MSP-MVS | | | 95.56 1 | 96.26 1 | 94.73 2 | 96.93 16 | 98.19 1 | 96.62 5 | 92.81 3 | 96.15 1 | 91.73 4 | 95.01 6 | 95.31 1 | 93.41 1 | 95.95 1 | 94.77 6 | 96.90 4 | 98.46 1 |
|
DVP-MVS | | | 95.12 4 | 95.83 3 | 94.30 4 | 96.82 20 | 97.94 3 | 96.98 3 | 92.37 10 | 95.40 2 | 90.59 12 | 96.16 3 | 93.71 4 | 92.70 6 | 94.80 14 | 94.77 6 | 96.37 13 | 97.99 7 |
|
DeepPCF-MVS | | 88.51 2 | 92.64 28 | 94.42 15 | 90.56 40 | 94.84 43 | 96.92 17 | 91.31 60 | 89.61 31 | 95.16 3 | 84.55 45 | 89.91 28 | 91.45 20 | 90.15 32 | 95.12 9 | 94.81 5 | 92.90 146 | 97.58 12 |
|
APDe-MVS | | | 95.23 3 | 95.69 4 | 94.70 3 | 97.12 10 | 97.81 4 | 97.19 2 | 92.83 2 | 95.06 4 | 90.98 9 | 96.47 2 | 92.77 9 | 93.38 2 | 95.34 7 | 94.21 14 | 96.68 7 | 98.17 3 |
|
SMA-MVS | | | 94.70 5 | 95.35 5 | 93.93 11 | 97.57 2 | 97.57 6 | 95.98 10 | 91.91 12 | 94.50 5 | 90.35 13 | 93.46 16 | 92.72 10 | 91.89 17 | 95.89 2 | 95.22 1 | 95.88 26 | 98.10 4 |
|
SD-MVS | | | 94.53 8 | 95.22 6 | 93.73 14 | 95.69 35 | 97.03 13 | 95.77 21 | 91.95 11 | 94.41 6 | 91.35 6 | 94.97 7 | 93.34 6 | 91.80 19 | 94.72 17 | 93.99 18 | 95.82 33 | 98.07 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DPE-MVS | | | 95.53 2 | 96.13 2 | 94.82 1 | 96.81 21 | 98.05 2 | 97.42 1 | 93.09 1 | 94.31 7 | 91.49 5 | 97.12 1 | 95.03 2 | 93.27 3 | 95.55 4 | 94.58 10 | 96.86 5 | 98.25 2 |
|
TSAR-MVS + MP. | | | 94.48 9 | 94.97 7 | 93.90 12 | 95.53 36 | 97.01 14 | 96.69 4 | 90.71 23 | 94.24 8 | 90.92 10 | 94.97 7 | 92.19 14 | 93.03 4 | 94.83 13 | 93.60 25 | 96.51 12 | 97.97 8 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HFP-MVS | | | 94.02 13 | 94.22 16 | 93.78 13 | 97.25 7 | 96.85 19 | 95.81 19 | 90.94 22 | 94.12 9 | 90.29 15 | 94.09 13 | 89.98 30 | 92.52 9 | 93.94 31 | 93.49 32 | 95.87 28 | 97.10 23 |
|
zzz-MVS | | | 93.80 16 | 93.45 24 | 94.20 7 | 97.53 3 | 96.43 35 | 95.88 16 | 91.12 19 | 94.09 10 | 92.74 3 | 87.68 32 | 90.77 24 | 92.04 12 | 94.74 16 | 93.56 27 | 95.91 25 | 96.85 27 |
|
xxxxxxxxxxxxxcwj | | | 92.95 23 | 91.88 32 | 94.20 7 | 96.75 23 | 97.07 10 | 95.82 17 | 92.60 5 | 93.98 11 | 91.09 7 | 95.89 4 | 71.01 123 | 91.93 14 | 94.40 24 | 93.56 27 | 97.04 2 | 97.27 16 |
|
SF-MVS | | | 94.61 6 | 94.96 8 | 94.20 7 | 96.75 23 | 97.07 10 | 95.82 17 | 92.60 5 | 93.98 11 | 91.09 7 | 95.89 4 | 92.54 11 | 91.93 14 | 94.40 24 | 93.56 27 | 97.04 2 | 97.27 16 |
|
ACMMPR | | | 93.72 17 | 93.94 18 | 93.48 17 | 97.07 11 | 96.93 16 | 95.78 20 | 90.66 25 | 93.88 13 | 89.24 20 | 93.53 15 | 89.08 37 | 92.24 10 | 93.89 33 | 93.50 30 | 95.88 26 | 96.73 31 |
|
HPM-MVS++ | | | 94.60 7 | 94.91 9 | 94.24 6 | 97.86 1 | 96.53 31 | 96.14 7 | 92.51 7 | 93.87 14 | 90.76 11 | 93.45 17 | 93.84 3 | 92.62 7 | 95.11 10 | 94.08 17 | 95.58 49 | 97.48 13 |
|
CNVR-MVS | | | 94.37 10 | 94.65 10 | 94.04 10 | 97.29 6 | 97.11 9 | 96.00 9 | 92.43 9 | 93.45 15 | 89.85 18 | 90.92 24 | 93.04 7 | 92.59 8 | 95.77 3 | 94.82 4 | 96.11 20 | 97.42 15 |
|
TSAR-MVS + ACMM | | | 92.97 22 | 94.51 12 | 91.16 36 | 95.88 33 | 96.59 29 | 95.09 28 | 90.45 29 | 93.42 16 | 83.01 52 | 94.68 9 | 90.74 25 | 88.74 39 | 94.75 15 | 93.78 22 | 93.82 127 | 97.63 11 |
|
ACMMP_NAP | | | 93.94 14 | 94.49 13 | 93.30 19 | 97.03 13 | 97.31 8 | 95.96 11 | 91.30 17 | 93.41 17 | 88.55 23 | 93.00 18 | 90.33 27 | 91.43 25 | 95.53 5 | 94.41 12 | 95.53 51 | 97.47 14 |
|
NCCC | | | 93.69 18 | 93.66 21 | 93.72 15 | 97.37 5 | 96.66 28 | 95.93 15 | 92.50 8 | 93.40 18 | 88.35 24 | 87.36 34 | 92.33 13 | 92.18 11 | 94.89 12 | 94.09 16 | 96.00 22 | 96.91 26 |
|
OMC-MVS | | | 90.23 43 | 90.40 42 | 90.03 44 | 93.45 56 | 95.29 49 | 91.89 55 | 86.34 51 | 93.25 19 | 84.94 44 | 81.72 51 | 86.65 48 | 88.90 36 | 91.69 61 | 90.27 74 | 94.65 91 | 93.95 78 |
|
DeepC-MVS_fast | | 88.76 1 | 93.10 21 | 93.02 28 | 93.19 21 | 97.13 9 | 96.51 32 | 95.35 25 | 91.19 18 | 93.14 20 | 88.14 25 | 85.26 40 | 89.49 34 | 91.45 22 | 95.17 8 | 95.07 2 | 95.85 31 | 96.48 34 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 92.71 27 | 93.91 19 | 91.30 34 | 91.96 71 | 96.00 40 | 93.43 40 | 87.94 40 | 92.53 21 | 86.27 39 | 93.57 14 | 91.94 17 | 91.44 24 | 93.29 39 | 92.89 42 | 96.78 6 | 97.15 21 |
|
CSCG | | | 92.76 25 | 93.16 26 | 92.29 28 | 96.30 27 | 97.74 5 | 94.67 32 | 88.98 35 | 92.46 22 | 89.73 19 | 86.67 36 | 92.15 16 | 88.69 41 | 92.26 53 | 92.92 41 | 95.40 56 | 97.89 9 |
|
APD-MVS | | | 94.37 10 | 94.47 14 | 94.26 5 | 97.18 8 | 96.99 15 | 96.53 6 | 92.68 4 | 92.45 23 | 89.96 16 | 94.53 10 | 91.63 19 | 92.89 5 | 94.58 19 | 93.82 21 | 96.31 16 | 97.26 18 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CP-MVS | | | 93.25 20 | 93.26 25 | 93.24 20 | 96.84 19 | 96.51 32 | 95.52 23 | 90.61 26 | 92.37 24 | 88.88 21 | 90.91 25 | 89.52 33 | 91.91 16 | 93.64 35 | 92.78 43 | 95.69 40 | 97.09 24 |
|
MCST-MVS | | | 93.81 15 | 94.06 17 | 93.53 16 | 96.79 22 | 96.85 19 | 95.95 12 | 91.69 15 | 92.20 25 | 87.17 31 | 90.83 26 | 93.41 5 | 91.96 13 | 94.49 22 | 93.50 30 | 97.61 1 | 97.12 22 |
|
DeepC-MVS | | 87.86 3 | 92.26 30 | 91.86 33 | 92.73 24 | 96.18 28 | 96.87 18 | 95.19 27 | 91.76 14 | 92.17 26 | 86.58 34 | 81.79 49 | 85.85 49 | 90.88 28 | 94.57 20 | 94.61 8 | 95.80 34 | 97.18 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SteuartSystems-ACMMP | | | 94.06 12 | 94.65 10 | 93.38 18 | 96.97 15 | 97.36 7 | 96.12 8 | 91.78 13 | 92.05 27 | 87.34 29 | 94.42 11 | 90.87 23 | 91.87 18 | 95.47 6 | 94.59 9 | 96.21 18 | 97.77 10 |
Skip Steuart: Steuart Systems R&D Blog. |
CNLPA | | | 88.40 56 | 87.00 70 | 90.03 44 | 93.73 54 | 94.28 64 | 89.56 77 | 85.81 53 | 91.87 28 | 87.55 28 | 69.53 117 | 81.49 67 | 89.23 34 | 89.45 100 | 88.59 110 | 94.31 110 | 93.82 81 |
|
