This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
ETV-MVS93.80 5094.57 4292.91 6493.98 8497.50 6093.62 9088.70 8291.95 6087.57 5790.21 4790.79 6294.56 4297.20 1696.35 2999.02 197.98 51
DPE-MVScopyleft97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2698.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2496.17 3798.94 598.55 25
CS-MVS94.03 4894.83 3993.09 6193.25 9897.39 6395.10 5987.26 10691.48 6788.41 5189.96 4893.41 4895.72 3197.06 2196.55 2498.81 698.00 50
CS-MVS-test93.31 5494.43 4492.01 7292.93 10797.30 6594.24 7585.81 11692.49 5684.71 8988.25 5691.18 6095.59 3397.14 1995.98 4498.81 698.68 13
baseline190.81 8390.29 8991.42 8193.67 9595.86 10093.94 8189.69 7289.29 9682.85 9582.91 9080.30 11489.60 9795.05 6194.79 6298.80 893.82 157
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2296.82 1898.80 898.56 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj95.62 3194.35 4797.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13796.23 2696.78 2896.15 3898.79 1098.55 25
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2896.15 3898.79 1098.55 25
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1299.26 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1399.25 2
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8298.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3295.96 4995.75 4798.68 1498.63 16
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1498.97 10
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5597.12 797.17 2493.90 5496.46 3796.93 1698.64 1698.10 48
3Dnovator90.28 794.70 4394.34 4895.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9193.10 5094.61 4196.24 4597.08 1298.63 1798.16 42
MVS_030494.30 4694.68 4193.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6993.81 4792.64 7096.89 2696.54 2598.61 1898.24 38
EIA-MVS92.72 5992.96 5892.44 6793.86 9197.76 5393.13 9988.65 8489.78 9186.68 6586.69 6387.57 7293.74 5696.07 4895.32 5298.58 1997.53 71
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 2098.50 28
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2198.26 37
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2298.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Vis-MVSNetpermissive89.36 10391.49 8086.88 13192.10 11997.60 5992.16 11585.89 11484.21 14175.20 12882.58 9587.13 7377.40 18695.90 5195.63 4898.51 2297.36 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs91.72 7391.16 8392.38 6993.16 10197.15 7193.95 7989.49 7591.58 6686.03 6980.75 10780.95 11193.16 6495.25 5895.22 5698.50 2497.23 82
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3595.51 5694.16 7098.50 2498.22 39
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2698.12 46
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5293.00 3296.06 3295.85 2896.65 3196.35 2998.47 2798.48 29
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 3096.01 4398.47 2798.56 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS95.68 6398.66 1394.96 6188.03 5296.06 3298.46 29
X-MVStestdata95.68 6398.66 1394.96 6188.03 5296.06 3298.46 29
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3496.34 3298.46 2998.42 33
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3299.23 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4198.44 3398.46 32
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3296.33 3398.44 3398.56 20
DeepC-MVS92.10 395.22 3594.77 4095.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7491.85 5495.82 2996.88 2797.10 1198.44 3398.63 16
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9492.51 3494.82 4293.53 5996.08 4796.30 3498.42 3697.94 54
DELS-MVS93.71 5193.47 5294.00 4596.82 5498.39 3596.80 3991.07 5889.51 9489.94 4183.80 8489.29 7190.95 8797.32 1297.65 298.42 3698.32 36
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM94.13 4794.33 4993.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7493.87 4594.17 4995.71 5495.90 4598.40 3898.42 33
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 6091.19 5694.18 4285.97 7095.38 2692.56 5293.61 5896.61 3396.25 3598.40 3897.92 56
