SED-MVS | | | 88.85 1 | 91.59 2 | 85.67 1 | 90.54 15 | 92.29 2 | 91.71 3 | 76.40 2 | 92.41 2 | 83.24 2 | 92.50 3 | 90.64 3 | 81.10 2 | 89.53 2 | 88.02 7 | 91.00 8 | 95.73 2 |
|
DVP-MVS | | | 88.67 2 | 91.62 1 | 85.22 3 | 90.47 17 | 92.36 1 | 90.69 9 | 76.15 3 | 93.08 1 | 82.75 4 | 92.19 5 | 90.71 2 | 80.45 5 | 89.27 5 | 87.91 8 | 90.82 11 | 95.84 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 88.63 3 | 91.29 3 | 85.53 2 | 90.87 8 | 92.20 3 | 91.98 2 | 76.00 5 | 90.55 7 | 82.09 6 | 93.85 1 | 90.75 1 | 81.25 1 | 88.62 7 | 87.59 13 | 90.96 9 | 95.48 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSP-MVS | | | 88.09 4 | 90.84 4 | 84.88 6 | 90.00 23 | 91.80 5 | 91.63 4 | 75.80 6 | 91.99 3 | 81.23 9 | 92.54 2 | 89.18 5 | 80.89 3 | 87.99 14 | 87.91 8 | 89.70 44 | 94.51 6 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 88.00 5 | 90.50 5 | 85.08 4 | 90.95 7 | 91.58 6 | 92.03 1 | 75.53 12 | 91.15 4 | 80.10 15 | 92.27 4 | 88.34 10 | 80.80 4 | 88.00 13 | 86.99 18 | 91.09 6 | 95.16 5 |
|
SMA-MVS |  | | 87.56 6 | 90.17 6 | 84.52 9 | 91.71 2 | 90.57 9 | 90.77 8 | 75.19 13 | 90.67 6 | 80.50 14 | 86.59 17 | 88.86 7 | 78.09 16 | 89.92 1 | 89.41 1 | 90.84 10 | 95.19 4 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SF-MVS | | | 87.47 7 | 89.70 7 | 84.86 7 | 91.26 5 | 91.10 7 | 90.90 5 | 75.65 7 | 89.21 8 | 81.25 7 | 91.12 7 | 88.93 6 | 78.82 9 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 12 |
|
HPM-MVS++ |  | | 87.09 8 | 88.92 12 | 84.95 5 | 92.61 1 | 87.91 40 | 90.23 15 | 76.06 4 | 88.85 12 | 81.20 10 | 87.33 13 | 87.93 11 | 79.47 8 | 88.59 8 | 88.23 5 | 90.15 35 | 93.60 20 |
|
SD-MVS | | | 86.96 9 | 89.45 8 | 84.05 15 | 90.13 20 | 89.23 22 | 89.77 18 | 74.59 14 | 89.17 10 | 80.70 11 | 89.93 11 | 89.67 4 | 78.47 12 | 87.57 18 | 86.79 22 | 90.67 17 | 93.76 16 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 86.88 10 | 89.23 9 | 84.14 13 | 89.78 26 | 88.67 31 | 90.59 10 | 73.46 27 | 88.99 11 | 80.52 13 | 91.26 6 | 88.65 8 | 79.91 7 | 86.96 30 | 86.22 32 | 90.59 18 | 93.83 14 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS |  | | 86.84 11 | 88.91 13 | 84.41 10 | 90.66 11 | 90.10 12 | 90.78 7 | 75.64 9 | 87.38 17 | 78.72 19 | 90.68 10 | 86.82 16 | 80.15 6 | 87.13 25 | 86.45 28 | 90.51 20 | 93.83 14 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 86.52 12 | 89.01 10 | 83.62 17 | 90.28 19 | 90.09 13 | 90.32 13 | 74.05 20 | 88.32 14 | 79.74 16 | 87.04 15 | 85.59 23 | 76.97 29 | 89.35 3 | 88.44 4 | 90.35 29 | 94.27 10 |
|
CNVR-MVS | | | 86.36 13 | 88.19 16 | 84.23 12 | 91.33 4 | 89.84 14 | 90.34 11 | 75.56 10 | 87.36 18 | 78.97 18 | 81.19 28 | 86.76 17 | 78.74 11 | 89.30 4 | 88.58 2 | 90.45 26 | 94.33 9 |
|
HFP-MVS | | | 86.15 14 | 87.95 17 | 84.06 14 | 90.80 9 | 89.20 23 | 89.62 20 | 74.26 16 | 87.52 15 | 80.63 12 | 86.82 16 | 84.19 29 | 78.22 14 | 87.58 17 | 87.19 16 | 90.81 12 | 93.13 24 |
|
SteuartSystems-ACMMP | | | 85.99 15 | 88.31 15 | 83.27 21 | 90.73 10 | 89.84 14 | 90.27 14 | 74.31 15 | 84.56 30 | 75.88 30 | 87.32 14 | 85.04 24 | 77.31 24 | 89.01 6 | 88.46 3 | 91.14 5 | 93.96 11 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 85.71 16 | 86.88 22 | 84.34 11 | 90.54 15 | 87.11 44 | 89.77 18 | 74.17 18 | 88.54 13 | 83.08 3 | 78.60 32 | 86.10 19 | 78.11 15 | 87.80 16 | 87.46 14 | 90.35 29 | 92.56 26 |
|
ACMMPR | | | 85.52 17 | 87.53 19 | 83.17 22 | 90.13 20 | 89.27 20 | 89.30 21 | 73.97 21 | 86.89 20 | 77.14 25 | 86.09 18 | 83.18 32 | 77.74 20 | 87.42 19 | 87.20 15 | 90.77 13 | 92.63 25 |
|
MP-MVS |  | | 85.50 18 | 87.40 20 | 83.28 20 | 90.65 12 | 89.51 19 | 89.16 24 | 74.11 19 | 83.70 34 | 78.06 22 | 85.54 20 | 84.89 27 | 77.31 24 | 87.40 22 | 87.14 17 | 90.41 27 | 93.65 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
xxxxxxxxxxxxxcwj | | | 85.35 19 | 85.76 30 | 84.86 7 | 91.26 5 | 91.10 7 | 90.90 5 | 75.65 7 | 89.21 8 | 81.25 7 | 91.12 7 | 61.35 118 | 78.82 9 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 12 |
|
NCCC | | | 85.34 20 | 86.59 24 | 83.88 16 | 91.48 3 | 88.88 25 | 89.79 17 | 75.54 11 | 86.67 21 | 77.94 23 | 76.55 35 | 84.99 25 | 78.07 17 | 88.04 11 | 87.68 11 | 90.46 25 | 93.31 21 |
|
DeepPCF-MVS | | 79.04 1 | 85.30 21 | 88.93 11 | 81.06 32 | 88.77 36 | 90.48 10 | 85.46 46 | 73.08 29 | 90.97 5 | 73.77 37 | 84.81 22 | 85.95 20 | 77.43 23 | 88.22 10 | 87.73 10 | 87.85 81 | 94.34 8 |
|
CSCG | | | 85.28 22 | 87.68 18 | 82.49 25 | 89.95 24 | 91.99 4 | 88.82 25 | 71.20 38 | 86.41 22 | 79.63 17 | 79.26 29 | 88.36 9 | 73.94 41 | 86.64 32 | 86.67 25 | 91.40 2 | 94.41 7 |
|
MCST-MVS | | | 85.13 23 | 86.62 23 | 83.39 18 | 90.55 14 | 89.82 16 | 89.29 22 | 73.89 23 | 84.38 31 | 76.03 29 | 79.01 31 | 85.90 21 | 78.47 12 | 87.81 15 | 86.11 34 | 92.11 1 | 93.29 22 |
|
TSAR-MVS + ACMM | | | 85.10 24 | 88.81 14 | 80.77 35 | 89.55 29 | 88.53 33 | 88.59 28 | 72.55 31 | 87.39 16 | 71.90 43 | 90.95 9 | 87.55 12 | 74.57 36 | 87.08 27 | 86.54 26 | 87.47 88 | 93.67 17 |
|
train_agg | | | 84.86 25 | 87.21 21 | 82.11 27 | 90.59 13 | 85.47 55 | 89.81 16 | 73.55 26 | 83.95 32 | 73.30 38 | 89.84 12 | 87.23 14 | 75.61 33 | 86.47 34 | 85.46 39 | 89.78 40 | 92.06 32 |
|
DeepC-MVS | | 78.47 2 | 84.81 26 | 86.03 28 | 83.37 19 | 89.29 32 | 90.38 11 | 88.61 27 | 76.50 1 | 86.25 23 | 77.22 24 | 75.12 39 | 80.28 45 | 77.59 22 | 88.39 9 | 88.17 6 | 91.02 7 | 93.66 18 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CP-MVS | | | 84.74 27 | 86.43 26 | 82.77 24 | 89.48 30 | 88.13 39 | 88.64 26 | 73.93 22 | 84.92 25 | 76.77 26 | 81.94 26 | 83.50 30 | 77.29 26 | 86.92 31 | 86.49 27 | 90.49 21 | 93.14 23 |
|
PGM-MVS | | | 84.42 28 | 86.29 27 | 82.23 26 | 90.04 22 | 88.82 27 | 89.23 23 | 71.74 36 | 82.82 37 | 74.61 33 | 84.41 23 | 82.09 35 | 77.03 28 | 87.13 25 | 86.73 24 | 90.73 15 | 92.06 32 |
|
