This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
DPE-MVS97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13596.23 2696.78 2696.15 3798.79 998.55 24
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12499.13 6
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 71
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10894.95 2977.35 13394.05 4994.49 8093.08 9797.15 12194.53 143
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11895.24 5894.97 5897.09 12698.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17098.65 14
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
PMMVS89.88 9491.19 8188.35 11189.73 14391.97 17690.62 12481.92 16090.57 7580.58 10792.16 3586.85 7591.17 8192.31 11791.35 13396.11 15893.11 163
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9795.64 5592.12 4792.46 5779.65 11091.97 3782.68 9892.92 6693.47 10092.77 10497.74 9598.12 45
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11591.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15292.30 10687.69 10190.44 7785.12 8691.68 3985.84 8290.69 8787.34 18186.07 18392.46 19390.37 181
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 74
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14798.14 43
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10592.55 10897.76 9397.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10679.60 20596.19 9394.43 6486.56 11090.63 7280.75 10590.71 4477.78 12993.73 5691.36 13393.45 8798.15 6495.77 122
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 9999.08 9
CANet_DTU90.74 8592.93 5888.19 11394.36 7796.61 8294.34 6984.66 12790.66 7168.75 16290.41 4686.89 7489.78 9395.46 5694.87 5997.25 11695.62 125
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
CHOSEN 280x42090.77 8492.14 6989.17 10493.86 9292.81 15693.16 9780.22 17390.21 8184.67 8989.89 4891.38 5990.57 8994.94 6392.11 11792.52 19293.65 156
EPNet_dtu88.32 11090.61 8685.64 14096.79 5592.27 16892.03 11590.31 6489.05 9765.44 18389.43 4985.90 8174.22 19292.76 10892.09 11895.02 18192.76 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10694.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11195.75 5293.95 7598.12 6896.37 105
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 95
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10096.15 114
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9798.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 9998.30 4995.58 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 119
UGNet91.52 7493.41 5289.32 10294.13 8097.15 7091.83 11889.01 7890.62 7385.86 7486.83 5991.73 5677.40 18394.68 7394.43 6497.71 9798.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11487.63 10490.74 6981.51 9786.81 6082.48 9989.23 10394.81 7093.03 10197.90 8697.33 77
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11787.63 10490.61 7481.42 9886.76 6182.26 10389.23 10394.86 6893.03 10197.90 8697.36 75
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 69
baseline91.19 7791.89 7390.38 8992.76 10995.04 10493.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10192.00 12492.62 10796.46 15296.99 87
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 93