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2596.58 2298.39 4099.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3796.02 4298.38 4198.19 41
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3995.77 4698.35 4298.56 20
3Dnovator+90.56 595.06 3794.56 4395.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 10094.71 4395.43 3696.48 3696.88 1798.35 4298.63 16
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6694.46 4492.99 6697.02 2396.68 1998.34 4498.20 40
PVSNet_BlendedMVS92.80 5792.44 6593.23 5596.02 6197.83 5193.74 8790.58 6191.86 6190.69 3785.87 7282.04 10590.01 9496.39 4095.26 5498.34 4497.81 61
PVSNet_Blended92.80 5792.44 6593.23 5596.02 6197.83 5193.74 8790.58 6191.86 6190.69 3785.87 7282.04 10590.01 9496.39 4095.26 5498.34 4497.81 61
GBi-Net90.21 9190.11 9390.32 9288.66 15693.65 13294.25 7285.78 11890.03 8685.56 7977.38 11886.13 7889.38 10193.97 9194.16 7098.31 4795.47 132
test190.21 9190.11 9390.32 9288.66 15693.65 13294.25 7285.78 11890.03 8685.56 7977.38 11886.13 7889.38 10193.97 9194.16 7098.31 4795.47 132
FMVSNet289.61 9989.14 10090.16 9788.66 15693.65 13294.25 7285.44 12288.57 10384.96 8873.53 14383.82 9089.38 10194.23 8494.68 6498.31 4795.47 132
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 5098.61 19
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3598.30 5098.68 13
TAPA-MVS90.35 693.69 5293.52 5193.90 4896.89 5397.62 5896.15 4591.67 5294.94 3385.97 7087.72 5891.96 5394.40 4493.76 9593.06 10298.30 5095.58 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tfpn200view989.55 10087.86 11691.53 7993.90 8997.26 6794.31 7189.74 6985.87 12581.15 10276.46 12770.38 15691.76 7994.92 6593.51 8498.28 5396.61 99
canonicalmvs93.08 5593.09 5593.07 6294.24 7897.86 4995.45 5787.86 9894.00 4487.47 5888.32 5582.37 10395.13 3893.96 9496.41 2798.27 5498.73 12
thres600view789.28 10687.47 12691.39 8294.12 8097.25 6893.94 8189.74 6985.62 13080.63 10875.24 13769.33 16191.66 8194.92 6593.23 9498.27 5496.72 96
thres20089.49 10187.72 11891.55 7893.95 8697.25 6894.34 6989.74 6985.66 12881.18 10176.12 13270.19 15991.80 7794.92 6593.51 8498.27 5496.40 107
OpenMVScopyleft88.18 1192.51 6191.61 7893.55 5397.74 3998.02 4595.66 5490.46 6389.14 9786.50 6775.80 13390.38 6992.69 6994.99 6295.30 5398.27 5497.63 65
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5295.96 3596.81 1395.57 5597.33 598.24 5898.47 30
UA-Net90.81 8392.58 6288.74 11194.87 7597.44 6292.61 10488.22 8882.35 15578.93 11585.20 7695.61 3879.56 18196.52 3596.57 2398.23 5994.37 149
CLD-MVS92.50 6291.96 7393.13 5893.93 8896.24 9395.69 5388.77 8192.92 5089.01 4588.19 5781.74 10893.13 6593.63 9693.08 10098.23 5997.91 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Vis-MVSNet (Re-imp)90.54 8892.76 6087.94 12093.73 9496.94 7992.17 11487.91 9388.77 10076.12 12683.68 8590.80 6179.49 18296.34 4296.35 2998.21 6196.46 104
thres40089.40 10287.58 12391.53 7994.06 8397.21 7094.19 7689.83 6885.69 12781.08 10475.50 13569.76 16091.80 7794.79 7293.51 8498.20 6296.60 100
FMVSNet390.19 9390.06 9590.34 9188.69 15593.85 12494.58 6485.78 11890.03 8685.56 7977.38 11886.13 7889.22 10893.29 10794.36 6798.20 6295.40 136
EPP-MVSNet92.13 6593.06 5691.05 8793.66 9697.30 6592.18 11287.90 9490.24 8183.63 9186.14 6890.52 6890.76 8994.82 7094.38 6698.18 6497.98 51
ET-MVSNet_ETH3D89.93 9490.84 8688.87 10979.60 20896.19 9494.43 6586.56 11090.63 7380.75 10790.71 4477.78 13193.73 5791.36 13693.45 8998.15 6595.77 125
FC-MVSNet-train90.55 8790.19 9190.97 8893.78 9395.16 10592.11 11688.85 7987.64 10983.38 9384.36 8178.41 12689.53 9894.69 7393.15 9998.15 6597.92 56
abl_694.78 3897.46 4397.99 4695.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4898.14 6797.39 76
thres100view90089.36 10387.61 12191.39 8293.90 8996.86 8194.35 6889.66 7385.87 12581.15 10276.46 12770.38 15691.17 8494.09 8893.43 9098.13 6896.16 116
UniMVSNet_NR-MVSNet86.80 12485.86 14187.89 12288.17 16294.07 12190.15 13688.51 8584.20 14273.45 13572.38 15170.30 15888.95 11290.25 15592.21 11698.12 6997.62 67
