This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
DPE-MVS95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12591.93 1594.40 2593.56 2897.04 297.27 16
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12897.63 11
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9891.75 2373.22 11787.64 5491.49 6489.71 9193.73 13191.82 122
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8694.70 67
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14797.58 12
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8887.60 3480.32 7487.07 6190.66 8789.95 8494.62 9496.35 39
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9392.22 5591.85 5093.69 13395.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9786.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8295.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMMVS81.65 11584.05 9378.86 14878.56 19582.63 19083.10 15467.22 19181.39 8470.11 11484.91 4279.74 8082.12 8687.31 12185.70 15292.03 15786.67 169
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11596.45 35
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10474.99 20492.62 9390.29 6880.38 11082.16 7873.01 10483.41 4471.10 12487.05 6287.77 11890.17 7795.62 4691.82 122
CANet_DTU85.43 8087.72 6882.76 11190.95 8393.01 8589.99 7175.46 16282.67 7264.91 14283.14 4580.09 7680.68 9792.03 6091.03 5894.57 9792.08 117
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
RPSCF83.46 9783.36 9683.59 10387.75 11487.35 15984.82 14379.46 12783.84 6978.12 8082.69 4779.87 7782.60 8382.47 17981.13 18288.78 18486.13 171
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9293.95 79
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 81
EPNet_dtu81.98 11083.82 9479.83 14394.10 5185.97 16887.29 11084.08 6880.61 9559.96 17581.62 5577.19 9562.91 19087.21 12286.38 14190.66 17387.77 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
MVSTER86.03 7686.12 7885.93 7888.62 10789.93 12389.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9892.13 5990.10 7895.68 4292.80 99
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
UGNet85.90 7888.23 5883.18 10788.96 10594.10 6887.52 10583.60 7481.66 8377.90 8380.76 5983.19 6166.70 18491.13 7590.71 6794.39 10896.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.89 8586.06 8083.52 10587.25 12289.67 13287.76 10275.68 16184.92 6478.40 7880.10 6080.98 7080.20 10786.69 13487.05 12891.86 15992.99 93
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 71
UA-Net86.07 7587.78 6584.06 9792.85 6595.11 5487.73 10384.38 6373.22 14673.18 10179.99 6289.22 3771.47 16793.22 4193.03 3994.76 8590.69 136
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10895.30 6492.57 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 88
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
diffmvs86.52 7286.76 7586.23 7688.31 11192.63 9189.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10589.06 10594.05 11794.29 72
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FC-MVSNet-train85.18 8285.31 8685.03 8390.67 8491.62 10187.66 10483.61 7379.75 10174.37 9578.69 6971.21 12378.91 12491.23 6689.96 8394.96 7794.69 68
