This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS97.93 198.23 197.58 299.05 699.31 198.64 496.62 397.56 195.08 496.61 1299.64 197.32 197.91 297.31 698.77 1199.26 1
DeepPCF-MVS92.65 295.50 3396.96 1793.79 5096.44 5698.21 3793.51 9194.08 3696.94 289.29 4293.08 3096.77 2693.82 5397.68 797.40 495.59 16998.65 14
DVP-MVS97.70 498.09 397.24 599.00 1199.17 398.76 396.41 896.91 393.88 1497.72 399.04 596.93 1097.29 1497.31 698.45 3099.23 2
SD-MVS97.35 697.73 696.90 1497.35 4498.66 1297.85 2496.25 1096.86 494.54 896.75 1099.13 496.99 796.94 2296.58 2198.39 3899.20 3
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS97.79 397.96 497.60 199.20 299.10 498.88 296.68 296.81 594.64 597.84 298.02 997.24 397.74 697.02 1298.97 399.16 4
TSAR-MVS + MP.97.31 797.64 796.92 1397.28 4698.56 2198.61 595.48 2896.72 694.03 1396.73 1198.29 797.15 497.61 1096.42 2498.96 499.13 5
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS97.11 1297.19 1497.00 1298.97 1398.73 1098.37 1095.69 2196.60 793.28 2096.87 796.64 2797.27 296.64 3096.33 3198.44 3198.56 19
ACMMPR96.92 1696.96 1796.87 1598.99 1298.78 998.38 995.52 2496.57 892.81 2496.06 1995.90 3597.07 596.60 3296.34 3098.46 2798.42 32
TSAR-MVS + ACMM96.19 2297.39 1194.78 3797.70 3998.41 3397.72 2695.49 2796.47 986.66 6496.35 1497.85 1193.99 4997.19 1796.37 2697.12 12399.13 5
SMA-MVS97.53 597.93 597.07 1099.21 199.02 698.08 1896.25 1096.36 1093.57 1596.56 1399.27 396.78 1597.91 297.43 398.51 2098.94 11
NCCC96.75 1896.67 2396.85 1699.03 998.44 3298.15 1596.28 996.32 1192.39 2592.16 3497.55 1896.68 1897.32 1196.65 2098.55 1998.26 36
DeepC-MVS_fast93.32 196.48 2196.42 2696.56 2098.70 2598.31 3697.97 2195.76 2096.31 1292.01 2791.43 3995.42 3996.46 2197.65 997.69 198.49 2498.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS94.49 4394.36 4394.64 4097.17 4897.73 5595.49 5592.25 4496.18 1390.34 3988.51 5292.88 4994.90 3794.92 6394.17 6797.69 9996.15 113
xxxxxxxxxxxxxcwj95.62 3094.35 4497.10 898.95 1598.51 2697.51 2896.48 596.17 1494.64 597.32 476.98 13396.23 2596.78 2596.15 3698.79 998.55 24
SF-MVS97.20 1097.29 1297.10 898.95 1598.51 2697.51 2896.48 596.17 1494.64 597.32 497.57 1796.23 2596.78 2596.15 3698.79 998.55 24
CNVR-MVS97.30 897.41 997.18 799.02 1098.60 1998.15 1596.24 1296.12 1694.10 1195.54 2497.99 1096.99 797.97 197.17 898.57 1898.50 27
zzz-MVS96.98 1496.68 2297.33 499.09 398.71 1198.43 796.01 1596.11 1795.19 392.89 3297.32 2196.84 1197.20 1596.09 3998.44 3198.46 31
DPE-MVS97.83 298.13 297.48 398.83 2299.19 298.99 196.70 196.05 1894.39 998.30 199.47 297.02 697.75 597.02 1298.98 299.10 7
HPM-MVS++copyleft97.22 997.40 1097.01 1199.08 498.55 2298.19 1396.48 596.02 1993.28 2096.26 1698.71 696.76 1697.30 1396.25 3398.30 4898.68 13
TSAR-MVS + GP.95.86 2796.95 1994.60 4294.07 8298.11 4196.30 4391.76 5095.67 2091.07 3196.82 997.69 1595.71 3095.96 4795.75 4598.68 1298.63 15
ACMMP_NAP96.93 1597.27 1396.53 2399.06 598.95 798.24 1296.06 1495.66 2190.96 3395.63 2397.71 1496.53 1997.66 896.68 1898.30 4898.61 18
CNLPA93.69 5092.50 6195.06 3697.11 4997.36 6393.88 8193.30 3895.64 2293.44 1880.32 10690.73 6294.99 3693.58 9493.33 8897.67 10196.57 99
MCST-MVS96.83 1797.06 1596.57 1998.88 2098.47 3098.02 2096.16 1395.58 2390.96 3395.78 2297.84 1296.46 2197.00 2196.17 3598.94 598.55 24
CSCG95.68 2995.46 3495.93 2798.71 2499.07 597.13 3593.55 3795.48 2493.35 1990.61 4493.82 4595.16 3494.60 7595.57 4797.70 9899.08 8
CP-MVS96.68 1996.59 2596.77 1798.85 2198.58 2098.18 1495.51 2695.34 2592.94 2395.21 2796.25 3096.79 1496.44 3795.77 4498.35 4098.56 19
TSAR-MVS + COLMAP92.39 6192.31 6692.47 6595.35 7296.46 8796.13 4592.04 4795.33 2680.11 10694.95 2877.35 13194.05 4894.49 7993.08 9697.15 12094.53 142
MVS_111021_LR94.84 3995.57 3194.00 4497.11 4997.72 5794.88 6191.16 5695.24 2788.74 4796.03 2091.52 5794.33 4595.96 4795.01 5697.79 9097.49 70
X-MVS96.07 2596.33 2795.77 2998.94 1798.66 1297.94 2295.41 3095.12 2888.03 5093.00 3196.06 3195.85 2796.65 2996.35 2798.47 2598.48 28
SteuartSystems-ACMMP97.10 1397.49 896.65 1898.97 1398.95 798.43 795.96 1795.12 2891.46 2896.85 897.60 1696.37 2397.76 497.16 998.68 1298.97 9
