This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 38
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 52
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7699.77 52
DPE-MVS99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 88
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 7999.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 128
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6799.73 72
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8599.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9899.64 10999.36 146
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 38
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8899.76 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9099.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10599.52 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 68
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6799.76 57
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 10999.69 92
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11699.76 57
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16198.92 5899.22 2798.84 4199.76 3599.56 121
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 121
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5799.77 52
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 132
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9299.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15399.17 156
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8299.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 86
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 10999.66 102
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12098.92 3499.78 2899.90 3
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7399.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6799.73 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 115
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9199.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13899.07 163
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7699.74 68
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8899.75 64
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11199.71 6799.76 57
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 7999.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 98
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11295.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 68
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7799.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11699.58 115
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9299.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9699.14 160
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 102
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 109
abl_698.09 4099.33 4299.22 9298.79 5994.96 5498.52 12197.00 3297.30 8799.86 3798.76 6699.69 7999.41 141
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11499.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11498.11 8699.40 16599.28 149
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7498.94 5198.14 2698.59 11493.62 8296.61 10699.76 4899.03 5297.77 12197.45 11699.57 13898.89 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13499.82 23
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8299.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10199.48 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 105
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12499.58 115
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 7999.57 120
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8198.88 5198.99 2999.74 4499.86 15
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7499.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 115