TSAR-MVS + COLMAP | | | 88.40 56 | 89.09 51 | 87.60 69 | 92.72 66 | 93.92 71 | 92.21 49 | 85.57 55 | 91.73 29 | 73.72 96 | 91.75 22 | 73.22 115 | 87.64 53 | 91.49 63 | 89.71 90 | 93.73 130 | 91.82 121 |
|
ACMMP | | | 92.03 32 | 92.16 30 | 91.87 33 | 95.88 33 | 96.55 30 | 94.47 34 | 89.49 32 | 91.71 30 | 85.26 41 | 91.52 23 | 84.48 54 | 90.21 31 | 92.82 47 | 91.63 51 | 95.92 24 | 96.42 36 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
TAPA-MVS | | 84.37 7 | 88.91 52 | 88.93 52 | 88.89 54 | 93.00 62 | 94.85 58 | 92.00 52 | 84.84 60 | 91.68 31 | 80.05 69 | 79.77 62 | 84.56 53 | 88.17 47 | 90.11 90 | 89.00 106 | 95.30 63 | 92.57 108 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
X-MVS | | | 92.36 29 | 92.75 29 | 91.90 32 | 96.89 17 | 96.70 24 | 95.25 26 | 90.48 28 | 91.50 32 | 83.95 47 | 88.20 30 | 88.82 39 | 89.11 35 | 93.75 34 | 93.43 33 | 95.75 38 | 96.83 29 |
|
DPM-MVS | | | 91.72 34 | 91.48 34 | 92.00 30 | 95.53 36 | 95.75 44 | 95.94 13 | 91.07 20 | 91.20 33 | 85.58 40 | 81.63 53 | 90.74 25 | 88.40 44 | 93.40 37 | 93.75 23 | 95.45 55 | 93.85 80 |
|
CPTT-MVS | | | 91.39 36 | 90.95 39 | 91.91 31 | 95.06 38 | 95.24 50 | 95.02 29 | 88.98 35 | 91.02 34 | 86.71 33 | 84.89 42 | 88.58 42 | 91.60 21 | 90.82 80 | 89.67 91 | 94.08 114 | 96.45 35 |
|
MP-MVS | | | 93.35 19 | 93.59 22 | 93.08 22 | 97.39 4 | 96.82 21 | 95.38 24 | 90.71 23 | 90.82 35 | 88.07 26 | 92.83 20 | 90.29 28 | 91.32 26 | 94.03 28 | 93.19 37 | 95.61 47 | 97.16 20 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PHI-MVS | | | 92.05 31 | 93.74 20 | 90.08 43 | 94.96 40 | 97.06 12 | 93.11 44 | 87.71 43 | 90.71 36 | 80.78 66 | 92.40 21 | 91.03 21 | 87.68 52 | 94.32 26 | 94.48 11 | 96.21 18 | 96.16 40 |
|
train_agg | | | 92.87 24 | 93.53 23 | 92.09 29 | 96.88 18 | 95.38 48 | 95.94 13 | 90.59 27 | 90.65 37 | 83.65 50 | 94.31 12 | 91.87 18 | 90.30 30 | 93.38 38 | 92.42 45 | 95.17 68 | 96.73 31 |
|
3Dnovator+ | | 86.06 4 | 91.60 35 | 90.86 41 | 92.47 26 | 96.00 32 | 96.50 34 | 94.70 31 | 87.83 42 | 90.49 38 | 89.92 17 | 74.68 89 | 89.35 35 | 90.66 29 | 94.02 29 | 94.14 15 | 95.67 42 | 96.85 27 |
|
canonicalmvs | | | 89.36 48 | 89.92 43 | 88.70 57 | 91.38 75 | 95.92 42 | 91.81 56 | 82.61 93 | 90.37 39 | 82.73 55 | 82.09 47 | 79.28 83 | 88.30 46 | 91.17 69 | 93.59 26 | 95.36 59 | 97.04 25 |
|
abl_6 | | | | | 90.66 39 | 94.65 46 | 96.27 36 | 92.21 49 | 86.94 47 | 90.23 40 | 86.38 36 | 85.50 39 | 92.96 8 | 88.37 45 | | | 95.40 56 | 95.46 53 |
|
MVS_111021_LR | | | 90.14 44 | 90.89 40 | 89.26 52 | 93.23 58 | 94.05 69 | 90.43 64 | 84.65 61 | 90.16 41 | 84.52 46 | 90.14 27 | 83.80 58 | 87.99 48 | 92.50 51 | 90.92 60 | 94.74 85 | 94.70 66 |
|
PGM-MVS | | | 92.76 25 | 93.03 27 | 92.45 27 | 97.03 13 | 96.67 27 | 95.73 22 | 87.92 41 | 90.15 42 | 86.53 35 | 92.97 19 | 88.33 43 | 91.69 20 | 93.62 36 | 93.03 38 | 95.83 32 | 96.41 37 |
|
MSLP-MVS++ | | | 92.02 33 | 91.40 36 | 92.75 23 | 96.01 31 | 95.88 43 | 93.73 39 | 89.00 33 | 89.89 43 | 90.31 14 | 81.28 55 | 88.85 38 | 91.45 22 | 92.88 46 | 94.24 13 | 96.00 22 | 96.76 30 |
|
3Dnovator | | 85.17 5 | 90.48 41 | 89.90 45 | 91.16 36 | 94.88 42 | 95.74 45 | 93.82 36 | 85.36 56 | 89.28 44 | 87.81 27 | 74.34 91 | 87.40 47 | 88.56 42 | 93.07 42 | 93.74 24 | 96.53 11 | 95.71 47 |
|
PLC | | 83.76 9 | 88.61 55 | 86.83 72 | 90.70 38 | 94.22 48 | 92.63 90 | 91.50 58 | 87.19 46 | 89.16 45 | 86.87 32 | 75.51 84 | 80.87 70 | 89.98 33 | 90.01 91 | 89.20 100 | 94.41 106 | 90.45 140 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
AdaColmap | | | 90.29 42 | 88.38 56 | 92.53 25 | 96.10 30 | 95.19 52 | 92.98 45 | 91.40 16 | 89.08 46 | 88.65 22 | 78.35 70 | 81.44 68 | 91.30 27 | 90.81 81 | 90.21 75 | 94.72 87 | 93.59 86 |
|
CDPH-MVS | | | 91.14 38 | 92.01 31 | 90.11 42 | 96.18 28 | 96.18 38 | 94.89 30 | 88.80 37 | 88.76 47 | 77.88 82 | 89.18 29 | 87.71 46 | 87.29 59 | 93.13 41 | 93.31 35 | 95.62 45 | 95.84 45 |
|
HQP-MVS | | | 89.13 50 | 89.58 48 | 88.60 59 | 93.53 55 | 93.67 72 | 93.29 42 | 87.58 44 | 88.53 48 | 75.50 86 | 87.60 33 | 80.32 73 | 87.07 60 | 90.66 86 | 89.95 83 | 94.62 93 | 96.35 39 |
|
CLD-MVS | | | 88.66 53 | 88.52 54 | 88.82 55 | 91.37 76 | 94.22 65 | 92.82 47 | 82.08 97 | 88.27 49 | 85.14 42 | 81.86 48 | 78.53 87 | 85.93 68 | 91.17 69 | 90.61 68 | 95.55 50 | 95.00 57 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 91.33 37 | 91.46 35 | 91.18 35 | 95.01 39 | 96.71 23 | 93.77 37 | 87.39 45 | 87.72 50 | 87.26 30 | 81.77 50 | 89.73 31 | 87.32 58 | 94.43 23 | 93.86 20 | 96.31 16 | 96.02 43 |
|
MVS_111021_HR | | | 90.56 40 | 91.29 38 | 89.70 48 | 94.71 45 | 95.63 46 | 91.81 56 | 86.38 50 | 87.53 51 | 81.29 60 | 87.96 31 | 85.43 51 | 87.69 51 | 93.90 32 | 92.93 40 | 96.33 14 | 95.69 48 |
|
NP-MVS | | | | | | | | | | 87.47 52 | | | | | | | | |
|
ACMP | | 83.90 8 | 88.32 59 | 88.06 59 | 88.62 58 | 92.18 69 | 93.98 70 | 91.28 61 | 85.24 57 | 86.69 53 | 81.23 61 | 85.62 38 | 75.13 101 | 87.01 62 | 89.83 93 | 89.77 88 | 94.79 81 | 95.43 54 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MVS_0304 | | | 90.88 39 | 91.35 37 | 90.34 41 | 93.91 51 | 96.79 22 | 94.49 33 | 86.54 49 | 86.57 54 | 82.85 53 | 81.68 52 | 89.70 32 | 87.57 54 | 94.64 18 | 93.93 19 | 96.67 9 | 96.15 41 |
|
diffmvs | | | 86.52 71 | 86.76 74 | 86.23 74 | 88.31 109 | 92.63 90 | 89.58 76 | 81.61 101 | 86.14 55 | 80.26 68 | 79.00 66 | 77.27 93 | 83.58 75 | 88.94 104 | 89.06 103 | 94.05 116 | 94.29 71 |
|
ACMM | | 83.27 10 | 87.68 65 | 86.09 78 | 89.54 50 | 93.26 57 | 92.19 96 | 91.43 59 | 86.74 48 | 86.02 56 | 82.85 53 | 75.63 83 | 75.14 100 | 88.41 43 | 90.68 85 | 89.99 80 | 94.59 94 | 92.97 93 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LGP-MVS_train | | | 88.25 60 | 88.55 53 | 87.89 65 | 92.84 65 | 93.66 73 | 93.35 41 | 85.22 58 | 85.77 57 | 74.03 95 | 86.60 37 | 76.29 97 | 86.62 64 | 91.20 67 | 90.58 70 | 95.29 64 | 95.75 46 |
