This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
DPE-MVS97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 9999.08 9
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13596.23 2696.78 2696.15 3798.79 998.55 24
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12499.13 6
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8497.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17098.65 14
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 74
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14798.14 43
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12591.98 12297.78 9297.51 70
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10889.54 7488.53 10387.47 5879.82 10990.53 6585.47 14396.31 4295.16 5697.99 8198.56 19
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9196.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9196.39 3995.26 5398.34 4397.81 59
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 69
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 95
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 10984.49 7890.63 6487.49 12297.07 1996.96 1598.07 7397.88 58
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10096.15 114
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 71
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 9998.30 4995.58 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Vis-MVSNetpermissive89.36 10291.49 7986.88 12892.10 11797.60 6092.16 11285.89 11484.21 13875.20 12582.58 9487.13 7277.40 18395.90 5095.63 4798.51 2197.36 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 119
UA-Net90.81 8292.58 6188.74 10894.87 7597.44 6392.61 10288.22 8882.35 15278.93 11385.20 7595.61 3879.56 17896.52 3496.57 2398.23 5894.37 146
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10296.57 100
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 10987.90 9590.24 8083.63 9086.14 6790.52 6790.76 8694.82 6994.38 6598.18 6397.98 49
tfpn200view989.55 9987.86 11391.53 7893.90 9097.26 6694.31 7189.74 6985.87 12281.15 10076.46 12670.38 15391.76 7794.92 6493.51 8298.28 5296.61 97
thres600view789.28 10487.47 12391.39 8194.12 8197.25 6793.94 8089.74 6985.62 12780.63 10675.24 13569.33 15891.66 7994.92 6493.23 9298.27 5396.72 94
thres20089.49 10087.72 11591.55 7793.95 8797.25 6794.34 6989.74 6985.66 12581.18 9976.12 13070.19 15691.80 7594.92 6493.51 8298.27 5396.40 104
thres40089.40 10187.58 12091.53 7894.06 8497.21 6994.19 7589.83 6885.69 12481.08 10275.50 13369.76 15791.80 7594.79 7193.51 8298.20 6196.60 98
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 80
UGNet91.52 7493.41 5289.32 10294.13 8097.15 7091.83 11889.01 7890.62 7385.86 7486.83 5991.73 5677.40 18394.68 7394.43 6497.71 9798.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11797.44 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11281.60 10282.77 9794.39 4494.28 8194.23 6797.14 12394.45 145
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11787.63 10490.61 7481.42 9886.76 6182.26 10389.23 10394.86 6893.03 10197.90 8697.36 75
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11487.63 10490.74 6981.51 9786.81 6082.48 9989.23 10394.81 7093.03 10197.90 8697.33 77