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9599.06 3899.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 132
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10797.65 10091.68 10598.00 14197.01 3197.72 8194.83 10998.85 6598.44 8398.86 3999.41 16399.52 128
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9897.85 9799.68 8899.15 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 7999.42 140
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8897.06 12394.09 6898.72 11095.14 5298.47 5896.29 9198.43 8098.65 6697.44 11799.45 15798.94 166
Anonymous2023121197.10 8197.06 11797.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16194.58 11498.90 6197.72 12598.10 8799.71 6799.75 64
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8898.82 5498.87 3899.81 1699.89 6
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16098.59 7498.55 5799.29 17299.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + COLMAP96.79 8996.55 12897.06 6297.70 7098.46 13899.07 4596.23 4499.38 2391.32 11098.80 4385.61 16798.69 7097.64 13096.92 12899.37 16799.06 164
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8296.28 13997.47 3999.58 894.70 5998.99 3399.85 4097.24 11399.55 1099.34 997.73 19699.56 121
tfpn200view996.75 9196.51 13197.03 6496.31 9299.67 1298.41 6993.99 7197.35 16194.52 6195.90 12186.93 15399.14 4498.26 8897.80 10099.82 1099.70 88
thres20096.76 9096.53 12997.03 6496.31 9299.67 1298.37 7293.99 7197.68 15794.49 6395.83 12486.77 15599.18 4098.26 8897.82 9999.82 1099.66 102
thres40096.71 9496.45 13697.02 6696.28 9599.63 2598.41 6994.00 7097.82 15294.42 6695.74 12586.26 16299.18 4098.20 9297.79 10199.81 1699.70 88
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9893.71 7998.47 12395.75 4298.78 4593.20 12898.91 6098.52 7898.44 6299.81 1699.53 125
CLD-MVS96.74 9296.51 13197.01 6896.71 8698.62 12798.73 6094.38 6498.94 8294.46 6497.33 8587.03 15198.07 8997.20 14596.87 12999.72 5799.54 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90096.72 9396.47 13497.00 6996.31 9299.52 5398.28 7894.01 6997.35 16194.52 6195.90 12186.93 15399.09 4998.07 10197.87 9699.81 1699.63 111
thres600view796.69 9596.43 13897.00 6996.28 9599.67 1298.41 6993.99 7197.85 15194.29 6995.96 11985.91 16599.19 3898.26 8897.63 10599.82 1099.73 72
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10098.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7896.61 15595.43 16697.74 19497.93 187
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 30
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13699.16 4397.66 12799.05 2499.76 3599.90 3
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 10994.01 7296.88 9998.40 6898.48 7999.09 3599.42 599.83 899.80 30
ACMM96.26 996.67 9796.69 12596.66 7597.29 7898.46 13896.48 13595.09 5199.21 4693.19 8898.78 4586.73 15698.17 8397.84 11896.32 14499.74 4499.49 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 38
OPM-MVS96.22 10795.85 14796.65 7697.75 6898.54 13399.00 5095.53 4796.88 17489.88 11795.95 12086.46 16098.07 8997.65 12996.63 13599.67 9698.83 173
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10393.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14798.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9598.44 6299.76 3599.87 12
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 13999.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18299.48 136
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13698.63 6392.10 9798.68 11195.96 4199.23 1891.79 13396.87 12198.76 5997.37 12199.57 13899.68 97
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12197.80 9493.05 9398.76 10794.39 6899.07 3197.03 8598.55 7698.31 8797.61 10699.43 16099.21 155
