This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPE-MVS95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12591.93 1594.40 2593.56 2897.04 297.27 16
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8893.59 87
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 81
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11596.45 35
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12897.63 11
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9191.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10294.41 10790.45 141
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14797.58 12
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11294.31 11193.82 82
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9293.95 79
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 10988.54 11394.72 8895.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12677.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 85
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9791.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9592.97 94
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8694.70 67
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9392.22 5591.85 5093.69 13395.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10895.30 6492.57 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12885.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8295.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8887.60 3480.32 7487.07 6190.66 8789.95 8494.62 9496.35 39
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11294.20 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9786.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 71
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10571.74 10472.47 11987.45 5789.53 10089.09 10493.20 14389.60 144
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 70
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9891.75 2373.22 11787.64 5491.49 6489.71 9193.73 13191.82 122
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10193.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9094.01 78
MSDG83.87 9381.02 11587.19 7292.17 7189.80 12789.15 8485.72 5580.61 9579.24 7566.66 13168.75 13582.69 8087.95 11687.44 12294.19 11385.92 173
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12392.97 4691.53 5495.15 7196.65 33
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 88
test_part183.23 10080.55 12286.35 7588.60 10890.61 10990.78 6481.13 10670.89 15783.01 5355.72 18574.60 10482.19 8587.79 11789.26 10092.39 15295.01 57
diffmvs86.52 7286.76 7586.23 7688.31 11192.63 9189.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10589.06 10594.05 11794.29 72
Anonymous2023121184.42 9183.02 9786.05 7788.85 10692.70 8988.92 9283.40 8379.99 9878.31 7955.83 18478.92 8683.33 7889.06 10489.76 9093.50 13894.90 61
MVSTER86.03 7686.12 7885.93 7888.62 10789.93 12389.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9892.13 5990.10 7895.68 4292.80 99
PatchMatch-RL83.34 9881.36 11085.65 7990.33 9389.52 13584.36 14681.82 10080.87 9479.29 7474.04 9362.85 15686.05 6888.40 11287.04 12992.04 15686.77 166