DeepC-MVS_fast | | 78.24 3 | 84.27 29 | 85.50 31 | 82.85 23 | 90.46 18 | 89.24 21 | 87.83 33 | 74.24 17 | 84.88 26 | 76.23 28 | 75.26 38 | 81.05 43 | 77.62 21 | 88.02 12 | 87.62 12 | 90.69 16 | 92.41 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 83.69 30 | 86.58 25 | 80.32 36 | 85.14 55 | 86.96 45 | 84.91 50 | 70.25 42 | 84.71 29 | 73.91 36 | 85.16 21 | 85.63 22 | 77.92 18 | 85.44 43 | 85.71 37 | 89.77 41 | 92.45 27 |
|
ACMMP |  | | 83.42 31 | 85.27 32 | 81.26 31 | 88.47 37 | 88.49 34 | 88.31 31 | 72.09 33 | 83.42 35 | 72.77 41 | 82.65 24 | 78.22 50 | 75.18 35 | 86.24 38 | 85.76 36 | 90.74 14 | 92.13 31 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DPM-MVS | | | 83.30 32 | 84.33 35 | 82.11 27 | 89.56 28 | 88.49 34 | 90.33 12 | 73.24 28 | 83.85 33 | 76.46 27 | 72.43 50 | 82.65 33 | 73.02 48 | 86.37 36 | 86.91 19 | 90.03 37 | 89.62 51 |
|
X-MVS | | | 83.23 33 | 85.20 33 | 80.92 34 | 89.71 27 | 88.68 28 | 88.21 32 | 73.60 24 | 82.57 38 | 71.81 46 | 77.07 33 | 81.92 37 | 71.72 59 | 86.98 29 | 86.86 20 | 90.47 22 | 92.36 29 |
|
CDPH-MVS | | | 82.64 34 | 85.03 34 | 79.86 39 | 89.41 31 | 88.31 36 | 88.32 30 | 71.84 35 | 80.11 45 | 67.47 63 | 82.09 25 | 81.44 41 | 71.85 57 | 85.89 40 | 86.15 33 | 90.24 33 | 91.25 38 |
|
3Dnovator+ | | 75.73 4 | 82.40 35 | 82.76 40 | 81.97 29 | 88.02 38 | 89.67 17 | 86.60 37 | 71.48 37 | 81.28 43 | 78.18 21 | 64.78 84 | 77.96 52 | 77.13 27 | 87.32 23 | 86.83 21 | 90.41 27 | 91.48 36 |
|
PHI-MVS | | | 82.36 36 | 85.89 29 | 78.24 49 | 86.40 48 | 89.52 18 | 85.52 44 | 69.52 49 | 82.38 40 | 65.67 69 | 81.35 27 | 82.36 34 | 73.07 47 | 87.31 24 | 86.76 23 | 89.24 51 | 91.56 35 |
|
MSLP-MVS++ | | | 82.09 37 | 82.66 41 | 81.42 30 | 87.03 44 | 87.22 43 | 85.82 42 | 70.04 43 | 80.30 44 | 78.66 20 | 68.67 69 | 81.04 44 | 77.81 19 | 85.19 47 | 84.88 44 | 89.19 54 | 91.31 37 |
|
CPTT-MVS | | | 81.77 38 | 83.10 39 | 80.21 37 | 85.93 51 | 86.45 50 | 87.72 34 | 70.98 39 | 82.54 39 | 71.53 49 | 74.23 44 | 81.49 40 | 76.31 31 | 82.85 65 | 81.87 62 | 88.79 62 | 92.26 30 |
|
MVS_0304 | | | 81.73 39 | 83.86 36 | 79.26 42 | 86.22 50 | 89.18 24 | 86.41 38 | 67.15 63 | 75.28 55 | 70.75 53 | 74.59 41 | 83.49 31 | 74.42 38 | 87.05 28 | 86.34 29 | 90.58 19 | 91.08 40 |
|
CANet | | | 81.62 40 | 83.41 37 | 79.53 41 | 87.06 43 | 88.59 32 | 85.47 45 | 67.96 59 | 76.59 53 | 74.05 34 | 74.69 40 | 81.98 36 | 72.98 49 | 86.14 39 | 85.47 38 | 89.68 45 | 90.42 46 |
|
HQP-MVS | | | 81.19 41 | 83.27 38 | 78.76 46 | 87.40 41 | 85.45 56 | 86.95 35 | 70.47 41 | 81.31 42 | 66.91 66 | 79.24 30 | 76.63 54 | 71.67 60 | 84.43 51 | 83.78 50 | 89.19 54 | 92.05 34 |
|
OMC-MVS | | | 80.26 42 | 82.59 42 | 77.54 52 | 83.04 63 | 85.54 54 | 83.25 58 | 65.05 78 | 87.32 19 | 72.42 42 | 72.04 52 | 78.97 47 | 73.30 45 | 83.86 54 | 81.60 66 | 88.15 72 | 88.83 56 |
|
MVS_111021_HR | | | 80.13 43 | 81.46 45 | 78.58 47 | 85.77 52 | 85.17 59 | 83.45 57 | 69.28 50 | 74.08 61 | 70.31 54 | 74.31 43 | 75.26 60 | 73.13 46 | 86.46 35 | 85.15 42 | 89.53 47 | 89.81 49 |
|
LGP-MVS_train | | | 79.83 44 | 81.22 47 | 78.22 50 | 86.28 49 | 85.36 58 | 86.76 36 | 69.59 47 | 77.34 50 | 65.14 71 | 75.68 37 | 70.79 77 | 71.37 63 | 84.60 49 | 84.01 47 | 90.18 34 | 90.74 42 |
|
ACMP | | 73.23 7 | 79.79 45 | 80.53 50 | 78.94 44 | 85.61 53 | 85.68 53 | 85.61 43 | 69.59 47 | 77.33 51 | 71.00 52 | 74.45 42 | 69.16 89 | 71.88 55 | 83.15 62 | 83.37 55 | 89.92 38 | 90.57 45 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
3Dnovator | | 73.76 5 | 79.75 46 | 80.52 51 | 78.84 45 | 84.94 60 | 87.35 41 | 84.43 52 | 65.54 74 | 78.29 49 | 73.97 35 | 63.00 92 | 75.62 59 | 74.07 40 | 85.00 48 | 85.34 40 | 90.11 36 | 89.04 54 |
|
AdaColmap |  | | 79.74 47 | 78.62 61 | 81.05 33 | 89.23 33 | 86.06 52 | 84.95 49 | 71.96 34 | 79.39 48 | 75.51 31 | 63.16 90 | 68.84 94 | 76.51 30 | 83.55 58 | 82.85 57 | 88.13 73 | 86.46 76 |
|
OPM-MVS | | | 79.68 48 | 79.28 59 | 80.15 38 | 87.99 39 | 86.77 47 | 88.52 29 | 72.72 30 | 64.55 95 | 67.65 62 | 67.87 73 | 74.33 63 | 74.31 39 | 86.37 36 | 85.25 41 | 89.73 43 | 89.81 49 |
|
PCF-MVS | | 73.28 6 | 79.42 49 | 80.41 53 | 78.26 48 | 84.88 61 | 88.17 37 | 86.08 39 | 69.85 44 | 75.23 57 | 68.43 57 | 68.03 72 | 78.38 48 | 71.76 58 | 81.26 84 | 80.65 84 | 88.56 65 | 91.18 39 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 79.35 50 | 81.23 46 | 77.16 54 | 85.01 58 | 86.92 46 | 85.87 41 | 60.89 126 | 80.07 47 | 75.35 32 | 72.96 46 | 73.21 67 | 68.43 78 | 85.41 45 | 84.63 45 | 87.41 89 | 85.44 87 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MAR-MVS | | | 79.21 51 | 80.32 55 | 77.92 51 | 87.46 40 | 88.15 38 | 83.95 53 | 67.48 62 | 74.28 59 | 68.25 59 | 64.70 85 | 77.04 53 | 72.17 53 | 85.42 44 | 85.00 43 | 88.22 68 | 87.62 66 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
canonicalmvs | | | 79.16 52 | 82.37 43 | 75.41 62 | 82.33 69 | 86.38 51 | 80.80 64 | 63.18 92 | 82.90 36 | 67.34 64 | 72.79 48 | 76.07 57 | 69.62 70 | 83.46 61 | 84.41 46 | 89.20 53 | 90.60 44 |
|
DELS-MVS | | | 79.15 53 | 81.07 48 | 76.91 55 | 83.54 62 | 87.31 42 | 84.45 51 | 64.92 79 | 69.98 69 | 69.34 55 | 71.62 54 | 76.26 56 | 69.84 69 | 86.57 33 | 85.90 35 | 89.39 49 | 89.88 48 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet | | | 79.08 54 | 80.62 49 | 77.28 53 | 88.90 35 | 83.17 76 | 83.65 55 | 72.41 32 | 74.41 58 | 67.15 65 | 76.78 34 | 74.37 62 | 64.43 98 | 83.70 57 | 83.69 51 | 87.15 92 | 88.19 60 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMM | | 72.26 8 | 78.86 55 | 78.13 63 | 79.71 40 | 86.89 45 | 83.40 73 | 86.02 40 | 70.50 40 | 75.28 55 | 71.49 50 | 63.01 91 | 69.26 88 | 73.57 43 | 84.11 53 | 83.98 48 | 89.76 42 | 87.84 64 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
QAPM | | | 78.47 56 | 80.22 56 | 76.43 57 | 85.03 57 | 86.75 48 | 80.62 66 | 66.00 71 | 73.77 62 | 65.35 70 | 65.54 80 | 78.02 51 | 72.69 50 | 83.71 56 | 83.36 56 | 88.87 60 | 90.41 47 |
|
CS-MVS | | | 78.36 57 | 80.42 52 | 75.95 60 | 81.17 74 | 83.02 77 | 80.84 63 | 59.46 145 | 71.65 66 | 68.26 58 | 72.53 49 | 78.33 49 | 75.63 32 | 85.79 41 | 83.62 52 | 90.33 32 | 88.01 62 |
|
