This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12499.13 6
DPE-MVS97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 9999.08 9
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17098.65 14
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10889.54 7488.53 10387.47 5879.82 10990.53 6585.47 14396.31 4295.16 5697.99 8198.56 19
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13596.23 2696.78 2696.15 3798.79 998.55 24
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
UGNet91.52 7493.41 5289.32 10294.13 8097.15 7091.83 11889.01 7890.62 7385.86 7486.83 5991.73 5677.40 18394.68 7394.43 6497.71 9798.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8497.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11895.24 5894.97 5897.09 12698.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
anonymousdsp84.51 15085.85 13982.95 17586.30 18993.51 13285.77 18480.38 17178.25 17563.42 19073.51 14172.20 14684.64 14993.21 10692.16 11697.19 11998.14 43
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14798.14 43
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9795.64 5592.12 4792.46 5779.65 11091.97 3782.68 9892.92 6693.47 10092.77 10497.74 9598.12 45
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13393.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10793.62 8097.02 13098.05 48
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 10987.90 9590.24 8083.63 9086.14 6790.52 6790.76 8694.82 6994.38 6598.18 6397.98 49
Anonymous2023121189.82 9588.18 10891.74 7492.52 11396.09 9693.38 9489.30 7788.95 9885.90 7364.55 18484.39 8792.41 7192.24 12093.06 9996.93 13997.95 51
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
UniMVSNet (Re)86.22 12785.46 14387.11 12588.34 15794.42 11189.65 14787.10 10884.39 13574.61 12670.41 15568.10 16385.10 14691.17 13791.79 12597.84 8997.94 52
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10292.11 11388.85 7987.64 10883.38 9284.36 8078.41 12489.53 9594.69 7293.15 9698.15 6497.92 54
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9798.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11591.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 10984.49 7890.63 6487.49 12297.07 1996.96 1598.07 7397.88 58
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9196.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9196.39 3995.26 5398.34 4397.81 59
IB-MVS85.10 1487.98 11187.97 11287.99 11694.55 7696.86 8084.52 18788.21 8986.48 12088.54 5074.41 13777.74 13074.10 19389.65 16492.85 10398.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10592.55 10897.76 9397.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
Anonymous20240521188.00 11093.16 10196.38 9193.58 9089.34 7687.92 10765.04 18083.03 9492.07 7392.67 11093.33 8996.96 13497.63 64
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
test_part187.53 11584.97 14490.52 8892.11 11693.31 13893.32 9685.79 11679.56 16887.38 6062.89 18878.60 12189.25 10290.65 14792.17 11595.24 17797.62 66
UniMVSNet_NR-MVSNet86.80 12185.86 13887.89 11988.17 15994.07 11890.15 13388.51 8584.20 13973.45 13272.38 14870.30 15588.95 10990.25 15292.21 11398.12 6897.62 66