EPP-MVSNet86.55 7187.76 6685.15 8290.52 8794.41 6487.24 11282.32 9781.79 8273.60 9978.57 7082.41 6582.07 8791.23 6690.39 7395.14 7295.48 52
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8893.59 87
thisisatest053085.15 8385.86 8184.33 9089.19 10392.57 9487.22 11380.11 11882.15 7974.41 9478.15 7273.80 11179.90 11190.99 7789.58 9395.13 7393.75 84
tttt051785.11 8485.81 8284.30 9189.24 10192.68 9087.12 11780.11 11881.98 8074.31 9678.08 7373.57 11379.90 11191.01 7689.58 9395.11 7593.77 83
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 10988.54 11394.72 8895.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNetpermissive84.38 9286.68 7681.70 12187.65 11894.89 5888.14 9980.90 10774.48 13268.23 12477.53 7580.72 7269.98 17192.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11294.20 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IS_MVSNet86.18 7488.18 5983.85 10091.02 8094.72 6287.48 10682.46 9581.05 9070.28 11276.98 7782.20 6776.65 13993.97 3193.38 3595.18 6894.97 59
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12677.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 85
Vis-MVSNet (Re-imp)83.65 9686.81 7479.96 14190.46 9092.71 8884.84 14282.00 9980.93 9262.44 15776.29 8082.32 6665.54 18792.29 5391.66 5194.49 10291.47 131
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10489.85 12589.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8489.67 9790.30 7493.63 13695.12 56
FC-MVSNet-test76.53 16781.62 10770.58 19184.99 14985.73 17174.81 19478.85 13477.00 11739.13 20975.90 8273.50 11454.08 19886.54 13785.99 14991.65 16186.68 167
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 70
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9791.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9592.97 94
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9191.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10294.41 10790.45 141
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MDTV_nov1_ep1379.14 14179.49 13778.74 15185.40 14186.89 16384.32 14870.29 17978.85 10769.42 11875.37 8673.29 11675.64 14480.61 18579.48 18687.36 19081.91 187
baseline184.54 8784.43 9184.67 8590.62 8591.16 10488.63 9583.75 7279.78 10071.16 10875.14 8774.10 10777.84 13291.56 6390.67 6896.04 2288.58 150
baseline282.80 10282.86 10082.73 11287.68 11790.50 11184.92 14178.93 13278.07 11373.06 10275.08 8869.77 13077.31 13588.90 10686.94 13094.50 10090.74 135
CHOSEN 280x42080.28 12581.66 10678.67 15282.92 17579.24 20185.36 13766.79 19378.11 11170.32 11075.03 8979.87 7781.09 9289.07 10383.16 17285.54 19887.17 163
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12392.97 4691.53 5495.15 7196.65 33
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
PatchMatch-RL83.34 9881.36 11085.65 7990.33 9389.52 13584.36 14681.82 10080.87 9479.29 7474.04 9362.85 15686.05 6888.40 11287.04 12992.04 15686.77 166
SCA79.51 13680.15 12778.75 15086.58 12887.70 15683.07 15568.53 18681.31 8566.40 13173.83 9475.38 9979.30 12280.49 18679.39 18788.63 18682.96 185
test-LLR79.47 13779.84 13279.03 14787.47 11982.40 19381.24 17078.05 14173.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
