DVP-MVS | | | 98.73 4 | 98.93 3 | 98.50 5 | 99.44 12 | 99.57 2 | 99.36 3 | 97.65 7 | 98.14 10 | 96.51 14 | 98.49 5 | 99.65 6 | 98.67 18 | 98.60 12 | 98.42 11 | 99.40 46 | 99.63 1 |
|
SD-MVS | | | 98.52 6 | 98.77 7 | 98.23 15 | 98.15 49 | 99.26 20 | 98.79 25 | 97.59 15 | 98.52 2 | 96.25 15 | 97.99 14 | 99.75 4 | 99.01 3 | 98.27 25 | 97.97 26 | 99.59 4 | 99.63 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 98.86 2 | 98.97 1 | 98.75 2 | 99.43 13 | 99.63 1 | 99.25 11 | 97.81 1 | 98.62 1 | 97.69 1 | 97.59 19 | 99.90 1 | 98.93 5 | 98.99 2 | 98.42 11 | 99.37 52 | 99.62 3 |
|
CSCG | | | 97.44 31 | 97.18 39 | 97.75 27 | 99.47 6 | 99.52 5 | 98.55 30 | 95.41 40 | 97.69 23 | 95.72 19 | 94.29 52 | 95.53 61 | 98.10 30 | 96.20 99 | 97.38 50 | 99.24 71 | 99.62 3 |
|
TSAR-MVS + MP. | | | 98.49 7 | 98.78 6 | 98.15 19 | 98.14 50 | 99.17 27 | 99.34 5 | 97.18 29 | 98.44 4 | 95.72 19 | 97.84 15 | 99.28 10 | 98.87 7 | 99.05 1 | 98.05 24 | 99.66 1 | 99.60 5 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + ACMM | | | 97.71 27 | 98.60 10 | 96.66 40 | 98.64 40 | 99.05 31 | 98.85 24 | 97.23 27 | 98.45 3 | 89.40 82 | 97.51 23 | 99.27 12 | 96.88 58 | 98.53 13 | 97.81 34 | 98.96 113 | 99.59 6 |
|
APDe-MVS | | | 98.87 1 | 98.96 2 | 98.77 1 | 99.58 2 | 99.53 4 | 99.44 1 | 97.81 1 | 98.22 8 | 97.33 3 | 98.70 3 | 99.33 8 | 98.86 8 | 98.96 4 | 98.40 13 | 99.63 3 | 99.57 7 |
|
SteuartSystems-ACMMP | | | 98.38 13 | 98.71 8 | 97.99 23 | 99.34 20 | 99.46 6 | 99.34 5 | 97.33 24 | 97.31 34 | 94.25 29 | 98.06 12 | 99.17 17 | 98.13 27 | 98.98 3 | 98.46 9 | 99.55 11 | 99.54 8 |
Skip Steuart: Steuart Systems R&D Blog. |
canonicalmvs | | | 95.25 63 | 95.45 67 | 95.00 64 | 95.27 90 | 98.72 65 | 96.89 61 | 89.82 102 | 96.51 52 | 90.84 59 | 93.72 56 | 86.01 114 | 97.66 38 | 95.78 111 | 97.94 28 | 99.54 13 | 99.50 9 |
|
DPE-MVS | | | 98.75 3 | 98.91 4 | 98.57 3 | 99.21 23 | 99.54 3 | 99.42 2 | 97.78 4 | 97.49 30 | 96.84 8 | 98.94 1 | 99.82 3 | 98.59 20 | 98.90 8 | 98.22 17 | 99.56 10 | 99.48 10 |
|
EPP-MVSNet | | | 95.27 62 | 96.18 57 | 94.20 82 | 94.88 100 | 98.64 71 | 94.97 106 | 90.70 90 | 95.34 84 | 89.67 78 | 91.66 77 | 93.84 66 | 95.42 84 | 97.32 57 | 97.00 59 | 99.58 6 | 99.47 11 |
|
PVSNet_Blended_VisFu | | | 94.77 71 | 95.54 65 | 93.87 86 | 96.48 70 | 98.97 45 | 94.33 119 | 91.84 75 | 94.93 94 | 90.37 67 | 85.04 129 | 94.99 62 | 90.87 147 | 98.12 35 | 97.30 53 | 99.30 62 | 99.45 12 |
|
SMA-MVS | | | 98.66 5 | 98.89 5 | 98.39 8 | 99.60 1 | 99.41 7 | 99.00 19 | 97.63 11 | 97.78 16 | 95.83 18 | 98.33 9 | 99.83 2 | 98.85 10 | 98.93 6 | 98.56 6 | 99.41 43 | 99.40 13 |
|
MVS_0304 | | | 96.31 48 | 96.91 46 | 95.62 53 | 97.21 63 | 99.20 25 | 98.55 30 | 93.10 60 | 97.04 43 | 89.73 76 | 90.30 91 | 96.35 52 | 95.71 76 | 98.14 33 | 97.93 30 | 99.38 49 | 99.40 13 |
|
test_part1 | | | | | | | | | | | | | | | | | | 99.38 15 |
|
MSLP-MVS++ | | | 98.04 22 | 97.93 31 | 98.18 16 | 99.10 27 | 99.09 30 | 98.34 35 | 96.99 32 | 97.54 29 | 96.60 12 | 94.82 48 | 98.45 34 | 98.89 6 | 97.46 54 | 98.77 4 | 99.17 85 | 99.37 16 |
|
DeepC-MVS | | 94.87 4 | 96.76 46 | 96.50 51 | 97.05 35 | 98.21 48 | 99.28 18 | 98.67 26 | 97.38 20 | 97.31 34 | 90.36 68 | 89.19 99 | 93.58 68 | 98.19 26 | 98.31 23 | 98.50 7 | 99.51 19 | 99.36 17 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CANet | | | 96.84 43 | 97.20 37 | 96.42 41 | 97.92 53 | 99.24 24 | 98.60 28 | 93.51 52 | 97.11 40 | 93.07 36 | 91.16 81 | 97.24 44 | 96.21 70 | 98.24 28 | 98.05 24 | 99.22 77 | 99.35 18 |
|
3Dnovator+ | | 93.91 7 | 97.23 34 | 97.22 36 | 97.24 32 | 98.89 35 | 98.85 57 | 98.26 38 | 93.25 57 | 97.99 13 | 95.56 22 | 90.01 95 | 98.03 40 | 98.05 31 | 97.91 42 | 98.43 10 | 99.44 38 | 99.35 18 |
|
DCV-MVSNet | | | 94.76 72 | 95.12 74 | 94.35 80 | 95.10 96 | 95.81 148 | 96.46 78 | 89.49 108 | 96.33 55 | 90.16 69 | 92.55 66 | 90.26 86 | 95.83 75 | 95.52 117 | 96.03 84 | 99.06 103 | 99.33 20 |
|
TSAR-MVS + GP. | | | 97.45 30 | 98.36 17 | 96.39 42 | 95.56 82 | 98.93 49 | 97.74 48 | 93.31 54 | 97.61 27 | 94.24 30 | 98.44 7 | 99.19 15 | 98.03 32 | 97.60 50 | 97.41 48 | 99.44 38 | 99.33 20 |
|
UGNet | | | 94.92 64 | 96.63 49 | 92.93 99 | 96.03 76 | 98.63 73 | 94.53 116 | 91.52 81 | 96.23 58 | 90.03 71 | 92.87 63 | 96.10 58 | 86.28 178 | 96.68 78 | 96.60 69 | 99.16 88 | 99.32 22 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MCST-MVS | | | 98.20 17 | 98.36 17 | 98.01 22 | 99.40 15 | 99.05 31 | 99.00 19 | 97.62 12 | 97.59 28 | 93.70 33 | 97.42 26 | 99.30 9 | 98.77 14 | 98.39 22 | 97.48 44 | 99.59 4 | 99.31 23 |
|
FC-MVSNet-train | | | 93.85 89 | 93.91 94 | 93.78 88 | 94.94 99 | 96.79 117 | 94.29 120 | 91.13 85 | 93.84 112 | 88.26 93 | 90.40 90 | 85.23 121 | 94.65 94 | 96.54 84 | 95.31 104 | 99.38 49 | 99.28 24 |
|
X-MVS | | | 97.84 23 | 98.19 26 | 97.42 30 | 99.40 15 | 99.35 11 | 99.06 16 | 97.25 25 | 97.38 33 | 90.85 56 | 96.06 35 | 98.72 28 | 98.53 23 | 98.41 21 | 98.15 20 | 99.46 26 | 99.28 24 |
|
EPNet | | | 96.27 50 | 96.97 43 | 95.46 56 | 98.47 43 | 98.28 80 | 97.41 53 | 93.67 50 | 95.86 73 | 92.86 41 | 97.51 23 | 93.79 67 | 91.76 132 | 97.03 67 | 97.03 58 | 98.61 146 | 99.28 24 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 98.32 16 | 98.34 20 | 98.29 12 | 99.34 20 | 99.30 16 | 99.15 13 | 97.35 21 | 97.49 30 | 95.58 21 | 97.72 17 | 98.62 32 | 98.82 12 | 98.29 24 | 97.67 37 | 99.51 19 | 99.28 24 |
|
DELS-MVS | | | 96.06 52 | 96.04 58 | 96.07 49 | 97.77 55 | 99.25 22 | 98.10 41 | 93.26 55 | 94.42 102 | 92.79 42 | 88.52 106 | 93.48 69 | 95.06 87 | 98.51 14 | 98.83 1 | 99.45 30 | 99.28 24 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HFP-MVS | | | 98.48 8 | 98.62 9 | 98.32 11 | 99.39 18 | 99.33 15 | 99.27 9 | 97.42 18 | 98.27 6 | 95.25 23 | 98.34 8 | 98.83 25 | 99.08 1 | 98.26 26 | 98.08 23 | 99.48 22 | 99.26 29 |