|
EPNet | | | 89.60 46 | 89.91 44 | 89.24 53 | 96.45 26 | 93.61 74 | 92.95 46 | 88.03 39 | 85.74 58 | 83.36 51 | 87.29 35 | 83.05 61 | 80.98 91 | 92.22 54 | 91.85 49 | 93.69 132 | 95.58 51 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
QAPM | | | 89.49 47 | 89.58 48 | 89.38 51 | 94.73 44 | 95.94 41 | 92.35 48 | 85.00 59 | 85.69 59 | 80.03 70 | 76.97 77 | 87.81 45 | 87.87 49 | 92.18 57 | 92.10 47 | 96.33 14 | 96.40 38 |
|
MAR-MVS | | | 88.39 58 | 88.44 55 | 88.33 64 | 94.90 41 | 95.06 54 | 90.51 63 | 83.59 74 | 85.27 60 | 79.07 74 | 77.13 75 | 82.89 62 | 87.70 50 | 92.19 56 | 92.32 46 | 94.23 111 | 94.20 76 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ETV-MVS | | | 89.22 49 | 89.76 46 | 88.60 59 | 91.60 72 | 94.61 62 | 89.48 79 | 83.46 80 | 85.20 61 | 81.58 58 | 82.75 45 | 82.59 63 | 88.80 37 | 94.57 20 | 93.28 36 | 96.68 7 | 95.31 55 |
|
casdiffmvs | | | 87.45 67 | 87.15 69 | 87.79 68 | 90.15 95 | 94.22 65 | 89.96 70 | 83.93 68 | 85.08 62 | 80.91 63 | 75.81 82 | 77.88 91 | 86.08 66 | 91.86 60 | 90.86 61 | 95.74 39 | 94.37 69 |
|
baseline | | | 84.89 84 | 86.06 79 | 83.52 103 | 87.25 120 | 89.67 130 | 87.76 100 | 75.68 159 | 84.92 63 | 78.40 76 | 80.10 59 | 80.98 69 | 80.20 105 | 86.69 132 | 87.05 126 | 91.86 157 | 92.99 92 |
|
PVSNet_BlendedMVS | | | 88.19 61 | 88.00 61 | 88.42 61 | 92.71 67 | 94.82 59 | 89.08 84 | 83.81 69 | 84.91 64 | 86.38 36 | 79.14 64 | 78.11 88 | 82.66 80 | 93.05 43 | 91.10 55 | 95.86 29 | 94.86 62 |
|
PVSNet_Blended | | | 88.19 61 | 88.00 61 | 88.42 61 | 92.71 67 | 94.82 59 | 89.08 84 | 83.81 69 | 84.91 64 | 86.38 36 | 79.14 64 | 78.11 88 | 82.66 80 | 93.05 43 | 91.10 55 | 95.86 29 | 94.86 62 |
|
LS3D | | | 85.96 76 | 84.37 91 | 87.81 66 | 94.13 49 | 93.27 79 | 90.26 67 | 89.00 33 | 84.91 64 | 72.84 103 | 71.74 103 | 72.47 117 | 87.45 56 | 89.53 99 | 89.09 102 | 93.20 142 | 89.60 143 |
|
CS-MVS | | | 88.97 51 | 89.44 50 | 88.41 63 | 91.45 74 | 95.24 50 | 90.03 68 | 82.43 95 | 84.08 67 | 81.16 62 | 81.02 57 | 83.83 57 | 88.74 39 | 94.25 27 | 92.73 44 | 96.67 9 | 94.95 59 |
|
RPSCF | | | 83.46 96 | 83.36 95 | 83.59 101 | 87.75 112 | 87.35 157 | 84.82 141 | 79.46 125 | 83.84 68 | 78.12 78 | 82.69 46 | 79.87 76 | 82.60 82 | 82.47 177 | 81.13 180 | 88.78 182 | 86.13 170 |
|
MVS_Test | | | 86.93 69 | 87.24 68 | 86.56 73 | 90.10 96 | 93.47 76 | 90.31 65 | 80.12 115 | 83.55 69 | 78.12 78 | 79.58 63 | 79.80 78 | 85.45 70 | 90.17 89 | 90.59 69 | 95.29 64 | 93.53 87 |
|
DCV-MVSNet | | | 85.88 78 | 86.17 76 | 85.54 79 | 89.10 103 | 89.85 123 | 89.34 80 | 80.70 106 | 83.04 70 | 78.08 80 | 76.19 80 | 79.00 84 | 82.42 83 | 89.67 96 | 90.30 73 | 93.63 135 | 95.12 56 |
|
CANet_DTU | | | 85.43 79 | 87.72 67 | 82.76 109 | 90.95 82 | 93.01 84 | 89.99 69 | 75.46 160 | 82.67 71 | 64.91 140 | 83.14 44 | 80.09 75 | 80.68 95 | 92.03 59 | 91.03 57 | 94.57 96 | 92.08 116 |
|
EIA-MVS | | | 87.94 63 | 88.05 60 | 87.81 66 | 91.46 73 | 95.00 56 | 88.67 91 | 82.81 85 | 82.53 72 | 80.81 65 | 80.04 60 | 80.20 74 | 87.48 55 | 92.58 50 | 91.61 52 | 95.63 44 | 94.36 70 |
|
DELS-MVS | | | 89.71 45 | 89.68 47 | 89.74 46 | 93.75 53 | 96.22 37 | 93.76 38 | 85.84 52 | 82.53 72 | 85.05 43 | 78.96 67 | 84.24 55 | 84.25 74 | 94.91 11 | 94.91 3 | 95.78 37 | 96.02 43 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OpenMVS | | 82.53 11 | 87.71 64 | 86.84 71 | 88.73 56 | 94.42 47 | 95.06 54 | 91.02 62 | 83.49 77 | 82.50 74 | 82.24 57 | 67.62 127 | 85.48 50 | 85.56 69 | 91.19 68 | 91.30 54 | 95.67 42 | 94.75 64 |
|
PCF-MVS | | 84.60 6 | 88.66 53 | 87.75 66 | 89.73 47 | 93.06 61 | 96.02 39 | 93.22 43 | 90.00 30 | 82.44 75 | 80.02 71 | 77.96 73 | 85.16 52 | 87.36 57 | 88.54 108 | 88.54 111 | 94.72 87 | 95.61 50 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DI_MVS_plusplus_trai | | | 86.41 72 | 85.54 84 | 87.42 70 | 89.24 100 | 93.13 80 | 92.16 51 | 82.65 91 | 82.30 76 | 80.75 67 | 68.30 124 | 80.41 72 | 85.01 71 | 90.56 87 | 90.07 78 | 94.70 89 | 94.01 77 |
|
ET-MVSNet_ETH3D | | | 84.65 85 | 85.58 83 | 83.56 102 | 74.99 202 | 92.62 92 | 90.29 66 | 80.38 108 | 82.16 77 | 73.01 102 | 83.41 43 | 71.10 122 | 87.05 61 | 87.77 116 | 90.17 76 | 95.62 45 | 91.82 121 |
|
thisisatest0530 | | | 85.15 82 | 85.86 80 | 84.33 88 | 89.19 102 | 92.57 93 | 87.22 111 | 80.11 116 | 82.15 78 | 74.41 92 | 78.15 71 | 73.80 109 | 79.90 109 | 90.99 76 | 89.58 92 | 95.13 72 | 93.75 83 |
|
tttt0517 | | | 85.11 83 | 85.81 81 | 84.30 89 | 89.24 100 | 92.68 89 | 87.12 115 | 80.11 116 | 81.98 79 | 74.31 94 | 78.08 72 | 73.57 111 | 79.90 109 | 91.01 75 | 89.58 92 | 95.11 74 | 93.77 82 |
|
MVSTER | | | 86.03 75 | 86.12 77 | 85.93 76 | 88.62 106 | 89.93 121 | 89.33 81 | 79.91 120 | 81.87 80 | 81.35 59 | 81.07 56 | 74.91 102 | 80.66 96 | 92.13 58 | 90.10 77 | 95.68 41 | 92.80 98 |
|
EPP-MVSNet | | | 86.55 70 | 87.76 65 | 85.15 80 | 90.52 86 | 94.41 63 | 87.24 110 | 82.32 96 | 81.79 81 | 73.60 97 | 78.57 69 | 82.41 64 | 82.07 85 | 91.23 65 | 90.39 72 | 95.14 71 | 95.48 52 |
|
UGNet | | | 85.90 77 | 88.23 57 | 83.18 105 | 88.96 104 | 94.10 67 | 87.52 103 | 83.60 73 | 81.66 82 | 77.90 81 | 80.76 58 | 83.19 60 | 66.70 182 | 91.13 74 | 90.71 66 | 94.39 107 | 96.06 42 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PMMVS | | | 81.65 113 | 84.05 92 | 78.86 146 | 78.56 193 | 82.63 188 | 83.10 152 | 67.22 189 | 81.39 83 | 70.11 112 | 84.91 41 | 79.74 79 | 82.12 84 | 87.31 119 | 85.70 150 | 92.03 155 | 86.67 168 |
|
SCA | | | 79.51 134 | 80.15 125 | 78.75 148 | 86.58 126 | 87.70 154 | 83.07 153 | 68.53 184 | 81.31 84 | 66.40 129 | 73.83 93 | 75.38 98 | 79.30 120 | 80.49 184 | 79.39 185 | 88.63 184 | 82.96 184 |
|