HyFIR lowres test87.87 11286.42 12989.57 9995.56 6696.99 7692.37 10584.15 13486.64 11577.17 11957.65 19783.97 8891.08 8392.09 12392.44 10997.09 12695.16 136
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 93
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11793.73 9596.94 7892.17 11187.91 9488.77 9976.12 12383.68 8490.80 6079.49 17996.34 4196.35 2898.21 6096.46 102
CHOSEN 1792x268888.57 10787.82 11489.44 10195.46 6996.89 7993.74 8685.87 11589.63 9177.42 11861.38 19183.31 9288.80 11393.44 10193.16 9595.37 17596.95 89
thres100view90089.36 10287.61 11891.39 8193.90 9096.86 8094.35 6889.66 7385.87 12281.15 10076.46 12670.38 15391.17 8194.09 8693.43 8898.13 6796.16 113
IB-MVS85.10 1487.98 11187.97 11287.99 11694.55 7696.86 8084.52 18788.21 8986.48 12088.54 5074.41 13777.74 13074.10 19389.65 16492.85 10398.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU90.74 8592.93 5888.19 11394.36 7796.61 8294.34 6984.66 12790.66 7168.75 16290.41 4686.89 7489.78 9395.46 5694.87 5997.25 11695.62 125
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11296.61 8296.03 4888.44 8690.25 7985.92 7273.73 13884.89 8691.92 7494.17 8594.07 7397.68 10197.31 78
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11895.24 5894.97 5897.09 12698.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune81.83 18283.58 15579.80 18991.57 12396.54 8593.79 8468.80 20562.71 20843.01 21355.28 20085.06 8583.65 15796.13 4594.86 6097.98 8494.46 144
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10795.00 139
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
diffmvs91.37 7591.09 8391.70 7592.71 11196.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 10997.23 80
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10894.95 2977.35 13394.05 4994.49 8093.08 9797.15 12194.53 143
Effi-MVS+89.79 9689.83 9589.74 9892.98 10396.45 8993.48 9384.24 13287.62 10976.45 12181.76 10077.56 13293.48 5994.61 7593.59 8197.82 9097.22 82
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10592.55 10897.76 9397.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521188.00 11093.16 10196.38 9193.58 9089.34 7687.92 10765.04 18083.03 9492.07 7392.67 11093.33 8996.96 13497.63 64
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9798.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10679.60 20496.19 9394.43 6486.56 11090.63 7280.75 10590.71 4477.78 12993.73 5691.36 13393.45 8798.15 6495.77 122
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11591.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 14981.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 123
Anonymous2023121189.82 9588.18 10891.74 7492.52 11396.09 9693.38 9489.30 7788.95 9885.90 7364.55 18484.39 8792.41 7192.24 12093.06 9996.93 13997.95 51
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9795.64 5592.12 4792.46 5779.65 11091.97 3782.68 9892.92 6693.47 10092.77 10497.74 9598.12 45
baseline190.81 8290.29 8891.42 8093.67 9695.86 9893.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9495.05 6094.79 6198.80 793.82 154
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 9990.94 12188.67 8389.80 8986.95 6485.90 6972.51 14492.46 6993.56 9792.18 11496.93 13992.89 164
