 47.16 368 | 79.77 243 | 17.47 377 | 67.56 326 | 33.65 347 | 59.16 346 | 76.57 298 |
|
| test_cas_vis1_n_1920 | | | 56.91 298 | 56.71 295 | 57.51 331 | 59.13 383 | 45.40 269 | 63.58 331 | 61.29 343 | 36.24 371 | 67.14 174 | 71.85 337 | 29.89 327 | 56.69 371 | 57.65 169 | 63.58 318 | 70.46 359 |
|
| dmvs_re | | | 56.77 299 | 56.83 294 | 56.61 333 | 69.23 330 | 41.02 307 | 58.37 356 | 64.18 322 | 50.59 267 | 57.45 308 | 71.42 339 | 35.54 272 | 58.94 361 | 37.23 326 | 67.45 287 | 69.87 364 |
|
| testing3 | | | 56.54 300 | 55.92 302 | 58.41 322 | 77.52 196 | 27.93 389 | 69.72 287 | 56.36 362 | 54.75 215 | 58.63 299 | 77.80 277 | 20.88 375 | 71.75 304 | 25.31 387 | 62.25 329 | 75.53 307 |
|
| our_test_3 | | | 56.49 301 | 54.42 313 | 62.68 299 | 69.51 326 | 45.48 268 | 66.08 311 | 61.49 342 | 44.11 338 | 50.73 358 | 69.60 355 | 33.05 298 | 68.15 321 | 38.38 320 | 56.86 354 | 74.40 321 |
|
| pmmvs5 | | | 56.47 302 | 55.68 304 | 58.86 319 | 61.41 375 | 36.71 348 | 66.37 309 | 62.75 332 | 40.38 361 | 53.70 341 | 76.62 295 | 34.56 280 | 67.05 328 | 40.02 313 | 65.27 302 | 72.83 332 |
|
| test-mter | | | 56.42 303 | 55.82 303 | 58.22 324 | 68.57 335 | 44.80 273 | 65.46 318 | 57.92 354 | 39.94 365 | 55.44 322 | 69.82 352 | 21.92 370 | 57.44 367 | 49.66 234 | 73.62 198 | 72.41 339 |
|
| USDC | | | 56.35 304 | 54.24 317 | 62.69 298 | 64.74 359 | 40.31 312 | 65.05 324 | 73.83 249 | 43.93 339 | 47.58 366 | 77.71 281 | 15.36 383 | 75.05 288 | 38.19 322 | 61.81 333 | 72.70 333 |
|
| PatchMatch-RL | | | 56.25 305 | 54.55 312 | 61.32 309 | 77.06 208 | 56.07 109 | 65.57 315 | 54.10 371 | 44.13 337 | 53.49 347 | 71.27 342 | 25.20 361 | 66.78 330 | 36.52 336 | 63.66 316 | 61.12 376 |
|
| sss | | | 56.17 306 | 56.57 296 | 54.96 341 | 66.93 346 | 36.32 353 | 57.94 359 | 61.69 341 | 41.67 353 | 58.64 298 | 75.32 314 | 38.72 240 | 56.25 374 | 42.04 302 | 66.19 297 | 72.31 342 |
|
| Syy-MVS | | | 56.00 307 | 56.23 300 | 55.32 339 | 74.69 248 | 26.44 395 | 65.52 316 | 57.49 357 | 50.97 262 | 56.52 314 | 72.18 331 | 39.89 226 | 68.09 322 | 24.20 388 | 64.59 310 | 71.44 351 |
|
| FMVSNet5 | | | 55.86 308 | 54.93 308 | 58.66 321 | 71.05 306 | 36.35 351 | 64.18 330 | 62.48 334 | 46.76 314 | 50.66 359 | 74.73 318 | 25.80 358 | 64.04 341 | 33.11 351 | 65.57 301 | 75.59 306 |
|
| RPSCF | | | 55.80 309 | 54.22 318 | 60.53 311 | 65.13 358 | 42.91 293 | 64.30 328 | 57.62 356 | 36.84 370 | 58.05 304 | 82.28 193 | 28.01 341 | 56.24 375 | 37.14 327 | 58.61 348 | 82.44 212 |
|
| EU-MVSNet | | | 55.61 310 | 54.41 314 | 59.19 317 | 65.41 357 | 33.42 372 | 72.44 252 | 71.91 265 | 28.81 379 | 51.27 352 | 73.87 323 | 24.76 363 | 69.08 318 | 43.04 294 | 58.20 349 | 75.06 311 |
|
| Anonymous20240521 | | | 55.30 311 | 54.41 314 | 57.96 327 | 60.92 380 | 41.73 302 | 71.09 273 | 71.06 271 | 41.18 356 | 48.65 364 | 73.31 326 | 16.93 379 | 59.25 359 | 42.54 298 | 64.01 313 | 72.90 331 |
|
| TESTMET0.1,1 | | | 55.28 312 | 54.90 309 | 56.42 334 | 66.56 349 | 43.67 284 | 65.46 318 | 56.27 364 | 39.18 367 | 53.83 340 | 67.44 364 | 24.21 365 | 55.46 378 | 48.04 249 | 73.11 211 | 70.13 362 |
|
