This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11296.03 3998.24 892.11 4895.80 3998.64 3295.51 8398.95 698.66 596.78 18499.20 38
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
DPE-MVS98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11499.59 7
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8898.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 71
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9291.12 8794.13 10887.50 10091.23 8194.45 6694.17 10298.45 1898.50 799.65 299.23 33
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10090.99 8894.42 10385.02 11090.88 8894.65 6588.01 17198.17 3198.37 1699.57 898.53 101
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14298.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
UA-Net93.96 8895.95 6191.64 11196.06 7698.59 7695.29 10290.00 9991.06 15082.87 11790.64 8998.06 4086.06 18198.14 3498.20 1999.58 696.96 156
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12191.84 7694.93 9590.37 6885.04 13094.99 6390.87 14998.12 3697.30 5499.30 6399.45 13
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 67
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 10998.85 86
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 64
gg-mvs-nofinetune86.17 18588.57 15983.36 19293.44 12998.15 8896.58 7572.05 20674.12 20949.23 21364.81 20490.85 8389.90 16497.83 4696.84 6598.97 11397.41 143
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 77
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9191.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15396.10 6591.07 5596.53 3396.34 5595.61 8097.65 5096.95 6296.21 18597.49 140
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12197.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11197.59 5295.88 9199.00 11098.50 103
Vis-MVSNetpermissive92.77 10695.00 7890.16 13094.10 12098.79 6094.76 11488.26 12292.37 13679.95 13188.19 10991.58 7884.38 19197.59 5297.58 4299.52 1498.91 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11588.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 135
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8699.37 16
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 93
CANet_DTU93.92 8996.57 5190.83 12195.63 8198.39 7996.99 6087.38 13196.26 5771.97 17496.31 3493.02 7194.53 9697.38 5796.83 6698.49 15497.79 128
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10890.70 9195.34 8589.67 8091.66 7893.84 6795.42 8597.32 5897.00 6099.58 699.47 12
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 82
gm-plane-assit83.26 19485.29 19180.89 19589.52 17289.89 20570.26 21078.24 18777.11 20758.01 21074.16 17666.90 20090.63 15597.20 6196.05 8498.66 14495.68 172
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15199.04 63
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8698.39 111
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9397.65 136
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9898.01 123
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11597.55 139
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 155
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13497.03 6897.03 5998.61 14799.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11790.72 8995.61 8286.84 10593.78 5689.26 9594.74 9097.02 6994.86 11799.20 8498.87 84
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11590.72 8995.69 8086.90 10493.80 5589.44 9294.74 9096.98 7094.86 11799.19 8598.85 86
tfpn200view993.64 9492.57 11394.89 6895.33 8798.94 4896.82 6592.31 6792.63 12788.29 9287.21 11178.01 15697.12 5396.82 7195.85 9299.45 3098.56 98