MVSTER91.73 7291.61 7891.86 7493.18 10094.56 10994.37 6787.90 9490.16 8588.69 4989.23 5181.28 11088.92 11495.75 5393.95 7698.12 6996.37 108
LGP-MVS_train91.83 7092.04 7291.58 7795.46 6996.18 9595.97 5089.85 6790.45 7777.76 11791.92 3880.07 11692.34 7494.27 8393.47 8898.11 7197.90 59
NR-MVSNet85.46 14284.54 15286.52 13688.33 16193.78 12690.45 12987.87 9684.40 13671.61 14370.59 15662.09 19582.79 16591.75 13091.75 12998.10 7297.44 74
CP-MVSNet83.11 17582.15 17584.23 16087.20 17992.70 16086.42 18283.53 14577.83 18167.67 17366.89 17360.53 20382.47 16689.23 17290.65 14898.08 7397.20 85
IS_MVSNet91.87 6993.35 5490.14 9894.09 8197.73 5593.09 10088.12 9088.71 10179.98 11184.49 7990.63 6587.49 12597.07 2096.96 1598.07 7497.88 60
AdaColmapbinary95.02 3893.71 5096.54 2398.51 2797.76 5396.69 4095.94 2093.72 4693.50 1789.01 5390.53 6696.49 2194.51 8093.76 7998.07 7496.69 97
TranMVSNet+NR-MVSNet85.57 14084.41 15386.92 13087.67 17293.34 13990.31 13288.43 8783.07 15170.11 15669.99 16265.28 18186.96 13089.73 16492.27 11498.06 7697.17 86
IB-MVS85.10 1487.98 11487.97 11587.99 11994.55 7696.86 8184.52 19088.21 8986.48 12388.54 5074.41 14077.74 13274.10 19789.65 16792.85 10698.06 7697.80 63
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PS-CasMVS82.53 18081.54 18383.68 16787.08 18492.54 16686.20 18483.46 14676.46 18965.73 18565.71 18059.41 20881.61 17489.06 17490.55 15098.03 7897.07 88
PEN-MVS82.49 18181.58 18283.56 16986.93 18592.05 17786.71 18083.84 13976.94 18664.68 18967.24 16860.11 20481.17 17687.78 18190.70 14798.02 7996.21 115
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4498.14 1895.40 3293.90 4587.72 5696.26 1798.10 995.75 3096.25 4495.45 5198.01 8098.47 30
OPM-MVS91.08 7989.34 9893.11 6096.18 6096.13 9696.39 4392.39 4482.97 15281.74 9782.55 9780.20 11593.97 5394.62 7593.23 9498.00 8195.73 126
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6197.76 2695.52 2594.88 3588.92 4687.25 5996.44 3094.41 4395.78 5296.11 4097.99 8295.95 122
WR-MVS_H82.86 17882.66 17283.10 17587.44 17593.33 14085.71 18883.20 14977.36 18368.20 17066.37 17465.23 18276.05 19289.35 16890.13 15897.99 8296.89 93
PVSNet_Blended_VisFu91.92 6892.39 6791.36 8595.45 7197.85 5092.25 11189.54 7488.53 10487.47 5879.82 11090.53 6685.47 14696.31 4395.16 5797.99 8298.56 20
gg-mvs-nofinetune81.83 18583.58 15879.80 19391.57 12596.54 8693.79 8568.80 20962.71 21343.01 21855.28 20485.06 8683.65 16096.13 4694.86 6197.98 8594.46 147
MVS_Test91.81 7192.19 6991.37 8493.24 9996.95 7894.43 6586.25 11291.45 6883.45 9286.31 6585.15 8592.93 6793.99 9094.71 6397.92 8696.77 95
thisisatest053091.04 8191.74 7590.21 9492.93 10797.00 7692.06 11787.63 10390.74 7081.51 9886.81 6182.48 10089.23 10694.81 7193.03 10497.90 8797.33 79
tttt051791.01 8291.71 7690.19 9692.98 10397.07 7591.96 12087.63 10390.61 7581.42 9986.76 6282.26 10489.23 10694.86 6993.03 10497.90 8797.36 77
DTE-MVSNet81.76 18681.04 18882.60 18386.63 18991.48 18885.97 18683.70 14176.45 19062.44 19467.16 16959.98 20578.98 18387.15 18589.93 16797.88 8995.12 140
UniMVSNet (Re)86.22 13085.46 14687.11 12888.34 16094.42 11489.65 15087.10 10884.39 13874.61 12970.41 15968.10 16685.10 14991.17 14091.79 12897.84 9097.94 54
Effi-MVS+89.79 9789.83 9689.74 10092.98 10396.45 9093.48 9484.24 13387.62 11076.45 12481.76 10177.56 13493.48 6094.61 7693.59 8397.82 9197.22 84
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5794.88 6391.16 5795.24 2888.74 4896.03 2191.52 5894.33 4795.96 4995.01 5897.79 9297.49 73
GeoE89.29 10588.68 10489.99 9992.75 11296.03 9893.07 10283.79 14086.98 11481.34 10074.72 13878.92 12091.22 8393.31 10693.21 9697.78 9397.60 70
PCF-MVS90.19 892.98 5692.07 7194.04 4496.39 5897.87 4896.03 4895.47 3087.16 11285.09 8784.81 7893.21 4993.46 6191.98 12891.98 12597.78 9397.51 72
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DU-MVS86.12 13284.81 15087.66 12387.77 16993.78 12690.15 13687.87 9684.40 13673.45 13570.59 15664.82 18688.95 11290.14 15692.33 11397.76 9597.62 67
ACMP89.13 992.03 6691.70 7792.41 6894.92 7496.44 9193.95 7989.96 6691.81 6385.48 8290.97 4379.12 11992.42 7293.28 10892.55 11197.76 9597.74 64