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10773.52 9874.03 10886.55 6690.99 7789.98 8294.83 8194.27 76
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10489.85 12589.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8489.67 9790.30 7493.63 13695.12 56
EPP-MVSNet86.55 7187.76 6685.15 8290.52 8794.41 6487.24 11282.32 9781.79 8273.60 9978.57 7082.41 6582.07 8791.23 6690.39 7395.14 7295.48 52
FC-MVSNet-train85.18 8285.31 8685.03 8390.67 8491.62 10187.66 10483.61 7379.75 10174.37 9578.69 6971.21 12378.91 12491.23 6689.96 8394.96 7794.69 68
Fast-Effi-MVS+83.77 9582.98 9884.69 8487.98 11291.87 9988.10 10077.70 14578.10 11273.04 10369.13 12068.51 13686.66 6490.49 8989.85 8794.67 9192.88 96
baseline184.54 8784.43 9184.67 8590.62 8591.16 10488.63 9583.75 7279.78 10071.16 10875.14 8774.10 10777.84 13291.56 6390.67 6896.04 2288.58 150
thres20082.77 10381.25 11284.54 8690.38 9193.05 8389.13 8582.67 9074.40 13369.53 11765.69 13763.03 15480.63 9991.15 7289.42 9794.88 7992.04 119
tfpn200view982.86 10181.46 10884.48 8790.30 9493.09 8289.05 8882.71 8875.14 12769.56 11565.72 13563.13 15180.38 10491.15 7289.51 9594.91 7892.50 113
thres40082.68 10481.15 11384.47 8890.52 8792.89 8788.95 9182.71 8874.33 13469.22 12065.31 13962.61 15780.63 9990.96 7989.50 9694.79 8292.45 115
thres100view90082.55 10681.01 11784.34 8990.30 9492.27 9589.04 8982.77 8775.14 12769.56 11565.72 13563.13 15179.62 11889.97 9389.26 10094.73 8791.61 129
thisisatest053085.15 8385.86 8184.33 9089.19 10392.57 9487.22 11380.11 11882.15 7974.41 9478.15 7273.80 11179.90 11190.99 7789.58 9395.13 7393.75 84
tttt051785.11 8485.81 8284.30 9189.24 10192.68 9087.12 11780.11 11881.98 8074.31 9678.08 7373.57 11379.90 11191.01 7689.58 9395.11 7593.77 83
thres600view782.53 10781.02 11584.28 9290.61 8693.05 8388.57 9682.67 9074.12 13768.56 12365.09 14262.13 16280.40 10391.15 7289.02 10794.88 7992.59 107
FMVSNet384.44 9084.64 9084.21 9384.32 15690.13 11889.85 7480.37 11181.17 8675.50 8869.63 11479.69 8179.62 11889.72 9690.52 7295.59 4991.58 130
GBi-Net84.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
test184.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
HyFIR lowres test81.62 11879.45 13884.14 9691.00 8193.38 7988.27 9878.19 13976.28 12070.18 11348.78 19773.69 11283.52 7787.05 12587.83 12093.68 13489.15 147
UA-Net86.07 7587.78 6584.06 9792.85 6595.11 5487.73 10384.38 6373.22 14673.18 10179.99 6289.22 3771.47 16793.22 4193.03 3994.76 8590.69 136
FMVSNet283.87 9383.73 9584.05 9884.20 15789.95 12089.70 7580.21 11679.17 10674.89 9265.91 13377.49 9379.75 11590.87 8091.00 6095.52 5391.71 124
ACMH+79.08 1381.84 11380.06 12883.91 9989.92 9890.62 10886.21 12683.48 8073.88 13965.75 13566.38 13265.30 14584.63 7385.90 14587.25 12593.45 13991.13 134
IS_MVSNet86.18 7488.18 5983.85 10091.02 8094.72 6287.48 10682.46 9581.05 9070.28 11276.98 7782.20 6776.65 13993.97 3193.38 3595.18 6894.97 59
IterMVS-LS83.28 9982.95 9983.65 10188.39 11088.63 15086.80 12178.64 13676.56 11873.43 10072.52 10375.35 10080.81 9586.43 14088.51 11493.84 12792.66 104
