This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 20
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3864.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 22
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5673.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 68
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6765.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 131
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3866.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 60
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 25
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 31
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6088.68 2776.48 2889.63 2087.16 58
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3262.88 5378.10 2491.26 1352.51 8288.39 3079.34 890.52 1386.78 69
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11870.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4766.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4386.38 79
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6559.34 11979.37 1989.76 4559.84 1687.62 5076.69 2786.74 5287.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8486.78 6880.66 489.64 1987.80 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 7163.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8188.53 2974.79 4288.34 2986.63 75
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4860.61 8979.05 2190.30 3055.54 4388.32 3273.48 5387.03 4584.83 143
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4962.82 5573.96 6390.50 2453.20 7488.35 3174.02 4887.05 4486.13 93
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 5062.82 5573.55 6890.56 2249.80 11688.24 3374.02 4887.03 4586.32 87
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6260.37 9679.89 1889.38 4954.97 4885.58 9976.12 3184.94 6686.33 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5262.81 5773.30 7090.58 2149.90 11488.21 3473.78 5087.03 4586.29 90
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4286.57 76
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3562.57 6073.09 7989.97 4150.90 10987.48 5275.30 3686.85 5087.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 4261.98 7473.06 8088.88 5553.72 6889.06 2368.27 7988.04 3887.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5764.55 2372.17 9890.01 4047.95 13688.01 4071.55 6586.74 5286.37 81
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7462.44 6472.68 8990.50 2448.18 13487.34 5373.59 5285.71 6284.76 147
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13760.76 1586.56 7567.86 8687.87 4186.06 95
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21180.97 13065.13 1575.77 3690.88 1748.63 12986.66 7177.23 2488.17 3384.81 144
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6661.71 7672.45 9690.34 2948.48 13288.13 3572.32 5886.85 5085.78 104
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9662.90 5271.77 10190.26 3146.61 16086.55 7671.71 6385.66 6384.97 140
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 8067.78 370.09 11686.34 10354.92 4988.90 2572.68 5784.55 6987.76 37
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5356.32 17474.05 6188.98 5453.34 7387.92 4369.23 7688.42 2887.59 44
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12155.86 18274.93 4588.81 5653.70 6984.68 12075.24 3888.33 3083.65 184
CS-MVS76.25 4075.98 3977.06 5080.15 11755.63 12084.51 3583.90 5963.24 4573.30 7087.27 7955.06 4686.30 8571.78 6284.58 6889.25 4
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22151.83 18679.67 11185.08 3565.02 1975.84 3588.58 6059.42 2285.08 11072.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9759.99 10675.10 4190.35 2847.66 14186.52 7771.64 6482.99 8284.47 153
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4663.04 4969.80 12689.74 4645.43 17387.16 5972.01 6082.87 8785.14 133
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10888.54 2870.79 6889.71 1787.79 36
EC-MVSNet75.84 4575.87 4275.74 7278.86 14652.65 16883.73 5086.08 1763.47 4272.77 8887.25 8053.13 7587.93 4271.97 6185.57 6486.66 73
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16289.24 5142.03 20489.38 1964.07 12086.50 5789.69 2
CS-MVS-test75.62 4775.31 4776.56 5880.63 10655.13 13083.88 4885.22 2862.05 7171.49 10586.03 11353.83 6486.36 8367.74 8886.91 4988.19 22
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16972.46 9486.76 8556.89 3487.86 4566.36 10288.91 2583.64 185
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 8158.41 13573.71 6690.14 3345.62 16685.99 8969.64 7282.85 8885.78 104
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7878.57 16958.58 13274.32 5884.51 14755.94 4187.22 5567.11 9684.48 7185.52 116
casdiffmvspermissive74.80 5174.89 5274.53 10075.59 23350.37 20578.17 13285.06 3762.80 5874.40 5687.86 7057.88 2783.61 14069.46 7582.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS74.76 5274.46 5575.65 7577.84 18152.25 17775.59 19584.17 5163.76 3873.15 7582.79 17659.58 2086.80 6767.24 9586.04 6187.89 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5374.25 5776.19 6380.81 10259.01 6782.60 6683.64 6863.74 3972.52 9287.49 7447.18 15185.88 9269.47 7480.78 10583.66 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mamv474.72 5474.09 5976.61 5679.86 12153.06 16279.89 10585.13 3455.66 19172.81 8585.24 13353.83 6488.07 3867.77 8786.63 5688.71 9
sasdasda74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6260.30 10077.15 2986.56 9659.65 1782.00 17666.01 10682.12 9388.58 12
canonicalmvs74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6260.30 10077.15 2986.56 9659.65 1782.00 17666.01 10682.12 9388.58 12
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12353.09 16179.97 10185.21 2955.21 20372.81 8585.37 13253.93 6187.17 5867.93 8586.46 5888.80 7
baseline74.61 5874.70 5374.34 10475.70 22949.99 21477.54 14984.63 4562.73 5973.98 6287.79 7357.67 3083.82 13669.49 7382.74 9089.20 6
SR-MVS-dyc-post74.57 5973.90 6276.58 5783.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3444.74 18085.84 9368.20 8081.76 10084.03 163
dcpmvs_274.55 6075.23 4872.48 15682.34 7753.34 15577.87 13881.46 10957.80 15075.49 3786.81 8462.22 1377.75 25571.09 6782.02 9686.34 83
ETV-MVS74.46 6173.84 6476.33 6279.27 13555.24 12979.22 11685.00 4064.97 2172.65 9079.46 25153.65 7287.87 4467.45 9482.91 8585.89 101
HQP_MVS74.31 6273.73 6576.06 6481.41 9056.31 10284.22 4084.01 5464.52 2569.27 13486.10 11045.26 17787.21 5668.16 8280.58 10984.65 148
HPM-MVS_fast74.30 6373.46 6976.80 5284.45 6059.04 6683.65 5281.05 12760.15 10370.43 11289.84 4341.09 22085.59 9867.61 9182.90 8685.77 107
MVS_111021_HR74.02 6473.46 6975.69 7383.01 7260.63 4077.29 15778.40 18061.18 8270.58 11185.97 11554.18 5784.00 13367.52 9382.98 8482.45 211
bld_raw_dy_0_6474.00 6573.69 6774.93 8680.28 10950.00 21377.56 14785.20 3155.84 18472.52 9284.05 15553.90 6286.60 7267.59 9286.28 6088.18 24
MG-MVS73.96 6673.89 6374.16 10985.65 4249.69 21981.59 8381.29 12061.45 7871.05 10888.11 6351.77 9687.73 4761.05 14983.09 8085.05 137
alignmvs73.86 6773.99 6173.45 13678.20 16750.50 20478.57 12482.43 9459.40 11776.57 3286.71 8956.42 3881.23 19365.84 10981.79 9988.62 10
MSLP-MVS++73.77 6873.47 6874.66 9383.02 7159.29 5882.30 7481.88 10159.34 11971.59 10486.83 8345.94 16483.65 13965.09 11485.22 6581.06 239