thres600view793.49 9992.37 12494.79 7395.42 8498.93 5096.58 7592.31 6793.04 12187.88 9786.62 11776.94 16197.09 5496.82 7195.63 9699.45 3098.63 95
thres20093.62 9592.54 11494.88 6995.36 8698.93 5096.75 6992.31 6792.84 12488.28 9486.99 11377.81 15897.13 5196.82 7195.92 8899.45 3098.49 104
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9489.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13798.99 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet293.30 10293.36 10893.22 10091.34 15095.86 14596.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 9996.77 7596.98 6199.21 8197.79 128
thres40093.56 9792.43 12194.87 7095.40 8598.91 5396.70 7192.38 6692.93 12388.19 9686.69 11677.35 15997.13 5196.75 7695.85 9299.42 4298.56 98
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11698.14 122
CHOSEN 1792x268892.66 10892.49 11792.85 10297.13 6598.89 5695.90 9288.50 12095.32 8683.31 11671.99 18988.96 9994.10 10496.69 7896.49 7198.15 16499.10 51
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11891.52 8296.23 5990.03 7392.87 6496.10 5986.28 18096.68 7996.60 7099.16 8999.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+92.93 10593.86 9791.86 10794.07 12198.09 9095.59 9985.98 14694.27 10679.54 13591.12 8581.81 14396.71 6396.67 8096.06 8399.27 6798.98 71
Effi-MVS+-dtu91.78 11593.59 10489.68 13892.44 14297.11 10894.40 12084.94 16092.43 13275.48 15691.09 8683.75 13293.55 11596.61 8195.47 10197.24 18098.67 93
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 11991.99 7395.32 8691.31 5395.47 4383.44 13496.02 7496.56 8395.23 10898.69 14096.67 163
Fast-Effi-MVS+91.87 11392.08 12891.62 11392.91 13697.21 10794.93 10984.60 16493.61 11681.49 12683.50 14078.95 15196.62 6596.55 8496.22 7999.16 8998.51 102
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11894.29 12291.13 8693.84 11388.26 9590.40 9185.23 12294.65 9596.54 8595.31 10599.38 4999.28 24
GBi-Net93.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
test193.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
FMVSNet191.54 12090.93 14192.26 10590.35 16095.27 16895.22 10587.16 13491.37 14787.62 9975.45 16583.84 13194.43 9796.52 8696.30 7498.82 12697.74 134
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9698.54 100
GG-mvs-BLEND66.17 20494.91 7932.63 2101.32 21896.64 12291.40 1690.85 21694.39 1052.20 21990.15 9595.70 612.27 21596.39 9095.44 10297.78 17395.68 172
thres100view90093.55 9892.47 12094.81 7295.33 8798.74 6396.78 6892.30 7092.63 12788.29 9287.21 11178.01 15696.78 6196.38 9195.92 8899.38 4998.40 110
baseline293.01 10494.17 9191.64 11192.83 13897.49 9993.40 13387.53 12993.67 11586.07 10691.83 7686.58 10991.36 13896.38 9195.06 11198.67 14198.20 120
test-mter90.95 12693.54 10787.93 16390.28 16196.80 11591.44 16882.68 17692.15 14174.37 16789.57 9988.23 10690.88 14896.37 9394.31 13697.93 17197.37 144
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9797.40 5591.84 7694.66 9881.09 12895.70 4183.36 13595.10 8796.36 9495.71 9599.32 5899.03 64
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15289.36 9395.48 8496.33 9596.27 7799.17 8698.78 91
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9797.99 4594.54 4597.81 1685.88 10796.73 3181.28 14696.99 5696.29 9695.21 10998.76 13696.73 162
OPM-MVS93.61 9692.43 12195.00 6596.94 6797.34 10397.78 4894.23 4789.64 16285.53 10888.70 10482.81 13896.28 7096.28 9795.00 11599.24 7297.22 148
anonymousdsp88.90 15691.00 14086.44 18288.74 19195.97 14090.40 18182.86 17488.77 16967.33 19481.18 14981.44 14590.22 16096.23 9894.27 13799.12 9599.16 46
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11594.88 11193.54 5296.41 5590.16 7092.31 6983.11 13696.32 6996.22 9994.65 12299.22 7897.35 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10097.38 5199.24 7299.62 3
