This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
DPE-MVS98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14298.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8698.39 111
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8699.37 16
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 71
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9898.01 123
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15199.04 63
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10097.38 5199.24 7299.62 3
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11698.14 122
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9397.65 136
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 64
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11597.55 139
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 96
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11499.59 7
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13189.09 9089.85 9796.65 5096.90 5894.97 13294.89 11699.08 9998.38 112
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 10998.85 86
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 77
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10297.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8296.13 10395.61 9799.00 11095.73 171
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8898.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11588.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 135
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 82
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 67
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13497.03 6897.03 5998.61 14799.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11296.03 3998.24 892.11 4895.80 3998.64 3295.51 8398.95 698.66 596.78 18499.20 38
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9489.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13798.99 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10097.23 5692.24 7196.43 5491.77 5092.69 6584.31 12796.06 7295.52 11895.03 11299.31 6199.06 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9797.99 4594.54 4597.81 1685.88 10796.73 3181.28 14696.99 5696.29 9695.21 10998.76 13696.73 162
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11594.88 11193.54 5296.41 5590.16 7092.31 6983.11 13696.32 6996.22 9994.65 12299.22 7897.35 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 11991.99 7395.32 8691.31 5395.47 4383.44 13496.02 7496.56 8395.23 10898.69 14096.67 163
OPM-MVS93.61 9692.43 12195.00 6596.94 6797.34 10397.78 4894.23 4789.64 16385.53 10888.70 10482.81 13896.28 7096.28 9795.00 11599.24 7297.22 148
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11297.94 2999.54 1399.50 10
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
tfpn200view993.64 9492.57 11394.89 6895.33 8798.94 4896.82 6592.31 6792.63 12788.29 9287.21 11178.01 15697.12 5396.82 7195.85 9299.45 3098.56 98
thres20093.62 9592.54 11494.88 6995.36 8698.93 5096.75 6992.31 6792.84 12488.28 9486.99 11377.81 15897.13 5196.82 7195.92 8899.45 3098.49 104
thres40093.56 9792.43 12194.87 7095.40 8598.91 5396.70 7192.38 6692.93 12388.19 9686.69 11677.35 15997.13 5196.75 7695.85 9299.42 4298.56 98
Anonymous2023121193.49 9992.33 12594.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17189.18 9696.73 6294.82 13395.51 10098.67 14199.24 32
thres100view90093.55 9892.47 12094.81 7295.33 8798.74 6396.78 6892.30 7092.63 12788.29 9287.21 11178.01 15696.78 6196.38 9195.92 8899.38 4998.40 110
thres600view793.49 9992.37 12494.79 7395.42 8498.93 5096.58 7592.31 6793.04 12187.88 9786.62 11776.94 16297.09 5496.82 7195.63 9699.45 3098.63 95