|
HPM-MVS++ | | | 98.34 15 | 98.47 13 | 98.18 16 | 99.46 8 | 99.15 28 | 99.10 15 | 97.69 6 | 97.67 24 | 94.93 26 | 97.62 18 | 99.70 5 | 98.60 19 | 98.45 17 | 97.46 45 | 99.31 60 | 99.26 29 |
|
3Dnovator | | 93.79 8 | 97.08 36 | 97.20 37 | 96.95 37 | 99.09 28 | 99.03 38 | 98.20 39 | 93.33 53 | 97.99 13 | 93.82 32 | 90.61 89 | 96.80 48 | 97.82 34 | 97.90 43 | 98.78 3 | 99.47 25 | 99.26 29 |
|
Anonymous20231211 | | | 93.49 98 | 92.33 124 | 94.84 70 | 94.78 104 | 98.00 90 | 96.11 85 | 91.85 74 | 94.86 95 | 90.91 55 | 74.69 169 | 89.18 95 | 96.73 61 | 94.82 132 | 95.51 99 | 98.67 140 | 99.24 32 |
|
MP-MVS | | | 98.09 21 | 98.30 23 | 97.84 26 | 99.34 20 | 99.19 26 | 99.23 12 | 97.40 19 | 97.09 41 | 93.03 39 | 97.58 21 | 98.85 24 | 98.57 22 | 98.44 19 | 97.69 36 | 99.48 22 | 99.23 33 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
IS_MVSNet | | | 95.28 61 | 96.43 53 | 93.94 84 | 95.30 88 | 99.01 42 | 95.90 91 | 91.12 86 | 94.13 107 | 87.50 98 | 91.23 80 | 94.45 65 | 94.17 101 | 98.45 17 | 98.50 7 | 99.65 2 | 99.23 33 |
|
ACMMPR | | | 98.40 11 | 98.49 11 | 98.28 13 | 99.41 14 | 99.40 8 | 99.36 3 | 97.35 21 | 98.30 5 | 95.02 25 | 97.79 16 | 98.39 36 | 99.04 2 | 98.26 26 | 98.10 21 | 99.50 21 | 99.22 35 |
|
APD-MVS | | | 98.36 14 | 98.32 21 | 98.41 7 | 99.47 6 | 99.26 20 | 99.12 14 | 97.77 5 | 96.73 48 | 96.12 16 | 97.27 27 | 98.88 23 | 98.46 24 | 98.47 16 | 98.39 14 | 99.52 14 | 99.22 35 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
UniMVSNet (Re) | | | 90.03 140 | 89.61 149 | 90.51 124 | 89.97 164 | 96.12 135 | 92.32 150 | 89.26 110 | 90.99 150 | 80.95 127 | 78.25 158 | 75.08 166 | 91.14 139 | 93.78 147 | 93.87 144 | 99.41 43 | 99.21 37 |
|
DeepPCF-MVS | | 95.28 2 | 97.00 39 | 98.35 19 | 95.42 57 | 97.30 61 | 98.94 47 | 94.82 110 | 96.03 38 | 98.24 7 | 92.11 47 | 95.80 38 | 98.64 31 | 95.51 82 | 98.95 5 | 98.66 5 | 96.78 182 | 99.20 38 |
|
xxxxxxxxxxxxxcwj | | | 97.07 37 | 95.99 59 | 98.33 9 | 99.45 9 | 99.05 31 | 98.27 36 | 97.65 7 | 97.73 17 | 97.02 6 | 98.18 10 | 81.99 140 | 98.11 28 | 98.15 31 | 97.62 38 | 99.45 30 | 99.19 39 |
|
SF-MVS | | | 98.39 12 | 98.45 15 | 98.33 9 | 99.45 9 | 99.05 31 | 98.27 36 | 97.65 7 | 97.73 17 | 97.02 6 | 98.18 10 | 99.25 13 | 98.11 28 | 98.15 31 | 97.62 38 | 99.45 30 | 99.19 39 |
|
ACMMP_NAP | | | 98.20 17 | 98.49 11 | 97.85 25 | 99.50 4 | 99.40 8 | 99.26 10 | 97.64 10 | 97.47 32 | 92.62 45 | 97.59 19 | 99.09 20 | 98.71 16 | 98.82 10 | 97.86 32 | 99.40 46 | 99.19 39 |
|
train_agg | | | 97.65 28 | 98.06 28 | 97.18 33 | 98.94 32 | 98.91 52 | 98.98 23 | 97.07 31 | 96.71 49 | 90.66 61 | 97.43 25 | 99.08 22 | 98.20 25 | 97.96 41 | 97.14 56 | 99.22 77 | 99.19 39 |
|
ETV-MVS | | | 96.31 48 | 97.47 35 | 94.96 66 | 94.79 102 | 98.78 60 | 96.08 86 | 91.41 83 | 96.16 60 | 90.50 63 | 95.76 39 | 96.20 56 | 97.39 42 | 98.42 20 | 97.82 33 | 99.57 8 | 99.18 43 |
|
QAPM | | | 96.78 45 | 97.14 41 | 96.36 43 | 99.05 29 | 99.14 29 | 98.02 42 | 93.26 55 | 97.27 36 | 90.84 59 | 91.16 81 | 97.31 43 | 97.64 39 | 97.70 48 | 98.20 18 | 99.33 55 | 99.18 43 |
|
zzz-MVS | | | 98.43 10 | 98.31 22 | 98.57 3 | 99.48 5 | 99.40 8 | 99.32 7 | 97.62 12 | 97.70 21 | 96.67 10 | 96.59 31 | 99.09 20 | 98.86 8 | 98.65 11 | 97.56 42 | 99.45 30 | 99.17 45 |
|
anonymousdsp | | | 88.90 154 | 91.00 139 | 86.44 180 | 88.74 189 | 95.97 139 | 90.40 179 | 82.86 172 | 88.77 168 | 67.33 192 | 81.18 148 | 81.44 143 | 90.22 158 | 96.23 97 | 94.27 135 | 99.12 94 | 99.16 46 |
|
EIA-MVS | | | 95.50 54 | 96.19 56 | 94.69 74 | 94.83 101 | 98.88 56 | 95.93 90 | 91.50 82 | 94.47 101 | 89.43 80 | 93.14 59 | 92.72 73 | 97.05 54 | 97.82 47 | 97.13 57 | 99.43 41 | 99.15 47 |
|
CS-MVS | | | 96.23 51 | 97.15 40 | 95.16 60 | 95.01 98 | 98.98 43 | 97.13 56 | 90.68 91 | 96.00 67 | 91.21 53 | 94.03 53 | 96.48 50 | 97.35 44 | 98.00 40 | 97.43 46 | 99.55 11 | 99.15 47 |
|
Anonymous202405211 | | | | 92.18 125 | | 95.04 97 | 98.20 84 | 96.14 84 | 91.79 77 | 93.93 108 | | 74.60 170 | 88.38 103 | 96.48 66 | 95.17 127 | 95.82 93 | 99.00 109 | 99.15 47 |
|
ACMMP | | | 97.37 32 | 97.48 34 | 97.25 31 | 98.88 36 | 99.28 18 | 98.47 33 | 96.86 34 | 97.04 43 | 92.15 46 | 97.57 22 | 96.05 59 | 97.67 37 | 97.27 58 | 95.99 86 | 99.46 26 | 99.14 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CHOSEN 1792x2688 | | | 92.66 107 | 92.49 116 | 92.85 100 | 97.13 64 | 98.89 55 | 95.90 91 | 88.50 119 | 95.32 85 | 83.31 114 | 71.99 187 | 88.96 98 | 94.10 103 | 96.69 77 | 96.49 70 | 98.15 163 | 99.10 51 |
|
DeepC-MVS_fast | | 96.13 1 | 98.13 19 | 98.27 24 | 97.97 24 | 99.16 26 | 99.03 38 | 99.05 17 | 97.24 26 | 98.22 8 | 94.17 31 | 95.82 37 | 98.07 38 | 98.69 17 | 98.83 9 | 98.80 2 | 99.52 14 | 99.10 51 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 97.81 24 | 98.11 27 | 97.46 29 | 99.55 3 | 99.34 14 | 99.32 7 | 94.51 45 | 96.21 59 | 93.07 36 | 98.05 13 | 97.95 41 | 98.82 12 | 98.22 29 | 97.89 31 | 99.48 22 | 99.09 53 |
|
CNVR-MVS | | | 98.47 9 | 98.46 14 | 98.48 6 | 99.40 15 | 99.05 31 | 99.02 18 | 97.54 16 | 97.73 17 | 96.65 11 | 97.20 28 | 99.13 18 | 98.85 10 | 98.91 7 | 98.10 21 | 99.41 43 | 99.08 54 |
|
PVSNet_BlendedMVS | | | 95.41 59 | 95.28 69 | 95.57 54 | 97.42 59 | 99.02 40 | 95.89 93 | 93.10 60 | 96.16 60 | 93.12 34 | 91.99 70 | 85.27 119 | 94.66 92 | 98.09 37 | 97.34 51 | 99.24 71 | 99.08 54 |
|
PVSNet_Blended | | | 95.41 59 | 95.28 69 | 95.57 54 | 97.42 59 | 99.02 40 | 95.89 93 | 93.10 60 | 96.16 60 | 93.12 34 | 91.99 70 | 85.27 119 | 94.66 92 | 98.09 37 | 97.34 51 | 99.24 71 | 99.08 54 |
|