TESTMET0.1,177.78 15579.84 13275.38 17680.86 19082.40 19381.24 17062.72 20473.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
test-mter77.79 15480.02 12975.18 17781.18 18982.85 18880.52 17662.03 20573.62 14362.16 15973.55 9773.83 11073.81 15684.67 16383.34 17191.37 16588.31 153
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10773.52 9874.03 10886.55 6690.99 7789.98 8294.83 8194.27 76
CostFormer80.94 12180.21 12581.79 12087.69 11688.58 15187.47 10770.66 17780.02 9777.88 8473.03 9971.40 12278.24 12879.96 18879.63 18488.82 18388.84 148
USDC80.69 12279.89 13181.62 12386.48 12989.11 14486.53 12378.86 13381.15 8963.48 15072.98 10059.12 18081.16 9187.10 12385.01 15893.23 14284.77 178
PatchmatchNetpermissive78.67 14778.85 14178.46 15586.85 12786.03 16783.77 15168.11 18980.88 9366.19 13272.90 10173.40 11578.06 12979.25 19277.71 19287.75 18981.75 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS77.53 15778.07 15076.90 16586.89 12684.91 18082.18 16566.64 19481.00 9164.11 14672.75 10269.68 13174.42 15579.36 19178.13 19087.14 19280.68 193
IterMVS-LS83.28 9982.95 9983.65 10188.39 11088.63 15086.80 12178.64 13676.56 11873.43 10072.52 10375.35 10080.81 9586.43 14088.51 11493.84 12792.66 104
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10571.74 10472.47 11987.45 5789.53 10089.09 10493.20 14389.60 144
CDS-MVSNet81.63 11782.09 10481.09 13087.21 12390.28 11487.46 10880.33 11469.06 16670.66 10971.30 10573.87 10967.99 17789.58 9889.87 8692.87 14890.69 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu82.05 10981.76 10582.38 11587.72 11590.56 11086.90 12078.05 14173.85 14066.85 12971.29 10671.90 12182.00 8886.64 13585.48 15492.76 14992.58 108
GG-mvs-BLEND57.56 20282.61 10228.34 2090.22 21790.10 11979.37 1810.14 21579.56 1020.40 21871.25 10783.40 600.30 21586.27 14183.87 16789.59 18083.83 180
test0.0.03 176.03 17378.51 14273.12 18887.47 11985.13 17976.32 19178.05 14173.19 14850.98 19670.64 10869.28 13355.53 19485.33 15384.38 16690.39 17581.63 189
SixPastTwentyTwo76.02 17475.72 17676.36 16983.38 16687.54 15775.50 19376.22 15665.50 18357.05 18470.64 10853.97 19774.54 15280.96 18482.12 17991.44 16389.35 146
IterMVS78.79 14579.71 13577.71 15885.26 14485.91 16984.54 14569.84 18373.38 14561.25 16970.53 11070.35 12774.43 15485.21 15783.80 16990.95 17188.77 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT79.41 13880.20 12678.49 15485.88 13386.26 16683.95 14971.94 17273.55 14461.94 16170.48 11170.50 12675.23 14585.81 14784.61 16491.99 15890.18 142
Fast-Effi-MVS+-dtu79.95 12880.69 11979.08 14686.36 13089.14 14385.85 12972.28 17172.85 14959.32 17870.43 11268.42 13777.57 13386.14 14286.44 14093.11 14591.39 132
CVMVSNet76.70 16378.46 14474.64 18283.34 16784.48 18181.83 16674.58 16468.88 16751.23 19569.77 11370.05 12867.49 18084.27 16783.81 16889.38 18187.96 158
GBi-Net84.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
test184.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
FMVSNet384.44 9084.64 9084.21 9384.32 15690.13 11889.85 7480.37 11181.17 8675.50 8869.63 11479.69 8179.62 11889.72 9690.52 7295.59 4991.58 130
