MSP-MVS | | | 97.93 1 | 98.23 1 | 97.58 2 | 99.05 6 | 99.31 1 | 98.64 4 | 96.62 3 | 97.56 1 | 95.08 4 | 96.61 12 | 99.64 1 | 97.32 1 | 97.91 2 | 97.31 6 | 98.77 11 | 99.26 1 |
|
DeepPCF-MVS | | 92.65 2 | 95.50 33 | 96.96 17 | 93.79 50 | 96.44 56 | 98.21 37 | 93.51 91 | 94.08 36 | 96.94 2 | 89.29 42 | 93.08 30 | 96.77 26 | 93.82 53 | 97.68 7 | 97.40 4 | 95.59 169 | 98.65 14 |
|
DVP-MVS | | | 97.70 4 | 98.09 3 | 97.24 5 | 99.00 11 | 99.17 3 | 98.76 3 | 96.41 8 | 96.91 3 | 93.88 14 | 97.72 3 | 99.04 5 | 96.93 10 | 97.29 14 | 97.31 6 | 98.45 30 | 99.23 2 |
|
SD-MVS | | | 97.35 6 | 97.73 6 | 96.90 14 | 97.35 44 | 98.66 12 | 97.85 24 | 96.25 10 | 96.86 4 | 94.54 8 | 96.75 10 | 99.13 4 | 96.99 7 | 96.94 22 | 96.58 21 | 98.39 38 | 99.20 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APDe-MVS | | | 97.79 3 | 97.96 4 | 97.60 1 | 99.20 2 | 99.10 4 | 98.88 2 | 96.68 2 | 96.81 5 | 94.64 5 | 97.84 2 | 98.02 9 | 97.24 3 | 97.74 6 | 97.02 12 | 98.97 3 | 99.16 4 |
|
TSAR-MVS + MP. | | | 97.31 7 | 97.64 7 | 96.92 13 | 97.28 46 | 98.56 21 | 98.61 5 | 95.48 28 | 96.72 6 | 94.03 13 | 96.73 11 | 98.29 7 | 97.15 4 | 97.61 10 | 96.42 24 | 98.96 4 | 99.13 5 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HFP-MVS | | | 97.11 12 | 97.19 14 | 97.00 12 | 98.97 13 | 98.73 10 | 98.37 10 | 95.69 21 | 96.60 7 | 93.28 20 | 96.87 7 | 96.64 27 | 97.27 2 | 96.64 30 | 96.33 31 | 98.44 31 | 98.56 19 |
|
ACMMPR | | | 96.92 16 | 96.96 17 | 96.87 15 | 98.99 12 | 98.78 9 | 98.38 9 | 95.52 24 | 96.57 8 | 92.81 24 | 96.06 19 | 95.90 35 | 97.07 5 | 96.60 32 | 96.34 30 | 98.46 27 | 98.42 32 |
|
TSAR-MVS + ACMM | | | 96.19 22 | 97.39 11 | 94.78 37 | 97.70 39 | 98.41 33 | 97.72 26 | 95.49 27 | 96.47 9 | 86.66 64 | 96.35 14 | 97.85 11 | 93.99 49 | 97.19 17 | 96.37 26 | 97.12 123 | 99.13 5 |
|
SMA-MVS | | | 97.53 5 | 97.93 5 | 97.07 10 | 99.21 1 | 99.02 6 | 98.08 18 | 96.25 10 | 96.36 10 | 93.57 15 | 96.56 13 | 99.27 3 | 96.78 15 | 97.91 2 | 97.43 3 | 98.51 20 | 98.94 11 |
|
NCCC | | | 96.75 18 | 96.67 23 | 96.85 16 | 99.03 9 | 98.44 32 | 98.15 15 | 96.28 9 | 96.32 11 | 92.39 25 | 92.16 34 | 97.55 18 | 96.68 18 | 97.32 11 | 96.65 20 | 98.55 19 | 98.26 36 |
|
DeepC-MVS_fast | | 93.32 1 | 96.48 21 | 96.42 26 | 96.56 20 | 98.70 25 | 98.31 36 | 97.97 21 | 95.76 20 | 96.31 12 | 92.01 27 | 91.43 39 | 95.42 39 | 96.46 21 | 97.65 9 | 97.69 1 | 98.49 24 | 98.12 45 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OMC-MVS | | | 94.49 43 | 94.36 43 | 94.64 40 | 97.17 48 | 97.73 55 | 95.49 55 | 92.25 44 | 96.18 13 | 90.34 39 | 88.51 52 | 92.88 49 | 94.90 37 | 94.92 63 | 94.17 67 | 97.69 99 | 96.15 113 |
|
xxxxxxxxxxxxxcwj | | | 95.62 30 | 94.35 44 | 97.10 8 | 98.95 15 | 98.51 26 | 97.51 28 | 96.48 5 | 96.17 14 | 94.64 5 | 97.32 4 | 76.98 133 | 96.23 25 | 96.78 25 | 96.15 36 | 98.79 9 | 98.55 24 |
|
SF-MVS | | | 97.20 10 | 97.29 12 | 97.10 8 | 98.95 15 | 98.51 26 | 97.51 28 | 96.48 5 | 96.17 14 | 94.64 5 | 97.32 4 | 97.57 17 | 96.23 25 | 96.78 25 | 96.15 36 | 98.79 9 | 98.55 24 |
|
CNVR-MVS | | | 97.30 8 | 97.41 9 | 97.18 7 | 99.02 10 | 98.60 19 | 98.15 15 | 96.24 12 | 96.12 16 | 94.10 11 | 95.54 24 | 97.99 10 | 96.99 7 | 97.97 1 | 97.17 8 | 98.57 18 | 98.50 27 |
|
zzz-MVS | | | 96.98 14 | 96.68 22 | 97.33 4 | 99.09 3 | 98.71 11 | 98.43 7 | 96.01 15 | 96.11 17 | 95.19 3 | 92.89 32 | 97.32 21 | 96.84 11 | 97.20 15 | 96.09 39 | 98.44 31 | 98.46 31 |
|
DPE-MVS | | | 97.83 2 | 98.13 2 | 97.48 3 | 98.83 22 | 99.19 2 | 98.99 1 | 96.70 1 | 96.05 18 | 94.39 9 | 98.30 1 | 99.47 2 | 97.02 6 | 97.75 5 | 97.02 12 | 98.98 2 | 99.10 7 |
|
HPM-MVS++ | | | 97.22 9 | 97.40 10 | 97.01 11 | 99.08 4 | 98.55 22 | 98.19 13 | 96.48 5 | 96.02 19 | 93.28 20 | 96.26 16 | 98.71 6 | 96.76 16 | 97.30 13 | 96.25 33 | 98.30 48 | 98.68 13 |
|
TSAR-MVS + GP. | | | 95.86 27 | 96.95 19 | 94.60 42 | 94.07 82 | 98.11 41 | 96.30 43 | 91.76 50 | 95.67 20 | 91.07 31 | 96.82 9 | 97.69 15 | 95.71 30 | 95.96 47 | 95.75 45 | 98.68 12 | 98.63 15 |
|
ACMMP_NAP | | | 96.93 15 | 97.27 13 | 96.53 23 | 99.06 5 | 98.95 7 | 98.24 12 | 96.06 14 | 95.66 21 | 90.96 33 | 95.63 23 | 97.71 14 | 96.53 19 | 97.66 8 | 96.68 18 | 98.30 48 | 98.61 18 |
|
CNLPA | | | 93.69 50 | 92.50 61 | 95.06 36 | 97.11 49 | 97.36 63 | 93.88 81 | 93.30 38 | 95.64 22 | 93.44 18 | 80.32 106 | 90.73 62 | 94.99 36 | 93.58 94 | 93.33 88 | 97.67 101 | 96.57 99 |
|
MCST-MVS | | | 96.83 17 | 97.06 15 | 96.57 19 | 98.88 20 | 98.47 30 | 98.02 20 | 96.16 13 | 95.58 23 | 90.96 33 | 95.78 22 | 97.84 12 | 96.46 21 | 97.00 21 | 96.17 35 | 98.94 5 | 98.55 24 |
|
CSCG | | | 95.68 29 | 95.46 34 | 95.93 27 | 98.71 24 | 99.07 5 | 97.13 35 | 93.55 37 | 95.48 24 | 93.35 19 | 90.61 44 | 93.82 45 | 95.16 34 | 94.60 75 | 95.57 47 | 97.70 98 | 99.08 8 |
|
CP-MVS | | | 96.68 19 | 96.59 25 | 96.77 17 | 98.85 21 | 98.58 20 | 98.18 14 | 95.51 26 | 95.34 25 | 92.94 23 | 95.21 27 | 96.25 30 | 96.79 14 | 96.44 37 | 95.77 44 | 98.35 40 | 98.56 19 |
|
TSAR-MVS + COLMAP | | | 92.39 61 | 92.31 66 | 92.47 65 | 95.35 72 | 96.46 87 | 96.13 45 | 92.04 47 | 95.33 26 | 80.11 106 | 94.95 28 | 77.35 131 | 94.05 48 | 94.49 79 | 93.08 96 | 97.15 120 | 94.53 142 |
|
MVS_111021_LR | | | 94.84 39 | 95.57 31 | 94.00 44 | 97.11 49 | 97.72 57 | 94.88 61 | 91.16 56 | 95.24 27 | 88.74 47 | 96.03 20 | 91.52 57 | 94.33 45 | 95.96 47 | 95.01 56 | 97.79 90 | 97.49 70 |
|
X-MVS | | | 96.07 25 | 96.33 27 | 95.77 29 | 98.94 17 | 98.66 12 | 97.94 22 | 95.41 30 | 95.12 28 | 88.03 50 | 93.00 31 | 96.06 31 | 95.85 27 | 96.65 29 | 96.35 27 | 98.47 25 | 98.48 28 |
|
SteuartSystems-ACMMP | | | 97.10 13 | 97.49 8 | 96.65 18 | 98.97 13 | 98.95 7 | 98.43 7 | 95.96 17 | 95.12 28 | 91.46 28 | 96.85 8 | 97.60 16 | 96.37 23 | 97.76 4 | 97.16 9 | 98.68 12 | 98.97 9 |