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11797.44 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 10987.90 9590.24 8083.63 9086.14 6790.52 6790.76 8694.82 6994.38 6598.18 6397.98 49
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 9990.94 12188.67 8389.80 8986.95 6485.90 6972.51 14492.46 6993.56 9792.18 11496.93 13992.89 164
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10795.00 139
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9196.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9196.39 3995.26 5398.34 4397.81 59
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net90.81 8292.58 6188.74 10894.87 7597.44 6392.61 10288.22 8882.35 15278.93 11385.20 7595.61 3879.56 17896.52 3496.57 2398.23 5894.37 146
MDTV_nov1_ep1386.64 12487.50 12285.65 13990.73 13593.69 12789.96 13978.03 18289.48 9476.85 12084.92 7682.42 10186.14 13786.85 18586.15 18292.17 19488.97 189
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12591.98 12297.78 9297.51 70
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 10984.49 7890.63 6487.49 12297.07 1996.96 1598.07 7397.88 58
baseline288.97 10589.50 9688.36 11091.14 12995.30 10090.13 13585.17 12487.24 11080.80 10484.46 7978.44 12385.60 14093.54 9891.87 12397.31 11495.66 124
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10292.11 11388.85 7987.64 10883.38 9284.36 8078.41 12489.53 9594.69 7293.15 9698.15 6497.92 54
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10393.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10597.62 10695.50 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13393.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10793.62 8097.02 13098.05 48
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8497.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11793.73 9596.94 7892.17 11187.91 9488.77 9976.12 12383.68 8490.80 6079.49 17996.34 4196.35 2898.21 6096.46 102
diffmvs91.37 7591.09 8391.70 7592.71 11196.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 10997.23 80
SCA86.25 12587.52 12184.77 14991.59 12293.90 12089.11 15473.25 19990.38 7872.84 13583.26 8683.79 9088.49 11586.07 18885.56 18693.33 18589.67 186
test-LLR86.88 12088.28 10585.24 14491.22 12792.07 17287.41 17083.62 14084.58 13169.33 15883.00 8782.79 9584.24 15192.26 11889.81 16595.64 16893.44 157
TESTMET0.1,186.11 13088.28 10583.59 16587.80 16492.07 17287.41 17077.12 18484.58 13169.33 15883.00 8782.79 9584.24 15192.26 11889.81 16595.64 16893.44 157
baseline190.81 8290.29 8891.42 8093.67 9695.86 9893.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9495.05 6094.79 6198.80 793.82 154
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
testgi81.94 18184.09 15279.43 19189.53 14690.83 19082.49 19381.75 16380.59 15959.46 19982.82 9165.75 17567.97 19890.10 15689.52 17095.39 17489.03 187
test0.0.03 185.58 13687.69 11783.11 17191.22 12792.54 16385.60 18683.62 14085.66 12567.84 16982.79 9279.70 11673.51 19691.15 13890.79 13896.88 14391.23 174