baseline288.97 10589.50 9688.36 11091.14 12995.30 10090.13 13585.17 12487.24 11080.80 10484.46 7978.44 12385.60 14093.54 9891.87 12397.31 11495.66 124
Fast-Effi-MVS+88.56 10887.99 11189.22 10391.56 12495.21 10192.29 10782.69 14986.82 11377.73 11676.24 12973.39 14393.36 6194.22 8493.64 7997.65 10396.43 103
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10292.11 11388.85 7987.64 10883.38 9284.36 8078.41 12489.53 9594.69 7293.15 9698.15 6497.92 54
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10393.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10597.62 10695.50 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline91.19 7791.89 7390.38 8992.76 10995.04 10493.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10192.00 12492.62 10796.46 15296.99 87
Effi-MVS+-dtu87.51 11688.13 10986.77 13091.10 13094.90 10590.91 12282.67 15083.47 14571.55 14181.11 10577.04 13489.41 9792.65 11291.68 12995.00 18296.09 116
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10694.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11195.75 5293.95 7598.12 6896.37 105
CDS-MVSNet88.34 10988.71 10287.90 11890.70 13794.54 10792.38 10486.02 11380.37 16079.42 11179.30 11083.43 9182.04 16693.39 10294.01 7496.86 14595.93 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH85.51 1387.31 11886.59 12788.14 11493.96 8694.51 10889.00 15787.99 9181.58 15470.15 15278.41 11571.78 14990.60 8891.30 13491.99 12197.17 12096.58 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft84.39 1587.61 11486.03 13389.46 10095.54 6894.48 10991.77 11990.14 6587.16 11175.50 12473.41 14376.86 13787.33 12490.05 15889.76 16896.48 15190.46 180
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GG-mvs-BLEND62.84 20290.21 8930.91 2100.57 21894.45 11086.99 1740.34 21688.71 1000.98 21881.55 10491.58 570.86 21592.66 11191.43 13295.73 16491.11 175
UniMVSNet (Re)86.22 12785.46 14387.11 12588.34 15794.42 11189.65 14787.10 10884.39 13574.61 12670.41 15568.10 16385.10 14691.17 13791.79 12597.84 8997.94 52
ACMH+85.75 1287.19 11986.02 13488.56 10993.42 9894.41 11289.91 14187.66 10383.45 14672.25 13976.42 12871.99 14890.78 8589.86 15990.94 13697.32 11395.11 138
MSDG90.42 8888.25 10792.94 6296.67 5694.41 11293.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9092.60 11392.08 11997.44 11291.41 171
UniMVSNet_ETH3D84.57 14881.40 18288.28 11289.34 14794.38 11490.33 12786.50 11174.74 19277.52 11759.90 19562.04 19288.78 11488.82 17492.65 10697.22 11797.24 79
GA-MVS85.08 14385.65 14084.42 15589.77 14294.25 11589.26 15184.62 12881.19 15762.25 19275.72 13268.44 16284.14 15493.57 9691.68 12996.49 15094.71 142
TDRefinement84.97 14583.39 16086.81 12992.97 10594.12 11692.18 10987.77 10082.78 15071.31 14468.43 16168.07 16481.10 17489.70 16389.03 17595.55 17291.62 169
MS-PatchMatch87.63 11387.61 11887.65 12193.95 8794.09 11792.60 10381.52 16486.64 11576.41 12273.46 14285.94 8085.01 14792.23 12190.00 16296.43 15490.93 177
UniMVSNet_NR-MVSNet86.80 12185.86 13887.89 11988.17 15994.07 11890.15 13388.51 8584.20 13973.45 13272.38 14870.30 15588.95 10990.25 15292.21 11398.12 6897.62 66