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268882.16 10880.91 11883.61 10291.14 7892.01 9889.55 8079.15 13179.87 9970.29 11152.51 19372.56 11881.39 8988.87 10788.17 11690.15 17792.37 116
RPSCF83.46 9783.36 9683.59 10387.75 11487.35 15984.82 14379.46 12783.84 6978.12 8082.69 4779.87 7782.60 8382.47 17981.13 18288.78 18486.13 171
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10474.99 20592.62 9390.29 6880.38 11082.16 7873.01 10483.41 4471.10 12487.05 6287.77 11890.17 7795.62 4691.82 122
baseline84.89 8586.06 8083.52 10587.25 12289.67 13287.76 10275.68 16184.92 6478.40 7880.10 6080.98 7080.20 10786.69 13487.05 12891.86 15992.99 93
ACMH78.52 1481.86 11280.45 12383.51 10690.51 8991.22 10385.62 13484.23 6570.29 16362.21 15869.04 12264.05 14984.48 7487.57 12088.45 11594.01 11992.54 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UGNet85.90 7888.23 5883.18 10788.96 10594.10 6887.52 10583.60 7481.66 8377.90 8380.76 5983.19 6166.70 18491.13 7590.71 6794.39 10896.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IB-MVS79.09 1282.60 10582.19 10383.07 10891.08 7993.55 7680.90 17381.35 10376.56 11880.87 6664.81 14569.97 12968.87 17485.64 14890.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
COLMAP_ROBcopyleft76.78 1580.50 12478.49 14382.85 10990.96 8289.65 13386.20 12783.40 8377.15 11666.54 13062.27 15365.62 14477.89 13185.23 15584.70 16292.11 15584.83 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet181.64 11680.61 12082.84 11082.36 18289.20 14188.67 9379.58 12570.79 15872.63 10658.95 17572.26 12079.34 12190.73 8390.72 6494.47 10391.62 128
CANet_DTU85.43 8087.72 6882.76 11190.95 8393.01 8589.99 7175.46 16282.67 7264.91 14283.14 4580.09 7680.68 9792.03 6091.03 5894.57 9792.08 117
baseline282.80 10282.86 10082.73 11287.68 11790.50 11184.92 14178.93 13278.07 11373.06 10275.08 8869.77 13077.31 13588.90 10686.94 13094.50 10090.74 135
UniMVSNet_NR-MVSNet81.87 11181.33 11182.50 11385.31 14391.30 10285.70 13184.25 6475.89 12264.21 14466.95 13064.65 14780.22 10587.07 12489.18 10395.27 6794.29 72
UniMVSNet_ETH3D79.24 14076.47 16682.48 11485.66 13890.97 10586.08 12881.63 10164.48 18768.94 12254.47 18757.65 18378.83 12585.20 15888.91 10993.72 13293.60 86
Effi-MVS+-dtu82.05 10981.76 10582.38 11587.72 11590.56 11086.90 12078.05 14173.85 14066.85 12971.29 10671.90 12182.00 8886.64 13585.48 15492.76 14992.58 108
DU-MVS81.20 12080.30 12482.25 11684.98 15090.94 10685.70 13183.58 7675.74 12364.21 14465.30 14059.60 17580.22 10586.89 12789.31 9894.77 8494.29 72
pmmvs479.99 12778.08 14982.22 11783.04 17287.16 16284.95 13978.80 13578.64 10974.53 9364.61 14659.41 17679.45 12084.13 16884.54 16592.53 15188.08 156
MS-PatchMatch81.79 11481.44 10982.19 11890.35 9289.29 13988.08 10175.36 16377.60 11469.00 12164.37 14878.87 8777.14 13888.03 11585.70 15293.19 14486.24 170
v2v48279.84 13078.07 15081.90 11983.75 16290.21 11787.17 11479.85 12370.65 15965.93 13461.93 15560.07 16980.82 9485.25 15486.71 13393.88 12591.70 127
CostFormer80.94 12180.21 12581.79 12087.69 11688.58 15187.47 10770.66 17880.02 9777.88 8473.03 9971.40 12278.24 12879.96 18879.63 18488.82 18388.84 148