test-LLR91.62 11893.56 10589.35 14293.31 13296.57 12492.02 16287.06 13592.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
TESTMET0.1,191.07 12593.56 10588.17 15390.43 15796.57 12492.02 16282.83 17592.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10297.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8296.13 10395.61 9799.00 11095.73 171
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12896.01 7596.05 10496.41 7399.05 10898.79 90
FMVSNet393.79 9394.17 9193.35 9891.21 15395.99 13896.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10395.96 10596.67 6899.07 10197.79 128
EPNet_dtu92.45 11095.02 7789.46 13998.02 5395.47 16094.79 11392.62 6594.97 9470.11 18594.76 5192.61 7584.07 19495.94 10695.56 9897.15 18195.82 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet92.77 10693.60 10391.80 10992.63 14096.80 11595.24 10489.14 11390.30 15984.58 11186.76 11490.65 8490.42 15795.89 10796.49 7198.79 13398.32 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HyFIR lowres test92.03 11191.55 13592.58 10397.13 6598.72 6694.65 11686.54 13993.58 11782.56 11967.75 20090.47 8695.67 7895.87 10895.54 9998.91 11998.93 76
GA-MVS89.28 14990.75 14487.57 17091.77 14696.48 12692.29 15487.58 12890.61 15665.77 19684.48 13476.84 16289.46 16595.84 10993.68 15098.52 15297.34 146
MIMVSNet88.99 15591.07 13986.57 18186.78 20095.62 15391.20 17475.40 20090.65 15576.57 14884.05 13782.44 14191.01 14495.84 10995.38 10398.48 15593.50 192
pm-mvs189.19 15289.02 15589.38 14190.40 15895.74 15292.05 16088.10 12586.13 18877.70 14073.72 17979.44 15088.97 16895.81 11194.51 13299.08 9997.78 133
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11297.94 2999.54 1399.50 10
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9295.78 11296.08 8198.27 16298.97 75
Fast-Effi-MVS+-dtu91.19 12493.64 10188.33 15192.19 14496.46 12793.99 12581.52 18192.59 12971.82 17592.17 7085.54 11891.68 13595.73 11494.64 12398.80 13198.34 113
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9595.85 9792.09 7295.74 7789.12 8995.14 4682.62 14094.77 8995.73 11494.67 12199.14 9299.06 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test91.63 11793.82 9989.08 14392.02 14596.40 13093.26 13687.26 13293.72 11477.26 14388.61 10689.86 9085.50 18495.72 11695.02 11399.16 8997.44 142
tfpnnormal88.50 15987.01 18090.23 12891.36 14995.78 15192.74 14390.09 9883.65 19776.33 15171.46 19269.58 19391.84 13295.54 11794.02 14299.06 10499.03 64
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 14996.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11896.03 8599.06 10499.33 20
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10097.23 5692.24 7196.43 5491.77 5092.69 6584.31 12796.06 7295.52 11895.03 11299.31 6199.06 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10696.89 6293.98 4895.94 7183.68 11495.01 4884.46 12695.58 8195.47 12094.85 12099.07 10199.00 68
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 11994.91 11089.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12095.02 11398.43 15997.09 151
thisisatest051590.12 14092.06 12987.85 16490.03 16496.17 13587.83 19087.45 13091.71 14477.15 14485.40 12884.01 13085.74 18395.41 12293.30 15798.88 12198.43 106
IterMVS-SCA-FT90.24 13692.48 11987.63 16892.85 13794.30 19193.79 12781.47 18292.66 12669.95 18684.66 13388.38 10489.99 16295.39 12394.34 13597.74 17797.63 137