USDC86.73 12385.96 13687.63 12291.64 12193.97 11992.76 10184.58 12988.19 10470.67 14980.10 10867.86 16589.43 9691.81 12689.77 16796.69 14990.05 184
SCA86.25 12587.52 12184.77 14991.59 12293.90 12089.11 15473.25 19890.38 7872.84 13583.26 8683.79 9088.49 11586.07 18885.56 18693.33 18589.67 186
FMVSNet390.19 9290.06 9490.34 9088.69 15293.85 12194.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10593.29 10494.36 6698.20 6195.40 133
EG-PatchMatch MVS81.70 18481.31 18382.15 18388.75 15093.81 12287.14 17378.89 17771.57 19764.12 18961.20 19368.46 16176.73 18691.48 13090.77 14097.28 11591.90 168
DU-MVS86.12 12984.81 14787.66 12087.77 16693.78 12390.15 13387.87 9784.40 13373.45 13270.59 15264.82 18288.95 10990.14 15392.33 11097.76 9397.62 66
NR-MVSNet85.46 13984.54 14986.52 13388.33 15893.78 12390.45 12687.87 9784.40 13371.61 14070.59 15262.09 19182.79 16291.75 12791.75 12698.10 7197.44 72
EPMVS85.77 13386.24 13185.23 14592.76 10993.78 12389.91 14173.60 19490.19 8274.22 12782.18 9878.06 12687.55 12185.61 19085.38 18893.32 18688.48 192
Fast-Effi-MVS+-dtu86.25 12587.70 11684.56 15390.37 14093.70 12690.54 12578.14 17983.50 14465.37 18481.59 10375.83 14186.09 13991.70 12891.70 12796.88 14395.84 121
MDTV_nov1_ep1386.64 12487.50 12285.65 13990.73 13593.69 12789.96 13978.03 18189.48 9476.85 12084.92 7682.42 10186.14 13786.85 18586.15 18292.17 19388.97 189
thisisatest051585.70 13487.00 12484.19 15888.16 16093.67 12884.20 18984.14 13583.39 14772.91 13476.79 12374.75 14278.82 18192.57 11491.26 13496.94 13696.56 101
GBi-Net90.21 9090.11 9290.32 9188.66 15393.65 12994.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9893.97 8994.16 6998.31 4695.47 129
test190.21 9090.11 9290.32 9188.66 15393.65 12994.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9893.97 8994.16 6998.31 4695.47 129
FMVSNet289.61 9889.14 9990.16 9688.66 15393.65 12994.25 7285.44 12188.57 10284.96 8873.53 14083.82 8989.38 9894.23 8394.68 6398.31 4695.47 129
anonymousdsp84.51 15085.85 13982.95 17586.30 18993.51 13285.77 18480.38 17178.25 17563.42 19073.51 14172.20 14684.64 14993.21 10692.16 11697.19 11998.14 43
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13393.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10793.62 8097.02 13098.05 48
PatchmatchNetpermissive85.70 13486.65 12684.60 15291.79 11993.40 13489.27 15073.62 19390.19 8272.63 13782.74 9381.93 10687.64 11984.99 19184.29 19392.64 19089.00 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pm-mvs184.55 14983.46 15685.82 13688.16 16093.39 13589.05 15685.36 12374.03 19372.43 13865.08 17971.11 15082.30 16593.48 9991.70 12797.64 10495.43 132
TranMVSNet+NR-MVSNet85.57 13784.41 15086.92 12787.67 16993.34 13690.31 12988.43 8783.07 14870.11 15369.99 15865.28 17786.96 12789.73 16192.27 11198.06 7597.17 84
WR-MVS_H82.86 17582.66 16983.10 17287.44 17293.33 13785.71 18583.20 14777.36 17968.20 16766.37 17065.23 17876.05 18889.35 16590.13 15597.99 8196.89 91
test_part187.53 11584.97 14490.52 8892.11 11693.31 13893.32 9685.79 11679.56 16887.38 6062.89 18878.60 12189.25 10290.65 14792.17 11595.24 17797.62 66
WR-MVS83.14 17083.38 16182.87 17687.55 17093.29 13986.36 18084.21 13380.05 16466.41 17766.91 16766.92 17075.66 18988.96 17290.56 14697.05 12896.96 88
