This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4494.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 8194.34 8
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11878.82 987.42 1986.23 3091.28 393.90 12
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3687.08 2786.54 2687.47 8893.67 17
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5278.97 4773.30 4583.86 5481.60 6688.15 7288.83 56
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 4186.64 3286.67 2591.40 294.41 7
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA77.20 6377.54 6776.80 5682.63 6584.31 6379.77 7364.64 8085.17 2473.18 3956.37 12769.81 8474.53 3781.12 8878.69 11286.04 12887.29 69
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS71.42 977.69 6180.05 5774.94 6780.68 8184.52 6281.36 6063.14 9384.77 2764.82 7468.72 6775.91 5871.86 5681.62 7379.55 10187.80 8385.24 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP78.34 5881.64 4474.48 7380.13 8985.01 6081.73 5965.93 7384.75 2861.68 8385.79 1966.27 10371.39 6282.91 6480.78 7586.01 12985.98 78
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4285.71 3789.77 4192.45 27
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3386.47 3485.46 3989.78 4092.06 32
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4982.65 3373.02 4886.37 3686.91 1990.03 3789.62 52
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 5075.18 3586.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6463.18 9282.90 3667.34 6472.79 4776.07 5669.62 7083.46 6184.41 4689.20 5390.60 44
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5986.98 2986.86 2090.47 2292.36 29
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6581.87 6288.79 6292.26 30
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4787.31 2486.76 2389.24 5191.56 35
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5189.66 4690.64 43
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6679.24 3076.63 5471.67 6084.43 5183.78 5089.19 5492.05 34
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8477.96 5277.13 2787.32 2386.83 2190.41 2791.48 36
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6981.04 4477.81 1985.19 4784.88 4489.19 5491.31 37
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6382.09 2581.44 4171.85 5785.89 4086.15 3390.24 3291.25 38
NP-MVS80.10 46
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12680.07 4775.35 3272.96 4673.21 6768.43 7885.41 4484.63 4587.41 8985.44 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary79.74 4778.62 6181.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 9068.84 9476.51 3083.55 5882.85 5788.13 7386.46 76
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9275.62 5974.07 4085.00 4885.34 4090.11 3689.04 54
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7275.68 3770.79 7771.37 6384.60 4984.01 4790.18 3390.74 42
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8971.88 5583.15 6283.37 5489.92 3890.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft68.99 1175.68 6975.31 8176.12 5982.94 6481.26 9179.94 7066.10 6977.15 5266.86 6759.13 11068.53 9673.73 4280.38 9779.04 10787.13 9681.68 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4986.14 3985.47 3889.68 4590.42 46
MVS_111021_LR78.13 5979.85 5876.13 5881.12 7681.50 8780.28 6765.25 7676.09 5471.32 5176.49 3672.87 6972.21 5282.79 6681.29 6886.59 11487.91 63
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3887.05 2886.34 2990.58 1991.08 40