Vis-MVSNetpermissive84.38 9286.68 7681.70 12187.65 11894.89 5888.14 9980.90 10774.48 13268.23 12477.53 7580.72 7269.98 17192.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v879.90 12978.39 14681.66 12283.97 16189.81 12687.16 11577.40 14771.49 15267.71 12561.24 15862.49 15879.83 11485.48 15286.17 14493.89 12492.02 121
USDC80.69 12279.89 13181.62 12386.48 12989.11 14486.53 12378.86 13381.15 8963.48 15072.98 10059.12 18081.16 9187.10 12385.01 15893.23 14284.77 178
Baseline_NR-MVSNet79.84 13078.37 14781.55 12484.98 15086.66 16485.06 13883.49 7875.57 12563.31 15158.22 17960.97 16578.00 13086.89 12787.13 12694.47 10393.15 91
UniMVSNet (Re)81.22 11981.08 11481.39 12585.35 14291.76 10084.93 14082.88 8576.13 12165.02 14164.94 14363.09 15375.17 14787.71 11989.04 10694.97 7694.88 62
TDRefinement79.05 14277.05 16181.39 12588.45 10989.00 14686.92 11882.65 9274.21 13664.41 14359.17 17259.16 17874.52 15385.23 15585.09 15791.37 16587.51 162
TranMVSNet+NR-MVSNet80.52 12379.84 13281.33 12784.92 15290.39 11285.53 13684.22 6674.27 13560.68 17364.93 14459.96 17077.48 13486.75 13289.28 9995.12 7493.29 89
v1079.62 13378.19 14881.28 12883.73 16389.69 13187.27 11176.86 15270.50 16165.46 13660.58 16560.47 16780.44 10286.91 12686.63 13693.93 12192.55 110
v114479.38 13977.83 15381.18 12983.62 16490.23 11587.15 11678.35 13869.13 16664.02 14760.20 16759.41 17680.14 10986.78 13086.57 13793.81 12992.53 112
CDS-MVSNet81.63 11782.09 10481.09 13087.21 12390.28 11487.46 10880.33 11469.06 16770.66 10971.30 10573.87 10967.99 17789.58 9889.87 8692.87 14890.69 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4279.59 13478.43 14580.94 13182.79 17889.71 13086.66 12276.73 15471.38 15367.42 12661.01 16062.30 16078.39 12785.56 15086.48 13893.65 13592.60 106
v119278.94 14377.33 15780.82 13283.25 16889.90 12486.91 11977.72 14468.63 17062.61 15659.17 17257.53 18480.62 10186.89 12786.47 13993.79 13092.75 102
tpm cat177.78 15575.28 18180.70 13387.14 12485.84 17085.81 13070.40 17977.44 11578.80 7763.72 14964.01 15076.55 14075.60 20075.21 19885.51 20085.12 175
v14419278.81 14477.22 15980.67 13482.95 17389.79 12886.40 12477.42 14668.26 17263.13 15259.50 17058.13 18180.08 11085.93 14486.08 14694.06 11692.83 98
v14878.59 14876.84 16480.62 13583.61 16589.16 14283.65 15279.24 13069.38 16569.34 11959.88 16960.41 16875.19 14683.81 17084.63 16392.70 15090.63 138
NR-MVSNet80.25 12679.98 13080.56 13685.20 14590.94 10685.65 13383.58 7675.74 12361.36 16865.30 14056.75 18872.38 16388.46 11188.80 11095.16 7093.87 80
tfpnnormal77.46 15874.86 18380.49 13786.34 13188.92 14784.33 14781.26 10461.39 19561.70 16551.99 19453.66 19974.84 15088.63 10887.38 12494.50 10092.08 117
dps78.02 15275.94 17480.44 13886.06 13286.62 16582.58 15769.98 18275.14 12777.76 8669.08 12159.93 17178.47 12679.47 19077.96 19187.78 18883.40 182
v192192078.57 14976.99 16280.41 13982.93 17489.63 13486.38 12577.14 14968.31 17161.80 16458.89 17656.79 18780.19 10886.50 13986.05 14894.02 11892.76 101
v124078.15 15176.53 16580.04 14082.85 17789.48 13785.61 13576.77 15367.05 17461.18 17158.37 17856.16 19179.89 11386.11 14386.08 14693.92 12292.47 114