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 155
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9191.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12197.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11197.59 5295.88 9199.00 11098.50 103
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 93
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9595.85 9792.09 7295.74 7789.12 8995.14 4682.62 14094.77 8995.73 11494.67 12199.14 9299.06 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15389.36 9395.48 8496.33 9596.27 7799.17 8698.78 91
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12896.01 7596.05 10496.41 7399.05 10898.79 90
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 14996.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11896.03 8599.06 10499.33 20
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10696.89 6293.98 4895.94 7183.68 11495.01 4884.46 12695.58 8195.47 12094.85 12099.07 10199.00 68
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10890.70 9195.34 8589.67 8091.66 7893.84 6795.42 8597.32 5897.00 6099.58 699.47 12
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 12996.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8691.63 18290.44 18595.27 19793.94 188
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9291.12 8794.13 10887.50 10091.23 8194.45 6694.17 10298.45 1898.50 799.65 299.23 33
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10196.07 8893.17 6095.40 8483.86 11383.76 13988.72 10093.87 10794.25 14494.11 13998.87 12295.28 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12191.84 7694.93 9590.37 6885.04 13094.99 6390.87 14998.12 3697.30 5499.30 6399.45 13
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9698.54 100
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11894.29 12291.13 8693.84 11388.26 9590.40 9185.23 12294.65 9596.54 8595.31 10599.38 4999.28 24
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9295.78 11296.08 8198.27 16298.97 75
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15496.10 6591.07 5596.53 3396.34 5595.61 8097.65 5096.95 6296.21 18597.49 140
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9797.40 5591.84 7694.66 9881.09 12895.70 4183.36 13595.10 8796.36 9495.71 9599.32 5899.03 64
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 11994.91 11089.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12095.02 11398.43 15997.09 151
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11590.72 8995.69 8086.90 10493.80 5589.44 9294.74 9096.98 7094.86 11799.19 8598.85 86
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11790.72 8995.61 8286.84 10593.78 5689.26 9594.74 9097.02 6994.86 11799.20 8498.87 84
GBi-Net93.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
test193.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
FMVSNet393.79 9394.17 9193.35 9891.21 15395.99 13896.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10395.96 10596.67 6899.07 10197.79 128
test_part191.21 12389.47 15193.24 9994.26 11795.45 16195.26 10388.36 12188.49 17390.04 7272.61 18782.82 13793.69 11393.25 15994.62 12497.84 17299.06 58
FMVSNet293.30 10293.36 10893.22 10091.34 15095.86 14596.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 9996.77 7596.98 6199.21 8197.79 128
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11891.52 8296.23 5990.03 7392.87 6496.10 5986.28 18196.68 7996.60 7099.16 8999.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268892.66 10892.49 11792.85 10297.13 6598.89 5695.90 9288.50 12095.32 8683.31 11671.99 19088.96 9994.10 10496.69 7896.49 7198.15 16499.10 51