ACMM72.26 878.86 5578.13 6379.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9169.26 8873.57 4384.11 5383.98 4889.76 4287.84 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS73.28 679.42 4980.41 5378.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7278.38 4871.76 5881.26 8480.65 8488.56 6591.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6576.78 3474.37 6264.43 9883.70 5783.69 5187.15 9288.19 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MAR-MVS79.21 5180.32 5477.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5964.70 8577.04 5372.17 5385.42 4385.00 4388.22 6887.62 66
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
RPSCF67.64 13871.25 10663.43 15961.86 19870.73 17367.26 16650.86 18674.20 6058.91 9167.49 7469.33 8764.10 10171.41 17268.45 18677.61 17777.17 158
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 6073.13 4686.46 3585.15 4289.53 4789.81 50
QAPM78.47 5680.22 5676.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 8078.02 5172.69 5083.71 5683.36 5588.87 6090.41 47
casdiffmvs76.76 6478.46 6274.77 6980.32 8683.73 6980.65 6563.24 9173.58 6366.11 6869.39 6474.09 6469.49 7282.52 6879.35 10688.84 6186.52 75
LS3D74.08 7873.39 9174.88 6885.05 5682.62 8079.71 7568.66 5372.82 6458.80 9257.61 12161.31 11971.07 6680.32 9878.87 11186.00 13080.18 139
diffmvs74.86 7477.37 7171.93 8275.62 12380.35 10379.42 7860.15 13672.81 6564.63 7571.51 5573.11 6866.53 9179.02 11777.98 12085.25 14386.83 74
CS-MVS78.36 5780.42 5275.95 6081.17 7483.02 7780.84 6359.46 14571.65 6668.26 5872.53 4878.33 4975.63 3285.79 4183.62 5290.33 3188.01 62
CS-MVS-test77.93 6080.30 5575.16 6580.73 8083.48 7179.80 7259.53 14271.49 6765.20 7172.27 5076.00 5775.55 3485.20 4683.35 5690.15 3490.33 48
OpenMVScopyleft70.44 1076.15 6876.82 7675.37 6385.01 5884.79 6178.99 8362.07 11571.27 6867.88 6157.91 12072.36 7070.15 6882.23 7081.41 6788.12 7487.78 65
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6969.34 5571.62 5476.26 5569.84 6986.57 3385.90 3589.39 4989.88 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_BlendedMVS76.21 6677.52 6874.69 7079.46 9283.79 6777.50 9764.34 8469.88 7071.88 4468.54 7070.42 7967.05 8183.48 5979.63 9787.89 7986.87 72
PVSNet_Blended76.21 6677.52 6874.69 7079.46 9283.79 6777.50 9764.34 8469.88 7071.88 4468.54 7070.42 7967.05 8183.48 5979.63 9787.89 7986.87 72
MVS_Test75.37 7177.13 7473.31 7879.07 9581.32 9079.98 6860.12 13769.72 7264.11 7670.53 5973.22 6668.90 7480.14 10479.48 10387.67 8585.50 85
ETV-MVS77.32 6278.81 6075.58 6182.24 7083.64 7079.98 6864.02 8669.64 7363.90 7770.89 5869.94 8373.41 4485.39 4583.91 4989.92 3888.31 59
DI_MVS_plusplus_trai75.13 7376.12 7973.96 7578.18 10081.55 8580.97 6262.54 10868.59 7465.13 7361.43 9474.81 6169.32 7381.01 9079.59 9987.64 8685.89 79
baseline70.45 10374.09 8666.20 14270.95 16975.67 14974.26 12853.57 16968.33 7558.42 9569.87 6271.45 7261.55 12174.84 15374.76 15678.42 17583.72 110
CANet_DTU73.29 8276.96 7569.00 10977.04 11382.06 8379.49 7756.30 16567.85 7653.29 12571.12 5770.37 8161.81 12081.59 7480.96 7386.09 12384.73 99
USDC67.36 14267.90 14266.74 14071.72 15975.23 15671.58 14960.28 13367.45 7750.54 14160.93 9545.20 20062.08 11276.56 14474.50 15784.25 15275.38 171
GeoE74.23 7774.84 8373.52 7680.42 8581.46 8879.77 7361.06 12467.23 7863.67 7859.56 10768.74 9567.90 7980.25 10279.37 10588.31 6787.26 70
DCV-MVSNet73.65 8075.78 8071.16 8680.19 8779.27 11277.45 9961.68 12166.73 7958.72 9365.31 8169.96 8262.19 11181.29 8380.97 7286.74 10786.91 71
Effi-MVS+75.28 7276.20 7874.20 7481.15 7583.24 7481.11 6163.13 9466.37 8060.27 8864.30 8868.88 9370.93 6781.56 7581.69 6488.61 6387.35 67
EPNet_dtu68.08 12871.00 10764.67 15079.64 9168.62 18175.05 11663.30 9066.36 8145.27 16867.40 7566.84 10243.64 18675.37 14974.98 15581.15 16577.44 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG71.52 9369.87 11673.44 7782.21 7179.35 11179.52 7664.59 8166.15 8261.87 8253.21 15156.09 14365.85 9578.94 11878.50 11486.60 11376.85 161