tpm76.30 17276.05 17276.59 16786.97 12583.01 18783.83 15067.06 19271.83 15163.87 14869.56 11762.88 15573.41 16079.79 18978.59 18884.41 20086.68 167
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11294.31 11193.82 82
tpmrst76.55 16675.99 17377.20 16187.32 12183.05 18682.86 15665.62 19678.61 11067.22 12869.19 11965.71 14375.87 14376.75 19775.33 19784.31 20183.28 183
Fast-Effi-MVS+83.77 9582.98 9884.69 8487.98 11291.87 9988.10 10077.70 14578.10 11273.04 10369.13 12068.51 13686.66 6490.49 8989.85 8794.67 9192.88 96
dps78.02 15275.94 17480.44 13886.06 13286.62 16582.58 15769.98 18175.14 12777.76 8669.08 12159.93 17178.47 12679.47 19077.96 19187.78 18883.40 182
ACMH78.52 1481.86 11280.45 12383.51 10690.51 8991.22 10385.62 13484.23 6570.29 16262.21 15869.04 12264.05 14984.48 7487.57 12088.45 11594.01 11992.54 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testgi71.92 18974.20 18569.27 19384.58 15483.06 18573.40 19674.39 16564.04 18846.17 20168.90 12357.15 18548.89 20284.07 16983.08 17388.18 18779.09 197
GA-MVS79.52 13579.71 13579.30 14585.68 13790.36 11384.55 14478.44 13770.47 16157.87 18368.52 12461.38 16376.21 14189.40 10287.89 11793.04 14689.96 143
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10193.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9094.01 78
ADS-MVSNet74.53 18475.69 17773.17 18781.57 18880.71 19879.27 18263.03 20379.27 10559.94 17667.86 12668.32 13971.08 16877.33 19676.83 19484.12 20379.53 194
thisisatest051579.76 13280.59 12178.80 14984.40 15588.91 14879.48 17976.94 15172.29 15067.33 12767.82 12765.99 14270.80 16988.50 11087.84 11893.86 12692.75 102
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12885.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
TAMVS76.42 16877.16 16075.56 17483.05 17185.55 17480.58 17571.43 17465.40 18561.04 17267.27 12969.22 13467.99 17784.88 16284.78 16189.28 18283.01 184
UniMVSNet_NR-MVSNet81.87 11181.33 11182.50 11385.31 14391.30 10285.70 13184.25 6475.89 12264.21 14466.95 13064.65 14780.22 10587.07 12489.18 10395.27 6794.29 72
MSDG83.87 9381.02 11587.19 7292.17 7189.80 12789.15 8485.72 5580.61 9579.24 7566.66 13168.75 13582.69 8087.95 11687.44 12294.19 11385.92 173
ACMH+79.08 1381.84 11380.06 12883.91 9989.92 9890.62 10886.21 12683.48 8073.88 13965.75 13566.38 13265.30 14584.63 7385.90 14587.25 12593.45 13991.13 134
FMVSNet283.87 9383.73 9584.05 9884.20 15789.95 12089.70 7580.21 11679.17 10674.89 9265.91 13377.49 9379.75 11590.87 8091.00 6095.52 5391.71 124
anonymousdsp77.94 15379.00 13976.71 16679.03 19387.83 15579.58 17872.87 17065.80 18158.86 18265.82 13462.48 15975.99 14286.77 13188.66 11193.92 12295.68 49
thres100view90082.55 10681.01 11784.34 8990.30 9492.27 9589.04 8982.77 8775.14 12769.56 11565.72 13563.13 15179.62 11889.97 9389.26 10094.73 8791.61 129
tfpn200view982.86 10181.46 10884.48 8790.30 9493.09 8289.05 8882.71 8875.14 12769.56 11565.72 13563.13 15180.38 10491.15 7289.51 9594.91 7892.50 113
thres20082.77 10381.25 11284.54 8690.38 9193.05 8389.13 8582.67 9074.40 13369.53 11765.69 13763.03 15480.63 9991.15 7289.42 9794.88 7992.04 119