ACMP96.25 1096.62 10096.72 12496.50 8396.96 8498.75 11897.80 9494.30 6698.85 9093.12 8998.78 4586.61 15897.23 11497.73 12496.61 13699.62 11499.71 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 12992.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 30
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9793.22 8898.98 7892.64 9694.97 13291.71 13498.93 5798.62 6998.52 6099.82 1099.72 83
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 7998.06 9093.22 8899.43 2192.30 10296.90 9889.83 14398.55 7698.00 10998.14 8399.64 10999.70 88
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8798.05 10597.91 9499.74 4499.73 72
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14393.75 7799.26 4093.38 8693.73 14499.35 5696.47 13598.96 4298.46 6199.77 3399.90 3
HQP-MVS96.37 10396.58 12696.13 8997.31 7798.44 14098.45 6895.22 5098.86 8888.58 12198.33 6487.00 15297.67 10497.23 14396.56 13899.56 14199.62 112
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12593.23 8699.17 5192.60 9898.75 4896.19 9398.17 8398.19 9396.10 15299.72 5799.77 52
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12693.23 8699.15 5292.56 9998.74 4996.12 9698.17 8398.21 9196.10 15299.73 5199.78 44
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14396.53 13493.42 8299.04 7393.02 9298.03 7294.32 11797.47 10997.93 11297.77 10299.75 3999.88 10
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12193.39 8399.35 2894.40 6798.79 4499.59 5394.24 17998.04 10698.29 7799.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline97.45 7298.70 5995.99 9495.89 10599.36 7498.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9398.60 7298.60 5599.42 16299.86 15
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8698.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10199.78 44
test_part195.56 11995.38 15195.78 9696.07 9998.16 15497.57 10190.78 12497.43 16093.04 9189.12 17689.41 14497.93 9496.38 16397.38 12099.29 17299.78 44
GBi-Net96.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
test196.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
CHOSEN 1792x268896.41 10296.99 11995.74 9998.01 6699.72 697.70 9990.78 12499.13 6090.03 11687.35 18995.36 10398.33 8298.59 7498.91 3699.59 13099.87 12
FMVSNet397.02 8398.12 7995.73 10093.59 15497.98 15798.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10598.61 7098.62 5399.61 11699.65 105
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9393.22 8898.82 9791.40 10996.94 9698.56 6695.70 15299.14 3399.41 699.79 2599.75 64
FMVSNet296.64 9897.50 9795.63 10293.81 14897.98 15798.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9698.63 6898.80 4699.68 8899.67 98
LGP-MVS_train96.23 10696.89 12195.46 10397.32 7598.77 11498.81 5893.60 8098.58 11585.52 14099.08 3086.67 15797.83 10297.87 11697.51 11099.69 7999.73 72
HyFIR lowres test95.99 11296.56 12795.32 10497.99 6799.65 1796.54 13288.86 14898.44 12489.77 11984.14 19897.05 8499.03 5298.55 7698.19 8299.73 5199.86 15
ET-MVSNet_ETH3D96.17 10896.99 11995.21 10588.53 20398.54 13398.28 7892.61 9498.85 9093.60 8399.06 3290.39 13898.63 7395.98 17796.68 13399.61 11699.41 141
FMVSNet195.77 11596.41 13995.03 10693.42 15597.86 16497.11 12089.89 13698.53 11992.00 10589.17 17393.23 12798.15 8698.07 10198.34 7299.61 11699.69 92
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10295.86 14590.82 12298.38 12692.54 10096.66 10497.33 7995.75 15097.75 12398.34 7299.60 12499.40 144
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14198.96 10597.46 10591.75 10397.86 15090.07 11596.02 11897.25 8296.21 13998.04 10698.38 6799.60 12499.65 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10292.04 9898.48 12288.03 12498.39 6299.91 3194.03 18299.33 2399.23 1799.81 1699.25 152
ACMH+95.51 1395.40 12396.00 14194.70 11096.33 9098.79 11196.79 12791.32 11498.77 10687.18 13095.60 12985.46 16896.97 11897.15 14696.59 13799.59 13099.65 105