FC-MVSNet-train72.60 8775.07 8269.71 10181.10 7778.79 11873.74 13865.23 7766.10 8353.34 12470.36 6063.40 11256.92 14981.44 7780.96 7387.93 7784.46 103
EIA-MVS75.64 7076.60 7774.53 7282.43 6883.84 6678.32 9062.28 11465.96 8463.28 8168.95 6567.54 9971.61 6182.55 6781.63 6589.24 5185.72 81
CostFormer68.92 12069.58 12168.15 11575.98 12076.17 14778.22 9251.86 18165.80 8561.56 8463.57 8962.83 11361.85 11870.40 18568.67 18279.42 17179.62 144
IS_MVSNet73.33 8177.34 7268.65 11281.29 7383.47 7274.45 12163.58 8965.75 8648.49 14867.11 7770.61 7854.63 16484.51 5083.58 5389.48 4886.34 77
Vis-MVSNet (Re-imp)67.83 13373.52 8961.19 16678.37 9976.72 14266.80 17162.96 9565.50 8734.17 19267.19 7669.68 8639.20 19579.39 11379.44 10485.68 13576.73 162
Fast-Effi-MVS+73.11 8373.66 8772.48 8077.72 10680.88 9778.55 8658.83 15465.19 8860.36 8659.98 10362.42 11571.22 6481.66 7180.61 8688.20 6984.88 97
DROMVSNet73.11 8373.66 8772.48 8077.72 10680.88 9778.55 8658.83 15465.19 8860.36 8659.98 10362.42 11571.22 6481.66 7180.61 8688.20 6984.88 97
EPP-MVSNet74.00 7977.41 7070.02 9880.53 8383.91 6574.99 11762.68 10665.06 9049.77 14468.68 6872.09 7163.06 10682.49 6980.73 7689.12 5688.91 55
UGNet72.78 8577.67 6667.07 13471.65 16183.24 7475.20 11163.62 8864.93 9156.72 10571.82 5373.30 6549.02 17781.02 8980.70 8286.22 12088.67 57
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended_VisFu76.57 6577.90 6475.02 6680.56 8286.58 4979.24 7966.18 6864.81 9268.18 6065.61 7871.45 7267.05 8184.16 5281.80 6388.90 5890.92 41
pmmvs467.89 13167.39 14868.48 11371.60 16373.57 16374.45 12160.98 12564.65 9357.97 9954.95 13551.73 17861.88 11773.78 15975.11 15383.99 15577.91 153
MVSTER72.06 8974.24 8469.51 10470.39 17275.97 14876.91 10357.36 16264.64 9461.39 8568.86 6663.76 11063.46 10381.44 7779.70 9687.56 8785.31 89
OPM-MVS79.68 4879.28 5980.15 3887.99 3986.77 4788.52 2972.72 3064.55 9567.65 6267.87 7374.33 6374.31 3986.37 3685.25 4189.73 4389.81 50
ET-MVSNet_ETH3D72.46 8874.19 8570.44 9362.50 19681.17 9279.90 7162.46 11164.52 9657.52 10171.49 5659.15 12872.08 5478.61 12281.11 7088.16 7183.29 113
Anonymous2023121171.90 9072.48 9971.21 8580.14 8881.53 8676.92 10262.89 9764.46 9758.94 9043.80 18870.98 7662.22 11080.70 9280.19 9286.18 12185.73 80
thisisatest053071.48 9473.01 9469.70 10273.83 14278.62 12074.53 12059.12 14864.13 9858.63 9464.60 8658.63 13064.27 9980.28 10080.17 9387.82 8284.64 101
GBi-Net70.78 9873.37 9267.76 11772.95 14978.00 12575.15 11262.72 10164.13 9851.44 13358.37 11569.02 9057.59 14181.33 8080.72 7786.70 10882.02 119
test170.78 9873.37 9267.76 11772.95 14978.00 12575.15 11262.72 10164.13 9851.44 13358.37 11569.02 9057.59 14181.33 8080.72 7786.70 10882.02 119
FMVSNet370.49 10272.90 9667.67 12272.88 15277.98 12874.96 11862.72 10164.13 9851.44 13358.37 11569.02 9057.43 14479.43 11279.57 10086.59 11481.81 126
tttt051771.41 9572.95 9569.60 10373.70 14478.70 11974.42 12459.12 14863.89 10258.35 9764.56 8758.39 13264.27 9980.29 9980.17 9387.74 8484.69 100
SCA65.40 15166.58 15464.02 15470.65 17073.37 16467.35 16553.46 17163.66 10354.14 11660.84 9660.20 12361.50 12269.96 18668.14 18777.01 18269.91 186
COLMAP_ROBcopyleft62.73 1567.66 13666.76 15268.70 11180.49 8477.98 12875.29 11062.95 9663.62 10449.96 14247.32 18350.72 18358.57 13476.87 14075.50 15284.94 14875.33 172
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EPMVS60.00 18461.97 18557.71 18268.46 18263.17 20064.54 18248.23 19963.30 10544.72 17060.19 10056.05 14450.85 17465.27 19962.02 20169.44 20563.81 199
FMVSNet270.39 10472.67 9867.72 12072.95 14978.00 12575.15 11262.69 10563.29 10651.25 13755.64 12968.49 9757.59 14180.91 9180.35 9086.70 10882.02 119