GBi-Net | | | 84.51 87 | 84.80 87 | 84.17 92 | 84.20 155 | 89.95 118 | 89.70 73 | 80.37 109 | 81.17 85 | 75.50 86 | 69.63 113 | 79.69 80 | 79.75 113 | 90.73 82 | 90.72 63 | 95.52 52 | 91.71 123 |
|
test1 | | | 84.51 87 | 84.80 87 | 84.17 92 | 84.20 155 | 89.95 118 | 89.70 73 | 80.37 109 | 81.17 85 | 75.50 86 | 69.63 113 | 79.69 80 | 79.75 113 | 90.73 82 | 90.72 63 | 95.52 52 | 91.71 123 |
|
FMVSNet3 | | | 84.44 89 | 84.64 89 | 84.21 91 | 84.32 154 | 90.13 116 | 89.85 72 | 80.37 109 | 81.17 85 | 75.50 86 | 69.63 113 | 79.69 80 | 79.62 116 | 89.72 95 | 90.52 71 | 95.59 48 | 91.58 129 |
|
USDC | | | 80.69 120 | 79.89 129 | 81.62 121 | 86.48 127 | 89.11 142 | 86.53 121 | 78.86 131 | 81.15 88 | 63.48 148 | 72.98 99 | 59.12 178 | 81.16 89 | 87.10 121 | 85.01 156 | 93.23 141 | 84.77 177 |
|
IS_MVSNet | | | 86.18 73 | 88.18 58 | 83.85 98 | 91.02 79 | 94.72 61 | 87.48 104 | 82.46 94 | 81.05 89 | 70.28 110 | 76.98 76 | 82.20 66 | 76.65 137 | 93.97 30 | 93.38 34 | 95.18 67 | 94.97 58 |
|
EPMVS | | | 77.53 155 | 78.07 148 | 76.90 163 | 86.89 124 | 84.91 178 | 82.18 163 | 66.64 192 | 81.00 90 | 64.11 144 | 72.75 101 | 69.68 129 | 74.42 153 | 79.36 189 | 78.13 188 | 87.14 190 | 80.68 192 |
|
Vis-MVSNet (Re-imp) | | | 83.65 95 | 86.81 73 | 79.96 139 | 90.46 89 | 92.71 87 | 84.84 140 | 82.00 98 | 80.93 91 | 62.44 155 | 76.29 79 | 82.32 65 | 65.54 185 | 92.29 52 | 91.66 50 | 94.49 101 | 91.47 130 |
|
PatchmatchNet | | | 78.67 145 | 78.85 139 | 78.46 153 | 86.85 125 | 86.03 165 | 83.77 149 | 68.11 187 | 80.88 92 | 66.19 130 | 72.90 100 | 73.40 113 | 78.06 127 | 79.25 190 | 77.71 190 | 87.75 187 | 81.75 187 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 83.34 97 | 81.36 109 | 85.65 77 | 90.33 92 | 89.52 133 | 84.36 144 | 81.82 99 | 80.87 93 | 79.29 72 | 74.04 92 | 62.85 154 | 86.05 67 | 88.40 111 | 87.04 127 | 92.04 154 | 86.77 165 |
|
EPNet_dtu | | | 81.98 108 | 83.82 93 | 79.83 141 | 94.10 50 | 85.97 166 | 87.29 108 | 84.08 67 | 80.61 94 | 59.96 173 | 81.62 54 | 77.19 94 | 62.91 188 | 87.21 120 | 86.38 139 | 90.66 171 | 87.77 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MSDG | | | 83.87 92 | 81.02 114 | 87.19 71 | 92.17 70 | 89.80 125 | 89.15 82 | 85.72 54 | 80.61 94 | 79.24 73 | 66.66 130 | 68.75 133 | 82.69 79 | 87.95 115 | 87.44 120 | 94.19 112 | 85.92 172 |
|
CostFormer | | | 80.94 119 | 80.21 123 | 81.79 118 | 87.69 114 | 88.58 149 | 87.47 105 | 70.66 175 | 80.02 96 | 77.88 82 | 73.03 98 | 71.40 120 | 78.24 126 | 79.96 186 | 79.63 182 | 88.82 181 | 88.84 147 |
|
Anonymous20231211 | | | 84.42 90 | 83.02 96 | 86.05 75 | 88.85 105 | 92.70 88 | 88.92 90 | 83.40 82 | 79.99 97 | 78.31 77 | 55.83 182 | 78.92 85 | 83.33 77 | 89.06 103 | 89.76 89 | 93.50 137 | 94.90 60 |
|
CHOSEN 1792x2688 | | | 82.16 106 | 80.91 117 | 83.61 100 | 91.14 77 | 92.01 97 | 89.55 78 | 79.15 129 | 79.87 98 | 70.29 109 | 52.51 190 | 72.56 116 | 81.39 87 | 88.87 106 | 88.17 114 | 90.15 175 | 92.37 115 |
|
baseline1 | | | 84.54 86 | 84.43 90 | 84.67 83 | 90.62 84 | 91.16 103 | 88.63 93 | 83.75 71 | 79.78 99 | 71.16 106 | 75.14 86 | 74.10 105 | 77.84 130 | 91.56 62 | 90.67 67 | 96.04 21 | 88.58 149 |
|
FC-MVSNet-train | | | 85.18 81 | 85.31 85 | 85.03 81 | 90.67 83 | 91.62 100 | 87.66 102 | 83.61 72 | 79.75 100 | 74.37 93 | 78.69 68 | 71.21 121 | 78.91 122 | 91.23 65 | 89.96 82 | 94.96 76 | 94.69 67 |
|
GG-mvs-BLEND | | | 57.56 200 | 82.61 101 | 28.34 207 | 0.22 215 | 90.10 117 | 79.37 179 | 0.14 213 | 79.56 101 | 0.40 215 | 71.25 106 | 83.40 59 | 0.30 213 | 86.27 139 | 83.87 165 | 89.59 178 | 83.83 179 |
|
PVSNet_Blended_VisFu | | | 87.40 68 | 87.80 63 | 86.92 72 | 92.86 63 | 95.40 47 | 88.56 95 | 83.45 81 | 79.55 102 | 82.26 56 | 74.49 90 | 84.03 56 | 79.24 121 | 92.97 45 | 91.53 53 | 95.15 70 | 96.65 33 |
|
Effi-MVS+ | | | 85.33 80 | 85.08 86 | 85.63 78 | 89.69 98 | 93.42 77 | 89.90 71 | 80.31 113 | 79.32 103 | 72.48 105 | 73.52 97 | 74.03 106 | 86.55 65 | 90.99 76 | 89.98 81 | 94.83 80 | 94.27 75 |
|
ADS-MVSNet | | | 74.53 182 | 75.69 175 | 73.17 185 | 81.57 186 | 80.71 196 | 79.27 180 | 63.03 201 | 79.27 104 | 59.94 174 | 67.86 125 | 68.32 137 | 71.08 166 | 77.33 194 | 76.83 192 | 84.12 201 | 79.53 193 |
|
FMVSNet2 | | | 83.87 92 | 83.73 94 | 84.05 96 | 84.20 155 | 89.95 118 | 89.70 73 | 80.21 114 | 79.17 105 | 74.89 90 | 65.91 132 | 77.49 92 | 79.75 113 | 90.87 79 | 91.00 59 | 95.52 52 | 91.71 123 |
|
MDTV_nov1_ep13 | | | 79.14 139 | 79.49 135 | 78.74 149 | 85.40 139 | 86.89 161 | 84.32 146 | 70.29 177 | 78.85 106 | 69.42 116 | 75.37 85 | 73.29 114 | 75.64 142 | 80.61 183 | 79.48 184 | 87.36 188 | 81.91 186 |
|
Anonymous202405211 | | | | 82.75 100 | | 89.58 99 | 92.97 85 | 89.04 87 | 84.13 66 | 78.72 107 | | 57.18 178 | 76.64 96 | 83.13 78 | 89.55 98 | 89.92 84 | 93.38 140 | 94.28 74 |
|
pmmvs4 | | | 79.99 125 | 78.08 147 | 82.22 115 | 83.04 170 | 87.16 160 | 84.95 137 | 78.80 133 | 78.64 108 | 74.53 91 | 64.61 145 | 59.41 174 | 79.45 118 | 84.13 166 | 84.54 163 | 92.53 150 | 88.08 155 |
|
tpmrst | | | 76.55 164 | 75.99 171 | 77.20 159 | 87.32 119 | 83.05 184 | 82.86 154 | 65.62 194 | 78.61 109 | 67.22 126 | 69.19 118 | 65.71 141 | 75.87 141 | 76.75 195 | 75.33 195 | 84.31 199 | 83.28 182 |
|
CHOSEN 280x420 | | | 80.28 123 | 81.66 105 | 78.67 150 | 82.92 173 | 79.24 199 | 85.36 135 | 66.79 191 | 78.11 110 | 70.32 108 | 75.03 88 | 79.87 76 | 81.09 90 | 89.07 102 | 83.16 170 | 85.54 196 | 87.17 162 |
|
Fast-Effi-MVS+ | | | 83.77 94 | 82.98 97 | 84.69 82 | 87.98 110 | 91.87 98 | 88.10 98 | 77.70 143 | 78.10 111 | 73.04 101 | 69.13 119 | 68.51 134 | 86.66 63 | 90.49 88 | 89.85 86 | 94.67 90 | 92.88 95 |
|
baseline2 | | | 82.80 100 | 82.86 99 | 82.73 110 | 87.68 115 | 90.50 109 | 84.92 139 | 78.93 130 | 78.07 112 | 73.06 100 | 75.08 87 | 69.77 128 | 77.31 133 | 88.90 105 | 86.94 128 | 94.50 99 | 90.74 134 |