HyFIR lowres test92.03 11191.55 13592.58 10397.13 6598.72 6694.65 11686.54 14093.58 11782.56 11967.75 20190.47 8695.67 7895.87 10895.54 9998.91 11998.93 76
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10090.99 8894.42 10385.02 11090.88 8894.65 6588.01 17198.17 3198.37 1699.57 898.53 101
FMVSNet191.54 12090.93 14192.26 10590.35 16095.27 16895.22 10587.16 13491.37 14887.62 9975.45 16683.84 13194.43 9796.52 8696.30 7498.82 12697.74 134
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10683.26 20797.66 9696.72 7089.89 10295.62 8187.17 10296.00 3783.69 13396.99 5693.78 14895.34 10499.06 10498.18 121
Effi-MVS+92.93 10593.86 9791.86 10794.07 12198.09 9095.59 9985.98 14794.27 10679.54 13591.12 8581.81 14396.71 6396.67 8096.06 8399.27 6798.98 71
IterMVS-LS92.56 10993.18 10991.84 10893.90 12294.97 17594.99 10786.20 14494.18 10782.68 11885.81 12687.36 10894.43 9795.31 12496.02 8698.87 12298.60 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet92.77 10693.60 10391.80 10992.63 14096.80 11595.24 10489.14 11390.30 16084.58 11186.76 11490.65 8490.42 15795.89 10796.49 7198.79 13398.32 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH+90.88 1291.41 12291.13 13891.74 11095.11 9696.95 11093.13 13889.48 11092.42 13379.93 13285.13 12978.02 15593.82 10993.49 15593.88 14598.94 11697.99 124
UA-Net93.96 8895.95 6191.64 11196.06 7698.59 7695.29 10290.00 9991.06 15182.87 11790.64 8998.06 4086.06 18298.14 3498.20 1999.58 696.96 156
baseline293.01 10494.17 9191.64 11192.83 13897.49 9993.40 13387.53 12993.67 11586.07 10691.83 7686.58 10991.36 13896.38 9195.06 11198.67 14198.20 120
Fast-Effi-MVS+91.87 11392.08 12891.62 11392.91 13697.21 10794.93 10984.60 16593.61 11681.49 12683.50 14078.95 15196.62 6596.55 8496.22 7999.16 8998.51 102
ACMH90.77 1391.51 12191.63 13491.38 11495.62 8296.87 11391.76 16689.66 10691.58 14678.67 13786.73 11578.12 15493.77 11094.59 13594.54 13098.78 13498.98 71
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D88.47 16086.00 19091.35 11591.55 14796.29 13292.53 14788.81 11585.58 19382.33 12067.63 20266.87 20294.04 10591.49 18395.24 10798.84 12598.92 77
pmmvs490.55 13289.91 14891.30 11690.26 16294.95 17692.73 14487.94 12693.44 11985.35 10982.28 14676.09 16493.02 12393.56 15392.26 17798.51 15396.77 161
MS-PatchMatch91.82 11492.51 11591.02 11795.83 8096.88 11195.05 10684.55 16793.85 11282.01 12182.51 14591.71 7790.52 15695.07 13093.03 16198.13 16594.52 179
dps90.11 14189.37 15490.98 11893.89 12396.21 13493.49 13177.61 19191.95 14292.74 4588.85 10278.77 15392.37 12787.71 19887.71 19695.80 19094.38 182
CostFormer90.69 12990.48 14690.93 11994.18 11896.08 13794.03 12478.20 18993.47 11889.96 7590.97 8780.30 14793.72 11187.66 19988.75 19295.51 19496.12 167
USDC90.69 12990.52 14590.88 12094.17 11996.43 12895.82 9886.76 13793.92 11076.27 15286.49 11874.30 17293.67 11495.04 13193.36 15498.61 14794.13 184
CANet_DTU93.92 8996.57 5190.83 12195.63 8198.39 7996.99 6087.38 13196.26 5771.97 17496.31 3493.02 7194.53 9697.38 5796.83 6698.49 15497.79 128
UniMVSNet_NR-MVSNet90.35 13589.96 14790.80 12289.66 16995.83 14892.48 14890.53 9590.96 15379.57 13379.33 15777.14 16093.21 12192.91 16594.50 13399.37 5299.05 61
IB-MVS89.56 1591.71 11692.50 11690.79 12395.94 7998.44 7887.05 19391.38 8593.15 12092.98 4184.78 13185.14 12378.27 20092.47 17194.44 13499.10 9799.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Baseline_NR-MVSNet89.27 15088.01 16690.73 12489.26 17993.71 19592.71 14589.78 10590.73 15481.28 12773.53 18172.85 17892.30 12892.53 16993.84 14899.07 10198.88 82
DU-MVS89.67 14588.84 15690.63 12589.26 17995.61 15492.48 14889.91 10091.22 14979.57 13377.72 16171.18 18693.21 12192.53 16994.57 12799.35 5599.05 61