baseline296.36 10497.82 9094.65 11194.60 14099.09 9896.45 13689.63 14198.36 12791.29 11197.60 8494.13 12096.37 13698.45 8197.70 10399.54 14799.41 141
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18197.15 11789.19 14699.08 6588.23 12294.97 13294.73 11197.84 10197.86 11798.26 7899.60 12499.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11797.27 11186.97 16699.09 6389.83 11893.51 14797.78 7596.18 14197.53 13495.71 16399.35 16898.41 179
ACMH95.42 1495.27 12795.96 14394.45 11496.83 8598.78 11394.72 17091.67 10698.95 7986.82 13396.42 11283.67 17897.00 11797.48 13696.68 13399.69 7999.76 57
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS95.53 12096.50 13394.39 11593.86 14799.03 9996.67 12989.55 14397.33 16390.64 11393.02 15691.58 13596.21 13997.72 12597.43 11899.43 16099.36 146
FMVSNet595.42 12296.47 13494.20 11692.26 16695.99 20295.66 14887.15 16597.87 14993.46 8596.68 10393.79 12397.52 10697.10 14997.21 12399.11 17996.62 201
pmmvs495.09 12895.90 14494.14 11792.29 16597.70 16895.45 15390.31 13098.60 11390.70 11293.25 15089.90 14196.67 12897.13 14795.42 16799.44 15999.28 149
UniMVSNet_ETH3D93.15 16392.33 19594.11 11893.91 14598.61 12994.81 16790.98 11997.06 17087.51 12982.27 20276.33 20897.87 10094.79 19297.47 11599.56 14199.81 28
Effi-MVS+95.81 11497.31 11294.06 11995.09 13299.35 7797.24 11388.22 15798.54 11885.38 14298.52 5588.68 14598.70 6898.32 8697.93 9299.74 4499.84 18
Fast-Effi-MVS+95.38 12496.52 13094.05 12094.15 14399.14 9797.24 11386.79 16798.53 11987.62 12894.51 13787.06 15098.76 6698.60 7298.04 9099.72 5799.77 52
FC-MVSNet-test96.07 11197.94 8793.89 12193.60 15398.67 12496.62 13190.30 13298.76 10788.62 12095.57 13097.63 7794.48 17597.97 11097.48 11499.71 6799.52 128
dps94.63 13995.31 15493.84 12295.53 12298.71 12296.54 13280.12 19397.81 15497.21 2896.98 9492.37 12996.34 13892.46 20091.77 20097.26 20297.08 195
CANet_DTU96.64 9899.08 3993.81 12397.10 8299.42 6698.85 5690.01 13399.31 3179.98 17499.78 299.10 6097.42 11098.35 8598.05 8999.47 15599.53 125
Baseline_NR-MVSNet93.87 15493.98 17593.75 12491.66 18097.02 19495.53 15191.52 11197.16 16987.77 12787.93 18783.69 17796.35 13795.10 18897.23 12299.68 8899.73 72
Vis-MVSNetpermissive96.16 10998.22 7493.75 12495.33 12999.70 1197.27 11190.85 12198.30 12985.51 14195.72 12796.45 8793.69 18898.70 6499.00 2899.84 599.69 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet (Re)94.58 14295.34 15293.71 12692.25 16798.08 15694.97 16091.29 11897.03 17287.94 12593.97 14386.25 16396.07 14496.27 16995.97 15799.72 5799.79 38
EPNet_dtu96.30 10598.53 6293.70 12798.97 5098.24 15197.36 10794.23 6798.85 9079.18 17899.19 1998.47 6794.09 18197.89 11598.21 8098.39 18898.85 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap94.00 15094.35 16693.60 12895.89 10598.26 14997.49 10488.82 14998.56 11783.21 15391.28 16080.48 19696.68 12797.34 14096.26 14799.53 14998.24 182
USDC94.26 14694.83 15893.59 12996.02 10098.44 14097.84 9288.65 15298.86 8882.73 15994.02 14180.56 19496.76 12497.28 14296.15 15199.55 14398.50 177
testgi95.67 11797.48 9993.56 13095.07 13399.00 10095.33 15688.47 15498.80 10086.90 13297.30 8792.33 13095.97 14797.66 12797.91 9499.60 12499.38 145
UniMVSNet_NR-MVSNet94.59 14195.47 15093.55 13191.85 17597.89 16395.03 15892.00 9997.33 16386.12 13493.19 15187.29 14996.60 13196.12 17296.70 13299.72 5799.80 30
tfpnnormal93.85 15694.12 17093.54 13293.22 15698.24 15195.45 15391.96 10194.61 20083.91 14590.74 16381.75 19197.04 11697.49 13596.16 15099.68 8899.84 18
CostFormer94.25 14794.88 15793.51 13395.43 12698.34 14896.21 14180.64 19197.94 14694.01 7298.30 6586.20 16497.52 10692.71 19892.69 19597.23 20398.02 186
DU-MVS93.98 15194.44 16593.44 13491.66 18097.77 16595.03 15891.57 10897.17 16786.12 13493.13 15381.13 19396.60 13195.10 18897.01 12799.67 9699.80 30