|
MS-PatchMatch | | | 81.79 112 | 81.44 108 | 82.19 116 | 90.35 91 | 89.29 137 | 88.08 99 | 75.36 161 | 77.60 113 | 69.00 119 | 64.37 147 | 78.87 86 | 77.14 136 | 88.03 114 | 85.70 150 | 93.19 143 | 86.24 169 |
|
tpm cat1 | | | 77.78 153 | 75.28 179 | 80.70 131 | 87.14 122 | 85.84 168 | 85.81 128 | 70.40 176 | 77.44 114 | 78.80 75 | 63.72 148 | 64.01 148 | 76.55 138 | 75.60 197 | 75.21 196 | 85.51 197 | 85.12 174 |
|
COLMAP_ROB | | 76.78 15 | 80.50 122 | 78.49 141 | 82.85 107 | 90.96 81 | 89.65 131 | 86.20 125 | 83.40 82 | 77.15 115 | 66.54 128 | 62.27 152 | 65.62 142 | 77.89 129 | 85.23 153 | 84.70 160 | 92.11 153 | 84.83 176 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
FC-MVSNet-test | | | 76.53 165 | 81.62 106 | 70.58 189 | 84.99 147 | 85.73 169 | 74.81 192 | 78.85 132 | 77.00 116 | 39.13 206 | 75.90 81 | 73.50 112 | 54.08 196 | 86.54 135 | 85.99 147 | 91.65 159 | 86.68 166 |
|
IterMVS-LS | | | 83.28 98 | 82.95 98 | 83.65 99 | 88.39 108 | 88.63 148 | 86.80 119 | 78.64 134 | 76.56 117 | 73.43 98 | 72.52 102 | 75.35 99 | 80.81 93 | 86.43 138 | 88.51 112 | 93.84 126 | 92.66 103 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IB-MVS | | 79.09 12 | 82.60 103 | 82.19 102 | 83.07 106 | 91.08 78 | 93.55 75 | 80.90 171 | 81.35 102 | 76.56 117 | 80.87 64 | 64.81 144 | 69.97 127 | 68.87 172 | 85.64 146 | 90.06 79 | 95.36 59 | 94.74 65 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HyFIR lowres test | | | 81.62 116 | 79.45 136 | 84.14 94 | 91.00 80 | 93.38 78 | 88.27 96 | 78.19 137 | 76.28 119 | 70.18 111 | 48.78 194 | 73.69 110 | 83.52 76 | 87.05 123 | 87.83 118 | 93.68 133 | 89.15 146 |
|
UniMVSNet (Re) | | | 81.22 117 | 81.08 113 | 81.39 123 | 85.35 140 | 91.76 99 | 84.93 138 | 82.88 84 | 76.13 120 | 65.02 139 | 64.94 142 | 63.09 151 | 75.17 145 | 87.71 117 | 89.04 104 | 94.97 75 | 94.88 61 |
|
UniMVSNet_NR-MVSNet | | | 81.87 109 | 81.33 110 | 82.50 111 | 85.31 141 | 91.30 101 | 85.70 129 | 84.25 63 | 75.89 121 | 64.21 142 | 66.95 129 | 64.65 145 | 80.22 103 | 87.07 122 | 89.18 101 | 95.27 66 | 94.29 71 |
|
DU-MVS | | | 81.20 118 | 80.30 122 | 82.25 114 | 84.98 148 | 90.94 105 | 85.70 129 | 83.58 75 | 75.74 122 | 64.21 142 | 65.30 139 | 59.60 173 | 80.22 103 | 86.89 125 | 89.31 97 | 94.77 83 | 94.29 71 |
|
NR-MVSNet | | | 80.25 124 | 79.98 128 | 80.56 134 | 85.20 143 | 90.94 105 | 85.65 131 | 83.58 75 | 75.74 122 | 61.36 166 | 65.30 139 | 56.75 185 | 72.38 161 | 88.46 110 | 88.80 108 | 95.16 69 | 93.87 79 |
|
Baseline_NR-MVSNet | | | 79.84 128 | 78.37 145 | 81.55 122 | 84.98 148 | 86.66 162 | 85.06 136 | 83.49 77 | 75.57 124 | 63.31 149 | 58.22 177 | 60.97 163 | 78.00 128 | 86.89 125 | 87.13 124 | 94.47 102 | 93.15 90 |
|
OPM-MVS | | | 87.56 66 | 85.80 82 | 89.62 49 | 93.90 52 | 94.09 68 | 94.12 35 | 88.18 38 | 75.40 125 | 77.30 85 | 76.41 78 | 77.93 90 | 88.79 38 | 92.20 55 | 90.82 62 | 95.40 56 | 93.72 84 |
|
thres100view900 | | | 82.55 104 | 81.01 116 | 84.34 87 | 90.30 93 | 92.27 94 | 89.04 87 | 82.77 86 | 75.14 126 | 69.56 113 | 65.72 134 | 63.13 149 | 79.62 116 | 89.97 92 | 89.26 99 | 94.73 86 | 91.61 128 |
|
tfpn200view9 | | | 82.86 99 | 81.46 107 | 84.48 85 | 90.30 93 | 93.09 81 | 89.05 86 | 82.71 87 | 75.14 126 | 69.56 113 | 65.72 134 | 63.13 149 | 80.38 102 | 91.15 71 | 89.51 94 | 94.91 77 | 92.50 112 |
|
dps | | | 78.02 150 | 75.94 172 | 80.44 136 | 86.06 130 | 86.62 163 | 82.58 155 | 69.98 179 | 75.14 126 | 77.76 84 | 69.08 120 | 59.93 169 | 78.47 124 | 79.47 188 | 77.96 189 | 87.78 186 | 83.40 181 |
|
CR-MVSNet | | | 78.71 144 | 78.86 138 | 78.55 151 | 85.85 134 | 85.15 175 | 82.30 160 | 68.23 185 | 74.71 129 | 65.37 136 | 64.39 146 | 69.59 130 | 77.18 134 | 85.10 158 | 84.87 157 | 92.34 152 | 88.21 153 |
|
RPMNet | | | 77.07 158 | 77.63 154 | 76.42 166 | 85.56 138 | 85.15 175 | 81.37 165 | 65.27 196 | 74.71 129 | 60.29 172 | 63.71 149 | 66.59 139 | 73.64 155 | 82.71 175 | 82.12 177 | 92.38 151 | 88.39 151 |
|
Vis-MVSNet | | | 84.38 91 | 86.68 75 | 81.70 119 | 87.65 116 | 94.89 57 | 88.14 97 | 80.90 105 | 74.48 131 | 68.23 122 | 77.53 74 | 80.72 71 | 69.98 169 | 92.68 48 | 91.90 48 | 95.33 62 | 94.58 68 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
thres200 | | | 82.77 101 | 81.25 111 | 84.54 84 | 90.38 90 | 93.05 82 | 89.13 83 | 82.67 89 | 74.40 132 | 69.53 115 | 65.69 136 | 63.03 152 | 80.63 97 | 91.15 71 | 89.42 96 | 94.88 78 | 92.04 118 |
|
thres400 | | | 82.68 102 | 81.15 112 | 84.47 86 | 90.52 86 | 92.89 86 | 88.95 89 | 82.71 87 | 74.33 133 | 69.22 118 | 65.31 138 | 62.61 155 | 80.63 97 | 90.96 78 | 89.50 95 | 94.79 81 | 92.45 114 |
|
TranMVSNet+NR-MVSNet | | | 80.52 121 | 79.84 130 | 81.33 125 | 84.92 150 | 90.39 110 | 85.53 134 | 84.22 65 | 74.27 134 | 60.68 171 | 64.93 143 | 59.96 168 | 77.48 132 | 86.75 130 | 89.28 98 | 95.12 73 | 93.29 88 |
|
TDRefinement | | | 79.05 140 | 77.05 159 | 81.39 123 | 88.45 107 | 89.00 144 | 86.92 116 | 82.65 91 | 74.21 135 | 64.41 141 | 59.17 170 | 59.16 176 | 74.52 151 | 85.23 153 | 85.09 155 | 91.37 163 | 87.51 161 |
|
thres600view7 | | | 82.53 105 | 81.02 114 | 84.28 90 | 90.61 85 | 93.05 82 | 88.57 94 | 82.67 89 | 74.12 136 | 68.56 121 | 65.09 141 | 62.13 160 | 80.40 101 | 91.15 71 | 89.02 105 | 94.88 78 | 92.59 106 |
|
PatchT | | | 76.42 166 | 77.81 152 | 74.80 178 | 78.46 194 | 84.30 180 | 71.82 197 | 65.03 198 | 73.89 137 | 65.37 136 | 61.58 154 | 66.70 138 | 77.18 134 | 85.10 158 | 84.87 157 | 90.94 170 | 88.21 153 |
|
ACMH+ | | 79.08 13 | 81.84 111 | 80.06 126 | 83.91 97 | 89.92 97 | 90.62 107 | 86.21 124 | 83.48 79 | 73.88 138 | 65.75 133 | 66.38 131 | 65.30 143 | 84.63 72 | 85.90 143 | 87.25 123 | 93.45 138 | 91.13 133 |