LTVRE_ROB74.41 1675.78 17874.72 18477.02 16485.88 13389.22 14082.44 16077.17 14850.57 20745.45 20265.44 13852.29 20081.25 9085.50 15187.42 12389.94 17992.62 105
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres40082.68 10481.15 11384.47 8890.52 8792.89 8788.95 9182.71 8874.33 13469.22 12065.31 13962.61 15780.63 9990.96 7989.50 9694.79 8292.45 115
DU-MVS81.20 12080.30 12482.25 11684.98 15090.94 10685.70 13183.58 7675.74 12364.21 14465.30 14059.60 17580.22 10586.89 12789.31 9894.77 8494.29 72
NR-MVSNet80.25 12679.98 13080.56 13685.20 14590.94 10685.65 13383.58 7675.74 12361.36 16865.30 14056.75 18772.38 16388.46 11188.80 11095.16 7093.87 80
thres600view782.53 10781.02 11584.28 9290.61 8693.05 8388.57 9682.67 9074.12 13768.56 12365.09 14262.13 16280.40 10391.15 7289.02 10794.88 7992.59 107
UniMVSNet (Re)81.22 11981.08 11481.39 12585.35 14291.76 10084.93 14082.88 8576.13 12165.02 14164.94 14363.09 15375.17 14787.71 11989.04 10694.97 7694.88 62
TranMVSNet+NR-MVSNet80.52 12379.84 13281.33 12784.92 15290.39 11285.53 13684.22 6674.27 13560.68 17364.93 14459.96 17077.48 13486.75 13289.28 9995.12 7493.29 89
IB-MVS79.09 1282.60 10582.19 10383.07 10891.08 7993.55 7680.90 17381.35 10376.56 11880.87 6664.81 14569.97 12968.87 17485.64 14890.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs479.99 12778.08 14982.22 11783.04 17287.16 16284.95 13978.80 13578.64 10974.53 9364.61 14659.41 17679.45 12084.13 16884.54 16592.53 15188.08 156
CR-MVSNet78.71 14678.86 14078.55 15385.85 13685.15 17782.30 16268.23 18774.71 13065.37 13864.39 14769.59 13277.18 13685.10 16084.87 15992.34 15488.21 154
MS-PatchMatch81.79 11481.44 10982.19 11890.35 9289.29 13988.08 10175.36 16377.60 11469.00 12164.37 14878.87 8777.14 13888.03 11585.70 15293.19 14486.24 170
tpm cat177.78 15575.28 18180.70 13387.14 12485.84 17085.81 13070.40 17877.44 11578.80 7763.72 14964.01 15076.55 14075.60 19975.21 19885.51 19985.12 175
RPMNet77.07 16077.63 15676.42 16885.56 14085.15 17781.37 16765.27 19874.71 13060.29 17463.71 15066.59 14173.64 15782.71 17782.12 17992.38 15388.39 152
pmmvs576.93 16176.33 16877.62 15981.97 18488.40 15381.32 16974.35 16665.42 18461.42 16763.07 15157.95 18273.23 16185.60 14985.35 15693.41 14088.55 151
EU-MVSNet69.98 19272.30 19067.28 19675.67 20379.39 20073.12 19769.94 18263.59 18942.80 20562.93 15256.71 18855.07 19679.13 19378.55 18987.06 19385.82 174
COLMAP_ROBcopyleft76.78 1580.50 12478.49 14382.85 10990.96 8289.65 13386.20 12783.40 8377.15 11666.54 13062.27 15365.62 14477.89 13185.23 15584.70 16292.11 15584.83 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v2v48279.84 13078.07 15081.90 11983.75 16290.21 11787.17 11479.85 12370.65 15865.93 13461.93 15460.07 16980.82 9485.25 15486.71 13393.88 12591.70 127
PatchT76.42 16877.81 15474.80 18078.46 19684.30 18271.82 19965.03 20073.89 13865.37 13861.58 15566.70 14077.18 13685.10 16084.87 15990.94 17288.21 154
WR-MVS76.63 16478.02 15275.02 17884.14 16089.76 12978.34 18680.64 10969.56 16352.32 19161.26 15661.24 16460.66 19184.45 16687.07 12793.99 12092.77 100
v879.90 12978.39 14681.66 12283.97 16189.81 12687.16 11577.40 14771.49 15267.71 12561.24 15762.49 15879.83 11485.48 15286.17 14493.89 12492.02 121