| KD-MVS_self_test | | | 55.22 313 | 53.89 320 | 59.21 316 | 57.80 386 | 27.47 391 | 57.75 361 | 74.32 242 | 47.38 306 | 50.90 355 | 70.00 351 | 28.45 339 | 70.30 313 | 40.44 310 | 57.92 350 | 79.87 258 |
|
| MIMVSNet1 | | | 55.17 314 | 54.31 316 | 57.77 329 | 70.03 320 | 32.01 378 | 65.68 314 | 64.81 316 | 49.19 281 | 46.75 371 | 76.00 303 | 25.53 360 | 64.04 341 | 28.65 377 | 62.13 330 | 77.26 290 |
|
| Anonymous20231206 | | | 55.10 315 | 55.30 307 | 54.48 344 | 69.81 325 | 33.94 369 | 62.91 334 | 62.13 340 | 41.08 357 | 55.18 326 | 75.65 309 | 32.75 305 | 56.59 373 | 30.32 371 | 67.86 283 | 72.91 330 |
|
| myMVS_eth3d | | | 54.86 316 | 54.61 311 | 55.61 338 | 74.69 248 | 27.31 392 | 65.52 316 | 57.49 357 | 50.97 262 | 56.52 314 | 72.18 331 | 21.87 373 | 68.09 322 | 27.70 380 | 64.59 310 | 71.44 351 |
|
| TinyColmap | | | 54.14 317 | 51.72 328 | 61.40 307 | 66.84 347 | 41.97 299 | 66.52 308 | 68.51 292 | 44.81 328 | 42.69 382 | 75.77 308 | 11.66 389 | 72.94 296 | 31.96 357 | 56.77 356 | 69.27 368 |
|
| EPMVS | | | 53.96 318 | 53.69 321 | 54.79 343 | 66.12 354 | 31.96 379 | 62.34 338 | 49.05 381 | 44.42 334 | 55.54 320 | 71.33 341 | 30.22 324 | 56.70 370 | 41.65 306 | 62.54 327 | 75.71 305 |
|
| PMMVS | | | 53.96 318 | 53.26 324 | 56.04 335 | 62.60 370 | 50.92 193 | 61.17 345 | 56.09 365 | 32.81 375 | 53.51 346 | 66.84 369 | 34.04 287 | 59.93 356 | 44.14 283 | 68.18 281 | 57.27 384 |
|
| test20.03 | | | 53.87 320 | 54.02 319 | 53.41 352 | 61.47 374 | 28.11 388 | 61.30 343 | 59.21 349 | 51.34 257 | 52.09 350 | 77.43 284 | 33.29 297 | 58.55 363 | 29.76 373 | 60.27 343 | 73.58 328 |
|
| MDA-MVSNet-bldmvs | | | 53.87 320 | 50.81 332 | 63.05 296 | 66.25 352 | 48.58 234 | 56.93 365 | 63.82 324 | 48.09 297 | 41.22 383 | 70.48 348 | 30.34 323 | 68.00 325 | 34.24 345 | 45.92 381 | 72.57 335 |
|
| KD-MVS_2432*1600 | | | 53.45 322 | 51.50 330 | 59.30 313 | 62.82 367 | 37.14 342 | 55.33 368 | 71.79 266 | 47.34 308 | 55.09 327 | 70.52 346 | 21.91 371 | 70.45 310 | 35.72 340 | 42.97 384 | 70.31 360 |
|
| miper_refine_blended | | | 53.45 322 | 51.50 330 | 59.30 313 | 62.82 367 | 37.14 342 | 55.33 368 | 71.79 266 | 47.34 308 | 55.09 327 | 70.52 346 | 21.91 371 | 70.45 310 | 35.72 340 | 42.97 384 | 70.31 360 |
|
| TDRefinement | | | 53.44 324 | 50.72 333 | 61.60 304 | 64.31 362 | 46.96 252 | 70.89 275 | 65.27 315 | 41.78 351 | 44.61 377 | 77.98 270 | 11.52 391 | 66.36 333 | 28.57 378 | 51.59 370 | 71.49 350 |
|
| test0.0.03 1 | | | 53.32 325 | 53.59 322 | 52.50 356 | 62.81 369 | 29.45 384 | 59.51 352 | 54.11 370 | 50.08 271 | 54.40 336 | 74.31 321 | 32.62 308 | 55.92 376 | 30.50 370 | 63.95 315 | 72.15 344 |
|
| PatchT | | | 53.17 326 | 53.44 323 | 52.33 357 | 68.29 339 | 25.34 399 | 58.21 357 | 54.41 369 | 44.46 333 | 54.56 334 | 69.05 358 | 33.32 296 | 60.94 350 | 36.93 329 | 61.76 334 | 70.73 358 |
|
| UnsupCasMVSNet_eth | | | 53.16 327 | 52.47 325 | 55.23 340 | 59.45 382 | 33.39 373 | 59.43 353 | 69.13 288 | 45.98 320 | 50.35 361 | 72.32 330 | 29.30 333 | 58.26 365 | 42.02 303 | 44.30 382 | 74.05 325 |
|
| PM-MVS | | | 52.33 328 | 50.19 336 | 58.75 320 | 62.10 372 | 45.14 271 | 65.75 312 | 40.38 397 | 43.60 340 | 53.52 345 | 72.65 328 | 9.16 397 | 65.87 336 | 50.41 227 | 54.18 364 | 65.24 374 |