NR-MVSNet94.01 14994.51 16393.44 13492.56 16197.77 16595.67 14791.57 10897.17 16785.84 13793.13 15380.53 19595.29 16697.01 15096.17 14999.69 7999.75 64
test-LLR95.50 12197.32 10993.37 13695.49 12498.74 11996.44 13790.82 12298.18 13482.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
IB-MVS93.96 1595.02 13096.44 13793.36 13797.05 8399.28 8690.43 19793.39 8398.02 14096.02 3994.92 13492.07 13283.52 20495.38 18295.82 16099.72 5799.59 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1395.57 11897.48 9993.35 13895.43 12698.97 10497.19 11683.72 18798.92 8587.91 12697.75 7996.12 9697.88 9996.84 15495.64 16497.96 19298.10 184
CVMVSNet95.33 12697.09 11593.27 13995.23 13098.39 14595.49 15292.58 9597.71 15683.00 15694.44 13993.28 12693.92 18597.79 11998.54 5999.41 16399.45 138
TranMVSNet+NR-MVSNet93.67 15794.14 16893.13 14091.28 19497.58 17995.60 15091.97 10097.06 17084.05 14390.64 16682.22 18896.17 14294.94 19196.78 13099.69 7999.78 44
Effi-MVS+-dtu95.74 11698.04 8293.06 14193.92 14499.16 9597.90 9188.16 15999.07 7082.02 16298.02 7394.32 11796.74 12598.53 7797.56 10899.61 11699.62 112
tpm cat194.06 14894.90 15693.06 14195.42 12898.52 13596.64 13080.67 19097.82 15292.63 9793.39 14995.00 10796.06 14591.36 20391.58 20296.98 20496.66 200
EPMVS95.05 12996.86 12392.94 14395.84 10798.96 10596.68 12879.87 19499.05 7190.15 11497.12 9395.99 9897.49 10895.17 18694.75 18497.59 19896.96 197
pm-mvs194.27 14595.57 14992.75 14492.58 16098.13 15594.87 16590.71 12796.70 18083.78 14789.94 16989.85 14294.96 17397.58 13297.07 12499.61 11699.72 83
TransMVSNet (Re)93.45 15994.08 17192.72 14592.83 15797.62 17794.94 16191.54 11095.65 19783.06 15588.93 17783.53 17994.25 17897.41 13797.03 12599.67 9698.40 181
TDRefinement93.04 16693.57 18292.41 14696.58 8798.77 11497.78 9691.96 10198.12 13780.84 16789.13 17579.87 20087.78 20096.44 16094.50 18799.54 14798.15 183
CP-MVSNet93.25 16294.00 17492.38 14791.65 18297.56 18194.38 17989.20 14596.05 19183.16 15489.51 17181.97 18996.16 14396.43 16196.56 13899.71 6799.89 6
WR-MVS_H93.54 15894.67 16192.22 14891.95 17197.91 16294.58 17688.75 15096.64 18183.88 14690.66 16585.13 17194.40 17696.54 15995.91 15999.73 5199.89 6
WR-MVS93.43 16194.48 16492.21 14991.52 18797.69 17094.66 17489.98 13496.86 17583.43 15190.12 16785.03 17293.94 18496.02 17695.82 16099.71 6799.82 23
TESTMET0.1,194.95 13197.32 10992.20 15092.62 15998.74 11996.44 13786.67 16998.18 13482.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
PEN-MVS92.72 17393.20 18892.15 15191.29 19297.31 19194.67 17389.81 13796.19 18781.83 16388.58 18079.06 20395.61 15695.21 18596.27 14599.72 5799.82 23
Fast-Effi-MVS+-dtu95.38 12498.20 7592.09 15293.91 14598.87 10897.35 10885.01 18099.08 6581.09 16698.10 6996.36 9095.62 15598.43 8497.03 12599.55 14399.50 134
SCA94.95 13197.44 10292.04 15395.55 12199.16 9596.26 14079.30 19899.02 7485.73 13998.18 6797.13 8397.69 10396.03 17594.91 17997.69 19797.65 189
V4293.05 16593.90 17892.04 15391.91 17297.66 17294.91 16289.91 13596.85 17680.58 16989.66 17083.43 18195.37 16495.03 19094.90 18099.59 13099.78 44
test-mter94.86 13497.32 10992.00 15592.41 16398.82 11096.18 14286.35 17398.05 13982.28 16096.48 11194.39 11695.46 16298.17 9496.20 14899.32 17099.13 161
PS-CasMVS92.72 17393.36 18691.98 15691.62 18497.52 18394.13 18388.98 14795.94 19481.51 16587.35 18979.95 19995.91 14896.37 16496.49 14099.70 7699.89 6
thisisatest051594.61 14096.89 12191.95 15792.00 17098.47 13792.01 19290.73 12698.18 13483.96 14494.51 13795.13 10693.38 18997.38 13894.74 18599.61 11699.79 38