Skip Steuart: Steuart Systems R&D Blog. |
3Dnovator+ | | 90.56 5 | 95.06 36 | 94.56 41 | 95.65 31 | 98.11 31 | 98.15 40 | 97.19 33 | 91.59 52 | 95.11 30 | 93.23 22 | 81.99 98 | 94.71 42 | 95.43 33 | 96.48 34 | 96.88 16 | 98.35 40 | 98.63 15 |
|
DeepC-MVS | | 92.10 3 | 95.22 34 | 94.77 38 | 95.75 30 | 97.77 37 | 98.54 23 | 97.63 27 | 95.96 17 | 95.07 31 | 88.85 46 | 85.35 72 | 91.85 53 | 95.82 28 | 96.88 24 | 97.10 10 | 98.44 31 | 98.63 15 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PLC | | 90.69 4 | 94.32 44 | 92.99 55 | 95.87 28 | 97.91 33 | 96.49 85 | 95.95 50 | 94.12 35 | 94.94 32 | 94.09 12 | 85.90 68 | 90.77 61 | 95.58 31 | 94.52 77 | 93.32 90 | 97.55 106 | 95.00 138 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TAPA-MVS | | 90.35 6 | 93.69 50 | 93.52 49 | 93.90 47 | 96.89 52 | 97.62 58 | 96.15 44 | 91.67 51 | 94.94 32 | 85.97 68 | 87.72 56 | 91.96 52 | 94.40 42 | 93.76 92 | 93.06 98 | 98.30 48 | 95.58 126 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DPM-MVS | | | 95.07 35 | 94.84 37 | 95.34 34 | 97.44 43 | 97.49 61 | 97.76 25 | 95.52 24 | 94.88 34 | 88.92 45 | 87.25 57 | 96.44 29 | 94.41 41 | 95.78 50 | 96.11 38 | 97.99 80 | 95.95 118 |
|
ACMMP | | | 95.54 31 | 95.49 33 | 95.61 32 | 98.27 30 | 98.53 24 | 97.16 34 | 94.86 32 | 94.88 34 | 89.34 41 | 95.36 26 | 91.74 54 | 95.50 32 | 95.51 54 | 94.16 68 | 98.50 22 | 98.22 38 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
APD-MVS | | | 97.12 11 | 97.05 16 | 97.19 6 | 99.04 7 | 98.63 17 | 98.45 6 | 96.54 4 | 94.81 36 | 93.50 16 | 96.10 18 | 97.40 20 | 96.81 12 | 97.05 19 | 96.82 17 | 98.80 7 | 98.56 19 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
3Dnovator | | 90.28 7 | 94.70 42 | 94.34 45 | 95.11 35 | 98.06 32 | 98.21 37 | 96.89 37 | 91.03 58 | 94.72 37 | 91.45 29 | 82.87 89 | 93.10 48 | 94.61 38 | 96.24 43 | 97.08 11 | 98.63 15 | 98.16 41 |
|
MSLP-MVS++ | | | 96.05 26 | 95.63 30 | 96.55 21 | 98.33 29 | 98.17 39 | 96.94 36 | 94.61 34 | 94.70 38 | 94.37 10 | 89.20 50 | 95.96 34 | 96.81 12 | 95.57 53 | 97.33 5 | 98.24 56 | 98.47 29 |
|
CPTT-MVS | | | 95.54 31 | 95.07 35 | 96.10 25 | 97.88 35 | 97.98 47 | 97.92 23 | 94.86 32 | 94.56 39 | 92.16 26 | 91.01 41 | 95.71 36 | 96.97 9 | 94.56 76 | 93.50 84 | 96.81 146 | 98.14 43 |
|
MP-MVS | | | 96.56 20 | 96.72 21 | 96.37 24 | 98.93 18 | 98.48 28 | 98.04 19 | 95.55 23 | 94.32 40 | 90.95 35 | 95.88 21 | 97.02 24 | 96.29 24 | 96.77 27 | 96.01 41 | 98.47 25 | 98.56 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MVS_111021_HR | | | 94.84 39 | 95.91 29 | 93.60 51 | 97.35 44 | 98.46 31 | 95.08 58 | 91.19 55 | 94.18 41 | 85.97 68 | 95.38 25 | 92.56 50 | 93.61 56 | 96.61 31 | 96.25 33 | 98.40 36 | 97.92 54 |
|
PHI-MVS | | | 95.86 27 | 96.93 20 | 94.61 41 | 97.60 41 | 98.65 16 | 96.49 40 | 93.13 40 | 94.07 42 | 87.91 53 | 97.12 6 | 97.17 23 | 93.90 52 | 96.46 35 | 96.93 15 | 98.64 14 | 98.10 47 |
|
canonicalmvs | | | 93.08 53 | 93.09 53 | 93.07 60 | 94.24 77 | 97.86 49 | 95.45 56 | 87.86 98 | 94.00 43 | 87.47 57 | 88.32 53 | 82.37 101 | 95.13 35 | 93.96 91 | 96.41 25 | 98.27 52 | 98.73 12 |
|
train_agg | | | 96.15 24 | 96.64 24 | 95.58 33 | 98.44 27 | 98.03 44 | 98.14 17 | 95.40 31 | 93.90 44 | 87.72 54 | 96.26 16 | 98.10 8 | 95.75 29 | 96.25 42 | 95.45 49 | 98.01 78 | 98.47 29 |
|
abl_6 | | | | | 94.78 37 | 97.46 42 | 97.99 46 | 95.76 51 | 91.80 49 | 93.72 45 | 91.25 30 | 91.33 40 | 96.47 28 | 94.28 46 | | | 98.14 65 | 97.39 73 |
|
AdaColmap | | | 95.02 37 | 93.71 48 | 96.54 22 | 98.51 26 | 97.76 53 | 96.69 39 | 95.94 19 | 93.72 45 | 93.50 16 | 89.01 51 | 90.53 64 | 96.49 20 | 94.51 78 | 93.76 77 | 98.07 72 | 96.69 94 |
|
PGM-MVS | | | 96.16 23 | 96.33 27 | 95.95 26 | 99.04 7 | 98.63 17 | 98.32 11 | 92.76 42 | 93.42 47 | 90.49 38 | 96.30 15 | 95.31 40 | 96.71 17 | 96.46 35 | 96.02 40 | 98.38 39 | 98.19 40 |
|
CANet | | | 94.85 38 | 94.92 36 | 94.78 37 | 97.25 47 | 98.52 25 | 97.20 32 | 91.81 48 | 93.25 48 | 91.06 32 | 86.29 64 | 94.46 43 | 92.99 63 | 97.02 20 | 96.68 18 | 98.34 42 | 98.20 39 |
|
baseline | | | 91.19 76 | 91.89 72 | 90.38 87 | 92.76 108 | 95.04 103 | 93.55 90 | 84.54 128 | 92.92 49 | 85.71 74 | 86.68 62 | 86.96 72 | 89.28 100 | 92.00 123 | 92.62 106 | 96.46 151 | 96.99 86 |
|
CLD-MVS | | | 92.50 60 | 91.96 71 | 93.13 57 | 93.93 88 | 96.24 91 | 95.69 52 | 88.77 80 | 92.92 49 | 89.01 44 | 88.19 55 | 81.74 106 | 93.13 62 | 93.63 93 | 93.08 96 | 98.23 57 | 97.91 56 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CDPH-MVS | | | 94.80 41 | 95.50 32 | 93.98 46 | 98.34 28 | 98.06 42 | 97.41 30 | 93.23 39 | 92.81 51 | 82.98 91 | 92.51 33 | 94.82 41 | 93.53 57 | 96.08 45 | 96.30 32 | 98.42 34 | 97.94 52 |
|
MVS_0304 | | | 94.30 45 | 94.68 39 | 93.86 49 | 96.33 58 | 98.48 28 | 97.41 30 | 91.20 54 | 92.75 52 | 86.96 61 | 86.03 67 | 93.81 46 | 92.64 67 | 96.89 23 | 96.54 23 | 98.61 16 | 98.24 37 |
|
diffmvs | | | 91.37 74 | 91.09 82 | 91.70 74 | 92.71 110 | 96.47 86 | 94.03 75 | 88.78 79 | 92.74 53 | 85.43 82 | 83.63 84 | 80.37 111 | 91.76 76 | 93.39 101 | 93.78 76 | 97.50 108 | 97.23 79 |
|
QAPM | | | 94.13 46 | 94.33 46 | 93.90 47 | 97.82 36 | 98.37 35 | 96.47 41 | 90.89 59 | 92.73 54 | 85.63 75 | 85.35 72 | 93.87 44 | 94.17 47 | 95.71 52 | 95.90 42 | 98.40 36 | 98.42 32 |
|
LS3D | | | 91.97 65 | 90.98 83 | 93.12 58 | 97.03 51 | 97.09 72 | 95.33 57 | 95.59 22 | 92.47 55 | 79.26 110 | 81.60 101 | 82.77 96 | 94.39 43 | 94.28 80 | 94.23 66 | 97.14 122 | 94.45 144 |
|
HQP-MVS | | | 92.39 61 | 92.49 62 | 92.29 69 | 95.65 64 | 95.94 96 | 95.64 54 | 92.12 46 | 92.46 56 | 79.65 108 | 91.97 36 | 82.68 97 | 92.92 65 | 93.47 99 | 92.77 103 | 97.74 94 | 98.12 45 |
|