UniMVSNet (Re)90.03 14289.61 15090.51 12689.97 16696.12 13692.32 15289.26 11190.99 15280.95 12978.25 16075.08 16991.14 14193.78 14893.87 14699.41 4399.21 37
TinyColmap89.42 14688.58 15890.40 12793.80 12695.45 16193.96 12686.54 14092.24 13976.49 14980.83 15070.44 18993.37 11794.45 13993.30 15798.26 16393.37 195
tfpnnormal88.50 15987.01 18190.23 12891.36 14995.78 15192.74 14390.09 9883.65 19876.33 15171.46 19369.58 19491.84 13295.54 11794.02 14299.06 10499.03 64
tpm cat188.90 15687.78 17290.22 12993.88 12495.39 16493.79 12778.11 19092.55 13089.43 8281.31 14879.84 14991.40 13784.95 20286.34 20194.68 20494.09 185
Vis-MVSNetpermissive92.77 10695.00 7890.16 13094.10 12098.79 6094.76 11488.26 12292.37 13679.95 13188.19 10991.58 7884.38 19297.59 5297.58 4299.52 1498.91 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS90.54 13390.87 14390.16 13091.48 14896.61 12393.26 13686.08 14587.71 17981.66 12583.11 14384.04 12990.42 15794.54 13694.60 12598.04 16995.48 175
TDRefinement89.07 15488.15 16390.14 13295.16 9496.88 11195.55 10190.20 9789.68 16276.42 15076.67 16374.30 17284.85 18993.11 16191.91 17998.64 14694.47 180
NR-MVSNet89.34 14888.66 15790.13 13390.40 15895.61 15493.04 14089.91 10091.22 14978.96 13677.72 16168.90 19789.16 16794.24 14593.95 14399.32 5898.99 69
TranMVSNet+NR-MVSNet89.23 15188.48 16090.11 13489.07 18595.25 16992.91 14190.43 9690.31 15977.10 14576.62 16471.57 18491.83 13392.12 17594.59 12699.32 5898.92 77
test0.0.03 191.97 11293.91 9589.72 13593.31 13296.40 13091.34 17187.06 13593.86 11181.67 12491.15 8489.16 9786.02 18395.08 12995.09 11098.91 11996.64 165
FMVSNet590.36 13490.93 14189.70 13687.99 19592.25 20092.03 16183.51 17192.20 14084.13 11285.59 12786.48 11092.43 12694.61 13494.52 13198.13 16590.85 200
MDTV_nov1_ep1391.57 11993.18 10989.70 13693.39 13096.97 10993.53 13080.91 18495.70 7881.86 12292.40 6889.93 8993.25 12091.97 18090.80 18395.25 19894.46 181
Effi-MVS+-dtu91.78 11593.59 10489.68 13892.44 14297.11 10894.40 12084.94 16192.43 13275.48 15691.09 8683.75 13293.55 11596.61 8195.47 10197.24 18098.67 93
EPNet_dtu92.45 11095.02 7789.46 13998.02 5395.47 16094.79 11392.62 6594.97 9470.11 18594.76 5192.61 7584.07 19595.94 10695.56 9897.15 18195.82 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS90.88 12892.12 12789.44 14094.71 10797.24 10593.55 12976.81 19395.89 7281.77 12391.49 8086.47 11193.87 10790.21 18990.07 18795.92 18893.49 194
pm-mvs189.19 15289.02 15589.38 14190.40 15895.74 15292.05 16088.10 12586.13 18977.70 14073.72 18079.44 15088.97 16895.81 11194.51 13299.08 9997.78 133
test-LLR91.62 11893.56 10589.35 14293.31 13296.57 12492.02 16287.06 13592.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
FC-MVSNet-test91.63 11793.82 9989.08 14392.02 14596.40 13093.26 13687.26 13293.72 11477.26 14388.61 10689.86 9085.50 18595.72 11695.02 11399.16 8997.44 142
v2v48288.25 16387.71 17388.88 14489.23 18395.28 16692.10 15887.89 12788.69 17173.31 17075.32 16771.64 18391.89 13192.10 17792.92 16398.86 12497.99 124
TransMVSNet (Re)87.73 17286.79 18388.83 14590.76 15494.40 18891.33 17289.62 10784.73 19575.41 15872.73 18571.41 18586.80 17794.53 13793.93 14499.06 10495.83 169
V4288.31 16287.95 16888.73 14689.44 17495.34 16592.23 15687.21 13388.83 16874.49 16674.89 17073.43 17790.41 15992.08 17892.77 16898.60 14998.33 114
CP-MVSNet87.89 17087.27 17688.62 14789.30 17795.06 17290.60 17985.78 14987.43 18375.98 15374.60 17268.14 19990.76 15093.07 16393.60 15199.30 6398.98 71
v888.21 16487.94 16988.51 14889.62 17095.01 17492.31 15384.99 16088.94 16674.70 16575.03 16873.51 17690.67 15392.11 17692.74 16998.80 13198.24 118