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+90.56 595.06 3694.56 4195.65 3198.11 3198.15 4097.19 3391.59 5295.11 3093.23 2281.99 9894.71 4295.43 3396.48 3496.88 1698.35 4098.63 15
DeepC-MVS92.10 395.22 3494.77 3895.75 3097.77 3798.54 2397.63 2795.96 1795.07 3188.85 4685.35 7291.85 5395.82 2896.88 2497.10 1098.44 3198.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft90.69 494.32 4492.99 5595.87 2897.91 3396.49 8595.95 5094.12 3594.94 3294.09 1285.90 6890.77 6195.58 3194.52 7793.32 9097.55 10695.00 138
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS90.35 693.69 5093.52 4993.90 4796.89 5297.62 5896.15 4491.67 5194.94 3285.97 6887.72 5691.96 5294.40 4293.76 9293.06 9898.30 4895.58 126
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS95.07 3594.84 3795.34 3497.44 4397.49 6197.76 2595.52 2494.88 3488.92 4587.25 5796.44 2994.41 4195.78 5096.11 3897.99 8095.95 118
ACMMPcopyleft95.54 3195.49 3395.61 3298.27 3098.53 2497.16 3494.86 3294.88 3489.34 4195.36 2691.74 5495.50 3295.51 5494.16 6898.50 2298.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft97.12 1197.05 1697.19 699.04 798.63 1798.45 696.54 494.81 3693.50 1696.10 1897.40 2096.81 1297.05 1996.82 1798.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator90.28 794.70 4294.34 4595.11 3598.06 3298.21 3796.89 3791.03 5894.72 3791.45 2982.87 8993.10 4894.61 3896.24 4397.08 1198.63 1598.16 41
MSLP-MVS++96.05 2695.63 3096.55 2198.33 2998.17 3996.94 3694.61 3494.70 3894.37 1089.20 5095.96 3496.81 1295.57 5397.33 598.24 5698.47 29
CPTT-MVS95.54 3195.07 3596.10 2597.88 3597.98 4797.92 2394.86 3294.56 3992.16 2691.01 4195.71 3696.97 994.56 7693.50 8496.81 14698.14 43
MP-MVScopyleft96.56 2096.72 2196.37 2498.93 1898.48 2898.04 1995.55 2394.32 4090.95 3595.88 2197.02 2496.29 2496.77 2796.01 4198.47 2598.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_HR94.84 3995.91 2993.60 5197.35 4498.46 3195.08 5891.19 5594.18 4185.97 6895.38 2592.56 5093.61 5696.61 3196.25 3398.40 3697.92 54
PHI-MVS95.86 2796.93 2094.61 4197.60 4198.65 1696.49 4093.13 4094.07 4287.91 5397.12 697.17 2393.90 5296.46 3596.93 1598.64 1498.10 47
canonicalmvs93.08 5393.09 5393.07 6094.24 7797.86 4995.45 5687.86 9894.00 4387.47 5788.32 5382.37 10195.13 3593.96 9196.41 2598.27 5298.73 12
train_agg96.15 2496.64 2495.58 3398.44 2798.03 4498.14 1795.40 3193.90 4487.72 5496.26 1698.10 895.75 2996.25 4295.45 4998.01 7898.47 29
abl_694.78 3797.46 4297.99 4695.76 5191.80 4993.72 4591.25 3091.33 4096.47 2894.28 4698.14 6597.39 73
AdaColmapbinary95.02 3793.71 4896.54 2298.51 2697.76 5396.69 3995.94 1993.72 4593.50 1689.01 5190.53 6496.49 2094.51 7893.76 7798.07 7296.69 94
PGM-MVS96.16 2396.33 2795.95 2699.04 798.63 1798.32 1192.76 4293.42 4790.49 3896.30 1595.31 4096.71 1796.46 3596.02 4098.38 3998.19 40
CANet94.85 3894.92 3694.78 3797.25 4798.52 2597.20 3291.81 4893.25 4891.06 3286.29 6494.46 4392.99 6397.02 2096.68 1898.34 4298.20 39
baseline91.19 7691.89 7290.38 8792.76 10895.04 10393.55 9084.54 12892.92 4985.71 7486.68 6286.96 7289.28 10092.00 12392.62 10696.46 15196.99 86
CLD-MVS92.50 6091.96 7193.13 5793.93 8896.24 9195.69 5288.77 8092.92 4989.01 4488.19 5581.74 10693.13 6293.63 9393.08 9698.23 5797.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDPH-MVS94.80 4195.50 3293.98 4698.34 2898.06 4297.41 3093.23 3992.81 5182.98 9192.51 3394.82 4193.53 5796.08 4596.30 3298.42 3497.94 52
MVS_030494.30 4594.68 3993.86 4996.33 5898.48 2897.41 3091.20 5492.75 5286.96 6186.03 6793.81 4692.64 6796.89 2396.54 2398.61 1698.24 37
diffmvs91.37 7491.09 8291.70 7492.71 11096.47 8694.03 7588.78 7992.74 5385.43 8283.63 8480.37 11191.76 7693.39 10193.78 7697.50 10897.23 79
QAPM94.13 4694.33 4693.90 4797.82 3698.37 3596.47 4190.89 5992.73 5485.63 7585.35 7293.87 4494.17 4795.71 5295.90 4298.40 3698.42 32
LS3D91.97 6590.98 8393.12 5897.03 5197.09 7295.33 5795.59 2292.47 5579.26 11081.60 10182.77 9694.39 4394.28 8094.23 6697.14 12294.45 144
HQP-MVS92.39 6192.49 6292.29 6995.65 6495.94 9695.64 5492.12 4692.46 5679.65 10891.97 3682.68 9792.92 6593.47 9992.77 10397.74 9498.12 45