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-MVS92.39 6392.49 6492.29 7095.65 6595.94 9995.64 5592.12 4792.46 5879.65 11291.97 3782.68 9992.92 6893.47 10292.77 10797.74 9798.12 46
Baseline_NR-MVSNet85.28 14483.42 16287.46 12787.77 16990.80 19489.90 14687.69 10083.93 14674.16 13164.72 18666.43 17687.48 12690.14 15690.83 14097.73 9897.11 87
tfpnnormal83.80 16581.26 18786.77 13389.60 14793.26 14589.72 14987.60 10572.78 19970.44 15360.53 19861.15 20085.55 14492.72 11291.44 13497.71 9996.92 92
UGNet91.52 7593.41 5389.32 10494.13 7997.15 7191.83 12189.01 7890.62 7485.86 7486.83 6091.73 5677.40 18694.68 7494.43 6597.71 9998.40 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3794.60 7795.57 4997.70 10199.08 9
OMC-MVS94.49 4494.36 4694.64 4197.17 4997.73 5595.49 5692.25 4596.18 1490.34 4088.51 5492.88 5194.90 4094.92 6594.17 6997.69 10296.15 117
DI_MVS_plusplus_trai91.05 8090.15 9292.11 7192.67 11496.61 8396.03 4888.44 8690.25 8085.92 7273.73 14184.89 8791.92 7694.17 8794.07 7497.68 10397.31 80
CNLPA93.69 5292.50 6395.06 3797.11 5097.36 6493.88 8393.30 3995.64 2393.44 1980.32 10890.73 6494.99 3993.58 9793.33 9197.67 10496.57 102
Fast-Effi-MVS+88.56 11087.99 11389.22 10591.56 12695.21 10392.29 10982.69 15186.82 11577.73 11876.24 13073.39 14593.36 6294.22 8593.64 8097.65 10596.43 105
DROMVSNet88.56 11087.99 11389.22 10591.56 12695.21 10392.29 10982.69 15186.82 11577.73 11876.24 13073.39 14593.36 6294.22 8593.64 8097.65 10596.43 105
pm-mvs184.55 15283.46 15985.82 13988.16 16393.39 13889.05 15985.36 12474.03 19872.43 14165.08 18371.11 15382.30 16893.48 10191.70 13097.64 10795.43 135
TransMVSNet (Re)82.67 17980.93 19084.69 15488.71 15491.50 18687.90 16987.15 10771.54 20468.24 16963.69 19064.67 18878.51 18591.65 13290.73 14697.64 10792.73 170
ACMM88.76 1091.70 7490.43 8893.19 5795.56 6695.14 10693.35 9691.48 5492.26 5987.12 6184.02 8279.34 11893.99 5194.07 8992.68 10897.62 10995.50 131
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft90.69 494.32 4592.99 5795.87 2997.91 3496.49 8795.95 5194.12 3694.94 3394.09 1385.90 7090.77 6395.58 3494.52 7993.32 9397.55 11095.00 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FMVSNet187.33 12086.00 13888.89 10887.13 18292.83 15893.08 10184.46 13281.35 16082.20 9666.33 17577.96 12988.96 11193.97 9194.16 7097.54 11195.38 137
FC-MVSNet-test86.15 13189.10 10182.71 18189.83 14493.18 14787.88 17084.69 12786.54 12062.18 19682.39 9883.31 9374.18 19692.52 11891.86 12797.50 11293.88 156
diffmvs91.37 7691.09 8491.70 7692.71 11396.47 8894.03 7788.78 8092.74 5485.43 8483.63 8680.37 11391.76 7993.39 10493.78 7897.50 11297.23 82
gm-plane-assit77.65 19778.50 19576.66 19887.96 16585.43 20864.70 21474.50 19364.15 21251.26 21361.32 19658.17 20984.11 15895.16 6093.83 7797.45 11491.41 174
MSDG90.42 8988.25 10992.94 6396.67 5694.41 11593.96 7892.91 4289.59 9386.26 6876.74 12580.92 11290.43 9392.60 11692.08 12297.44 11591.41 174
ACMH+85.75 1287.19 12286.02 13788.56 11293.42 9794.41 11589.91 14487.66 10283.45 14972.25 14276.42 12971.99 15190.78 8889.86 16290.94 13997.32 11695.11 141
baseline288.97 10789.50 9788.36 11391.14 13295.30 10290.13 13885.17 12587.24 11180.80 10684.46 8078.44 12585.60 14393.54 10091.87 12697.31 11795.66 127
EG-PatchMatch MVS81.70 18781.31 18682.15 18688.75 15393.81 12587.14 17678.89 18171.57 20264.12 19261.20 19768.46 16476.73 19091.48 13390.77 14397.28 11891.90 171
CANet_DTU90.74 8692.93 5988.19 11694.36 7796.61 8394.34 6984.66 12890.66 7268.75 16590.41 4686.89 7589.78 9695.46 5794.87 6097.25 11995.62 128
UniMVSNet_ETH3D84.57 15181.40 18588.28 11589.34 15094.38 11790.33 13086.50 11174.74 19777.52 12059.90 19962.04 19688.78 11788.82 17792.65 10997.22 12097.24 81
MAR-MVS92.71 6092.63 6192.79 6597.70 4097.15 7193.75 8687.98 9290.71 7185.76 7586.28 6786.38 7794.35 4694.95 6395.49 5097.22 12097.44 74
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