PatchmatchNetpermissive85.70 13486.65 12684.60 15291.79 11993.40 13489.27 15073.62 19490.19 8272.63 13782.74 9381.93 10687.64 11984.99 19184.29 19392.64 19189.00 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Vis-MVSNetpermissive89.36 10291.49 7986.88 12892.10 11797.60 6092.16 11285.89 11484.21 13875.20 12582.58 9487.13 7277.40 18395.90 5095.63 4798.51 2197.36 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter86.09 13188.38 10483.43 16887.89 16392.61 16086.89 17577.11 18584.30 13668.62 16482.57 9582.45 10084.34 15092.40 11690.11 15995.74 16394.21 149
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 14981.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 123
FC-MVSNet-test86.15 12889.10 10082.71 17889.83 14193.18 14487.88 16784.69 12686.54 11762.18 19382.39 9783.31 9274.18 19392.52 11591.86 12497.50 10993.88 153
EPMVS85.77 13386.24 13185.23 14592.76 10993.78 12389.91 14173.60 19590.19 8274.22 12782.18 9878.06 12687.55 12185.61 19085.38 18893.32 18688.48 193
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
Effi-MVS+89.79 9689.83 9589.74 9892.98 10396.45 8993.48 9384.24 13287.62 10976.45 12181.76 10077.56 13293.48 5994.61 7593.59 8197.82 9097.22 82
CostFormer86.78 12286.05 13287.62 12392.15 11593.20 14391.55 12075.83 18788.11 10685.29 8581.76 10076.22 13987.80 11784.45 19385.21 18993.12 18793.42 159
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11281.60 10282.77 9794.39 4494.28 8194.23 6797.14 12394.45 145
Fast-Effi-MVS+-dtu86.25 12587.70 11684.56 15390.37 14093.70 12690.54 12578.14 18083.50 14465.37 18481.59 10375.83 14186.09 13991.70 12891.70 12796.88 14395.84 121
GG-mvs-BLEND62.84 20390.21 8930.91 2110.57 21994.45 11086.99 1740.34 21788.71 1000.98 21981.55 10491.58 570.86 21692.66 11191.43 13295.73 16491.11 175
Effi-MVS+-dtu87.51 11688.13 10986.77 13091.10 13094.90 10590.91 12282.67 15083.47 14571.55 14181.11 10577.04 13489.41 9792.65 11291.68 12995.00 18296.09 116
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 80
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10296.57 100
USDC86.73 12385.96 13687.63 12291.64 12193.97 11992.76 10184.58 12988.19 10470.67 14980.10 10867.86 16589.43 9691.81 12689.77 16796.69 14990.05 184
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10889.54 7488.53 10387.47 5879.82 10990.53 6585.47 14396.31 4295.16 5697.99 8198.56 19
CDS-MVSNet88.34 10988.71 10287.90 11890.70 13794.54 10792.38 10486.02 11380.37 16179.42 11179.30 11083.43 9182.04 16693.39 10294.01 7496.86 14595.93 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
dps85.00 14483.21 16487.08 12690.73 13592.55 16289.34 14975.29 18984.94 12887.01 6279.27 11167.69 16687.27 12584.22 19483.56 19492.83 19090.25 182
ADS-MVSNet84.08 15784.95 14583.05 17491.53 12691.75 17988.16 16470.70 20389.96 8869.51 15778.83 11276.97 13686.29 13484.08 19584.60 19192.13 19688.48 193
SixPastTwentyTwo83.12 17183.44 15882.74 17787.71 16893.11 14882.30 19482.33 15579.24 17064.33 18778.77 11362.75 18884.11 15588.11 17687.89 17895.70 16694.21 149
IterMVS-LS88.60 10688.45 10388.78 10792.02 11892.44 16692.00 11683.57 14286.52 11878.90 11478.61 11481.34 10889.12 10690.68 14693.18 9497.10 12596.35 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH85.51 1387.31 11886.59 12788.14 11493.96 8694.51 10889.00 15787.99 9181.58 15570.15 15278.41 11571.78 14990.60 8891.30 13491.99 12197.17 12096.58 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm83.16 16983.64 15482.60 18090.75 13491.05 18688.49 16273.99 19282.36 15167.08 17578.10 11668.79 15984.17 15385.95 18985.96 18491.09 19993.23 161