PatchmatchNetpermissive64.21 15964.65 16763.69 15671.29 16868.66 18069.63 15651.70 18363.04 10753.77 12159.83 10658.34 13360.23 13168.54 19266.06 19475.56 18868.08 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat165.41 15063.81 17367.28 13075.61 12472.88 16575.32 10952.85 17562.97 10863.66 7953.24 15053.29 16861.83 11965.54 19664.14 19874.43 19374.60 174
PatchMatch-RL67.78 13466.65 15369.10 10773.01 14872.69 16668.49 16161.85 11862.93 10960.20 8956.83 12650.42 18469.52 7175.62 14874.46 15881.51 16373.62 180
Anonymous20240521172.16 10280.85 7981.85 8476.88 10465.40 7562.89 11046.35 18467.99 9862.05 11381.15 8780.38 8985.97 13184.50 102
baseline170.10 10872.17 10167.69 12179.74 9076.80 14073.91 13264.38 8362.74 11148.30 15064.94 8264.08 10954.17 16681.46 7678.92 10985.66 13676.22 163
PMMVS65.06 15369.17 12760.26 17155.25 21063.43 19766.71 17243.01 20662.41 11250.64 13969.44 6367.04 10163.29 10474.36 15673.54 16282.68 16073.99 179
MS-PatchMatch70.17 10770.49 11169.79 10080.98 7877.97 13077.51 9658.95 15162.33 11355.22 11353.14 15265.90 10462.03 11479.08 11677.11 13684.08 15377.91 153
tpmrst62.00 17362.35 18461.58 16471.62 16264.14 19369.07 15948.22 20062.21 11453.93 11958.26 11955.30 14755.81 15763.22 20162.62 20070.85 20270.70 185
UniMVSNet_NR-MVSNet70.59 10172.19 10068.72 11077.72 10680.72 9973.81 13669.65 4661.99 11543.23 17360.54 9957.50 13558.57 13479.56 11081.07 7189.34 5083.97 105
GG-mvs-BLEND46.86 20567.51 14522.75 2110.05 22276.21 14664.69 1810.04 21961.90 1160.09 22355.57 13071.32 740.08 21870.54 18167.19 19071.58 20069.86 187
CHOSEN 1792x268869.20 11869.26 12569.13 10676.86 11478.93 11477.27 10060.12 13761.86 11754.42 11442.54 19261.61 11766.91 8678.55 12378.14 11979.23 17383.23 114
UniMVSNet (Re)69.53 11371.90 10366.76 13976.42 11680.93 9472.59 14668.03 5861.75 11841.68 17858.34 11857.23 13753.27 16979.53 11180.62 8588.57 6484.90 96
ACMH+66.54 1371.36 9670.09 11472.85 7982.59 6681.13 9378.56 8568.04 5761.55 11952.52 13151.50 16654.14 15368.56 7778.85 11979.50 10286.82 10483.94 107
IterMVS-LS71.69 9272.82 9770.37 9477.54 10976.34 14575.13 11560.46 13261.53 12057.57 10064.89 8367.33 10066.04 9477.09 13877.37 13285.48 13985.18 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline269.69 11170.27 11369.01 10875.72 12277.13 13873.82 13558.94 15261.35 12157.09 10361.68 9357.17 13861.99 11578.10 12776.58 14386.48 11779.85 141
Baseline_NR-MVSNet67.53 14068.77 13266.09 14375.99 11874.75 15972.43 14768.41 5461.33 12238.33 18551.31 16754.13 15556.03 15479.22 11478.19 11885.37 14182.45 117
DU-MVS69.63 11270.91 10868.13 11675.99 11879.54 10873.81 13669.20 5161.20 12343.23 17358.52 11253.50 16058.57 13479.22 11480.45 8887.97 7683.97 105
NR-MVSNet68.79 12270.56 11066.71 14177.48 11079.54 10873.52 14069.20 5161.20 12339.76 18058.52 11250.11 18651.37 17380.26 10180.71 8188.97 5783.59 111
test_part174.24 7673.44 9075.18 6482.02 7282.34 8283.88 5462.40 11260.93 12568.68 5649.25 17769.71 8565.73 9681.26 8481.98 6188.35 6688.60 58
Effi-MVS+-dtu71.82 9171.86 10471.78 8378.77 9680.47 10178.55 8661.67 12260.68 12655.49 11058.48 11465.48 10568.85 7576.92 13975.55 15187.35 9085.46 86
UA-Net74.47 7577.80 6570.59 9285.33 5485.40 5773.54 13965.98 7260.65 12756.00 10972.11 5179.15 4654.63 16483.13 6382.25 5988.04 7581.92 125
Vis-MVSNetpermissive72.77 8677.20 7367.59 12474.19 13784.01 6476.61 10761.69 12060.62 12850.61 14070.25 6171.31 7555.57 16083.85 5582.28 5886.90 10188.08 61
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet69.25 11770.81 10967.43 12577.23 11279.46 11073.48 14169.66 4560.43 12939.56 18158.82 11153.48 16255.74 15879.59 10881.21 6988.89 5982.70 115
TDRefinement66.09 14865.03 16567.31 12869.73 17676.75 14175.33 10864.55 8260.28 13049.72 14545.63 18642.83 20360.46 13075.75 14775.95 14884.08 15378.04 152