anonymousdsp84.51 15385.85 14282.95 17886.30 19393.51 13585.77 18780.38 17578.25 17963.42 19373.51 14472.20 14984.64 15293.21 10992.16 11997.19 12298.14 44
ACMH85.51 1387.31 12186.59 13088.14 11793.96 8594.51 11189.00 16087.99 9181.58 15870.15 15578.41 11671.78 15290.60 9191.30 13791.99 12497.17 12396.58 101
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs583.37 17082.68 17184.18 16287.13 18293.18 14786.74 17982.08 16276.48 18867.28 17671.26 15362.70 19284.71 15190.77 14590.12 16197.15 12494.24 150
TSAR-MVS + COLMAP92.39 6392.31 6892.47 6695.35 7396.46 8996.13 4692.04 4895.33 2780.11 11094.95 2977.35 13594.05 5094.49 8193.08 10097.15 12494.53 146
LS3D91.97 6790.98 8593.12 5997.03 5297.09 7495.33 5895.59 2392.47 5779.26 11481.60 10382.77 9894.39 4594.28 8294.23 6897.14 12694.45 148
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5197.19 1896.37 2897.12 12799.13 6
IterMVS-LS88.60 10888.45 10588.78 11092.02 12092.44 16992.00 11983.57 14486.52 12178.90 11678.61 11581.34 10989.12 10990.68 14993.18 9797.10 12896.35 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet93.92 4994.40 4593.36 5497.89 3596.55 8596.08 4792.14 4691.65 6489.16 4494.07 3090.17 7087.78 12195.24 5994.97 5997.09 12998.15 43
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test87.87 11586.42 13289.57 10195.56 6696.99 7792.37 10784.15 13586.64 11877.17 12257.65 20183.97 8991.08 8692.09 12692.44 11297.09 12995.16 139
WR-MVS83.14 17383.38 16482.87 17987.55 17393.29 14286.36 18384.21 13480.05 16866.41 18066.91 17166.92 17375.66 19388.96 17590.56 14997.05 13196.96 90
v14419283.48 16982.23 17484.94 15086.65 18892.84 15689.63 15182.48 15677.87 18067.36 17565.33 18263.50 18986.51 13489.72 16589.99 16697.03 13296.35 109
DCV-MVSNet91.24 7791.26 8191.22 8692.84 10993.44 13693.82 8486.75 10991.33 6985.61 7884.00 8385.46 8491.27 8292.91 11093.62 8297.02 13398.05 49
v192192083.30 17182.09 17784.70 15386.59 19192.67 16289.82 14782.23 16078.32 17765.76 18464.64 18762.35 19386.78 13390.34 15490.02 16497.02 13396.31 112
v1084.18 15883.17 16885.37 14487.34 17692.68 16190.32 13181.33 16979.93 17169.23 16366.33 17565.74 17987.03 12990.84 14490.38 15296.97 13596.29 113
v2v48284.51 15383.05 16986.20 13887.25 17893.28 14390.22 13485.40 12379.94 17069.78 15867.74 16765.15 18387.57 12389.12 17390.55 15096.97 13595.60 129
Anonymous20240521188.00 11293.16 10196.38 9293.58 9189.34 7687.92 10865.04 18483.03 9592.07 7592.67 11393.33 9196.96 13797.63 65
v124082.88 17781.66 18184.29 15986.46 19292.52 16889.06 15881.82 16577.16 18465.09 18864.17 18961.50 19886.36 13590.12 15890.13 15896.95 13896.04 121
thisisatest051585.70 13787.00 12784.19 16188.16 16393.67 13184.20 19284.14 13683.39 15072.91 13776.79 12474.75 14478.82 18492.57 11791.26 13796.94 13996.56 103
v119283.56 16882.35 17384.98 14986.84 18792.84 15690.01 14182.70 15078.54 17666.48 17964.88 18562.91 19086.91 13190.72 14790.25 15696.94 13996.32 111
v884.45 15783.30 16685.80 14087.53 17492.95 15390.31 13282.46 15780.46 16371.43 14566.99 17067.16 17186.14 14089.26 17190.22 15796.94 13996.06 120
Anonymous2023121189.82 9688.18 11091.74 7592.52 11596.09 9793.38 9589.30 7788.95 9985.90 7364.55 18884.39 8892.41 7392.24 12393.06 10296.93 14297.95 53
PatchMatch-RL90.30 9088.93 10291.89 7395.41 7295.68 10190.94 12488.67 8389.80 9086.95 6485.90 7072.51 14792.46 7193.56 9992.18 11796.93 14292.89 167
v114484.03 16282.88 17085.37 14487.17 18093.15 15090.18 13583.31 14778.83 17567.85 17165.99 17764.99 18486.79 13290.75 14690.33 15496.90 14496.15 117
MIMVSNet82.97 17684.00 15681.77 18982.23 20492.25 17287.40 17572.73 20381.48 15969.55 15968.79 16472.42 14881.82 17292.23 12492.25 11596.89 14588.61 194
Fast-Effi-MVS+-dtu86.25 12887.70 11984.56 15690.37 14393.70 12990.54 12878.14 18383.50 14765.37 18781.59 10475.83 14386.09 14291.70 13191.70 13096.88 14695.84 124
test0.0.03 185.58 13987.69 12083.11 17491.22 13092.54 16685.60 18983.62 14285.66 12867.84 17282.79 9379.70 11773.51 19991.15 14190.79 14196.88 14691.23 177
CDS-MVSNet88.34 11288.71 10387.90 12190.70 14094.54 11092.38 10686.02 11380.37 16479.42 11379.30 11183.43 9282.04 16993.39 10494.01 7596.86 14895.93 123