ACMM | | 88.76 10 | 91.70 72 | 90.43 86 | 93.19 56 | 95.56 65 | 95.14 102 | 93.35 94 | 91.48 53 | 92.26 57 | 87.12 59 | 84.02 80 | 79.34 116 | 93.99 49 | 94.07 86 | 92.68 104 | 97.62 105 | 95.50 127 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ETV-MVS | | | 93.80 48 | 94.57 40 | 92.91 63 | 93.98 84 | 97.50 60 | 93.62 88 | 88.70 81 | 91.95 58 | 87.57 55 | 90.21 46 | 90.79 60 | 94.56 39 | 97.20 15 | 96.35 27 | 99.02 1 | 97.98 49 |
|
PVSNet_BlendedMVS | | | 92.80 55 | 92.44 63 | 93.23 54 | 96.02 60 | 97.83 51 | 93.74 85 | 90.58 60 | 91.86 59 | 90.69 36 | 85.87 70 | 82.04 103 | 90.01 90 | 96.39 38 | 95.26 52 | 98.34 42 | 97.81 59 |
|
PVSNet_Blended | | | 92.80 55 | 92.44 63 | 93.23 54 | 96.02 60 | 97.83 51 | 93.74 85 | 90.58 60 | 91.86 59 | 90.69 36 | 85.87 70 | 82.04 103 | 90.01 90 | 96.39 38 | 95.26 52 | 98.34 42 | 97.81 59 |
|
ACMP | | 89.13 9 | 92.03 64 | 91.70 75 | 92.41 67 | 94.92 73 | 96.44 89 | 93.95 77 | 89.96 65 | 91.81 61 | 85.48 80 | 90.97 42 | 79.12 117 | 92.42 69 | 93.28 104 | 92.55 107 | 97.76 92 | 97.74 62 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
EPNet | | | 93.92 47 | 94.40 42 | 93.36 53 | 97.89 34 | 96.55 83 | 96.08 46 | 92.14 45 | 91.65 62 | 89.16 43 | 94.07 29 | 90.17 68 | 87.78 116 | 95.24 57 | 94.97 57 | 97.09 125 | 98.15 42 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CS-MVS | | | 93.68 52 | 94.33 46 | 92.93 62 | 94.15 78 | 98.04 43 | 94.43 63 | 87.99 90 | 91.64 63 | 87.54 56 | 88.22 54 | 92.09 51 | 94.56 39 | 96.77 27 | 95.85 43 | 98.88 6 | 97.71 63 |
|
NP-MVS | | | | | | | | | | 91.63 64 | | | | | | | | |
|
casdiffmvs | | | 91.72 71 | 91.16 81 | 92.38 68 | 93.16 100 | 97.15 69 | 93.95 77 | 89.49 74 | 91.58 65 | 86.03 67 | 80.75 105 | 80.95 109 | 93.16 61 | 95.25 56 | 95.22 54 | 98.50 22 | 97.23 79 |
|
MVS_Test | | | 91.81 69 | 92.19 67 | 91.37 82 | 93.24 98 | 96.95 76 | 94.43 63 | 86.25 111 | 91.45 66 | 83.45 89 | 86.31 63 | 85.15 83 | 92.93 64 | 93.99 87 | 94.71 61 | 97.92 84 | 96.77 92 |
|
DCV-MVSNet | | | 91.24 75 | 91.26 79 | 91.22 84 | 92.84 107 | 93.44 132 | 93.82 82 | 86.75 108 | 91.33 67 | 85.61 76 | 84.00 81 | 85.46 82 | 91.27 79 | 92.91 106 | 93.62 79 | 97.02 129 | 98.05 48 |
|
thisisatest0530 | | | 91.04 79 | 91.74 73 | 90.21 91 | 92.93 106 | 97.00 74 | 92.06 112 | 87.63 103 | 90.74 68 | 81.51 95 | 86.81 59 | 82.48 98 | 89.23 101 | 94.81 69 | 93.03 100 | 97.90 85 | 97.33 76 |
|
MAR-MVS | | | 92.71 58 | 92.63 59 | 92.79 64 | 97.70 39 | 97.15 69 | 93.75 84 | 87.98 92 | 90.71 69 | 85.76 73 | 86.28 65 | 86.38 75 | 94.35 44 | 94.95 61 | 95.49 48 | 97.22 116 | 97.44 71 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CANet_DTU | | | 90.74 84 | 92.93 57 | 88.19 111 | 94.36 76 | 96.61 81 | 94.34 68 | 84.66 125 | 90.66 70 | 68.75 160 | 90.41 45 | 86.89 73 | 89.78 92 | 95.46 55 | 94.87 58 | 97.25 115 | 95.62 124 |
|
ET-MVSNet_ETH3D | | | 89.93 92 | 90.84 84 | 88.87 104 | 79.60 202 | 96.19 92 | 94.43 63 | 86.56 109 | 90.63 71 | 80.75 103 | 90.71 43 | 77.78 127 | 93.73 55 | 91.36 132 | 93.45 86 | 98.15 63 | 95.77 121 |
|
UGNet | | | 91.52 73 | 93.41 51 | 89.32 100 | 94.13 79 | 97.15 69 | 91.83 116 | 89.01 77 | 90.62 72 | 85.86 72 | 86.83 58 | 91.73 55 | 77.40 181 | 94.68 72 | 94.43 63 | 97.71 96 | 98.40 34 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tttt0517 | | | 91.01 80 | 91.71 74 | 90.19 93 | 92.98 102 | 97.07 73 | 91.96 115 | 87.63 103 | 90.61 73 | 81.42 96 | 86.76 60 | 82.26 102 | 89.23 101 | 94.86 67 | 93.03 100 | 97.90 85 | 97.36 74 |
|
PMMVS | | | 89.88 93 | 91.19 80 | 88.35 109 | 89.73 141 | 91.97 174 | 90.62 122 | 81.92 157 | 90.57 74 | 80.58 105 | 92.16 34 | 86.85 74 | 91.17 80 | 92.31 116 | 91.35 131 | 96.11 157 | 93.11 162 |
|
LGP-MVS_train | | | 91.83 68 | 92.04 70 | 91.58 75 | 95.46 68 | 96.18 93 | 95.97 49 | 89.85 66 | 90.45 75 | 77.76 113 | 91.92 37 | 80.07 114 | 92.34 71 | 94.27 81 | 93.47 85 | 98.11 69 | 97.90 57 |
|
RPSCF | | | 89.68 96 | 89.24 97 | 90.20 92 | 92.97 104 | 92.93 150 | 92.30 104 | 87.69 100 | 90.44 76 | 85.12 84 | 91.68 38 | 85.84 81 | 90.69 86 | 87.34 179 | 86.07 181 | 92.46 190 | 90.37 180 |
|
SCA | | | 86.25 123 | 87.52 120 | 84.77 147 | 91.59 120 | 93.90 119 | 89.11 152 | 73.25 196 | 90.38 77 | 72.84 133 | 83.26 85 | 83.79 89 | 88.49 113 | 86.07 186 | 85.56 184 | 93.33 183 | 89.67 185 |
|
DI_MVS_plusplus_trai | | | 91.05 78 | 90.15 90 | 92.11 70 | 92.67 111 | 96.61 81 | 96.03 47 | 88.44 85 | 90.25 78 | 85.92 70 | 73.73 137 | 84.89 85 | 91.92 73 | 94.17 84 | 94.07 72 | 97.68 100 | 97.31 77 |
|
EPP-MVSNet | | | 92.13 63 | 93.06 54 | 91.05 85 | 93.66 96 | 97.30 64 | 92.18 107 | 87.90 94 | 90.24 79 | 83.63 88 | 86.14 66 | 90.52 66 | 90.76 85 | 94.82 68 | 94.38 64 | 98.18 62 | 97.98 49 |
|
CHOSEN 280x420 | | | 90.77 83 | 92.14 68 | 89.17 102 | 93.86 91 | 92.81 154 | 93.16 95 | 80.22 170 | 90.21 80 | 84.67 87 | 89.89 47 | 91.38 58 | 90.57 88 | 94.94 62 | 92.11 115 | 92.52 189 | 93.65 155 |
|
EPMVS | | | 85.77 131 | 86.24 130 | 85.23 143 | 92.76 108 | 93.78 122 | 89.91 139 | 73.60 192 | 90.19 81 | 74.22 125 | 82.18 97 | 78.06 124 | 87.55 119 | 85.61 188 | 85.38 186 | 93.32 184 | 88.48 191 |
|
PatchmatchNet | | | 85.70 132 | 86.65 125 | 84.60 150 | 91.79 117 | 93.40 133 | 89.27 148 | 73.62 191 | 90.19 81 | 72.63 135 | 82.74 92 | 81.93 105 | 87.64 117 | 84.99 189 | 84.29 191 | 92.64 188 | 89.00 187 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MVSTER | | | 91.73 70 | 91.61 76 | 91.86 72 | 93.18 99 | 94.56 105 | 94.37 66 | 87.90 94 | 90.16 83 | 88.69 48 | 89.23 49 | 81.28 108 | 88.92 109 | 95.75 51 | 93.95 74 | 98.12 67 | 96.37 104 |
|
GBi-Net | | | 90.21 89 | 90.11 91 | 90.32 89 | 88.66 151 | 93.65 128 | 94.25 71 | 85.78 115 | 90.03 84 | 85.56 77 | 77.38 116 | 86.13 76 | 89.38 97 | 93.97 88 | 94.16 68 | 98.31 45 | 95.47 128 |
|