IterMVS-LS92.56 10993.18 10991.84 10893.90 12294.97 17594.99 10786.20 14394.18 10782.68 11885.81 12687.36 10894.43 9795.31 12496.02 8698.87 12298.60 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.20 13792.43 12187.61 16992.82 13994.31 19094.11 12381.54 18092.97 12269.90 18784.71 13288.16 10789.96 16395.25 12594.17 13897.31 17997.46 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet90.16 13991.96 13188.06 15793.32 13195.95 14293.36 13475.99 19892.40 13475.19 16083.18 14185.37 11992.05 12995.21 12694.56 12898.47 15697.08 153
PatchT89.13 15391.71 13286.11 18592.92 13595.59 15683.64 20075.09 20191.87 14375.19 16082.63 14485.06 12492.05 12995.21 12694.56 12897.76 17497.08 153
Anonymous20240521192.18 12695.04 9898.20 8596.14 8591.79 7893.93 10974.60 17188.38 10496.48 6795.17 12895.82 9499.00 11099.15 47
test0.0.03 191.97 11293.91 9589.72 13593.31 13296.40 13091.34 17187.06 13593.86 11181.67 12491.15 8489.16 9786.02 18295.08 12995.09 11098.91 11996.64 165
MS-PatchMatch91.82 11492.51 11591.02 11795.83 8096.88 11195.05 10684.55 16693.85 11282.01 12182.51 14591.71 7790.52 15695.07 13093.03 16198.13 16594.52 179
USDC90.69 12990.52 14590.88 12094.17 11996.43 12895.82 9886.76 13793.92 11076.27 15286.49 11874.30 17193.67 11495.04 13193.36 15498.61 14794.13 184
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13189.09 9089.85 9796.65 5096.90 5894.97 13294.89 11699.08 9998.38 112
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous2023121193.49 9992.33 12594.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17089.18 9696.73 6294.82 13395.51 10098.67 14199.24 32
FMVSNet590.36 13490.93 14189.70 13687.99 19492.25 19992.03 16183.51 17092.20 14084.13 11285.59 12786.48 11092.43 12694.61 13494.52 13198.13 16590.85 199
ACMH90.77 1391.51 12191.63 13491.38 11495.62 8296.87 11391.76 16689.66 10691.58 14578.67 13786.73 11578.12 15493.77 11094.59 13594.54 13098.78 13498.98 71
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS90.54 13390.87 14390.16 13091.48 14896.61 12393.26 13686.08 14487.71 17881.66 12583.11 14384.04 12990.42 15794.54 13694.60 12598.04 16995.48 175
TransMVSNet (Re)87.73 17286.79 18288.83 14590.76 15494.40 18891.33 17289.62 10784.73 19475.41 15872.73 18471.41 18486.80 17794.53 13793.93 14499.06 10495.83 169
pmmvs587.83 17188.09 16487.51 17389.59 17195.48 15989.75 18584.73 16286.07 19071.44 17780.57 15170.09 19190.74 15294.47 13892.87 16598.82 12697.10 150
TinyColmap89.42 14688.58 15890.40 12793.80 12695.45 16193.96 12686.54 13992.24 13976.49 14980.83 15070.44 18893.37 11794.45 13993.30 15798.26 16393.37 194
RPMNet90.19 13892.03 13088.05 15893.46 12895.95 14293.41 13274.59 20392.40 13475.91 15484.22 13686.41 11292.49 12594.42 14093.85 14798.44 15796.96 156
testgi89.42 14691.50 13687.00 17892.40 14395.59 15689.15 18785.27 15792.78 12572.42 17291.75 7776.00 16484.09 19394.38 14193.82 14998.65 14596.15 166
LTVRE_ROB87.32 1687.55 17388.25 16286.73 17990.66 15595.80 15093.05 13984.77 16183.35 19860.32 20683.12 14267.39 19993.32 11894.36 14294.86 11798.28 16198.87 84
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CVMVSNet89.77 14491.66 13387.56 17193.21 13495.45 16191.94 16589.22 11289.62 16369.34 19183.99 13885.90 11684.81 18994.30 14395.28 10696.85 18397.09 151
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10196.07 8893.17 6095.40 8483.86 11383.76 13988.72 10093.87 10794.25 14494.11 13998.87 12295.28 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NR-MVSNet89.34 14888.66 15790.13 13390.40 15895.61 15493.04 14089.91 10091.22 14878.96 13677.72 16068.90 19689.16 16794.24 14593.95 14399.32 5898.99 69
EG-PatchMatch MVS86.68 18187.24 17786.02 18690.58 15696.26 13391.08 17581.59 17984.96 19369.80 18971.35 19375.08 16884.23 19294.24 14593.35 15598.82 12695.46 176
v7n86.43 18386.52 18686.33 18387.91 19594.93 17790.15 18383.05 17286.57 18570.21 18471.48 19166.78 20287.72 17294.19 14792.96 16298.92 11898.76 92