MDTV_nov1_ep1364.37 15765.24 16163.37 16068.94 18170.81 17272.40 14850.29 19060.10 13153.91 12060.07 10259.15 12857.21 14569.43 18967.30 18977.47 17869.78 188
IB-MVS66.94 1271.21 9771.66 10570.68 8979.18 9482.83 7972.61 14561.77 11959.66 13263.44 8053.26 14959.65 12659.16 13376.78 14282.11 6087.90 7887.33 68
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet55.94 19358.01 19453.54 19662.48 19758.48 20659.12 19946.20 20359.65 13342.88 17652.34 16353.31 16746.31 18162.00 20360.02 20464.23 21060.24 206
FC-MVSNet-test56.90 19165.20 16247.21 20266.98 18463.20 19949.11 21058.60 15659.38 13411.50 21765.60 7956.68 14124.66 20971.17 17571.36 17272.38 19969.02 190
HyFIR lowres test69.47 11568.94 12970.09 9776.77 11582.93 7876.63 10660.17 13559.00 13554.03 11840.54 19765.23 10667.89 8076.54 14578.30 11785.03 14680.07 140
v870.23 10569.86 11770.67 9074.69 13279.82 10778.79 8459.18 14758.80 13658.20 9855.00 13457.33 13666.31 9377.51 13276.71 14186.82 10483.88 108
V4268.76 12369.63 12067.74 11964.93 19278.01 12478.30 9156.48 16458.65 13756.30 10854.26 14057.03 13964.85 9777.47 13377.01 13785.60 13784.96 95
Fast-Effi-MVS+-dtu68.34 12569.47 12267.01 13575.15 12677.97 13077.12 10155.40 16757.87 13846.68 16056.17 12860.39 12062.36 10976.32 14676.25 14785.35 14281.34 129
tpm62.41 16963.15 17561.55 16572.24 15563.79 19671.31 15146.12 20457.82 13955.33 11159.90 10554.74 15053.63 16767.24 19564.29 19770.65 20374.25 178
CR-MVSNet64.83 15465.54 15964.01 15570.64 17169.41 17665.97 17652.74 17657.81 14052.65 12854.27 13856.31 14260.92 12672.20 16873.09 16481.12 16675.69 168
RPMNet61.71 17962.88 17760.34 17069.51 17869.41 17663.48 18649.23 19257.81 14045.64 16750.51 17050.12 18553.13 17068.17 19468.49 18581.07 16775.62 170
dps64.00 16062.99 17665.18 14573.29 14672.07 16868.98 16053.07 17457.74 14258.41 9655.55 13147.74 19360.89 12869.53 18867.14 19176.44 18571.19 184
v1070.22 10669.76 11970.74 8774.79 13180.30 10579.22 8059.81 14057.71 14356.58 10754.22 14255.31 14666.95 8478.28 12577.47 12987.12 9885.07 93
IterMVS-SCA-FT66.89 14669.22 12664.17 15271.30 16775.64 15071.33 15053.17 17357.63 14449.08 14760.72 9760.05 12463.09 10574.99 15273.92 15977.07 18181.57 128
v2v48270.05 10969.46 12370.74 8774.62 13380.32 10479.00 8260.62 12957.41 14556.89 10455.43 13355.14 14866.39 9277.25 13577.14 13586.90 10183.57 112
IterMVS66.36 14768.30 13964.10 15369.48 17974.61 16073.41 14250.79 18757.30 14648.28 15160.64 9859.92 12560.85 12974.14 15772.66 16681.80 16278.82 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet168.84 12170.47 11266.94 13671.35 16677.68 13374.71 11962.35 11356.93 14749.94 14350.01 17264.59 10757.07 14681.33 8080.72 7786.25 11982.00 122
PatchT61.97 17464.04 17159.55 17660.49 20067.40 18456.54 20148.65 19656.69 14852.65 12851.10 16952.14 17660.92 12672.20 16873.09 16478.03 17675.69 168
thres100view90067.60 13968.02 14067.12 13377.83 10477.75 13273.90 13362.52 10956.64 14946.82 15852.65 15953.47 16355.92 15578.77 12077.62 12685.72 13479.23 146
tfpn200view968.11 12768.72 13367.40 12677.83 10478.93 11474.28 12662.81 9856.64 14946.82 15852.65 15953.47 16356.59 15080.41 9478.43 11586.11 12280.52 136
MIMVSNet58.52 18861.34 18855.22 19060.76 19967.01 18666.81 17049.02 19456.43 15138.90 18340.59 19654.54 15240.57 19373.16 16171.65 16975.30 19166.00 195
thres20067.98 12968.55 13667.30 12977.89 10378.86 11674.18 13062.75 9956.35 15246.48 16152.98 15553.54 15956.46 15180.41 9477.97 12186.05 12679.78 143
thres40067.95 13068.62 13567.17 13177.90 10178.59 12174.27 12762.72 10156.34 15345.77 16653.00 15453.35 16656.46 15180.21 10378.43 11585.91 13380.43 137