test1 | | | 90.21 89 | 90.11 91 | 90.32 89 | 88.66 151 | 93.65 128 | 94.25 71 | 85.78 115 | 90.03 84 | 85.56 77 | 77.38 116 | 86.13 76 | 89.38 97 | 93.97 88 | 94.16 68 | 98.31 45 | 95.47 128 |
|
FMVSNet3 | | | 90.19 91 | 90.06 93 | 90.34 88 | 88.69 150 | 93.85 120 | 94.58 62 | 85.78 115 | 90.03 84 | 85.56 77 | 77.38 116 | 86.13 76 | 89.22 103 | 93.29 103 | 94.36 65 | 98.20 60 | 95.40 132 |
|
ADS-MVSNet | | | 84.08 155 | 84.95 143 | 83.05 172 | 91.53 124 | 91.75 177 | 88.16 162 | 70.70 200 | 89.96 87 | 69.51 155 | 78.83 111 | 76.97 134 | 86.29 132 | 84.08 193 | 84.60 189 | 92.13 193 | 88.48 191 |
|
PatchMatch-RL | | | 90.30 88 | 88.93 100 | 91.89 71 | 95.41 71 | 95.68 98 | 90.94 119 | 88.67 82 | 89.80 88 | 86.95 62 | 85.90 68 | 72.51 142 | 92.46 68 | 93.56 96 | 92.18 113 | 96.93 138 | 92.89 163 |
|
EIA-MVS | | | 92.72 57 | 92.96 56 | 92.44 66 | 93.86 91 | 97.76 53 | 93.13 96 | 88.65 83 | 89.78 89 | 86.68 63 | 86.69 61 | 87.57 70 | 93.74 54 | 96.07 46 | 95.32 50 | 98.58 17 | 97.53 68 |
|
CHOSEN 1792x2688 | | | 88.57 106 | 87.82 113 | 89.44 99 | 95.46 68 | 96.89 78 | 93.74 85 | 85.87 114 | 89.63 90 | 77.42 116 | 61.38 189 | 83.31 91 | 88.80 111 | 93.44 100 | 93.16 94 | 95.37 174 | 96.95 88 |
|
MSDG | | | 90.42 87 | 88.25 106 | 92.94 61 | 96.67 55 | 94.41 111 | 93.96 76 | 92.91 41 | 89.59 91 | 86.26 66 | 76.74 123 | 80.92 110 | 90.43 89 | 92.60 112 | 92.08 117 | 97.44 111 | 91.41 170 |
|
DELS-MVS | | | 93.71 49 | 93.47 50 | 94.00 44 | 96.82 53 | 98.39 34 | 96.80 38 | 91.07 57 | 89.51 92 | 89.94 40 | 83.80 82 | 89.29 69 | 90.95 83 | 97.32 11 | 97.65 2 | 98.42 34 | 98.32 35 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MDTV_nov1_ep13 | | | 86.64 122 | 87.50 121 | 85.65 137 | 90.73 133 | 93.69 126 | 89.96 137 | 78.03 179 | 89.48 93 | 76.85 118 | 84.92 75 | 82.42 100 | 86.14 135 | 86.85 183 | 86.15 180 | 92.17 191 | 88.97 188 |
|
baseline1 | | | 90.81 81 | 90.29 87 | 91.42 79 | 93.67 95 | 95.86 97 | 93.94 79 | 89.69 71 | 89.29 94 | 82.85 92 | 82.91 88 | 80.30 112 | 89.60 93 | 95.05 59 | 94.79 60 | 98.80 7 | 93.82 153 |
|
OpenMVS | | 88.18 11 | 92.51 59 | 91.61 76 | 93.55 52 | 97.74 38 | 98.02 45 | 95.66 53 | 90.46 62 | 89.14 95 | 86.50 65 | 75.80 130 | 90.38 67 | 92.69 66 | 94.99 60 | 95.30 51 | 98.27 52 | 97.63 64 |
|
EPNet_dtu | | | 88.32 109 | 90.61 85 | 85.64 138 | 96.79 54 | 92.27 166 | 92.03 113 | 90.31 63 | 89.05 96 | 65.44 181 | 89.43 48 | 85.90 80 | 74.22 189 | 92.76 107 | 92.09 116 | 95.02 179 | 92.76 164 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Anonymous20231211 | | | 89.82 94 | 88.18 107 | 91.74 73 | 92.52 112 | 96.09 95 | 93.38 93 | 89.30 76 | 88.95 97 | 85.90 71 | 64.55 183 | 84.39 86 | 92.41 70 | 92.24 119 | 93.06 98 | 96.93 138 | 97.95 51 |
|
Vis-MVSNet (Re-imp) | | | 90.54 86 | 92.76 58 | 87.94 115 | 93.73 94 | 96.94 77 | 92.17 109 | 87.91 93 | 88.77 98 | 76.12 121 | 83.68 83 | 90.80 59 | 79.49 177 | 96.34 40 | 96.35 27 | 98.21 59 | 96.46 101 |
|
GG-mvs-BLEND | | | 62.84 200 | 90.21 88 | 30.91 208 | 0.57 216 | 94.45 109 | 86.99 172 | 0.34 214 | 88.71 99 | 0.98 215 | 81.55 103 | 91.58 56 | 0.86 213 | 92.66 110 | 91.43 130 | 95.73 163 | 91.11 174 |
|
IS_MVSNet | | | 91.87 67 | 93.35 52 | 90.14 95 | 94.09 81 | 97.73 55 | 93.09 97 | 88.12 89 | 88.71 99 | 79.98 107 | 84.49 77 | 90.63 63 | 87.49 120 | 97.07 18 | 96.96 14 | 98.07 72 | 97.88 58 |
|
FMVSNet2 | | | 89.61 97 | 89.14 98 | 90.16 94 | 88.66 151 | 93.65 128 | 94.25 71 | 85.44 119 | 88.57 101 | 84.96 86 | 73.53 139 | 83.82 88 | 89.38 97 | 94.23 82 | 94.68 62 | 98.31 45 | 95.47 128 |
|
PVSNet_Blended_VisFu | | | 91.92 66 | 92.39 65 | 91.36 83 | 95.45 70 | 97.85 50 | 92.25 106 | 89.54 73 | 88.53 102 | 87.47 57 | 79.82 108 | 90.53 64 | 85.47 141 | 96.31 41 | 95.16 55 | 97.99 80 | 98.56 19 |
|
USDC | | | 86.73 121 | 85.96 135 | 87.63 120 | 91.64 119 | 93.97 118 | 92.76 99 | 84.58 127 | 88.19 103 | 70.67 147 | 80.10 107 | 67.86 163 | 89.43 95 | 91.81 125 | 89.77 165 | 96.69 148 | 90.05 183 |
|
tpmrst | | | 83.72 161 | 83.45 155 | 84.03 159 | 92.21 113 | 91.66 178 | 88.74 158 | 73.58 193 | 88.14 104 | 72.67 134 | 77.37 119 | 72.11 145 | 86.34 131 | 82.94 196 | 82.05 195 | 90.63 199 | 89.86 184 |
|
CostFormer | | | 86.78 120 | 86.05 131 | 87.62 121 | 92.15 114 | 93.20 141 | 91.55 118 | 75.83 184 | 88.11 105 | 85.29 83 | 81.76 99 | 76.22 137 | 87.80 115 | 84.45 191 | 85.21 187 | 93.12 185 | 93.42 158 |
|
Anonymous202405211 | | | | 88.00 109 | | 93.16 100 | 96.38 90 | 93.58 89 | 89.34 75 | 87.92 106 | | 65.04 179 | 83.03 93 | 92.07 72 | 92.67 109 | 93.33 88 | 96.96 133 | 97.63 64 |
|
FC-MVSNet-train | | | 90.55 85 | 90.19 89 | 90.97 86 | 93.78 93 | 95.16 101 | 92.11 111 | 88.85 78 | 87.64 107 | 83.38 90 | 84.36 79 | 78.41 122 | 89.53 94 | 94.69 71 | 93.15 95 | 98.15 63 | 97.92 54 |
|
Effi-MVS+ | | | 89.79 95 | 89.83 94 | 89.74 96 | 92.98 102 | 96.45 88 | 93.48 92 | 84.24 130 | 87.62 108 | 76.45 119 | 81.76 99 | 77.56 130 | 93.48 58 | 94.61 74 | 93.59 80 | 97.82 89 | 97.22 81 |
|
baseline2 | | | 88.97 104 | 89.50 95 | 88.36 108 | 91.14 127 | 95.30 99 | 90.13 133 | 85.17 122 | 87.24 109 | 80.80 102 | 84.46 78 | 78.44 121 | 85.60 138 | 93.54 97 | 91.87 121 | 97.31 113 | 95.66 123 |
|
PCF-MVS | | 90.19 8 | 92.98 54 | 92.07 69 | 94.04 43 | 96.39 57 | 97.87 48 | 96.03 47 | 95.47 29 | 87.16 110 | 85.09 85 | 84.81 76 | 93.21 47 | 93.46 59 | 91.98 124 | 91.98 120 | 97.78 91 | 97.51 69 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
COLMAP_ROB | | 84.39 15 | 87.61 113 | 86.03 132 | 89.46 98 | 95.54 67 | 94.48 108 | 91.77 117 | 90.14 64 | 87.16 110 | 75.50 122 | 73.41 142 | 76.86 135 | 87.33 122 | 90.05 156 | 89.76 166 | 96.48 150 | 90.46 179 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Fast-Effi-MVS+ | | | 88.56 107 | 87.99 110 | 89.22 101 | 91.56 122 | 95.21 100 | 92.29 105 | 82.69 147 | 86.82 112 | 77.73 114 | 76.24 128 | 73.39 141 | 93.36 60 | 94.22 83 | 93.64 78 | 97.65 102 | 96.43 102 |