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4284.48 15583.36 16585.79 14187.14 18193.28 14390.03 13983.98 13880.30 16571.20 14866.90 17267.17 17085.55 14489.35 16890.27 15596.82 14996.27 114
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4797.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7893.50 8796.81 15098.14 44
v7n82.25 18381.54 18383.07 17685.55 19792.58 16486.68 18181.10 17376.54 18765.97 18362.91 19160.56 20282.36 16791.07 14290.35 15396.77 15196.80 94
USDC86.73 12685.96 13987.63 12591.64 12393.97 12292.76 10384.58 13088.19 10570.67 15280.10 10967.86 16889.43 9991.81 12989.77 17096.69 15290.05 187
GA-MVS85.08 14685.65 14384.42 15889.77 14594.25 11889.26 15484.62 12981.19 16162.25 19575.72 13468.44 16584.14 15793.57 9891.68 13296.49 15394.71 145
COLMAP_ROBcopyleft84.39 1587.61 11786.03 13689.46 10295.54 6894.48 11291.77 12290.14 6587.16 11275.50 12773.41 14676.86 13987.33 12790.05 16189.76 17196.48 15490.46 183
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline91.19 7891.89 7490.38 9092.76 11095.04 10793.55 9284.54 13192.92 5085.71 7686.68 6486.96 7489.28 10492.00 12792.62 11096.46 15596.99 89
FMVSNet584.47 15684.72 15184.18 16283.30 20388.43 20088.09 16879.42 17984.25 14074.14 13273.15 14878.74 12183.65 16091.19 13991.19 13896.46 15586.07 201
MS-PatchMatch87.63 11687.61 12187.65 12493.95 8694.09 12092.60 10581.52 16886.64 11876.41 12573.46 14585.94 8185.01 15092.23 12490.00 16596.43 15790.93 180
RPMNet84.82 15085.90 14083.56 16991.10 13392.10 17388.73 16471.11 20584.75 13268.79 16473.56 14277.62 13385.33 14790.08 16089.43 17496.32 15893.77 158
CR-MVSNet85.48 14186.29 13384.53 15791.08 13592.10 17389.18 15573.30 20084.75 13271.08 14973.12 14977.91 13086.27 13891.48 13390.75 14496.27 15993.94 154
pmmvs486.00 13584.28 15488.00 11887.80 16792.01 17889.94 14384.91 12686.79 11780.98 10573.41 14666.34 17788.12 11989.31 17088.90 17996.24 16093.20 165
PMMVS89.88 9591.19 8288.35 11489.73 14691.97 17990.62 12781.92 16390.57 7680.58 10992.16 3586.85 7691.17 8492.31 12091.35 13696.11 16193.11 166
Anonymous2023120678.09 19678.11 19778.07 19785.19 19989.17 19880.99 19981.24 17275.46 19558.25 20454.78 20759.90 20666.73 20488.94 17688.26 18096.01 16290.25 185
v14883.61 16782.10 17685.37 14487.34 17692.94 15487.48 17285.72 12178.92 17473.87 13365.71 18064.69 18781.78 17387.82 18089.35 17596.01 16295.26 138
MIMVSNet173.19 20173.70 20272.60 20465.42 21686.69 20775.56 20779.65 17767.87 20955.30 20645.24 21256.41 21063.79 20686.98 18687.66 18295.85 16485.04 203
TinyColmap84.04 16182.01 17886.42 13790.87 13691.84 18088.89 16284.07 13782.11 15769.89 15771.08 15460.81 20189.04 11090.52 15289.19 17695.76 16588.50 195
test-mter86.09 13488.38 10683.43 17187.89 16692.61 16386.89 17877.11 18884.30 13968.62 16782.57 9682.45 10184.34 15392.40 11990.11 16295.74 16694.21 152
GG-mvs-BLEND62.84 20690.21 9030.91 2150.57 22394.45 11386.99 1770.34 22188.71 1010.98 22381.55 10591.58 570.86 22092.66 11491.43 13595.73 16791.11 178
IterMVS-SCA-FT85.44 14386.71 12883.97 16590.59 14190.84 19289.73 14878.34 18284.07 14566.40 18177.27 12378.66 12283.06 16291.20 13890.10 16395.72 16894.78 143
SixPastTwentyTwo83.12 17483.44 16182.74 18087.71 17193.11 15182.30 19782.33 15879.24 17364.33 19078.77 11462.75 19184.11 15888.11 17987.89 18195.70 16994.21 152
LTVRE_ROB81.71 1682.44 18281.84 18083.13 17389.01 15192.99 15288.90 16182.32 15966.26 21054.02 21074.68 13959.62 20788.87 11590.71 14892.02 12395.68 17096.62 98
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test-LLR86.88 12388.28 10785.24 14791.22 13092.07 17587.41 17383.62 14284.58 13469.33 16183.00 8882.79 9684.24 15492.26 12189.81 16895.64 17193.44 160
TESTMET0.1,186.11 13388.28 10783.59 16887.80 16792.07 17587.41 17377.12 18784.58 13469.33 16183.00 8882.79 9684.24 15492.26 12189.81 16895.64 17193.44 160
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9394.08 3796.94 389.29 4393.08 3196.77 2793.82 5597.68 897.40 495.59 17398.65 15