SCA90.92 12793.04 11188.45 14993.72 12797.33 10492.77 14276.08 19896.02 6778.26 13991.96 7390.86 8293.99 10690.98 18690.04 18895.88 18994.06 187
v14887.51 17486.79 18388.36 15089.39 17695.21 17089.84 18488.20 12487.61 18177.56 14173.38 18370.32 19186.80 17790.70 18792.31 17598.37 16097.98 126
Fast-Effi-MVS+-dtu91.19 12493.64 10188.33 15192.19 14496.46 12793.99 12581.52 18292.59 12971.82 17592.17 7085.54 11891.68 13595.73 11494.64 12398.80 13198.34 113
PatchmatchNetpermissive90.56 13192.49 11788.31 15293.83 12596.86 11492.42 15076.50 19595.96 7078.31 13891.96 7389.66 9193.48 11690.04 19189.20 19195.32 19593.73 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TESTMET0.1,191.07 12593.56 10588.17 15390.43 15796.57 12492.02 16282.83 17692.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
PS-CasMVS87.33 17786.68 18688.10 15489.22 18494.93 17790.35 18285.70 15086.44 18874.01 16873.43 18266.59 20590.04 16192.92 16493.52 15299.28 6598.91 80
v114487.92 16987.79 17188.07 15589.27 17895.15 17192.17 15785.62 15188.52 17271.52 17673.80 17972.40 18191.06 14393.54 15492.80 16698.81 12998.33 114
PEN-MVS87.22 17986.50 18888.07 15588.88 18894.44 18790.99 17686.21 14286.53 18773.66 16974.97 16966.56 20689.42 16691.20 18593.48 15399.24 7298.31 117
CR-MVSNet90.16 13991.96 13188.06 15793.32 13195.95 14293.36 13475.99 19992.40 13475.19 16083.18 14185.37 11992.05 12995.21 12694.56 12898.47 15697.08 153
v1088.00 16587.96 16788.05 15889.44 17494.68 18292.36 15183.35 17289.37 16572.96 17173.98 17872.79 17991.35 13993.59 15092.88 16498.81 12998.42 108
RPMNet90.19 13892.03 13088.05 15893.46 12895.95 14293.41 13274.59 20492.40 13475.91 15484.22 13686.41 11292.49 12594.42 14093.85 14798.44 15796.96 156
WR-MVS_H87.93 16787.85 17088.03 16089.62 17095.58 15890.47 18085.55 15287.20 18476.83 14774.42 17572.67 18086.37 18093.22 16093.04 16099.33 5698.83 88
ADS-MVSNet89.80 14391.33 13788.00 16194.43 11496.71 12092.29 15474.95 20396.07 6677.39 14288.67 10586.09 11493.26 11988.44 19589.57 19095.68 19193.81 191
tpmrst88.86 15889.62 14987.97 16294.33 11595.98 13992.62 14676.36 19694.62 10076.94 14685.98 12582.80 13992.80 12486.90 20187.15 19894.77 20293.93 189
test-mter90.95 12693.54 10787.93 16390.28 16196.80 11591.44 16882.68 17792.15 14174.37 16789.57 9988.23 10690.88 14896.37 9394.31 13697.93 17197.37 144
thisisatest051590.12 14092.06 12987.85 16490.03 16496.17 13587.83 19087.45 13091.71 14577.15 14485.40 12884.01 13085.74 18495.41 12293.30 15798.88 12198.43 106
WR-MVS87.93 16788.09 16487.75 16589.26 17995.28 16690.81 17786.69 13888.90 16775.29 15974.31 17673.72 17585.19 18892.26 17293.32 15699.27 6798.81 89
v119287.51 17487.31 17587.74 16689.04 18694.87 18092.07 15985.03 15988.49 17370.32 18272.65 18670.35 19091.21 14093.59 15092.80 16698.78 13498.42 108
v14419287.40 17687.20 17887.64 16788.89 18794.88 17991.65 16784.70 16487.80 17871.17 18073.20 18470.91 18790.75 15192.69 16792.49 17298.71 13898.43 106
IterMVS-SCA-FT90.24 13692.48 11987.63 16892.85 13794.30 19193.79 12781.47 18392.66 12669.95 18684.66 13388.38 10489.99 16295.39 12394.34 13597.74 17797.63 137
IterMVS90.20 13792.43 12187.61 16992.82 13994.31 19094.11 12381.54 18192.97 12269.90 18784.71 13288.16 10789.96 16395.25 12594.17 13897.31 17997.46 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS89.28 14990.75 14487.57 17091.77 14696.48 12692.29 15487.58 12890.61 15765.77 19684.48 13476.84 16389.46 16595.84 10993.68 15098.52 15297.34 146
CVMVSNet89.77 14491.66 13387.56 17193.21 13495.45 16191.94 16589.22 11289.62 16469.34 19183.99 13885.90 11684.81 19094.30 14395.28 10696.85 18397.09 151