TSAR-MVS + COLMAP | | | 78.34 58 | 81.64 44 | 74.48 73 | 80.13 89 | 85.01 60 | 81.73 59 | 65.93 73 | 84.75 28 | 61.68 83 | 85.79 19 | 66.27 103 | 71.39 62 | 82.91 64 | 80.78 75 | 86.01 129 | 85.98 78 |
|
MVS_111021_LR | | | 78.13 59 | 79.85 58 | 76.13 58 | 81.12 76 | 81.50 87 | 80.28 67 | 65.25 76 | 76.09 54 | 71.32 51 | 76.49 36 | 72.87 69 | 72.21 52 | 82.79 66 | 81.29 68 | 86.59 114 | 87.91 63 |
|
CS-MVS-test | | | 77.98 60 | 80.34 54 | 75.22 64 | 80.65 81 | 83.47 71 | 79.95 70 | 59.94 140 | 71.24 68 | 65.04 73 | 72.82 47 | 76.32 55 | 75.40 34 | 85.51 42 | 83.49 54 | 90.35 29 | 89.56 52 |
|
TAPA-MVS | | 71.42 9 | 77.69 61 | 80.05 57 | 74.94 67 | 80.68 80 | 84.52 62 | 81.36 60 | 63.14 93 | 84.77 27 | 64.82 74 | 68.72 67 | 75.91 58 | 71.86 56 | 81.62 73 | 79.55 101 | 87.80 83 | 85.24 90 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETV-MVS | | | 77.32 62 | 78.81 60 | 75.58 61 | 82.24 70 | 83.64 70 | 79.98 68 | 64.02 86 | 69.64 73 | 63.90 77 | 70.89 58 | 69.94 83 | 73.41 44 | 85.39 46 | 83.91 49 | 89.92 38 | 88.31 59 |
|
CNLPA | | | 77.20 63 | 77.54 67 | 76.80 56 | 82.63 65 | 84.31 63 | 79.77 73 | 64.64 80 | 85.17 24 | 73.18 39 | 56.37 127 | 69.81 84 | 74.53 37 | 81.12 88 | 78.69 112 | 86.04 128 | 87.29 69 |
|
casdiffmvs | | | 76.76 64 | 78.46 62 | 74.77 69 | 80.32 86 | 83.73 69 | 80.65 65 | 63.24 91 | 73.58 63 | 66.11 68 | 69.39 64 | 74.09 64 | 69.49 72 | 82.52 68 | 79.35 106 | 88.84 61 | 86.52 75 |
|
PVSNet_Blended_VisFu | | | 76.57 65 | 77.90 64 | 75.02 66 | 80.56 82 | 86.58 49 | 79.24 79 | 66.18 68 | 64.81 92 | 68.18 60 | 65.61 78 | 71.45 72 | 67.05 81 | 84.16 52 | 81.80 63 | 88.90 58 | 90.92 41 |
|
PVSNet_BlendedMVS | | | 76.21 66 | 77.52 68 | 74.69 70 | 79.46 92 | 83.79 67 | 77.50 97 | 64.34 84 | 69.88 70 | 71.88 44 | 68.54 70 | 70.42 79 | 67.05 81 | 83.48 59 | 79.63 97 | 87.89 79 | 86.87 72 |
|
PVSNet_Blended | | | 76.21 66 | 77.52 68 | 74.69 70 | 79.46 92 | 83.79 67 | 77.50 97 | 64.34 84 | 69.88 70 | 71.88 44 | 68.54 70 | 70.42 79 | 67.05 81 | 83.48 59 | 79.63 97 | 87.89 79 | 86.87 72 |
|
OpenMVS |  | 70.44 10 | 76.15 68 | 76.82 76 | 75.37 63 | 85.01 58 | 84.79 61 | 78.99 83 | 62.07 115 | 71.27 67 | 67.88 61 | 57.91 120 | 72.36 70 | 70.15 68 | 82.23 70 | 81.41 67 | 88.12 74 | 87.78 65 |
|
PLC |  | 68.99 11 | 75.68 69 | 75.31 81 | 76.12 59 | 82.94 64 | 81.26 91 | 79.94 71 | 66.10 69 | 77.15 52 | 66.86 67 | 59.13 110 | 68.53 96 | 73.73 42 | 80.38 97 | 79.04 107 | 87.13 96 | 81.68 127 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EIA-MVS | | | 75.64 70 | 76.60 77 | 74.53 72 | 82.43 68 | 83.84 66 | 78.32 90 | 62.28 114 | 65.96 84 | 63.28 81 | 68.95 65 | 67.54 99 | 71.61 61 | 82.55 67 | 81.63 65 | 89.24 51 | 85.72 81 |
|
MVS_Test | | | 75.37 71 | 77.13 74 | 73.31 78 | 79.07 95 | 81.32 90 | 79.98 68 | 60.12 137 | 69.72 72 | 64.11 76 | 70.53 59 | 73.22 66 | 68.90 74 | 80.14 104 | 79.48 103 | 87.67 85 | 85.50 85 |
|
Effi-MVS+ | | | 75.28 72 | 76.20 78 | 74.20 74 | 81.15 75 | 83.24 74 | 81.11 61 | 63.13 94 | 66.37 80 | 60.27 88 | 64.30 88 | 68.88 93 | 70.93 67 | 81.56 75 | 81.69 64 | 88.61 63 | 87.35 67 |
|
DI_MVS_plusplus_trai | | | 75.13 73 | 76.12 79 | 73.96 75 | 78.18 100 | 81.55 85 | 80.97 62 | 62.54 108 | 68.59 74 | 65.13 72 | 61.43 94 | 74.81 61 | 69.32 73 | 81.01 90 | 79.59 99 | 87.64 86 | 85.89 79 |
|
diffmvs | | | 74.86 74 | 77.37 71 | 71.93 82 | 75.62 123 | 80.35 103 | 79.42 78 | 60.15 136 | 72.81 65 | 64.63 75 | 71.51 55 | 73.11 68 | 66.53 91 | 79.02 117 | 77.98 120 | 85.25 143 | 86.83 74 |
|
UA-Net | | | 74.47 75 | 77.80 65 | 70.59 92 | 85.33 54 | 85.40 57 | 73.54 139 | 65.98 72 | 60.65 127 | 56.00 109 | 72.11 51 | 79.15 46 | 54.63 164 | 83.13 63 | 82.25 59 | 88.04 75 | 81.92 125 |
|
test_part1 | | | 74.24 76 | 73.44 90 | 75.18 65 | 82.02 72 | 82.34 82 | 83.88 54 | 62.40 112 | 60.93 125 | 68.68 56 | 49.25 177 | 69.71 85 | 65.73 96 | 81.26 84 | 81.98 61 | 88.35 66 | 88.60 58 |
|
GeoE | | | 74.23 77 | 74.84 83 | 73.52 76 | 80.42 85 | 81.46 88 | 79.77 73 | 61.06 124 | 67.23 78 | 63.67 78 | 59.56 107 | 68.74 95 | 67.90 79 | 80.25 102 | 79.37 105 | 88.31 67 | 87.26 70 |
|
LS3D | | | 74.08 78 | 73.39 91 | 74.88 68 | 85.05 56 | 82.62 80 | 79.71 75 | 68.66 53 | 72.82 64 | 58.80 92 | 57.61 121 | 61.31 119 | 71.07 66 | 80.32 98 | 78.87 111 | 86.00 130 | 80.18 139 |
|
EPP-MVSNet | | | 74.00 79 | 77.41 70 | 70.02 98 | 80.53 83 | 83.91 65 | 74.99 117 | 62.68 106 | 65.06 90 | 49.77 144 | 68.68 68 | 72.09 71 | 63.06 106 | 82.49 69 | 80.73 76 | 89.12 56 | 88.91 55 |
|
DCV-MVSNet | | | 73.65 80 | 75.78 80 | 71.16 86 | 80.19 87 | 79.27 112 | 77.45 99 | 61.68 121 | 66.73 79 | 58.72 93 | 65.31 81 | 69.96 82 | 62.19 111 | 81.29 83 | 80.97 72 | 86.74 107 | 86.91 71 |
|
IS_MVSNet | | | 73.33 81 | 77.34 72 | 68.65 112 | 81.29 73 | 83.47 71 | 74.45 121 | 63.58 89 | 65.75 86 | 48.49 148 | 67.11 77 | 70.61 78 | 54.63 164 | 84.51 50 | 83.58 53 | 89.48 48 | 86.34 77 |
|
CANet_DTU | | | 73.29 82 | 76.96 75 | 69.00 109 | 77.04 113 | 82.06 83 | 79.49 77 | 56.30 165 | 67.85 76 | 53.29 125 | 71.12 57 | 70.37 81 | 61.81 120 | 81.59 74 | 80.96 73 | 86.09 123 | 84.73 99 |
|
Fast-Effi-MVS+ | | | 73.11 83 | 73.66 87 | 72.48 80 | 77.72 106 | 80.88 97 | 78.55 86 | 58.83 154 | 65.19 88 | 60.36 86 | 59.98 103 | 62.42 115 | 71.22 64 | 81.66 71 | 80.61 86 | 88.20 69 | 84.88 97 |
|
DROMVSNet | | | 73.11 83 | 73.66 87 | 72.48 80 | 77.72 106 | 80.88 97 | 78.55 86 | 58.83 154 | 65.19 88 | 60.36 86 | 59.98 103 | 62.42 115 | 71.22 64 | 81.66 71 | 80.61 86 | 88.20 69 | 84.88 97 |
|
UGNet | | | 72.78 85 | 77.67 66 | 67.07 134 | 71.65 161 | 83.24 74 | 75.20 111 | 63.62 88 | 64.93 91 | 56.72 105 | 71.82 53 | 73.30 65 | 49.02 177 | 81.02 89 | 80.70 82 | 86.22 120 | 88.67 57 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet |  | | 72.77 86 | 77.20 73 | 67.59 124 | 74.19 137 | 84.01 64 | 76.61 107 | 61.69 120 | 60.62 128 | 50.61 140 | 70.25 61 | 71.31 75 | 55.57 160 | 83.85 55 | 82.28 58 | 86.90 101 | 88.08 61 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FC-MVSNet-train | | | 72.60 87 | 75.07 82 | 69.71 101 | 81.10 77 | 78.79 118 | 73.74 138 | 65.23 77 | 66.10 83 | 53.34 124 | 70.36 60 | 63.40 112 | 56.92 149 | 81.44 77 | 80.96 73 | 87.93 77 | 84.46 103 |