ACMH65.37 1470.71 10070.00 11571.54 8482.51 6782.47 8177.78 9468.13 5656.19 15446.06 16454.30 13751.20 18068.68 7680.66 9380.72 7786.07 12484.45 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view767.68 13568.43 13766.80 13877.90 10178.86 11673.84 13462.75 9956.07 15544.70 17152.85 15752.81 17055.58 15980.41 9477.77 12386.05 12680.28 138
v114469.93 11069.36 12470.61 9174.89 13080.93 9479.11 8160.64 12855.97 15655.31 11253.85 14454.14 15366.54 9078.10 12777.44 13087.14 9585.09 92
v14867.85 13267.53 14468.23 11473.25 14777.57 13674.26 12857.36 16255.70 15757.45 10253.53 14555.42 14561.96 11675.23 15073.92 15985.08 14581.32 130
TinyColmap62.84 16461.03 18964.96 14869.61 17771.69 16968.48 16259.76 14155.41 15847.69 15547.33 18234.20 21262.76 10874.52 15472.59 16781.44 16471.47 183
CHOSEN 280x42058.70 18761.88 18654.98 19155.45 20950.55 21264.92 18040.36 20755.21 15938.13 18648.31 17963.76 11063.03 10773.73 16068.58 18468.00 20873.04 181
FMVSNet557.24 18960.02 19253.99 19456.45 20762.74 20165.27 17947.03 20155.14 16039.55 18240.88 19453.42 16541.83 18772.35 16471.10 17373.79 19564.50 198
GA-MVS68.14 12669.17 12766.93 13773.77 14378.50 12274.45 12158.28 15755.11 16148.44 14960.08 10153.99 15661.50 12278.43 12477.57 12785.13 14480.54 135
v119269.50 11468.83 13070.29 9574.49 13480.92 9678.55 8660.54 13055.04 16254.21 11552.79 15852.33 17366.92 8577.88 12977.35 13387.04 9985.51 84
PM-MVS60.48 18260.94 19059.94 17258.85 20366.83 18764.27 18451.39 18455.03 16348.03 15250.00 17440.79 20758.26 13769.20 19067.13 19278.84 17477.60 155
v14419269.34 11668.68 13470.12 9674.06 13880.54 10078.08 9360.54 13054.99 16454.13 11752.92 15652.80 17166.73 8877.13 13776.72 14087.15 9285.63 82
thisisatest051567.40 14168.78 13165.80 14470.02 17475.24 15569.36 15857.37 16154.94 16553.67 12255.53 13254.85 14958.00 13978.19 12678.91 11086.39 11883.78 109
v192192069.03 11968.32 13869.86 9974.03 13980.37 10277.55 9560.25 13454.62 16653.59 12352.36 16251.50 17966.75 8777.17 13676.69 14286.96 10085.56 83
test-LLR64.42 15664.36 16964.49 15175.02 12863.93 19466.61 17361.96 11654.41 16747.77 15357.46 12260.25 12155.20 16270.80 17969.33 17780.40 16974.38 176
TESTMET0.1,161.10 18064.36 16957.29 18357.53 20563.93 19466.61 17336.22 21054.41 16747.77 15357.46 12260.25 12155.20 16270.80 17969.33 17780.40 16974.38 176
test-mter60.84 18164.62 16856.42 18655.99 20864.18 19265.39 17834.23 21154.39 16946.21 16357.40 12459.49 12755.86 15671.02 17869.65 17680.87 16876.20 164
pmmvs-eth3d63.52 16162.44 18364.77 14966.82 18770.12 17569.41 15759.48 14454.34 17052.71 12746.24 18544.35 20256.93 14872.37 16373.77 16183.30 15775.91 165
WR-MVS63.03 16267.40 14757.92 18175.14 12777.60 13560.56 19466.10 6954.11 17123.88 20353.94 14353.58 15834.50 19973.93 15877.71 12487.35 9080.94 132
CDS-MVSNet67.65 13769.83 11865.09 14675.39 12576.55 14374.42 12463.75 8753.55 17249.37 14659.41 10862.45 11444.44 18479.71 10779.82 9583.17 15977.36 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmnet_mix0255.30 19457.01 19853.30 19764.14 19359.09 20558.39 20050.24 19153.47 17338.68 18449.75 17545.86 19840.14 19465.38 19860.22 20368.19 20765.33 196
v124068.64 12467.89 14369.51 10473.89 14180.26 10676.73 10559.97 13953.43 17453.08 12651.82 16550.84 18266.62 8976.79 14176.77 13986.78 10685.34 88
test0.0.03 158.80 18661.58 18755.56 18975.02 12868.45 18259.58 19861.96 11652.74 17529.57 19649.75 17554.56 15131.46 20271.19 17469.77 17575.75 18664.57 197
CP-MVSNet62.68 16565.49 16059.40 17771.84 15775.34 15362.87 18967.04 6452.64 17627.19 20053.38 14748.15 19141.40 19071.26 17375.68 14986.07 12482.00 122
PEN-MVS62.96 16365.77 15759.70 17473.98 14075.45 15263.39 18767.61 6152.49 17725.49 20253.39 14649.12 18940.85 19271.94 17077.26 13486.86 10380.72 134