IB-MVS | | 89.56 15 | 91.71 115 | 92.50 115 | 90.79 121 | 95.94 78 | 98.44 77 | 87.05 191 | 91.38 84 | 93.15 119 | 92.98 40 | 84.78 130 | 85.14 122 | 78.27 197 | 92.47 169 | 94.44 132 | 99.10 96 | 99.08 54 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ACMP | | 92.88 9 | 94.43 79 | 94.38 84 | 94.50 77 | 96.01 77 | 97.69 94 | 95.85 96 | 92.09 71 | 95.74 76 | 89.12 87 | 95.14 45 | 82.62 138 | 94.77 88 | 95.73 113 | 94.67 120 | 99.14 91 | 99.06 58 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CLD-MVS | | | 94.79 69 | 94.36 85 | 95.30 59 | 95.21 92 | 97.46 99 | 97.23 55 | 92.24 70 | 96.43 53 | 91.77 49 | 92.69 64 | 84.31 126 | 96.06 71 | 95.52 117 | 95.03 111 | 99.31 60 | 99.06 58 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet_NR-MVSNet | | | 90.35 133 | 89.96 146 | 90.80 120 | 89.66 166 | 95.83 147 | 92.48 146 | 90.53 94 | 90.96 151 | 79.57 131 | 79.33 155 | 77.14 158 | 93.21 119 | 92.91 163 | 94.50 131 | 99.37 52 | 99.05 60 |
|
DU-MVS | | | 89.67 143 | 88.84 154 | 90.63 123 | 89.26 176 | 95.61 153 | 92.48 146 | 89.91 99 | 91.22 147 | 79.57 131 | 77.72 159 | 71.18 183 | 93.21 119 | 92.53 167 | 94.57 125 | 99.35 54 | 99.05 60 |
|
CPTT-MVS | | | 97.78 25 | 97.54 32 | 98.05 21 | 98.91 34 | 99.05 31 | 99.00 19 | 96.96 33 | 97.14 39 | 95.92 17 | 95.50 41 | 98.78 27 | 98.99 4 | 97.20 60 | 96.07 81 | 98.54 150 | 99.04 62 |
|
tfpnnormal | | | 88.50 157 | 87.01 178 | 90.23 126 | 91.36 147 | 95.78 150 | 92.74 141 | 90.09 97 | 83.65 195 | 76.33 149 | 71.46 190 | 69.58 191 | 91.84 130 | 95.54 116 | 94.02 140 | 99.06 103 | 99.03 63 |
|
LGP-MVS_train | | | 94.12 84 | 94.62 79 | 93.53 91 | 96.44 71 | 97.54 96 | 97.40 54 | 91.84 75 | 94.66 97 | 81.09 126 | 95.70 40 | 83.36 134 | 95.10 86 | 96.36 93 | 95.71 94 | 99.32 57 | 99.03 63 |
|
PHI-MVS | | | 97.78 25 | 98.44 16 | 97.02 36 | 98.73 37 | 99.25 22 | 98.11 40 | 95.54 39 | 96.66 51 | 92.79 42 | 98.52 4 | 99.38 7 | 97.50 41 | 97.84 44 | 98.39 14 | 99.45 30 | 99.03 63 |
|
MVS_111021_HR | | | 97.04 38 | 98.20 25 | 95.69 52 | 98.44 45 | 99.29 17 | 96.59 73 | 93.20 58 | 97.70 21 | 89.94 74 | 98.46 6 | 96.89 46 | 96.71 62 | 98.11 36 | 97.95 27 | 99.27 66 | 99.01 66 |
|
HQP-MVS | | | 94.43 79 | 94.57 80 | 94.27 81 | 96.41 72 | 97.23 105 | 96.89 61 | 93.98 47 | 95.94 70 | 83.68 112 | 95.01 47 | 84.46 125 | 95.58 80 | 95.47 119 | 94.85 119 | 99.07 100 | 99.00 67 |
|
NR-MVSNet | | | 89.34 146 | 88.66 155 | 90.13 131 | 90.40 156 | 95.61 153 | 93.04 138 | 89.91 99 | 91.22 147 | 78.96 134 | 77.72 159 | 68.90 194 | 89.16 165 | 94.24 144 | 93.95 141 | 99.32 57 | 98.99 68 |
|
MAR-MVS | | | 95.50 54 | 95.60 63 | 95.39 58 | 98.67 39 | 98.18 86 | 95.89 93 | 89.81 103 | 94.55 100 | 91.97 48 | 92.99 60 | 90.21 87 | 97.30 45 | 96.79 73 | 97.49 43 | 98.72 136 | 98.99 68 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Effi-MVS+ | | | 92.93 104 | 93.86 96 | 91.86 105 | 94.07 119 | 98.09 89 | 95.59 98 | 85.98 144 | 94.27 105 | 79.54 133 | 91.12 84 | 81.81 141 | 96.71 62 | 96.67 79 | 96.06 82 | 99.27 66 | 98.98 70 |
|
CP-MVSNet | | | 87.89 168 | 87.27 174 | 88.62 145 | 89.30 174 | 95.06 170 | 90.60 177 | 85.78 146 | 87.43 180 | 75.98 151 | 74.60 170 | 68.14 196 | 90.76 148 | 93.07 161 | 93.60 149 | 99.30 62 | 98.98 70 |
|
NCCC | | | 98.10 20 | 98.05 29 | 98.17 18 | 99.38 19 | 99.05 31 | 99.00 19 | 97.53 17 | 98.04 12 | 95.12 24 | 94.80 49 | 99.18 16 | 98.58 21 | 98.49 15 | 97.78 35 | 99.39 48 | 98.98 70 |
|
ACMH | | 90.77 13 | 91.51 120 | 91.63 133 | 91.38 112 | 95.62 81 | 96.87 112 | 91.76 164 | 89.66 105 | 91.58 144 | 78.67 135 | 86.73 114 | 78.12 152 | 93.77 109 | 94.59 134 | 94.54 128 | 98.78 133 | 98.98 70 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
baseline | | | 94.83 66 | 95.82 61 | 93.68 89 | 94.75 105 | 97.80 93 | 96.51 76 | 88.53 118 | 97.02 45 | 89.34 84 | 92.93 61 | 92.18 75 | 94.69 91 | 95.78 111 | 96.08 80 | 98.27 161 | 98.97 74 |
|
HyFIR lowres test | | | 92.03 110 | 91.55 134 | 92.58 101 | 97.13 64 | 98.72 65 | 94.65 114 | 86.54 137 | 93.58 116 | 82.56 117 | 67.75 198 | 90.47 85 | 95.67 77 | 95.87 107 | 95.54 98 | 98.91 118 | 98.93 75 |
|
UniMVSNet_ETH3D | | | 88.47 158 | 86.00 187 | 91.35 113 | 91.55 145 | 96.29 131 | 92.53 145 | 88.81 114 | 85.58 190 | 82.33 118 | 67.63 199 | 66.87 199 | 94.04 104 | 91.49 181 | 95.24 106 | 98.84 124 | 98.92 76 |
|
CDPH-MVS | | | 96.84 43 | 97.49 33 | 96.09 47 | 98.92 33 | 98.85 57 | 98.61 27 | 95.09 41 | 96.00 67 | 87.29 99 | 95.45 43 | 97.42 42 | 97.16 49 | 97.83 45 | 97.94 28 | 99.44 38 | 98.92 76 |
|
TranMVSNet+NR-MVSNet | | | 89.23 149 | 88.48 158 | 90.11 132 | 89.07 182 | 95.25 167 | 92.91 139 | 90.43 95 | 90.31 157 | 77.10 143 | 76.62 162 | 71.57 181 | 91.83 131 | 92.12 173 | 94.59 124 | 99.32 57 | 98.92 76 |
|
PS-CasMVS | | | 87.33 175 | 86.68 183 | 88.10 152 | 89.22 181 | 94.93 175 | 90.35 180 | 85.70 147 | 86.44 185 | 74.01 166 | 73.43 180 | 66.59 202 | 90.04 159 | 92.92 162 | 93.52 150 | 99.28 64 | 98.91 79 |
|
Vis-MVSNet | | | 92.77 105 | 95.00 77 | 90.16 128 | 94.10 118 | 98.79 59 | 94.76 112 | 88.26 120 | 92.37 135 | 79.95 129 | 88.19 108 | 91.58 77 | 84.38 189 | 97.59 51 | 97.58 41 | 99.52 14 | 98.91 79 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Baseline_NR-MVSNet | | | 89.27 148 | 88.01 164 | 90.73 122 | 89.26 176 | 93.71 192 | 92.71 143 | 89.78 104 | 90.73 152 | 81.28 125 | 73.53 179 | 72.85 175 | 92.30 126 | 92.53 167 | 93.84 146 | 99.07 100 | 98.88 81 |
|
OpenMVS | | 92.33 11 | 95.50 54 | 95.22 71 | 95.82 51 | 98.98 30 | 98.97 45 | 97.67 50 | 93.04 63 | 94.64 98 | 89.18 86 | 84.44 134 | 94.79 63 | 96.79 59 | 97.23 59 | 97.61 40 | 99.24 71 | 98.88 81 |
|
tttt0517 | | | 94.52 77 | 95.44 68 | 93.44 94 | 94.51 111 | 98.68 67 | 94.61 115 | 90.72 88 | 95.61 81 | 86.84 103 | 93.78 55 | 89.26 94 | 94.74 89 | 97.02 68 | 94.86 116 | 99.20 83 | 98.87 83 |
|