iter_conf0573.64 6973.08 7275.33 8178.05 17450.61 19979.76 10884.74 4455.66 19172.19 9785.10 13453.98 5887.65 4968.56 7879.69 12187.73 38
iter_conf05_1173.59 7072.85 7575.78 6979.66 12752.10 17977.08 16385.14 3353.83 23071.33 10682.77 17752.74 7988.08 3766.45 10186.68 5587.17 57
HQP-MVS73.45 7172.80 7675.40 7980.66 10354.94 13182.31 7183.90 5962.10 6867.85 15785.54 12845.46 17186.93 6467.04 9780.35 11384.32 155
CLD-MVS73.33 7272.68 7775.29 8478.82 14853.33 15678.23 12984.79 4361.30 8170.41 11381.04 21952.41 8587.12 6064.61 11982.49 9285.41 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+73.31 7372.54 7975.62 7677.87 17953.64 14779.62 11379.61 14861.63 7772.02 10082.61 18256.44 3785.97 9063.99 12379.07 13487.25 56
UA-Net73.13 7472.93 7473.76 11983.58 6451.66 18778.75 11977.66 19067.75 472.61 9189.42 4749.82 11583.29 14553.61 20283.14 7986.32 87
EPNet73.09 7572.16 8275.90 6775.95 22756.28 10483.05 5672.39 26066.53 1065.27 21087.00 8150.40 11185.47 10462.48 13786.32 5985.94 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n73.01 7672.59 7874.27 10771.28 30355.88 11478.21 13175.56 22054.31 22374.86 4887.80 7254.72 5180.23 21778.07 2178.48 14386.70 70
nrg03072.96 7773.01 7372.84 14975.41 23650.24 20680.02 9982.89 9058.36 13774.44 5586.73 8758.90 2480.83 20365.84 10974.46 18587.44 48
test_fmvsmconf0.1_n72.81 7872.33 8174.24 10869.89 32355.81 11578.22 13075.40 22354.17 22575.00 4488.03 6853.82 6680.23 21778.08 2078.34 14686.69 71
CPTT-MVS72.78 7972.08 8474.87 8984.88 5761.41 2684.15 4377.86 18655.27 20067.51 16888.08 6541.93 20681.85 17969.04 7780.01 11781.35 232
LPG-MVS_test72.74 8071.74 8675.76 7080.22 11257.51 8682.55 6783.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
h-mvs3372.71 8171.49 9076.40 5981.99 8259.58 5276.92 16876.74 20660.40 9374.81 4985.95 11745.54 16985.76 9570.41 7070.61 24183.86 172
PAPM_NR72.63 8271.80 8575.13 8581.72 8553.42 15479.91 10483.28 8259.14 12166.31 19185.90 11851.86 9486.06 8657.45 17080.62 10785.91 100
VDD-MVS72.50 8372.09 8373.75 12181.58 8649.69 21977.76 14377.63 19163.21 4773.21 7389.02 5342.14 20383.32 14461.72 14482.50 9188.25 19
3Dnovator64.47 572.49 8471.39 9375.79 6877.70 18458.99 6880.66 9383.15 8562.24 6665.46 20686.59 9442.38 20285.52 10059.59 16184.72 6782.85 204
MGCFI-Net72.45 8573.34 7169.81 21777.77 18343.21 28975.84 19281.18 12459.59 11575.45 3886.64 9057.74 2877.94 25063.92 12481.90 9888.30 17
MVS_Test72.45 8572.46 8072.42 16074.88 24248.50 23576.28 18083.14 8659.40 11772.46 9484.68 13955.66 4281.12 19465.98 10879.66 12287.63 42
EI-MVSNet-Vis-set72.42 8771.59 8774.91 8778.47 15754.02 14177.05 16479.33 15465.03 1871.68 10379.35 25452.75 7884.89 11666.46 10074.23 18985.83 103
ACMP63.53 672.30 8871.20 9875.59 7880.28 10957.54 8482.74 6382.84 9160.58 9065.24 21486.18 10739.25 23486.03 8866.95 9976.79 16683.22 193
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PS-MVSNAJss72.24 8971.21 9775.31 8278.50 15555.93 11281.63 8082.12 9856.24 17770.02 12085.68 12447.05 15384.34 12665.27 11374.41 18885.67 111
Vis-MVSNetpermissive72.18 9071.37 9474.61 9681.29 9355.41 12680.90 8978.28 18260.73 8869.23 13788.09 6444.36 18582.65 16457.68 16881.75 10285.77 107
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n72.17 9171.50 8974.16 10967.96 34055.58 12378.06 13574.67 23854.19 22474.54 5488.23 6150.35 11380.24 21678.07 2177.46 15586.65 74
API-MVS72.17 9171.41 9274.45 10281.95 8357.22 8984.03 4580.38 13959.89 11068.40 14682.33 19149.64 11787.83 4651.87 21684.16 7578.30 274
EPP-MVSNet72.16 9371.31 9674.71 9078.68 15249.70 21782.10 7581.65 10560.40 9365.94 19685.84 12051.74 9786.37 8255.93 17979.55 12588.07 28
DP-MVS Recon72.15 9470.73 10676.40 5986.57 2457.99 7981.15 8882.96 8757.03 15866.78 18085.56 12544.50 18388.11 3651.77 21880.23 11683.10 199
EI-MVSNet-UG-set71.92 9571.06 10174.52 10177.98 17753.56 14976.62 17379.16 15564.40 2771.18 10778.95 25952.19 8984.66 12265.47 11273.57 20085.32 127
VDDNet71.81 9671.33 9573.26 14382.80 7547.60 24778.74 12075.27 22559.59 11572.94 8289.40 4841.51 21483.91 13458.75 16582.99 8288.26 18
EIA-MVS71.78 9770.60 10775.30 8379.85 12253.54 15077.27 15883.26 8357.92 14766.49 18679.39 25252.07 9186.69 7060.05 15579.14 13385.66 112
LFMVS71.78 9771.59 8772.32 16183.40 6746.38 25679.75 10971.08 26964.18 3272.80 8788.64 5942.58 19983.72 13757.41 17184.49 7086.86 65
test_fmvsm_n_192071.73 9971.14 9973.50 13372.52 28056.53 10175.60 19476.16 21048.11 29677.22 2885.56 12553.10 7677.43 25974.86 4077.14 16186.55 77
PAPR71.72 10070.82 10474.41 10381.20 9751.17 18979.55 11483.33 7955.81 18666.93 17984.61 14350.95 10786.06 8655.79 18279.20 13186.00 96
IS-MVSNet71.57 10171.00 10273.27 14278.86 14645.63 26780.22 9778.69 16664.14 3566.46 18787.36 7649.30 12085.60 9750.26 22983.71 7888.59 11
MAR-MVS71.51 10270.15 11775.60 7781.84 8459.39 5581.38 8582.90 8954.90 21368.08 15478.70 26047.73 13985.51 10151.68 22084.17 7481.88 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer71.50 10370.38 11274.88 8878.76 14957.15 9482.79 6178.48 17351.26 25869.49 12983.22 17143.99 18883.24 14666.06 10479.37 12684.23 158
PVSNet_Blended_VisFu71.45 10470.39 11174.65 9482.01 8058.82 7179.93 10380.35 14055.09 20665.82 20282.16 19749.17 12382.64 16560.34 15378.62 14282.50 210
OMC-MVS71.40 10570.60 10773.78 11776.60 21753.15 15879.74 11079.78 14458.37 13668.75 14186.45 10145.43 17380.60 20762.58 13577.73 15187.58 45
mvsmamba71.15 10669.54 12575.99 6577.61 19353.46 15281.95 7775.11 23157.73 15166.95 17885.96 11637.14 25987.56 5167.94 8475.49 18186.97 61
UniMVSNet_NR-MVSNet71.11 10771.00 10271.44 18079.20 13744.13 27976.02 18882.60 9366.48 1168.20 14984.60 14456.82 3582.82 16054.62 19370.43 24387.36 54
hse-mvs271.04 10869.86 12074.60 9779.58 12857.12 9673.96 22775.25 22660.40 9374.81 4981.95 20245.54 16982.90 15370.41 7066.83 29283.77 177
GeoE71.01 10970.15 11773.60 13179.57 12952.17 17878.93 11878.12 18358.02 14367.76 16583.87 16052.36 8682.72 16256.90 17375.79 17685.92 99
fmvsm_l_conf0.5_n70.99 11070.82 10471.48 17871.45 29654.40 13877.18 16070.46 27548.67 28775.17 4086.86 8253.77 6776.86 27076.33 3077.51 15483.17 198
PCF-MVS61.88 870.95 11169.49 12775.35 8077.63 18855.71 11776.04 18781.81 10350.30 26969.66 12785.40 13152.51 8284.89 11651.82 21780.24 11585.45 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmvis_n_192070.84 11270.38 11272.22 16371.16 30455.39 12775.86 19072.21 26249.03 28373.28 7286.17 10851.83 9577.29 26275.80 3278.05 14883.98 166
114514_t70.83 11369.56 12474.64 9586.21 3154.63 13682.34 7081.81 10348.22 29463.01 24785.83 12140.92 22187.10 6157.91 16779.79 11882.18 216
FIs70.82 11471.43 9168.98 23078.33 16438.14 33276.96 16683.59 7061.02 8367.33 17086.73 8755.07 4581.64 18254.61 19579.22 13087.14 59
ACMM61.98 770.80 11569.73 12274.02 11180.59 10858.59 7482.68 6482.02 10055.46 19767.18 17384.39 14938.51 24183.17 14860.65 15176.10 17380.30 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
diffmvspermissive70.69 11670.43 11071.46 17969.45 32848.95 22972.93 24378.46 17557.27 15571.69 10283.97 15951.48 10077.92 25270.70 6977.95 15087.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)70.63 11770.20 11571.89 16678.55 15445.29 27075.94 18982.92 8863.68 4068.16 15183.59 16653.89 6383.49 14353.97 19871.12 23686.89 64