PM-MVS74.17 18673.10 18775.41 17576.07 20182.53 19177.56 18971.69 17371.04 15461.92 16261.23 15847.30 20674.82 15181.78 18279.80 18390.42 17488.05 157
V4279.59 13478.43 14580.94 13182.79 17889.71 13086.66 12276.73 15471.38 15367.42 12661.01 15962.30 16078.39 12785.56 15086.48 13893.65 13592.60 106
PEN-MVS76.02 17476.07 17075.95 17383.17 17087.97 15479.65 17780.07 12166.57 17651.45 19360.94 16055.47 19266.81 18382.72 17686.80 13294.59 9592.03 120
DTE-MVSNet75.14 18175.44 18074.80 18083.18 16987.19 16178.25 18880.11 11866.05 17848.31 19860.88 16154.67 19464.54 18882.57 17886.17 14494.43 10690.53 140
CP-MVSNet76.36 17176.41 16776.32 17082.73 17988.64 14979.39 18079.62 12467.21 17253.70 18760.72 16255.22 19367.91 17983.52 17286.34 14294.55 9893.19 90
TinyColmap76.73 16273.95 18679.96 14185.16 14785.64 17382.34 16178.19 13970.63 15962.06 16060.69 16349.61 20380.81 9585.12 15983.69 17091.22 16982.27 186
v1079.62 13378.19 14881.28 12883.73 16389.69 13187.27 11176.86 15270.50 16065.46 13660.58 16460.47 16780.44 10286.91 12686.63 13693.93 12192.55 110
MDTV_nov1_ep13_2view73.21 18872.91 18873.56 18680.01 19184.28 18378.62 18466.43 19568.64 16859.12 17960.39 16559.69 17469.81 17278.82 19477.43 19387.36 19081.11 192
v114479.38 13977.83 15381.18 12983.62 16490.23 11587.15 11678.35 13869.13 16564.02 14760.20 16659.41 17680.14 10986.78 13086.57 13793.81 12992.53 112
WR-MVS_H75.84 17776.93 16374.57 18382.86 17689.50 13678.34 18679.36 12966.90 17452.51 19060.20 16659.71 17259.73 19283.61 17185.77 15194.65 9292.84 97
v14878.59 14876.84 16480.62 13583.61 16589.16 14283.65 15279.24 13069.38 16469.34 11959.88 16860.41 16875.19 14683.81 17084.63 16392.70 15090.63 138
v14419278.81 14477.22 15980.67 13482.95 17389.79 12886.40 12477.42 14668.26 17163.13 15259.50 16958.13 18180.08 11085.93 14486.08 14694.06 11692.83 98
PS-CasMVS75.90 17675.86 17575.96 17282.59 18088.46 15279.23 18379.56 12666.00 17952.77 18959.48 17054.35 19667.14 18283.37 17386.23 14394.47 10393.10 92
v119278.94 14377.33 15780.82 13283.25 16889.90 12486.91 11977.72 14468.63 16962.61 15659.17 17157.53 18480.62 10186.89 12786.47 13993.79 13092.75 102
TDRefinement79.05 14277.05 16181.39 12588.45 10989.00 14686.92 11882.65 9274.21 13664.41 14359.17 17159.16 17874.52 15385.23 15585.09 15791.37 16587.51 162
FMVSNet575.50 18076.07 17074.83 17976.16 20081.19 19681.34 16870.21 18073.20 14761.59 16658.97 17368.33 13868.50 17585.87 14685.85 15091.18 17079.11 196
FMVSNet181.64 11680.61 12082.84 11082.36 18289.20 14188.67 9379.58 12570.79 15772.63 10658.95 17472.26 12079.34 12190.73 8390.72 6494.47 10391.62 128
v192192078.57 14976.99 16280.41 13982.93 17489.63 13486.38 12577.14 14968.31 17061.80 16458.89 17556.79 18680.19 10886.50 13986.05 14894.02 11892.76 101
pm-mvs178.51 15077.75 15579.40 14484.83 15389.30 13883.55 15379.38 12862.64 19063.68 14958.73 17664.68 14670.78 17089.79 9587.84 11894.17 11491.28 133
v124078.15 15176.53 16580.04 14082.85 17789.48 13785.61 13576.77 15367.05 17361.18 17158.37 17756.16 19079.89 11386.11 14386.08 14693.92 12292.47 114