Vis-MVSNet (Re-imp)83.65 9686.81 7479.96 14190.46 9092.71 8884.84 14282.00 9980.93 9262.44 15776.29 8082.32 6665.54 18792.29 5391.66 5194.49 10291.47 131
TinyColmap76.73 16273.95 18679.96 14185.16 14785.64 17382.34 16178.19 13970.63 16062.06 16060.69 16449.61 20480.81 9585.12 15983.69 17091.22 16982.27 186
EPNet_dtu81.98 11083.82 9479.83 14394.10 5185.97 16887.29 11084.08 6880.61 9559.96 17581.62 5577.19 9562.91 19187.21 12286.38 14190.66 17387.77 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs178.51 15077.75 15579.40 14484.83 15389.30 13883.55 15379.38 12862.64 19163.68 14958.73 17764.68 14670.78 17089.79 9587.84 11894.17 11491.28 133
GA-MVS79.52 13579.71 13579.30 14585.68 13790.36 11384.55 14478.44 13770.47 16257.87 18368.52 12461.38 16376.21 14189.40 10287.89 11793.04 14689.96 143
Fast-Effi-MVS+-dtu79.95 12880.69 11979.08 14686.36 13089.14 14385.85 12972.28 17272.85 14959.32 17870.43 11268.42 13777.57 13386.14 14286.44 14093.11 14591.39 132
test-LLR79.47 13779.84 13279.03 14787.47 11982.40 19381.24 17078.05 14173.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
PMMVS81.65 11584.05 9378.86 14878.56 19682.63 19083.10 15467.22 19281.39 8470.11 11484.91 4279.74 8082.12 8687.31 12185.70 15292.03 15786.67 169
thisisatest051579.76 13280.59 12178.80 14984.40 15588.91 14879.48 17976.94 15172.29 15067.33 12767.82 12765.99 14270.80 16988.50 11087.84 11893.86 12692.75 102
SCA79.51 13680.15 12778.75 15086.58 12887.70 15683.07 15568.53 18781.31 8566.40 13173.83 9475.38 9979.30 12280.49 18679.39 18788.63 18682.96 185
MDTV_nov1_ep1379.14 14179.49 13778.74 15185.40 14186.89 16384.32 14870.29 18078.85 10769.42 11875.37 8673.29 11675.64 14480.61 18579.48 18687.36 19081.91 187
CHOSEN 280x42080.28 12581.66 10678.67 15282.92 17579.24 20285.36 13766.79 19478.11 11170.32 11075.03 8979.87 7781.09 9289.07 10383.16 17285.54 19987.17 163
CR-MVSNet78.71 14678.86 14078.55 15385.85 13685.15 17782.30 16268.23 18874.71 13065.37 13864.39 14769.59 13277.18 13685.10 16084.87 15992.34 15488.21 154
IterMVS-SCA-FT79.41 13880.20 12678.49 15485.88 13386.26 16683.95 14971.94 17373.55 14461.94 16170.48 11170.50 12675.23 14585.81 14784.61 16491.99 15890.18 142
PatchmatchNetpermissive78.67 14778.85 14178.46 15586.85 12786.03 16783.77 15168.11 19080.88 9366.19 13272.90 10173.40 11578.06 12979.25 19277.71 19287.75 18981.75 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n77.22 15976.23 16978.38 15681.89 18589.10 14582.24 16476.36 15565.96 18161.21 17056.56 18255.79 19275.07 14986.55 13686.68 13493.52 13792.95 95
TransMVSNet (Re)76.57 16575.16 18278.22 15785.60 13987.24 16082.46 15881.23 10559.80 19859.05 18157.07 18159.14 17966.60 18588.09 11486.82 13194.37 10987.95 159
IterMVS78.79 14579.71 13577.71 15885.26 14485.91 16984.54 14569.84 18473.38 14561.25 16970.53 11070.35 12774.43 15485.21 15783.80 16990.95 17188.77 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs576.93 16176.33 16877.62 15981.97 18488.40 15381.32 16974.35 16665.42 18561.42 16763.07 15157.95 18273.23 16185.60 14985.35 15693.41 14088.55 151