xiu_mvs_v2_base70.52 11869.75 12172.84 14981.21 9655.63 12075.11 20578.92 16054.92 21269.96 12379.68 24647.00 15782.09 17561.60 14679.37 12680.81 244
PS-MVSNAJ70.51 11969.70 12372.93 14781.52 8755.79 11674.92 21179.00 15855.04 21169.88 12478.66 26147.05 15382.19 17361.61 14579.58 12380.83 243
fmvsm_l_conf0.5_n_a70.50 12070.27 11471.18 19071.30 30254.09 14076.89 16969.87 27847.90 30074.37 5786.49 9953.07 7776.69 27575.41 3577.11 16282.76 205
v2v48270.50 12069.45 12973.66 12672.62 27750.03 21277.58 14580.51 13759.90 10769.52 12882.14 19847.53 14484.88 11865.07 11570.17 25086.09 94
v114470.42 12269.31 13073.76 11973.22 26550.64 19877.83 14181.43 11058.58 13269.40 13281.16 21647.53 14485.29 10964.01 12270.64 23985.34 126
TranMVSNet+NR-MVSNet70.36 12370.10 11971.17 19178.64 15342.97 29276.53 17581.16 12666.95 668.53 14585.42 13051.61 9983.07 14952.32 21069.70 26287.46 47
v870.33 12469.28 13173.49 13473.15 26750.22 20778.62 12380.78 13360.79 8666.45 18882.11 20049.35 11984.98 11363.58 12968.71 27785.28 129
Fast-Effi-MVS+70.28 12569.12 13473.73 12278.50 15551.50 18875.01 20879.46 15256.16 17968.59 14279.55 24953.97 5984.05 12953.34 20477.53 15385.65 113
X-MVStestdata70.21 12667.28 17579.00 2386.32 2962.62 1185.83 2283.92 5764.55 2372.17 986.49 40647.95 13688.01 4071.55 6586.74 5286.37 81
v1070.21 12669.02 13573.81 11673.51 26450.92 19378.74 12081.39 11160.05 10566.39 18981.83 20547.58 14385.41 10762.80 13468.86 27685.09 136
QAPM70.05 12868.81 13973.78 11776.54 21953.43 15383.23 5483.48 7252.89 23965.90 19886.29 10441.55 21386.49 7951.01 22378.40 14581.42 226
DU-MVS70.01 12969.53 12671.44 18078.05 17444.13 27975.01 20881.51 10864.37 2868.20 14984.52 14549.12 12682.82 16054.62 19370.43 24387.37 52
AdaColmapbinary69.99 13068.66 14373.97 11384.94 5457.83 8082.63 6578.71 16556.28 17664.34 22884.14 15241.57 21187.06 6346.45 26178.88 13577.02 293
v119269.97 13168.68 14273.85 11473.19 26650.94 19177.68 14481.36 11357.51 15368.95 14080.85 22645.28 17685.33 10862.97 13370.37 24585.27 130
Anonymous2024052969.91 13269.02 13572.56 15480.19 11547.65 24577.56 14780.99 12955.45 19869.88 12486.76 8539.24 23582.18 17454.04 19777.10 16387.85 32
patch_mono-269.85 13371.09 10066.16 26479.11 14154.80 13571.97 25974.31 24353.50 23470.90 10984.17 15157.63 3163.31 34366.17 10382.02 9680.38 250
FA-MVS(test-final)69.82 13468.48 14673.84 11578.44 15850.04 21175.58 19778.99 15958.16 13967.59 16682.14 19842.66 19785.63 9656.60 17476.19 17285.84 102
FC-MVSNet-test69.80 13570.58 10967.46 24677.61 19334.73 36376.05 18683.19 8460.84 8565.88 20086.46 10054.52 5480.76 20652.52 20978.12 14786.91 63
v14419269.71 13668.51 14573.33 14173.10 26850.13 20977.54 14980.64 13456.65 16368.57 14480.55 22946.87 15884.96 11562.98 13269.66 26384.89 142
test_yl69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16142.44 20082.87 15654.97 18979.72 11985.48 118
DCV-MVSNet69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16142.44 20082.87 15654.97 18979.72 11985.48 118
VNet69.68 13970.19 11668.16 24079.73 12541.63 30570.53 27877.38 19660.37 9670.69 11086.63 9251.08 10577.09 26553.61 20281.69 10485.75 109
jason69.65 14068.39 15273.43 13878.27 16656.88 9877.12 16173.71 25146.53 31569.34 13383.22 17143.37 19279.18 23064.77 11679.20 13184.23 158
jason: jason.
Effi-MVS+-dtu69.64 14167.53 16575.95 6676.10 22562.29 1580.20 9876.06 21459.83 11165.26 21377.09 28741.56 21284.02 13260.60 15271.09 23781.53 225
fmvsm_s_conf0.5_n69.58 14268.84 13871.79 17072.31 28652.90 16477.90 13762.43 33649.97 27372.85 8485.90 11852.21 8876.49 27875.75 3370.26 24985.97 97
lupinMVS69.57 14368.28 15373.44 13778.76 14957.15 9476.57 17473.29 25446.19 31869.49 12982.18 19443.99 18879.23 22964.66 11779.37 12683.93 167
fmvsm_s_conf0.5_n_a69.54 14468.74 14171.93 16572.47 28253.82 14478.25 12862.26 33849.78 27573.12 7886.21 10652.66 8076.79 27275.02 3968.88 27485.18 132
NR-MVSNet69.54 14468.85 13771.59 17778.05 17443.81 28374.20 22380.86 13265.18 1462.76 24984.52 14552.35 8783.59 14150.96 22570.78 23887.37 52
MVS_111021_LR69.50 14668.78 14071.65 17578.38 16059.33 5674.82 21370.11 27758.08 14067.83 16184.68 13941.96 20576.34 28265.62 11177.54 15279.30 267
v192192069.47 14768.17 15473.36 14073.06 26950.10 21077.39 15280.56 13556.58 17068.59 14280.37 23144.72 18184.98 11362.47 13869.82 25885.00 138
test_djsdf69.45 14867.74 15874.58 9874.57 25254.92 13382.79 6178.48 17351.26 25865.41 20783.49 16938.37 24383.24 14666.06 10469.25 26985.56 115
fmvsm_s_conf0.1_n69.41 14968.60 14471.83 16871.07 30552.88 16577.85 14062.44 33549.58 27772.97 8186.22 10551.68 9876.48 27975.53 3470.10 25286.14 92
fmvsm_s_conf0.1_n_a69.32 15068.44 15071.96 16470.91 30753.78 14578.12 13362.30 33749.35 27973.20 7486.55 9851.99 9276.79 27274.83 4168.68 27985.32 127
Anonymous2023121169.28 15168.47 14871.73 17280.28 10947.18 25179.98 10082.37 9554.61 21667.24 17184.01 15739.43 23182.41 17155.45 18772.83 21485.62 114
EI-MVSNet69.27 15268.44 15071.73 17274.47 25349.39 22475.20 20378.45 17659.60 11269.16 13876.51 29851.29 10182.50 16859.86 16071.45 23383.30 190
v124069.24 15367.91 15773.25 14473.02 27149.82 21577.21 15980.54 13656.43 17268.34 14880.51 23043.33 19384.99 11162.03 14269.77 26184.95 141
IterMVS-LS69.22 15468.48 14671.43 18274.44 25549.40 22376.23 18177.55 19259.60 11265.85 20181.59 21151.28 10281.58 18559.87 15969.90 25783.30 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet69.02 15569.47 12867.69 24477.42 19941.00 31074.04 22579.68 14660.06 10469.26 13684.81 13851.06 10677.58 25754.44 19674.43 18784.48 152
v7n69.01 15667.36 17273.98 11272.51 28152.65 16878.54 12681.30 11960.26 10262.67 25181.62 20843.61 19084.49 12357.01 17268.70 27884.79 145
OpenMVScopyleft61.03 968.85 15767.56 16272.70 15374.26 25953.99 14281.21 8781.34 11752.70 24062.75 25085.55 12738.86 23984.14 12848.41 24583.01 8179.97 256
XVG-OURS-SEG-HR68.81 15867.47 16872.82 15174.40 25656.87 9970.59 27779.04 15754.77 21466.99 17686.01 11439.57 23078.21 24762.54 13673.33 20683.37 189
BH-RMVSNet68.81 15867.42 16972.97 14680.11 11852.53 17274.26 22276.29 20958.48 13468.38 14784.20 15042.59 19883.83 13546.53 26075.91 17482.56 206
UGNet68.81 15867.39 17073.06 14578.33 16454.47 13779.77 10775.40 22360.45 9263.22 24184.40 14832.71 30680.91 20251.71 21980.56 11183.81 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS68.76 16167.37 17172.90 14874.32 25857.22 8970.09 28478.81 16255.24 20167.79 16385.81 12336.54 26678.28 24662.04 14175.74 17783.19 195
V4268.65 16267.35 17372.56 15468.93 33450.18 20872.90 24479.47 15156.92 16069.45 13180.26 23546.29 16282.99 15064.07 12067.82 28484.53 150
PVSNet_Blended68.59 16367.72 15971.19 18977.03 20950.57 20072.51 25181.52 10651.91 24764.22 23477.77 28049.13 12482.87 15655.82 18079.58 12380.14 254
xiu_mvs_v1_base_debu68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12677.31 15681.22 234
xiu_mvs_v1_base68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12677.31 15681.22 234
xiu_mvs_v1_base_debi68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12677.31 15681.22 234
PVSNet_BlendedMVS68.56 16767.72 15971.07 19477.03 20950.57 20074.50 21981.52 10653.66 23364.22 23479.72 24549.13 12482.87 15655.82 18073.92 19379.77 262