v2v48284.51 15083.05 16686.20 13587.25 17593.28 14090.22 13185.40 12279.94 16669.78 15567.74 16365.15 17987.57 12089.12 17090.55 14796.97 13295.60 126
V4284.48 15283.36 16285.79 13887.14 17893.28 14090.03 13683.98 13780.30 16171.20 14566.90 16867.17 16785.55 14189.35 16590.27 15296.82 14696.27 111
tfpnnormal83.80 16281.26 18486.77 13089.60 14493.26 14289.72 14687.60 10672.78 19470.44 15060.53 19461.15 19585.55 14192.72 10991.44 13197.71 9796.92 90
CostFormer86.78 12286.05 13287.62 12392.15 11593.20 14391.55 12075.83 18688.11 10685.29 8581.76 10076.22 13987.80 11784.45 19385.21 18993.12 18793.42 159
pmmvs583.37 16782.68 16884.18 15987.13 17993.18 14486.74 17682.08 15876.48 18467.28 17371.26 14962.70 18884.71 14890.77 14290.12 15897.15 12194.24 147
FC-MVSNet-test86.15 12889.10 10082.71 17889.83 14193.18 14487.88 16784.69 12686.54 11762.18 19382.39 9783.31 9274.18 19292.52 11591.86 12497.50 10993.88 153
TAMVS84.94 14684.95 14584.93 14888.82 14993.18 14488.44 16381.28 16677.16 18073.76 13175.43 13476.57 13882.04 16690.59 14890.79 13895.22 17890.94 176
v114484.03 15982.88 16785.37 14187.17 17793.15 14790.18 13283.31 14578.83 17167.85 16865.99 17364.99 18086.79 12990.75 14390.33 15196.90 14196.15 114
SixPastTwentyTwo83.12 17183.44 15882.74 17787.71 16893.11 14882.30 19482.33 15579.24 16964.33 18778.77 11362.75 18784.11 15588.11 17687.89 17895.70 16694.21 149
LTVRE_ROB81.71 1682.44 17981.84 17783.13 17089.01 14892.99 14988.90 15882.32 15666.26 20554.02 20674.68 13659.62 20288.87 11290.71 14592.02 12095.68 16796.62 96
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v884.45 15483.30 16385.80 13787.53 17192.95 15090.31 12982.46 15480.46 15971.43 14266.99 16667.16 16886.14 13789.26 16890.22 15496.94 13696.06 117
v14883.61 16482.10 17385.37 14187.34 17392.94 15187.48 16985.72 12078.92 17073.87 13065.71 17664.69 18381.78 17087.82 17789.35 17296.01 15995.26 135
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15292.30 10687.69 10190.44 7785.12 8691.68 3985.84 8290.69 8787.34 18186.07 18392.46 19290.37 181
v14419283.48 16682.23 17184.94 14786.65 18592.84 15389.63 14882.48 15377.87 17667.36 17265.33 17863.50 18586.51 13189.72 16289.99 16397.03 12996.35 106
v119283.56 16582.35 17084.98 14686.84 18492.84 15390.01 13882.70 14878.54 17266.48 17664.88 18162.91 18686.91 12890.72 14490.25 15396.94 13696.32 108
FMVSNet187.33 11786.00 13588.89 10587.13 17992.83 15593.08 10084.46 13181.35 15682.20 9566.33 17177.96 12788.96 10893.97 8994.16 6997.54 10895.38 134
CHOSEN 280x42090.77 8492.14 6989.17 10493.86 9292.81 15693.16 9780.22 17290.21 8184.67 8989.89 4891.38 5990.57 8994.94 6392.11 11792.52 19193.65 156
CP-MVSNet83.11 17282.15 17284.23 15787.20 17692.70 15786.42 17983.53 14377.83 17767.67 17066.89 16960.53 19882.47 16389.23 16990.65 14598.08 7297.20 83
v1084.18 15583.17 16585.37 14187.34 17392.68 15890.32 12881.33 16579.93 16769.23 16066.33 17165.74 17587.03 12690.84 14190.38 14996.97 13296.29 110
v192192083.30 16882.09 17484.70 15086.59 18792.67 15989.82 14482.23 15778.32 17365.76 18164.64 18362.35 18986.78 13090.34 15190.02 16197.02 13096.31 109