GBi-Net90.21 9090.11 9290.32 9188.66 15393.65 12994.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9893.97 8994.16 6998.31 4695.47 129
test190.21 9090.11 9290.32 9188.66 15393.65 12994.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9893.97 8994.16 6998.31 4695.47 129
FMVSNet390.19 9290.06 9490.34 9088.69 15293.85 12194.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10593.29 10494.36 6698.20 6195.40 133
tpmrst83.72 16383.45 15784.03 16192.21 11491.66 18088.74 16073.58 19688.14 10572.67 13677.37 12072.11 14786.34 13382.94 19882.05 19790.63 20289.86 185
IterMVS85.25 14286.49 12883.80 16390.42 13990.77 19290.02 13778.04 18184.10 14066.27 17977.28 12178.41 12483.01 16090.88 14089.72 16995.04 18094.24 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.44 14086.71 12583.97 16290.59 13890.84 18989.73 14578.34 17984.07 14266.40 17877.27 12278.66 12083.06 15991.20 13590.10 16095.72 16594.78 140
thisisatest051585.70 13487.00 12484.19 15888.16 16093.67 12884.20 18984.14 13583.39 14772.91 13476.79 12374.75 14278.82 18192.57 11491.26 13496.94 13696.56 101
MSDG90.42 8888.25 10792.94 6296.67 5694.41 11293.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9092.60 11392.08 11997.44 11291.41 171
CVMVSNet83.83 16185.53 14181.85 18589.60 14490.92 18787.81 16883.21 14680.11 16460.16 19776.47 12578.57 12276.79 18589.76 16090.13 15593.51 18492.75 166
thres100view90089.36 10287.61 11891.39 8193.90 9096.86 8094.35 6889.66 7385.87 12281.15 10076.46 12670.38 15391.17 8194.09 8693.43 8898.13 6796.16 113
tfpn200view989.55 9987.86 11391.53 7893.90 9097.26 6694.31 7189.74 6985.87 12281.15 10076.46 12670.38 15391.76 7794.92 6493.51 8298.28 5296.61 97
ACMH+85.75 1287.19 11986.02 13488.56 10993.42 9894.41 11289.91 14187.66 10383.45 14672.25 13976.42 12871.99 14890.78 8589.86 15990.94 13697.32 11395.11 138
Fast-Effi-MVS+88.56 10887.99 11189.22 10391.56 12495.21 10192.29 10782.69 14986.82 11377.73 11676.24 12973.39 14393.36 6194.22 8493.64 7997.65 10396.43 103
thres20089.49 10087.72 11591.55 7793.95 8797.25 6794.34 6989.74 6985.66 12581.18 9976.12 13070.19 15691.80 7594.92 6493.51 8298.27 5396.40 104
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
GA-MVS85.08 14385.65 14084.42 15589.77 14294.25 11589.26 15184.62 12881.19 15862.25 19275.72 13268.44 16284.14 15493.57 9691.68 12996.49 15094.71 142
thres40089.40 10187.58 12091.53 7894.06 8497.21 6994.19 7589.83 6885.69 12481.08 10275.50 13369.76 15791.80 7594.79 7193.51 8298.20 6196.60 98
TAMVS84.94 14684.95 14584.93 14888.82 14993.18 14488.44 16381.28 16777.16 18173.76 13175.43 13476.57 13882.04 16690.59 14890.79 13895.22 17890.94 176
thres600view789.28 10487.47 12391.39 8194.12 8197.25 6793.94 8089.74 6985.62 12780.63 10675.24 13569.33 15891.66 7994.92 6493.23 9298.27 5396.72 94
LTVRE_ROB81.71 1682.44 17981.84 17783.13 17089.01 14892.99 14988.90 15882.32 15666.26 20654.02 20774.68 13659.62 20388.87 11290.71 14592.02 12095.68 16796.62 96