WR-MVS68.47 16868.47 14868.44 23780.20 11439.84 31673.75 23576.07 21364.68 2268.11 15383.63 16550.39 11279.14 23549.78 23069.66 26386.34 83
AUN-MVS68.45 16966.41 19274.57 9979.53 13057.08 9773.93 23075.23 22754.44 22166.69 18381.85 20437.10 26182.89 15462.07 14066.84 29183.75 178
c3_l68.33 17067.56 16270.62 20170.87 30846.21 25974.47 22078.80 16356.22 17866.19 19278.53 26651.88 9381.40 18762.08 13969.04 27284.25 157
BH-untuned68.27 17167.29 17471.21 18879.74 12453.22 15776.06 18577.46 19557.19 15666.10 19381.61 20945.37 17583.50 14245.42 27676.68 16876.91 297
jajsoiax68.25 17266.45 18873.66 12675.62 23155.49 12580.82 9078.51 17252.33 24464.33 22984.11 15328.28 34081.81 18163.48 13070.62 24083.67 181
v14868.24 17367.19 18171.40 18370.43 31347.77 24475.76 19377.03 20158.91 12467.36 16980.10 23848.60 13181.89 17860.01 15666.52 29584.53 150
CANet_DTU68.18 17467.71 16169.59 22074.83 24446.24 25878.66 12276.85 20359.60 11263.45 24082.09 20135.25 27477.41 26059.88 15878.76 13985.14 133
mvs_tets68.18 17466.36 19473.63 12975.61 23255.35 12880.77 9178.56 17052.48 24364.27 23184.10 15427.45 34681.84 18063.45 13170.56 24283.69 180
SDMVSNet68.03 17668.10 15667.84 24277.13 20548.72 23365.32 32179.10 15658.02 14365.08 21782.55 18447.83 13873.40 29463.92 12473.92 19381.41 227
miper_ehance_all_eth68.03 17667.24 17970.40 20570.54 31146.21 25973.98 22678.68 16755.07 20966.05 19477.80 27752.16 9081.31 19061.53 14869.32 26683.67 181
mvs_anonymous68.03 17667.51 16669.59 22072.08 28844.57 27771.99 25875.23 22751.67 24867.06 17582.57 18354.68 5277.94 25056.56 17575.71 17886.26 91
ET-MVSNet_ETH3D67.96 17965.72 20674.68 9276.67 21555.62 12275.11 20574.74 23652.91 23860.03 27980.12 23733.68 29282.64 16561.86 14376.34 17085.78 104
thisisatest053067.92 18065.78 20574.33 10576.29 22251.03 19076.89 16974.25 24553.67 23265.59 20481.76 20635.15 27585.50 10255.94 17872.47 21986.47 78
PAPM67.92 18066.69 18571.63 17678.09 17249.02 22777.09 16281.24 12351.04 26160.91 27383.98 15847.71 14084.99 11140.81 30879.32 12980.90 242
tttt051767.83 18265.66 20774.33 10576.69 21450.82 19577.86 13973.99 24854.54 21964.64 22682.53 18735.06 27685.50 10255.71 18369.91 25686.67 72
tt080567.77 18367.24 17969.34 22574.87 24340.08 31377.36 15381.37 11255.31 19966.33 19084.65 14137.35 25482.55 16755.65 18572.28 22485.39 125
ECVR-MVScopyleft67.72 18467.51 16668.35 23879.46 13136.29 35574.79 21466.93 30258.72 12767.19 17288.05 6636.10 26781.38 18852.07 21384.25 7287.39 50
eth_miper_zixun_eth67.63 18566.28 19871.67 17471.60 29448.33 23773.68 23677.88 18555.80 18765.91 19778.62 26447.35 15082.88 15559.45 16266.25 29683.81 173
UniMVSNet_ETH3D67.60 18667.07 18369.18 22977.39 20042.29 29674.18 22475.59 21960.37 9666.77 18186.06 11237.64 25078.93 24252.16 21273.49 20286.32 87
VPNet67.52 18768.11 15565.74 27379.18 13836.80 34772.17 25672.83 25762.04 7267.79 16385.83 12148.88 12876.60 27751.30 22172.97 21383.81 173
cl2267.47 18866.45 18870.54 20369.85 32446.49 25573.85 23377.35 19755.07 20965.51 20577.92 27347.64 14281.10 19561.58 14769.32 26684.01 165
Fast-Effi-MVS+-dtu67.37 18965.33 21273.48 13572.94 27257.78 8277.47 15176.88 20257.60 15261.97 26276.85 29139.31 23280.49 21154.72 19270.28 24882.17 218
MVS67.37 18966.33 19570.51 20475.46 23550.94 19173.95 22881.85 10241.57 35562.54 25578.57 26547.98 13585.47 10452.97 20782.05 9575.14 310
test111167.21 19167.14 18267.42 24779.24 13634.76 36273.89 23265.65 31158.71 12966.96 17787.95 6936.09 26880.53 20852.03 21483.79 7786.97 61
GBi-Net67.21 19166.55 18669.19 22677.63 18843.33 28677.31 15477.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
test167.21 19166.55 18669.19 22677.63 18843.33 28677.31 15477.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
cl____67.18 19466.26 19969.94 21270.20 31645.74 26373.30 23876.83 20455.10 20465.27 21079.57 24847.39 14880.53 20859.41 16469.22 27083.53 187
DIV-MVS_self_test67.18 19466.26 19969.94 21270.20 31645.74 26373.29 23976.83 20455.10 20465.27 21079.58 24747.38 14980.53 20859.43 16369.22 27083.54 186
MVSTER67.16 19665.58 20971.88 16770.37 31549.70 21770.25 28378.45 17651.52 25269.16 13880.37 23138.45 24282.50 16860.19 15471.46 23283.44 188
miper_enhance_ethall67.11 19766.09 20170.17 20969.21 33145.98 26172.85 24578.41 17951.38 25565.65 20375.98 30651.17 10481.25 19160.82 15069.32 26683.29 192
Baseline_NR-MVSNet67.05 19867.56 16265.50 27675.65 23037.70 33875.42 19874.65 23959.90 10768.14 15283.15 17449.12 12677.20 26352.23 21169.78 25981.60 224
WR-MVS_H67.02 19966.92 18467.33 25077.95 17837.75 33677.57 14682.11 9962.03 7362.65 25282.48 18850.57 11079.46 22542.91 29664.01 31384.79 145
anonymousdsp67.00 20064.82 21773.57 13270.09 31956.13 10776.35 17877.35 19748.43 29264.99 22280.84 22733.01 29980.34 21264.66 11767.64 28684.23 158
FMVSNet266.93 20166.31 19768.79 23377.63 18842.98 29176.11 18377.47 19356.62 16665.22 21682.17 19641.85 20780.18 21947.05 25872.72 21883.20 194
BH-w/o66.85 20265.83 20469.90 21579.29 13352.46 17474.66 21776.65 20754.51 22064.85 22378.12 26745.59 16882.95 15243.26 29275.54 18074.27 323
Anonymous20240521166.84 20365.99 20269.40 22480.19 11542.21 29871.11 27271.31 26858.80 12667.90 15586.39 10229.83 32879.65 22249.60 23678.78 13886.33 85
CDS-MVSNet66.80 20465.37 21071.10 19378.98 14353.13 16073.27 24071.07 27052.15 24664.72 22480.23 23643.56 19177.10 26445.48 27478.88 13583.05 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS66.78 20565.27 21371.33 18779.16 14053.67 14673.84 23469.59 28252.32 24565.28 20981.72 20744.49 18477.40 26142.32 30078.66 14182.92 201
FMVSNet166.70 20665.87 20369.19 22677.49 19743.33 28677.31 15477.83 18756.45 17164.60 22782.70 17838.08 24880.33 21346.08 26472.31 22383.92 168
ab-mvs66.65 20766.42 19167.37 24876.17 22441.73 30270.41 28176.14 21253.99 22765.98 19583.51 16849.48 11876.24 28348.60 24373.46 20484.14 161
PEN-MVS66.60 20866.45 18867.04 25177.11 20736.56 34977.03 16580.42 13862.95 5062.51 25784.03 15646.69 15979.07 23644.22 28063.08 32385.51 117
TAPA-MVS59.36 1066.60 20865.20 21470.81 19776.63 21648.75 23176.52 17680.04 14350.64 26665.24 21484.93 13639.15 23678.54 24336.77 33076.88 16585.14 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS66.59 21065.07 21571.17 19179.18 13849.63 22173.48 23775.20 22952.95 23767.90 15580.33 23439.81 22883.68 13843.20 29373.56 20180.20 252
CP-MVSNet66.49 21166.41 19266.72 25377.67 18636.33 35276.83 17279.52 15062.45 6362.54 25583.47 17046.32 16178.37 24445.47 27563.43 32085.45 120
PS-CasMVS66.42 21266.32 19666.70 25577.60 19536.30 35476.94 16779.61 14862.36 6562.43 25983.66 16445.69 16578.37 24445.35 27763.26 32185.42 123
FMVSNet366.32 21365.61 20868.46 23676.48 22042.34 29574.98 21077.15 20055.83 18565.04 21981.16 21639.91 22580.14 22047.18 25572.76 21582.90 203
ACMH+57.40 1166.12 21464.06 22172.30 16277.79 18252.83 16680.39 9478.03 18457.30 15457.47 30782.55 18427.68 34484.17 12745.54 27169.78 25979.90 257
cascas65.98 21563.42 23273.64 12877.26 20352.58 17172.26 25577.21 19948.56 28861.21 27174.60 31932.57 31185.82 9450.38 22876.75 16782.52 209
FE-MVS65.91 21663.33 23473.63 12977.36 20151.95 18572.62 24875.81 21553.70 23165.31 20878.96 25828.81 33786.39 8143.93 28573.48 20382.55 207
thisisatest051565.83 21763.50 23172.82 15173.75 26249.50 22271.32 26673.12 25649.39 27863.82 23676.50 30034.95 27884.84 11953.20 20675.49 18184.13 162