test20.0376.41 19978.49 19673.98 20185.64 19687.50 20375.89 20680.71 17470.84 20551.07 21468.06 16661.40 19954.99 21088.28 17887.20 18395.58 17486.15 200
TDRefinement84.97 14883.39 16386.81 13292.97 10594.12 11992.18 11287.77 9982.78 15371.31 14768.43 16568.07 16781.10 17789.70 16689.03 17895.55 17591.62 172
PatchT83.86 16385.51 14581.94 18788.41 15991.56 18578.79 20471.57 20484.08 14471.08 14970.62 15576.13 14286.27 13891.48 13390.75 14495.52 17693.94 154
testgi81.94 18484.09 15579.43 19489.53 14990.83 19382.49 19681.75 16680.59 16259.46 20282.82 9265.75 17867.97 20190.10 15989.52 17395.39 17789.03 190
CHOSEN 1792x268888.57 10987.82 11789.44 10395.46 6996.89 8093.74 8785.87 11589.63 9277.42 12161.38 19583.31 9388.80 11693.44 10393.16 9895.37 17896.95 91
pmmvs-eth3d79.78 19377.58 19882.34 18581.57 20687.46 20482.92 19481.28 17075.33 19671.34 14661.88 19352.41 21281.59 17587.56 18286.90 18495.36 17991.48 173
test_part187.53 11884.97 14790.52 8992.11 11893.31 14193.32 9785.79 11779.56 17287.38 6062.89 19278.60 12389.25 10590.65 15092.17 11895.24 18097.62 67
TAMVS84.94 14984.95 14884.93 15188.82 15293.18 14788.44 16681.28 17077.16 18473.76 13475.43 13676.57 14082.04 16990.59 15190.79 14195.22 18190.94 179
PM-MVS80.29 19079.30 19381.45 19081.91 20588.23 20182.61 19579.01 18079.99 16967.15 17769.07 16351.39 21382.92 16487.55 18385.59 18895.08 18293.28 163
IterMVS85.25 14586.49 13183.80 16690.42 14290.77 19590.02 14078.04 18484.10 14366.27 18277.28 12278.41 12683.01 16390.88 14389.72 17295.04 18394.24 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu88.32 11390.61 8785.64 14396.79 5592.27 17192.03 11890.31 6489.05 9865.44 18689.43 5085.90 8274.22 19592.76 11192.09 12195.02 18492.76 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu87.51 11988.13 11186.77 13391.10 13394.90 10890.91 12582.67 15383.47 14871.55 14481.11 10677.04 13689.41 10092.65 11591.68 13295.00 18596.09 119
pmmvs680.90 18878.77 19483.38 17285.84 19491.61 18486.01 18582.54 15564.17 21170.43 15454.14 20867.06 17280.73 17890.50 15389.17 17794.74 18694.75 144
CVMVSNet83.83 16485.53 14481.85 18889.60 14790.92 19087.81 17183.21 14880.11 16760.16 20076.47 12678.57 12476.79 18889.76 16390.13 15893.51 18792.75 169
SCA86.25 12887.52 12484.77 15291.59 12493.90 12389.11 15773.25 20290.38 7972.84 13883.26 8783.79 9188.49 11886.07 19185.56 18993.33 18889.67 189
EPMVS85.77 13686.24 13485.23 14892.76 11093.78 12689.91 14473.60 19890.19 8374.22 13082.18 9978.06 12887.55 12485.61 19385.38 19193.32 18988.48 196
CostFormer86.78 12586.05 13587.62 12692.15 11793.20 14691.55 12375.83 19088.11 10785.29 8581.76 10176.22 14187.80 12084.45 19685.21 19293.12 19093.42 162
pmnet_mix0280.14 19180.21 19280.06 19186.61 19089.66 19780.40 20182.20 16182.29 15661.35 19771.52 15266.67 17576.75 18982.55 20280.18 20593.05 19188.62 193
new-patchmatchnet72.32 20271.09 20573.74 20281.17 20784.86 20972.21 21177.48 18668.32 20854.89 20855.10 20549.31 21663.68 20779.30 20776.46 20893.03 19284.32 206
dps85.00 14783.21 16787.08 12990.73 13892.55 16589.34 15275.29 19284.94 13187.01 6279.27 11267.69 16987.27 12884.22 19783.56 19792.83 19390.25 185
PatchmatchNetpermissive85.70 13786.65 12984.60 15591.79 12193.40 13789.27 15373.62 19790.19 8372.63 14082.74 9481.93 10787.64 12284.99 19484.29 19692.64 19489.00 191
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 280x42090.77 8592.14 7089.17 10793.86 9192.81 15993.16 9880.22 17690.21 8284.67 9089.89 4991.38 5990.57 9294.94 6492.11 12092.52 19593.65 159
RPSCF89.68 9889.24 9990.20 9592.97 10592.93 15592.30 10887.69 10090.44 7885.12 8691.68 3985.84 8390.69 9087.34 18486.07 18692.46 19690.37 184
MDTV_nov1_ep13_2view80.43 18980.94 18979.84 19284.82 20090.87 19184.23 19173.80 19680.28 16664.33 19070.05 16168.77 16379.67 17984.83 19583.50 19892.17 19788.25 198
MDTV_nov1_ep1386.64 12787.50 12585.65 14290.73 13893.69 13089.96 14278.03 18589.48 9576.85 12384.92 7782.42 10286.14 14086.85 18886.15 18592.17 19788.97 192
ADS-MVSNet84.08 16084.95 14883.05 17791.53 12991.75 18288.16 16770.70 20689.96 8969.51 16078.83 11376.97 13886.29 13784.08 19884.60 19492.13 19988.48 196