DU-MVS86.12 12984.81 14787.66 12087.77 16693.78 12390.15 13387.87 9784.40 13373.45 13270.59 15264.82 18288.95 10990.14 15392.33 11097.76 9397.62 66
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 69
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12591.98 12297.78 9297.51 70
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 71
NR-MVSNet85.46 13984.54 14986.52 13388.33 15893.78 12390.45 12687.87 9784.40 13371.61 14070.59 15262.09 19182.79 16291.75 12791.75 12698.10 7197.44 72
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11797.44 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 74
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11787.63 10490.61 7481.42 9886.76 6182.26 10389.23 10394.86 6893.03 10197.90 8697.36 75
Vis-MVSNetpermissive89.36 10291.49 7986.88 12892.10 11797.60 6092.16 11285.89 11484.21 13875.20 12582.58 9487.13 7277.40 18395.90 5095.63 4798.51 2197.36 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11487.63 10490.74 6981.51 9786.81 6082.48 9989.23 10394.81 7093.03 10197.90 8697.33 77
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11296.61 8296.03 4888.44 8690.25 7985.92 7273.73 13884.89 8691.92 7494.17 8594.07 7397.68 10197.31 78
UniMVSNet_ETH3D84.57 14881.40 18288.28 11289.34 14794.38 11490.33 12786.50 11174.74 19277.52 11759.90 19562.04 19288.78 11488.82 17492.65 10697.22 11797.24 79
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 80
diffmvs91.37 7591.09 8391.70 7592.71 11196.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 10997.23 80
Effi-MVS+89.79 9689.83 9589.74 9892.98 10396.45 8993.48 9384.24 13287.62 10976.45 12181.76 10077.56 13293.48 5994.61 7593.59 8197.82 9097.22 82
CP-MVSNet83.11 17282.15 17284.23 15787.20 17692.70 15786.42 17983.53 14377.83 17767.67 17066.89 16960.53 19882.47 16389.23 16990.65 14598.08 7297.20 83
TranMVSNet+NR-MVSNet85.57 13784.41 15086.92 12787.67 16993.34 13690.31 12988.43 8783.07 14870.11 15369.99 15865.28 17786.96 12789.73 16192.27 11198.06 7597.17 84
Baseline_NR-MVSNet85.28 14183.42 15987.46 12487.77 16690.80 19189.90 14387.69 10183.93 14374.16 12864.72 18266.43 17287.48 12390.14 15390.83 13797.73 9697.11 85
PS-CasMVS82.53 17781.54 18083.68 16487.08 18192.54 16386.20 18183.46 14476.46 18565.73 18265.71 17659.41 20381.61 17189.06 17190.55 14798.03 7797.07 86
baseline91.19 7791.89 7390.38 8992.76 10995.04 10493.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10192.00 12492.62 10796.46 15296.99 87
WR-MVS83.14 17083.38 16182.87 17687.55 17093.29 13986.36 18084.21 13380.05 16466.41 17766.91 16766.92 17075.66 18988.96 17290.56 14697.05 12896.96 88
CHOSEN 1792x268888.57 10787.82 11489.44 10195.46 6996.89 7993.74 8685.87 11589.63 9177.42 11861.38 19183.31 9288.80 11393.44 10193.16 9595.37 17596.95 89
tfpnnormal83.80 16281.26 18486.77 13089.60 14493.26 14289.72 14687.60 10672.78 19470.44 15060.53 19461.15 19585.55 14192.72 10991.44 13197.71 9796.92 90
WR-MVS_H82.86 17582.66 16983.10 17287.44 17293.33 13785.71 18583.20 14777.36 17968.20 16766.37 17065.23 17876.05 18889.35 16590.13 15597.99 8196.89 91
v7n82.25 18081.54 18083.07 17385.55 19392.58 16186.68 17881.10 16976.54 18365.97 18062.91 18760.56 19782.36 16491.07 13990.35 15096.77 14896.80 92