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IB-MVS85.10 1487.98 11187.97 11287.99 11694.55 7696.86 8084.52 18788.21 8986.48 12088.54 5074.41 13777.74 13074.10 19489.65 16492.85 10398.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11296.61 8296.03 4888.44 8690.25 7985.92 7273.73 13884.89 8691.92 7494.17 8594.07 7397.68 10197.31 78
RPMNet84.82 14785.90 13783.56 16691.10 13092.10 17088.73 16171.11 20284.75 12968.79 16173.56 13977.62 13185.33 14490.08 15789.43 17196.32 15593.77 155
FMVSNet289.61 9889.14 9990.16 9688.66 15393.65 12994.25 7285.44 12188.57 10284.96 8873.53 14083.82 8989.38 9894.23 8394.68 6398.31 4695.47 129
anonymousdsp84.51 15085.85 13982.95 17586.30 19093.51 13285.77 18480.38 17278.25 17663.42 19073.51 14172.20 14684.64 14993.21 10692.16 11697.19 11998.14 43
MS-PatchMatch87.63 11387.61 11887.65 12193.95 8794.09 11792.60 10381.52 16586.64 11576.41 12273.46 14285.94 8085.01 14792.23 12190.00 16296.43 15490.93 177
pmmvs486.00 13284.28 15188.00 11587.80 16492.01 17589.94 14084.91 12586.79 11480.98 10373.41 14366.34 17488.12 11689.31 16788.90 17696.24 15793.20 162
COLMAP_ROBcopyleft84.39 1587.61 11486.03 13389.46 10095.54 6894.48 10991.77 11990.14 6587.16 11175.50 12473.41 14376.86 13787.33 12490.05 15889.76 16896.48 15190.46 180
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet584.47 15384.72 14884.18 15983.30 20088.43 19788.09 16579.42 17684.25 13774.14 12973.15 14578.74 11983.65 15791.19 13691.19 13596.46 15286.07 198
CR-MVSNet85.48 13886.29 13084.53 15491.08 13292.10 17089.18 15273.30 19784.75 12971.08 14673.12 14677.91 12886.27 13591.48 13090.75 14196.27 15693.94 151
tpm cat184.13 15681.99 17686.63 13291.74 12091.50 18390.68 12375.69 18886.12 12185.44 8372.39 14770.72 15185.16 14580.89 20281.56 19891.07 20090.71 178
UniMVSNet_NR-MVSNet86.80 12185.86 13887.89 11988.17 15994.07 11890.15 13388.51 8584.20 13973.45 13272.38 14870.30 15588.95 10990.25 15292.21 11398.12 6897.62 66
pmnet_mix0280.14 18880.21 18980.06 18886.61 18789.66 19480.40 19882.20 15882.29 15361.35 19471.52 14966.67 17276.75 18682.55 19980.18 20293.05 18888.62 190
pmmvs583.37 16782.68 16884.18 15987.13 17993.18 14486.74 17682.08 15976.48 18567.28 17371.26 15062.70 18984.71 14890.77 14290.12 15897.15 12194.24 147
TinyColmap84.04 15882.01 17586.42 13490.87 13391.84 17788.89 15984.07 13682.11 15469.89 15471.08 15160.81 19789.04 10790.52 14989.19 17395.76 16288.50 192
PatchT83.86 16085.51 14281.94 18488.41 15691.56 18278.79 20171.57 20184.08 14171.08 14670.62 15276.13 14086.27 13591.48 13090.75 14195.52 17393.94 151
DU-MVS86.12 12984.81 14787.66 12087.77 16693.78 12390.15 13387.87 9784.40 13373.45 13270.59 15364.82 18388.95 10990.14 15392.33 11097.76 9397.62 66
NR-MVSNet85.46 13984.54 14986.52 13388.33 15893.78 12390.45 12687.87 9784.40 13371.61 14070.59 15362.09 19282.79 16291.75 12791.75 12698.10 7197.44 72
EU-MVSNet78.43 19180.25 18876.30 19683.81 19987.27 20380.99 19679.52 17576.01 18854.12 20670.44 15564.87 18267.40 20086.23 18785.54 18791.95 19791.41 171
UniMVSNet (Re)86.22 12785.46 14387.11 12588.34 15794.42 11189.65 14787.10 10884.39 13574.61 12670.41 15668.10 16385.10 14691.17 13791.79 12597.84 8997.94 52
tmp_tt50.24 20768.55 21146.86 21648.90 21518.28 21486.51 11968.32 16570.19 15765.33 17726.69 21374.37 20566.80 20870.72 213