v192192087.31 17887.13 17987.52 17288.87 18994.72 18191.96 16484.59 16688.28 17569.86 18872.50 18870.03 19391.10 14293.33 15792.61 17198.71 13898.44 105
pmmvs587.83 17188.09 16487.51 17389.59 17295.48 15989.75 18584.73 16386.07 19171.44 17780.57 15270.09 19290.74 15294.47 13892.87 16598.82 12697.10 150
DTE-MVSNet86.67 18286.09 18987.35 17488.45 19494.08 19390.65 17886.05 14686.13 18972.19 17374.58 17466.77 20487.61 17490.31 18893.12 15999.13 9397.62 138
pmmvs685.98 18784.89 19587.25 17588.83 19094.35 18989.36 18685.30 15778.51 20775.44 15762.71 20675.41 16687.65 17393.58 15292.40 17496.89 18297.29 147
SixPastTwentyTwo88.37 16189.47 15187.08 17690.01 16595.93 14487.41 19185.32 15590.26 16170.26 18386.34 12371.95 18290.93 14592.89 16691.72 18098.55 15097.22 148
v124086.89 18086.75 18587.06 17788.75 19194.65 18491.30 17384.05 16887.49 18268.94 19271.96 19168.86 19890.65 15493.33 15792.72 17098.67 14198.24 118
testgi89.42 14691.50 13687.00 17892.40 14395.59 15689.15 18785.27 15892.78 12572.42 17291.75 7776.00 16584.09 19494.38 14193.82 14998.65 14596.15 166
LTVRE_ROB87.32 1687.55 17388.25 16286.73 17990.66 15595.80 15093.05 13984.77 16283.35 19960.32 20783.12 14267.39 20093.32 11894.36 14294.86 11798.28 16198.87 84
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary65.18 1784.76 19183.10 19786.69 18095.29 9095.05 17388.37 18885.51 15380.27 20571.31 17868.37 19973.85 17485.25 18687.72 19787.75 19594.38 20588.70 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet88.99 15591.07 13986.57 18186.78 20195.62 15391.20 17475.40 20190.65 15676.57 14884.05 13782.44 14191.01 14495.84 10995.38 10398.48 15593.50 193
anonymousdsp88.90 15691.00 14086.44 18288.74 19295.97 14090.40 18182.86 17588.77 17067.33 19481.18 14981.44 14590.22 16096.23 9894.27 13799.12 9599.16 46
v7n86.43 18386.52 18786.33 18387.91 19694.93 17790.15 18383.05 17386.57 18670.21 18471.48 19266.78 20387.72 17294.19 14792.96 16298.92 11898.76 92
tpm87.95 16689.44 15386.21 18492.53 14194.62 18591.40 16976.36 19691.46 14769.80 18987.43 11075.14 16791.55 13689.85 19390.60 18495.61 19296.96 156
PatchT89.13 15391.71 13286.11 18592.92 13595.59 15683.64 20175.09 20291.87 14375.19 16082.63 14485.06 12492.05 12995.21 12694.56 12897.76 17497.08 153
EG-PatchMatch MVS86.68 18187.24 17786.02 18690.58 15696.26 13391.08 17581.59 18084.96 19469.80 18971.35 19475.08 16984.23 19394.24 14593.35 15598.82 12695.46 176
pmmvs-eth3d84.33 19382.94 19885.96 18784.16 20490.94 20386.55 19483.79 16984.25 19675.85 15570.64 19556.43 21287.44 17692.20 17490.41 18697.97 17095.68 172
PM-MVS84.72 19284.47 19685.03 18884.67 20391.57 20286.27 19582.31 17987.65 18070.62 18176.54 16556.41 21388.75 17092.59 16889.85 18997.54 17896.66 164
pmnet_mix0286.12 18687.12 18084.96 18989.82 16794.12 19284.88 19986.63 13991.78 14465.60 19780.76 15176.98 16186.61 17987.29 20084.80 20496.21 18594.09 185
N_pmnet84.80 19085.10 19484.45 19089.25 18292.86 19884.04 20086.21 14288.78 16966.73 19572.41 18974.87 17185.21 18788.32 19686.45 19995.30 19692.04 197
MDTV_nov1_ep13_2view86.30 18488.27 16184.01 19187.71 19894.67 18388.08 18976.78 19490.59 15868.66 19380.46 15480.12 14887.58 17589.95 19288.20 19495.25 19893.90 190
MVS-HIRNet85.36 18986.89 18283.57 19290.13 16394.51 18683.57 20272.61 20688.27 17671.22 17968.97 19781.81 14388.91 16993.08 16291.94 17894.97 20189.64 203
gg-mvs-nofinetune86.17 18588.57 15983.36 19393.44 12998.15 8896.58 7572.05 20774.12 21049.23 21464.81 20590.85 8389.90 16497.83 4696.84 6598.97 11397.41 143
EU-MVSNet85.62 18887.65 17483.24 19488.54 19392.77 19987.12 19285.32 15586.71 18564.54 19978.52 15975.11 16878.35 19992.25 17392.28 17695.58 19395.93 168