EG-PatchMatch MVS76.40 17075.47 17977.48 16085.86 13590.22 11682.45 15973.96 16859.64 19959.60 17752.75 19262.20 16168.44 17688.23 11387.50 12194.55 9887.78 160
tpmrst76.55 16675.99 17377.20 16187.32 12183.05 18682.86 15665.62 19778.61 11067.22 12869.19 11965.71 14375.87 14376.75 19875.33 19784.31 20283.28 183
pmmvs674.83 18272.89 18977.09 16282.11 18387.50 15880.88 17476.97 15052.79 20661.91 16346.66 19960.49 16669.28 17386.74 13385.46 15591.39 16490.56 139
pmmvs-eth3d74.32 18571.96 19177.08 16377.33 19982.71 18978.41 18576.02 15966.65 17665.98 13354.23 18949.02 20673.14 16282.37 18082.69 17691.61 16286.05 172
LTVRE_ROB74.41 1675.78 17874.72 18477.02 16485.88 13389.22 14082.44 16077.17 14850.57 20845.45 20365.44 13852.29 20181.25 9085.50 15187.42 12389.94 17992.62 105
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EPMVS77.53 15778.07 15076.90 16586.89 12684.91 18082.18 16566.64 19581.00 9164.11 14672.75 10269.68 13174.42 15579.36 19178.13 19087.14 19280.68 194
anonymousdsp77.94 15379.00 13976.71 16679.03 19487.83 15579.58 17872.87 17065.80 18258.86 18265.82 13462.48 15975.99 14286.77 13188.66 11193.92 12295.68 49
tpm76.30 17276.05 17276.59 16786.97 12583.01 18783.83 15067.06 19371.83 15163.87 14869.56 11762.88 15573.41 16079.79 18978.59 18884.41 20186.68 167
RPMNet77.07 16077.63 15676.42 16885.56 14085.15 17781.37 16765.27 19974.71 13060.29 17463.71 15066.59 14173.64 15782.71 17782.12 17992.38 15388.39 152
SixPastTwentyTwo76.02 17475.72 17676.36 16983.38 16687.54 15775.50 19376.22 15665.50 18457.05 18470.64 10853.97 19874.54 15280.96 18482.12 17991.44 16389.35 146
CP-MVSNet76.36 17176.41 16776.32 17082.73 17988.64 14979.39 18079.62 12467.21 17353.70 18860.72 16355.22 19467.91 17983.52 17286.34 14294.55 9893.19 90
CMPMVSbinary56.49 1773.84 18771.73 19376.31 17185.20 14585.67 17275.80 19273.23 16962.26 19265.40 13753.40 19159.70 17371.77 16680.25 18779.56 18586.45 19681.28 190
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PS-CasMVS75.90 17675.86 17575.96 17282.59 18088.46 15279.23 18379.56 12666.00 18052.77 19059.48 17154.35 19767.14 18283.37 17386.23 14394.47 10393.10 92
PEN-MVS76.02 17476.07 17075.95 17383.17 17087.97 15479.65 17780.07 12166.57 17751.45 19460.94 16155.47 19366.81 18382.72 17686.80 13294.59 9592.03 120
TAMVS76.42 16877.16 16075.56 17483.05 17185.55 17480.58 17571.43 17565.40 18661.04 17267.27 12969.22 13467.99 17784.88 16284.78 16189.28 18283.01 184
PM-MVS74.17 18673.10 18775.41 17576.07 20282.53 19177.56 18971.69 17471.04 15461.92 16261.23 15947.30 20774.82 15181.78 18279.80 18390.42 17488.05 157
TESTMET0.1,177.78 15579.84 13275.38 17680.86 19182.40 19381.24 17062.72 20573.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
test-mter77.79 15480.02 12975.18 17781.18 19082.85 18880.52 17662.03 20673.62 14362.16 15973.55 9773.83 11073.81 15684.67 16383.34 17191.37 16588.31 153
WR-MVS76.63 16478.02 15275.02 17884.14 16089.76 12978.34 18680.64 10969.56 16452.32 19261.26 15761.24 16460.66 19284.45 16687.07 12793.99 12092.77 100