DP-MVS65.68 21863.66 22971.75 17184.93 5556.87 9980.74 9273.16 25553.06 23659.09 29382.35 19036.79 26585.94 9132.82 35369.96 25572.45 337
HyFIR lowres test65.67 21963.01 23873.67 12579.97 12055.65 11969.07 29375.52 22142.68 34963.53 23977.95 27140.43 22381.64 18246.01 26571.91 22783.73 179
DTE-MVSNet65.58 22065.34 21166.31 26076.06 22634.79 36076.43 17779.38 15362.55 6161.66 26783.83 16145.60 16779.15 23441.64 30760.88 33885.00 138
GA-MVS65.53 22163.70 22871.02 19570.87 30848.10 23970.48 27974.40 24156.69 16264.70 22576.77 29233.66 29381.10 19555.42 18870.32 24783.87 171
CNLPA65.43 22264.02 22269.68 21878.73 15158.07 7877.82 14270.71 27351.49 25361.57 26983.58 16738.23 24670.82 30743.90 28670.10 25280.16 253
MVP-Stereo65.41 22363.80 22670.22 20677.62 19255.53 12476.30 17978.53 17150.59 26756.47 31678.65 26239.84 22782.68 16344.10 28472.12 22672.44 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IB-MVS56.42 1265.40 22462.73 24273.40 13974.89 24152.78 16773.09 24275.13 23055.69 18958.48 30173.73 32432.86 30186.32 8450.63 22670.11 25181.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250665.33 22564.61 21867.50 24579.46 13134.19 36774.43 22151.92 37458.72 12766.75 18288.05 6625.99 35780.92 20151.94 21584.25 7287.39 50
pm-mvs165.24 22664.97 21666.04 26872.38 28339.40 32272.62 24875.63 21855.53 19562.35 26183.18 17347.45 14676.47 28049.06 24066.54 29482.24 215
ACMH55.70 1565.20 22763.57 23070.07 21078.07 17352.01 18479.48 11579.69 14555.75 18856.59 31380.98 22127.12 34980.94 19942.90 29771.58 23177.25 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft56.13 1465.09 22863.21 23670.72 20081.04 9954.87 13478.57 12477.47 19348.51 29055.71 31981.89 20333.71 29179.71 22141.66 30570.37 24577.58 285
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 1792x268865.08 22962.84 24071.82 16981.49 8956.26 10566.32 31074.20 24640.53 36063.16 24478.65 26241.30 21577.80 25445.80 26774.09 19081.40 229
TransMVSNet (Re)64.72 23064.33 22065.87 27275.22 23838.56 32874.66 21775.08 23558.90 12561.79 26582.63 18151.18 10378.07 24943.63 28955.87 35980.99 241
EG-PatchMatch MVS64.71 23162.87 23970.22 20677.68 18553.48 15177.99 13678.82 16153.37 23556.03 31877.41 28524.75 36484.04 13046.37 26273.42 20573.14 329
LS3D64.71 23162.50 24471.34 18679.72 12655.71 11779.82 10674.72 23748.50 29156.62 31284.62 14233.59 29482.34 17229.65 37475.23 18375.97 301
131464.61 23363.21 23668.80 23271.87 29247.46 24873.95 22878.39 18142.88 34859.97 28076.60 29738.11 24779.39 22754.84 19172.32 22279.55 263
HY-MVS56.14 1364.55 23463.89 22366.55 25674.73 24741.02 30769.96 28574.43 24049.29 28061.66 26780.92 22347.43 14776.68 27644.91 27971.69 22981.94 220
testing9164.46 23563.80 22666.47 25778.43 15940.06 31467.63 30169.59 28259.06 12263.18 24378.05 26934.05 28676.99 26748.30 24675.87 17582.37 213
sd_testset64.46 23564.45 21964.51 28677.13 20542.25 29762.67 33572.11 26358.02 14365.08 21782.55 18441.22 21969.88 31547.32 25373.92 19381.41 227
XVG-ACMP-BASELINE64.36 23762.23 24770.74 19972.35 28452.45 17570.80 27678.45 17653.84 22959.87 28281.10 21816.24 38179.32 22855.64 18671.76 22880.47 247
testing9964.05 23863.29 23566.34 25978.17 17139.76 31867.33 30668.00 29558.60 13163.03 24678.10 26832.57 31176.94 26948.22 24775.58 17982.34 214
CostFormer64.04 23962.51 24368.61 23571.88 29145.77 26271.30 26770.60 27447.55 30464.31 23076.61 29641.63 21079.62 22449.74 23269.00 27380.42 248
1112_ss64.00 24063.36 23365.93 27079.28 13442.58 29471.35 26572.36 26146.41 31660.55 27577.89 27546.27 16373.28 29546.18 26369.97 25481.92 221
baseline163.81 24163.87 22563.62 29076.29 22236.36 35071.78 26267.29 29956.05 18164.23 23382.95 17547.11 15274.41 29147.30 25461.85 33280.10 255
pmmvs663.69 24262.82 24166.27 26270.63 31039.27 32373.13 24175.47 22252.69 24159.75 28682.30 19239.71 22977.03 26647.40 25264.35 31282.53 208
Vis-MVSNet (Re-imp)63.69 24263.88 22463.14 29574.75 24631.04 38171.16 27063.64 32656.32 17459.80 28484.99 13544.51 18275.46 28639.12 31780.62 10782.92 201
baseline263.42 24461.26 26069.89 21672.55 27947.62 24671.54 26368.38 29350.11 27054.82 33075.55 31143.06 19580.96 19848.13 24867.16 29081.11 237
thres40063.31 24562.18 24866.72 25376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20881.36 230
thres600view763.30 24662.27 24666.41 25877.18 20438.87 32572.35 25369.11 28956.98 15962.37 26080.96 22237.01 26379.00 24031.43 36673.05 21281.36 230
thres100view90063.28 24762.41 24565.89 27177.31 20238.66 32772.65 24669.11 28957.07 15762.45 25881.03 22037.01 26379.17 23131.84 35973.25 20879.83 259
test_040263.25 24861.01 26369.96 21180.00 11954.37 13976.86 17172.02 26454.58 21858.71 29680.79 22835.00 27784.36 12526.41 38564.71 30771.15 355
tfpn200view963.18 24962.18 24866.21 26376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20879.83 259
LTVRE_ROB55.42 1663.15 25061.23 26168.92 23176.57 21847.80 24259.92 35176.39 20854.35 22258.67 29782.46 18929.44 33281.49 18642.12 30171.14 23577.46 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
F-COLMAP63.05 25160.87 26669.58 22276.99 21153.63 14878.12 13376.16 21047.97 29952.41 34981.61 20927.87 34278.11 24840.07 31166.66 29377.00 294
testing1162.81 25261.90 25165.54 27578.38 16040.76 31167.59 30366.78 30455.48 19660.13 27777.11 28631.67 31776.79 27245.53 27274.45 18679.06 268
IterMVS62.79 25361.27 25967.35 24969.37 32952.04 18371.17 26968.24 29452.63 24259.82 28376.91 29037.32 25572.36 29852.80 20863.19 32277.66 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT62.49 25461.52 25565.40 27871.99 29050.80 19671.15 27169.63 28145.71 32460.61 27477.93 27237.45 25265.99 33555.67 18463.50 31979.42 265
tfpnnormal62.47 25561.63 25464.99 28374.81 24539.01 32471.22 26873.72 25055.22 20260.21 27680.09 23941.26 21876.98 26830.02 37268.09 28278.97 271
MS-PatchMatch62.42 25661.46 25665.31 28075.21 23952.10 17972.05 25774.05 24746.41 31657.42 30974.36 32034.35 28477.57 25845.62 27073.67 19766.26 372
Test_1112_low_res62.32 25761.77 25264.00 28979.08 14239.53 32168.17 29770.17 27643.25 34459.03 29479.90 24044.08 18671.24 30643.79 28868.42 28081.25 233
D2MVS62.30 25860.29 26868.34 23966.46 35148.42 23665.70 31373.42 25247.71 30258.16 30375.02 31530.51 32177.71 25653.96 19971.68 23078.90 272
testing22262.29 25961.31 25865.25 28177.87 17938.53 32968.34 29666.31 30856.37 17363.15 24577.58 28328.47 33876.18 28537.04 32876.65 16981.05 240
thres20062.20 26061.16 26265.34 27975.38 23739.99 31569.60 28869.29 28755.64 19461.87 26476.99 28837.07 26278.96 24131.28 36773.28 20777.06 292
tpm262.07 26160.10 26967.99 24172.79 27443.86 28271.05 27466.85 30343.14 34662.77 24875.39 31338.32 24480.80 20441.69 30468.88 27479.32 266
miper_lstm_enhance62.03 26260.88 26565.49 27766.71 34846.25 25756.29 36775.70 21750.68 26461.27 27075.48 31240.21 22468.03 32456.31 17765.25 30382.18 216
EPNet_dtu61.90 26361.97 25061.68 30372.89 27339.78 31775.85 19165.62 31255.09 20654.56 33479.36 25337.59 25167.02 32939.80 31476.95 16478.25 275
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LCM-MVSNet-Re61.88 26461.35 25763.46 29174.58 25131.48 38061.42 34258.14 35358.71 12953.02 34879.55 24943.07 19476.80 27145.69 26877.96 14982.11 219
MSDG61.81 26559.23 27369.55 22372.64 27652.63 17070.45 28075.81 21551.38 25553.70 34176.11 30229.52 33081.08 19737.70 32365.79 30074.93 315