|
ET-MVSNet_ETH3D | | | 72.46 88 | 74.19 85 | 70.44 93 | 62.50 196 | 81.17 92 | 79.90 72 | 62.46 111 | 64.52 96 | 57.52 101 | 71.49 56 | 59.15 128 | 72.08 54 | 78.61 122 | 81.11 70 | 88.16 71 | 83.29 113 |
|
MVSTER | | | 72.06 89 | 74.24 84 | 69.51 104 | 70.39 172 | 75.97 148 | 76.91 103 | 57.36 162 | 64.64 94 | 61.39 85 | 68.86 66 | 63.76 110 | 63.46 103 | 81.44 77 | 79.70 96 | 87.56 87 | 85.31 89 |
|
Anonymous20231211 | | | 71.90 90 | 72.48 99 | 71.21 85 | 80.14 88 | 81.53 86 | 76.92 102 | 62.89 97 | 64.46 97 | 58.94 90 | 43.80 188 | 70.98 76 | 62.22 110 | 80.70 92 | 80.19 92 | 86.18 121 | 85.73 80 |
|
Effi-MVS+-dtu | | | 71.82 91 | 71.86 104 | 71.78 83 | 78.77 96 | 80.47 101 | 78.55 86 | 61.67 122 | 60.68 126 | 55.49 110 | 58.48 114 | 65.48 105 | 68.85 75 | 76.92 139 | 75.55 151 | 87.35 90 | 85.46 86 |
|
IterMVS-LS | | | 71.69 92 | 72.82 97 | 70.37 94 | 77.54 109 | 76.34 145 | 75.13 115 | 60.46 132 | 61.53 120 | 57.57 100 | 64.89 83 | 67.33 100 | 66.04 94 | 77.09 138 | 77.37 132 | 85.48 139 | 85.18 91 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 71.52 93 | 69.87 116 | 73.44 77 | 82.21 71 | 79.35 111 | 79.52 76 | 64.59 81 | 66.15 82 | 61.87 82 | 53.21 151 | 56.09 143 | 65.85 95 | 78.94 118 | 78.50 114 | 86.60 113 | 76.85 161 |
|
thisisatest0530 | | | 71.48 94 | 73.01 94 | 69.70 102 | 73.83 142 | 78.62 120 | 74.53 120 | 59.12 148 | 64.13 98 | 58.63 94 | 64.60 86 | 58.63 130 | 64.27 99 | 80.28 100 | 80.17 93 | 87.82 82 | 84.64 101 |
|
tttt0517 | | | 71.41 95 | 72.95 95 | 69.60 103 | 73.70 144 | 78.70 119 | 74.42 124 | 59.12 148 | 63.89 102 | 58.35 97 | 64.56 87 | 58.39 132 | 64.27 99 | 80.29 99 | 80.17 93 | 87.74 84 | 84.69 100 |
|
ACMH+ | | 66.54 13 | 71.36 96 | 70.09 114 | 72.85 79 | 82.59 66 | 81.13 93 | 78.56 85 | 68.04 57 | 61.55 119 | 52.52 131 | 51.50 166 | 54.14 153 | 68.56 77 | 78.85 119 | 79.50 102 | 86.82 104 | 83.94 107 |
|
IB-MVS | | 66.94 12 | 71.21 97 | 71.66 105 | 70.68 89 | 79.18 94 | 82.83 79 | 72.61 145 | 61.77 119 | 59.66 132 | 63.44 80 | 53.26 149 | 59.65 126 | 59.16 133 | 76.78 142 | 82.11 60 | 87.90 78 | 87.33 68 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
GBi-Net | | | 70.78 98 | 73.37 92 | 67.76 117 | 72.95 149 | 78.00 125 | 75.15 112 | 62.72 101 | 64.13 98 | 51.44 133 | 58.37 115 | 69.02 90 | 57.59 141 | 81.33 80 | 80.72 77 | 86.70 108 | 82.02 119 |
|
test1 | | | 70.78 98 | 73.37 92 | 67.76 117 | 72.95 149 | 78.00 125 | 75.15 112 | 62.72 101 | 64.13 98 | 51.44 133 | 58.37 115 | 69.02 90 | 57.59 141 | 81.33 80 | 80.72 77 | 86.70 108 | 82.02 119 |
|
ACMH | | 65.37 14 | 70.71 100 | 70.00 115 | 71.54 84 | 82.51 67 | 82.47 81 | 77.78 94 | 68.13 56 | 56.19 154 | 46.06 164 | 54.30 137 | 51.20 180 | 68.68 76 | 80.66 93 | 80.72 77 | 86.07 124 | 84.45 104 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet_NR-MVSNet | | | 70.59 101 | 72.19 100 | 68.72 110 | 77.72 106 | 80.72 99 | 73.81 136 | 69.65 46 | 61.99 115 | 43.23 173 | 60.54 99 | 57.50 135 | 58.57 134 | 79.56 110 | 81.07 71 | 89.34 50 | 83.97 105 |
|
FMVSNet3 | | | 70.49 102 | 72.90 96 | 67.67 122 | 72.88 152 | 77.98 128 | 74.96 118 | 62.72 101 | 64.13 98 | 51.44 133 | 58.37 115 | 69.02 90 | 57.43 144 | 79.43 112 | 79.57 100 | 86.59 114 | 81.81 126 |
|
baseline | | | 70.45 103 | 74.09 86 | 66.20 142 | 70.95 169 | 75.67 149 | 74.26 128 | 53.57 169 | 68.33 75 | 58.42 95 | 69.87 62 | 71.45 72 | 61.55 121 | 74.84 153 | 74.76 156 | 78.42 175 | 83.72 110 |
|
FMVSNet2 | | | 70.39 104 | 72.67 98 | 67.72 120 | 72.95 149 | 78.00 125 | 75.15 112 | 62.69 105 | 63.29 106 | 51.25 137 | 55.64 129 | 68.49 97 | 57.59 141 | 80.91 91 | 80.35 90 | 86.70 108 | 82.02 119 |
|
v8 | | | 70.23 105 | 69.86 117 | 70.67 90 | 74.69 132 | 79.82 107 | 78.79 84 | 59.18 147 | 58.80 136 | 58.20 98 | 55.00 134 | 57.33 136 | 66.31 93 | 77.51 132 | 76.71 141 | 86.82 104 | 83.88 108 |
|
v10 | | | 70.22 106 | 69.76 119 | 70.74 87 | 74.79 131 | 80.30 105 | 79.22 80 | 59.81 141 | 57.71 143 | 56.58 107 | 54.22 142 | 55.31 146 | 66.95 84 | 78.28 125 | 77.47 129 | 87.12 98 | 85.07 93 |
|
MS-PatchMatch | | | 70.17 107 | 70.49 111 | 69.79 100 | 80.98 78 | 77.97 130 | 77.51 96 | 58.95 151 | 62.33 113 | 55.22 113 | 53.14 152 | 65.90 104 | 62.03 114 | 79.08 116 | 77.11 136 | 84.08 153 | 77.91 153 |
|
baseline1 | | | 70.10 108 | 72.17 101 | 67.69 121 | 79.74 90 | 76.80 140 | 73.91 132 | 64.38 83 | 62.74 111 | 48.30 150 | 64.94 82 | 64.08 109 | 54.17 166 | 81.46 76 | 78.92 109 | 85.66 136 | 76.22 163 |
|
v2v482 | | | 70.05 109 | 69.46 123 | 70.74 87 | 74.62 133 | 80.32 104 | 79.00 82 | 60.62 129 | 57.41 145 | 56.89 104 | 55.43 133 | 55.14 148 | 66.39 92 | 77.25 135 | 77.14 135 | 86.90 101 | 83.57 112 |
|
v1144 | | | 69.93 110 | 69.36 124 | 70.61 91 | 74.89 130 | 80.93 94 | 79.11 81 | 60.64 128 | 55.97 156 | 55.31 112 | 53.85 144 | 54.14 153 | 66.54 90 | 78.10 127 | 77.44 130 | 87.14 95 | 85.09 92 |
|
baseline2 | | | 69.69 111 | 70.27 113 | 69.01 108 | 75.72 122 | 77.13 138 | 73.82 135 | 58.94 152 | 61.35 121 | 57.09 103 | 61.68 93 | 57.17 138 | 61.99 115 | 78.10 127 | 76.58 143 | 86.48 117 | 79.85 141 |
|
DU-MVS | | | 69.63 112 | 70.91 108 | 68.13 116 | 75.99 118 | 79.54 108 | 73.81 136 | 69.20 51 | 61.20 123 | 43.23 173 | 58.52 112 | 53.50 160 | 58.57 134 | 79.22 114 | 80.45 88 | 87.97 76 | 83.97 105 |
|
UniMVSNet (Re) | | | 69.53 113 | 71.90 103 | 66.76 139 | 76.42 116 | 80.93 94 | 72.59 146 | 68.03 58 | 61.75 118 | 41.68 178 | 58.34 118 | 57.23 137 | 53.27 169 | 79.53 111 | 80.62 85 | 88.57 64 | 84.90 96 |
|
v1192 | | | 69.50 114 | 68.83 130 | 70.29 95 | 74.49 134 | 80.92 96 | 78.55 86 | 60.54 130 | 55.04 162 | 54.21 115 | 52.79 158 | 52.33 173 | 66.92 85 | 77.88 129 | 77.35 133 | 87.04 99 | 85.51 84 |
|