PatchmatchNetpermissive94.70 13697.08 11691.92 15895.53 12298.85 10995.77 14679.54 19698.95 7985.98 13698.52 5596.45 8797.39 11195.32 18394.09 18997.32 20097.38 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet92.42 18092.85 19191.91 15990.87 19796.97 19594.53 17889.81 13795.86 19681.59 16488.83 17877.88 20695.01 17294.34 19496.35 14399.64 10999.73 72
v2v48292.77 17293.52 18591.90 16091.59 18597.63 17494.57 17790.31 13096.80 17879.22 17788.74 17981.55 19296.04 14695.26 18494.97 17899.66 10199.69 92
ADS-MVSNet94.65 13897.04 11891.88 16195.68 11598.99 10295.89 14479.03 20199.15 5285.81 13896.96 9598.21 7297.10 11594.48 19394.24 18897.74 19497.21 193
v14892.36 18392.88 19091.75 16291.63 18397.66 17292.64 18990.55 12996.09 18983.34 15288.19 18280.00 19892.74 19393.98 19594.58 18699.58 13499.69 92
RPMNet94.66 13797.16 11491.75 16294.98 13498.59 13097.00 12478.37 20597.98 14283.78 14796.27 11494.09 12296.91 12097.36 13996.73 13199.48 15399.09 162
v892.87 16793.87 17991.72 16492.05 16997.50 18494.79 16888.20 15896.85 17680.11 17390.01 16882.86 18595.48 16095.15 18794.90 18099.66 10199.80 30
tpmrst93.86 15595.88 14591.50 16595.69 11498.62 12795.64 14979.41 19798.80 10083.76 14995.63 12896.13 9597.25 11292.92 19792.31 19797.27 20196.74 198
IterMVS-SCA-FT94.89 13397.87 8991.42 16694.86 13797.70 16897.24 11384.88 18198.93 8375.74 19094.26 14098.25 7096.69 12698.52 7897.68 10499.10 18099.73 72
IterMVS94.81 13597.71 9291.42 16694.83 13897.63 17497.38 10685.08 17898.93 8375.67 19194.02 14197.64 7696.66 12998.45 8197.60 10798.90 18399.72 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114492.81 16994.03 17391.40 16891.68 17997.60 17894.73 16988.40 15596.71 17978.48 18188.14 18484.46 17695.45 16396.31 16895.22 17199.65 10599.76 57
CR-MVSNet94.57 14397.34 10791.33 16994.90 13598.59 13097.15 11779.14 19997.98 14280.42 17096.59 10993.50 12596.85 12298.10 9697.49 11299.50 15299.15 157
v1092.79 17194.06 17291.31 17091.78 17797.29 19394.87 16586.10 17496.97 17379.82 17588.16 18384.56 17595.63 15496.33 16795.31 16999.65 10599.80 30
SixPastTwentyTwo93.44 16095.32 15391.24 17192.11 16898.40 14492.77 18888.64 15398.09 13877.83 18393.51 14785.74 16696.52 13496.91 15294.89 18299.59 13099.73 72
pmmvs691.90 18792.53 19491.17 17291.81 17697.63 17493.23 18588.37 15693.43 20580.61 16877.32 20687.47 14894.12 18096.58 15795.72 16298.88 18499.53 125
GA-MVS93.93 15396.31 14091.16 17393.61 15298.79 11195.39 15590.69 12898.25 13273.28 19996.15 11688.42 14694.39 17797.76 12295.35 16899.58 13499.45 138
v119292.43 17993.61 18191.05 17491.53 18697.43 18794.61 17587.99 16096.60 18276.72 18687.11 19182.74 18695.85 14996.35 16695.30 17099.60 12499.74 68
v14419292.38 18193.55 18491.00 17591.44 18897.47 18694.27 18087.41 16496.52 18478.03 18287.50 18882.65 18795.32 16595.82 18095.15 17399.55 14399.78 44
v192192092.36 18393.57 18290.94 17691.39 19097.39 18994.70 17187.63 16396.60 18276.63 18786.98 19282.89 18495.75 15096.26 17095.14 17499.55 14399.73 72
pmmvs592.71 17594.27 16790.90 17791.42 18997.74 16793.23 18586.66 17095.99 19378.96 18091.45 15883.44 18095.55 15797.30 14195.05 17699.58 13498.93 167
MIMVSNet94.49 14497.59 9690.87 17891.74 17898.70 12394.68 17278.73 20397.98 14283.71 15097.71 8294.81 11096.96 11997.97 11097.92 9399.40 16598.04 185
EG-PatchMatch MVS92.45 17793.92 17790.72 17992.56 16198.43 14294.88 16484.54 18397.18 16679.55 17686.12 19683.23 18293.15 19297.22 14496.00 15499.67 9699.27 151
EU-MVSNet92.80 17094.76 16090.51 18091.88 17396.74 19992.48 19088.69 15196.21 18679.00 17991.51 15787.82 14791.83 19795.87 17996.27 14599.21 17598.92 170
v124091.99 18693.33 18790.44 18191.29 19297.30 19294.25 18186.79 16796.43 18575.49 19386.34 19581.85 19095.29 16696.42 16295.22 17199.52 15099.73 72