SixPastTwentyTwo61.65 26658.80 27870.20 20875.80 22847.22 25075.59 19569.68 28054.61 21654.11 33879.26 25527.07 35082.96 15143.27 29149.79 37680.41 249
CL-MVSNet_self_test61.53 26760.94 26463.30 29368.95 33336.93 34667.60 30272.80 25855.67 19059.95 28176.63 29445.01 17972.22 30139.74 31562.09 33180.74 245
RPMNet61.53 26758.42 28170.86 19669.96 32152.07 18165.31 32281.36 11343.20 34559.36 28970.15 35035.37 27385.47 10436.42 33764.65 30875.06 311
pmmvs461.48 26959.39 27267.76 24371.57 29553.86 14371.42 26465.34 31344.20 33559.46 28877.92 27335.90 26974.71 28943.87 28764.87 30674.71 319
OurMVSNet-221017-061.37 27058.63 28069.61 21972.05 28948.06 24073.93 23072.51 25947.23 31054.74 33180.92 22321.49 37481.24 19248.57 24456.22 35879.53 264
COLMAP_ROBcopyleft52.97 1761.27 27158.81 27668.64 23474.63 25052.51 17378.42 12773.30 25349.92 27450.96 35481.51 21223.06 36779.40 22631.63 36365.85 29874.01 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XXY-MVS60.68 27261.67 25357.70 33070.43 31338.45 33064.19 32966.47 30548.05 29863.22 24180.86 22549.28 12160.47 35245.25 27867.28 28974.19 324
SCA60.49 27358.38 28266.80 25274.14 26148.06 24063.35 33263.23 32949.13 28259.33 29272.10 33337.45 25274.27 29244.17 28162.57 32678.05 278
K. test v360.47 27457.11 28970.56 20273.74 26348.22 23875.10 20762.55 33358.27 13853.62 34476.31 30127.81 34381.59 18447.42 25139.18 38981.88 222
UWE-MVS60.18 27559.78 27061.39 30877.67 18633.92 37069.04 29463.82 32448.56 28864.27 23177.64 28227.20 34870.40 31233.56 35076.24 17179.83 259
OpenMVS_ROBcopyleft52.78 1860.03 27658.14 28565.69 27470.47 31244.82 27275.33 19970.86 27245.04 32756.06 31776.00 30326.89 35279.65 22235.36 34267.29 28872.60 334
CR-MVSNet59.91 27757.90 28765.96 26969.96 32152.07 18165.31 32263.15 33042.48 35059.36 28974.84 31635.83 27070.75 30845.50 27364.65 30875.06 311
PatchmatchNetpermissive59.84 27858.24 28364.65 28573.05 27046.70 25469.42 29062.18 33947.55 30458.88 29571.96 33534.49 28269.16 31742.99 29563.60 31778.07 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WTY-MVS59.75 27960.39 26757.85 32872.32 28537.83 33561.05 34764.18 32245.95 32361.91 26379.11 25747.01 15660.88 35142.50 29969.49 26574.83 316
WB-MVSnew59.66 28059.69 27159.56 31275.19 24035.78 35769.34 29164.28 32146.88 31361.76 26675.79 30740.61 22265.20 33832.16 35571.21 23477.70 283
CVMVSNet59.63 28159.14 27461.08 31074.47 25338.84 32675.20 20368.74 29131.15 37758.24 30276.51 29832.39 31368.58 32049.77 23165.84 29975.81 303
ETVMVS59.51 28258.81 27661.58 30577.46 19834.87 35964.94 32659.35 34854.06 22661.08 27276.67 29329.54 32971.87 30332.16 35574.07 19178.01 282
tpm cat159.25 28356.95 29266.15 26572.19 28746.96 25268.09 29865.76 31040.03 36457.81 30570.56 34538.32 24474.51 29038.26 32161.50 33577.00 294
test_vis1_n_192058.86 28459.06 27558.25 32363.76 36343.14 29067.49 30466.36 30740.22 36265.89 19971.95 33631.04 31859.75 35759.94 15764.90 30571.85 346
pmmvs-eth3d58.81 28556.31 29966.30 26167.61 34252.42 17672.30 25464.76 31743.55 34154.94 32974.19 32228.95 33472.60 29743.31 29057.21 35373.88 327
tpmvs58.47 28656.95 29263.03 29770.20 31641.21 30667.90 30067.23 30049.62 27654.73 33270.84 34334.14 28576.24 28336.64 33461.29 33671.64 347
PVSNet50.76 1958.40 28757.39 28861.42 30675.53 23444.04 28161.43 34163.45 32747.04 31256.91 31073.61 32527.00 35164.76 33939.12 31772.40 22075.47 308
tpmrst58.24 28858.70 27956.84 33266.97 34534.32 36569.57 28961.14 34447.17 31158.58 30071.60 33841.28 21760.41 35349.20 23862.84 32475.78 304
Patchmatch-RL test58.16 28955.49 30566.15 26567.92 34148.89 23060.66 34951.07 37847.86 30159.36 28962.71 38034.02 28872.27 30056.41 17659.40 34577.30 288
test-LLR58.15 29058.13 28658.22 32468.57 33544.80 27365.46 31857.92 35450.08 27155.44 32269.82 35232.62 30857.44 36749.66 23473.62 19872.41 339
ppachtmachnet_test58.06 29155.38 30666.10 26769.51 32648.99 22868.01 29966.13 30944.50 33254.05 33970.74 34432.09 31572.34 29936.68 33356.71 35776.99 296
gg-mvs-nofinetune57.86 29256.43 29862.18 30172.62 27735.35 35866.57 30756.33 36350.65 26557.64 30657.10 38630.65 32076.36 28137.38 32578.88 13574.82 317
CMPMVSbinary42.80 2157.81 29355.97 30163.32 29260.98 37847.38 24964.66 32769.50 28432.06 37646.83 37077.80 27729.50 33171.36 30548.68 24273.75 19671.21 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet57.35 29457.07 29058.22 32474.21 26037.18 34162.46 33660.88 34548.88 28555.29 32575.99 30531.68 31662.04 34831.87 35872.35 22175.43 309
tpm57.34 29558.16 28454.86 34271.80 29334.77 36167.47 30556.04 36648.20 29560.10 27876.92 28937.17 25853.41 38340.76 30965.01 30476.40 300
Patchmtry57.16 29656.47 29759.23 31569.17 33234.58 36462.98 33363.15 33044.53 33156.83 31174.84 31635.83 27068.71 31940.03 31260.91 33774.39 322
AllTest57.08 29754.65 31064.39 28771.44 29749.03 22569.92 28667.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
test_cas_vis1_n_192056.91 29856.71 29557.51 33159.13 38345.40 26963.58 33161.29 34336.24 37167.14 17471.85 33729.89 32756.69 37157.65 16963.58 31870.46 359
dmvs_re56.77 29956.83 29456.61 33369.23 33041.02 30758.37 35664.18 32250.59 26757.45 30871.42 33935.54 27258.94 36137.23 32667.45 28769.87 364
testing356.54 30055.92 30258.41 32277.52 19627.93 38969.72 28756.36 36254.75 21558.63 29977.80 27720.88 37571.75 30425.31 38762.25 32975.53 307
our_test_356.49 30154.42 31362.68 29969.51 32645.48 26866.08 31161.49 34244.11 33850.73 35869.60 35533.05 29868.15 32138.38 32056.86 35474.40 321
pmmvs556.47 30255.68 30458.86 31961.41 37536.71 34866.37 30962.75 33240.38 36153.70 34176.62 29534.56 28067.05 32840.02 31365.27 30272.83 332
test-mter56.42 30355.82 30358.22 32468.57 33544.80 27365.46 31857.92 35439.94 36555.44 32269.82 35221.92 37057.44 36749.66 23473.62 19872.41 339
USDC56.35 30454.24 31762.69 29864.74 35940.31 31265.05 32473.83 24943.93 33947.58 36677.71 28115.36 38375.05 28838.19 32261.81 33372.70 333
PatchMatch-RL56.25 30554.55 31261.32 30977.06 20856.07 10965.57 31554.10 37144.13 33753.49 34771.27 34225.20 36166.78 33036.52 33663.66 31661.12 376
sss56.17 30656.57 29654.96 34166.93 34636.32 35357.94 35961.69 34141.67 35358.64 29875.32 31438.72 24056.25 37442.04 30266.19 29772.31 342
Syy-MVS56.00 30756.23 30055.32 33974.69 24826.44 39565.52 31657.49 35750.97 26256.52 31472.18 33139.89 22668.09 32224.20 38864.59 31071.44 351
FMVSNet555.86 30854.93 30858.66 32171.05 30636.35 35164.18 33062.48 33446.76 31450.66 35974.73 31825.80 35864.04 34133.11 35165.57 30175.59 306
RPSCF55.80 30954.22 31860.53 31165.13 35842.91 29364.30 32857.62 35636.84 37058.05 30482.28 19328.01 34156.24 37537.14 32758.61 34882.44 212
EU-MVSNet55.61 31054.41 31459.19 31765.41 35733.42 37272.44 25271.91 26528.81 37951.27 35273.87 32324.76 36369.08 31843.04 29458.20 34975.06 311
Anonymous2024052155.30 31154.41 31457.96 32760.92 38041.73 30271.09 27371.06 27141.18 35648.65 36473.31 32616.93 37959.25 35942.54 29864.01 31372.90 331
TESTMET0.1,155.28 31254.90 30956.42 33466.56 34943.67 28465.46 31856.27 36439.18 36753.83 34067.44 36424.21 36555.46 37848.04 24973.11 21170.13 362
KD-MVS_self_test55.22 31353.89 32059.21 31657.80 38627.47 39157.75 36174.32 24247.38 30650.90 35570.00 35128.45 33970.30 31340.44 31057.92 35079.87 258