Anonymous2023120683.84 19485.19 19382.26 19587.38 19992.87 19785.49 19783.65 17086.07 19163.44 20368.42 19869.01 19675.45 20393.34 15692.44 17398.12 16794.20 183
gm-plane-assit83.26 19585.29 19280.89 19689.52 17389.89 20670.26 21178.24 18877.11 20858.01 21174.16 17766.90 20190.63 15597.20 6196.05 8498.66 14495.68 172
new_pmnet81.53 19782.68 19980.20 19783.47 20689.47 20782.21 20578.36 18787.86 17760.14 20967.90 20069.43 19582.03 19789.22 19487.47 19794.99 20087.39 205
MDA-MVSNet-bldmvs80.11 19880.24 20179.94 19877.01 21093.21 19678.86 20885.94 14882.71 20260.86 20479.71 15651.77 21583.71 19675.60 20786.37 20093.28 20692.35 196
test20.0382.92 19685.52 19179.90 19987.75 19791.84 20182.80 20382.99 17482.65 20360.32 20778.90 15870.50 18867.10 20692.05 17990.89 18298.44 15791.80 198
MIMVSNet180.03 19980.93 20078.97 20072.46 21390.73 20480.81 20682.44 17880.39 20463.64 20157.57 20764.93 20776.37 20191.66 18191.55 18198.07 16889.70 202
new-patchmatchnet78.49 20178.19 20378.84 20184.13 20590.06 20577.11 21080.39 18579.57 20659.64 21066.01 20355.65 21475.62 20284.55 20380.70 20596.14 18790.77 201
pmmvs379.16 20080.12 20278.05 20279.36 20886.59 20978.13 20973.87 20576.42 20957.51 21270.59 19657.02 21184.66 19190.10 19088.32 19394.75 20391.77 199
FPMVS75.84 20274.59 20477.29 20386.92 20083.89 21185.01 19880.05 18682.91 20160.61 20665.25 20460.41 20963.86 20775.60 20773.60 20987.29 21180.47 208
Gipumacopyleft68.35 20366.71 20670.27 20474.16 21268.78 21463.93 21471.77 20883.34 20054.57 21334.37 21131.88 21768.69 20583.30 20485.53 20288.48 21079.78 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 20466.39 20768.30 20577.98 20960.24 21559.53 21576.82 19266.65 21160.74 20554.39 20859.82 21051.24 21073.92 21070.52 21083.48 21279.17 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 20686.07 20273.86 21368.22 21233.38 21496.88 4780.67 13088.23 10878.82 15249.78 21182.68 20577.47 20783.19 213
PMMVS264.36 20665.94 20862.52 20767.37 21477.44 21264.39 21369.32 21261.47 21234.59 21546.09 21041.03 21648.02 21374.56 20978.23 20691.43 20882.76 207
E-PMN50.67 20747.85 21053.96 20864.13 21650.98 21838.06 21669.51 21051.40 21424.60 21729.46 21424.39 21956.07 20948.17 21259.70 21171.40 21470.84 212
EMVS49.98 20846.76 21153.74 20964.96 21551.29 21737.81 21769.35 21151.83 21322.69 21829.57 21325.06 21857.28 20844.81 21356.11 21270.32 21568.64 213
MVEpermissive50.86 1949.54 20951.43 20947.33 21044.14 21759.20 21636.45 21860.59 21341.47 21531.14 21629.58 21217.06 22148.52 21262.22 21174.63 20863.12 21675.87 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND66.17 20594.91 7932.63 2111.32 21996.64 12291.40 1690.85 21794.39 1052.20 22090.15 9595.70 612.27 21696.39 9095.44 10297.78 17395.68 172
testmvs12.09 21016.94 2126.42 2123.15 2186.08 2199.51 2203.84 21521.46 2165.31 21927.49 2156.76 22210.89 21417.06 21415.01 2135.84 21724.75 214
test1239.58 21113.53 2134.97 2131.31 2205.47 2208.32 2212.95 21618.14 2172.03 22120.82 2162.34 22310.60 21510.00 21514.16 2144.60 21823.77 215
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def63.50 202
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
Anonymous20240521192.18 12695.04 9898.20 8596.14 8591.79 7893.93 10974.60 17288.38 10496.48 6795.17 12895.82 9499.00 11099.15 47
our_test_389.78 16893.84 19485.59 196
ambc73.83 20576.23 21185.13 21082.27 20484.16 19765.58 19852.82 20923.31 22073.55 20491.41 18485.26 20392.97 20794.70 178
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 219
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86
Patchmtry95.96 14193.36 13475.99 19975.19 160
DeepMVS_CXcopyleft86.86 20879.50 20770.43 20990.73 15463.66 20080.36 15560.83 20879.68 19876.23 20689.46 20986.53 206