ACMM88.76 1091.70 7290.43 8693.19 5695.56 6595.14 10293.35 9491.48 5392.26 5787.12 5984.02 8079.34 11693.99 4994.07 8692.68 10497.62 10595.50 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS93.80 4894.57 4092.91 6393.98 8497.50 6093.62 8888.70 8191.95 5887.57 5590.21 4690.79 6094.56 3997.20 1596.35 2799.02 197.98 49
PVSNet_BlendedMVS92.80 5592.44 6393.23 5496.02 6097.83 5193.74 8590.58 6091.86 5990.69 3685.87 7082.04 10390.01 9096.39 3895.26 5298.34 4297.81 59
PVSNet_Blended92.80 5592.44 6393.23 5496.02 6097.83 5193.74 8590.58 6091.86 5990.69 3685.87 7082.04 10390.01 9096.39 3895.26 5298.34 4297.81 59
ACMP89.13 992.03 6491.70 7592.41 6794.92 7396.44 8993.95 7789.96 6591.81 6185.48 8090.97 4279.12 11792.42 6993.28 10492.55 10797.76 9297.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet93.92 4794.40 4293.36 5397.89 3496.55 8396.08 4692.14 4591.65 6289.16 4394.07 2990.17 6887.78 11695.24 5794.97 5797.09 12598.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS93.68 5294.33 4692.93 6294.15 7898.04 4394.43 6387.99 9091.64 6387.54 5688.22 5492.09 5194.56 3996.77 2795.85 4398.88 697.71 63
NP-MVS91.63 64
casdiffmvs91.72 7191.16 8192.38 6893.16 10097.15 6993.95 7789.49 7491.58 6586.03 6780.75 10580.95 10993.16 6195.25 5695.22 5498.50 2297.23 79
MVS_Test91.81 6992.19 6791.37 8293.24 9896.95 7694.43 6386.25 11191.45 6683.45 8986.31 6385.15 8392.93 6493.99 8794.71 6197.92 8496.77 92
DCV-MVSNet91.24 7591.26 7991.22 8492.84 10793.44 13293.82 8286.75 10891.33 6785.61 7684.00 8185.46 8291.27 7992.91 10693.62 7997.02 12998.05 48
thisisatest053091.04 7991.74 7390.21 9192.93 10697.00 7492.06 11287.63 10390.74 6881.51 9586.81 5982.48 9889.23 10194.81 6993.03 10097.90 8597.33 76
MAR-MVS92.71 5892.63 5992.79 6497.70 3997.15 6993.75 8487.98 9290.71 6985.76 7386.28 6586.38 7594.35 4494.95 6195.49 4897.22 11697.44 71
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet_DTU90.74 8492.93 5788.19 11194.36 7696.61 8194.34 6884.66 12590.66 7068.75 16090.41 4586.89 7389.78 9295.46 5594.87 5897.25 11595.62 124
ET-MVSNet_ETH3D89.93 9290.84 8488.87 10479.60 20296.19 9294.43 6386.56 10990.63 7180.75 10390.71 4377.78 12793.73 5591.36 13293.45 8698.15 6395.77 121
UGNet91.52 7393.41 5189.32 10094.13 7997.15 6991.83 11689.01 7790.62 7285.86 7286.83 5891.73 5577.40 18194.68 7294.43 6397.71 9698.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051791.01 8091.71 7490.19 9392.98 10297.07 7391.96 11587.63 10390.61 7381.42 9686.76 6082.26 10289.23 10194.86 6793.03 10097.90 8597.36 74
PMMVS89.88 9391.19 8088.35 10989.73 14191.97 17490.62 12281.92 15790.57 7480.58 10592.16 3486.85 7491.17 8092.31 11691.35 13196.11 15793.11 162
LGP-MVS_train91.83 6892.04 7091.58 7595.46 6896.18 9395.97 4989.85 6690.45 7577.76 11391.92 3780.07 11492.34 7194.27 8193.47 8598.11 6997.90 57
RPSCF89.68 9689.24 9790.20 9292.97 10492.93 15092.30 10487.69 10090.44 7685.12 8491.68 3885.84 8190.69 8687.34 17986.07 18192.46 19090.37 180
SCA86.25 12387.52 12084.77 14791.59 12093.90 11989.11 15273.25 19690.38 7772.84 13383.26 8583.79 8988.49 11386.07 18685.56 18493.33 18389.67 185
DI_MVS_plusplus_trai91.05 7890.15 9092.11 7092.67 11196.61 8196.03 4788.44 8590.25 7885.92 7073.73 13784.89 8591.92 7394.17 8494.07 7297.68 10097.31 77
EPP-MVSNet92.13 6393.06 5491.05 8593.66 9697.30 6492.18 10787.90 9490.24 7983.63 8886.14 6690.52 6690.76 8594.82 6894.38 6498.18 6297.98 49
CHOSEN 280x42090.77 8392.14 6889.17 10293.86 9192.81 15493.16 9580.22 17090.21 8084.67 8789.89 4791.38 5890.57 8894.94 6292.11 11592.52 18993.65 155
EPMVS85.77 13186.24 13085.23 14392.76 10893.78 12289.91 13973.60 19290.19 8174.22 12582.18 9778.06 12487.55 11985.61 18885.38 18693.32 18488.48 191
PatchmatchNetpermissive85.70 13286.65 12584.60 15091.79 11793.40 13389.27 14873.62 19190.19 8172.63 13582.74 9281.93 10587.64 11784.99 18984.29 19192.64 18889.00 187
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVSTER91.73 7091.61 7691.86 7293.18 9994.56 10594.37 6687.90 9490.16 8388.69 4889.23 4981.28 10888.92 10995.75 5193.95 7498.12 6796.37 104
GBi-Net90.21 8990.11 9190.32 8988.66 15193.65 12894.25 7185.78 11590.03 8485.56 7777.38 11686.13 7689.38 9793.97 8894.16 6898.31 4595.47 128