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 93
thres600view789.28 10487.47 12391.39 8194.12 8197.25 6793.94 8089.74 6985.62 12780.63 10675.24 13569.33 15891.66 7994.92 6493.23 9298.27 5396.72 94
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 95
LTVRE_ROB81.71 1682.44 17981.84 17783.13 17089.01 14892.99 14988.90 15882.32 15666.26 20554.02 20674.68 13659.62 20288.87 11290.71 14592.02 12095.68 16796.62 96
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpn200view989.55 9987.86 11391.53 7893.90 9097.26 6694.31 7189.74 6985.87 12281.15 10076.46 12670.38 15391.76 7794.92 6493.51 8298.28 5296.61 97
thres40089.40 10187.58 12091.53 7894.06 8497.21 6994.19 7589.83 6885.69 12481.08 10275.50 13369.76 15791.80 7594.79 7193.51 8298.20 6196.60 98
ACMH85.51 1387.31 11886.59 12788.14 11493.96 8694.51 10889.00 15787.99 9181.58 15470.15 15278.41 11571.78 14990.60 8891.30 13491.99 12197.17 12096.58 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10296.57 100
thisisatest051585.70 13487.00 12484.19 15888.16 16093.67 12884.20 18984.14 13583.39 14772.91 13476.79 12374.75 14278.82 18192.57 11491.26 13496.94 13696.56 101
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11793.73 9596.94 7892.17 11187.91 9488.77 9976.12 12383.68 8490.80 6079.49 17996.34 4196.35 2898.21 6096.46 102
Fast-Effi-MVS+88.56 10887.99 11189.22 10391.56 12495.21 10192.29 10782.69 14986.82 11377.73 11676.24 12973.39 14393.36 6194.22 8493.64 7997.65 10396.43 103
thres20089.49 10087.72 11591.55 7793.95 8797.25 6794.34 6989.74 6985.66 12581.18 9976.12 13070.19 15691.80 7594.92 6493.51 8298.27 5396.40 104
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10694.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11195.75 5293.95 7598.12 6896.37 105
v14419283.48 16682.23 17184.94 14786.65 18592.84 15389.63 14882.48 15377.87 17667.36 17265.33 17863.50 18586.51 13189.72 16289.99 16397.03 12996.35 106
IterMVS-LS88.60 10688.45 10388.78 10792.02 11892.44 16692.00 11683.57 14286.52 11878.90 11478.61 11481.34 10889.12 10690.68 14693.18 9497.10 12596.35 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119283.56 16582.35 17084.98 14686.84 18492.84 15390.01 13882.70 14878.54 17266.48 17664.88 18162.91 18686.91 12890.72 14490.25 15396.94 13696.32 108
v192192083.30 16882.09 17484.70 15086.59 18792.67 15989.82 14482.23 15778.32 17365.76 18164.64 18362.35 18986.78 13090.34 15190.02 16197.02 13096.31 109
v1084.18 15583.17 16585.37 14187.34 17392.68 15890.32 12881.33 16579.93 16769.23 16066.33 17165.74 17587.03 12690.84 14190.38 14996.97 13296.29 110
V4284.48 15283.36 16285.79 13887.14 17893.28 14090.03 13683.98 13780.30 16171.20 14566.90 16867.17 16785.55 14189.35 16590.27 15296.82 14696.27 111
PEN-MVS82.49 17881.58 17983.56 16686.93 18292.05 17486.71 17783.84 13876.94 18264.68 18667.24 16460.11 19981.17 17387.78 17890.70 14498.02 7896.21 112
thres100view90089.36 10287.61 11891.39 8193.90 9096.86 8094.35 6889.66 7385.87 12281.15 10076.46 12670.38 15391.17 8194.09 8693.43 8898.13 6796.16 113
v114484.03 15982.88 16785.37 14187.17 17793.15 14790.18 13283.31 14578.83 17167.85 16865.99 17364.99 18086.79 12990.75 14390.33 15196.90 14196.15 114