|
Effi-MVS+-dtu | | | 82.05 107 | 81.76 104 | 82.38 113 | 87.72 113 | 90.56 108 | 86.90 118 | 78.05 139 | 73.85 139 | 66.85 127 | 71.29 105 | 71.90 119 | 82.00 86 | 86.64 133 | 85.48 152 | 92.76 148 | 92.58 107 |
|
test-LLR | | | 79.47 135 | 79.84 130 | 79.03 145 | 87.47 117 | 82.40 191 | 81.24 168 | 78.05 139 | 73.72 140 | 62.69 152 | 73.76 94 | 74.42 103 | 73.49 156 | 84.61 162 | 82.99 172 | 91.25 165 | 87.01 163 |
|
TESTMET0.1,1 | | | 77.78 153 | 79.84 130 | 75.38 174 | 80.86 188 | 82.40 191 | 81.24 168 | 62.72 202 | 73.72 140 | 62.69 152 | 73.76 94 | 74.42 103 | 73.49 156 | 84.61 162 | 82.99 172 | 91.25 165 | 87.01 163 |
|
test-mter | | | 77.79 152 | 80.02 127 | 75.18 175 | 81.18 187 | 82.85 186 | 80.52 174 | 62.03 203 | 73.62 142 | 62.16 157 | 73.55 96 | 73.83 108 | 73.81 154 | 84.67 161 | 83.34 169 | 91.37 163 | 88.31 152 |
|
IterMVS-SCA-FT | | | 79.41 136 | 80.20 124 | 78.49 152 | 85.88 131 | 86.26 164 | 83.95 147 | 71.94 170 | 73.55 143 | 61.94 159 | 70.48 110 | 70.50 124 | 75.23 143 | 85.81 145 | 84.61 162 | 91.99 156 | 90.18 141 |
|
IterMVS | | | 78.79 143 | 79.71 133 | 77.71 156 | 85.26 142 | 85.91 167 | 84.54 143 | 69.84 181 | 73.38 144 | 61.25 167 | 70.53 109 | 70.35 125 | 74.43 152 | 85.21 155 | 83.80 167 | 90.95 169 | 88.77 148 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
UA-Net | | | 86.07 74 | 87.78 64 | 84.06 95 | 92.85 64 | 95.11 53 | 87.73 101 | 84.38 62 | 73.22 145 | 73.18 99 | 79.99 61 | 89.22 36 | 71.47 165 | 93.22 40 | 93.03 38 | 94.76 84 | 90.69 135 |
|
FMVSNet5 | | | 75.50 178 | 76.07 168 | 74.83 177 | 76.16 198 | 81.19 194 | 81.34 166 | 70.21 178 | 73.20 146 | 61.59 164 | 58.97 172 | 68.33 136 | 68.50 173 | 85.87 144 | 85.85 148 | 91.18 168 | 79.11 195 |
|
test0.0.03 1 | | | 76.03 171 | 78.51 140 | 73.12 186 | 87.47 117 | 85.13 177 | 76.32 189 | 78.05 139 | 73.19 147 | 50.98 193 | 70.64 107 | 69.28 131 | 55.53 192 | 85.33 151 | 84.38 164 | 90.39 173 | 81.63 188 |
|
Fast-Effi-MVS+-dtu | | | 79.95 126 | 80.69 118 | 79.08 144 | 86.36 128 | 89.14 141 | 85.85 127 | 72.28 169 | 72.85 148 | 59.32 176 | 70.43 111 | 68.42 135 | 77.57 131 | 86.14 140 | 86.44 138 | 93.11 144 | 91.39 131 |
|
thisisatest0515 | | | 79.76 130 | 80.59 120 | 78.80 147 | 84.40 153 | 88.91 146 | 79.48 177 | 76.94 149 | 72.29 149 | 67.33 125 | 67.82 126 | 65.99 140 | 70.80 167 | 88.50 109 | 87.84 116 | 93.86 125 | 92.75 101 |
|
tpm | | | 76.30 170 | 76.05 170 | 76.59 165 | 86.97 123 | 83.01 185 | 83.83 148 | 67.06 190 | 71.83 150 | 63.87 146 | 69.56 116 | 62.88 153 | 73.41 158 | 79.79 187 | 78.59 186 | 84.41 198 | 86.68 166 |
|
v8 | | | 79.90 127 | 78.39 144 | 81.66 120 | 83.97 159 | 89.81 124 | 87.16 113 | 77.40 145 | 71.49 151 | 67.71 123 | 61.24 156 | 62.49 156 | 79.83 112 | 85.48 150 | 86.17 142 | 93.89 123 | 92.02 120 |
|
V42 | | | 79.59 132 | 78.43 143 | 80.94 129 | 82.79 176 | 89.71 128 | 86.66 120 | 76.73 152 | 71.38 152 | 67.42 124 | 61.01 158 | 62.30 158 | 78.39 125 | 85.56 148 | 86.48 136 | 93.65 134 | 92.60 105 |
|
PM-MVS | | | 74.17 184 | 73.10 185 | 75.41 173 | 76.07 199 | 82.53 189 | 77.56 187 | 71.69 171 | 71.04 153 | 61.92 160 | 61.23 157 | 47.30 204 | 74.82 149 | 81.78 180 | 79.80 181 | 90.42 172 | 88.05 156 |
|
MIMVSNet | | | 74.69 181 | 75.60 176 | 73.62 183 | 76.02 200 | 85.31 174 | 81.21 170 | 67.43 188 | 71.02 154 | 59.07 178 | 54.48 183 | 64.07 146 | 66.14 184 | 86.52 136 | 86.64 133 | 91.83 158 | 81.17 190 |
|
FMVSNet1 | | | 81.64 114 | 80.61 119 | 82.84 108 | 82.36 180 | 89.20 139 | 88.67 91 | 79.58 123 | 70.79 155 | 72.63 104 | 58.95 173 | 72.26 118 | 79.34 119 | 90.73 82 | 90.72 63 | 94.47 102 | 91.62 127 |
|
v2v482 | | | 79.84 128 | 78.07 148 | 81.90 117 | 83.75 160 | 90.21 115 | 87.17 112 | 79.85 121 | 70.65 156 | 65.93 132 | 61.93 153 | 60.07 167 | 80.82 92 | 85.25 152 | 86.71 131 | 93.88 124 | 91.70 126 |
|
TinyColmap | | | 76.73 160 | 73.95 184 | 79.96 139 | 85.16 145 | 85.64 171 | 82.34 159 | 78.19 137 | 70.63 157 | 62.06 158 | 60.69 162 | 49.61 201 | 80.81 93 | 85.12 157 | 83.69 168 | 91.22 167 | 82.27 185 |
|
v10 | | | 79.62 131 | 78.19 146 | 81.28 126 | 83.73 161 | 89.69 129 | 87.27 109 | 76.86 150 | 70.50 158 | 65.46 134 | 60.58 163 | 60.47 165 | 80.44 100 | 86.91 124 | 86.63 134 | 93.93 120 | 92.55 109 |
|
GA-MVS | | | 79.52 133 | 79.71 133 | 79.30 143 | 85.68 135 | 90.36 111 | 84.55 142 | 78.44 135 | 70.47 159 | 57.87 181 | 68.52 123 | 61.38 161 | 76.21 139 | 89.40 101 | 87.89 115 | 93.04 145 | 89.96 142 |
|
ACMH | | 78.52 14 | 81.86 110 | 80.45 121 | 83.51 104 | 90.51 88 | 91.22 102 | 85.62 132 | 84.23 64 | 70.29 160 | 62.21 156 | 69.04 121 | 64.05 147 | 84.48 73 | 87.57 118 | 88.45 113 | 94.01 118 | 92.54 110 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
WR-MVS | | | 76.63 162 | 78.02 150 | 75.02 176 | 84.14 158 | 89.76 127 | 78.34 184 | 80.64 107 | 69.56 161 | 52.32 188 | 61.26 155 | 61.24 162 | 60.66 189 | 84.45 164 | 87.07 125 | 93.99 119 | 92.77 99 |
|
v148 | | | 78.59 146 | 76.84 162 | 80.62 133 | 83.61 163 | 89.16 140 | 83.65 150 | 79.24 128 | 69.38 162 | 69.34 117 | 59.88 167 | 60.41 166 | 75.19 144 | 83.81 168 | 84.63 161 | 92.70 149 | 90.63 137 |
|
v1144 | | | 79.38 137 | 77.83 151 | 81.18 127 | 83.62 162 | 90.23 113 | 87.15 114 | 78.35 136 | 69.13 163 | 64.02 145 | 60.20 165 | 59.41 174 | 80.14 107 | 86.78 128 | 86.57 135 | 93.81 128 | 92.53 111 |
|
CDS-MVSNet | | | 81.63 115 | 82.09 103 | 81.09 128 | 87.21 121 | 90.28 112 | 87.46 106 | 80.33 112 | 69.06 164 | 70.66 107 | 71.30 104 | 73.87 107 | 67.99 175 | 89.58 97 | 89.87 85 | 92.87 147 | 90.69 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CVMVSNet | | | 76.70 161 | 78.46 142 | 74.64 180 | 83.34 165 | 84.48 179 | 81.83 164 | 74.58 162 | 68.88 165 | 51.23 192 | 69.77 112 | 70.05 126 | 67.49 178 | 84.27 165 | 83.81 166 | 89.38 179 | 87.96 157 |