LTVRE_ROB | | 87.32 16 | 87.55 171 | 88.25 160 | 86.73 177 | 90.66 153 | 95.80 149 | 93.05 137 | 84.77 159 | 83.35 196 | 60.32 203 | 83.12 141 | 67.39 197 | 93.32 116 | 94.36 141 | 94.86 116 | 98.28 160 | 98.87 83 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
thisisatest0530 | | | 94.54 76 | 95.47 66 | 93.46 93 | 94.51 111 | 98.65 70 | 94.66 113 | 90.72 88 | 95.69 79 | 86.90 102 | 93.80 54 | 89.44 91 | 94.74 89 | 96.98 69 | 94.86 116 | 99.19 84 | 98.85 85 |
|
MVS_111021_LR | | | 97.16 35 | 98.01 30 | 96.16 46 | 98.47 43 | 98.98 43 | 96.94 60 | 93.89 48 | 97.64 26 | 91.44 50 | 98.89 2 | 96.41 51 | 97.20 48 | 98.02 39 | 97.29 55 | 99.04 108 | 98.85 85 |
|
WR-MVS_H | | | 87.93 165 | 87.85 168 | 88.03 158 | 89.62 167 | 95.58 157 | 90.47 178 | 85.55 149 | 87.20 181 | 76.83 145 | 74.42 173 | 72.67 177 | 86.37 177 | 93.22 158 | 93.04 158 | 99.33 55 | 98.83 87 |
|
WR-MVS | | | 87.93 165 | 88.09 162 | 87.75 163 | 89.26 176 | 95.28 164 | 90.81 175 | 86.69 136 | 88.90 165 | 75.29 157 | 74.31 174 | 73.72 172 | 85.19 185 | 92.26 170 | 93.32 154 | 99.27 66 | 98.81 88 |
|
diffmvs | | | 94.31 83 | 94.21 87 | 94.42 79 | 94.64 109 | 98.28 80 | 96.36 80 | 91.56 79 | 96.77 47 | 88.89 89 | 88.97 100 | 84.23 127 | 96.01 74 | 96.05 103 | 96.41 72 | 99.05 107 | 98.79 89 |
|
DI_MVS_plusplus_trai | | | 94.01 86 | 93.63 101 | 94.44 78 | 94.54 110 | 98.26 82 | 97.51 52 | 90.63 92 | 95.88 72 | 89.34 84 | 80.54 151 | 89.36 92 | 95.48 83 | 96.33 94 | 96.27 76 | 99.17 85 | 98.78 90 |
|
v7n | | | 86.43 181 | 86.52 184 | 86.33 181 | 87.91 193 | 94.93 175 | 90.15 181 | 83.05 170 | 86.57 183 | 70.21 182 | 71.48 189 | 66.78 200 | 87.72 170 | 94.19 146 | 92.96 160 | 98.92 117 | 98.76 91 |
|
Effi-MVS+-dtu | | | 91.78 114 | 93.59 103 | 89.68 136 | 92.44 140 | 97.11 107 | 94.40 118 | 84.94 158 | 92.43 131 | 75.48 154 | 91.09 85 | 83.75 131 | 93.55 113 | 96.61 80 | 95.47 100 | 97.24 178 | 98.67 92 |
|
casdiffmvs | | | 94.38 82 | 94.15 92 | 94.64 76 | 94.70 108 | 98.51 76 | 96.03 89 | 91.66 78 | 95.70 77 | 89.36 83 | 86.48 118 | 85.03 124 | 96.60 65 | 97.40 55 | 97.30 53 | 99.52 14 | 98.67 92 |
|
thres600view7 | | | 93.49 98 | 92.37 123 | 94.79 72 | 95.42 83 | 98.93 49 | 96.58 74 | 92.31 66 | 93.04 120 | 87.88 95 | 86.62 116 | 76.94 159 | 97.09 53 | 96.82 70 | 95.63 95 | 99.45 30 | 98.63 94 |
|
abl_6 | | | | | 96.82 39 | 98.60 41 | 98.74 62 | 97.74 48 | 93.73 49 | 96.25 57 | 94.37 28 | 94.55 51 | 98.60 33 | 97.25 46 | | | 99.27 66 | 98.61 95 |
|
IterMVS-LS | | | 92.56 108 | 93.18 108 | 91.84 106 | 93.90 120 | 94.97 173 | 94.99 105 | 86.20 141 | 94.18 106 | 82.68 116 | 85.81 125 | 87.36 107 | 94.43 96 | 95.31 123 | 96.02 85 | 98.87 121 | 98.60 96 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tfpn200view9 | | | 93.64 93 | 92.57 112 | 94.89 67 | 95.33 86 | 98.94 47 | 96.82 64 | 92.31 66 | 92.63 126 | 88.29 90 | 87.21 110 | 78.01 154 | 97.12 52 | 96.82 70 | 95.85 91 | 99.45 30 | 98.56 97 |
|
thres400 | | | 93.56 96 | 92.43 120 | 94.87 69 | 95.40 84 | 98.91 52 | 96.70 70 | 92.38 65 | 92.93 122 | 88.19 94 | 86.69 115 | 77.35 157 | 97.13 50 | 96.75 75 | 95.85 91 | 99.42 42 | 98.56 97 |
|
MVS_Test | | | 94.82 67 | 95.66 62 | 93.84 87 | 94.79 102 | 98.35 79 | 96.49 77 | 89.10 113 | 96.12 63 | 87.09 101 | 92.58 65 | 90.61 84 | 96.48 66 | 96.51 88 | 96.89 63 | 99.11 95 | 98.54 99 |
|
Vis-MVSNet (Re-imp) | | | 94.46 78 | 96.24 55 | 92.40 102 | 95.23 91 | 98.64 71 | 95.56 99 | 90.99 87 | 94.42 102 | 85.02 108 | 90.88 87 | 94.65 64 | 88.01 169 | 98.17 30 | 98.37 16 | 99.57 8 | 98.53 100 |
|
Fast-Effi-MVS+ | | | 91.87 112 | 92.08 127 | 91.62 111 | 92.91 134 | 97.21 106 | 94.93 107 | 84.60 162 | 93.61 115 | 81.49 124 | 83.50 139 | 78.95 149 | 96.62 64 | 96.55 83 | 96.22 78 | 99.16 88 | 98.51 101 |
|
MVSTER | | | 94.89 65 | 95.07 75 | 94.68 75 | 94.71 106 | 96.68 120 | 97.00 58 | 90.57 93 | 95.18 91 | 93.05 38 | 95.21 44 | 86.41 111 | 93.72 110 | 97.59 51 | 95.88 90 | 99.00 109 | 98.50 102 |
|
thres200 | | | 93.62 94 | 92.54 113 | 94.88 68 | 95.36 85 | 98.93 49 | 96.75 68 | 92.31 66 | 92.84 123 | 88.28 92 | 86.99 112 | 77.81 156 | 97.13 50 | 96.82 70 | 95.92 87 | 99.45 30 | 98.49 103 |
|
v1921920 | | | 87.31 176 | 87.13 177 | 87.52 170 | 88.87 186 | 94.72 179 | 91.96 162 | 84.59 163 | 88.28 172 | 69.86 186 | 72.50 185 | 70.03 190 | 91.10 140 | 93.33 156 | 92.61 169 | 98.71 137 | 98.44 104 |
|
thisisatest0515 | | | 90.12 138 | 92.06 128 | 87.85 162 | 90.03 162 | 96.17 134 | 87.83 188 | 87.45 128 | 91.71 143 | 77.15 142 | 85.40 127 | 84.01 129 | 85.74 181 | 95.41 121 | 93.30 155 | 98.88 120 | 98.43 105 |
|
v144192 | | | 87.40 174 | 87.20 176 | 87.64 165 | 88.89 184 | 94.88 177 | 91.65 165 | 84.70 161 | 87.80 175 | 71.17 178 | 73.20 182 | 70.91 184 | 90.75 149 | 92.69 165 | 92.49 170 | 98.71 137 | 98.43 105 |
|
v1192 | | | 87.51 172 | 87.31 173 | 87.74 164 | 89.04 183 | 94.87 178 | 92.07 157 | 85.03 156 | 88.49 171 | 70.32 180 | 72.65 184 | 70.35 187 | 91.21 138 | 93.59 149 | 92.80 164 | 98.78 133 | 98.42 107 |
|
v10 | | | 88.00 163 | 87.96 165 | 88.05 156 | 89.44 171 | 94.68 180 | 92.36 149 | 83.35 169 | 89.37 163 | 72.96 169 | 73.98 176 | 72.79 176 | 91.35 137 | 93.59 149 | 92.88 162 | 98.81 128 | 98.42 107 |
|
thres100view900 | | | 93.55 97 | 92.47 119 | 94.81 71 | 95.33 86 | 98.74 62 | 96.78 67 | 92.30 69 | 92.63 126 | 88.29 90 | 87.21 110 | 78.01 154 | 96.78 60 | 96.38 90 | 95.92 87 | 99.38 49 | 98.40 109 |
|
AdaColmap | | | 97.53 29 | 96.93 44 | 98.24 14 | 99.21 23 | 98.77 61 | 98.47 33 | 97.34 23 | 96.68 50 | 96.52 13 | 95.11 46 | 96.12 57 | 98.72 15 | 97.19 62 | 96.24 77 | 99.17 85 | 98.39 110 |
|