|
| testgi | | | 51.90 329 | 52.37 326 | 50.51 362 | 60.39 381 | 23.55 402 | 58.42 355 | 58.15 352 | 49.03 283 | 51.83 351 | 79.21 256 | 22.39 368 | 55.59 377 | 29.24 376 | 62.64 325 | 72.40 341 |
|
| dp | | | 51.89 330 | 51.60 329 | 52.77 355 | 68.44 338 | 32.45 377 | 62.36 337 | 54.57 368 | 44.16 336 | 49.31 363 | 67.91 360 | 28.87 336 | 56.61 372 | 33.89 346 | 54.89 361 | 69.24 369 |
|
| JIA-IIPM | | | 51.56 331 | 47.68 345 | 63.21 294 | 64.61 360 | 50.73 197 | 47.71 384 | 58.77 351 | 42.90 347 | 48.46 365 | 51.72 390 | 24.97 362 | 70.24 314 | 36.06 339 | 53.89 365 | 68.64 370 |
|
| test_fmvs1_n | | | 51.37 332 | 50.35 335 | 54.42 346 | 52.85 389 | 37.71 337 | 61.16 346 | 51.93 373 | 28.15 381 | 63.81 237 | 69.73 354 | 13.72 384 | 53.95 381 | 51.16 222 | 60.65 341 | 71.59 348 |
|
| ADS-MVSNet2 | | | 51.33 333 | 48.76 340 | 59.07 318 | 66.02 355 | 44.60 276 | 50.90 378 | 59.76 347 | 36.90 368 | 50.74 356 | 66.18 372 | 26.38 353 | 63.11 344 | 27.17 381 | 54.76 362 | 69.50 366 |
|
| test_fmvs1 | | | 51.32 334 | 50.48 334 | 53.81 348 | 53.57 388 | 37.51 339 | 60.63 350 | 51.16 376 | 28.02 383 | 63.62 238 | 69.23 357 | 16.41 380 | 53.93 382 | 51.01 223 | 60.70 340 | 69.99 363 |
|
| YYNet1 | | | 50.73 335 | 48.96 337 | 56.03 336 | 61.10 377 | 41.78 301 | 51.94 376 | 56.44 361 | 40.94 359 | 44.84 375 | 67.80 362 | 30.08 325 | 55.08 379 | 36.77 330 | 50.71 372 | 71.22 353 |
|
| MDA-MVSNet_test_wron | | | 50.71 336 | 48.95 338 | 56.00 337 | 61.17 376 | 41.84 300 | 51.90 377 | 56.45 360 | 40.96 358 | 44.79 376 | 67.84 361 | 30.04 326 | 55.07 380 | 36.71 332 | 50.69 373 | 71.11 356 |
|
| dmvs_testset | | | 50.16 337 | 51.90 327 | 44.94 370 | 66.49 350 | 11.78 408 | 61.01 348 | 51.50 375 | 51.17 260 | 50.30 362 | 67.44 364 | 39.28 233 | 60.29 354 | 22.38 390 | 57.49 352 | 62.76 375 |
|
| UnsupCasMVSNet_bld | | | 50.07 338 | 48.87 339 | 53.66 349 | 60.97 379 | 33.67 371 | 57.62 362 | 64.56 319 | 39.47 366 | 47.38 367 | 64.02 378 | 27.47 345 | 59.32 358 | 34.69 344 | 43.68 383 | 67.98 371 |
|
| test_vis1_n | | | 49.89 339 | 48.69 341 | 53.50 351 | 53.97 387 | 37.38 340 | 61.53 340 | 47.33 387 | 28.54 380 | 59.62 287 | 67.10 368 | 13.52 385 | 52.27 386 | 49.07 239 | 57.52 351 | 70.84 357 |
|
| Patchmatch-test | | | 49.08 340 | 48.28 342 | 51.50 360 | 64.40 361 | 30.85 382 | 45.68 388 | 48.46 384 | 35.60 372 | 46.10 374 | 72.10 333 | 34.47 283 | 46.37 393 | 27.08 383 | 60.65 341 | 77.27 289 |
|
| test_fmvs2 | | | 48.69 341 | 47.49 346 | 52.29 358 | 48.63 395 | 33.06 375 | 57.76 360 | 48.05 385 | 25.71 387 | 59.76 285 | 69.60 355 | 11.57 390 | 52.23 387 | 49.45 237 | 56.86 354 | 71.58 349 |
|
| ADS-MVSNet | | | 48.48 342 | 47.77 343 | 50.63 361 | 66.02 355 | 29.92 383 | 50.90 378 | 50.87 380 | 36.90 368 | 50.74 356 | 66.18 372 | 26.38 353 | 52.47 385 | 27.17 381 | 54.76 362 | 69.50 366 |
|
| CHOSEN 280x420 | | | 47.83 343 | 46.36 347 | 52.24 359 | 67.37 344 | 49.78 216 | 38.91 396 | 43.11 395 | 35.00 373 | 43.27 381 | 63.30 379 | 28.95 334 | 49.19 390 | 36.53 335 | 60.80 339 | 57.76 383 |
|
| new-patchmatchnet | | | 47.56 344 | 47.73 344 | 47.06 365 | 58.81 384 | 9.37 411 | 48.78 382 | 59.21 349 | 43.28 343 | 44.22 378 | 68.66 359 | 25.67 359 | 57.20 369 | 31.57 365 | 49.35 377 | 74.62 320 |