test-mter86.09 13188.38 10483.43 16887.89 16392.61 16086.89 17577.11 18484.30 13668.62 16482.57 9582.45 10084.34 15092.40 11690.11 15995.74 16394.21 149
v7n82.25 18081.54 18083.07 17385.55 19392.58 16186.68 17881.10 16976.54 18365.97 18062.91 18760.56 19782.36 16491.07 13990.35 15096.77 14896.80 92
dps85.00 14483.21 16487.08 12690.73 13592.55 16289.34 14975.29 18884.94 12887.01 6279.27 11167.69 16687.27 12584.22 19483.56 19492.83 18990.25 182
test0.0.03 185.58 13687.69 11783.11 17191.22 12792.54 16385.60 18683.62 14085.66 12567.84 16982.79 9279.70 11673.51 19591.15 13890.79 13896.88 14391.23 174
PS-CasMVS82.53 17781.54 18083.68 16487.08 18192.54 16386.20 18183.46 14476.46 18565.73 18265.71 17659.41 20381.61 17189.06 17190.55 14798.03 7797.07 86
v124082.88 17481.66 17884.29 15686.46 18892.52 16589.06 15581.82 16177.16 18065.09 18564.17 18561.50 19386.36 13290.12 15590.13 15596.95 13596.04 118
IterMVS-LS88.60 10688.45 10388.78 10792.02 11892.44 16692.00 11683.57 14286.52 11878.90 11478.61 11481.34 10889.12 10690.68 14693.18 9497.10 12596.35 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry92.39 16789.18 15273.30 19671.08 146
EPNet_dtu88.32 11090.61 8685.64 14096.79 5592.27 16892.03 11590.31 6489.05 9765.44 18389.43 4985.90 8174.22 19192.76 10892.09 11895.02 18192.76 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MIMVSNet82.97 17384.00 15381.77 18682.23 20092.25 16987.40 17272.73 19981.48 15569.55 15668.79 16072.42 14581.82 16992.23 12192.25 11296.89 14288.61 190
CR-MVSNet85.48 13886.29 13084.53 15491.08 13292.10 17089.18 15273.30 19684.75 12971.08 14673.12 14677.91 12886.27 13591.48 13090.75 14196.27 15693.94 151
RPMNet84.82 14785.90 13783.56 16691.10 13092.10 17088.73 16171.11 20184.75 12968.79 16173.56 13977.62 13185.33 14490.08 15789.43 17196.32 15593.77 155
test-LLR86.88 12088.28 10585.24 14491.22 12792.07 17287.41 17083.62 14084.58 13169.33 15883.00 8782.79 9584.24 15192.26 11889.81 16595.64 16893.44 157
TESTMET0.1,186.11 13088.28 10583.59 16587.80 16492.07 17287.41 17077.12 18384.58 13169.33 15883.00 8782.79 9584.24 15192.26 11889.81 16595.64 16893.44 157
PEN-MVS82.49 17881.58 17983.56 16686.93 18292.05 17486.71 17783.84 13876.94 18264.68 18667.24 16460.11 19981.17 17387.78 17890.70 14498.02 7896.21 112
pmmvs486.00 13284.28 15188.00 11587.80 16492.01 17589.94 14084.91 12586.79 11480.98 10373.41 14366.34 17388.12 11689.31 16788.90 17696.24 15793.20 162
PMMVS89.88 9491.19 8188.35 11189.73 14391.97 17690.62 12481.92 15990.57 7580.58 10792.16 3586.85 7591.17 8192.31 11791.35 13396.11 15893.11 163
TinyColmap84.04 15882.01 17586.42 13490.87 13391.84 17788.89 15984.07 13682.11 15369.89 15471.08 15060.81 19689.04 10790.52 14989.19 17395.76 16288.50 191
CMPMVSbinary61.19 1779.86 18877.46 19682.66 17991.54 12591.82 17883.25 19081.57 16370.51 20168.64 16359.89 19666.77 17179.63 17784.00 19684.30 19291.34 19784.89 200
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet84.08 15784.95 14583.05 17491.53 12691.75 17988.16 16470.70 20289.96 8869.51 15778.83 11276.97 13686.29 13484.08 19584.60 19192.13 19588.48 192