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10683.26 20697.66 9696.72 7089.89 10295.62 8187.17 10296.00 3783.69 13396.99 5693.78 14895.34 10499.06 10498.18 121
UniMVSNet (Re)90.03 14289.61 15090.51 12689.97 16696.12 13692.32 15289.26 11190.99 15180.95 12978.25 15975.08 16891.14 14193.78 14893.87 14699.41 4399.21 37
v119287.51 17487.31 17587.74 16689.04 18594.87 18092.07 15985.03 15888.49 17270.32 18272.65 18570.35 18991.21 14093.59 15092.80 16698.78 13498.42 108
v1088.00 16587.96 16788.05 15889.44 17394.68 18292.36 15183.35 17189.37 16472.96 17173.98 17772.79 17891.35 13993.59 15092.88 16498.81 12998.42 108
pmmvs685.98 18684.89 19487.25 17588.83 18994.35 18989.36 18685.30 15678.51 20675.44 15762.71 20575.41 16587.65 17393.58 15292.40 17496.89 18297.29 147
pmmvs490.55 13289.91 14891.30 11690.26 16294.95 17692.73 14487.94 12693.44 11985.35 10982.28 14676.09 16393.02 12393.56 15392.26 17798.51 15396.77 161
v114487.92 16987.79 17188.07 15589.27 17795.15 17192.17 15785.62 15088.52 17171.52 17673.80 17872.40 18091.06 14393.54 15492.80 16698.81 12998.33 114
ACMH+90.88 1291.41 12291.13 13891.74 11095.11 9696.95 11093.13 13889.48 11092.42 13379.93 13285.13 12978.02 15593.82 10993.49 15593.88 14598.94 11697.99 124
Anonymous2023120683.84 19385.19 19282.26 19487.38 19892.87 19685.49 19783.65 16986.07 19063.44 20268.42 19769.01 19575.45 20293.34 15692.44 17398.12 16794.20 183
v192192087.31 17887.13 17987.52 17288.87 18894.72 18191.96 16484.59 16588.28 17469.86 18872.50 18770.03 19291.10 14293.33 15792.61 17198.71 13898.44 105
v124086.89 18086.75 18487.06 17788.75 19094.65 18491.30 17384.05 16787.49 18168.94 19271.96 19068.86 19790.65 15493.33 15792.72 17098.67 14198.24 118
test_part191.21 12389.47 15193.24 9994.26 11795.45 16195.26 10388.36 12188.49 17290.04 7272.61 18682.82 13793.69 11393.25 15994.62 12497.84 17299.06 58
WR-MVS_H87.93 16787.85 17088.03 16089.62 16995.58 15890.47 18085.55 15187.20 18376.83 14774.42 17472.67 17986.37 17993.22 16093.04 16099.33 5698.83 88
TDRefinement89.07 15488.15 16390.14 13295.16 9496.88 11195.55 10190.20 9789.68 16176.42 15076.67 16274.30 17184.85 18893.11 16191.91 17998.64 14694.47 180
MVS-HIRNet85.36 18886.89 18183.57 19190.13 16394.51 18683.57 20172.61 20588.27 17571.22 17968.97 19681.81 14388.91 16993.08 16291.94 17894.97 20089.64 202
CP-MVSNet87.89 17087.27 17688.62 14789.30 17695.06 17290.60 17985.78 14887.43 18275.98 15374.60 17168.14 19890.76 15093.07 16393.60 15199.30 6398.98 71
PS-CasMVS87.33 17786.68 18588.10 15489.22 18394.93 17790.35 18285.70 14986.44 18774.01 16873.43 18166.59 20490.04 16192.92 16493.52 15299.28 6598.91 80
UniMVSNet_NR-MVSNet90.35 13589.96 14790.80 12289.66 16895.83 14892.48 14890.53 9590.96 15279.57 13379.33 15677.14 16093.21 12192.91 16594.50 13399.37 5299.05 61
SixPastTwentyTwo88.37 16189.47 15187.08 17690.01 16595.93 14487.41 19185.32 15490.26 16070.26 18386.34 12371.95 18190.93 14592.89 16691.72 18098.55 15097.22 148
v14419287.40 17687.20 17887.64 16788.89 18694.88 17991.65 16784.70 16387.80 17771.17 18073.20 18370.91 18690.75 15192.69 16792.49 17298.71 13898.43 106
PM-MVS84.72 19184.47 19585.03 18884.67 20291.57 20186.27 19582.31 17887.65 17970.62 18176.54 16456.41 21288.75 17092.59 16889.85 18997.54 17896.66 164
DU-MVS89.67 14588.84 15690.63 12589.26 17895.61 15492.48 14889.91 10091.22 14879.57 13377.72 16071.18 18593.21 12192.53 16994.57 12799.35 5599.05 61
Baseline_NR-MVSNet89.27 15088.01 16690.73 12489.26 17893.71 19492.71 14589.78 10590.73 15381.28 12773.53 18072.85 17792.30 12892.53 16993.84 14899.07 10198.88 82