|
| PVSNet_0 | | 43.31 20 | 47.46 345 | 45.64 348 | 52.92 354 | 67.60 343 | 44.65 275 | 54.06 372 | 54.64 367 | 41.59 354 | 46.15 373 | 58.75 383 | 30.99 319 | 58.66 362 | 32.18 354 | 24.81 398 | 55.46 386 |
|
| MVS-HIRNet | | | 45.52 346 | 44.48 349 | 48.65 364 | 68.49 337 | 34.05 368 | 59.41 354 | 44.50 392 | 27.03 384 | 37.96 391 | 50.47 394 | 26.16 356 | 64.10 340 | 26.74 384 | 59.52 344 | 47.82 393 |
|
| pmmvs3 | | | 44.92 347 | 41.95 354 | 53.86 347 | 52.58 391 | 43.55 285 | 62.11 339 | 46.90 389 | 26.05 386 | 40.63 384 | 60.19 382 | 11.08 394 | 57.91 366 | 31.83 362 | 46.15 380 | 60.11 377 |
|
| test_fmvs3 | | | 44.30 348 | 42.55 351 | 49.55 363 | 42.83 399 | 27.15 394 | 53.03 374 | 44.93 391 | 22.03 394 | 53.69 343 | 64.94 375 | 4.21 404 | 49.63 389 | 47.47 250 | 49.82 375 | 71.88 345 |
|
| WB-MVS | | | 43.26 349 | 43.41 350 | 42.83 374 | 63.32 366 | 10.32 410 | 58.17 358 | 45.20 390 | 45.42 325 | 40.44 386 | 67.26 367 | 34.01 289 | 58.98 360 | 11.96 402 | 24.88 397 | 59.20 378 |
|
| LF4IMVS | | | 42.95 350 | 42.26 352 | 45.04 368 | 48.30 396 | 32.50 376 | 54.80 370 | 48.49 383 | 28.03 382 | 40.51 385 | 70.16 349 | 9.24 396 | 43.89 396 | 31.63 363 | 49.18 378 | 58.72 380 |
|
| EGC-MVSNET | | | 42.47 351 | 38.48 359 | 54.46 345 | 74.33 257 | 48.73 232 | 70.33 282 | 51.10 377 | 0.03 409 | 0.18 410 | 67.78 363 | 13.28 386 | 66.49 332 | 18.91 394 | 50.36 374 | 48.15 391 |
|
| FPMVS | | | 42.18 352 | 41.11 355 | 45.39 367 | 58.03 385 | 41.01 309 | 49.50 380 | 53.81 372 | 30.07 378 | 33.71 392 | 64.03 376 | 11.69 388 | 52.08 388 | 14.01 398 | 55.11 360 | 43.09 395 |
|
| SSC-MVS | | | 41.96 353 | 41.99 353 | 41.90 375 | 62.46 371 | 9.28 412 | 57.41 363 | 44.32 393 | 43.38 342 | 38.30 390 | 66.45 370 | 32.67 307 | 58.42 364 | 10.98 403 | 21.91 400 | 57.99 382 |
|
| ANet_high | | | 41.38 354 | 37.47 361 | 53.11 353 | 39.73 405 | 24.45 400 | 56.94 364 | 69.69 279 | 47.65 303 | 26.04 397 | 52.32 389 | 12.44 387 | 62.38 347 | 21.80 391 | 10.61 406 | 72.49 336 |
|
| test_vis1_rt | | | 41.35 355 | 39.45 357 | 47.03 366 | 46.65 398 | 37.86 334 | 47.76 383 | 38.65 398 | 23.10 390 | 44.21 379 | 51.22 392 | 11.20 393 | 44.08 395 | 39.27 316 | 53.02 367 | 59.14 379 |
|
| LCM-MVSNet | | | 40.30 356 | 35.88 362 | 53.57 350 | 42.24 400 | 29.15 385 | 45.21 390 | 60.53 346 | 22.23 393 | 28.02 395 | 50.98 393 | 3.72 406 | 61.78 349 | 31.22 368 | 38.76 390 | 69.78 365 |
|
| mvsany_test1 | | | 39.38 357 | 38.16 360 | 43.02 373 | 49.05 393 | 34.28 366 | 44.16 392 | 25.94 408 | 22.74 392 | 46.57 372 | 62.21 381 | 23.85 366 | 41.16 400 | 33.01 352 | 35.91 392 | 53.63 387 |
|
| N_pmnet | | | 39.35 358 | 40.28 356 | 36.54 381 | 63.76 363 | 1.62 416 | 49.37 381 | 0.76 415 | 34.62 374 | 43.61 380 | 66.38 371 | 26.25 355 | 42.57 397 | 26.02 386 | 51.77 369 | 65.44 373 |
|
| DSMNet-mixed | | | 39.30 359 | 38.72 358 | 41.03 376 | 51.22 392 | 19.66 405 | 45.53 389 | 31.35 404 | 15.83 401 | 39.80 388 | 67.42 366 | 22.19 369 | 45.13 394 | 22.43 389 | 52.69 368 | 58.31 381 |
|