|
pmmvs4 | | | 86.00 130 | 84.28 149 | 88.00 113 | 87.80 162 | 92.01 173 | 89.94 138 | 84.91 123 | 86.79 113 | 80.98 101 | 73.41 142 | 66.34 171 | 88.12 114 | 89.31 165 | 88.90 174 | 96.24 156 | 93.20 161 |
|
MS-PatchMatch | | | 87.63 112 | 87.61 117 | 87.65 119 | 93.95 86 | 94.09 116 | 92.60 101 | 81.52 162 | 86.64 114 | 76.41 120 | 73.46 141 | 85.94 79 | 85.01 145 | 92.23 120 | 90.00 160 | 96.43 153 | 90.93 176 |
|
HyFIR lowres test | | | 87.87 111 | 86.42 128 | 89.57 97 | 95.56 65 | 96.99 75 | 92.37 103 | 84.15 132 | 86.64 114 | 77.17 117 | 57.65 195 | 83.97 87 | 91.08 82 | 92.09 122 | 92.44 108 | 97.09 125 | 95.16 135 |
|
FC-MVSNet-test | | | 86.15 126 | 89.10 99 | 82.71 176 | 89.83 139 | 93.18 142 | 87.88 165 | 84.69 124 | 86.54 116 | 62.18 191 | 82.39 96 | 83.31 91 | 74.18 190 | 92.52 114 | 91.86 122 | 97.50 108 | 93.88 152 |
|
IterMVS-LS | | | 88.60 105 | 88.45 102 | 88.78 105 | 92.02 116 | 92.44 164 | 92.00 114 | 83.57 140 | 86.52 117 | 78.90 112 | 78.61 113 | 81.34 107 | 89.12 104 | 90.68 145 | 93.18 93 | 97.10 124 | 96.35 105 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tmp_tt | | | | | 50.24 204 | 68.55 208 | 46.86 213 | 48.90 212 | 18.28 211 | 86.51 118 | 68.32 163 | 70.19 155 | 65.33 174 | 26.69 210 | 74.37 202 | 66.80 205 | 70.72 210 | |
|
IB-MVS | | 85.10 14 | 87.98 110 | 87.97 111 | 87.99 114 | 94.55 75 | 96.86 79 | 84.52 185 | 88.21 88 | 86.48 119 | 88.54 49 | 74.41 136 | 77.74 128 | 74.10 191 | 89.65 162 | 92.85 102 | 98.06 74 | 97.80 61 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpm cat1 | | | 84.13 154 | 81.99 174 | 86.63 130 | 91.74 118 | 91.50 181 | 90.68 121 | 75.69 185 | 86.12 120 | 85.44 81 | 72.39 146 | 70.72 149 | 85.16 143 | 80.89 199 | 81.56 196 | 91.07 197 | 90.71 177 |
|
thres100view900 | | | 89.36 101 | 87.61 117 | 91.39 80 | 93.90 89 | 96.86 79 | 94.35 67 | 89.66 72 | 85.87 121 | 81.15 98 | 76.46 125 | 70.38 151 | 91.17 80 | 94.09 85 | 93.43 87 | 98.13 66 | 96.16 112 |
|
tfpn200view9 | | | 89.55 98 | 87.86 112 | 91.53 77 | 93.90 89 | 97.26 65 | 94.31 70 | 89.74 68 | 85.87 121 | 81.15 98 | 76.46 125 | 70.38 151 | 91.76 76 | 94.92 63 | 93.51 81 | 98.28 51 | 96.61 96 |
|
thres400 | | | 89.40 100 | 87.58 119 | 91.53 77 | 94.06 83 | 97.21 68 | 94.19 74 | 89.83 67 | 85.69 123 | 81.08 100 | 75.50 132 | 69.76 155 | 91.80 74 | 94.79 70 | 93.51 81 | 98.20 60 | 96.60 97 |
|
thres200 | | | 89.49 99 | 87.72 114 | 91.55 76 | 93.95 86 | 97.25 66 | 94.34 68 | 89.74 68 | 85.66 124 | 81.18 97 | 76.12 129 | 70.19 154 | 91.80 74 | 94.92 63 | 93.51 81 | 98.27 52 | 96.40 103 |
|
test0.0.03 1 | | | 85.58 134 | 87.69 116 | 83.11 169 | 91.22 125 | 92.54 161 | 85.60 184 | 83.62 138 | 85.66 124 | 67.84 167 | 82.79 91 | 79.70 115 | 73.51 193 | 91.15 137 | 90.79 136 | 96.88 142 | 91.23 173 |
|
thres600view7 | | | 89.28 103 | 87.47 122 | 91.39 80 | 94.12 80 | 97.25 66 | 93.94 79 | 89.74 68 | 85.62 126 | 80.63 104 | 75.24 134 | 69.33 156 | 91.66 78 | 94.92 63 | 93.23 91 | 98.27 52 | 96.72 93 |
|
dps | | | 85.00 142 | 83.21 162 | 87.08 124 | 90.73 133 | 92.55 160 | 89.34 147 | 75.29 186 | 84.94 127 | 87.01 60 | 79.27 110 | 67.69 164 | 87.27 123 | 84.22 192 | 83.56 192 | 92.83 187 | 90.25 181 |
|
CR-MVSNet | | | 85.48 136 | 86.29 129 | 84.53 152 | 91.08 130 | 92.10 168 | 89.18 150 | 73.30 194 | 84.75 128 | 71.08 144 | 73.12 145 | 77.91 126 | 86.27 133 | 91.48 129 | 90.75 139 | 96.27 155 | 93.94 150 |
|
RPMNet | | | 84.82 145 | 85.90 136 | 83.56 164 | 91.10 128 | 92.10 168 | 88.73 159 | 71.11 199 | 84.75 128 | 68.79 159 | 73.56 138 | 77.62 129 | 85.33 142 | 90.08 155 | 89.43 169 | 96.32 154 | 93.77 154 |
|
test-LLR | | | 86.88 118 | 88.28 104 | 85.24 142 | 91.22 125 | 92.07 170 | 87.41 168 | 83.62 138 | 84.58 130 | 69.33 156 | 83.00 86 | 82.79 94 | 84.24 149 | 92.26 117 | 89.81 163 | 95.64 167 | 93.44 156 |
|
TESTMET0.1,1 | | | 86.11 128 | 88.28 104 | 83.59 163 | 87.80 162 | 92.07 170 | 87.41 168 | 77.12 181 | 84.58 130 | 69.33 156 | 83.00 86 | 82.79 94 | 84.24 149 | 92.26 117 | 89.81 163 | 95.64 167 | 93.44 156 |
|
DU-MVS | | | 86.12 127 | 84.81 145 | 87.66 118 | 87.77 164 | 93.78 122 | 90.15 131 | 87.87 96 | 84.40 132 | 73.45 130 | 70.59 151 | 64.82 180 | 88.95 107 | 90.14 151 | 92.33 109 | 97.76 92 | 97.62 66 |
|
NR-MVSNet | | | 85.46 137 | 84.54 147 | 86.52 131 | 88.33 156 | 93.78 122 | 90.45 124 | 87.87 96 | 84.40 132 | 71.61 138 | 70.59 151 | 62.09 189 | 82.79 160 | 91.75 126 | 91.75 124 | 98.10 70 | 97.44 71 |
|
UniMVSNet (Re) | | | 86.22 125 | 85.46 142 | 87.11 123 | 88.34 155 | 94.42 110 | 89.65 145 | 87.10 107 | 84.39 134 | 74.61 124 | 70.41 154 | 68.10 161 | 85.10 144 | 91.17 136 | 91.79 123 | 97.84 88 | 97.94 52 |
|
test-mter | | | 86.09 129 | 88.38 103 | 83.43 166 | 87.89 161 | 92.61 158 | 86.89 173 | 77.11 182 | 84.30 135 | 68.62 162 | 82.57 94 | 82.45 99 | 84.34 148 | 92.40 115 | 90.11 157 | 95.74 162 | 94.21 148 |
|
FMVSNet5 | | | 84.47 151 | 84.72 146 | 84.18 157 | 83.30 197 | 88.43 194 | 88.09 163 | 79.42 173 | 84.25 136 | 74.14 127 | 73.15 144 | 78.74 118 | 83.65 155 | 91.19 135 | 91.19 133 | 96.46 151 | 86.07 196 |
|
Vis-MVSNet | | | 89.36 101 | 91.49 78 | 86.88 126 | 92.10 115 | 97.60 59 | 92.16 110 | 85.89 113 | 84.21 137 | 75.20 123 | 82.58 93 | 87.13 71 | 77.40 181 | 95.90 49 | 95.63 46 | 98.51 20 | 97.36 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UniMVSNet_NR-MVSNet | | | 86.80 119 | 85.86 137 | 87.89 117 | 88.17 157 | 94.07 117 | 90.15 131 | 88.51 84 | 84.20 138 | 73.45 130 | 72.38 147 | 70.30 153 | 88.95 107 | 90.25 150 | 92.21 112 | 98.12 67 | 97.62 66 |
|