PCF-MVS | | 93.95 6 | 95.65 53 | 95.14 72 | 96.25 44 | 97.73 57 | 98.73 64 | 97.59 51 | 97.13 30 | 92.50 130 | 89.09 88 | 89.85 96 | 96.65 49 | 96.90 57 | 94.97 131 | 94.89 115 | 99.08 98 | 98.38 111 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Fast-Effi-MVS+-dtu | | | 91.19 122 | 93.64 100 | 88.33 149 | 92.19 142 | 96.46 126 | 93.99 123 | 81.52 179 | 92.59 128 | 71.82 173 | 92.17 69 | 85.54 117 | 91.68 133 | 95.73 113 | 94.64 122 | 98.80 130 | 98.34 112 |
|
v1144 | | | 87.92 167 | 87.79 169 | 88.07 153 | 89.27 175 | 95.15 169 | 92.17 155 | 85.62 148 | 88.52 170 | 71.52 174 | 73.80 177 | 72.40 178 | 91.06 141 | 93.54 153 | 92.80 164 | 98.81 128 | 98.33 113 |
|
V42 | | | 88.31 160 | 87.95 166 | 88.73 144 | 89.44 171 | 95.34 163 | 92.23 154 | 87.21 131 | 88.83 166 | 74.49 164 | 74.89 168 | 73.43 174 | 90.41 157 | 92.08 176 | 92.77 166 | 98.60 148 | 98.33 113 |
|
CDS-MVSNet | | | 92.77 105 | 93.60 102 | 91.80 107 | 92.63 138 | 96.80 114 | 95.24 102 | 89.14 112 | 90.30 158 | 84.58 109 | 86.76 113 | 90.65 83 | 90.42 155 | 95.89 106 | 96.49 70 | 98.79 132 | 98.32 115 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PEN-MVS | | | 87.22 177 | 86.50 185 | 88.07 153 | 88.88 185 | 94.44 185 | 90.99 174 | 86.21 139 | 86.53 184 | 73.66 167 | 74.97 167 | 66.56 203 | 89.42 164 | 91.20 183 | 93.48 151 | 99.24 71 | 98.31 116 |
|
v1240 | | | 86.89 178 | 86.75 182 | 87.06 175 | 88.75 188 | 94.65 182 | 91.30 171 | 84.05 165 | 87.49 179 | 68.94 190 | 71.96 188 | 68.86 195 | 90.65 152 | 93.33 156 | 92.72 168 | 98.67 140 | 98.24 117 |
|
v8 | | | 88.21 162 | 87.94 167 | 88.51 146 | 89.62 167 | 95.01 172 | 92.31 151 | 84.99 157 | 88.94 164 | 74.70 163 | 75.03 166 | 73.51 173 | 90.67 151 | 92.11 174 | 92.74 167 | 98.80 130 | 98.24 117 |
|
baseline2 | | | 93.01 103 | 94.17 90 | 91.64 109 | 92.83 136 | 97.49 98 | 93.40 131 | 87.53 127 | 93.67 114 | 86.07 104 | 91.83 75 | 86.58 108 | 91.36 136 | 96.38 90 | 95.06 110 | 98.67 140 | 98.20 119 |
|
ET-MVSNet_ETH3D | | | 93.34 100 | 94.33 86 | 92.18 104 | 83.26 204 | 97.66 95 | 96.72 69 | 89.89 101 | 95.62 80 | 87.17 100 | 96.00 36 | 83.69 132 | 96.99 55 | 93.78 147 | 95.34 103 | 99.06 103 | 98.18 120 |
|
CNLPA | | | 96.90 41 | 96.28 54 | 97.64 28 | 98.56 42 | 98.63 73 | 96.85 63 | 96.60 36 | 97.73 17 | 97.08 5 | 89.78 97 | 96.28 55 | 97.80 36 | 96.73 76 | 96.63 68 | 98.94 115 | 98.14 121 |
|
PLC | | 94.95 3 | 97.37 32 | 96.77 48 | 98.07 20 | 98.97 31 | 98.21 83 | 97.94 45 | 96.85 35 | 97.66 25 | 97.58 2 | 93.33 57 | 96.84 47 | 98.01 33 | 97.13 64 | 96.20 79 | 99.09 97 | 98.01 122 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v2v482 | | | 88.25 161 | 87.71 171 | 88.88 142 | 89.23 180 | 95.28 164 | 92.10 156 | 87.89 125 | 88.69 169 | 73.31 168 | 75.32 165 | 71.64 180 | 91.89 129 | 92.10 175 | 92.92 161 | 98.86 123 | 97.99 123 |
|
ACMH+ | | 90.88 12 | 91.41 121 | 91.13 137 | 91.74 108 | 95.11 95 | 96.95 109 | 93.13 136 | 89.48 109 | 92.42 132 | 79.93 130 | 85.13 128 | 78.02 153 | 93.82 108 | 93.49 154 | 93.88 143 | 98.94 115 | 97.99 123 |
|
v148 | | | 87.51 172 | 86.79 180 | 88.36 148 | 89.39 173 | 95.21 168 | 89.84 182 | 88.20 122 | 87.61 178 | 77.56 139 | 73.38 181 | 70.32 188 | 86.80 175 | 90.70 185 | 92.31 173 | 98.37 159 | 97.98 125 |
|
TAPA-MVS | | 94.18 5 | 96.38 47 | 96.49 52 | 96.25 44 | 98.26 47 | 98.66 68 | 98.00 43 | 94.96 43 | 97.17 38 | 89.48 79 | 92.91 62 | 96.35 52 | 97.53 40 | 96.59 81 | 95.90 89 | 99.28 64 | 97.82 126 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CANet_DTU | | | 93.92 88 | 96.57 50 | 90.83 119 | 95.63 80 | 98.39 78 | 96.99 59 | 87.38 129 | 96.26 56 | 71.97 172 | 96.31 33 | 93.02 70 | 94.53 95 | 97.38 56 | 96.83 65 | 98.49 153 | 97.79 127 |
|
GBi-Net | | | 93.81 90 | 94.18 88 | 93.38 95 | 91.34 148 | 95.86 144 | 96.22 81 | 88.68 115 | 95.23 88 | 90.40 64 | 86.39 119 | 91.16 78 | 94.40 98 | 96.52 85 | 96.30 73 | 99.21 80 | 97.79 127 |
|
test1 | | | 93.81 90 | 94.18 88 | 93.38 95 | 91.34 148 | 95.86 144 | 96.22 81 | 88.68 115 | 95.23 88 | 90.40 64 | 86.39 119 | 91.16 78 | 94.40 98 | 96.52 85 | 96.30 73 | 99.21 80 | 97.79 127 |
|
FMVSNet3 | | | 93.79 92 | 94.17 90 | 93.35 97 | 91.21 151 | 95.99 137 | 96.62 71 | 88.68 115 | 95.23 88 | 90.40 64 | 86.39 119 | 91.16 78 | 94.11 102 | 95.96 104 | 96.67 67 | 99.07 100 | 97.79 127 |
|
FMVSNet2 | | | 93.30 101 | 93.36 107 | 93.22 98 | 91.34 148 | 95.86 144 | 96.22 81 | 88.24 121 | 95.15 92 | 89.92 75 | 81.64 146 | 89.36 92 | 94.40 98 | 96.77 74 | 96.98 60 | 99.21 80 | 97.79 127 |
|
pm-mvs1 | | | 89.19 150 | 89.02 153 | 89.38 139 | 90.40 156 | 95.74 151 | 92.05 158 | 88.10 123 | 86.13 186 | 77.70 138 | 73.72 178 | 79.44 148 | 88.97 166 | 95.81 110 | 94.51 130 | 99.08 98 | 97.78 132 |
|
FMVSNet1 | | | 91.54 119 | 90.93 140 | 92.26 103 | 90.35 158 | 95.27 166 | 95.22 103 | 87.16 132 | 91.37 146 | 87.62 97 | 75.45 164 | 83.84 130 | 94.43 96 | 96.52 85 | 96.30 73 | 98.82 125 | 97.74 133 |
|
LS3D | | | 95.46 57 | 95.14 72 | 95.84 50 | 97.91 54 | 98.90 54 | 98.58 29 | 97.79 3 | 97.07 42 | 83.65 113 | 88.71 102 | 88.64 100 | 97.82 34 | 97.49 53 | 97.42 47 | 99.26 70 | 97.72 134 |
|
OMC-MVS | | | 97.00 39 | 96.92 45 | 97.09 34 | 98.69 38 | 98.66 68 | 97.85 46 | 95.02 42 | 98.09 11 | 94.47 27 | 93.15 58 | 96.90 45 | 97.38 43 | 97.16 63 | 96.82 66 | 99.13 92 | 97.65 135 |
|
IterMVS-SCA-FT | | | 90.24 134 | 92.48 118 | 87.63 166 | 92.85 135 | 94.30 189 | 93.79 125 | 81.47 180 | 92.66 125 | 69.95 184 | 84.66 132 | 88.38 103 | 89.99 160 | 95.39 122 | 94.34 133 | 97.74 175 | 97.63 136 |
|
DTE-MVSNet | | | 86.67 180 | 86.09 186 | 87.35 172 | 88.45 191 | 94.08 190 | 90.65 176 | 86.05 143 | 86.13 186 | 72.19 171 | 74.58 172 | 66.77 201 | 87.61 172 | 90.31 186 | 93.12 157 | 99.13 92 | 97.62 137 |
|
DPM-MVS | | | 96.86 42 | 96.82 47 | 96.91 38 | 98.08 51 | 98.20 84 | 98.52 32 | 97.20 28 | 97.24 37 | 91.42 51 | 91.84 74 | 98.45 34 | 97.25 46 | 97.07 65 | 97.40 49 | 98.95 114 | 97.55 138 |