MDTV_nov1_ep13_2view80.43 18680.94 18679.84 18984.82 19790.87 18884.23 18873.80 19380.28 16364.33 18770.05 15868.77 16079.67 17684.83 19283.50 19592.17 19488.25 195
TranMVSNet+NR-MVSNet85.57 13784.41 15086.92 12787.67 16993.34 13690.31 12988.43 8783.07 14870.11 15369.99 15965.28 17886.96 12789.73 16192.27 11198.06 7597.17 84
PM-MVS80.29 18779.30 19081.45 18781.91 20288.23 19882.61 19279.01 17779.99 16667.15 17469.07 16051.39 20982.92 16187.55 18085.59 18595.08 17993.28 160
MIMVSNet82.97 17384.00 15381.77 18682.23 20192.25 16987.40 17272.73 20081.48 15669.55 15668.79 16172.42 14581.82 16992.23 12192.25 11296.89 14288.61 191
TDRefinement84.97 14583.39 16086.81 12992.97 10594.12 11692.18 10987.77 10082.78 15071.31 14468.43 16268.07 16481.10 17489.70 16389.03 17595.55 17291.62 169
test20.0376.41 19678.49 19373.98 19885.64 19387.50 20075.89 20380.71 17170.84 20151.07 21068.06 16361.40 19554.99 20788.28 17587.20 18095.58 17186.15 197
v2v48284.51 15083.05 16686.20 13587.25 17593.28 14090.22 13185.40 12279.94 16769.78 15567.74 16465.15 18087.57 12089.12 17090.55 14796.97 13295.60 126
PEN-MVS82.49 17881.58 17983.56 16686.93 18292.05 17486.71 17783.84 13876.94 18364.68 18667.24 16560.11 20081.17 17387.78 17890.70 14498.02 7896.21 112
DTE-MVSNet81.76 18381.04 18582.60 18086.63 18691.48 18585.97 18383.70 13976.45 18762.44 19167.16 16659.98 20178.98 18087.15 18289.93 16497.88 8895.12 137
v884.45 15483.30 16385.80 13787.53 17192.95 15090.31 12982.46 15480.46 16071.43 14266.99 16767.16 16886.14 13789.26 16890.22 15496.94 13696.06 117
WR-MVS83.14 17083.38 16182.87 17687.55 17093.29 13986.36 18084.21 13380.05 16566.41 17766.91 16866.92 17075.66 19088.96 17290.56 14697.05 12896.96 88
V4284.48 15283.36 16285.79 13887.14 17893.28 14090.03 13683.98 13780.30 16271.20 14566.90 16967.17 16785.55 14189.35 16590.27 15296.82 14696.27 111
CP-MVSNet83.11 17282.15 17284.23 15787.20 17692.70 15786.42 17983.53 14377.83 17867.67 17066.89 17060.53 19982.47 16389.23 16990.65 14598.08 7297.20 83
WR-MVS_H82.86 17582.66 16983.10 17287.44 17293.33 13785.71 18583.20 14777.36 18068.20 16766.37 17165.23 17976.05 18989.35 16590.13 15597.99 8196.89 91
v1084.18 15583.17 16585.37 14187.34 17392.68 15890.32 12881.33 16679.93 16869.23 16066.33 17265.74 17687.03 12690.84 14190.38 14996.97 13296.29 110
FMVSNet187.33 11786.00 13588.89 10587.13 17992.83 15593.08 10084.46 13181.35 15782.20 9566.33 17277.96 12788.96 10893.97 8994.16 6997.54 10895.38 134
v114484.03 15982.88 16785.37 14187.17 17793.15 14790.18 13283.31 14578.83 17267.85 16865.99 17464.99 18186.79 12990.75 14390.33 15196.90 14196.15 114
MDA-MVSNet-bldmvs73.81 19772.56 20175.28 19772.52 21088.87 19674.95 20582.67 15071.57 19855.02 20465.96 17542.84 21576.11 18870.61 20781.47 19990.38 20486.59 196
DeepMVS_CXcopyleft71.82 21168.37 21048.05 21377.38 17946.88 21265.77 17647.03 21467.48 19964.27 21076.89 21276.72 206
v14883.61 16482.10 17385.37 14187.34 17392.94 15187.48 16985.72 12078.92 17173.87 13065.71 17764.69 18481.78 17087.82 17789.35 17296.01 15995.26 135
PS-CasMVS82.53 17781.54 18083.68 16487.08 18192.54 16386.20 18183.46 14476.46 18665.73 18265.71 17759.41 20481.61 17189.06 17190.55 14798.03 7797.07 86