tpmrst83.72 16383.45 15784.03 16192.21 11491.66 18088.74 16073.58 19588.14 10572.67 13677.37 12072.11 14786.34 13382.94 19882.05 19790.63 20189.86 185
pmmvs680.90 18578.77 19083.38 16985.84 19091.61 18186.01 18282.54 15264.17 20670.43 15154.14 20467.06 16980.73 17590.50 15089.17 17494.74 18394.75 141
PatchT83.86 16085.51 14281.94 18488.41 15691.56 18278.79 20071.57 20084.08 14171.08 14670.62 15176.13 14086.27 13591.48 13090.75 14195.52 17393.94 151
TransMVSNet (Re)82.67 17680.93 18784.69 15188.71 15191.50 18387.90 16687.15 10771.54 19968.24 16663.69 18664.67 18478.51 18291.65 12990.73 14397.64 10492.73 167
tpm cat184.13 15681.99 17686.63 13291.74 12091.50 18390.68 12375.69 18786.12 12185.44 8372.39 14770.72 15185.16 14580.89 20181.56 19891.07 19990.71 178
DTE-MVSNet81.76 18381.04 18582.60 18086.63 18691.48 18585.97 18383.70 13976.45 18662.44 19167.16 16559.98 20078.98 18087.15 18289.93 16497.88 8895.12 137
tpm83.16 16983.64 15482.60 18090.75 13491.05 18688.49 16273.99 19182.36 15167.08 17578.10 11668.79 15984.17 15385.95 18985.96 18491.09 19893.23 161
CVMVSNet83.83 16185.53 14181.85 18589.60 14490.92 18787.81 16883.21 14680.11 16360.16 19676.47 12578.57 12276.79 18589.76 16090.13 15593.51 18492.75 166
MDTV_nov1_ep13_2view80.43 18680.94 18679.84 18884.82 19690.87 18884.23 18873.80 19280.28 16264.33 18770.05 15768.77 16079.67 17684.83 19283.50 19592.17 19388.25 194
IterMVS-SCA-FT85.44 14086.71 12583.97 16290.59 13890.84 18989.73 14578.34 17884.07 14266.40 17877.27 12278.66 12083.06 15991.20 13590.10 16095.72 16594.78 140
testgi81.94 18184.09 15279.43 19089.53 14690.83 19082.49 19381.75 16280.59 15859.46 19882.82 9165.75 17467.97 19790.10 15689.52 17095.39 17489.03 187
Baseline_NR-MVSNet85.28 14183.42 15987.46 12487.77 16690.80 19189.90 14387.69 10183.93 14374.16 12864.72 18266.43 17287.48 12390.14 15390.83 13797.73 9697.11 85
IterMVS85.25 14286.49 12883.80 16390.42 13990.77 19290.02 13778.04 18084.10 14066.27 17977.28 12178.41 12483.01 16090.88 14089.72 16995.04 18094.24 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_386.93 18289.77 19381.61 195
Anonymous2023120678.09 19278.11 19378.07 19385.19 19589.17 19480.99 19681.24 16875.46 19058.25 20054.78 20359.90 20166.73 20088.94 17388.26 17796.01 15990.25 182
MDA-MVSNet-bldmvs73.81 19672.56 20075.28 19672.52 20988.87 19574.95 20482.67 15071.57 19755.02 20365.96 17442.84 21476.11 18770.61 20681.47 19990.38 20386.59 195
FMVSNet584.47 15384.72 14884.18 15983.30 19988.43 19688.09 16579.42 17584.25 13774.14 12973.15 14578.74 11983.65 15791.19 13691.19 13596.46 15286.07 197
PM-MVS80.29 18779.30 18981.45 18781.91 20188.23 19782.61 19279.01 17679.99 16567.15 17469.07 15951.39 20882.92 16187.55 18085.59 18595.08 17993.28 160
MVS-HIRNet78.16 19177.57 19578.83 19185.83 19187.76 19876.67 20170.22 20375.82 18967.39 17155.61 19970.52 15281.96 16886.67 18685.06 19090.93 20081.58 203
test20.0376.41 19578.49 19273.98 19785.64 19287.50 19975.89 20280.71 17070.84 20051.07 20968.06 16261.40 19454.99 20688.28 17587.20 18095.58 17186.15 196
pmmvs-eth3d79.78 18977.58 19482.34 18281.57 20287.46 20082.92 19181.28 16675.33 19171.34 14361.88 18952.41 20781.59 17287.56 17986.90 18195.36 17691.48 170