Baseline_NR-MVSNet79.84 13078.37 14781.55 12484.98 15086.66 16485.06 13883.49 7875.57 12563.31 15158.22 17860.97 16578.00 13086.89 12787.13 12694.47 10393.15 91
Anonymous20240521182.75 10189.58 10092.97 8689.04 8984.13 6778.72 10857.18 17976.64 9783.13 7989.55 9989.92 8593.38 14194.28 75
TransMVSNet (Re)76.57 16575.16 18278.22 15785.60 13987.24 16082.46 15881.23 10559.80 19759.05 18157.07 18059.14 17966.60 18588.09 11486.82 13194.37 10987.95 159
v7n77.22 15976.23 16978.38 15681.89 18589.10 14582.24 16476.36 15565.96 18061.21 17056.56 18155.79 19175.07 14986.55 13686.68 13493.52 13792.95 95
tmp_tt32.73 20843.96 21521.15 21726.71 2148.99 21365.67 18251.39 19456.01 18242.64 20911.76 21256.60 20750.81 20953.55 212
Anonymous2023121184.42 9183.02 9786.05 7788.85 10692.70 8988.92 9283.40 8379.99 9878.31 7955.83 18378.92 8683.33 7889.06 10489.76 9093.50 13894.90 61
test_part183.23 10080.55 12286.35 7588.60 10890.61 10990.78 6481.13 10670.89 15683.01 5355.72 18474.60 10482.19 8587.79 11789.26 10092.39 15295.01 57
MIMVSNet74.69 18375.60 17873.62 18576.02 20285.31 17681.21 17267.43 19071.02 15559.07 18054.48 18564.07 14866.14 18686.52 13886.64 13591.83 16081.17 191
UniMVSNet_ETH3D79.24 14076.47 16682.48 11485.66 13890.97 10586.08 12881.63 10164.48 18668.94 12254.47 18657.65 18378.83 12585.20 15888.91 10993.72 13293.60 86
MDA-MVSNet-bldmvs66.22 19664.49 19968.24 19461.67 20882.11 19570.07 20176.16 15759.14 19947.94 19954.35 18735.82 21367.33 18164.94 20675.68 19686.30 19679.36 195
pmmvs-eth3d74.32 18571.96 19177.08 16377.33 19882.71 18978.41 18576.02 15966.65 17565.98 13354.23 18849.02 20573.14 16282.37 18082.69 17691.61 16286.05 172
test20.0368.31 19470.05 19566.28 19882.41 18180.84 19767.35 20376.11 15858.44 20040.80 20853.77 18954.54 19542.28 20583.07 17481.96 18188.73 18577.76 199
CMPMVSbinary56.49 1773.84 18771.73 19276.31 17185.20 14585.67 17275.80 19273.23 16962.26 19165.40 13753.40 19059.70 17371.77 16680.25 18779.56 18586.45 19581.28 190
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EG-PatchMatch MVS76.40 17075.47 17977.48 16085.86 13590.22 11682.45 15973.96 16859.64 19859.60 17752.75 19162.20 16168.44 17688.23 11387.50 12194.55 9887.78 160
CHOSEN 1792x268882.16 10880.91 11883.61 10291.14 7892.01 9889.55 8079.15 13179.87 9970.29 11152.51 19272.56 11881.39 8988.87 10788.17 11690.15 17792.37 116
tfpnnormal77.46 15874.86 18380.49 13786.34 13188.92 14784.33 14781.26 10461.39 19461.70 16551.99 19353.66 19874.84 15088.63 10887.38 12494.50 10092.08 117
N_pmnet66.85 19566.63 19667.11 19778.73 19474.66 20570.53 20071.07 17566.46 17746.54 20051.68 19451.91 20155.48 19574.68 20072.38 20180.29 20674.65 202
gm-plane-assit70.29 19170.65 19369.88 19285.03 14878.50 20258.41 20965.47 19750.39 20840.88 20749.60 19550.11 20275.14 14891.43 6589.78 8894.32 11084.73 179
HyFIR lowres test81.62 11879.45 13884.14 9691.00 8193.38 7988.27 9878.19 13976.28 12070.18 11348.78 19673.69 11283.52 7787.05 12587.83 12093.68 13489.15 147
DeepMVS_CXcopyleft48.31 21348.03 21126.08 21256.42 20225.77 21347.51 19731.31 21451.30 19948.49 20953.61 21161.52 207
pmmvs674.83 18272.89 18977.09 16282.11 18387.50 15880.88 17476.97 15052.79 20561.91 16346.66 19860.49 16669.28 17386.74 13385.46 15591.39 16490.56 139