v14419283.48 16682.23 17184.94 14786.65 18592.84 15389.63 14882.48 15377.87 17767.36 17265.33 17963.50 18686.51 13189.72 16289.99 16397.03 12996.35 106
pm-mvs184.55 14983.46 15685.82 13688.16 16093.39 13589.05 15685.36 12374.03 19472.43 13865.08 18071.11 15082.30 16593.48 9991.70 12797.64 10495.43 132
Anonymous20240521188.00 11093.16 10196.38 9193.58 9089.34 7687.92 10765.04 18183.03 9492.07 7392.67 11093.33 8996.96 13497.63 64
v119283.56 16582.35 17084.98 14686.84 18492.84 15390.01 13882.70 14878.54 17366.48 17664.88 18262.91 18786.91 12890.72 14490.25 15396.94 13696.32 108
Baseline_NR-MVSNet85.28 14183.42 15987.46 12487.77 16690.80 19189.90 14387.69 10183.93 14374.16 12864.72 18366.43 17387.48 12390.14 15390.83 13797.73 9697.11 85
v192192083.30 16882.09 17484.70 15086.59 18892.67 15989.82 14482.23 15778.32 17465.76 18164.64 18462.35 19086.78 13090.34 15190.02 16197.02 13096.31 109
Anonymous2023121189.82 9588.18 10891.74 7492.52 11396.09 9693.38 9489.30 7788.95 9885.90 7364.55 18584.39 8792.41 7192.24 12093.06 9996.93 13997.95 51
v124082.88 17481.66 17884.29 15686.46 18992.52 16589.06 15581.82 16277.16 18165.09 18564.17 18661.50 19486.36 13290.12 15590.13 15596.95 13596.04 118
TransMVSNet (Re)82.67 17680.93 18784.69 15188.71 15191.50 18387.90 16687.15 10771.54 20068.24 16663.69 18764.67 18578.51 18291.65 12990.73 14397.64 10492.73 167
v7n82.25 18081.54 18083.07 17385.55 19492.58 16186.68 17881.10 17076.54 18465.97 18062.91 18860.56 19882.36 16491.07 13990.35 15096.77 14896.80 92
test_part187.53 11584.97 14490.52 8892.11 11693.31 13893.32 9685.79 11679.56 16987.38 6062.89 18978.60 12189.25 10290.65 14792.17 11595.24 17797.62 66
pmmvs-eth3d79.78 19077.58 19582.34 18281.57 20387.46 20182.92 19181.28 16775.33 19271.34 14361.88 19052.41 20881.59 17287.56 17986.90 18195.36 17691.48 170
N_pmnet77.55 19576.68 19878.56 19385.43 19587.30 20278.84 20081.88 16178.30 17560.61 19561.46 19162.15 19174.03 19582.04 20080.69 20190.59 20384.81 202
CHOSEN 1792x268888.57 10787.82 11489.44 10195.46 6996.89 7993.74 8685.87 11589.63 9177.42 11861.38 19283.31 9288.80 11393.44 10193.16 9595.37 17596.95 89
gm-plane-assit77.65 19478.50 19276.66 19587.96 16285.43 20564.70 21174.50 19064.15 20851.26 20961.32 19358.17 20584.11 15595.16 5993.83 7697.45 11191.41 171
EG-PatchMatch MVS81.70 18481.31 18382.15 18388.75 15093.81 12287.14 17378.89 17871.57 19864.12 18961.20 19468.46 16176.73 18791.48 13090.77 14097.28 11591.90 168
tfpnnormal83.80 16281.26 18486.77 13089.60 14493.26 14289.72 14687.60 10672.78 19570.44 15060.53 19561.15 19685.55 14192.72 10991.44 13197.71 9796.92 90
UniMVSNet_ETH3D84.57 14881.40 18288.28 11289.34 14794.38 11490.33 12786.50 11174.74 19377.52 11759.90 19662.04 19388.78 11488.82 17492.65 10697.22 11797.24 79
CMPMVSbinary61.19 1779.86 18977.46 19782.66 17991.54 12591.82 17883.25 19081.57 16470.51 20268.64 16359.89 19766.77 17179.63 17784.00 19684.30 19291.34 19884.89 201
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HyFIR lowres test87.87 11286.42 12989.57 9995.56 6696.99 7692.37 10584.15 13486.64 11577.17 11957.65 19883.97 8891.08 8392.09 12392.44 10997.09 12695.16 136