HyFIR lowres test | | | 69.47 115 | 68.94 129 | 70.09 97 | 76.77 115 | 82.93 78 | 76.63 106 | 60.17 135 | 59.00 135 | 54.03 118 | 40.54 197 | 65.23 106 | 67.89 80 | 76.54 145 | 78.30 117 | 85.03 146 | 80.07 140 |
|
v144192 | | | 69.34 116 | 68.68 134 | 70.12 96 | 74.06 138 | 80.54 100 | 78.08 93 | 60.54 130 | 54.99 164 | 54.13 117 | 52.92 156 | 52.80 171 | 66.73 88 | 77.13 137 | 76.72 140 | 87.15 92 | 85.63 82 |
|
TranMVSNet+NR-MVSNet | | | 69.25 117 | 70.81 109 | 67.43 125 | 77.23 112 | 79.46 110 | 73.48 141 | 69.66 45 | 60.43 129 | 39.56 181 | 58.82 111 | 53.48 162 | 55.74 158 | 79.59 108 | 81.21 69 | 88.89 59 | 82.70 115 |
|
CHOSEN 1792x2688 | | | 69.20 118 | 69.26 125 | 69.13 106 | 76.86 114 | 78.93 114 | 77.27 100 | 60.12 137 | 61.86 117 | 54.42 114 | 42.54 192 | 61.61 117 | 66.91 86 | 78.55 123 | 78.14 119 | 79.23 173 | 83.23 114 |
|
v1921920 | | | 69.03 119 | 68.32 138 | 69.86 99 | 74.03 139 | 80.37 102 | 77.55 95 | 60.25 134 | 54.62 166 | 53.59 123 | 52.36 162 | 51.50 179 | 66.75 87 | 77.17 136 | 76.69 142 | 86.96 100 | 85.56 83 |
|
CostFormer | | | 68.92 120 | 69.58 121 | 68.15 115 | 75.98 120 | 76.17 147 | 78.22 92 | 51.86 181 | 65.80 85 | 61.56 84 | 63.57 89 | 62.83 113 | 61.85 118 | 70.40 185 | 68.67 182 | 79.42 171 | 79.62 144 |
|
FMVSNet1 | | | 68.84 121 | 70.47 112 | 66.94 136 | 71.35 166 | 77.68 133 | 74.71 119 | 62.35 113 | 56.93 147 | 49.94 143 | 50.01 172 | 64.59 107 | 57.07 146 | 81.33 80 | 80.72 77 | 86.25 119 | 82.00 122 |
|
NR-MVSNet | | | 68.79 122 | 70.56 110 | 66.71 141 | 77.48 110 | 79.54 108 | 73.52 140 | 69.20 51 | 61.20 123 | 39.76 180 | 58.52 112 | 50.11 186 | 51.37 173 | 80.26 101 | 80.71 81 | 88.97 57 | 83.59 111 |
|
V42 | | | 68.76 123 | 69.63 120 | 67.74 119 | 64.93 192 | 78.01 124 | 78.30 91 | 56.48 164 | 58.65 137 | 56.30 108 | 54.26 140 | 57.03 139 | 64.85 97 | 77.47 133 | 77.01 137 | 85.60 137 | 84.96 95 |
|
v1240 | | | 68.64 124 | 67.89 143 | 69.51 104 | 73.89 141 | 80.26 106 | 76.73 105 | 59.97 139 | 53.43 174 | 53.08 126 | 51.82 165 | 50.84 182 | 66.62 89 | 76.79 141 | 76.77 139 | 86.78 106 | 85.34 88 |
|
Fast-Effi-MVS+-dtu | | | 68.34 125 | 69.47 122 | 67.01 135 | 75.15 126 | 77.97 130 | 77.12 101 | 55.40 167 | 57.87 138 | 46.68 160 | 56.17 128 | 60.39 120 | 62.36 109 | 76.32 146 | 76.25 147 | 85.35 142 | 81.34 129 |
|
GA-MVS | | | 68.14 126 | 69.17 127 | 66.93 137 | 73.77 143 | 78.50 122 | 74.45 121 | 58.28 157 | 55.11 161 | 48.44 149 | 60.08 101 | 53.99 156 | 61.50 122 | 78.43 124 | 77.57 127 | 85.13 144 | 80.54 135 |
|
tfpn200view9 | | | 68.11 127 | 68.72 133 | 67.40 126 | 77.83 104 | 78.93 114 | 74.28 126 | 62.81 98 | 56.64 149 | 46.82 158 | 52.65 159 | 53.47 163 | 56.59 150 | 80.41 94 | 78.43 115 | 86.11 122 | 80.52 136 |
|
EPNet_dtu | | | 68.08 128 | 71.00 107 | 64.67 150 | 79.64 91 | 68.62 181 | 75.05 116 | 63.30 90 | 66.36 81 | 45.27 168 | 67.40 75 | 66.84 102 | 43.64 186 | 75.37 149 | 74.98 155 | 81.15 165 | 77.44 156 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres200 | | | 67.98 129 | 68.55 136 | 67.30 129 | 77.89 103 | 78.86 116 | 74.18 130 | 62.75 99 | 56.35 152 | 46.48 161 | 52.98 155 | 53.54 159 | 56.46 151 | 80.41 94 | 77.97 121 | 86.05 126 | 79.78 143 |
|
thres400 | | | 67.95 130 | 68.62 135 | 67.17 131 | 77.90 101 | 78.59 121 | 74.27 127 | 62.72 101 | 56.34 153 | 45.77 166 | 53.00 154 | 53.35 166 | 56.46 151 | 80.21 103 | 78.43 115 | 85.91 133 | 80.43 137 |
|
pmmvs4 | | | 67.89 131 | 67.39 148 | 68.48 113 | 71.60 163 | 73.57 163 | 74.45 121 | 60.98 125 | 64.65 93 | 57.97 99 | 54.95 135 | 51.73 178 | 61.88 117 | 73.78 159 | 75.11 153 | 83.99 155 | 77.91 153 |
|
v148 | | | 67.85 132 | 67.53 144 | 68.23 114 | 73.25 147 | 77.57 136 | 74.26 128 | 57.36 162 | 55.70 157 | 57.45 102 | 53.53 145 | 55.42 145 | 61.96 116 | 75.23 150 | 73.92 159 | 85.08 145 | 81.32 130 |
|
Vis-MVSNet (Re-imp) | | | 67.83 133 | 73.52 89 | 61.19 166 | 78.37 99 | 76.72 142 | 66.80 171 | 62.96 95 | 65.50 87 | 34.17 192 | 67.19 76 | 69.68 86 | 39.20 195 | 79.39 113 | 79.44 104 | 85.68 135 | 76.73 162 |
|
PatchMatch-RL | | | 67.78 134 | 66.65 153 | 69.10 107 | 73.01 148 | 72.69 166 | 68.49 161 | 61.85 118 | 62.93 109 | 60.20 89 | 56.83 126 | 50.42 184 | 69.52 71 | 75.62 148 | 74.46 158 | 81.51 163 | 73.62 180 |
|
thres600view7 | | | 67.68 135 | 68.43 137 | 66.80 138 | 77.90 101 | 78.86 116 | 73.84 134 | 62.75 99 | 56.07 155 | 44.70 171 | 52.85 157 | 52.81 170 | 55.58 159 | 80.41 94 | 77.77 123 | 86.05 126 | 80.28 138 |
|
COLMAP_ROB |  | 62.73 15 | 67.66 136 | 66.76 152 | 68.70 111 | 80.49 84 | 77.98 128 | 75.29 110 | 62.95 96 | 63.62 104 | 49.96 142 | 47.32 183 | 50.72 183 | 58.57 134 | 76.87 140 | 75.50 152 | 84.94 148 | 75.33 172 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CDS-MVSNet | | | 67.65 137 | 69.83 118 | 65.09 146 | 75.39 125 | 76.55 143 | 74.42 124 | 63.75 87 | 53.55 172 | 49.37 146 | 59.41 108 | 62.45 114 | 44.44 184 | 79.71 107 | 79.82 95 | 83.17 159 | 77.36 157 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 67.64 138 | 71.25 106 | 63.43 159 | 61.86 198 | 70.73 173 | 67.26 166 | 50.86 186 | 74.20 60 | 58.91 91 | 67.49 74 | 69.33 87 | 64.10 101 | 71.41 172 | 68.45 186 | 77.61 177 | 77.17 158 |
|
thres100view900 | | | 67.60 139 | 68.02 140 | 67.12 133 | 77.83 104 | 77.75 132 | 73.90 133 | 62.52 109 | 56.64 149 | 46.82 158 | 52.65 159 | 53.47 163 | 55.92 155 | 78.77 120 | 77.62 126 | 85.72 134 | 79.23 146 |
|
Baseline_NR-MVSNet | | | 67.53 140 | 68.77 132 | 66.09 143 | 75.99 118 | 74.75 159 | 72.43 147 | 68.41 54 | 61.33 122 | 38.33 185 | 51.31 167 | 54.13 155 | 56.03 154 | 79.22 114 | 78.19 118 | 85.37 141 | 82.45 117 |
|
thisisatest0515 | | | 67.40 141 | 68.78 131 | 65.80 144 | 70.02 174 | 75.24 155 | 69.36 158 | 57.37 161 | 54.94 165 | 53.67 122 | 55.53 132 | 54.85 149 | 58.00 139 | 78.19 126 | 78.91 110 | 86.39 118 | 83.78 109 |
|
USDC | | | 67.36 142 | 67.90 142 | 66.74 140 | 71.72 159 | 75.23 156 | 71.58 149 | 60.28 133 | 67.45 77 | 50.54 141 | 60.93 95 | 45.20 200 | 62.08 112 | 76.56 144 | 74.50 157 | 84.25 152 | 75.38 171 |
|