test190.21 8990.11 9190.32 8988.66 15193.65 12894.25 7185.78 11590.03 8485.56 7777.38 11686.13 7689.38 9793.97 8894.16 6898.31 4595.47 128
FMVSNet390.19 9190.06 9390.34 8888.69 15093.85 12094.58 6285.78 11590.03 8485.56 7777.38 11686.13 7689.22 10393.29 10394.36 6598.20 6095.40 132
ADS-MVSNet84.08 15584.95 14383.05 17291.53 12491.75 17788.16 16270.70 20089.96 8769.51 15578.83 11176.97 13486.29 13284.08 19384.60 18992.13 19388.48 191
PatchMatch-RL90.30 8888.93 10091.89 7195.41 7195.68 9890.94 11988.67 8289.80 8886.95 6285.90 6872.51 14292.46 6893.56 9692.18 11396.93 13892.89 163
EIA-MVS92.72 5792.96 5692.44 6693.86 9197.76 5393.13 9688.65 8389.78 8986.68 6386.69 6187.57 7093.74 5496.07 4695.32 5098.58 1797.53 68
CHOSEN 1792x268888.57 10687.82 11389.44 9995.46 6896.89 7893.74 8585.87 11489.63 9077.42 11661.38 18983.31 9188.80 11193.44 10093.16 9495.37 17496.95 88
MSDG90.42 8788.25 10692.94 6196.67 5594.41 11193.96 7692.91 4189.59 9186.26 6676.74 12380.92 11090.43 8992.60 11292.08 11797.44 11191.41 170
DELS-MVS93.71 4993.47 5094.00 4496.82 5398.39 3496.80 3891.07 5789.51 9289.94 4083.80 8289.29 6990.95 8397.32 1197.65 298.42 3498.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MDTV_nov1_ep1386.64 12287.50 12185.65 13790.73 13393.69 12689.96 13778.03 17989.48 9376.85 11884.92 7582.42 10086.14 13586.85 18386.15 18092.17 19188.97 188
baseline190.81 8190.29 8791.42 7993.67 9595.86 9793.94 7989.69 7189.29 9482.85 9282.91 8880.30 11289.60 9395.05 5994.79 6098.80 793.82 153
OpenMVScopyleft88.18 1192.51 5991.61 7693.55 5297.74 3898.02 4595.66 5390.46 6289.14 9586.50 6575.80 13090.38 6792.69 6694.99 6095.30 5198.27 5297.63 64
EPNet_dtu88.32 10990.61 8585.64 13896.79 5492.27 16692.03 11390.31 6389.05 9665.44 18189.43 4885.90 8074.22 18992.76 10792.09 11695.02 17992.76 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023121189.82 9488.18 10791.74 7392.52 11296.09 9593.38 9389.30 7688.95 9785.90 7164.55 18384.39 8692.41 7092.24 11993.06 9896.93 13897.95 51
Vis-MVSNet (Re-imp)90.54 8692.76 5887.94 11593.73 9496.94 7792.17 10987.91 9388.77 9876.12 12183.68 8390.80 5979.49 17796.34 4096.35 2798.21 5996.46 101
GG-mvs-BLEND62.84 20090.21 8830.91 2080.57 21694.45 10986.99 1720.34 21488.71 990.98 21581.55 10391.58 560.86 21392.66 11091.43 13095.73 16391.11 174
IS_MVSNet91.87 6793.35 5290.14 9594.09 8197.73 5593.09 9788.12 8988.71 9979.98 10784.49 7790.63 6387.49 12097.07 1896.96 1498.07 7297.88 58
FMVSNet289.61 9789.14 9890.16 9488.66 15193.65 12894.25 7185.44 11988.57 10184.96 8673.53 13983.82 8889.38 9794.23 8294.68 6298.31 4595.47 128
PVSNet_Blended_VisFu91.92 6692.39 6591.36 8395.45 7097.85 5092.25 10689.54 7388.53 10287.47 5779.82 10890.53 6485.47 14196.31 4195.16 5597.99 8098.56 19
USDC86.73 12185.96 13587.63 12091.64 11993.97 11892.76 9984.58 12788.19 10370.67 14780.10 10767.86 16389.43 9591.81 12589.77 16596.69 14890.05 183
tpmrst83.72 16183.45 15584.03 15992.21 11391.66 17888.74 15873.58 19388.14 10472.67 13477.37 11972.11 14586.34 13182.94 19682.05 19590.63 19989.86 184
CostFormer86.78 12086.05 13187.62 12192.15 11493.20 14191.55 11875.83 18488.11 10585.29 8381.76 9976.22 13787.80 11584.45 19185.21 18793.12 18593.42 158
Anonymous20240521188.00 10993.16 10096.38 9093.58 8989.34 7587.92 10665.04 17983.03 9392.07 7292.67 10993.33 8896.96 13397.63 64
FC-MVSNet-train90.55 8590.19 8990.97 8693.78 9395.16 10192.11 11188.85 7887.64 10783.38 9084.36 7978.41 12289.53 9494.69 7193.15 9598.15 6397.92 54
Effi-MVS+89.79 9589.83 9489.74 9692.98 10296.45 8893.48 9284.24 13087.62 10876.45 11981.76 9977.56 13093.48 5894.61 7493.59 8097.82 8997.22 81
baseline288.97 10489.50 9588.36 10891.14 12795.30 9990.13 13385.17 12287.24 10980.80 10284.46 7878.44 12185.60 13893.54 9791.87 12197.31 11395.66 123
PCF-MVS90.19 892.98 5492.07 6994.04 4396.39 5797.87 4896.03 4795.47 2987.16 11085.09 8584.81 7693.21 4793.46 5991.98 12491.98 12097.78 9197.51 69
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft84.39 1587.61 11386.03 13289.46 9895.54 6794.48 10891.77 11790.14 6487.16 11075.50 12273.41 14276.86 13587.33 12290.05 15689.76 16696.48 15090.46 179
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+88.56 10787.99 11089.22 10191.56 12295.21 10092.29 10582.69 14786.82 11277.73 11476.24 12873.39 14193.36 6094.22 8393.64 7897.65 10296.43 102