| APD_test1 | | | 37.39 360 | 34.94 363 | 44.72 371 | 48.88 394 | 33.19 374 | 52.95 375 | 44.00 394 | 19.49 395 | 27.28 396 | 58.59 384 | 3.18 408 | 52.84 384 | 18.92 393 | 41.17 387 | 48.14 392 |
|
| PMVS |  | 28.69 22 | 36.22 361 | 33.29 365 | 45.02 369 | 36.82 407 | 35.98 356 | 54.68 371 | 48.74 382 | 26.31 385 | 21.02 400 | 51.61 391 | 2.88 409 | 60.10 355 | 9.99 406 | 47.58 379 | 38.99 400 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| Gipuma |  | | 34.77 362 | 31.91 366 | 43.33 372 | 62.05 373 | 37.87 333 | 20.39 401 | 67.03 301 | 23.23 389 | 18.41 402 | 25.84 402 | 4.24 403 | 62.73 345 | 14.71 397 | 51.32 371 | 29.38 401 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| new_pmnet | | | 34.13 363 | 34.29 364 | 33.64 383 | 52.63 390 | 18.23 407 | 44.43 391 | 33.90 403 | 22.81 391 | 30.89 394 | 53.18 388 | 10.48 395 | 35.72 404 | 20.77 392 | 39.51 388 | 46.98 394 |
|
| mvsany_test3 | | | 32.62 364 | 30.57 368 | 38.77 379 | 36.16 408 | 24.20 401 | 38.10 397 | 20.63 410 | 19.14 396 | 40.36 387 | 57.43 385 | 5.06 401 | 36.63 403 | 29.59 375 | 28.66 396 | 55.49 385 |
|
| test_vis3_rt | | | 32.09 365 | 30.20 369 | 37.76 380 | 35.36 409 | 27.48 390 | 40.60 395 | 28.29 407 | 16.69 399 | 32.52 393 | 40.53 398 | 1.96 410 | 37.40 402 | 33.64 349 | 42.21 386 | 48.39 390 |
|
| test_f | | | 31.86 366 | 31.05 367 | 34.28 382 | 32.33 411 | 21.86 403 | 32.34 398 | 30.46 405 | 16.02 400 | 39.78 389 | 55.45 387 | 4.80 402 | 32.36 405 | 30.61 369 | 37.66 391 | 48.64 389 |
|
| testf1 | | | 31.46 367 | 28.89 370 | 39.16 377 | 41.99 402 | 28.78 386 | 46.45 386 | 37.56 399 | 14.28 402 | 21.10 398 | 48.96 395 | 1.48 412 | 47.11 391 | 13.63 399 | 34.56 393 | 41.60 396 |
|
| APD_test2 | | | 31.46 367 | 28.89 370 | 39.16 377 | 41.99 402 | 28.78 386 | 46.45 386 | 37.56 399 | 14.28 402 | 21.10 398 | 48.96 395 | 1.48 412 | 47.11 391 | 13.63 399 | 34.56 393 | 41.60 396 |
|
| PMMVS2 | | | 27.40 369 | 25.91 372 | 31.87 385 | 39.46 406 | 6.57 413 | 31.17 399 | 28.52 406 | 23.96 388 | 20.45 401 | 48.94 397 | 4.20 405 | 37.94 401 | 16.51 395 | 19.97 401 | 51.09 388 |
|
| E-PMN | | | 23.77 370 | 22.73 374 | 26.90 386 | 42.02 401 | 20.67 404 | 42.66 393 | 35.70 401 | 17.43 397 | 10.28 407 | 25.05 403 | 6.42 399 | 42.39 398 | 10.28 405 | 14.71 403 | 17.63 402 |
|
| EMVS | | | 22.97 371 | 21.84 375 | 26.36 387 | 40.20 404 | 19.53 406 | 41.95 394 | 34.64 402 | 17.09 398 | 9.73 408 | 22.83 404 | 7.29 398 | 42.22 399 | 9.18 407 | 13.66 404 | 17.32 403 |
|
| MVE |  | 17.77 23 | 21.41 372 | 17.77 377 | 32.34 384 | 34.34 410 | 25.44 398 | 16.11 402 | 24.11 409 | 11.19 404 | 13.22 404 | 31.92 400 | 1.58 411 | 30.95 406 | 10.47 404 | 17.03 402 | 40.62 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 19.68 373 | 18.10 376 | 24.41 388 | 13.68 413 | 3.11 415 | 12.06 404 | 42.37 396 | 2.00 407 | 11.97 405 | 36.38 399 | 5.77 400 | 29.35 407 | 15.06 396 | 23.65 399 | 40.76 398 |
|
| cdsmvs_eth3d_5k | | | 17.50 374 | 23.34 373 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 78.63 168 | 0.00 412 | 0.00 413 | 82.18 194 | 49.25 122 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| wuyk23d | | | 13.32 375 | 12.52 378 | 15.71 389 | 47.54 397 | 26.27 396 | 31.06 400 | 1.98 414 | 4.93 406 | 5.18 409 | 1.94 409 | 0.45 414 | 18.54 408 | 6.81 409 | 12.83 405 | 2.33 406 |