|
CHOSEN 280x420 | | | 95.46 57 | 97.01 42 | 93.66 90 | 97.28 62 | 97.98 91 | 96.40 79 | 85.39 151 | 96.10 64 | 91.07 54 | 96.53 32 | 96.34 54 | 95.61 79 | 97.65 49 | 96.95 61 | 96.21 183 | 97.49 139 |
|
IterMVS | | | 90.20 135 | 92.43 120 | 87.61 167 | 92.82 137 | 94.31 188 | 94.11 121 | 81.54 178 | 92.97 121 | 69.90 185 | 84.71 131 | 88.16 106 | 89.96 161 | 95.25 124 | 94.17 136 | 97.31 177 | 97.46 140 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FC-MVSNet-test | | | 91.63 116 | 93.82 98 | 89.08 141 | 92.02 143 | 96.40 129 | 93.26 134 | 87.26 130 | 93.72 113 | 77.26 141 | 88.61 105 | 89.86 89 | 85.50 182 | 95.72 115 | 95.02 112 | 99.16 88 | 97.44 141 |
|
gg-mvs-nofinetune | | | 86.17 183 | 88.57 157 | 83.36 190 | 93.44 127 | 98.15 87 | 96.58 74 | 72.05 204 | 74.12 207 | 49.23 210 | 64.81 202 | 90.85 82 | 89.90 162 | 97.83 45 | 96.84 64 | 98.97 112 | 97.41 142 |
|
test-mter | | | 90.95 124 | 93.54 106 | 87.93 161 | 90.28 159 | 96.80 114 | 91.44 166 | 82.68 174 | 92.15 140 | 74.37 165 | 89.57 98 | 88.23 105 | 90.88 146 | 96.37 92 | 94.31 134 | 97.93 170 | 97.37 143 |
|
ACMM | | 92.75 10 | 94.41 81 | 93.84 97 | 95.09 62 | 96.41 72 | 96.80 114 | 94.88 109 | 93.54 51 | 96.41 54 | 90.16 69 | 92.31 68 | 83.11 135 | 96.32 68 | 96.22 98 | 94.65 121 | 99.22 77 | 97.35 144 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GA-MVS | | | 89.28 147 | 90.75 143 | 87.57 168 | 91.77 144 | 96.48 125 | 92.29 152 | 87.58 126 | 90.61 155 | 65.77 194 | 84.48 133 | 76.84 160 | 89.46 163 | 95.84 108 | 93.68 148 | 98.52 151 | 97.34 145 |
|
pmmvs6 | | | 85.98 184 | 84.89 192 | 87.25 173 | 88.83 187 | 94.35 187 | 89.36 184 | 85.30 154 | 78.51 204 | 75.44 155 | 62.71 203 | 75.41 163 | 87.65 171 | 93.58 151 | 92.40 172 | 96.89 180 | 97.29 146 |
|
OPM-MVS | | | 93.61 95 | 92.43 120 | 95.00 64 | 96.94 66 | 97.34 102 | 97.78 47 | 94.23 46 | 89.64 161 | 85.53 106 | 88.70 103 | 82.81 136 | 96.28 69 | 96.28 96 | 95.00 114 | 99.24 71 | 97.22 147 |
|
SixPastTwentyTwo | | | 88.37 159 | 89.47 150 | 87.08 174 | 90.01 163 | 95.93 143 | 87.41 189 | 85.32 152 | 90.26 159 | 70.26 181 | 86.34 122 | 71.95 179 | 90.93 143 | 92.89 164 | 91.72 178 | 98.55 149 | 97.22 147 |
|
pmmvs5 | | | 87.83 169 | 88.09 162 | 87.51 171 | 89.59 169 | 95.48 158 | 89.75 183 | 84.73 160 | 86.07 188 | 71.44 175 | 80.57 150 | 70.09 189 | 90.74 150 | 94.47 137 | 92.87 163 | 98.82 125 | 97.10 149 |
|
CVMVSNet | | | 89.77 142 | 91.66 132 | 87.56 169 | 93.21 132 | 95.45 160 | 91.94 163 | 89.22 111 | 89.62 162 | 69.34 189 | 83.99 137 | 85.90 115 | 84.81 187 | 94.30 142 | 95.28 105 | 96.85 181 | 97.09 150 |
|
PMMVS | | | 94.61 74 | 95.56 64 | 93.50 92 | 94.30 115 | 96.74 118 | 94.91 108 | 89.56 107 | 95.58 82 | 87.72 96 | 96.15 34 | 92.86 71 | 96.06 71 | 95.47 119 | 95.02 112 | 98.43 158 | 97.09 150 |
|
CR-MVSNet | | | 90.16 137 | 91.96 130 | 88.06 155 | 93.32 129 | 95.95 141 | 93.36 132 | 75.99 196 | 92.40 133 | 75.19 158 | 83.18 140 | 85.37 118 | 92.05 127 | 95.21 125 | 94.56 126 | 98.47 155 | 97.08 152 |
|
PatchT | | | 89.13 151 | 91.71 131 | 86.11 183 | 92.92 133 | 95.59 155 | 83.64 198 | 75.09 199 | 91.87 142 | 75.19 158 | 82.63 143 | 85.06 123 | 92.05 127 | 95.21 125 | 94.56 126 | 97.76 172 | 97.08 152 |
|
baseline1 | | | 94.59 75 | 94.47 82 | 94.72 73 | 95.16 93 | 97.97 92 | 96.07 87 | 91.94 73 | 94.86 95 | 89.98 72 | 91.60 78 | 85.87 116 | 95.64 78 | 97.07 65 | 96.90 62 | 99.52 14 | 97.06 154 |
|
UA-Net | | | 93.96 87 | 95.95 60 | 91.64 109 | 96.06 75 | 98.59 75 | 95.29 101 | 90.00 98 | 91.06 149 | 82.87 115 | 90.64 88 | 98.06 39 | 86.06 179 | 98.14 33 | 98.20 18 | 99.58 6 | 96.96 155 |
|
tpm | | | 87.95 164 | 89.44 151 | 86.21 182 | 92.53 139 | 94.62 183 | 91.40 167 | 76.36 193 | 91.46 145 | 69.80 187 | 87.43 109 | 75.14 164 | 91.55 134 | 89.85 191 | 90.60 182 | 95.61 189 | 96.96 155 |
|
RPMNet | | | 90.19 136 | 92.03 129 | 88.05 156 | 93.46 126 | 95.95 141 | 93.41 130 | 74.59 201 | 92.40 133 | 75.91 152 | 84.22 135 | 86.41 111 | 92.49 123 | 94.42 139 | 93.85 145 | 98.44 156 | 96.96 155 |
|
test-LLR | | | 91.62 117 | 93.56 104 | 89.35 140 | 93.31 130 | 96.57 123 | 92.02 160 | 87.06 133 | 92.34 136 | 75.05 161 | 90.20 92 | 88.64 100 | 90.93 143 | 96.19 100 | 94.07 138 | 97.75 173 | 96.90 158 |
|
TESTMET0.1,1 | | | 91.07 123 | 93.56 104 | 88.17 151 | 90.43 155 | 96.57 123 | 92.02 160 | 82.83 173 | 92.34 136 | 75.05 161 | 90.20 92 | 88.64 100 | 90.93 143 | 96.19 100 | 94.07 138 | 97.75 173 | 96.90 158 |
|
pmmvs4 | | | 90.55 130 | 89.91 147 | 91.30 114 | 90.26 160 | 94.95 174 | 92.73 142 | 87.94 124 | 93.44 118 | 85.35 107 | 82.28 145 | 76.09 161 | 93.02 121 | 93.56 152 | 92.26 175 | 98.51 152 | 96.77 160 |
|
TSAR-MVS + COLMAP | | | 94.79 69 | 94.51 81 | 95.11 61 | 96.50 69 | 97.54 96 | 97.99 44 | 94.54 44 | 97.81 15 | 85.88 105 | 96.73 30 | 81.28 144 | 96.99 55 | 96.29 95 | 95.21 108 | 98.76 135 | 96.73 161 |
|
PatchMatch-RL | | | 94.69 73 | 94.41 83 | 95.02 63 | 97.63 58 | 98.15 87 | 94.50 117 | 91.99 72 | 95.32 85 | 91.31 52 | 95.47 42 | 83.44 133 | 96.02 73 | 96.56 82 | 95.23 107 | 98.69 139 | 96.67 162 |
|
PM-MVS | | | 84.72 189 | 84.47 193 | 85.03 186 | 84.67 200 | 91.57 199 | 86.27 193 | 82.31 176 | 87.65 177 | 70.62 179 | 76.54 163 | 56.41 210 | 88.75 168 | 92.59 166 | 89.85 187 | 97.54 176 | 96.66 163 |
|
test0.0.03 1 | | | 91.97 111 | 93.91 94 | 89.72 133 | 93.31 130 | 96.40 129 | 91.34 169 | 87.06 133 | 93.86 110 | 81.67 122 | 91.15 83 | 89.16 96 | 86.02 180 | 95.08 128 | 95.09 109 | 98.91 118 | 96.64 164 |
|
testgi | | | 89.42 144 | 91.50 135 | 87.00 176 | 92.40 141 | 95.59 155 | 89.15 185 | 85.27 155 | 92.78 124 | 72.42 170 | 91.75 76 | 76.00 162 | 84.09 191 | 94.38 140 | 93.82 147 | 98.65 144 | 96.15 165 |