MIMVSNet155.17 31454.31 31657.77 32970.03 32032.01 37865.68 31464.81 31649.19 28146.75 37176.00 30325.53 36064.04 34128.65 37762.13 33077.26 290
Anonymous2023120655.10 31555.30 30754.48 34469.81 32533.94 36962.91 33462.13 34041.08 35755.18 32675.65 30932.75 30556.59 37330.32 37167.86 28372.91 330
myMVS_eth3d54.86 31654.61 31155.61 33874.69 24827.31 39265.52 31657.49 35750.97 26256.52 31472.18 33121.87 37368.09 32227.70 38064.59 31071.44 351
TinyColmap54.14 31751.72 32861.40 30766.84 34741.97 29966.52 30868.51 29244.81 32842.69 38275.77 30811.66 38972.94 29631.96 35756.77 35669.27 368
EPMVS53.96 31853.69 32154.79 34366.12 35431.96 37962.34 33849.05 38144.42 33455.54 32071.33 34130.22 32456.70 37041.65 30662.54 32775.71 305
PMMVS53.96 31853.26 32456.04 33562.60 37050.92 19361.17 34556.09 36532.81 37553.51 34666.84 36934.04 28759.93 35644.14 28368.18 28157.27 384
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34359.21 34951.34 25752.09 35077.43 28433.29 29758.55 36329.76 37360.27 34373.58 328
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29666.25 35248.58 23456.93 36563.82 32448.09 29741.22 38370.48 34830.34 32368.00 32534.24 34545.92 38172.57 335
KD-MVS_2432*160053.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
miper_refine_blended53.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
TDRefinement53.44 32450.72 33361.60 30464.31 36246.96 25270.89 27565.27 31541.78 35144.61 37777.98 27011.52 39166.36 33328.57 37851.59 37071.49 350
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35254.11 37050.08 27154.40 33674.31 32132.62 30855.92 37630.50 37063.95 31572.15 344
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35754.41 36944.46 33354.56 33469.05 35833.32 29660.94 35036.93 32961.76 33470.73 358
UnsupCasMVSNet_eth53.16 32752.47 32555.23 34059.45 38233.39 37359.43 35369.13 28845.98 32050.35 36172.32 33029.30 33358.26 36542.02 30344.30 38274.05 325
PM-MVS52.33 32850.19 33658.75 32062.10 37245.14 27165.75 31240.38 39743.60 34053.52 34572.65 3289.16 39765.87 33650.41 22754.18 36465.24 374
testgi51.90 32952.37 32650.51 36260.39 38123.55 40258.42 35558.15 35249.03 28351.83 35179.21 25622.39 36855.59 37729.24 37662.64 32572.40 341
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33754.57 36844.16 33649.31 36367.91 36028.87 33656.61 37233.89 34654.89 36169.24 369
JIA-IIPM51.56 33147.68 34563.21 29464.61 36050.73 19747.71 38458.77 35142.90 34748.46 36551.72 39024.97 36270.24 31436.06 33953.89 36568.64 370
test_fmvs1_n51.37 33250.35 33554.42 34652.85 38937.71 33761.16 34651.93 37328.15 38163.81 23769.73 35413.72 38453.95 38151.16 22260.65 34171.59 348
ADS-MVSNet251.33 33348.76 34059.07 31866.02 35544.60 27650.90 37859.76 34736.90 36850.74 35666.18 37226.38 35363.11 34427.17 38154.76 36269.50 366
test_fmvs151.32 33450.48 33453.81 34853.57 38837.51 33960.63 35051.16 37628.02 38363.62 23869.23 35716.41 38053.93 38251.01 22360.70 34069.99 363
YYNet150.73 33548.96 33756.03 33661.10 37741.78 30151.94 37656.44 36140.94 35944.84 37567.80 36230.08 32555.08 37936.77 33050.71 37271.22 353
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33761.17 37641.84 30051.90 37756.45 36040.96 35844.79 37667.84 36130.04 32655.07 38036.71 33250.69 37371.11 356
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 40861.01 34851.50 37551.17 26050.30 36267.44 36439.28 23360.29 35422.38 39057.49 35262.76 375
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34960.97 37933.67 37157.62 36264.56 31939.47 36647.38 36764.02 37827.47 34559.32 35834.69 34443.68 38367.98 371
test_vis1_n49.89 33948.69 34153.50 35153.97 38737.38 34061.53 34047.33 38728.54 38059.62 28767.10 36813.52 38552.27 38649.07 23957.52 35170.84 357
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 38848.46 38435.60 37246.10 37472.10 33334.47 28346.37 39327.08 38360.65 34177.27 289
test_fmvs248.69 34147.49 34652.29 35848.63 39533.06 37557.76 36048.05 38525.71 38759.76 28569.60 35511.57 39052.23 38749.45 23756.86 35471.58 349
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 37850.87 38036.90 36850.74 35666.18 37226.38 35352.47 38527.17 38154.76 36269.50 366
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39643.11 39535.00 37343.27 38163.30 37928.95 33449.19 39036.53 33560.80 33957.76 383
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3849.37 41148.78 38259.21 34943.28 34344.22 37868.66 35925.67 35957.20 36931.57 36549.35 37774.62 320
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35446.15 37358.75 38330.99 31958.66 36232.18 35424.81 39855.46 386
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35444.50 39227.03 38437.96 39150.47 39426.16 35664.10 34026.74 38459.52 34447.82 393
pmmvs344.92 34741.95 35453.86 34752.58 39143.55 28562.11 33946.90 38926.05 38640.63 38460.19 38211.08 39457.91 36631.83 36246.15 38060.11 377
test_fmvs344.30 34842.55 35149.55 36342.83 39927.15 39453.03 37444.93 39122.03 39453.69 34364.94 3754.21 40449.63 38947.47 25049.82 37571.88 345
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41058.17 35845.20 39045.42 32540.44 38667.26 36734.01 28958.98 36011.96 40224.88 39759.20 378
LF4IMVS42.95 35042.26 35245.04 36848.30 39632.50 37654.80 37048.49 38328.03 38240.51 38570.16 3499.24 39643.89 39631.63 36349.18 37858.72 380
EGC-MVSNET42.47 35138.48 35954.46 34574.33 25748.73 23270.33 28251.10 3770.03 4090.18 41067.78 36313.28 38666.49 33218.91 39450.36 37448.15 391
FPMVS42.18 35241.11 35545.39 36758.03 38541.01 30949.50 38053.81 37230.07 37833.71 39264.03 37611.69 38852.08 38814.01 39855.11 36043.09 395
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41257.41 36344.32 39343.38 34238.30 39066.45 37032.67 30758.42 36410.98 40321.91 40057.99 382
ANet_high41.38 35437.47 36153.11 35339.73 40524.45 40056.94 36469.69 27947.65 30326.04 39752.32 38912.44 38762.38 34721.80 39110.61 40672.49 336
test_vis1_rt41.35 35539.45 35747.03 36646.65 39837.86 33447.76 38338.65 39823.10 39044.21 37951.22 39211.20 39344.08 39539.27 31653.02 36759.14 379
LCM-MVSNet40.30 35635.88 36253.57 35042.24 40029.15 38545.21 39060.53 34622.23 39328.02 39550.98 3933.72 40661.78 34931.22 36838.76 39069.78 365
mvsany_test139.38 35738.16 36043.02 37349.05 39334.28 36644.16 39225.94 40822.74 39246.57 37262.21 38123.85 36641.16 40033.01 35235.91 39253.63 387
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41649.37 3810.76 41534.62 37443.61 38066.38 37126.25 35542.57 39726.02 38651.77 36965.44 373
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39219.66 40545.53 38931.35 40415.83 40139.80 38867.42 36622.19 36945.13 39422.43 38952.69 36858.31 381
APD_test137.39 36034.94 36344.72 37148.88 39433.19 37452.95 37544.00 39419.49 39527.28 39658.59 3843.18 40852.84 38418.92 39341.17 38748.14 392
PMVScopyleft28.69 2236.22 36133.29 36545.02 36936.82 40735.98 35654.68 37148.74 38226.31 38521.02 40051.61 3912.88 40960.10 3559.99 40647.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.77 36231.91 36643.33 37262.05 37337.87 33320.39 40167.03 30123.23 38918.41 40225.84 4024.24 40362.73 34514.71 39751.32 37129.38 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet34.13 36334.29 36433.64 38352.63 39018.23 40744.43 39133.90 40322.81 39130.89 39453.18 38810.48 39535.72 40420.77 39239.51 38846.98 394