|
MDTV_nov1_ep13_2view | | | 73.21 186 | 72.91 186 | 73.56 184 | 80.01 189 | 84.28 181 | 78.62 182 | 66.43 193 | 68.64 166 | 59.12 177 | 60.39 164 | 59.69 172 | 69.81 170 | 78.82 192 | 77.43 191 | 87.36 188 | 81.11 191 |
|
v1192 | | | 78.94 141 | 77.33 155 | 80.82 130 | 83.25 166 | 89.90 122 | 86.91 117 | 77.72 142 | 68.63 167 | 62.61 154 | 59.17 170 | 57.53 182 | 80.62 99 | 86.89 125 | 86.47 137 | 93.79 129 | 92.75 101 |
|
v1921920 | | | 78.57 147 | 76.99 160 | 80.41 137 | 82.93 172 | 89.63 132 | 86.38 123 | 77.14 147 | 68.31 168 | 61.80 162 | 58.89 174 | 56.79 184 | 80.19 106 | 86.50 137 | 86.05 146 | 94.02 117 | 92.76 100 |
|
v144192 | | | 78.81 142 | 77.22 157 | 80.67 132 | 82.95 171 | 89.79 126 | 86.40 122 | 77.42 144 | 68.26 169 | 63.13 150 | 59.50 168 | 58.13 179 | 80.08 108 | 85.93 142 | 86.08 144 | 94.06 115 | 92.83 97 |
|
CP-MVSNet | | | 76.36 169 | 76.41 165 | 76.32 168 | 82.73 177 | 88.64 147 | 79.39 178 | 79.62 122 | 67.21 170 | 53.70 184 | 60.72 161 | 55.22 191 | 67.91 177 | 83.52 170 | 86.34 140 | 94.55 97 | 93.19 89 |
|
v1240 | | | 78.15 149 | 76.53 163 | 80.04 138 | 82.85 175 | 89.48 135 | 85.61 133 | 76.77 151 | 67.05 171 | 61.18 169 | 58.37 176 | 56.16 188 | 79.89 111 | 86.11 141 | 86.08 144 | 93.92 121 | 92.47 113 |
|
WR-MVS_H | | | 75.84 175 | 76.93 161 | 74.57 181 | 82.86 174 | 89.50 134 | 78.34 184 | 79.36 127 | 66.90 172 | 52.51 187 | 60.20 165 | 59.71 170 | 59.73 190 | 83.61 169 | 85.77 149 | 94.65 91 | 92.84 96 |
|
pmmvs-eth3d | | | 74.32 183 | 71.96 189 | 77.08 161 | 77.33 196 | 82.71 187 | 78.41 183 | 76.02 157 | 66.65 173 | 65.98 131 | 54.23 186 | 49.02 203 | 73.14 160 | 82.37 178 | 82.69 174 | 91.61 160 | 86.05 171 |
|
PEN-MVS | | | 76.02 172 | 76.07 168 | 75.95 171 | 83.17 168 | 87.97 152 | 79.65 175 | 80.07 119 | 66.57 174 | 51.45 190 | 60.94 159 | 55.47 190 | 66.81 181 | 82.72 174 | 86.80 130 | 94.59 94 | 92.03 119 |
|
N_pmnet | | | 66.85 193 | 66.63 194 | 67.11 195 | 78.73 192 | 74.66 203 | 70.53 198 | 71.07 173 | 66.46 175 | 46.54 197 | 51.68 192 | 51.91 199 | 55.48 193 | 74.68 198 | 72.38 199 | 80.29 204 | 74.65 201 |
|
DTE-MVSNet | | | 75.14 179 | 75.44 178 | 74.80 178 | 83.18 167 | 87.19 159 | 78.25 186 | 80.11 116 | 66.05 176 | 48.31 195 | 60.88 160 | 54.67 192 | 64.54 186 | 82.57 176 | 86.17 142 | 94.43 105 | 90.53 139 |
|
PS-CasMVS | | | 75.90 174 | 75.86 173 | 75.96 170 | 82.59 178 | 88.46 150 | 79.23 181 | 79.56 124 | 66.00 177 | 52.77 186 | 59.48 169 | 54.35 194 | 67.14 180 | 83.37 171 | 86.23 141 | 94.47 102 | 93.10 91 |
|
v7n | | | 77.22 157 | 76.23 167 | 78.38 154 | 81.89 183 | 89.10 143 | 82.24 162 | 76.36 153 | 65.96 178 | 61.21 168 | 56.56 180 | 55.79 189 | 75.07 147 | 86.55 134 | 86.68 132 | 93.52 136 | 92.95 94 |
|
anonymousdsp | | | 77.94 151 | 79.00 137 | 76.71 164 | 79.03 191 | 87.83 153 | 79.58 176 | 72.87 168 | 65.80 179 | 58.86 180 | 65.82 133 | 62.48 157 | 75.99 140 | 86.77 129 | 88.66 109 | 93.92 121 | 95.68 49 |
|
tmp_tt | | | | | 32.73 206 | 43.96 213 | 21.15 215 | 26.71 212 | 8.99 211 | 65.67 180 | 51.39 191 | 56.01 181 | 42.64 207 | 11.76 210 | 56.60 205 | 50.81 207 | 53.55 210 | |
|
SixPastTwentyTwo | | | 76.02 172 | 75.72 174 | 76.36 167 | 83.38 164 | 87.54 155 | 75.50 191 | 76.22 154 | 65.50 181 | 57.05 182 | 70.64 107 | 53.97 195 | 74.54 150 | 80.96 182 | 82.12 177 | 91.44 161 | 89.35 145 |
|
pmmvs5 | | | 76.93 159 | 76.33 166 | 77.62 157 | 81.97 182 | 88.40 151 | 81.32 167 | 74.35 164 | 65.42 182 | 61.42 165 | 63.07 150 | 57.95 180 | 73.23 159 | 85.60 147 | 85.35 154 | 93.41 139 | 88.55 150 |
|
TAMVS | | | 76.42 166 | 77.16 158 | 75.56 172 | 83.05 169 | 85.55 172 | 80.58 173 | 71.43 172 | 65.40 183 | 61.04 170 | 67.27 128 | 69.22 132 | 67.99 175 | 84.88 160 | 84.78 159 | 89.28 180 | 83.01 183 |
|
UniMVSNet_ETH3D | | | 79.24 138 | 76.47 164 | 82.48 112 | 85.66 136 | 90.97 104 | 86.08 126 | 81.63 100 | 64.48 184 | 68.94 120 | 54.47 184 | 57.65 181 | 78.83 123 | 85.20 156 | 88.91 107 | 93.72 131 | 93.60 85 |
|
Anonymous20231206 | | | 70.80 188 | 70.59 192 | 71.04 188 | 81.60 185 | 82.49 190 | 74.64 193 | 75.87 158 | 64.17 185 | 49.27 194 | 44.85 200 | 53.59 197 | 54.68 195 | 83.07 172 | 82.34 176 | 90.17 174 | 83.65 180 |
|
testgi | | | 71.92 187 | 74.20 183 | 69.27 191 | 84.58 152 | 83.06 183 | 73.40 194 | 74.39 163 | 64.04 186 | 46.17 198 | 68.90 122 | 57.15 183 | 48.89 200 | 84.07 167 | 83.08 171 | 88.18 185 | 79.09 196 |
|
EU-MVSNet | | | 69.98 190 | 72.30 188 | 67.28 194 | 75.67 201 | 79.39 198 | 73.12 195 | 69.94 180 | 63.59 187 | 42.80 202 | 62.93 151 | 56.71 186 | 55.07 194 | 79.13 191 | 78.55 187 | 87.06 191 | 85.82 173 |
|
pm-mvs1 | | | 78.51 148 | 77.75 153 | 79.40 142 | 84.83 151 | 89.30 136 | 83.55 151 | 79.38 126 | 62.64 188 | 63.68 147 | 58.73 175 | 64.68 144 | 70.78 168 | 89.79 94 | 87.84 116 | 94.17 113 | 91.28 132 |
|
CMPMVS | | 56.49 17 | 73.84 185 | 71.73 190 | 76.31 169 | 85.20 143 | 85.67 170 | 75.80 190 | 73.23 167 | 62.26 189 | 65.40 135 | 53.40 188 | 59.70 171 | 71.77 164 | 80.25 185 | 79.56 183 | 86.45 193 | 81.28 189 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MVS-HIRNet | | | 68.83 191 | 66.39 195 | 71.68 187 | 77.58 195 | 75.52 202 | 66.45 202 | 65.05 197 | 62.16 190 | 62.84 151 | 44.76 201 | 56.60 187 | 71.96 163 | 78.04 193 | 75.06 197 | 86.18 195 | 72.56 202 |
|
FPMVS | | | 63.63 197 | 60.08 202 | 67.78 193 | 80.01 189 | 71.50 205 | 72.88 196 | 69.41 183 | 61.82 191 | 53.11 185 | 45.12 199 | 42.11 208 | 50.86 198 | 66.69 202 | 63.84 203 | 80.41 203 | 69.46 204 |
|
tfpnnormal | | | 77.46 156 | 74.86 181 | 80.49 135 | 86.34 129 | 88.92 145 | 84.33 145 | 81.26 103 | 61.39 192 | 61.70 163 | 51.99 191 | 53.66 196 | 74.84 148 | 88.63 107 | 87.38 122 | 94.50 99 | 92.08 116 |