|
CostFormer | | | 90.69 127 | 90.48 145 | 90.93 117 | 94.18 116 | 96.08 136 | 94.03 122 | 78.20 186 | 93.47 117 | 89.96 73 | 90.97 86 | 80.30 145 | 93.72 110 | 87.66 197 | 88.75 190 | 95.51 191 | 96.12 166 |
|
EU-MVSNet | | | 85.62 185 | 87.65 172 | 83.24 191 | 88.54 190 | 92.77 196 | 87.12 190 | 85.32 152 | 86.71 182 | 64.54 196 | 78.52 157 | 75.11 165 | 78.35 196 | 92.25 171 | 92.28 174 | 95.58 190 | 95.93 167 |
|
TransMVSNet (Re) | | | 87.73 170 | 86.79 180 | 88.83 143 | 90.76 152 | 94.40 186 | 91.33 170 | 89.62 106 | 84.73 192 | 75.41 156 | 72.73 183 | 71.41 182 | 86.80 175 | 94.53 136 | 93.93 142 | 99.06 103 | 95.83 168 |
|
EPNet_dtu | | | 92.45 109 | 95.02 76 | 89.46 137 | 98.02 52 | 95.47 159 | 94.79 111 | 92.62 64 | 94.97 93 | 70.11 183 | 94.76 50 | 92.61 74 | 84.07 192 | 95.94 105 | 95.56 97 | 97.15 179 | 95.82 169 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MSDG | | | 94.82 67 | 93.73 99 | 96.09 47 | 98.34 46 | 97.43 101 | 97.06 57 | 96.05 37 | 95.84 74 | 90.56 62 | 86.30 123 | 89.10 97 | 95.55 81 | 96.13 102 | 95.61 96 | 99.00 109 | 95.73 170 |
|
pmmvs-eth3d | | | 84.33 190 | 82.94 195 | 85.96 185 | 84.16 201 | 90.94 200 | 86.55 192 | 83.79 166 | 84.25 193 | 75.85 153 | 70.64 192 | 56.43 209 | 87.44 174 | 92.20 172 | 90.41 184 | 97.97 169 | 95.68 171 |
|
GG-mvs-BLEND | | | 66.17 202 | 94.91 78 | 32.63 208 | 1.32 216 | 96.64 121 | 91.40 167 | 0.85 214 | 94.39 104 | 2.20 216 | 90.15 94 | 95.70 60 | 2.27 213 | 96.39 89 | 95.44 101 | 97.78 171 | 95.68 171 |
|
gm-plane-assit | | | 83.26 192 | 85.29 189 | 80.89 193 | 89.52 170 | 89.89 203 | 70.26 208 | 78.24 185 | 77.11 205 | 58.01 207 | 74.16 175 | 66.90 198 | 90.63 153 | 97.20 60 | 96.05 83 | 98.66 143 | 95.68 171 |
|
TAMVS | | | 90.54 131 | 90.87 142 | 90.16 128 | 91.48 146 | 96.61 122 | 93.26 134 | 86.08 142 | 87.71 176 | 81.66 123 | 83.11 142 | 84.04 128 | 90.42 155 | 94.54 135 | 94.60 123 | 98.04 168 | 95.48 174 |
|
EG-PatchMatch MVS | | | 86.68 179 | 87.24 175 | 86.02 184 | 90.58 154 | 96.26 132 | 91.08 173 | 81.59 177 | 84.96 191 | 69.80 187 | 71.35 191 | 75.08 166 | 84.23 190 | 94.24 144 | 93.35 153 | 98.82 125 | 95.46 175 |
|
COLMAP_ROB | | 90.49 14 | 93.27 102 | 92.71 111 | 93.93 85 | 97.75 56 | 97.44 100 | 96.07 87 | 93.17 59 | 95.40 83 | 83.86 111 | 83.76 138 | 88.72 99 | 93.87 106 | 94.25 143 | 94.11 137 | 98.87 121 | 95.28 176 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ambc | | | | 73.83 202 | | 76.23 208 | 85.13 207 | 82.27 201 | | 84.16 194 | 65.58 195 | 52.82 206 | 23.31 217 | 73.55 201 | 91.41 182 | 85.26 201 | 92.97 204 | 94.70 177 |
|
MS-PatchMatch | | | 91.82 113 | 92.51 114 | 91.02 115 | 95.83 79 | 96.88 110 | 95.05 104 | 84.55 164 | 93.85 111 | 82.01 119 | 82.51 144 | 91.71 76 | 90.52 154 | 95.07 129 | 93.03 159 | 98.13 164 | 94.52 178 |
|
TDRefinement | | | 89.07 152 | 88.15 161 | 90.14 130 | 95.16 93 | 96.88 110 | 95.55 100 | 90.20 96 | 89.68 160 | 76.42 148 | 76.67 161 | 74.30 169 | 84.85 186 | 93.11 159 | 91.91 177 | 98.64 145 | 94.47 179 |
|
MDTV_nov1_ep13 | | | 91.57 118 | 93.18 108 | 89.70 134 | 93.39 128 | 96.97 108 | 93.53 128 | 80.91 181 | 95.70 77 | 81.86 120 | 92.40 67 | 89.93 88 | 93.25 118 | 91.97 178 | 90.80 181 | 95.25 195 | 94.46 180 |
|
dps | | | 90.11 139 | 89.37 152 | 90.98 116 | 93.89 121 | 96.21 133 | 93.49 129 | 77.61 188 | 91.95 141 | 92.74 44 | 88.85 101 | 78.77 151 | 92.37 125 | 87.71 196 | 87.71 194 | 95.80 187 | 94.38 181 |
|
Anonymous20231206 | | | 83.84 191 | 85.19 190 | 82.26 192 | 87.38 196 | 92.87 194 | 85.49 195 | 83.65 167 | 86.07 188 | 63.44 199 | 68.42 195 | 69.01 193 | 75.45 200 | 93.34 155 | 92.44 171 | 98.12 166 | 94.20 182 |
|
USDC | | | 90.69 127 | 90.52 144 | 90.88 118 | 94.17 117 | 96.43 127 | 95.82 97 | 86.76 135 | 93.92 109 | 76.27 150 | 86.49 117 | 74.30 169 | 93.67 112 | 95.04 130 | 93.36 152 | 98.61 146 | 94.13 183 |
|
tpm cat1 | | | 88.90 154 | 87.78 170 | 90.22 127 | 93.88 122 | 95.39 162 | 93.79 125 | 78.11 187 | 92.55 129 | 89.43 80 | 81.31 147 | 79.84 147 | 91.40 135 | 84.95 199 | 86.34 199 | 94.68 201 | 94.09 184 |
|
SCA | | | 90.92 125 | 93.04 110 | 88.45 147 | 93.72 125 | 97.33 103 | 92.77 140 | 76.08 195 | 96.02 66 | 78.26 137 | 91.96 72 | 90.86 81 | 93.99 105 | 90.98 184 | 90.04 186 | 95.88 186 | 94.06 185 |
|
RPSCF | | | 94.05 85 | 94.00 93 | 94.12 83 | 96.20 74 | 96.41 128 | 96.61 72 | 91.54 80 | 95.83 75 | 89.73 76 | 96.94 29 | 92.80 72 | 95.35 85 | 91.63 180 | 90.44 183 | 95.27 194 | 93.94 186 |
|
tpmrst | | | 88.86 156 | 89.62 148 | 87.97 160 | 94.33 114 | 95.98 138 | 92.62 144 | 76.36 193 | 94.62 99 | 76.94 144 | 85.98 124 | 82.80 137 | 92.80 122 | 86.90 198 | 87.15 196 | 94.77 199 | 93.93 187 |
|
MDTV_nov1_ep13_2view | | | 86.30 182 | 88.27 159 | 84.01 188 | 87.71 195 | 94.67 181 | 88.08 187 | 76.78 191 | 90.59 156 | 68.66 191 | 80.46 152 | 80.12 146 | 87.58 173 | 89.95 190 | 88.20 192 | 95.25 195 | 93.90 188 |
|
ADS-MVSNet | | | 89.80 141 | 91.33 136 | 88.00 159 | 94.43 113 | 96.71 119 | 92.29 152 | 74.95 200 | 96.07 65 | 77.39 140 | 88.67 104 | 86.09 113 | 93.26 117 | 88.44 193 | 89.57 188 | 95.68 188 | 93.81 189 |
|
PatchmatchNet | | | 90.56 129 | 92.49 116 | 88.31 150 | 93.83 123 | 96.86 113 | 92.42 148 | 76.50 192 | 95.96 69 | 78.31 136 | 91.96 72 | 89.66 90 | 93.48 114 | 90.04 189 | 89.20 189 | 95.32 192 | 93.73 190 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MIMVSNet | | | 88.99 153 | 91.07 138 | 86.57 179 | 86.78 198 | 95.62 152 | 91.20 172 | 75.40 198 | 90.65 154 | 76.57 146 | 84.05 136 | 82.44 139 | 91.01 142 | 95.84 108 | 95.38 102 | 98.48 154 | 93.50 191 |
|