|
| tmp_tt | | | 9.43 376 | 11.14 379 | 4.30 391 | 2.38 414 | 4.40 414 | 13.62 403 | 16.08 412 | 0.39 408 | 15.89 403 | 13.06 405 | 15.80 382 | 5.54 410 | 12.63 401 | 10.46 407 | 2.95 405 |
|
| ab-mvs-re | | | 6.49 377 | 8.65 380 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 77.89 275 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| test123 | | | 4.73 378 | 6.30 381 | 0.02 392 | 0.01 415 | 0.01 417 | 56.36 366 | 0.00 416 | 0.01 410 | 0.04 411 | 0.21 411 | 0.01 415 | 0.00 411 | 0.03 411 | 0.00 409 | 0.04 407 |
|
| testmvs | | | 4.52 379 | 6.03 382 | 0.01 393 | 0.01 415 | 0.00 418 | 53.86 373 | 0.00 416 | 0.01 410 | 0.04 411 | 0.27 410 | 0.00 416 | 0.00 411 | 0.04 410 | 0.00 409 | 0.03 408 |
|
| pcd_1.5k_mvsjas | | | 3.92 380 | 5.23 383 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 47.05 153 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| test_blank | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| uanet_test | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| DCPMVS | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| sosnet-low-res | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| sosnet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| uncertanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| Regformer | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| uanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 418 | 0.00 405 | 0.00 416 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 416 | 0.00 411 | 0.00 412 | 0.00 409 | 0.00 409 |
|
| WAC-MVS | | | | | | | 27.31 392 | | | | | | | | 27.77 379 | | |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 69 | 60.87 84 | 81.50 16 | | | | | | |
|
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 32 |
|
| PC_three_1452 | | | | | | | | | | 55.09 206 | 84.46 4 | 89.84 43 | 66.68 5 | 89.41 18 | 74.24 44 | 91.38 2 | 88.42 14 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 32 |
|
| test_one_0601 | | | | | | 87.58 9 | 59.30 57 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| eth-test2 | | | | | | 0.00 417 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 417 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 43 | | 82.70 92 | 57.95 146 | 78.10 24 | 90.06 36 | 56.12 40 | 88.84 26 | 74.05 47 | 87.00 48 | |
|
| RE-MVS-def | | | | 73.71 66 | | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 113 | 58.07 141 | 73.14 76 | 90.07 34 | 43.06 195 | | 68.20 80 | 81.76 100 | 84.03 163 |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 60 | | 85.53 25 | 53.93 228 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 16 |
|
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 42 | 67.01 1 | 90.33 12 | 73.16 54 | 91.15 4 | 88.23 20 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 41 |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 69 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
| 9.14 | | | | 78.75 15 | | 83.10 69 | | 84.15 43 | 88.26 1 | 59.90 107 | 78.57 23 | 90.36 27 | 57.51 32 | 86.86 66 | 77.39 23 | 89.52 21 | |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 47 | 79.66 147 | 59.00 123 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 26 |