CVMVSNet62.55 16665.89 15558.64 17966.95 18569.15 17866.49 17556.29 16652.46 17832.70 19359.27 10958.21 13450.09 17571.77 17171.39 17179.31 17278.99 148
UniMVSNet_ETH3D67.18 14467.03 14967.36 12774.44 13578.12 12374.07 13166.38 6652.22 17946.87 15748.64 17851.84 17756.96 14777.29 13478.53 11385.42 14082.59 116
MDTV_nov1_ep13_2view60.16 18360.51 19159.75 17365.39 18969.05 17968.00 16348.29 19851.99 18045.95 16548.01 18149.64 18853.39 16868.83 19166.52 19377.47 17869.55 189
CMPMVSbinary47.78 1762.49 16862.52 18162.46 16170.01 17570.66 17462.97 18851.84 18251.98 18156.71 10642.87 19053.62 15757.80 14072.23 16670.37 17475.45 19075.91 165
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WR-MVS_H61.83 17765.87 15657.12 18471.72 15976.87 13961.45 19266.19 6751.97 18222.92 20753.13 15352.30 17533.80 20071.03 17775.00 15486.65 11280.78 133
PS-CasMVS62.38 17165.06 16359.25 17871.73 15875.21 15762.77 19066.99 6551.94 18326.96 20152.00 16447.52 19441.06 19171.16 17675.60 15085.97 13181.97 124
DTE-MVSNet61.85 17564.96 16658.22 18074.32 13674.39 16161.01 19367.85 6051.76 18421.91 21053.28 14848.17 19037.74 19672.22 16776.44 14486.52 11678.49 150
v7n67.05 14566.94 15067.17 13172.35 15478.97 11373.26 14458.88 15351.16 18550.90 13848.21 18050.11 18660.96 12577.70 13077.38 13186.68 11185.05 94
pmmvs562.37 17264.04 17160.42 16965.03 19071.67 17067.17 16752.70 17850.30 18644.80 16954.23 14151.19 18149.37 17672.88 16273.48 16383.45 15674.55 175
FPMVS51.87 20050.00 20554.07 19366.83 18657.25 20760.25 19650.91 18550.25 18734.36 19136.04 20232.02 21441.49 18958.98 20756.07 20670.56 20459.36 207
TAMVS59.58 18562.81 17955.81 18866.03 18865.64 19163.86 18548.74 19549.95 18837.07 18954.77 13658.54 13144.44 18472.29 16571.79 16874.70 19266.66 194
pm-mvs165.62 14967.42 14663.53 15873.66 14576.39 14469.66 15560.87 12749.73 18943.97 17251.24 16857.00 14048.16 17879.89 10577.84 12284.85 15079.82 142
N_pmnet47.35 20350.13 20444.11 20559.98 20151.64 21151.86 20644.80 20549.58 19020.76 21140.65 19540.05 20929.64 20359.84 20555.15 20757.63 21154.00 209
Anonymous2023120656.36 19257.80 19654.67 19270.08 17366.39 18860.46 19557.54 15949.50 19129.30 19733.86 20446.64 19535.18 19870.44 18368.88 18175.47 18968.88 191
anonymousdsp65.28 15267.98 14162.13 16258.73 20473.98 16267.10 16850.69 18848.41 19247.66 15654.27 13852.75 17261.45 12476.71 14380.20 9187.13 9689.53 53
tfpnnormal64.27 15863.64 17465.02 14775.84 12175.61 15171.24 15262.52 10947.79 19342.97 17542.65 19144.49 20152.66 17178.77 12076.86 13884.88 14979.29 145
TransMVSNet (Re)64.74 15565.66 15863.66 15777.40 11175.33 15469.86 15462.67 10747.63 19441.21 17950.01 17252.33 17345.31 18379.57 10977.69 12585.49 13877.07 160
ambc53.42 20064.99 19163.36 19849.96 20847.07 19537.12 18828.97 20816.36 22041.82 18875.10 15167.34 18871.55 20175.72 167
EG-PatchMatch MVS67.24 14366.94 15067.60 12378.73 9781.35 8973.28 14359.49 14346.89 19651.42 13643.65 18953.49 16155.50 16181.38 7980.66 8387.15 9281.17 131
SixPastTwentyTwo61.84 17662.45 18261.12 16769.20 18072.20 16762.03 19157.40 16046.54 19738.03 18757.14 12541.72 20558.12 13869.67 18771.58 17081.94 16178.30 151
MVS-HIRNet54.41 19652.10 20357.11 18558.99 20256.10 20949.68 20949.10 19346.18 19852.15 13233.18 20546.11 19756.10 15363.19 20259.70 20576.64 18460.25 205
EU-MVSNet54.63 19558.69 19349.90 20056.99 20662.70 20256.41 20250.64 18945.95 19923.14 20650.42 17146.51 19636.63 19765.51 19764.85 19675.57 18774.91 173
MDA-MVSNet-bldmvs53.37 19953.01 20253.79 19543.67 21467.95 18359.69 19757.92 15843.69 20032.41 19441.47 19327.89 21752.38 17256.97 20965.99 19576.68 18367.13 193
testgi54.39 19757.86 19550.35 19971.59 16467.24 18554.95 20353.25 17243.36 20123.78 20444.64 18747.87 19224.96 20770.45 18268.66 18373.60 19662.78 202