IterMVS | | | 85.25 140 | 86.49 127 | 83.80 161 | 90.42 137 | 90.77 190 | 90.02 135 | 78.04 178 | 84.10 139 | 66.27 177 | 77.28 120 | 78.41 122 | 83.01 158 | 90.88 139 | 89.72 167 | 95.04 178 | 94.24 146 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchT | | | 83.86 158 | 85.51 141 | 81.94 182 | 88.41 154 | 91.56 180 | 78.79 198 | 71.57 198 | 84.08 140 | 71.08 144 | 70.62 150 | 76.13 138 | 86.27 133 | 91.48 129 | 90.75 139 | 95.52 172 | 93.94 150 |
|
IterMVS-SCA-FT | | | 85.44 138 | 86.71 124 | 83.97 160 | 90.59 136 | 90.84 187 | 89.73 143 | 78.34 176 | 84.07 141 | 66.40 176 | 77.27 121 | 78.66 119 | 83.06 157 | 91.20 134 | 90.10 158 | 95.72 164 | 94.78 139 |
|
Baseline_NR-MVSNet | | | 85.28 139 | 83.42 157 | 87.46 122 | 87.77 164 | 90.80 189 | 89.90 141 | 87.69 100 | 83.93 142 | 74.16 126 | 64.72 181 | 66.43 170 | 87.48 121 | 90.14 151 | 90.83 135 | 97.73 95 | 97.11 84 |
|
Fast-Effi-MVS+-dtu | | | 86.25 123 | 87.70 115 | 84.56 151 | 90.37 138 | 93.70 125 | 90.54 123 | 78.14 177 | 83.50 143 | 65.37 182 | 81.59 102 | 75.83 139 | 86.09 137 | 91.70 127 | 91.70 125 | 96.88 142 | 95.84 120 |
|
Effi-MVS+-dtu | | | 87.51 114 | 88.13 108 | 86.77 128 | 91.10 128 | 94.90 104 | 90.91 120 | 82.67 148 | 83.47 144 | 71.55 139 | 81.11 104 | 77.04 132 | 89.41 96 | 92.65 111 | 91.68 127 | 95.00 180 | 96.09 115 |
|
ACMH+ | | 85.75 12 | 87.19 117 | 86.02 133 | 88.56 107 | 93.42 97 | 94.41 111 | 89.91 139 | 87.66 102 | 83.45 145 | 72.25 137 | 76.42 127 | 71.99 146 | 90.78 84 | 89.86 157 | 90.94 134 | 97.32 112 | 95.11 137 |
|
thisisatest0515 | | | 85.70 132 | 87.00 123 | 84.19 156 | 88.16 158 | 93.67 127 | 84.20 187 | 84.14 133 | 83.39 146 | 72.91 132 | 76.79 122 | 74.75 140 | 78.82 179 | 92.57 113 | 91.26 132 | 96.94 135 | 96.56 100 |
|
TranMVSNet+NR-MVSNet | | | 85.57 135 | 84.41 148 | 86.92 125 | 87.67 167 | 93.34 135 | 90.31 127 | 88.43 86 | 83.07 147 | 70.11 151 | 69.99 157 | 65.28 175 | 86.96 125 | 89.73 159 | 92.27 110 | 98.06 74 | 97.17 83 |
|
OPM-MVS | | | 91.08 77 | 89.34 96 | 93.11 59 | 96.18 59 | 96.13 94 | 96.39 42 | 92.39 43 | 82.97 148 | 81.74 94 | 82.55 95 | 80.20 113 | 93.97 51 | 94.62 73 | 93.23 91 | 98.00 79 | 95.73 122 |
|
TDRefinement | | | 84.97 143 | 83.39 158 | 86.81 127 | 92.97 104 | 94.12 115 | 92.18 107 | 87.77 99 | 82.78 149 | 71.31 142 | 68.43 160 | 68.07 162 | 81.10 172 | 89.70 161 | 89.03 173 | 95.55 171 | 91.62 168 |
|
tpm | | | 83.16 167 | 83.64 152 | 82.60 178 | 90.75 132 | 91.05 184 | 88.49 160 | 73.99 189 | 82.36 150 | 67.08 173 | 78.10 115 | 68.79 157 | 84.17 151 | 85.95 187 | 85.96 182 | 91.09 196 | 93.23 160 |
|
UA-Net | | | 90.81 81 | 92.58 60 | 88.74 106 | 94.87 74 | 97.44 62 | 92.61 100 | 88.22 87 | 82.35 151 | 78.93 111 | 85.20 74 | 95.61 37 | 79.56 176 | 96.52 33 | 96.57 22 | 98.23 57 | 94.37 145 |
|
TinyColmap | | | 84.04 156 | 82.01 173 | 86.42 132 | 90.87 131 | 91.84 175 | 88.89 157 | 84.07 134 | 82.11 152 | 69.89 152 | 71.08 149 | 60.81 194 | 89.04 105 | 90.52 147 | 89.19 171 | 95.76 161 | 88.50 190 |
|
ACMH | | 85.51 13 | 87.31 116 | 86.59 126 | 88.14 112 | 93.96 85 | 94.51 107 | 89.00 155 | 87.99 90 | 81.58 153 | 70.15 150 | 78.41 114 | 71.78 147 | 90.60 87 | 91.30 133 | 91.99 119 | 97.17 119 | 96.58 98 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MIMVSNet | | | 82.97 171 | 84.00 151 | 81.77 184 | 82.23 198 | 92.25 167 | 87.40 170 | 72.73 197 | 81.48 154 | 69.55 154 | 68.79 159 | 72.42 143 | 81.82 167 | 92.23 120 | 92.25 111 | 96.89 141 | 88.61 189 |
|
FMVSNet1 | | | 87.33 115 | 86.00 134 | 88.89 103 | 87.13 177 | 92.83 153 | 93.08 98 | 84.46 129 | 81.35 155 | 82.20 93 | 66.33 170 | 77.96 125 | 88.96 106 | 93.97 88 | 94.16 68 | 97.54 107 | 95.38 133 |
|
GA-MVS | | | 85.08 141 | 85.65 139 | 84.42 153 | 89.77 140 | 94.25 114 | 89.26 149 | 84.62 126 | 81.19 156 | 62.25 190 | 75.72 131 | 68.44 160 | 84.14 152 | 93.57 95 | 91.68 127 | 96.49 149 | 94.71 141 |
|
testgi | | | 81.94 179 | 84.09 150 | 79.43 188 | 89.53 144 | 90.83 188 | 82.49 191 | 81.75 160 | 80.59 157 | 59.46 195 | 82.82 90 | 65.75 172 | 67.97 195 | 90.10 154 | 89.52 168 | 95.39 173 | 89.03 186 |
|
v8 | | | 84.45 152 | 83.30 161 | 85.80 135 | 87.53 169 | 92.95 148 | 90.31 127 | 82.46 152 | 80.46 158 | 71.43 140 | 66.99 165 | 67.16 166 | 86.14 135 | 89.26 166 | 90.22 152 | 96.94 135 | 96.06 116 |
|
CDS-MVSNet | | | 88.34 108 | 88.71 101 | 87.90 116 | 90.70 135 | 94.54 106 | 92.38 102 | 86.02 112 | 80.37 159 | 79.42 109 | 79.30 109 | 83.43 90 | 82.04 164 | 93.39 101 | 94.01 73 | 96.86 144 | 95.93 119 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
V42 | | | 84.48 150 | 83.36 160 | 85.79 136 | 87.14 176 | 93.28 138 | 90.03 134 | 83.98 135 | 80.30 160 | 71.20 143 | 66.90 167 | 67.17 165 | 85.55 139 | 89.35 163 | 90.27 150 | 96.82 145 | 96.27 110 |
|
MDTV_nov1_ep13_2view | | | 80.43 184 | 80.94 184 | 79.84 186 | 84.82 194 | 90.87 186 | 84.23 186 | 73.80 190 | 80.28 161 | 64.33 185 | 70.05 156 | 68.77 158 | 79.67 174 | 84.83 190 | 83.50 193 | 92.17 191 | 88.25 193 |
|
CVMVSNet | | | 83.83 159 | 85.53 140 | 81.85 183 | 89.60 142 | 90.92 185 | 87.81 166 | 83.21 144 | 80.11 162 | 60.16 193 | 76.47 124 | 78.57 120 | 76.79 183 | 89.76 158 | 90.13 153 | 93.51 182 | 92.75 165 |
|
WR-MVS | | | 83.14 168 | 83.38 159 | 82.87 174 | 87.55 168 | 93.29 137 | 86.36 178 | 84.21 131 | 80.05 163 | 66.41 175 | 66.91 166 | 66.92 168 | 75.66 187 | 88.96 170 | 90.56 144 | 97.05 127 | 96.96 87 |
|
PM-MVS | | | 80.29 185 | 79.30 187 | 81.45 185 | 81.91 199 | 88.23 195 | 82.61 190 | 79.01 174 | 79.99 164 | 67.15 172 | 69.07 158 | 51.39 206 | 82.92 159 | 87.55 178 | 85.59 183 | 95.08 177 | 93.28 159 |
|