pmmvs486.00 13084.28 14988.00 11387.80 16292.01 17389.94 13884.91 12386.79 11380.98 10173.41 14266.34 17188.12 11489.31 16588.90 17496.24 15693.20 161
MS-PatchMatch87.63 11287.61 11787.65 11993.95 8694.09 11692.60 10181.52 16286.64 11476.41 12073.46 14185.94 7985.01 14592.23 12090.00 16096.43 15390.93 176
HyFIR lowres test87.87 11186.42 12889.57 9795.56 6596.99 7592.37 10384.15 13286.64 11477.17 11757.65 19583.97 8791.08 8292.09 12292.44 10897.09 12595.16 135
FC-MVSNet-test86.15 12689.10 9982.71 17689.83 13993.18 14287.88 16584.69 12486.54 11662.18 19182.39 9683.31 9174.18 19092.52 11491.86 12297.50 10893.88 152
IterMVS-LS88.60 10588.45 10288.78 10592.02 11692.44 16492.00 11483.57 14086.52 11778.90 11278.61 11381.34 10789.12 10490.68 14593.18 9397.10 12496.35 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tmp_tt50.24 20468.55 20846.86 21348.90 21218.28 21186.51 11868.32 16370.19 15565.33 17426.69 21074.37 20266.80 20570.72 210
IB-MVS85.10 1487.98 11087.97 11187.99 11494.55 7596.86 7984.52 18588.21 8886.48 11988.54 4974.41 13677.74 12874.10 19189.65 16292.85 10298.06 7497.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat184.13 15481.99 17486.63 13091.74 11891.50 18190.68 12175.69 18586.12 12085.44 8172.39 14670.72 14985.16 14380.89 19981.56 19691.07 19790.71 177
thres100view90089.36 10187.61 11791.39 8093.90 8996.86 7994.35 6789.66 7285.87 12181.15 9876.46 12570.38 15191.17 8094.09 8593.43 8798.13 6696.16 112
tfpn200view989.55 9887.86 11291.53 7793.90 8997.26 6594.31 7089.74 6885.87 12181.15 9876.46 12570.38 15191.76 7694.92 6393.51 8198.28 5196.61 96
thres40089.40 10087.58 11991.53 7794.06 8397.21 6894.19 7489.83 6785.69 12381.08 10075.50 13269.76 15591.80 7494.79 7093.51 8198.20 6096.60 97
thres20089.49 9987.72 11491.55 7693.95 8697.25 6694.34 6889.74 6885.66 12481.18 9776.12 12970.19 15491.80 7494.92 6393.51 8198.27 5296.40 103
test0.0.03 185.58 13487.69 11683.11 16991.22 12592.54 16185.60 18483.62 13885.66 12467.84 16782.79 9179.70 11573.51 19391.15 13790.79 13696.88 14291.23 173
thres600view789.28 10387.47 12291.39 8094.12 8097.25 6693.94 7989.74 6885.62 12680.63 10475.24 13469.33 15691.66 7894.92 6393.23 9198.27 5296.72 93
dps85.00 14283.21 16287.08 12490.73 13392.55 16089.34 14775.29 18684.94 12787.01 6079.27 11067.69 16487.27 12384.22 19283.56 19292.83 18790.25 181
CR-MVSNet85.48 13686.29 12984.53 15291.08 13092.10 16889.18 15073.30 19484.75 12871.08 14473.12 14577.91 12686.27 13391.48 12990.75 13996.27 15593.94 150
RPMNet84.82 14585.90 13683.56 16491.10 12892.10 16888.73 15971.11 19984.75 12868.79 15973.56 13877.62 12985.33 14290.08 15589.43 16996.32 15493.77 154
test-LLR86.88 11888.28 10485.24 14291.22 12592.07 17087.41 16883.62 13884.58 13069.33 15683.00 8682.79 9484.24 14992.26 11789.81 16395.64 16793.44 156
TESTMET0.1,186.11 12888.28 10483.59 16387.80 16292.07 17087.41 16877.12 18184.58 13069.33 15683.00 8682.79 9484.24 14992.26 11789.81 16395.64 16793.44 156
DU-MVS86.12 12784.81 14587.66 11887.77 16493.78 12290.15 13187.87 9684.40 13273.45 13070.59 15164.82 18088.95 10790.14 15192.33 10997.76 9297.62 66
NR-MVSNet85.46 13784.54 14786.52 13188.33 15693.78 12290.45 12487.87 9684.40 13271.61 13870.59 15162.09 18982.79 16091.75 12691.75 12498.10 7097.44 71
UniMVSNet (Re)86.22 12585.46 14287.11 12388.34 15594.42 11089.65 14587.10 10784.39 13474.61 12470.41 15468.10 16185.10 14491.17 13691.79 12397.84 8897.94 52
test-mter86.09 12988.38 10383.43 16687.89 16192.61 15886.89 17377.11 18284.30 13568.62 16282.57 9482.45 9984.34 14892.40 11590.11 15795.74 16294.21 148
FMVSNet584.47 15184.72 14684.18 15783.30 19788.43 19488.09 16379.42 17384.25 13674.14 12773.15 14478.74 11883.65 15591.19 13591.19 13396.46 15186.07 196
Vis-MVSNetpermissive89.36 10191.49 7886.88 12692.10 11597.60 5992.16 11085.89 11384.21 13775.20 12382.58 9387.13 7177.40 18195.90 4995.63 4698.51 2097.36 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.80 11985.86 13787.89 11788.17 15794.07 11790.15 13188.51 8484.20 13873.45 13072.38 14770.30 15388.95 10790.25 15092.21 11298.12 6797.62 66