new_pmnet72.29 20073.25 20071.16 20375.35 20781.38 20773.72 20769.27 20575.97 18949.84 21156.27 19956.12 20769.08 19781.73 20180.86 20089.72 20680.44 205
MVS-HIRNet78.16 19277.57 19678.83 19285.83 19287.76 19976.67 20270.22 20475.82 19067.39 17155.61 20070.52 15281.96 16886.67 18685.06 19090.93 20181.58 204
gg-mvs-nofinetune81.83 18283.58 15579.80 19091.57 12396.54 8593.79 8468.80 20662.71 20943.01 21455.28 20185.06 8583.65 15796.13 4594.86 6097.98 8494.46 144
new-patchmatchnet72.32 19971.09 20273.74 19981.17 20484.86 20672.21 20877.48 18368.32 20454.89 20555.10 20249.31 21263.68 20479.30 20376.46 20593.03 18984.32 203
pmmvs371.13 20171.06 20371.21 20273.54 20980.19 20871.69 20964.86 20862.04 21052.10 20854.92 20348.00 21375.03 19183.75 19783.24 19690.04 20585.27 199
Anonymous2023120678.09 19378.11 19478.07 19485.19 19689.17 19580.99 19681.24 16975.46 19158.25 20154.78 20459.90 20266.73 20188.94 17388.26 17796.01 15990.25 182
pmmvs680.90 18578.77 19183.38 16985.84 19191.61 18186.01 18282.54 15264.17 20770.43 15154.14 20567.06 16980.73 17590.50 15089.17 17494.74 18394.75 141
FPMVS69.87 20267.10 20573.10 20084.09 19878.35 21079.40 19976.41 18671.92 19657.71 20254.06 20650.04 21056.72 20571.19 20668.70 20784.25 20875.43 207
ambc67.96 20473.69 20879.79 20973.82 20671.61 19759.80 19846.00 20720.79 21766.15 20286.92 18480.11 20389.13 20790.50 179
MIMVSNet173.19 19873.70 19972.60 20165.42 21386.69 20475.56 20479.65 17467.87 20555.30 20345.24 20856.41 20663.79 20386.98 18387.66 17995.85 16185.04 200
PMVScopyleft56.77 1861.27 20458.64 20664.35 20475.66 20654.60 21453.62 21374.23 19153.69 21158.37 20044.27 20949.38 21144.16 21069.51 20865.35 20980.07 21073.66 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS253.68 20655.72 20851.30 20658.84 21467.02 21254.23 21260.97 21147.50 21219.42 21634.81 21031.97 21630.88 21265.84 20969.99 20683.47 20972.92 209
Gipumacopyleft58.52 20556.17 20761.27 20567.14 21258.06 21352.16 21468.40 20769.00 20345.02 21322.79 21120.57 21855.11 20676.27 20479.33 20479.80 21167.16 210
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN40.00 20735.74 21044.98 20857.69 21639.15 21828.05 21662.70 20935.52 21417.78 21720.90 21214.36 22044.47 20935.89 21247.86 21159.15 21456.47 212
MVEpermissive39.81 1939.52 20841.58 20937.11 21033.93 21749.06 21526.45 21854.22 21229.46 21524.15 21520.77 21310.60 22134.42 21151.12 21165.27 21049.49 21664.81 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS39.04 20934.32 21144.54 20958.25 21539.35 21727.61 21762.55 21035.99 21316.40 21820.04 21414.77 21944.80 20833.12 21344.10 21257.61 21552.89 213
testmvs4.35 2106.54 2121.79 2120.60 2181.82 2193.06 2200.95 2157.22 2160.88 22012.38 2151.25 2223.87 2156.09 2145.58 2131.40 21711.42 215
test1233.48 2115.31 2131.34 2130.20 2201.52 2202.17 2210.58 2166.13 2170.31 2219.85 2160.31 2233.90 2142.65 2155.28 2140.87 21811.46 214
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def60.19 196
9.1497.28 23
SR-MVS98.93 1996.00 1797.75 14
our_test_386.93 18289.77 19381.61 195
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
Patchmatch-RL test18.47 219
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65
Patchmtry92.39 16789.18 15273.30 19771.08 146