EG-PatchMatch MVS | | | 67.24 143 | 66.94 150 | 67.60 123 | 78.73 97 | 81.35 89 | 73.28 143 | 59.49 143 | 46.89 196 | 51.42 136 | 43.65 189 | 53.49 161 | 55.50 161 | 81.38 79 | 80.66 83 | 87.15 92 | 81.17 131 |
|
UniMVSNet_ETH3D | | | 67.18 144 | 67.03 149 | 67.36 127 | 74.44 135 | 78.12 123 | 74.07 131 | 66.38 66 | 52.22 179 | 46.87 157 | 48.64 178 | 51.84 177 | 56.96 147 | 77.29 134 | 78.53 113 | 85.42 140 | 82.59 116 |
|
v7n | | | 67.05 145 | 66.94 150 | 67.17 131 | 72.35 154 | 78.97 113 | 73.26 144 | 58.88 153 | 51.16 185 | 50.90 138 | 48.21 180 | 50.11 186 | 60.96 125 | 77.70 130 | 77.38 131 | 86.68 111 | 85.05 94 |
|
IterMVS-SCA-FT | | | 66.89 146 | 69.22 126 | 64.17 152 | 71.30 167 | 75.64 150 | 71.33 150 | 53.17 173 | 57.63 144 | 49.08 147 | 60.72 97 | 60.05 124 | 63.09 105 | 74.99 152 | 73.92 159 | 77.07 181 | 81.57 128 |
|
IterMVS | | | 66.36 147 | 68.30 139 | 64.10 153 | 69.48 179 | 74.61 160 | 73.41 142 | 50.79 187 | 57.30 146 | 48.28 151 | 60.64 98 | 59.92 125 | 60.85 129 | 74.14 157 | 72.66 166 | 81.80 162 | 78.82 149 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TDRefinement | | | 66.09 148 | 65.03 165 | 67.31 128 | 69.73 176 | 76.75 141 | 75.33 108 | 64.55 82 | 60.28 130 | 49.72 145 | 45.63 186 | 42.83 203 | 60.46 130 | 75.75 147 | 75.95 148 | 84.08 153 | 78.04 152 |
|
pm-mvs1 | | | 65.62 149 | 67.42 146 | 63.53 158 | 73.66 145 | 76.39 144 | 69.66 155 | 60.87 127 | 49.73 189 | 43.97 172 | 51.24 168 | 57.00 140 | 48.16 178 | 79.89 105 | 77.84 122 | 84.85 150 | 79.82 142 |
|
tpm cat1 | | | 65.41 150 | 63.81 173 | 67.28 130 | 75.61 124 | 72.88 165 | 75.32 109 | 52.85 175 | 62.97 108 | 63.66 79 | 53.24 150 | 53.29 168 | 61.83 119 | 65.54 196 | 64.14 198 | 74.43 193 | 74.60 174 |
|
SCA | | | 65.40 151 | 66.58 154 | 64.02 154 | 70.65 170 | 73.37 164 | 67.35 165 | 53.46 171 | 63.66 103 | 54.14 116 | 60.84 96 | 60.20 123 | 61.50 122 | 69.96 186 | 68.14 187 | 77.01 182 | 69.91 186 |
|
anonymousdsp | | | 65.28 152 | 67.98 141 | 62.13 162 | 58.73 204 | 73.98 162 | 67.10 168 | 50.69 188 | 48.41 192 | 47.66 156 | 54.27 138 | 52.75 172 | 61.45 124 | 76.71 143 | 80.20 91 | 87.13 96 | 89.53 53 |
|
PMMVS | | | 65.06 153 | 69.17 127 | 60.26 171 | 55.25 210 | 63.43 197 | 66.71 172 | 43.01 206 | 62.41 112 | 50.64 139 | 69.44 63 | 67.04 101 | 63.29 104 | 74.36 156 | 73.54 162 | 82.68 160 | 73.99 179 |
|
CR-MVSNet | | | 64.83 154 | 65.54 159 | 64.01 155 | 70.64 171 | 69.41 176 | 65.97 176 | 52.74 176 | 57.81 140 | 52.65 128 | 54.27 138 | 56.31 142 | 60.92 126 | 72.20 168 | 73.09 164 | 81.12 166 | 75.69 168 |
|
TransMVSNet (Re) | | | 64.74 155 | 65.66 158 | 63.66 157 | 77.40 111 | 75.33 154 | 69.86 154 | 62.67 107 | 47.63 194 | 41.21 179 | 50.01 172 | 52.33 173 | 45.31 183 | 79.57 109 | 77.69 125 | 85.49 138 | 77.07 160 |
|
test-LLR | | | 64.42 156 | 64.36 169 | 64.49 151 | 75.02 128 | 63.93 194 | 66.61 173 | 61.96 116 | 54.41 167 | 47.77 153 | 57.46 122 | 60.25 121 | 55.20 162 | 70.80 179 | 69.33 177 | 80.40 169 | 74.38 176 |
|
MDTV_nov1_ep13 | | | 64.37 157 | 65.24 161 | 63.37 160 | 68.94 181 | 70.81 172 | 72.40 148 | 50.29 190 | 60.10 131 | 53.91 120 | 60.07 102 | 59.15 128 | 57.21 145 | 69.43 189 | 67.30 189 | 77.47 178 | 69.78 188 |
|
tfpnnormal | | | 64.27 158 | 63.64 174 | 65.02 147 | 75.84 121 | 75.61 151 | 71.24 152 | 62.52 109 | 47.79 193 | 42.97 175 | 42.65 191 | 44.49 201 | 52.66 171 | 78.77 120 | 76.86 138 | 84.88 149 | 79.29 145 |
|
PatchmatchNet |  | | 64.21 159 | 64.65 167 | 63.69 156 | 71.29 168 | 68.66 180 | 69.63 156 | 51.70 183 | 63.04 107 | 53.77 121 | 59.83 106 | 58.34 133 | 60.23 131 | 68.54 192 | 66.06 194 | 75.56 188 | 68.08 192 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 64.00 160 | 62.99 176 | 65.18 145 | 73.29 146 | 72.07 168 | 68.98 160 | 53.07 174 | 57.74 142 | 58.41 96 | 55.55 131 | 47.74 193 | 60.89 128 | 69.53 188 | 67.14 191 | 76.44 185 | 71.19 184 |
|
pmmvs-eth3d | | | 63.52 161 | 62.44 183 | 64.77 149 | 66.82 187 | 70.12 175 | 69.41 157 | 59.48 144 | 54.34 170 | 52.71 127 | 46.24 185 | 44.35 202 | 56.93 148 | 72.37 163 | 73.77 161 | 83.30 157 | 75.91 165 |
|
WR-MVS | | | 63.03 162 | 67.40 147 | 57.92 181 | 75.14 127 | 77.60 135 | 60.56 194 | 66.10 69 | 54.11 171 | 23.88 203 | 53.94 143 | 53.58 158 | 34.50 199 | 73.93 158 | 77.71 124 | 87.35 90 | 80.94 132 |
|
PEN-MVS | | | 62.96 163 | 65.77 157 | 59.70 174 | 73.98 140 | 75.45 152 | 63.39 187 | 67.61 61 | 52.49 177 | 25.49 202 | 53.39 146 | 49.12 189 | 40.85 192 | 71.94 170 | 77.26 134 | 86.86 103 | 80.72 134 |
|
TinyColmap | | | 62.84 164 | 61.03 189 | 64.96 148 | 69.61 177 | 71.69 169 | 68.48 162 | 59.76 142 | 55.41 158 | 47.69 155 | 47.33 182 | 34.20 212 | 62.76 108 | 74.52 154 | 72.59 167 | 81.44 164 | 71.47 183 |
|
CP-MVSNet | | | 62.68 165 | 65.49 160 | 59.40 177 | 71.84 157 | 75.34 153 | 62.87 189 | 67.04 64 | 52.64 176 | 27.19 200 | 53.38 147 | 48.15 191 | 41.40 190 | 71.26 173 | 75.68 149 | 86.07 124 | 82.00 122 |
|
gg-mvs-nofinetune | | | 62.55 166 | 65.05 164 | 59.62 175 | 78.72 98 | 77.61 134 | 70.83 153 | 53.63 168 | 39.71 208 | 22.04 209 | 36.36 201 | 64.32 108 | 47.53 179 | 81.16 86 | 79.03 108 | 85.00 147 | 77.17 158 |
|
CVMVSNet | | | 62.55 166 | 65.89 155 | 58.64 179 | 66.95 185 | 69.15 178 | 66.49 175 | 56.29 166 | 52.46 178 | 32.70 193 | 59.27 109 | 58.21 134 | 50.09 175 | 71.77 171 | 71.39 171 | 79.31 172 | 78.99 148 |
|
CMPMVS |  | 47.78 17 | 62.49 168 | 62.52 181 | 62.46 161 | 70.01 175 | 70.66 174 | 62.97 188 | 51.84 182 | 51.98 181 | 56.71 106 | 42.87 190 | 53.62 157 | 57.80 140 | 72.23 166 | 70.37 174 | 75.45 190 | 75.91 165 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs6 | | | 62.41 169 | 62.88 177 | 61.87 163 | 71.38 165 | 75.18 158 | 67.76 164 | 59.45 146 | 41.64 204 | 42.52 177 | 37.33 199 | 52.91 169 | 46.87 180 | 77.67 131 | 76.26 146 | 83.23 158 | 79.18 147 |
|
tpm | | | 62.41 169 | 63.15 175 | 61.55 165 | 72.24 155 | 63.79 196 | 71.31 151 | 46.12 204 | 57.82 139 | 55.33 111 | 59.90 105 | 54.74 150 | 53.63 167 | 67.24 195 | 64.29 197 | 70.65 203 | 74.25 178 |