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10096.15 114
Effi-MVS+-dtu87.51 11688.13 10986.77 13091.10 13094.90 10590.91 12282.67 15083.47 14571.55 14181.11 10577.04 13489.41 9792.65 11291.68 12995.00 18296.09 116
v884.45 15483.30 16385.80 13787.53 17192.95 15090.31 12982.46 15480.46 15971.43 14266.99 16667.16 16886.14 13789.26 16890.22 15496.94 13696.06 117
v124082.88 17481.66 17884.29 15686.46 18892.52 16589.06 15581.82 16177.16 18065.09 18564.17 18561.50 19386.36 13290.12 15590.13 15596.95 13596.04 118
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 119
CDS-MVSNet88.34 10988.71 10287.90 11890.70 13794.54 10792.38 10486.02 11380.37 16079.42 11179.30 11083.43 9182.04 16693.39 10294.01 7496.86 14595.93 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu86.25 12587.70 11684.56 15390.37 14093.70 12690.54 12578.14 17983.50 14465.37 18481.59 10375.83 14186.09 13991.70 12891.70 12796.88 14395.84 121
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10679.60 20496.19 9394.43 6486.56 11090.63 7280.75 10590.71 4477.78 12993.73 5691.36 13393.45 8798.15 6495.77 122
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 14981.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 123
baseline288.97 10589.50 9688.36 11091.14 12995.30 10090.13 13585.17 12487.24 11080.80 10484.46 7978.44 12385.60 14093.54 9891.87 12397.31 11495.66 124
CANet_DTU90.74 8592.93 5888.19 11394.36 7796.61 8294.34 6984.66 12790.66 7168.75 16290.41 4686.89 7489.78 9395.46 5694.87 5997.25 11695.62 125
v2v48284.51 15083.05 16686.20 13587.25 17593.28 14090.22 13185.40 12279.94 16669.78 15567.74 16365.15 17987.57 12089.12 17090.55 14796.97 13295.60 126
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 9998.30 4995.58 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10393.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10597.62 10695.50 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net90.21 9090.11 9290.32 9188.66 15393.65 12994.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9893.97 8994.16 6998.31 4695.47 129
test190.21 9090.11 9290.32 9188.66 15393.65 12994.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9893.97 8994.16 6998.31 4695.47 129
FMVSNet289.61 9889.14 9990.16 9688.66 15393.65 12994.25 7285.44 12188.57 10284.96 8873.53 14083.82 8989.38 9894.23 8394.68 6398.31 4695.47 129
pm-mvs184.55 14983.46 15685.82 13688.16 16093.39 13589.05 15685.36 12374.03 19372.43 13865.08 17971.11 15082.30 16593.48 9991.70 12797.64 10495.43 132
FMVSNet390.19 9290.06 9490.34 9088.69 15293.85 12194.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10593.29 10494.36 6698.20 6195.40 133
FMVSNet187.33 11786.00 13588.89 10587.13 17992.83 15593.08 10084.46 13181.35 15682.20 9566.33 17177.96 12788.96 10893.97 8994.16 6997.54 10895.38 134
v14883.61 16482.10 17385.37 14187.34 17392.94 15187.48 16985.72 12078.92 17073.87 13065.71 17664.69 18381.78 17087.82 17789.35 17296.01 15995.26 135
HyFIR lowres test87.87 11286.42 12989.57 9995.56 6696.99 7692.37 10584.15 13486.64 11577.17 11957.65 19783.97 8891.08 8392.09 12392.44 10997.09 12695.16 136