gg-mvs-nofinetune75.64 17977.26 15873.76 18487.92 11392.20 9687.32 10964.67 20151.92 20635.35 21046.44 19977.05 9671.97 16492.64 5091.02 5995.34 6289.53 145
new-patchmatchnet63.80 19863.31 20064.37 19976.49 19975.99 20363.73 20670.99 17657.27 20143.08 20445.86 20043.80 20745.13 20473.20 20170.68 20486.80 19476.34 201
FPMVS63.63 19960.08 20467.78 19580.01 19171.50 20772.88 19869.41 18561.82 19353.11 18845.12 20142.11 21050.86 20066.69 20463.84 20580.41 20569.46 205
Anonymous2023120670.80 19070.59 19471.04 19081.60 18782.49 19274.64 19575.87 16064.17 18749.27 19744.85 20253.59 19954.68 19783.07 17482.34 17890.17 17683.65 181
MVS-HIRNet68.83 19366.39 19771.68 18977.58 19775.52 20466.45 20465.05 19962.16 19262.84 15344.76 20356.60 18971.96 16578.04 19575.06 19986.18 19772.56 203
new_pmnet59.28 20161.47 20356.73 20361.66 20968.29 20959.57 20854.91 20660.83 19534.38 21144.66 20443.65 20849.90 20171.66 20271.56 20379.94 20769.67 204
pmmvs361.89 20061.74 20262.06 20164.30 20770.83 20864.22 20552.14 20948.78 20944.47 20341.67 20541.70 21163.03 18976.06 19876.02 19584.18 20277.14 200
ambc61.92 20170.98 20673.54 20663.64 20760.06 19652.23 19238.44 20619.17 21657.12 19382.33 18175.03 20083.21 20484.89 176
MIMVSNet165.00 19766.24 19863.55 20058.41 21180.01 19969.00 20274.03 16755.81 20341.88 20636.81 20749.48 20447.89 20381.32 18382.40 17790.08 17877.88 198
PMVScopyleft50.48 1855.81 20351.93 20560.33 20272.90 20549.34 21148.78 21069.51 18443.49 21054.25 18636.26 20841.04 21239.71 20765.07 20560.70 20676.85 20867.58 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS241.68 20544.74 20738.10 20546.97 21452.32 21040.63 21348.08 21035.51 2117.36 21726.86 20924.64 21516.72 21155.24 20859.03 20768.85 21059.59 208
Gipumacopyleft49.17 20447.05 20651.65 20459.67 21048.39 21241.98 21263.47 20255.64 20433.33 21214.90 21013.78 21741.34 20669.31 20372.30 20270.11 20955.00 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.40 20626.80 20936.78 20651.39 21329.96 21520.20 21554.17 20725.93 21312.75 21514.73 2118.58 21934.10 20927.36 21137.83 21048.07 21343.18 211
MVEpermissive30.17 1930.88 20733.52 20827.80 21023.78 21639.16 21418.69 21746.90 21121.88 21415.39 21414.37 2127.31 22024.41 21041.63 21056.22 20837.64 21554.07 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS30.49 20825.44 21036.39 20751.47 21229.89 21620.17 21654.00 20826.49 21212.02 21613.94 2138.84 21834.37 20825.04 21234.37 21146.29 21439.53 212
testmvs1.03 2091.63 2110.34 2110.09 2180.35 2180.61 2190.16 2141.49 2150.10 2193.15 2140.15 2210.86 2141.32 2131.18 2120.20 2163.76 214
test1230.87 2101.40 2120.25 2120.03 2190.25 2190.35 2200.08 2161.21 2160.05 2202.84 2150.03 2220.89 2130.43 2141.16 2130.13 2173.87 213
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def56.08 185
9.1492.16 16
SR-MVS96.58 2690.99 2292.40 13
our_test_381.81 18683.96 18476.61 190
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 218
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
mPP-MVS97.06 1288.08 45
NP-MVS87.47 53
Patchmtry85.54 17582.30 16268.23 18765.37 138