IB-MVS89.56 1591.71 11692.50 11690.79 12395.94 7998.44 7887.05 19391.38 8593.15 12092.98 4184.78 13185.14 12378.27 19992.47 17194.44 13499.10 9799.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS87.93 16788.09 16487.75 16589.26 17895.28 16690.81 17786.69 13888.90 16675.29 15974.31 17573.72 17485.19 18792.26 17293.32 15699.27 6798.81 89
EU-MVSNet85.62 18787.65 17483.24 19388.54 19292.77 19887.12 19285.32 15486.71 18464.54 19878.52 15875.11 16778.35 19892.25 17392.28 17695.58 19295.93 168
pmmvs-eth3d84.33 19282.94 19785.96 18784.16 20390.94 20286.55 19483.79 16884.25 19575.85 15570.64 19456.43 21187.44 17692.20 17490.41 18697.97 17095.68 172
TranMVSNet+NR-MVSNet89.23 15188.48 16090.11 13489.07 18495.25 16992.91 14190.43 9690.31 15877.10 14576.62 16371.57 18391.83 13392.12 17594.59 12699.32 5898.92 77
v888.21 16487.94 16988.51 14889.62 16995.01 17492.31 15384.99 15988.94 16574.70 16575.03 16773.51 17590.67 15392.11 17692.74 16998.80 13198.24 118
v2v48288.25 16387.71 17388.88 14489.23 18295.28 16692.10 15887.89 12788.69 17073.31 17075.32 16671.64 18291.89 13192.10 17792.92 16398.86 12497.99 124
V4288.31 16287.95 16888.73 14689.44 17395.34 16592.23 15687.21 13388.83 16774.49 16674.89 16973.43 17690.41 15992.08 17892.77 16898.60 14998.33 114
test20.0382.92 19585.52 19079.90 19887.75 19691.84 20082.80 20282.99 17382.65 20260.32 20678.90 15770.50 18767.10 20592.05 17990.89 18298.44 15791.80 197
MDTV_nov1_ep1391.57 11993.18 10989.70 13693.39 13096.97 10993.53 13080.91 18395.70 7881.86 12292.40 6889.93 8993.25 12091.97 18090.80 18395.25 19794.46 181
MIMVSNet180.03 19880.93 19978.97 19972.46 21290.73 20380.81 20582.44 17780.39 20363.64 20057.57 20664.93 20676.37 20091.66 18191.55 18198.07 16889.70 201
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 12996.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8691.63 18290.44 18595.27 19693.94 187
UniMVSNet_ETH3D88.47 16086.00 18991.35 11591.55 14796.29 13292.53 14788.81 11585.58 19282.33 12067.63 20166.87 20194.04 10591.49 18395.24 10798.84 12598.92 77
ambc73.83 20476.23 21085.13 20982.27 20384.16 19665.58 19752.82 20823.31 21973.55 20391.41 18485.26 20392.97 20694.70 178
PEN-MVS87.22 17986.50 18788.07 15588.88 18794.44 18790.99 17686.21 14186.53 18673.66 16974.97 16866.56 20589.42 16691.20 18593.48 15399.24 7298.31 117
SCA90.92 12793.04 11188.45 14993.72 12797.33 10492.77 14276.08 19796.02 6778.26 13991.96 7390.86 8293.99 10690.98 18690.04 18895.88 18894.06 186
v14887.51 17486.79 18288.36 15089.39 17595.21 17089.84 18488.20 12487.61 18077.56 14173.38 18270.32 19086.80 17790.70 18792.31 17598.37 16097.98 126
DTE-MVSNet86.67 18286.09 18887.35 17488.45 19394.08 19290.65 17886.05 14586.13 18872.19 17374.58 17366.77 20387.61 17490.31 18893.12 15999.13 9397.62 138
EPMVS90.88 12892.12 12789.44 14094.71 10797.24 10593.55 12976.81 19295.89 7281.77 12391.49 8086.47 11193.87 10790.21 18990.07 18795.92 18793.49 193
pmmvs379.16 19980.12 20178.05 20179.36 20786.59 20878.13 20873.87 20476.42 20857.51 21170.59 19557.02 21084.66 19090.10 19088.32 19394.75 20291.77 198
PatchmatchNetpermissive90.56 13192.49 11788.31 15293.83 12596.86 11492.42 15076.50 19495.96 7078.31 13891.96 7389.66 9193.48 11690.04 19189.20 19195.32 19493.73 191
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view86.30 18488.27 16184.01 19087.71 19794.67 18388.08 18976.78 19390.59 15768.66 19380.46 15380.12 14887.58 17589.95 19288.20 19495.25 19793.90 189
tpm87.95 16689.44 15386.21 18492.53 14194.62 18591.40 16976.36 19591.46 14669.80 18987.43 11075.14 16691.55 13689.85 19390.60 18495.61 19196.96 156
new_pmnet81.53 19682.68 19880.20 19683.47 20589.47 20682.21 20478.36 18687.86 17660.14 20867.90 19969.43 19482.03 19689.22 19487.47 19794.99 19987.39 204