DTE-MVSNet81.76 18381.04 18582.60 18086.63 18691.48 18585.97 18383.70 13976.45 18662.44 19167.16 16559.98 20078.98 18087.15 18289.93 16497.88 8895.12 137
ACMH+85.75 1287.19 11986.02 13488.56 10993.42 9894.41 11289.91 14187.66 10383.45 14672.25 13976.42 12871.99 14890.78 8589.86 15990.94 13697.32 11395.11 138
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10795.00 139
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT85.44 14086.71 12583.97 16290.59 13890.84 18989.73 14578.34 17884.07 14266.40 17877.27 12278.66 12083.06 15991.20 13590.10 16095.72 16594.78 140
pmmvs680.90 18578.77 19083.38 16985.84 19091.61 18186.01 18282.54 15264.17 20670.43 15154.14 20467.06 16980.73 17590.50 15089.17 17494.74 18394.75 141
GA-MVS85.08 14385.65 14084.42 15589.77 14294.25 11589.26 15184.62 12881.19 15762.25 19275.72 13268.44 16284.14 15493.57 9691.68 12996.49 15094.71 142
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10894.95 2977.35 13394.05 4994.49 8093.08 9797.15 12194.53 143
gg-mvs-nofinetune81.83 18283.58 15579.80 18991.57 12396.54 8593.79 8468.80 20562.71 20843.01 21355.28 20085.06 8583.65 15796.13 4594.86 6097.98 8494.46 144
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11281.60 10282.77 9794.39 4494.28 8194.23 6797.14 12394.45 145
UA-Net90.81 8292.58 6188.74 10894.87 7597.44 6392.61 10288.22 8882.35 15278.93 11385.20 7595.61 3879.56 17896.52 3496.57 2398.23 5894.37 146
pmmvs583.37 16782.68 16884.18 15987.13 17993.18 14486.74 17682.08 15876.48 18467.28 17371.26 14962.70 18884.71 14890.77 14290.12 15897.15 12194.24 147
IterMVS85.25 14286.49 12883.80 16390.42 13990.77 19290.02 13778.04 18084.10 14066.27 17977.28 12178.41 12483.01 16090.88 14089.72 16995.04 18094.24 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter86.09 13188.38 10483.43 16887.89 16392.61 16086.89 17577.11 18484.30 13668.62 16482.57 9582.45 10084.34 15092.40 11690.11 15995.74 16394.21 149
SixPastTwentyTwo83.12 17183.44 15882.74 17787.71 16893.11 14882.30 19482.33 15579.24 16964.33 18778.77 11362.75 18784.11 15588.11 17687.89 17895.70 16694.21 149
CR-MVSNet85.48 13886.29 13084.53 15491.08 13292.10 17089.18 15273.30 19684.75 12971.08 14673.12 14677.91 12886.27 13591.48 13090.75 14196.27 15693.94 151
PatchT83.86 16085.51 14281.94 18488.41 15691.56 18278.79 20071.57 20084.08 14171.08 14670.62 15176.13 14086.27 13591.48 13090.75 14195.52 17393.94 151
FC-MVSNet-test86.15 12889.10 10082.71 17889.83 14193.18 14487.88 16784.69 12686.54 11762.18 19382.39 9783.31 9274.18 19292.52 11591.86 12497.50 10993.88 153
baseline190.81 8290.29 8891.42 8093.67 9695.86 9893.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9495.05 6094.79 6198.80 793.82 154
RPMNet84.82 14785.90 13783.56 16691.10 13092.10 17088.73 16171.11 20184.75 12968.79 16173.56 13977.62 13185.33 14490.08 15789.43 17196.32 15593.77 155
CHOSEN 280x42090.77 8492.14 6989.17 10493.86 9292.81 15693.16 9780.22 17290.21 8184.67 8989.89 4891.38 5990.57 8994.94 6392.11 11792.52 19193.65 156
test-LLR86.88 12088.28 10585.24 14491.22 12792.07 17287.41 17083.62 14084.58 13169.33 15883.00 8782.79 9584.24 15192.26 11889.81 16595.64 16893.44 157