mvsany_test332.62 36430.57 36838.77 37936.16 40824.20 40138.10 39720.63 41019.14 39640.36 38757.43 3855.06 40136.63 40329.59 37528.66 39655.49 385
test_vis3_rt32.09 36530.20 36937.76 38035.36 40927.48 39040.60 39528.29 40716.69 39932.52 39340.53 3981.96 41037.40 40233.64 34942.21 38648.39 390
test_f31.86 36631.05 36734.28 38232.33 41121.86 40332.34 39830.46 40516.02 40039.78 38955.45 3874.80 40232.36 40530.61 36937.66 39148.64 389
testf131.46 36728.89 37039.16 37741.99 40228.78 38646.45 38637.56 39914.28 40221.10 39848.96 3951.48 41247.11 39113.63 39934.56 39341.60 396
APD_test231.46 36728.89 37039.16 37741.99 40228.78 38646.45 38637.56 39914.28 40221.10 39848.96 3951.48 41247.11 39113.63 39934.56 39341.60 396
PMMVS227.40 36925.91 37231.87 38539.46 4066.57 41331.17 39928.52 40623.96 38820.45 40148.94 3974.20 40537.94 40116.51 39519.97 40151.09 388
E-PMN23.77 37022.73 37426.90 38642.02 40120.67 40442.66 39335.70 40117.43 39710.28 40725.05 4036.42 39942.39 39810.28 40514.71 40317.63 402
EMVS22.97 37121.84 37526.36 38740.20 40419.53 40641.95 39434.64 40217.09 3989.73 40822.83 4047.29 39842.22 3999.18 40713.66 40417.32 403
MVEpermissive17.77 2321.41 37217.77 37732.34 38434.34 41025.44 39816.11 40224.11 40911.19 40413.22 40431.92 4001.58 41130.95 40610.47 40417.03 40240.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 37318.10 37624.41 38813.68 4133.11 41512.06 40442.37 3962.00 40711.97 40536.38 3995.77 40029.35 40715.06 39623.65 39940.76 398
cdsmvs_eth3d_5k17.50 37423.34 3730.00 3940.00 4170.00 4180.00 40578.63 1680.00 4120.00 41382.18 19449.25 1220.00 4110.00 4120.00 4090.00 409
wuyk23d13.32 37512.52 37815.71 38947.54 39726.27 39631.06 4001.98 4144.93 4065.18 4091.94 4090.45 41418.54 4086.81 40912.83 4052.33 406
tmp_tt9.43 37611.14 3794.30 3912.38 4144.40 41413.62 40316.08 4120.39 40815.89 40313.06 40515.80 3825.54 41012.63 40110.46 4072.95 405
ab-mvs-re6.49 3778.65 3800.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 41377.89 2750.00 4160.00 4110.00 4120.00 4090.00 409
test1234.73 3786.30 3810.02 3920.01 4150.01 41756.36 3660.00 4160.01 4100.04 4110.21 4110.01 4150.00 4110.03 4110.00 4090.04 407
testmvs4.52 3796.03 3820.01 3930.01 4150.00 41853.86 3730.00 4160.01 4100.04 4110.27 4100.00 4160.00 4110.04 4100.00 4090.03 408
pcd_1.5k_mvsjas3.92 3805.23 3830.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 41247.05 1530.00 4110.00 4120.00 4090.00 409
test_blank0.00 3810.00 3840.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 4120.00 4160.00 4110.00 4120.00 4090.00 409
uanet_test0.00 3810.00 3840.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 4120.00 4160.00 4110.00 4120.00 4090.00 409
DCPMVS0.00 3810.00 3840.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 4120.00 4160.00 4110.00 4120.00 4090.00 409
sosnet-low-res0.00 3810.00 3840.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 4120.00 4160.00 4110.00 4120.00 4090.00 409
sosnet0.00 3810.00 3840.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 4120.00 4160.00 4110.00 4120.00 4090.00 409
uncertanet0.00 3810.00 3840.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 4120.00 4160.00 4110.00 4120.00 4090.00 409
Regformer0.00 3810.00 3840.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 4120.00 4160.00 4110.00 4120.00 4090.00 409
uanet0.00 3810.00 3840.00 3940.00 4170.00 4180.00 4050.00 4160.00 4120.00 4130.00 4120.00 4160.00 4110.00 4120.00 4090.00 409
WAC-MVS27.31 39227.77 379
FOURS186.12 3660.82 3788.18 183.61 6960.87 8481.50 16
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
PC_three_145255.09 20684.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 417
eth-test0.00 417
ZD-MVS86.64 2160.38 4382.70 9257.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 48
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3443.06 19568.20 8081.76 10084.03 163
IU-MVS87.77 459.15 6085.53 2553.93 22884.64 379.07 1190.87 588.37 16
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 20
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
save fliter86.17 3361.30 2883.98 4779.66 14759.00 123
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 26
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 43
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 278
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27978.05 278
sam_mvs33.43 295
ambc65.13 28263.72 36537.07 34447.66 38578.78 16454.37 33771.42 33911.24 39280.94 19945.64 26953.85 36677.38 287
MTGPAbinary80.97 130
test_post168.67 2953.64 40732.39 31369.49 31644.17 281
test_post3.55 40833.90 29066.52 331
patchmatchnet-post64.03 37634.50 28174.27 292
GG-mvs-BLEND62.34 30071.36 30137.04 34569.20 29257.33 35954.73 33265.48 37430.37 32277.82 25334.82 34374.93 18472.17 343
MTMP86.03 1917.08 411
gm-plane-assit71.40 30041.72 30448.85 28673.31 32682.48 17048.90 241
test9_res75.28 3788.31 3283.81 173
TEST985.58 4361.59 2481.62 8181.26 12155.65 19374.93 4588.81 5653.70 6984.68 120
test_885.40 4660.96 3481.54 8481.18 12455.86 18274.81 4988.80 5853.70 6984.45 124
agg_prior273.09 5587.93 4084.33 154
agg_prior85.04 5059.96 4781.04 12874.68 5284.04 130
TestCases64.39 28771.44 29749.03 22567.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
test_prior76.69 5384.20 6157.27 8884.88 4186.43 8086.38 79
旧先验276.08 18445.32 32676.55 3365.56 33758.75 165
新几何276.12 182
新几何170.76 19885.66 4161.13 3066.43 30644.68 33070.29 11486.64 9041.29 21675.23 28749.72 23381.75 10275.93 302
旧先验183.04 7053.15 15867.52 29687.85 7144.08 18680.76 10678.03 281
无先验79.66 11274.30 24448.40 29380.78 20553.62 20179.03 270
原ACMM279.02 117
原ACMM174.69 9185.39 4759.40 5483.42 7551.47 25470.27 11586.61 9348.61 13086.51 7853.85 20087.96 3978.16 276
test22283.14 6858.68 7372.57 25063.45 32741.78 35167.56 16786.12 10937.13 26078.73 14074.98 314
testdata272.18 30246.95 259
segment_acmp54.23 56
testdata64.66 28481.52 8752.93 16365.29 31446.09 31973.88 6487.46 7538.08 24866.26 33453.31 20578.48 14374.78 318
testdata172.65 24660.50 91
test1277.76 4384.52 5858.41 7583.36 7872.93 8354.61 5388.05 3988.12 3586.81 67
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 177
plane_prior584.01 5487.21 5668.16 8280.58 10984.65 148
plane_prior486.10 110
plane_prior356.09 10863.92 3669.27 134
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 112
n20.00 416
nn0.00 416
door-mid47.19 388
lessismore_v069.91 21471.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18945.91 26634.10 39580.59 246
LGP-MVS_train75.76 7080.22 11257.51 8683.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
test1183.47 73
door47.60 386
HQP5-MVS54.94 131
HQP-NCC80.66 10382.31 7162.10 6867.85 157
ACMP_Plane80.66 10382.31 7162.10 6867.85 157
BP-MVS67.04 97
HQP4-MVS67.85 15786.93 6484.32 155
HQP3-MVS83.90 5980.35 113
HQP2-MVS45.46 171
NP-MVS80.98 10056.05 11085.54 128
MDTV_nov1_ep13_2view25.89 39761.22 34440.10 36351.10 35332.97 30038.49 31978.61 273
MDTV_nov1_ep1357.00 29172.73 27538.26 33165.02 32564.73 31844.74 32955.46 32172.48 32932.61 31070.47 30937.47 32467.75 285
ACMMP++_ref74.07 191
ACMMP++72.16 225
Test By Simon48.33 133
ITE_SJBPF62.09 30266.16 35344.55 27864.32 32047.36 30755.31 32480.34 23319.27 37662.68 34636.29 33862.39 32879.04 269
DeepMVS_CXcopyleft12.03 39017.97 41210.91 40910.60 4137.46 40511.07 40628.36 4013.28 40711.29 4098.01 4089.74 40813.89 404