FMVSNet575.50 18076.07 17074.83 17976.16 20181.19 19681.34 16870.21 18173.20 14761.59 16658.97 17468.33 13868.50 17585.87 14685.85 15091.18 17079.11 197
DTE-MVSNet75.14 18175.44 18074.80 18083.18 16987.19 16178.25 18880.11 11866.05 17948.31 19960.88 16254.67 19564.54 18882.57 17886.17 14494.43 10690.53 140
PatchT76.42 16877.81 15474.80 18078.46 19784.30 18271.82 20065.03 20173.89 13865.37 13861.58 15666.70 14077.18 13685.10 16084.87 15990.94 17288.21 154
CVMVSNet76.70 16378.46 14474.64 18283.34 16784.48 18181.83 16674.58 16468.88 16851.23 19669.77 11370.05 12867.49 18084.27 16783.81 16889.38 18187.96 158
WR-MVS_H75.84 17776.93 16374.57 18382.86 17689.50 13678.34 18679.36 12966.90 17552.51 19160.20 16759.71 17259.73 19383.61 17185.77 15194.65 9292.84 97
gg-mvs-nofinetune75.64 17977.26 15873.76 18487.92 11392.20 9687.32 10964.67 20251.92 20735.35 21146.44 20077.05 9671.97 16492.64 5091.02 5995.34 6289.53 145
MIMVSNet74.69 18375.60 17873.62 18576.02 20385.31 17681.21 17267.43 19171.02 15559.07 18054.48 18664.07 14866.14 18686.52 13886.64 13591.83 16081.17 191
MDTV_nov1_ep13_2view73.21 18872.91 18873.56 18680.01 19284.28 18378.62 18466.43 19668.64 16959.12 17960.39 16659.69 17469.81 17278.82 19477.43 19387.36 19081.11 192
ADS-MVSNet74.53 18475.69 17773.17 18781.57 18880.71 19879.27 18263.03 20479.27 10559.94 17667.86 12668.32 13971.08 16877.33 19676.83 19484.12 20479.53 195
test0.0.03 176.03 17378.51 14273.12 18887.47 11985.13 17976.32 19178.05 14173.19 14850.98 19770.64 10869.28 13355.53 19585.33 15384.38 16690.39 17581.63 189
pmnet_mix0271.95 18971.83 19272.10 18981.40 18980.63 19973.78 19672.85 17170.90 15654.89 18662.17 15457.42 18562.92 19076.80 19773.98 20186.74 19580.87 193
MVS-HIRNet68.83 19466.39 19871.68 19077.58 19875.52 20566.45 20565.05 20062.16 19362.84 15344.76 20456.60 19071.96 16578.04 19575.06 19986.18 19872.56 204
Anonymous2023120670.80 19170.59 19571.04 19181.60 18782.49 19274.64 19575.87 16064.17 18849.27 19844.85 20353.59 20054.68 19883.07 17482.34 17890.17 17683.65 181
FC-MVSNet-test76.53 16781.62 10770.58 19284.99 14985.73 17174.81 19478.85 13477.00 11739.13 21075.90 8273.50 11454.08 19986.54 13785.99 14991.65 16186.68 167
gm-plane-assit70.29 19270.65 19469.88 19385.03 14878.50 20358.41 21065.47 19850.39 20940.88 20849.60 19650.11 20375.14 14891.43 6589.78 8894.32 11084.73 179
testgi71.92 19074.20 18569.27 19484.58 15483.06 18573.40 19774.39 16564.04 18946.17 20268.90 12357.15 18648.89 20384.07 16983.08 17388.18 18779.09 198
MDA-MVSNet-bldmvs66.22 19764.49 20068.24 19561.67 20982.11 19570.07 20276.16 15759.14 20047.94 20054.35 18835.82 21467.33 18164.94 20775.68 19686.30 19779.36 196
FPMVS63.63 20060.08 20567.78 19680.01 19271.50 20872.88 19969.41 18661.82 19453.11 18945.12 20242.11 21150.86 20166.69 20563.84 20680.41 20669.46 206
EU-MVSNet69.98 19372.30 19067.28 19775.67 20479.39 20173.12 19869.94 18363.59 19042.80 20662.93 15256.71 18955.07 19779.13 19378.55 18987.06 19385.82 174
N_pmnet66.85 19666.63 19767.11 19878.73 19574.66 20670.53 20171.07 17666.46 17846.54 20151.68 19551.91 20255.48 19674.68 20172.38 20280.29 20774.65 203