N_pmnet77.55 19476.68 19778.56 19285.43 19487.30 20178.84 19981.88 16078.30 17460.61 19461.46 19062.15 19074.03 19482.04 19980.69 20190.59 20284.81 201
EU-MVSNet78.43 19080.25 18876.30 19583.81 19887.27 20280.99 19679.52 17476.01 18754.12 20570.44 15464.87 18167.40 19986.23 18785.54 18791.95 19691.41 171
MIMVSNet173.19 19773.70 19872.60 20065.42 21286.69 20375.56 20379.65 17367.87 20455.30 20245.24 20756.41 20563.79 20286.98 18387.66 17995.85 16185.04 199
gm-plane-assit77.65 19378.50 19176.66 19487.96 16285.43 20464.70 21074.50 18964.15 20751.26 20861.32 19258.17 20484.11 15595.16 5993.83 7697.45 11191.41 171
new-patchmatchnet72.32 19871.09 20173.74 19881.17 20384.86 20572.21 20777.48 18268.32 20354.89 20455.10 20149.31 21163.68 20379.30 20276.46 20493.03 18884.32 202
new_pmnet72.29 19973.25 19971.16 20275.35 20681.38 20673.72 20669.27 20475.97 18849.84 21056.27 19856.12 20669.08 19681.73 20080.86 20089.72 20580.44 204
pmmvs371.13 20071.06 20271.21 20173.54 20880.19 20771.69 20864.86 20762.04 20952.10 20754.92 20248.00 21275.03 19083.75 19783.24 19690.04 20485.27 198
ambc67.96 20373.69 20779.79 20873.82 20571.61 19659.80 19746.00 20620.79 21666.15 20186.92 18480.11 20289.13 20690.50 179
FPMVS69.87 20167.10 20473.10 19984.09 19778.35 20979.40 19876.41 18571.92 19557.71 20154.06 20550.04 20956.72 20471.19 20568.70 20684.25 20775.43 206
DeepMVS_CXcopyleft71.82 21068.37 20948.05 21277.38 17846.88 21165.77 17547.03 21367.48 19864.27 20976.89 21176.72 205
PMMVS253.68 20555.72 20751.30 20558.84 21367.02 21154.23 21160.97 21047.50 21119.42 21534.81 20931.97 21530.88 21165.84 20869.99 20583.47 20872.92 208
Gipumacopyleft58.52 20456.17 20661.27 20467.14 21158.06 21252.16 21368.40 20669.00 20245.02 21222.79 21020.57 21755.11 20576.27 20379.33 20379.80 21067.16 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft56.77 1861.27 20358.64 20564.35 20375.66 20554.60 21353.62 21274.23 19053.69 21058.37 19944.27 20849.38 21044.16 20969.51 20765.35 20880.07 20973.66 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.81 1939.52 20741.58 20837.11 20933.93 21649.06 21426.45 21754.22 21129.46 21424.15 21420.77 21210.60 22034.42 21051.12 21065.27 20949.49 21564.81 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt50.24 20668.55 21046.86 21548.90 21418.28 21386.51 11968.32 16570.19 15665.33 17626.69 21274.37 20466.80 20770.72 212
EMVS39.04 20834.32 21044.54 20858.25 21439.35 21627.61 21662.55 20935.99 21216.40 21720.04 21314.77 21844.80 20733.12 21244.10 21157.61 21452.89 212
E-PMN40.00 20635.74 20944.98 20757.69 21539.15 21728.05 21562.70 20835.52 21317.78 21620.90 21114.36 21944.47 20835.89 21147.86 21059.15 21356.47 211
testmvs4.35 2096.54 2111.79 2110.60 2171.82 2183.06 2190.95 2147.22 2150.88 21912.38 2141.25 2213.87 2146.09 2135.58 2121.40 21611.42 214
test1233.48 2105.31 2121.34 2120.20 2191.52 2192.17 2200.58 2156.13 2160.31 2209.85 2150.31 2223.90 2132.65 2145.28 2130.87 21711.46 213
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def60.19 195
9.1497.28 23
SR-MVS98.93 1996.00 1797.75 14
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
Patchmatch-RL test18.47 218
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65