EU-MVSNet78.43 19480.25 19176.30 19983.81 20287.27 20680.99 19979.52 17876.01 19154.12 20970.44 15864.87 18567.40 20386.23 19085.54 19091.95 20091.41 174
CMPMVSbinary61.19 1779.86 19277.46 20082.66 18291.54 12891.82 18183.25 19381.57 16770.51 20668.64 16659.89 20066.77 17479.63 18084.00 19984.30 19591.34 20184.89 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpm83.16 17283.64 15782.60 18390.75 13791.05 18988.49 16573.99 19582.36 15467.08 17878.10 11768.79 16284.17 15685.95 19285.96 18791.09 20293.23 164
tpm cat184.13 15981.99 17986.63 13591.74 12291.50 18690.68 12675.69 19186.12 12485.44 8372.39 15070.72 15485.16 14880.89 20581.56 20191.07 20390.71 181
MVS-HIRNet78.16 19577.57 19978.83 19585.83 19587.76 20276.67 20570.22 20775.82 19467.39 17455.61 20370.52 15581.96 17186.67 18985.06 19390.93 20481.58 207
tpmrst83.72 16683.45 16084.03 16492.21 11691.66 18388.74 16373.58 19988.14 10672.67 13977.37 12172.11 15086.34 13682.94 20182.05 20090.63 20589.86 188
N_pmnet77.55 19876.68 20178.56 19685.43 19887.30 20578.84 20381.88 16478.30 17860.61 19861.46 19462.15 19474.03 19882.04 20380.69 20490.59 20684.81 205
MDA-MVSNet-bldmvs73.81 20072.56 20475.28 20072.52 21388.87 19974.95 20882.67 15371.57 20255.02 20765.96 17842.84 21976.11 19170.61 21181.47 20290.38 20786.59 199
pmmvs371.13 20471.06 20671.21 20573.54 21280.19 21171.69 21264.86 21162.04 21452.10 21154.92 20648.00 21775.03 19483.75 20083.24 19990.04 20885.27 202
new_pmnet72.29 20373.25 20371.16 20675.35 21081.38 21073.72 21069.27 20875.97 19249.84 21556.27 20256.12 21169.08 20081.73 20480.86 20389.72 20980.44 209
ambc67.96 20773.69 21179.79 21273.82 20971.61 20159.80 20146.00 21120.79 22166.15 20586.92 18780.11 20689.13 21090.50 182
FPMVS69.87 20567.10 20873.10 20384.09 20178.35 21379.40 20276.41 18971.92 20057.71 20554.06 20950.04 21456.72 20871.19 21068.70 21084.25 21175.43 211
PMMVS253.68 21055.72 21251.30 20958.84 21767.02 21554.23 21660.97 21447.50 21619.42 22034.81 21431.97 22030.88 21665.84 21369.99 20983.47 21272.92 213
PMVScopyleft56.77 1861.27 20758.64 21064.35 20775.66 20954.60 21753.62 21774.23 19453.69 21558.37 20344.27 21349.38 21544.16 21469.51 21265.35 21280.07 21373.66 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft58.52 20856.17 21161.27 20867.14 21558.06 21652.16 21868.40 21069.00 20745.02 21722.79 21520.57 22255.11 20976.27 20879.33 20779.80 21467.16 214
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method58.10 20964.61 20950.51 21028.26 22141.71 22061.28 21532.07 21775.92 19352.04 21247.94 21061.83 19751.80 21179.83 20663.95 21477.60 21581.05 208
DeepMVS_CXcopyleft71.82 21468.37 21348.05 21677.38 18246.88 21665.77 17947.03 21867.48 20264.27 21476.89 21676.72 210
tmp_tt50.24 21168.55 21446.86 21948.90 21918.28 21886.51 12268.32 16870.19 16065.33 18026.69 21774.37 20966.80 21170.72 217
E-PMN40.00 21135.74 21444.98 21257.69 21939.15 22228.05 22062.70 21235.52 21817.78 22120.90 21614.36 22444.47 21335.89 21647.86 21559.15 21856.47 216
EMVS39.04 21334.32 21544.54 21358.25 21839.35 22127.61 22162.55 21335.99 21716.40 22220.04 21814.77 22344.80 21233.12 21744.10 21657.61 21952.89 217
MVEpermissive39.81 1939.52 21241.58 21337.11 21433.93 22049.06 21826.45 22254.22 21529.46 21924.15 21920.77 21710.60 22534.42 21551.12 21565.27 21349.49 22064.81 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs4.35 2146.54 2161.79 2160.60 2221.82 2233.06 2240.95 2197.22 2200.88 22412.38 2191.25 2263.87 2196.09 2185.58 2171.40 22111.42 219
test1233.48 2155.31 2171.34 2170.20 2241.52 2242.17 2250.58 2206.13 2210.31 2259.85 2200.31 2273.90 2182.65 2195.28 2180.87 22211.46 218
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def60.19 199
9.1497.28 23
SR-MVS98.93 1996.00 1797.75 14
our_test_386.93 18589.77 19681.61 198
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
Patchmatch-RL test18.47 223
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65
Patchmtry92.39 17089.18 15573.30 20071.08 149