IterMVS85.25 14086.49 12783.80 16190.42 13790.77 19090.02 13578.04 17884.10 13966.27 17777.28 12078.41 12283.01 15890.88 13989.72 16795.04 17894.24 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT83.86 15885.51 14181.94 18288.41 15491.56 18078.79 19871.57 19884.08 14071.08 14470.62 15076.13 13886.27 13391.48 12990.75 13995.52 17293.94 150
IterMVS-SCA-FT85.44 13886.71 12483.97 16090.59 13690.84 18789.73 14378.34 17684.07 14166.40 17677.27 12178.66 11983.06 15791.20 13490.10 15895.72 16494.78 139
Baseline_NR-MVSNet85.28 13983.42 15787.46 12287.77 16490.80 18989.90 14187.69 10083.93 14274.16 12664.72 18166.43 17087.48 12190.14 15190.83 13597.73 9597.11 84
Fast-Effi-MVS+-dtu86.25 12387.70 11584.56 15190.37 13893.70 12590.54 12378.14 17783.50 14365.37 18281.59 10275.83 13986.09 13791.70 12791.70 12596.88 14295.84 120
Effi-MVS+-dtu87.51 11488.13 10886.77 12891.10 12894.90 10490.91 12082.67 14883.47 14471.55 13981.11 10477.04 13289.41 9692.65 11191.68 12795.00 18096.09 115
ACMH+85.75 1287.19 11786.02 13388.56 10793.42 9794.41 11189.91 13987.66 10283.45 14572.25 13776.42 12771.99 14690.78 8489.86 15790.94 13497.32 11295.11 137
thisisatest051585.70 13287.00 12384.19 15688.16 15893.67 12784.20 18784.14 13383.39 14672.91 13276.79 12274.75 14078.82 17992.57 11391.26 13296.94 13596.56 100
TranMVSNet+NR-MVSNet85.57 13584.41 14886.92 12587.67 16793.34 13590.31 12788.43 8683.07 14770.11 15169.99 15765.28 17586.96 12589.73 15992.27 11098.06 7497.17 83
OPM-MVS91.08 7789.34 9693.11 5996.18 5996.13 9496.39 4292.39 4382.97 14881.74 9482.55 9580.20 11393.97 5194.62 7393.23 9198.00 7995.73 122
TDRefinement84.97 14383.39 15886.81 12792.97 10494.12 11592.18 10787.77 9982.78 14971.31 14268.43 16068.07 16281.10 17289.70 16189.03 17395.55 17191.62 168
tpm83.16 16783.64 15282.60 17890.75 13291.05 18488.49 16073.99 18982.36 15067.08 17378.10 11568.79 15784.17 15185.95 18785.96 18291.09 19693.23 160
UA-Net90.81 8192.58 6088.74 10694.87 7497.44 6292.61 10088.22 8782.35 15178.93 11185.20 7495.61 3779.56 17696.52 3396.57 2298.23 5794.37 145
TinyColmap84.04 15682.01 17386.42 13290.87 13191.84 17588.89 15784.07 13482.11 15269.89 15271.08 14960.81 19489.04 10590.52 14789.19 17195.76 16188.50 190
ACMH85.51 1387.31 11686.59 12688.14 11293.96 8594.51 10789.00 15587.99 9081.58 15370.15 15078.41 11471.78 14790.60 8791.30 13391.99 11997.17 11996.58 98
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MIMVSNet82.97 17184.00 15181.77 18482.23 19892.25 16787.40 17072.73 19781.48 15469.55 15468.79 15972.42 14381.82 16792.23 12092.25 11196.89 14188.61 189
FMVSNet187.33 11586.00 13488.89 10387.13 17792.83 15393.08 9884.46 12981.35 15582.20 9366.33 17077.96 12588.96 10693.97 8894.16 6897.54 10795.38 133
GA-MVS85.08 14185.65 13984.42 15389.77 14094.25 11489.26 14984.62 12681.19 15662.25 19075.72 13168.44 16084.14 15293.57 9591.68 12796.49 14994.71 141
testgi81.94 17984.09 15079.43 18889.53 14490.83 18882.49 19181.75 16080.59 15759.46 19582.82 9065.75 17267.97 19590.10 15489.52 16895.39 17389.03 186
v884.45 15283.30 16185.80 13587.53 16992.95 14890.31 12782.46 15280.46 15871.43 14066.99 16567.16 16686.14 13589.26 16690.22 15296.94 13596.06 116
CDS-MVSNet88.34 10888.71 10187.90 11690.70 13594.54 10692.38 10286.02 11280.37 15979.42 10979.30 10983.43 9082.04 16493.39 10194.01 7396.86 14495.93 119
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4284.48 15083.36 16085.79 13687.14 17693.28 13890.03 13483.98 13580.30 16071.20 14366.90 16767.17 16585.55 13989.35 16390.27 15096.82 14596.27 110
MDTV_nov1_ep13_2view80.43 18480.94 18479.84 18684.82 19490.87 18684.23 18673.80 19080.28 16164.33 18570.05 15668.77 15879.67 17484.83 19083.50 19392.17 19188.25 193
CVMVSNet83.83 15985.53 14081.85 18389.60 14290.92 18587.81 16683.21 14480.11 16260.16 19376.47 12478.57 12076.79 18389.76 15890.13 15393.51 18292.75 165
WR-MVS83.14 16883.38 15982.87 17487.55 16893.29 13786.36 17884.21 13180.05 16366.41 17566.91 16666.92 16875.66 18788.96 17090.56 14497.05 12796.96 87
PM-MVS80.29 18579.30 18781.45 18581.91 19988.23 19582.61 19079.01 17479.99 16467.15 17269.07 15851.39 20682.92 15987.55 17885.59 18395.08 17793.28 159