|
new_pmnet | | | 59.28 199 | 61.47 201 | 56.73 201 | 61.66 207 | 68.29 207 | 59.57 206 | 54.91 204 | 60.83 193 | 34.38 208 | 44.66 202 | 43.65 206 | 49.90 199 | 71.66 200 | 71.56 201 | 79.94 205 | 69.67 203 |
|
ambc | | | | 61.92 199 | | 70.98 204 | 73.54 204 | 63.64 205 | | 60.06 194 | 52.23 189 | 38.44 204 | 19.17 214 | 57.12 191 | 82.33 179 | 75.03 198 | 83.21 202 | 84.89 175 |
|
TransMVSNet (Re) | | | 76.57 163 | 75.16 180 | 78.22 155 | 85.60 137 | 87.24 158 | 82.46 156 | 81.23 104 | 59.80 195 | 59.05 179 | 57.07 179 | 59.14 177 | 66.60 183 | 88.09 113 | 86.82 129 | 94.37 108 | 87.95 158 |
|
EG-PatchMatch MVS | | | 76.40 168 | 75.47 177 | 77.48 158 | 85.86 133 | 90.22 114 | 82.45 157 | 73.96 166 | 59.64 196 | 59.60 175 | 52.75 189 | 62.20 159 | 68.44 174 | 88.23 112 | 87.50 119 | 94.55 97 | 87.78 159 |
|
MDA-MVSNet-bldmvs | | | 66.22 194 | 64.49 197 | 68.24 192 | 61.67 206 | 82.11 193 | 70.07 199 | 76.16 155 | 59.14 197 | 47.94 196 | 54.35 185 | 35.82 211 | 67.33 179 | 64.94 204 | 75.68 194 | 86.30 194 | 79.36 194 |
|
test20.03 | | | 68.31 192 | 70.05 193 | 66.28 196 | 82.41 179 | 80.84 195 | 67.35 201 | 76.11 156 | 58.44 198 | 40.80 205 | 53.77 187 | 54.54 193 | 42.28 203 | 83.07 172 | 81.96 179 | 88.73 183 | 77.76 198 |
|
new-patchmatchnet | | | 63.80 196 | 63.31 198 | 64.37 197 | 76.49 197 | 75.99 201 | 63.73 204 | 70.99 174 | 57.27 199 | 43.08 201 | 45.86 198 | 43.80 205 | 45.13 202 | 73.20 199 | 70.68 202 | 86.80 192 | 76.34 200 |
|
DeepMVS_CX | | | | | | | 48.31 211 | 48.03 209 | 26.08 210 | 56.42 200 | 25.77 210 | 47.51 195 | 31.31 212 | 51.30 197 | 48.49 207 | | 53.61 209 | 61.52 206 |
|
MIMVSNet1 | | | 65.00 195 | 66.24 196 | 63.55 198 | 58.41 209 | 80.01 197 | 69.00 200 | 74.03 165 | 55.81 201 | 41.88 203 | 36.81 205 | 49.48 202 | 47.89 201 | 81.32 181 | 82.40 175 | 90.08 176 | 77.88 197 |
|
Gipuma | | | 49.17 202 | 47.05 204 | 51.65 202 | 59.67 208 | 48.39 210 | 41.98 210 | 63.47 200 | 55.64 202 | 33.33 209 | 14.90 208 | 13.78 215 | 41.34 204 | 69.31 201 | 72.30 200 | 70.11 207 | 55.00 208 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
pmmvs6 | | | 74.83 180 | 72.89 187 | 77.09 160 | 82.11 181 | 87.50 156 | 80.88 172 | 76.97 148 | 52.79 203 | 61.91 161 | 46.66 196 | 60.49 164 | 69.28 171 | 86.74 131 | 85.46 153 | 91.39 162 | 90.56 138 |
|
gg-mvs-nofinetune | | | 75.64 177 | 77.26 156 | 73.76 182 | 87.92 111 | 92.20 95 | 87.32 107 | 64.67 199 | 51.92 204 | 35.35 207 | 46.44 197 | 77.05 95 | 71.97 162 | 92.64 49 | 91.02 58 | 95.34 61 | 89.53 144 |
|
LTVRE_ROB | | 74.41 16 | 75.78 176 | 74.72 182 | 77.02 162 | 85.88 131 | 89.22 138 | 82.44 158 | 77.17 146 | 50.57 205 | 45.45 199 | 65.44 137 | 52.29 198 | 81.25 88 | 85.50 149 | 87.42 121 | 89.94 177 | 92.62 104 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
gm-plane-assit | | | 70.29 189 | 70.65 191 | 69.88 190 | 85.03 146 | 78.50 200 | 58.41 207 | 65.47 195 | 50.39 206 | 40.88 204 | 49.60 193 | 50.11 200 | 75.14 146 | 91.43 64 | 89.78 87 | 94.32 109 | 84.73 178 |
|
pmmvs3 | | | 61.89 198 | 61.74 200 | 62.06 199 | 64.30 205 | 70.83 206 | 64.22 203 | 52.14 207 | 48.78 207 | 44.47 200 | 41.67 203 | 41.70 209 | 63.03 187 | 76.06 196 | 76.02 193 | 84.18 200 | 77.14 199 |
|
PMVS | | 50.48 18 | 55.81 201 | 51.93 203 | 60.33 200 | 72.90 203 | 49.34 209 | 48.78 208 | 69.51 182 | 43.49 208 | 54.25 183 | 36.26 206 | 41.04 210 | 39.71 205 | 65.07 203 | 60.70 204 | 76.85 206 | 67.58 205 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 41.68 203 | 44.74 205 | 38.10 203 | 46.97 212 | 52.32 208 | 40.63 211 | 48.08 208 | 35.51 209 | 7.36 214 | 26.86 207 | 24.64 213 | 16.72 209 | 55.24 206 | 59.03 205 | 68.85 208 | 59.59 207 |
|
EMVS | | | 30.49 206 | 25.44 208 | 36.39 205 | 51.47 210 | 29.89 214 | 20.17 214 | 54.00 206 | 26.49 210 | 12.02 213 | 13.94 211 | 8.84 216 | 34.37 206 | 25.04 210 | 34.37 209 | 46.29 212 | 39.53 211 |
|
E-PMN | | | 31.40 204 | 26.80 207 | 36.78 204 | 51.39 211 | 29.96 213 | 20.20 213 | 54.17 205 | 25.93 211 | 12.75 212 | 14.73 209 | 8.58 217 | 34.10 207 | 27.36 209 | 37.83 208 | 48.07 211 | 43.18 210 |
|
MVE | | 30.17 19 | 30.88 205 | 33.52 206 | 27.80 208 | 23.78 214 | 39.16 212 | 18.69 215 | 46.90 209 | 21.88 212 | 15.39 211 | 14.37 210 | 7.31 218 | 24.41 208 | 41.63 208 | 56.22 206 | 37.64 213 | 54.07 209 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 1.03 207 | 1.63 209 | 0.34 209 | 0.09 216 | 0.35 216 | 0.61 217 | 0.16 212 | 1.49 213 | 0.10 216 | 3.15 212 | 0.15 219 | 0.86 212 | 1.32 211 | 1.18 210 | 0.20 214 | 3.76 213 |
|
test123 | | | 0.87 208 | 1.40 210 | 0.25 210 | 0.03 217 | 0.25 217 | 0.35 218 | 0.08 214 | 1.21 214 | 0.05 217 | 2.84 213 | 0.03 220 | 0.89 211 | 0.43 212 | 1.16 211 | 0.13 215 | 3.87 212 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
9.14 | | | | | | | | | | | | | 92.16 15 | | | | | |
|
SR-MVS | | | | | | 96.58 25 | | | 90.99 21 | | | | 92.40 12 | | | | | |
|
our_test_3 | | | | | | 81.81 184 | 83.96 182 | 76.61 188 | | | | | | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 98.10 4 |
|
MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 21 | | | | | |
|
MTMP | | | | | | | | | | | 93.14 1 | | 90.21 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.55 216 | | | | | | | | | | |
|
XVS | | | | | | 93.11 59 | 96.70 24 | 91.91 53 | | | 83.95 47 | | 88.82 39 | | | | 95.79 35 | |
|
X-MVStestdata | | | | | | 93.11 59 | 96.70 24 | 91.91 53 | | | 83.95 47 | | 88.82 39 | | | | 95.79 35 | |
|
mPP-MVS | | | | | | 97.06 12 | | | | | | | 88.08 44 | | | | | |
|
Patchmtry | | | | | | | 85.54 173 | 82.30 160 | 68.23 185 | | 65.37 136 | | | | | | | |
|