v2v482 | | | 84.51 148 | 83.05 164 | 86.20 133 | 87.25 173 | 93.28 138 | 90.22 129 | 85.40 120 | 79.94 165 | 69.78 153 | 67.74 162 | 65.15 177 | 87.57 118 | 89.12 168 | 90.55 145 | 96.97 131 | 95.60 125 |
|
v10 | | | 84.18 153 | 83.17 163 | 85.37 139 | 87.34 171 | 92.68 156 | 90.32 126 | 81.33 163 | 79.93 166 | 69.23 158 | 66.33 170 | 65.74 173 | 87.03 124 | 90.84 140 | 90.38 147 | 96.97 131 | 96.29 109 |
|
SixPastTwentyTwo | | | 83.12 169 | 83.44 156 | 82.74 175 | 87.71 166 | 93.11 146 | 82.30 192 | 82.33 153 | 79.24 167 | 64.33 185 | 78.77 112 | 62.75 185 | 84.11 153 | 88.11 174 | 87.89 176 | 95.70 165 | 94.21 148 |
|
v148 | | | 83.61 162 | 82.10 171 | 85.37 139 | 87.34 171 | 92.94 149 | 87.48 167 | 85.72 118 | 78.92 168 | 73.87 128 | 65.71 175 | 64.69 181 | 81.78 168 | 87.82 175 | 89.35 170 | 96.01 158 | 95.26 134 |
|
v1144 | | | 84.03 157 | 82.88 165 | 85.37 139 | 87.17 175 | 93.15 145 | 90.18 130 | 83.31 143 | 78.83 169 | 67.85 166 | 65.99 172 | 64.99 178 | 86.79 127 | 90.75 142 | 90.33 149 | 96.90 140 | 96.15 113 |
|
v1192 | | | 83.56 163 | 82.35 168 | 84.98 144 | 86.84 182 | 92.84 151 | 90.01 136 | 82.70 146 | 78.54 170 | 66.48 174 | 64.88 180 | 62.91 184 | 86.91 126 | 90.72 143 | 90.25 151 | 96.94 135 | 96.32 107 |
|
v1921920 | | | 83.30 166 | 82.09 172 | 84.70 148 | 86.59 185 | 92.67 157 | 89.82 142 | 82.23 155 | 78.32 171 | 65.76 179 | 64.64 182 | 62.35 187 | 86.78 128 | 90.34 149 | 90.02 159 | 97.02 129 | 96.31 108 |
|
N_pmnet | | | 77.55 192 | 76.68 195 | 78.56 190 | 85.43 192 | 87.30 199 | 78.84 197 | 81.88 158 | 78.30 172 | 60.61 192 | 61.46 188 | 62.15 188 | 74.03 192 | 82.04 197 | 80.69 199 | 90.59 200 | 84.81 200 |
|
anonymousdsp | | | 84.51 148 | 85.85 138 | 82.95 173 | 86.30 187 | 93.51 131 | 85.77 182 | 80.38 169 | 78.25 173 | 63.42 188 | 73.51 140 | 72.20 144 | 84.64 147 | 93.21 105 | 92.16 114 | 97.19 118 | 98.14 43 |
|
v144192 | | | 83.48 164 | 82.23 169 | 84.94 145 | 86.65 183 | 92.84 151 | 89.63 146 | 82.48 151 | 77.87 174 | 67.36 170 | 65.33 177 | 63.50 183 | 86.51 129 | 89.72 160 | 89.99 161 | 97.03 128 | 96.35 105 |
|
CP-MVSNet | | | 83.11 170 | 82.15 170 | 84.23 155 | 87.20 174 | 92.70 155 | 86.42 177 | 83.53 141 | 77.83 175 | 67.67 168 | 66.89 168 | 60.53 196 | 82.47 161 | 89.23 167 | 90.65 143 | 98.08 71 | 97.20 82 |
|
DeepMVS_CX | | | | | | | 71.82 208 | 68.37 207 | 48.05 210 | 77.38 176 | 46.88 208 | 65.77 174 | 47.03 211 | 67.48 196 | 64.27 207 | | 76.89 209 | 76.72 204 |
|
WR-MVS_H | | | 82.86 173 | 82.66 167 | 83.10 170 | 87.44 170 | 93.33 136 | 85.71 183 | 83.20 145 | 77.36 177 | 68.20 165 | 66.37 169 | 65.23 176 | 76.05 186 | 89.35 163 | 90.13 153 | 97.99 80 | 96.89 90 |
|
v1240 | | | 82.88 172 | 81.66 176 | 84.29 154 | 86.46 186 | 92.52 163 | 89.06 153 | 81.82 159 | 77.16 178 | 65.09 183 | 64.17 184 | 61.50 191 | 86.36 130 | 90.12 153 | 90.13 153 | 96.95 134 | 96.04 117 |
|
TAMVS | | | 84.94 144 | 84.95 143 | 84.93 146 | 88.82 147 | 93.18 142 | 88.44 161 | 81.28 164 | 77.16 178 | 73.76 129 | 75.43 133 | 76.57 136 | 82.04 164 | 90.59 146 | 90.79 136 | 95.22 176 | 90.94 175 |
|
PEN-MVS | | | 82.49 176 | 81.58 177 | 83.56 164 | 86.93 180 | 92.05 172 | 86.71 175 | 83.84 136 | 76.94 180 | 64.68 184 | 67.24 163 | 60.11 197 | 81.17 171 | 87.78 176 | 90.70 142 | 98.02 77 | 96.21 111 |
|
v7n | | | 82.25 178 | 81.54 178 | 83.07 171 | 85.55 191 | 92.58 159 | 86.68 176 | 81.10 167 | 76.54 181 | 65.97 178 | 62.91 186 | 60.56 195 | 82.36 162 | 91.07 138 | 90.35 148 | 96.77 147 | 96.80 91 |
|
pmmvs5 | | | 83.37 165 | 82.68 166 | 84.18 157 | 87.13 177 | 93.18 142 | 86.74 174 | 82.08 156 | 76.48 182 | 67.28 171 | 71.26 148 | 62.70 186 | 84.71 146 | 90.77 141 | 90.12 156 | 97.15 120 | 94.24 146 |
|
PS-CasMVS | | | 82.53 175 | 81.54 178 | 83.68 162 | 87.08 179 | 92.54 161 | 86.20 179 | 83.46 142 | 76.46 183 | 65.73 180 | 65.71 175 | 59.41 201 | 81.61 169 | 89.06 169 | 90.55 145 | 98.03 76 | 97.07 85 |
|
DTE-MVSNet | | | 81.76 181 | 81.04 183 | 82.60 178 | 86.63 184 | 91.48 183 | 85.97 181 | 83.70 137 | 76.45 184 | 62.44 189 | 67.16 164 | 59.98 198 | 78.98 178 | 87.15 180 | 89.93 162 | 97.88 87 | 95.12 136 |
|
EU-MVSNet | | | 78.43 188 | 80.25 186 | 76.30 193 | 83.81 196 | 87.27 200 | 80.99 194 | 79.52 172 | 76.01 185 | 54.12 202 | 70.44 153 | 64.87 179 | 67.40 197 | 86.23 185 | 85.54 185 | 91.95 194 | 91.41 170 |
|
new_pmnet | | | 72.29 197 | 73.25 197 | 71.16 200 | 75.35 204 | 81.38 204 | 73.72 204 | 69.27 202 | 75.97 186 | 49.84 207 | 56.27 196 | 56.12 204 | 69.08 194 | 81.73 198 | 80.86 198 | 89.72 203 | 80.44 203 |
|
MVS-HIRNet | | | 78.16 189 | 77.57 193 | 78.83 189 | 85.83 189 | 87.76 196 | 76.67 199 | 70.22 201 | 75.82 187 | 67.39 169 | 55.61 197 | 70.52 150 | 81.96 166 | 86.67 184 | 85.06 188 | 90.93 198 | 81.58 202 |
|
Anonymous20231206 | | | 78.09 190 | 78.11 191 | 78.07 191 | 85.19 193 | 89.17 192 | 80.99 194 | 81.24 166 | 75.46 188 | 58.25 197 | 54.78 201 | 59.90 199 | 66.73 198 | 88.94 171 | 88.26 175 | 96.01 158 | 90.25 181 |
|
pmmvs-eth3d | | | 79.78 187 | 77.58 192 | 82.34 180 | 81.57 200 | 87.46 198 | 82.92 189 | 81.28 164 | 75.33 189 | 71.34 141 | 61.88 187 | 52.41 205 | 81.59 170 | 87.56 177 | 86.90 179 | 95.36 175 | 91.48 169 |
|
UniMVSNet_ETH3D | | | 84.57 146 | 81.40 180 | 88.28 110 | 89.34 145 | 94.38 113 | 90.33 125 | 86.50 110 | 74.74 190 | 77.52 115 | 59.90 193 | 62.04 190 | 88.78 112 | 88.82 172 | 92.65 105 | 97.22 116 | 97.24 78 |
|
pm-mvs1 | | | 84.55 147 | 83.46 154 | 85.82 134 | 88.16 158 | 93.39 134 | 89.05 154 | 85.36 121 | 74.03 191 | 72.43 136 | 65.08 178 | 71.11 148 | 82.30 163 | 93.48 98 | 91.70 125 | 97.64 103 | 95.43 131 |
|
tfpnnormal | | | 83.80 160 | 81.26 182 | 86.77 128 | 89.60 142 | 93.26 140 | 89.72 144 | 87.60 105 | 72.78 192 | 70.44 148 | 60.53 192 | 61.15 193 | 85.55 139 | 92.72 108 | 91.44 129 | 97.71 96 | 96.92 89 |