v2v48284.51 14883.05 16486.20 13387.25 17393.28 13890.22 12985.40 12079.94 16569.78 15367.74 16265.15 17787.57 11889.12 16890.55 14596.97 13195.60 125
v1084.18 15383.17 16385.37 13987.34 17192.68 15690.32 12681.33 16379.93 16669.23 15866.33 17065.74 17387.03 12490.84 14090.38 14796.97 13196.29 109
SixPastTwentyTwo83.12 16983.44 15682.74 17587.71 16693.11 14682.30 19282.33 15379.24 16764.33 18578.77 11262.75 18584.11 15388.11 17487.89 17695.70 16594.21 148
v14883.61 16282.10 17185.37 13987.34 17192.94 14987.48 16785.72 11878.92 16873.87 12865.71 17564.69 18181.78 16887.82 17589.35 17096.01 15895.26 134
v114484.03 15782.88 16585.37 13987.17 17593.15 14590.18 13083.31 14378.83 16967.85 16665.99 17264.99 17886.79 12790.75 14290.33 14996.90 14096.15 113
v119283.56 16382.35 16884.98 14486.84 18292.84 15190.01 13682.70 14678.54 17066.48 17464.88 18062.91 18486.91 12690.72 14390.25 15196.94 13596.32 107
v192192083.30 16682.09 17284.70 14886.59 18592.67 15789.82 14282.23 15578.32 17165.76 17964.64 18262.35 18786.78 12890.34 14990.02 15997.02 12996.31 108
N_pmnet77.55 19276.68 19578.56 19085.43 19287.30 19978.84 19781.88 15878.30 17260.61 19261.46 18862.15 18874.03 19282.04 19780.69 19990.59 20084.81 200
anonymousdsp84.51 14885.85 13882.95 17386.30 18793.51 13185.77 18280.38 16978.25 17363.42 18873.51 14072.20 14484.64 14793.21 10592.16 11497.19 11898.14 43
v14419283.48 16482.23 16984.94 14586.65 18392.84 15189.63 14682.48 15177.87 17467.36 17065.33 17763.50 18386.51 12989.72 16089.99 16197.03 12896.35 105
CP-MVSNet83.11 17082.15 17084.23 15587.20 17492.70 15586.42 17783.53 14177.83 17567.67 16866.89 16860.53 19682.47 16189.23 16790.65 14398.08 7197.20 82
DeepMVS_CXcopyleft71.82 20868.37 20748.05 21077.38 17646.88 20865.77 17447.03 21167.48 19664.27 20776.89 20976.72 204
WR-MVS_H82.86 17382.66 16783.10 17087.44 17093.33 13685.71 18383.20 14577.36 17768.20 16566.37 16965.23 17676.05 18689.35 16390.13 15397.99 8096.89 90
v124082.88 17281.66 17684.29 15486.46 18692.52 16389.06 15381.82 15977.16 17865.09 18364.17 18461.50 19186.36 13090.12 15390.13 15396.95 13496.04 117
TAMVS84.94 14484.95 14384.93 14688.82 14793.18 14288.44 16181.28 16477.16 17873.76 12975.43 13376.57 13682.04 16490.59 14690.79 13695.22 17690.94 175
PEN-MVS82.49 17681.58 17783.56 16486.93 18092.05 17286.71 17583.84 13676.94 18064.68 18467.24 16360.11 19781.17 17187.78 17690.70 14298.02 7796.21 111
v7n82.25 17881.54 17883.07 17185.55 19192.58 15986.68 17681.10 16776.54 18165.97 17862.91 18660.56 19582.36 16291.07 13890.35 14896.77 14796.80 91
pmmvs583.37 16582.68 16684.18 15787.13 17793.18 14286.74 17482.08 15676.48 18267.28 17171.26 14862.70 18684.71 14690.77 14190.12 15697.15 12094.24 146
PS-CasMVS82.53 17581.54 17883.68 16287.08 17992.54 16186.20 17983.46 14276.46 18365.73 18065.71 17559.41 20181.61 16989.06 16990.55 14598.03 7697.07 85
DTE-MVSNet81.76 18181.04 18382.60 17886.63 18491.48 18385.97 18183.70 13776.45 18462.44 18967.16 16459.98 19878.98 17887.15 18089.93 16297.88 8795.12 136
EU-MVSNet78.43 18880.25 18676.30 19383.81 19687.27 20080.99 19479.52 17276.01 18554.12 20270.44 15364.87 17967.40 19786.23 18585.54 18591.95 19491.41 170
new_pmnet72.29 19773.25 19771.16 20075.35 20481.38 20473.72 20469.27 20275.97 18649.84 20756.27 19656.12 20469.08 19481.73 19880.86 19889.72 20380.44 203
MVS-HIRNet78.16 18977.57 19378.83 18985.83 18987.76 19676.67 19970.22 20175.82 18767.39 16955.61 19770.52 15081.96 16686.67 18485.06 18890.93 19881.58 202
Anonymous2023120678.09 19078.11 19178.07 19185.19 19389.17 19280.99 19481.24 16675.46 18858.25 19754.78 20159.90 19966.73 19888.94 17188.26 17596.01 15890.25 181
pmmvs-eth3d79.78 18777.58 19282.34 18081.57 20087.46 19882.92 18981.28 16475.33 18971.34 14161.88 18752.41 20581.59 17087.56 17786.90 17995.36 17591.48 169
UniMVSNet_ETH3D84.57 14681.40 18088.28 11089.34 14594.38 11390.33 12586.50 11074.74 19077.52 11559.90 19362.04 19088.78 11288.82 17292.65 10597.22 11697.24 78
pm-mvs184.55 14783.46 15485.82 13488.16 15893.39 13489.05 15485.36 12174.03 19172.43 13665.08 17871.11 14882.30 16393.48 9891.70 12597.64 10395.43 131