TESTMET0.1,186.11 13088.28 10583.59 16587.80 16492.07 17287.41 17077.12 18384.58 13169.33 15883.00 8782.79 9584.24 15192.26 11889.81 16595.64 16893.44 157
CostFormer86.78 12286.05 13287.62 12392.15 11593.20 14391.55 12075.83 18688.11 10685.29 8581.76 10076.22 13987.80 11784.45 19385.21 18993.12 18793.42 159
PM-MVS80.29 18779.30 18981.45 18781.91 20188.23 19782.61 19279.01 17679.99 16567.15 17469.07 15951.39 20882.92 16187.55 18085.59 18595.08 17993.28 160
tpm83.16 16983.64 15482.60 18090.75 13491.05 18688.49 16273.99 19182.36 15167.08 17578.10 11668.79 15984.17 15385.95 18985.96 18491.09 19893.23 161
pmmvs486.00 13284.28 15188.00 11587.80 16492.01 17589.94 14084.91 12586.79 11480.98 10373.41 14366.34 17388.12 11689.31 16788.90 17696.24 15793.20 162
PMMVS89.88 9491.19 8188.35 11189.73 14391.97 17690.62 12481.92 15990.57 7580.58 10792.16 3586.85 7591.17 8192.31 11791.35 13396.11 15893.11 163
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 9990.94 12188.67 8389.80 8986.95 6485.90 6972.51 14492.46 6993.56 9792.18 11496.93 13992.89 164
EPNet_dtu88.32 11090.61 8685.64 14096.79 5592.27 16892.03 11590.31 6489.05 9765.44 18389.43 4985.90 8174.22 19192.76 10892.09 11895.02 18192.76 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet83.83 16185.53 14181.85 18589.60 14490.92 18787.81 16883.21 14680.11 16360.16 19676.47 12578.57 12276.79 18589.76 16090.13 15593.51 18492.75 166
TransMVSNet (Re)82.67 17680.93 18784.69 15188.71 15191.50 18387.90 16687.15 10771.54 19968.24 16663.69 18664.67 18478.51 18291.65 12990.73 14397.64 10492.73 167
EG-PatchMatch MVS81.70 18481.31 18382.15 18388.75 15093.81 12287.14 17378.89 17771.57 19764.12 18961.20 19368.46 16176.73 18691.48 13090.77 14097.28 11591.90 168
TDRefinement84.97 14583.39 16086.81 12992.97 10594.12 11692.18 10987.77 10082.78 15071.31 14468.43 16168.07 16481.10 17489.70 16389.03 17595.55 17291.62 169
pmmvs-eth3d79.78 18977.58 19482.34 18281.57 20287.46 20082.92 19181.28 16675.33 19171.34 14361.88 18952.41 20781.59 17287.56 17986.90 18195.36 17691.48 170
gm-plane-assit77.65 19378.50 19176.66 19487.96 16285.43 20464.70 21074.50 18964.15 20751.26 20861.32 19258.17 20484.11 15595.16 5993.83 7697.45 11191.41 171
EU-MVSNet78.43 19080.25 18876.30 19583.81 19887.27 20280.99 19679.52 17476.01 18754.12 20570.44 15464.87 18167.40 19986.23 18785.54 18791.95 19691.41 171
MSDG90.42 8888.25 10792.94 6296.67 5694.41 11293.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9092.60 11392.08 11997.44 11291.41 171
test0.0.03 185.58 13687.69 11783.11 17191.22 12792.54 16385.60 18683.62 14085.66 12567.84 16982.79 9279.70 11673.51 19591.15 13890.79 13896.88 14391.23 174
GG-mvs-BLEND62.84 20290.21 8930.91 2100.57 21894.45 11086.99 1740.34 21688.71 1000.98 21881.55 10491.58 570.86 21592.66 11191.43 13295.73 16491.11 175
TAMVS84.94 14684.95 14584.93 14888.82 14993.18 14488.44 16381.28 16677.16 18073.76 13175.43 13476.57 13882.04 16690.59 14890.79 13895.22 17890.94 176
MS-PatchMatch87.63 11387.61 11887.65 12193.95 8794.09 11792.60 10381.52 16486.64 11576.41 12273.46 14285.94 8085.01 14792.23 12190.00 16296.43 15490.93 177