test20.0368.31 19570.05 19666.28 19982.41 18180.84 19767.35 20476.11 15858.44 20140.80 20953.77 19054.54 19642.28 20683.07 17481.96 18188.73 18577.76 200
new-patchmatchnet63.80 19963.31 20164.37 20076.49 20075.99 20463.73 20770.99 17757.27 20243.08 20545.86 20143.80 20845.13 20573.20 20270.68 20586.80 19476.34 202
MIMVSNet165.00 19866.24 19963.55 20158.41 21280.01 20069.00 20374.03 16755.81 20441.88 20736.81 20849.48 20547.89 20481.32 18382.40 17790.08 17877.88 199
pmmvs361.89 20161.74 20362.06 20264.30 20870.83 20964.22 20652.14 21048.78 21044.47 20441.67 20641.70 21263.03 18976.06 19976.02 19584.18 20377.14 201
PMVScopyleft50.48 1855.81 20451.93 20660.33 20372.90 20649.34 21248.78 21169.51 18543.49 21154.25 18736.26 20941.04 21339.71 20865.07 20660.70 20776.85 20967.58 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet59.28 20261.47 20456.73 20461.66 21068.29 21059.57 20954.91 20760.83 19634.38 21244.66 20543.65 20949.90 20271.66 20371.56 20479.94 20869.67 205
Gipumacopyleft49.17 20547.05 20751.65 20559.67 21148.39 21341.98 21363.47 20355.64 20533.33 21314.90 21113.78 21841.34 20769.31 20472.30 20370.11 21055.00 210
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.68 20644.74 20838.10 20646.97 21552.32 21140.63 21448.08 21135.51 2127.36 21826.86 21024.64 21616.72 21255.24 20959.03 20868.85 21159.59 209
E-PMN31.40 20726.80 21036.78 20751.39 21429.96 21620.20 21654.17 20825.93 21412.75 21614.73 2128.58 22034.10 21027.36 21237.83 21148.07 21443.18 212
EMVS30.49 20925.44 21136.39 20851.47 21329.89 21720.17 21754.00 20926.49 21312.02 21713.94 2148.84 21934.37 20925.04 21334.37 21246.29 21539.53 213
tmp_tt32.73 20943.96 21621.15 21826.71 2158.99 21465.67 18351.39 19556.01 18342.64 21011.76 21356.60 20850.81 21053.55 213
GG-mvs-BLEND57.56 20382.61 10228.34 2100.22 21890.10 11979.37 1810.14 21679.56 1020.40 21971.25 10783.40 600.30 21686.27 14183.87 16789.59 18083.83 180
MVEpermissive30.17 1930.88 20833.52 20927.80 21123.78 21739.16 21518.69 21846.90 21221.88 21515.39 21514.37 2137.31 22124.41 21141.63 21156.22 20937.64 21654.07 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2101.63 2120.34 2120.09 2190.35 2190.61 2200.16 2151.49 2160.10 2203.15 2150.15 2220.86 2151.32 2141.18 2130.20 2173.76 215
test1230.87 2111.40 2130.25 2130.03 2200.25 2200.35 2210.08 2171.21 2170.05 2212.84 2160.03 2230.89 2140.43 2151.16 2140.13 2183.87 214
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def56.08 185
9.1492.16 16
SR-MVS96.58 2690.99 2292.40 13
Anonymous20240521182.75 10189.58 10092.97 8689.04 8984.13 6778.72 10857.18 18076.64 9783.13 7989.55 9989.92 8593.38 14194.28 75
our_test_381.81 18683.96 18476.61 190
ambc61.92 20270.98 20773.54 20763.64 20860.06 19752.23 19338.44 20719.17 21757.12 19482.33 18175.03 20083.21 20584.89 176
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 219
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
mPP-MVS97.06 1288.08 45
NP-MVS87.47 53
Patchmtry85.54 17582.30 16268.23 18865.37 138
DeepMVS_CXcopyleft48.31 21448.03 21226.08 21356.42 20325.77 21447.51 19831.31 21551.30 20048.49 21053.61 21261.52 208