tfpnnormal83.80 16081.26 18286.77 12889.60 14293.26 14089.72 14487.60 10572.78 19270.44 14860.53 19261.15 19385.55 13992.72 10891.44 12997.71 9696.92 89
FPMVS69.87 19967.10 20273.10 19784.09 19578.35 20779.40 19676.41 18371.92 19357.71 19854.06 20350.04 20756.72 20271.19 20368.70 20484.25 20575.43 205
ambc67.96 20173.69 20579.79 20673.82 20371.61 19459.80 19446.00 20420.79 21466.15 19986.92 18280.11 20089.13 20490.50 178
MDA-MVSNet-bldmvs73.81 19472.56 19875.28 19472.52 20788.87 19374.95 20282.67 14871.57 19555.02 20065.96 17342.84 21276.11 18570.61 20481.47 19790.38 20186.59 194
EG-PatchMatch MVS81.70 18281.31 18182.15 18188.75 14893.81 12187.14 17178.89 17571.57 19564.12 18761.20 19168.46 15976.73 18491.48 12990.77 13897.28 11491.90 167
TransMVSNet (Re)82.67 17480.93 18584.69 14988.71 14991.50 18187.90 16487.15 10671.54 19768.24 16463.69 18564.67 18278.51 18091.65 12890.73 14197.64 10392.73 166
test20.0376.41 19378.49 19073.98 19585.64 19087.50 19775.89 20080.71 16870.84 19851.07 20668.06 16161.40 19254.99 20488.28 17387.20 17895.58 17086.15 195
CMPMVSbinary61.19 1779.86 18677.46 19482.66 17791.54 12391.82 17683.25 18881.57 16170.51 19968.64 16159.89 19466.77 16979.63 17584.00 19484.30 19091.34 19584.89 199
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Gipumacopyleft58.52 20256.17 20461.27 20267.14 20958.06 21052.16 21168.40 20469.00 20045.02 20922.79 20820.57 21555.11 20376.27 20179.33 20179.80 20867.16 208
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet72.32 19671.09 19973.74 19681.17 20184.86 20372.21 20577.48 18068.32 20154.89 20155.10 19949.31 20963.68 20179.30 20076.46 20293.03 18684.32 201
MIMVSNet173.19 19573.70 19672.60 19865.42 21086.69 20175.56 20179.65 17167.87 20255.30 19945.24 20556.41 20363.79 20086.98 18187.66 17795.85 16085.04 198
LTVRE_ROB81.71 1682.44 17781.84 17583.13 16889.01 14692.99 14788.90 15682.32 15466.26 20354.02 20374.68 13559.62 20088.87 11090.71 14492.02 11895.68 16696.62 95
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs680.90 18378.77 18883.38 16785.84 18891.61 17986.01 18082.54 15064.17 20470.43 14954.14 20267.06 16780.73 17390.50 14889.17 17294.74 18194.75 140
gm-plane-assit77.65 19178.50 18976.66 19287.96 16085.43 20264.70 20874.50 18764.15 20551.26 20561.32 19058.17 20284.11 15395.16 5893.83 7597.45 11091.41 170
gg-mvs-nofinetune81.83 18083.58 15379.80 18791.57 12196.54 8493.79 8368.80 20362.71 20643.01 21055.28 19885.06 8483.65 15596.13 4494.86 5997.98 8394.46 143
pmmvs371.13 19871.06 20071.21 19973.54 20680.19 20571.69 20664.86 20562.04 20752.10 20454.92 20048.00 21075.03 18883.75 19583.24 19490.04 20285.27 197
PMVScopyleft56.77 1861.27 20158.64 20364.35 20175.66 20354.60 21153.62 21074.23 18853.69 20858.37 19644.27 20649.38 20844.16 20769.51 20565.35 20680.07 20773.66 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS253.68 20355.72 20551.30 20358.84 21167.02 20954.23 20960.97 20847.50 20919.42 21234.81 20731.97 21330.88 20965.84 20669.99 20383.47 20672.92 207
EMVS39.04 20634.32 20844.54 20658.25 21239.35 21427.61 21462.55 20735.99 21016.40 21420.04 21114.77 21644.80 20533.12 21044.10 20957.61 21252.89 211
E-PMN40.00 20435.74 20744.98 20557.69 21339.15 21528.05 21362.70 20635.52 21117.78 21320.90 20914.36 21744.47 20635.89 20947.86 20859.15 21156.47 210
MVEpermissive39.81 1939.52 20541.58 20637.11 20733.93 21449.06 21226.45 21554.22 20929.46 21224.15 21120.77 21010.60 21834.42 20851.12 20865.27 20749.49 21364.81 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs4.35 2076.54 2091.79 2090.60 2151.82 2163.06 2170.95 2127.22 2130.88 21612.38 2121.25 2193.87 2126.09 2115.58 2101.40 21411.42 213
test1233.48 2085.31 2101.34 2100.20 2171.52 2172.17 2180.58 2136.13 2140.31 2179.85 2130.31 2203.90 2112.65 2125.28 2110.87 21511.46 212
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1497.28 22
SR-MVS98.93 1896.00 1697.75 13
our_test_386.93 18089.77 19181.61 193
test_part198.96 10
MTAPA95.36 297.46 19
MTMP95.70 196.90 25
Patchmatch-RL test18.47 216
XVS95.68 6298.66 1294.96 5988.03 5096.06 3198.46 27
X-MVStestdata95.68 6298.66 1294.96 5988.03 5096.06 3198.46 27
mPP-MVS98.76 2395.49 38
Patchmtry92.39 16589.18 15073.30 19471.08 144