ADS-MVSNet89.80 14391.33 13788.00 16194.43 11496.71 12092.29 15474.95 20296.07 6677.39 14288.67 10586.09 11493.26 11988.44 19589.57 19095.68 19093.81 190
N_pmnet84.80 18985.10 19384.45 18989.25 18192.86 19784.04 19986.21 14188.78 16866.73 19572.41 18874.87 17085.21 18688.32 19686.45 19995.30 19592.04 196
CMPMVSbinary65.18 1784.76 19083.10 19686.69 18095.29 9095.05 17388.37 18885.51 15280.27 20471.31 17868.37 19873.85 17385.25 18587.72 19787.75 19594.38 20488.70 203
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dps90.11 14189.37 15490.98 11893.89 12396.21 13493.49 13177.61 19091.95 14292.74 4588.85 10278.77 15392.37 12787.71 19887.71 19695.80 18994.38 182
CostFormer90.69 12990.48 14690.93 11994.18 11896.08 13794.03 12478.20 18893.47 11889.96 7590.97 8780.30 14793.72 11187.66 19988.75 19295.51 19396.12 167
tpmrst88.86 15889.62 14987.97 16294.33 11595.98 13992.62 14676.36 19594.62 10076.94 14685.98 12582.80 13992.80 12486.90 20087.15 19894.77 20193.93 188
tpm cat188.90 15687.78 17290.22 12993.88 12495.39 16493.79 12778.11 18992.55 13089.43 8281.31 14879.84 14991.40 13784.95 20186.34 20194.68 20394.09 185
new-patchmatchnet78.49 20078.19 20278.84 20084.13 20490.06 20477.11 20980.39 18479.57 20559.64 20966.01 20255.65 21375.62 20184.55 20280.70 20496.14 18690.77 200
Gipumacopyleft68.35 20266.71 20570.27 20374.16 21168.78 21363.93 21371.77 20783.34 19954.57 21234.37 21031.88 21668.69 20483.30 20385.53 20288.48 20979.78 208
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt66.88 20586.07 20173.86 21268.22 21133.38 21396.88 4780.67 13088.23 10878.82 15249.78 21082.68 20477.47 20683.19 212
DeepMVS_CXcopyleft86.86 20779.50 20670.43 20890.73 15363.66 19980.36 15460.83 20779.68 19776.23 20589.46 20886.53 205
MDA-MVSNet-bldmvs80.11 19780.24 20079.94 19777.01 20993.21 19578.86 20785.94 14782.71 20160.86 20379.71 15551.77 21483.71 19575.60 20686.37 20093.28 20592.35 195
FPMVS75.84 20174.59 20377.29 20286.92 19983.89 21085.01 19880.05 18582.91 20060.61 20565.25 20360.41 20863.86 20675.60 20673.60 20887.29 21080.47 207
PMMVS264.36 20565.94 20762.52 20667.37 21377.44 21164.39 21269.32 21161.47 21134.59 21446.09 20941.03 21548.02 21274.56 20878.23 20591.43 20782.76 206
PMVScopyleft63.12 1867.27 20366.39 20668.30 20477.98 20860.24 21459.53 21476.82 19166.65 21060.74 20454.39 20759.82 20951.24 20973.92 20970.52 20983.48 21179.17 209
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 20851.43 20847.33 20944.14 21659.20 21536.45 21760.59 21241.47 21431.14 21529.58 21117.06 22048.52 21162.22 21074.63 20763.12 21575.87 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN50.67 20647.85 20953.96 20764.13 21550.98 21738.06 21569.51 20951.40 21324.60 21629.46 21324.39 21856.07 20848.17 21159.70 21071.40 21370.84 211
EMVS49.98 20746.76 21053.74 20864.96 21451.29 21637.81 21669.35 21051.83 21222.69 21729.57 21225.06 21757.28 20744.81 21256.11 21170.32 21468.64 212
testmvs12.09 20916.94 2116.42 2113.15 2176.08 2189.51 2193.84 21421.46 2155.31 21827.49 2146.76 22110.89 21317.06 21315.01 2125.84 21624.75 213
test1239.58 21013.53 2124.97 2121.31 2195.47 2198.32 2202.95 21518.14 2162.03 22020.82 2152.34 22210.60 21410.00 21414.16 2134.60 21723.77 214
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def63.50 201
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
our_test_389.78 16793.84 19385.59 196
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 218
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 96
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86
Patchmtry95.96 14193.36 13475.99 19875.19 160