test20.0353.93 19856.28 19951.19 19872.19 15665.83 18953.20 20561.08 12342.74 20222.08 20837.07 20045.76 19924.29 21070.44 18369.04 17974.31 19463.05 201
new-patchmatchnet46.97 20449.47 20644.05 20662.82 19556.55 20845.35 21252.01 18042.47 20317.04 21535.73 20335.21 21121.84 21361.27 20454.83 20865.26 20960.26 204
pmmvs662.41 16962.88 17761.87 16371.38 16575.18 15867.76 16459.45 14641.64 20442.52 17737.33 19952.91 16946.87 18077.67 13176.26 14683.23 15879.18 147
MIMVSNet149.27 20153.25 20144.62 20444.61 21261.52 20453.61 20452.18 17941.62 20518.68 21328.14 21041.58 20625.50 20568.46 19369.04 17973.15 19762.37 203
new_pmnet38.40 20742.64 20933.44 20837.54 21745.00 21336.60 21432.72 21340.27 20612.72 21629.89 20728.90 21624.78 20853.17 21052.90 21056.31 21248.34 210
Gipumacopyleft36.38 20835.80 21037.07 20745.76 21133.90 21529.81 21548.47 19739.91 20718.02 2148.00 2188.14 22225.14 20659.29 20661.02 20255.19 21340.31 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
gg-mvs-nofinetune62.55 16665.05 16459.62 17578.72 9877.61 13470.83 15353.63 16839.71 20822.04 20936.36 20164.32 10847.53 17981.16 8679.03 10885.00 14777.17 158
tmp_tt14.50 21514.68 2197.17 22110.46 2222.21 21837.73 20928.71 19825.26 21116.98 2184.37 21731.49 21329.77 21326.56 218
test_method22.26 21025.94 21217.95 2133.24 2217.17 22123.83 2167.27 21737.35 21020.44 21221.87 21339.16 21018.67 21434.56 21220.84 21634.28 21520.64 217
pmmvs347.65 20249.08 20745.99 20344.61 21254.79 21050.04 20731.95 21433.91 21129.90 19530.37 20633.53 21346.31 18163.50 20063.67 19973.14 19863.77 200
gm-plane-assit57.00 19057.62 19756.28 18776.10 11762.43 20347.62 21146.57 20233.84 21223.24 20537.52 19840.19 20859.61 13279.81 10677.55 12884.55 15172.03 182
LTVRE_ROB59.44 1661.82 17862.64 18060.87 16872.83 15377.19 13764.37 18358.97 15033.56 21328.00 19952.59 16142.21 20463.93 10274.52 15476.28 14577.15 18082.13 118
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMVScopyleft39.38 1846.06 20643.30 20849.28 20162.93 19438.75 21441.88 21353.50 17033.33 21435.46 19028.90 20931.01 21533.04 20158.61 20854.63 20968.86 20657.88 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft18.74 22018.55 2188.02 21626.96 2157.33 21823.81 21213.05 22125.99 20425.17 21522.45 22036.25 214
PMMVS225.60 20929.75 21120.76 21228.00 21830.93 21623.10 21729.18 21523.14 2161.46 22218.23 21416.54 2195.08 21640.22 21141.40 21237.76 21437.79 213
EMVS20.98 21217.15 21525.44 21039.51 21619.37 21912.66 21939.59 20919.10 2176.62 2209.27 2164.40 22422.43 21117.99 21724.40 21531.81 21725.53 216
E-PMN21.77 21118.24 21425.89 20940.22 21519.58 21812.46 22039.87 20818.68 2186.71 2199.57 2154.31 22522.36 21219.89 21627.28 21433.73 21628.34 215
MVEpermissive19.12 1920.47 21323.27 21317.20 21412.66 22025.41 21710.52 22134.14 21214.79 2196.53 2218.79 2174.68 22316.64 21529.49 21441.63 21122.73 21938.11 212
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.09 2140.15 2160.02 2160.01 2230.02 2230.05 2240.01 2200.11 2200.01 2240.26 2200.01 2260.06 2200.10 2180.10 2170.01 2210.43 219
test1230.09 2140.14 2170.02 2160.00 2240.02 2230.02 2250.01 2200.09 2210.00 2250.30 2190.00 2270.08 2180.03 2190.09 2180.01 2210.45 218
uanet_test0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2240.00 2250.00 2260.00 2220.00 2220.00 2250.00 2210.00 2270.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def46.24 162
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
our_test_367.93 18370.99 17166.89 169
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 223
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
mPP-MVS89.90 2581.29 42
Patchmtry65.80 19065.97 17652.74 17652.65 128