EPMVS | | | 90.88 126 | 92.12 126 | 89.44 138 | 94.71 106 | 97.24 104 | 93.55 127 | 76.81 190 | 95.89 71 | 81.77 121 | 91.49 79 | 86.47 110 | 93.87 106 | 90.21 187 | 90.07 185 | 95.92 185 | 93.49 192 |
|
TinyColmap | | | 89.42 144 | 88.58 156 | 90.40 125 | 93.80 124 | 95.45 160 | 93.96 124 | 86.54 137 | 92.24 138 | 76.49 147 | 80.83 149 | 70.44 186 | 93.37 115 | 94.45 138 | 93.30 155 | 98.26 162 | 93.37 193 |
|
MDA-MVSNet-bldmvs | | | 80.11 195 | 80.24 198 | 79.94 195 | 77.01 207 | 93.21 193 | 78.86 205 | 85.94 145 | 82.71 199 | 60.86 200 | 79.71 154 | 51.77 212 | 83.71 193 | 75.60 204 | 86.37 198 | 93.28 203 | 92.35 194 |
|
N_pmnet | | | 84.80 187 | 85.10 191 | 84.45 187 | 89.25 179 | 92.86 195 | 84.04 197 | 86.21 139 | 88.78 167 | 66.73 193 | 72.41 186 | 74.87 168 | 85.21 184 | 88.32 194 | 86.45 197 | 95.30 193 | 92.04 195 |
|
test20.03 | | | 82.92 193 | 85.52 188 | 79.90 196 | 87.75 194 | 91.84 198 | 82.80 200 | 82.99 171 | 82.65 200 | 60.32 203 | 78.90 156 | 70.50 185 | 67.10 203 | 92.05 177 | 90.89 180 | 98.44 156 | 91.80 196 |
|
pmmvs3 | | | 79.16 197 | 80.12 199 | 78.05 199 | 79.36 205 | 86.59 206 | 78.13 206 | 73.87 202 | 76.42 206 | 57.51 208 | 70.59 193 | 57.02 208 | 84.66 188 | 90.10 188 | 88.32 191 | 94.75 200 | 91.77 197 |
|
FMVSNet5 | | | 90.36 132 | 90.93 140 | 89.70 134 | 87.99 192 | 92.25 197 | 92.03 159 | 83.51 168 | 92.20 139 | 84.13 110 | 85.59 126 | 86.48 109 | 92.43 124 | 94.61 133 | 94.52 129 | 98.13 164 | 90.85 198 |
|
new-patchmatchnet | | | 78.49 198 | 78.19 200 | 78.84 198 | 84.13 202 | 90.06 202 | 77.11 207 | 80.39 182 | 79.57 203 | 59.64 206 | 66.01 200 | 55.65 211 | 75.62 199 | 84.55 200 | 80.70 202 | 96.14 184 | 90.77 199 |
|
MIMVSNet1 | | | 80.03 196 | 80.93 197 | 78.97 197 | 72.46 210 | 90.73 201 | 80.81 203 | 82.44 175 | 80.39 201 | 63.64 198 | 57.57 204 | 64.93 204 | 76.37 198 | 91.66 179 | 91.55 179 | 98.07 167 | 89.70 200 |
|
MVS-HIRNet | | | 85.36 186 | 86.89 179 | 83.57 189 | 90.13 161 | 94.51 184 | 83.57 199 | 72.61 203 | 88.27 173 | 71.22 177 | 68.97 194 | 81.81 141 | 88.91 167 | 93.08 160 | 91.94 176 | 94.97 198 | 89.64 201 |
|
CMPMVS | | 65.18 17 | 84.76 188 | 83.10 194 | 86.69 178 | 95.29 89 | 95.05 171 | 88.37 186 | 85.51 150 | 80.27 202 | 71.31 176 | 68.37 196 | 73.85 171 | 85.25 183 | 87.72 195 | 87.75 193 | 94.38 202 | 88.70 202 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
new_pmnet | | | 81.53 194 | 82.68 196 | 80.20 194 | 83.47 203 | 89.47 204 | 82.21 202 | 78.36 184 | 87.86 174 | 60.14 205 | 67.90 197 | 69.43 192 | 82.03 194 | 89.22 192 | 87.47 195 | 94.99 197 | 87.39 203 |
|
DeepMVS_CX | | | | | | | 86.86 205 | 79.50 204 | 70.43 206 | 90.73 152 | 63.66 197 | 80.36 153 | 60.83 205 | 79.68 195 | 76.23 203 | | 89.46 206 | 86.53 204 |
|
PMMVS2 | | | 64.36 203 | 65.94 205 | 62.52 204 | 67.37 211 | 77.44 209 | 64.39 210 | 69.32 209 | 61.47 209 | 34.59 211 | 46.09 207 | 41.03 213 | 48.02 210 | 74.56 206 | 78.23 203 | 91.43 205 | 82.76 205 |
|
FPMVS | | | 75.84 199 | 74.59 201 | 77.29 200 | 86.92 197 | 83.89 208 | 85.01 196 | 80.05 183 | 82.91 198 | 60.61 202 | 65.25 201 | 60.41 206 | 63.86 204 | 75.60 204 | 73.60 206 | 87.29 208 | 80.47 206 |
|
Gipuma | | | 68.35 200 | 66.71 203 | 70.27 201 | 74.16 209 | 68.78 211 | 63.93 211 | 71.77 205 | 83.34 197 | 54.57 209 | 34.37 208 | 31.88 214 | 68.69 202 | 83.30 201 | 85.53 200 | 88.48 207 | 79.78 207 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS | | 63.12 18 | 67.27 201 | 66.39 204 | 68.30 202 | 77.98 206 | 60.24 212 | 59.53 212 | 76.82 189 | 66.65 208 | 60.74 201 | 54.39 205 | 59.82 207 | 51.24 207 | 73.92 207 | 70.52 207 | 83.48 209 | 79.17 208 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE | | 50.86 19 | 49.54 206 | 51.43 206 | 47.33 207 | 44.14 214 | 59.20 213 | 36.45 215 | 60.59 210 | 41.47 212 | 31.14 212 | 29.58 209 | 17.06 218 | 48.52 209 | 62.22 208 | 74.63 205 | 63.12 213 | 75.87 209 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 50.67 204 | 47.85 207 | 53.96 205 | 64.13 213 | 50.98 215 | 38.06 213 | 69.51 207 | 51.40 211 | 24.60 213 | 29.46 211 | 24.39 216 | 56.07 206 | 48.17 209 | 59.70 208 | 71.40 211 | 70.84 210 |
|
EMVS | | | 49.98 205 | 46.76 208 | 53.74 206 | 64.96 212 | 51.29 214 | 37.81 214 | 69.35 208 | 51.83 210 | 22.69 214 | 29.57 210 | 25.06 215 | 57.28 205 | 44.81 210 | 56.11 209 | 70.32 212 | 68.64 211 |
|
testmvs | | | 12.09 207 | 16.94 209 | 6.42 209 | 3.15 215 | 6.08 216 | 9.51 217 | 3.84 212 | 21.46 213 | 5.31 215 | 27.49 212 | 6.76 219 | 10.89 211 | 17.06 211 | 15.01 210 | 5.84 214 | 24.75 212 |
|
test123 | | | 9.58 208 | 13.53 210 | 4.97 210 | 1.31 217 | 5.47 217 | 8.32 218 | 2.95 213 | 18.14 214 | 2.03 217 | 20.82 213 | 2.34 220 | 10.60 212 | 10.00 212 | 14.16 211 | 4.60 215 | 23.77 213 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
9.14 | | | | | | | | | | | | | 99.28 10 | | | | | |
|
SR-MVS | | | | | | 99.45 9 | | | 97.61 14 | | | | 99.20 14 | | | | | |
|
our_test_3 | | | | | | 89.78 165 | 93.84 191 | 85.59 194 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 96.83 9 | | 99.12 19 | | | | | |
|
MTMP | | | | | | | | | | | 97.18 4 | | 98.83 25 | | | | | |
|
Patchmatch-RL test | | | | | | | | 34.61 216 | | | | | | | | | | |
|
tmp_tt | | | | | 66.88 203 | 86.07 199 | 73.86 210 | 68.22 209 | 33.38 211 | 96.88 46 | 80.67 128 | 88.23 107 | 78.82 150 | 49.78 208 | 82.68 202 | 77.47 204 | 83.19 210 | |
|
XVS | | | | | | 96.60 67 | 99.35 11 | 96.82 64 | | | 90.85 56 | | 98.72 28 | | | | 99.46 26 | |
|
X-MVStestdata | | | | | | 96.60 67 | 99.35 11 | 96.82 64 | | | 90.85 56 | | 98.72 28 | | | | 99.46 26 | |
|
mPP-MVS | | | | | | 99.21 23 | | | | | | | 98.29 37 | | | | | |
|
NP-MVS | | | | | | | | | | 95.32 85 | | | | | | | | |
|
Patchmtry | | | | | | | 95.96 140 | 93.36 132 | 75.99 196 | | 75.19 158 | | | | | | | |
|