tpm cat184.13 15681.99 17686.63 13291.74 12091.50 18390.68 12375.69 18786.12 12185.44 8372.39 14770.72 15185.16 14580.89 20181.56 19891.07 19990.71 178
ambc67.96 20373.69 20779.79 20873.82 20571.61 19659.80 19746.00 20620.79 21666.15 20186.92 18480.11 20289.13 20690.50 179
COLMAP_ROBcopyleft84.39 1587.61 11486.03 13389.46 10095.54 6894.48 10991.77 11990.14 6587.16 11175.50 12473.41 14376.86 13787.33 12490.05 15889.76 16896.48 15190.46 180
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15292.30 10687.69 10190.44 7785.12 8691.68 3985.84 8290.69 8787.34 18186.07 18392.46 19290.37 181
Anonymous2023120678.09 19278.11 19378.07 19385.19 19589.17 19480.99 19681.24 16875.46 19058.25 20054.78 20359.90 20166.73 20088.94 17388.26 17796.01 15990.25 182
dps85.00 14483.21 16487.08 12690.73 13592.55 16289.34 14975.29 18884.94 12887.01 6279.27 11167.69 16687.27 12584.22 19483.56 19492.83 18990.25 182
USDC86.73 12385.96 13687.63 12291.64 12193.97 11992.76 10184.58 12988.19 10470.67 14980.10 10867.86 16589.43 9691.81 12689.77 16796.69 14990.05 184
tpmrst83.72 16383.45 15784.03 16192.21 11491.66 18088.74 16073.58 19588.14 10572.67 13677.37 12072.11 14786.34 13382.94 19882.05 19790.63 20189.86 185
SCA86.25 12587.52 12184.77 14991.59 12293.90 12089.11 15473.25 19890.38 7872.84 13583.26 8683.79 9088.49 11586.07 18885.56 18693.33 18589.67 186
testgi81.94 18184.09 15279.43 19089.53 14690.83 19082.49 19381.75 16280.59 15859.46 19882.82 9165.75 17467.97 19790.10 15689.52 17095.39 17489.03 187
PatchmatchNetpermissive85.70 13486.65 12684.60 15291.79 11993.40 13489.27 15073.62 19390.19 8272.63 13782.74 9381.93 10687.64 11984.99 19184.29 19392.64 19089.00 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1386.64 12487.50 12285.65 13990.73 13593.69 12789.96 13978.03 18189.48 9476.85 12084.92 7682.42 10186.14 13786.85 18586.15 18292.17 19388.97 189
MIMVSNet82.97 17384.00 15381.77 18682.23 20092.25 16987.40 17272.73 19981.48 15569.55 15668.79 16072.42 14581.82 16992.23 12192.25 11296.89 14288.61 190
TinyColmap84.04 15882.01 17586.42 13490.87 13391.84 17788.89 15984.07 13682.11 15369.89 15471.08 15060.81 19689.04 10790.52 14989.19 17395.76 16288.50 191
ADS-MVSNet84.08 15784.95 14583.05 17491.53 12691.75 17988.16 16470.70 20289.96 8869.51 15778.83 11276.97 13686.29 13484.08 19584.60 19192.13 19588.48 192
EPMVS85.77 13386.24 13185.23 14592.76 10993.78 12389.91 14173.60 19490.19 8274.22 12782.18 9878.06 12687.55 12185.61 19085.38 18893.32 18688.48 192
MDTV_nov1_ep13_2view80.43 18680.94 18679.84 18884.82 19690.87 18884.23 18873.80 19280.28 16264.33 18770.05 15768.77 16079.67 17684.83 19283.50 19592.17 19388.25 194
MDA-MVSNet-bldmvs73.81 19672.56 20075.28 19672.52 20988.87 19574.95 20482.67 15071.57 19755.02 20365.96 17442.84 21476.11 18770.61 20681.47 19990.38 20386.59 195
test20.0376.41 19578.49 19273.98 19785.64 19287.50 19975.89 20280.71 17070.84 20051.07 20968.06 16261.40 19454.99 20688.28 17587.20 18095.58 17186.15 196
FMVSNet584.47 15384.72 14884.18 15983.30 19988.43 19688.09 16579.42 17584.25 13774.14 12973.15 14578.74 11983.65 15791.19 13691.19 13596.46 15286.07 197