|
FPMVS | | | 69.87 199 | 67.10 202 | 73.10 197 | 84.09 195 | 78.35 207 | 79.40 196 | 76.41 183 | 71.92 193 | 57.71 198 | 54.06 203 | 50.04 207 | 56.72 202 | 71.19 203 | 68.70 204 | 84.25 205 | 75.43 205 |
|
ambc | | | | 67.96 201 | | 73.69 205 | 79.79 206 | 73.82 203 | | 71.61 194 | 59.80 194 | 46.00 204 | 20.79 214 | 66.15 199 | 86.92 182 | 80.11 200 | 89.13 204 | 90.50 178 |
|
MDA-MVSNet-bldmvs | | | 73.81 194 | 72.56 198 | 75.28 194 | 72.52 207 | 88.87 193 | 74.95 202 | 82.67 148 | 71.57 195 | 55.02 200 | 65.96 173 | 42.84 212 | 76.11 185 | 70.61 204 | 81.47 197 | 90.38 201 | 86.59 194 |
|
EG-PatchMatch MVS | | | 81.70 182 | 81.31 181 | 82.15 181 | 88.75 148 | 93.81 121 | 87.14 171 | 78.89 175 | 71.57 195 | 64.12 187 | 61.20 191 | 68.46 159 | 76.73 184 | 91.48 129 | 90.77 138 | 97.28 114 | 91.90 167 |
|
TransMVSNet (Re) | | | 82.67 174 | 80.93 185 | 84.69 149 | 88.71 149 | 91.50 181 | 87.90 164 | 87.15 106 | 71.54 197 | 68.24 164 | 63.69 185 | 64.67 182 | 78.51 180 | 91.65 128 | 90.73 141 | 97.64 103 | 92.73 166 |
|
test20.03 | | | 76.41 193 | 78.49 190 | 73.98 195 | 85.64 190 | 87.50 197 | 75.89 200 | 80.71 168 | 70.84 198 | 51.07 206 | 68.06 161 | 61.40 192 | 54.99 204 | 88.28 173 | 87.20 178 | 95.58 170 | 86.15 195 |
|
CMPMVS | | 61.19 17 | 79.86 186 | 77.46 194 | 82.66 177 | 91.54 123 | 91.82 176 | 83.25 188 | 81.57 161 | 70.51 199 | 68.64 161 | 59.89 194 | 66.77 169 | 79.63 175 | 84.00 194 | 84.30 190 | 91.34 195 | 84.89 199 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Gipuma | | | 58.52 202 | 56.17 204 | 61.27 202 | 67.14 209 | 58.06 210 | 52.16 211 | 68.40 204 | 69.00 200 | 45.02 209 | 22.79 208 | 20.57 215 | 55.11 203 | 76.27 201 | 79.33 201 | 79.80 208 | 67.16 208 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new-patchmatchnet | | | 72.32 196 | 71.09 199 | 73.74 196 | 81.17 201 | 84.86 203 | 72.21 205 | 77.48 180 | 68.32 201 | 54.89 201 | 55.10 199 | 49.31 209 | 63.68 201 | 79.30 200 | 76.46 202 | 93.03 186 | 84.32 201 |
|
MIMVSNet1 | | | 73.19 195 | 73.70 196 | 72.60 198 | 65.42 210 | 86.69 201 | 75.56 201 | 79.65 171 | 67.87 202 | 55.30 199 | 45.24 205 | 56.41 203 | 63.79 200 | 86.98 181 | 87.66 177 | 95.85 160 | 85.04 198 |
|
LTVRE_ROB | | 81.71 16 | 82.44 177 | 81.84 175 | 83.13 168 | 89.01 146 | 92.99 147 | 88.90 156 | 82.32 154 | 66.26 203 | 54.02 203 | 74.68 135 | 59.62 200 | 88.87 110 | 90.71 144 | 92.02 118 | 95.68 166 | 96.62 95 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 80.90 183 | 78.77 188 | 83.38 167 | 85.84 188 | 91.61 179 | 86.01 180 | 82.54 150 | 64.17 204 | 70.43 149 | 54.14 202 | 67.06 167 | 80.73 173 | 90.50 148 | 89.17 172 | 94.74 181 | 94.75 140 |
|
gm-plane-assit | | | 77.65 191 | 78.50 189 | 76.66 192 | 87.96 160 | 85.43 202 | 64.70 208 | 74.50 187 | 64.15 205 | 51.26 205 | 61.32 190 | 58.17 202 | 84.11 153 | 95.16 58 | 93.83 75 | 97.45 110 | 91.41 170 |
|
gg-mvs-nofinetune | | | 81.83 180 | 83.58 153 | 79.80 187 | 91.57 121 | 96.54 84 | 93.79 83 | 68.80 203 | 62.71 206 | 43.01 210 | 55.28 198 | 85.06 84 | 83.65 155 | 96.13 44 | 94.86 59 | 97.98 83 | 94.46 143 |
|
pmmvs3 | | | 71.13 198 | 71.06 200 | 71.21 199 | 73.54 206 | 80.19 205 | 71.69 206 | 64.86 205 | 62.04 207 | 52.10 204 | 54.92 200 | 48.00 210 | 75.03 188 | 83.75 195 | 83.24 194 | 90.04 202 | 85.27 197 |
|
PMVS | | 56.77 18 | 61.27 201 | 58.64 203 | 64.35 201 | 75.66 203 | 54.60 211 | 53.62 210 | 74.23 188 | 53.69 208 | 58.37 196 | 44.27 206 | 49.38 208 | 44.16 207 | 69.51 205 | 65.35 206 | 80.07 207 | 73.66 206 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 53.68 203 | 55.72 205 | 51.30 203 | 58.84 211 | 67.02 209 | 54.23 209 | 60.97 208 | 47.50 209 | 19.42 212 | 34.81 207 | 31.97 213 | 30.88 209 | 65.84 206 | 69.99 203 | 83.47 206 | 72.92 207 |
|
EMVS | | | 39.04 206 | 34.32 208 | 44.54 206 | 58.25 212 | 39.35 214 | 27.61 214 | 62.55 207 | 35.99 210 | 16.40 214 | 20.04 211 | 14.77 216 | 44.80 205 | 33.12 210 | 44.10 209 | 57.61 212 | 52.89 211 |
|
E-PMN | | | 40.00 204 | 35.74 207 | 44.98 205 | 57.69 213 | 39.15 215 | 28.05 213 | 62.70 206 | 35.52 211 | 17.78 213 | 20.90 209 | 14.36 217 | 44.47 206 | 35.89 209 | 47.86 208 | 59.15 211 | 56.47 210 |
|
MVE | | 39.81 19 | 39.52 205 | 41.58 206 | 37.11 207 | 33.93 214 | 49.06 212 | 26.45 215 | 54.22 209 | 29.46 212 | 24.15 211 | 20.77 210 | 10.60 218 | 34.42 208 | 51.12 208 | 65.27 207 | 49.49 213 | 64.81 209 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 4.35 207 | 6.54 209 | 1.79 209 | 0.60 215 | 1.82 216 | 3.06 217 | 0.95 212 | 7.22 213 | 0.88 216 | 12.38 212 | 1.25 219 | 3.87 212 | 6.09 211 | 5.58 210 | 1.40 214 | 11.42 213 |
|
test123 | | | 3.48 208 | 5.31 210 | 1.34 210 | 0.20 217 | 1.52 217 | 2.17 218 | 0.58 213 | 6.13 214 | 0.31 217 | 9.85 213 | 0.31 220 | 3.90 211 | 2.65 212 | 5.28 211 | 0.87 215 | 11.46 212 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
9.14 | | | | | | | | | | | | | 97.28 22 | | | | | |
|
SR-MVS | | | | | | 98.93 18 | | | 96.00 16 | | | | 97.75 13 | | | | | |
|
our_test_3 | | | | | | 86.93 180 | 89.77 191 | 81.61 193 | | | | | | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 98.96 10 |
|
MTAPA | | | | | | | | | | | 95.36 2 | | 97.46 19 | | | | | |
|
MTMP | | | | | | | | | | | 95.70 1 | | 96.90 25 | | | | | |
|
Patchmatch-RL test | | | | | | | | 18.47 216 | | | | | | | | | | |
|
XVS | | | | | | 95.68 62 | 98.66 12 | 94.96 59 | | | 88.03 50 | | 96.06 31 | | | | 98.46 27 | |
|
X-MVStestdata | | | | | | 95.68 62 | 98.66 12 | 94.96 59 | | | 88.03 50 | | 96.06 31 | | | | 98.46 27 | |
|
mPP-MVS | | | | | | 98.76 23 | | | | | | | 95.49 38 | | | | | |
|
Patchmtry | | | | | | | 92.39 165 | 89.18 150 | 73.30 194 | | 71.08 144 | | | | | | | |
|