|
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 63 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 43 |
|
| test0726 | | | | | | 87.75 7 | 59.07 64 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 278 |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 279 | | | | 78.05 278 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 295 | | | | |
|
| ambc | | | | | 65.13 282 | 63.72 365 | 37.07 344 | 47.66 385 | 78.78 164 | | 54.37 337 | 71.42 339 | 11.24 392 | 80.94 199 | 45.64 269 | 53.85 366 | 77.38 287 |
|
| MTGPA |  | | | | | | | | 80.97 130 | | | | | | | | |
|
| test_post1 | | | | | | | | 68.67 295 | | | | 3.64 407 | 32.39 313 | 69.49 316 | 44.17 281 | | |
|
| test_post | | | | | | | | | | | | 3.55 408 | 33.90 290 | 66.52 331 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 376 | 34.50 281 | 74.27 292 | | | |
|
| GG-mvs-BLEND | | | | | 62.34 300 | 71.36 301 | 37.04 345 | 69.20 292 | 57.33 359 | | 54.73 332 | 65.48 374 | 30.37 322 | 77.82 253 | 34.82 343 | 74.93 184 | 72.17 343 |
|
| MTMP | | | | | | | | 86.03 19 | 17.08 411 | | | | | | | | |
|
| gm-plane-assit | | | | | | 71.40 300 | 41.72 304 | | | 48.85 286 | | 73.31 326 | | 82.48 170 | 48.90 241 | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 37 | 88.31 32 | 83.81 173 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 81 | 81.26 121 | 55.65 193 | 74.93 45 | 88.81 56 | 53.70 69 | 84.68 120 | | | |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 84 | 81.18 124 | 55.86 182 | 74.81 49 | 88.80 58 | 53.70 69 | 84.45 124 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 55 | 87.93 40 | 84.33 154 |
|
| agg_prior | | | | | | 85.04 50 | 59.96 47 | | 81.04 128 | | 74.68 52 | | | 84.04 130 | | | |
|
| TestCases | | | | | 64.39 287 | 71.44 297 | 49.03 225 | | 67.30 297 | 45.97 321 | 47.16 368 | 79.77 243 | 17.47 377 | 67.56 326 | 33.65 347 | 59.16 346 | 76.57 298 |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 76 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 81.75 79 | | 60.37 96 | 75.01 43 | 89.06 52 | 56.22 39 | | 72.19 59 | 88.96 24 | |
|
| test_prior | | | | | 76.69 53 | 84.20 61 | 57.27 88 | | 84.88 41 | | | | | 86.43 80 | | | 86.38 79 |
|
| 旧先验2 | | | | | | | | 76.08 184 | | 45.32 326 | 76.55 33 | | | 65.56 337 | 58.75 165 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 76.12 182 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 70.76 198 | 85.66 41 | 61.13 30 | | 66.43 306 | 44.68 330 | 70.29 114 | 86.64 90 | 41.29 216 | 75.23 287 | 49.72 233 | 81.75 102 | 75.93 302 |
|
| 旧先验1 | | | | | | 83.04 70 | 53.15 158 | | 67.52 296 | | | 87.85 71 | 44.08 186 | | | 80.76 106 | 78.03 281 |
|
| æ— å…ˆéªŒ | | | | | | | | 79.66 112 | 74.30 244 | 48.40 293 | | | | 80.78 205 | 53.62 201 | | 79.03 270 |
|
| 原ACMM2 | | | | | | | | 79.02 117 | | | | | | | | | |
|
| 原ACMM1 | | | | | 74.69 91 | 85.39 47 | 59.40 54 | | 83.42 75 | 51.47 254 | 70.27 115 | 86.61 93 | 48.61 130 | 86.51 78 | 53.85 200 | 87.96 39 | 78.16 276 |
|
| test222 | | | | | | 83.14 68 | 58.68 73 | 72.57 250 | 63.45 327 | 41.78 351 | 67.56 167 | 86.12 109 | 37.13 260 | | | 78.73 140 | 74.98 314 |