|
PS-CasMVS | | | 62.38 171 | 65.06 163 | 59.25 178 | 71.73 158 | 75.21 157 | 62.77 190 | 66.99 65 | 51.94 183 | 26.96 201 | 52.00 164 | 47.52 194 | 41.06 191 | 71.16 176 | 75.60 150 | 85.97 131 | 81.97 124 |
|
pmmvs5 | | | 62.37 172 | 64.04 171 | 60.42 169 | 65.03 190 | 71.67 170 | 67.17 167 | 52.70 178 | 50.30 186 | 44.80 169 | 54.23 141 | 51.19 181 | 49.37 176 | 72.88 162 | 73.48 163 | 83.45 156 | 74.55 175 |
|
tpmrst | | | 62.00 173 | 62.35 184 | 61.58 164 | 71.62 162 | 64.14 193 | 69.07 159 | 48.22 200 | 62.21 114 | 53.93 119 | 58.26 119 | 55.30 147 | 55.81 157 | 63.22 201 | 62.62 200 | 70.85 202 | 70.70 185 |
|
PatchT | | | 61.97 174 | 64.04 171 | 59.55 176 | 60.49 200 | 67.40 184 | 56.54 201 | 48.65 196 | 56.69 148 | 52.65 128 | 51.10 169 | 52.14 176 | 60.92 126 | 72.20 168 | 73.09 164 | 78.03 176 | 75.69 168 |
|
DTE-MVSNet | | | 61.85 175 | 64.96 166 | 58.22 180 | 74.32 136 | 74.39 161 | 61.01 193 | 67.85 60 | 51.76 184 | 21.91 210 | 53.28 148 | 48.17 190 | 37.74 196 | 72.22 167 | 76.44 144 | 86.52 116 | 78.49 150 |
|
SixPastTwentyTwo | | | 61.84 176 | 62.45 182 | 61.12 167 | 69.20 180 | 72.20 167 | 62.03 191 | 57.40 160 | 46.54 197 | 38.03 187 | 57.14 125 | 41.72 205 | 58.12 138 | 69.67 187 | 71.58 170 | 81.94 161 | 78.30 151 |
|
WR-MVS_H | | | 61.83 177 | 65.87 156 | 57.12 184 | 71.72 159 | 76.87 139 | 61.45 192 | 66.19 67 | 51.97 182 | 22.92 207 | 53.13 153 | 52.30 175 | 33.80 200 | 71.03 177 | 75.00 154 | 86.65 112 | 80.78 133 |
|
LTVRE_ROB | | 59.44 16 | 61.82 178 | 62.64 180 | 60.87 168 | 72.83 153 | 77.19 137 | 64.37 183 | 58.97 150 | 33.56 213 | 28.00 199 | 52.59 161 | 42.21 204 | 63.93 102 | 74.52 154 | 76.28 145 | 77.15 180 | 82.13 118 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
RPMNet | | | 61.71 179 | 62.88 177 | 60.34 170 | 69.51 178 | 69.41 176 | 63.48 186 | 49.23 192 | 57.81 140 | 45.64 167 | 50.51 170 | 50.12 185 | 53.13 170 | 68.17 194 | 68.49 185 | 81.07 167 | 75.62 170 |
|
TESTMET0.1,1 | | | 61.10 180 | 64.36 169 | 57.29 183 | 57.53 205 | 63.93 194 | 66.61 173 | 36.22 210 | 54.41 167 | 47.77 153 | 57.46 122 | 60.25 121 | 55.20 162 | 70.80 179 | 69.33 177 | 80.40 169 | 74.38 176 |
|
test-mter | | | 60.84 181 | 64.62 168 | 56.42 186 | 55.99 208 | 64.18 192 | 65.39 178 | 34.23 211 | 54.39 169 | 46.21 163 | 57.40 124 | 59.49 127 | 55.86 156 | 71.02 178 | 69.65 176 | 80.87 168 | 76.20 164 |
|
PM-MVS | | | 60.48 182 | 60.94 190 | 59.94 172 | 58.85 203 | 66.83 187 | 64.27 184 | 51.39 184 | 55.03 163 | 48.03 152 | 50.00 174 | 40.79 207 | 58.26 137 | 69.20 190 | 67.13 192 | 78.84 174 | 77.60 155 |
|
MDTV_nov1_ep13_2view | | | 60.16 183 | 60.51 191 | 59.75 173 | 65.39 189 | 69.05 179 | 68.00 163 | 48.29 198 | 51.99 180 | 45.95 165 | 48.01 181 | 49.64 188 | 53.39 168 | 68.83 191 | 66.52 193 | 77.47 178 | 69.55 189 |
|
EPMVS | | | 60.00 184 | 61.97 185 | 57.71 182 | 68.46 182 | 63.17 200 | 64.54 182 | 48.23 199 | 63.30 105 | 44.72 170 | 60.19 100 | 56.05 144 | 50.85 174 | 65.27 199 | 62.02 201 | 69.44 205 | 63.81 199 |
|
TAMVS | | | 59.58 185 | 62.81 179 | 55.81 188 | 66.03 188 | 65.64 191 | 63.86 185 | 48.74 195 | 49.95 188 | 37.07 189 | 54.77 136 | 58.54 131 | 44.44 184 | 72.29 165 | 71.79 168 | 74.70 192 | 66.66 194 |
|
test0.0.03 1 | | | 58.80 186 | 61.58 187 | 55.56 189 | 75.02 128 | 68.45 182 | 59.58 198 | 61.96 116 | 52.74 175 | 29.57 196 | 49.75 175 | 54.56 151 | 31.46 202 | 71.19 174 | 69.77 175 | 75.75 186 | 64.57 197 |
|
CHOSEN 280x420 | | | 58.70 187 | 61.88 186 | 54.98 191 | 55.45 209 | 50.55 212 | 64.92 180 | 40.36 207 | 55.21 159 | 38.13 186 | 48.31 179 | 63.76 110 | 63.03 107 | 73.73 160 | 68.58 184 | 68.00 208 | 73.04 181 |
|
MIMVSNet | | | 58.52 188 | 61.34 188 | 55.22 190 | 60.76 199 | 67.01 186 | 66.81 170 | 49.02 194 | 56.43 151 | 38.90 183 | 40.59 196 | 54.54 152 | 40.57 193 | 73.16 161 | 71.65 169 | 75.30 191 | 66.00 195 |
|
FMVSNet5 | | | 57.24 189 | 60.02 192 | 53.99 194 | 56.45 207 | 62.74 201 | 65.27 179 | 47.03 201 | 55.14 160 | 39.55 182 | 40.88 194 | 53.42 165 | 41.83 187 | 72.35 164 | 71.10 173 | 73.79 195 | 64.50 198 |
|
gm-plane-assit | | | 57.00 190 | 57.62 197 | 56.28 187 | 76.10 117 | 62.43 203 | 47.62 211 | 46.57 202 | 33.84 212 | 23.24 205 | 37.52 198 | 40.19 208 | 59.61 132 | 79.81 106 | 77.55 128 | 84.55 151 | 72.03 182 |
|
FC-MVSNet-test | | | 56.90 191 | 65.20 162 | 47.21 202 | 66.98 184 | 63.20 199 | 49.11 210 | 58.60 156 | 59.38 134 | 11.50 217 | 65.60 79 | 56.68 141 | 24.66 209 | 71.17 175 | 71.36 172 | 72.38 199 | 69.02 190 |
|
Anonymous20231206 | | | 56.36 192 | 57.80 196 | 54.67 192 | 70.08 173 | 66.39 188 | 60.46 195 | 57.54 159 | 49.50 191 | 29.30 197 | 33.86 204 | 46.64 195 | 35.18 198 | 70.44 183 | 68.88 181 | 75.47 189 | 68.88 191 |
|
ADS-MVSNet | | | 55.94 193 | 58.01 194 | 53.54 196 | 62.48 197 | 58.48 206 | 59.12 199 | 46.20 203 | 59.65 133 | 42.88 176 | 52.34 163 | 53.31 167 | 46.31 181 | 62.00 203 | 60.02 204 | 64.23 210 | 60.24 206 |
|
pmnet_mix02 | | | 55.30 194 | 57.01 198 | 53.30 197 | 64.14 193 | 59.09 205 | 58.39 200 | 50.24 191 | 53.47 173 | 38.68 184 | 49.75 175 | 45.86 198 | 40.14 194 | 65.38 198 | 60.22 203 | 68.19 207 | 65.33 196 |
|
EU-MVSNet | | | 54.63 195 | 58.69 193 | 49.90 200 | 56.99 206 | 62.70 202 | 56.41 202 | 50.64 189 | 45.95 199 | 23.14 206 | 50.42 171 | 46.51 196 | 36.63 197 | 65.51 197 | 64.85 196 | 75.57 187 | 74.91 173 |
|
MVS-HIRNet | | | 54.41 196 | 52.10 203 | 57.11 185 | 58.99 202 | 56.10 209 | 49.68 209 | 49.10 193 | 46.18 198 | 52.15 132 | 33.18 205 | 46.11 197 | 56.10 153 | 63.19 202 | 59.70 205 | 76.64 184 | 60.25 205 |
|
testgi | | | 54.39 197 | 57.86 195 | 50.35 199 | 71.59 164 | 67.24 185 | 54.95 203 | 53.25 172 | 43.36 201 | 23.78 204 | 44.64 187 | 47.87 192 | 24.96 207 | 70.45 182 | 68.66 183 | 73.60 196 | 62.78 202 |
|