pmmvs371.13 20071.06 20271.21 20173.54 20880.19 20771.69 20864.86 20762.04 20952.10 20754.92 20248.00 21275.03 19083.75 19783.24 19690.04 20485.27 198
MIMVSNet173.19 19773.70 19872.60 20065.42 21286.69 20375.56 20379.65 17367.87 20455.30 20245.24 20756.41 20563.79 20286.98 18387.66 17995.85 16185.04 199
CMPMVSbinary61.19 1779.86 18877.46 19682.66 17991.54 12591.82 17883.25 19081.57 16370.51 20168.64 16359.89 19666.77 17179.63 17784.00 19684.30 19291.34 19784.89 200
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet77.55 19476.68 19778.56 19285.43 19487.30 20178.84 19981.88 16078.30 17460.61 19461.46 19062.15 19074.03 19482.04 19980.69 20190.59 20284.81 201
new-patchmatchnet72.32 19871.09 20173.74 19881.17 20384.86 20572.21 20777.48 18268.32 20354.89 20455.10 20149.31 21163.68 20379.30 20276.46 20493.03 18884.32 202
MVS-HIRNet78.16 19177.57 19578.83 19185.83 19187.76 19876.67 20170.22 20375.82 18967.39 17155.61 19970.52 15281.96 16886.67 18685.06 19090.93 20081.58 203
new_pmnet72.29 19973.25 19971.16 20275.35 20681.38 20673.72 20669.27 20475.97 18849.84 21056.27 19856.12 20669.08 19681.73 20080.86 20089.72 20580.44 204
DeepMVS_CXcopyleft71.82 21068.37 20948.05 21277.38 17846.88 21165.77 17547.03 21367.48 19864.27 20976.89 21176.72 205
FPMVS69.87 20167.10 20473.10 19984.09 19778.35 20979.40 19876.41 18571.92 19557.71 20154.06 20550.04 20956.72 20471.19 20568.70 20684.25 20775.43 206
PMVScopyleft56.77 1861.27 20358.64 20564.35 20375.66 20554.60 21353.62 21274.23 19053.69 21058.37 19944.27 20849.38 21044.16 20969.51 20765.35 20880.07 20973.66 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS253.68 20555.72 20751.30 20558.84 21367.02 21154.23 21160.97 21047.50 21119.42 21534.81 20931.97 21530.88 21165.84 20869.99 20583.47 20872.92 208
Gipumacopyleft58.52 20456.17 20661.27 20467.14 21158.06 21252.16 21368.40 20669.00 20245.02 21222.79 21020.57 21755.11 20576.27 20379.33 20379.80 21067.16 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive39.81 1939.52 20741.58 20837.11 20933.93 21649.06 21426.45 21754.22 21129.46 21424.15 21420.77 21210.60 22034.42 21051.12 21065.27 20949.49 21564.81 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN40.00 20635.74 20944.98 20757.69 21539.15 21728.05 21562.70 20835.52 21317.78 21620.90 21114.36 21944.47 20835.89 21147.86 21059.15 21356.47 211
EMVS39.04 20834.32 21044.54 20858.25 21439.35 21627.61 21662.55 20935.99 21216.40 21720.04 21314.77 21844.80 20733.12 21244.10 21157.61 21452.89 212
test1233.48 2105.31 2121.34 2120.20 2191.52 2192.17 2200.58 2156.13 2160.31 2209.85 2150.31 2223.90 2132.65 2145.28 2130.87 21711.46 213
testmvs4.35 2096.54 2111.79 2110.60 2171.82 2183.06 2190.95 2147.22 2150.88 21912.38 2141.25 2213.87 2146.09 2135.58 2121.40 21611.42 214
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def60.19 195
9.1497.28 23
SR-MVS98.93 1996.00 1797.75 14
our_test_386.93 18289.77 19381.61 195
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
Patchmatch-RL test18.47 218
tmp_tt50.24 20668.55 21046.86 21548.90 21418.28 21386.51 11968.32 16570.19 15665.33 17626.69 21274.37 20466.80 20770.72 212
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65
Patchmtry92.39 16789.18 15273.30 19671.08 146