|
| testdata2 | | | | | | | | | | | | | | 72.18 302 | 46.95 259 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 56 | | | | |
|
| testdata | | | | | 64.66 284 | 81.52 87 | 52.93 163 | | 65.29 314 | 46.09 319 | 73.88 64 | 87.46 75 | 38.08 248 | 66.26 334 | 53.31 205 | 78.48 143 | 74.78 318 |
|
| testdata1 | | | | | | | | 72.65 246 | | 60.50 91 | | | | | | | |
|
| test12 | | | | | 77.76 43 | 84.52 58 | 58.41 75 | | 83.36 78 | | 72.93 83 | | 54.61 53 | 88.05 39 | | 88.12 35 | 86.81 67 |
|
| plane_prior7 | | | | | | 81.41 90 | 55.96 111 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 97 | 56.24 106 | | | | | | 45.26 177 | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 54 | | | | | 87.21 56 | 68.16 82 | 80.58 109 | 84.65 148 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 110 | | | | | |
|
| plane_prior3 | | | | | | | 56.09 108 | | | 63.92 36 | 69.27 134 | | | | | | |
|
| plane_prior2 | | | | | | | | 84.22 40 | | 64.52 25 | | | | | | | |
|
| plane_prior1 | | | | | | 81.27 95 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 56.31 102 | 83.58 53 | | 63.19 48 | | | | | | 80.48 112 | |
|
| n2 | | | | | | | | | 0.00 416 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 416 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 388 | | | | | | | | |
|
| lessismore_v0 | | | | | 69.91 214 | 71.42 299 | 47.80 242 | | 50.90 379 | | 50.39 360 | 75.56 310 | 27.43 347 | 81.33 189 | 45.91 266 | 34.10 395 | 80.59 246 |
|
| LGP-MVS_train | | | | | 75.76 70 | 80.22 112 | 57.51 86 | | 83.40 76 | 61.32 79 | 66.67 184 | 87.33 77 | 39.15 236 | 86.59 73 | 67.70 89 | 77.30 159 | 83.19 195 |
|
| test11 | | | | | | | | | 83.47 73 | | | | | | | | |
|
| door | | | | | | | | | 47.60 386 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 131 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 80.66 103 | | 82.31 71 | | 62.10 68 | 67.85 157 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 103 | | 82.31 71 | | 62.10 68 | 67.85 157 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 97 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 157 | | | 86.93 64 | | | 84.32 155 |
|
| HQP3-MVS | | | | | | | | | 83.90 59 | | | | | | | 80.35 113 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 171 | | | | |
|
| NP-MVS | | | | | | 80.98 100 | 56.05 110 | | | | | 85.54 128 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 397 | 61.22 344 | | 40.10 363 | 51.10 353 | | 32.97 300 | | 38.49 319 | | 78.61 273 |
|
| MDTV_nov1_ep13 | | | | 57.00 291 | | 72.73 275 | 38.26 331 | 65.02 325 | 64.73 318 | 44.74 329 | 55.46 321 | 72.48 329 | 32.61 310 | 70.47 309 | 37.47 324 | 67.75 285 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 191 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 225 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 133 | | | | |
|
| ITE_SJBPF | | | | | 62.09 302 | 66.16 353 | 44.55 278 | | 64.32 320 | 47.36 307 | 55.31 324 | 80.34 233 | 19.27 376 | 62.68 346 | 36.29 338 | 62.39 328 | 79.04 269 |
|
| DeepMVS_CX |  | | | | 12.03 390 | 17.97 412 | 10.91 409 | | 10.60 413 | 7.46 405 | 11.07 406 | 28.36 401 | 3.28 407 | 11.29 409 | 8.01 408 | 9.74 408 | 13.89 404 |
|