test20.03 | | | 53.93 198 | 56.28 199 | 51.19 198 | 72.19 156 | 65.83 189 | 53.20 205 | 61.08 123 | 42.74 202 | 22.08 208 | 37.07 200 | 45.76 199 | 24.29 210 | 70.44 183 | 69.04 179 | 74.31 194 | 63.05 201 |
|
MDA-MVSNet-bldmvs | | | 53.37 199 | 53.01 202 | 53.79 195 | 43.67 214 | 67.95 183 | 59.69 197 | 57.92 158 | 43.69 200 | 32.41 194 | 41.47 193 | 27.89 217 | 52.38 172 | 56.97 209 | 65.99 195 | 76.68 183 | 67.13 193 |
|
FPMVS | | | 51.87 200 | 50.00 205 | 54.07 193 | 66.83 186 | 57.25 207 | 60.25 196 | 50.91 185 | 50.25 187 | 34.36 191 | 36.04 202 | 32.02 214 | 41.49 189 | 58.98 207 | 56.07 206 | 70.56 204 | 59.36 207 |
|
MIMVSNet1 | | | 49.27 201 | 53.25 201 | 44.62 204 | 44.61 212 | 61.52 204 | 53.61 204 | 52.18 179 | 41.62 205 | 18.68 213 | 28.14 210 | 41.58 206 | 25.50 205 | 68.46 193 | 69.04 179 | 73.15 197 | 62.37 203 |
|
pmmvs3 | | | 47.65 202 | 49.08 207 | 45.99 203 | 44.61 212 | 54.79 210 | 50.04 207 | 31.95 214 | 33.91 211 | 29.90 195 | 30.37 206 | 33.53 213 | 46.31 181 | 63.50 200 | 63.67 199 | 73.14 198 | 63.77 200 |
|
N_pmnet | | | 47.35 203 | 50.13 204 | 44.11 205 | 59.98 201 | 51.64 211 | 51.86 206 | 44.80 205 | 49.58 190 | 20.76 211 | 40.65 195 | 40.05 209 | 29.64 203 | 59.84 205 | 55.15 207 | 57.63 211 | 54.00 209 |
|
new-patchmatchnet | | | 46.97 204 | 49.47 206 | 44.05 206 | 62.82 195 | 56.55 208 | 45.35 212 | 52.01 180 | 42.47 203 | 17.04 215 | 35.73 203 | 35.21 211 | 21.84 213 | 61.27 204 | 54.83 208 | 65.26 209 | 60.26 204 |
|
GG-mvs-BLEND | | | 46.86 205 | 67.51 145 | 22.75 211 | 0.05 222 | 76.21 146 | 64.69 181 | 0.04 219 | 61.90 116 | 0.09 223 | 55.57 130 | 71.32 74 | 0.08 218 | 70.54 181 | 67.19 190 | 71.58 200 | 69.86 187 |
|
PMVS |  | 39.38 18 | 46.06 206 | 43.30 208 | 49.28 201 | 62.93 194 | 38.75 214 | 41.88 213 | 53.50 170 | 33.33 214 | 35.46 190 | 28.90 209 | 31.01 215 | 33.04 201 | 58.61 208 | 54.63 209 | 68.86 206 | 57.88 208 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 38.40 207 | 42.64 209 | 33.44 208 | 37.54 217 | 45.00 213 | 36.60 214 | 32.72 213 | 40.27 206 | 12.72 216 | 29.89 207 | 28.90 216 | 24.78 208 | 53.17 210 | 52.90 210 | 56.31 212 | 48.34 210 |
|
Gipuma |  | | 36.38 208 | 35.80 210 | 37.07 207 | 45.76 211 | 33.90 215 | 29.81 215 | 48.47 197 | 39.91 207 | 18.02 214 | 8.00 218 | 8.14 222 | 25.14 206 | 59.29 206 | 61.02 202 | 55.19 213 | 40.31 211 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 25.60 209 | 29.75 211 | 20.76 212 | 28.00 218 | 30.93 216 | 23.10 217 | 29.18 215 | 23.14 216 | 1.46 222 | 18.23 214 | 16.54 219 | 5.08 216 | 40.22 211 | 41.40 212 | 37.76 214 | 37.79 213 |
|
test_method | | | 22.26 210 | 25.94 212 | 17.95 213 | 3.24 221 | 7.17 221 | 23.83 216 | 7.27 217 | 37.35 210 | 20.44 212 | 21.87 213 | 39.16 210 | 18.67 214 | 34.56 212 | 20.84 216 | 34.28 215 | 20.64 217 |
|
E-PMN | | | 21.77 211 | 18.24 214 | 25.89 209 | 40.22 215 | 19.58 218 | 12.46 220 | 39.87 208 | 18.68 218 | 6.71 219 | 9.57 215 | 4.31 225 | 22.36 212 | 19.89 216 | 27.28 214 | 33.73 216 | 28.34 215 |
|
EMVS | | | 20.98 212 | 17.15 215 | 25.44 210 | 39.51 216 | 19.37 219 | 12.66 219 | 39.59 209 | 19.10 217 | 6.62 220 | 9.27 216 | 4.40 224 | 22.43 211 | 17.99 217 | 24.40 215 | 31.81 217 | 25.53 216 |
|
MVE |  | 19.12 19 | 20.47 213 | 23.27 213 | 17.20 214 | 12.66 220 | 25.41 217 | 10.52 221 | 34.14 212 | 14.79 219 | 6.53 221 | 8.79 217 | 4.68 223 | 16.64 215 | 29.49 214 | 41.63 211 | 22.73 219 | 38.11 212 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.09 214 | 0.15 216 | 0.02 216 | 0.01 223 | 0.02 223 | 0.05 224 | 0.01 220 | 0.11 220 | 0.01 224 | 0.26 220 | 0.01 226 | 0.06 220 | 0.10 218 | 0.10 217 | 0.01 221 | 0.43 219 |
|
test123 | | | 0.09 214 | 0.14 217 | 0.02 216 | 0.00 224 | 0.02 223 | 0.02 225 | 0.01 220 | 0.09 221 | 0.00 225 | 0.30 219 | 0.00 227 | 0.08 218 | 0.03 219 | 0.09 218 | 0.01 221 | 0.45 218 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 224 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 225 | 0.00 221 | 0.00 227 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 224 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 225 | 0.00 221 | 0.00 227 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 224 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 225 | 0.00 221 | 0.00 227 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 46.24 162 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 86.88 15 | | | | | |
|
SR-MVS | | | | | | 88.99 34 | | | 73.57 25 | | | | 87.54 13 | | | | | |
|
Anonymous202405211 | | | | 72.16 102 | | 80.85 79 | 81.85 84 | 76.88 104 | 65.40 75 | 62.89 110 | | 46.35 184 | 67.99 98 | 62.05 113 | 81.15 87 | 80.38 89 | 85.97 131 | 84.50 102 |
|
our_test_3 | | | | | | 67.93 183 | 70.99 171 | 66.89 169 | | | | | | | | | | |
|
ambc | | | | 53.42 200 | | 64.99 191 | 63.36 198 | 49.96 208 | | 47.07 195 | 37.12 188 | 28.97 208 | 16.36 220 | 41.82 188 | 75.10 151 | 67.34 188 | 71.55 201 | 75.72 167 |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 18 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 5 | | 84.91 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 223 | | | | | | | | | | |
|
tmp_tt | | | | | 14.50 215 | 14.68 219 | 7.17 221 | 10.46 222 | 2.21 218 | 37.73 209 | 28.71 198 | 25.26 211 | 16.98 218 | 4.37 217 | 31.49 213 | 29.77 213 | 26.56 218 | |
|
XVS | | | | | | 86.63 46 | 88.68 28 | 85.00 47 | | | 71.81 46 | | 81.92 37 | | | | 90.47 22 | |
|
X-MVStestdata | | | | | | 86.63 46 | 88.68 28 | 85.00 47 | | | 71.81 46 | | 81.92 37 | | | | 90.47 22 | |
|
abl_6 | | | | | 79.05 43 | 87.27 42 | 88.85 26 | 83.62 56 | 68.25 55 | 81.68 41 | 72.94 40 | 73.79 45 | 84.45 28 | 72.55 51 | | | 89.66 46 | 90.64 43 |
|
mPP-MVS | | | | | | 89.90 25 | | | | | | | 81.29 42 | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 46 | | | | | | | | |
|
Patchmtry | | | | | | | 65.80 190 | 65.97 176 | 52.74 176 | | 52.65 128 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 18.74 220 | 18.55 218 | 8.02 216 | 26.96 215 | 7.33 218 | 23.81 212 | 13.05 221 | 25.99 204 | 25.17 215 | | 22.45 220 | 36.25 214 |
|