LTVRE_ROB93.20 1692.84 16894.92 15590.43 18292.83 15798.63 12697.08 12287.87 16197.91 14768.42 20693.54 14679.46 20296.62 13097.55 13397.40 11999.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary70.31 1890.74 19091.06 19790.36 18397.32 7597.43 18792.97 18787.82 16293.50 20475.34 19483.27 20084.90 17392.19 19692.64 19991.21 20396.50 20694.46 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n91.61 18892.95 18990.04 18490.56 19897.69 17093.74 18485.59 17695.89 19576.95 18586.60 19478.60 20593.76 18797.01 15094.99 17799.65 10599.87 12
pmmvs-eth3d89.81 19489.65 20090.00 18586.94 20595.38 20491.08 19386.39 17294.57 20182.27 16183.03 20164.94 21193.96 18396.57 15893.82 19199.35 16899.24 153
PatchT93.96 15297.36 10690.00 18594.76 13998.65 12590.11 20078.57 20497.96 14580.42 17096.07 11794.10 12196.85 12298.10 9697.49 11299.26 17499.15 157
anonymousdsp93.12 16495.86 14689.93 18791.09 19598.25 15095.12 15785.08 17897.44 15973.30 19890.89 16290.78 13795.25 16897.91 11395.96 15899.71 6799.82 23
tpm92.38 18194.79 15989.56 18894.30 14297.50 18494.24 18278.97 20297.72 15574.93 19597.97 7482.91 18396.60 13193.65 19694.81 18398.33 18998.98 165
N_pmnet92.21 18594.60 16289.42 18991.88 17397.38 19089.15 20389.74 14097.89 14873.75 19787.94 18692.23 13193.85 18696.10 17393.20 19498.15 19197.43 191
MDTV_nov1_ep13_2view92.44 17895.66 14888.68 19091.05 19697.92 16192.17 19179.64 19598.83 9576.20 18891.45 15893.51 12495.04 17195.68 18193.70 19297.96 19298.53 176
PM-MVS89.55 19590.30 19988.67 19187.06 20495.60 20390.88 19584.51 18496.14 18875.75 18986.89 19363.47 21494.64 17496.85 15393.89 19099.17 17899.29 148
MVS-HIRNet92.51 17695.97 14288.48 19293.73 15198.37 14690.33 19875.36 21198.32 12877.78 18489.15 17494.87 10895.14 17097.62 13196.39 14298.51 18597.11 194
new_pmnet90.45 19392.84 19287.66 19388.96 20296.16 20188.71 20484.66 18297.56 15871.91 20385.60 19786.58 15993.28 19096.07 17493.54 19398.46 18694.39 205
test20.0390.65 19293.71 18087.09 19490.44 19996.24 20089.74 20285.46 17795.59 19872.99 20090.68 16485.33 16984.41 20395.94 17895.10 17599.52 15097.06 196
gg-mvs-nofinetune90.85 18994.14 16887.02 19594.89 13699.25 8898.64 6276.29 20988.24 20957.50 21379.93 20495.45 10295.18 16998.77 5898.07 8899.62 11499.24 153
Anonymous2023120690.70 19193.93 17686.92 19690.21 20196.79 19790.30 19986.61 17196.05 19169.25 20488.46 18184.86 17485.86 20297.11 14896.47 14199.30 17197.80 188
MDA-MVSNet-bldmvs87.84 19989.22 20186.23 19781.74 20996.77 19883.74 20889.57 14294.50 20272.83 20196.64 10564.47 21392.71 19481.43 20892.28 19896.81 20598.47 178
MIMVSNet188.61 19790.68 19886.19 19881.56 21095.30 20687.78 20585.98 17594.19 20372.30 20278.84 20578.90 20490.06 19896.59 15695.47 16599.46 15695.49 203
gm-plane-assit89.44 19692.82 19385.49 19991.37 19195.34 20579.55 21282.12 18891.68 20864.79 21087.98 18580.26 19795.66 15398.51 8097.56 10899.45 15798.41 179
new-patchmatchnet86.12 20087.30 20284.74 20086.92 20695.19 20783.57 20984.42 18592.67 20665.66 20780.32 20364.72 21289.41 19992.33 20289.21 20498.43 18796.69 199
pmmvs388.19 19891.27 19684.60 20185.60 20793.66 20885.68 20781.13 18992.36 20763.66 21289.51 17177.10 20793.22 19196.37 16492.40 19698.30 19097.46 190
FPMVS83.82 20184.61 20382.90 20290.39 20090.71 21090.85 19684.10 18695.47 19965.15 20883.44 19974.46 20975.48 20681.63 20779.42 20991.42 21187.14 209
tmp_tt82.25 20397.73 6988.71 21180.18 21068.65 21399.15 5286.98 13199.47 985.31 17068.35 21187.51 20583.81 20791.64 210
Gipumacopyleft81.40 20281.78 20480.96 20483.21 20885.61 21379.73 21176.25 21097.33 16364.21 21155.32 21055.55 21586.04 20192.43 20192.20 19996.32 20793.99 206
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft72.60 1776.39 20477.66 20774.92 20581.04 21169.37 21768.47 21480.54 19285.39 21065.07 20973.52 20772.91 21065.67 21280.35 20976.81 21088.71 21285.25 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS277.26 20379.47 20674.70 20676.00 21388.37 21274.22 21376.34 20878.31 21154.13 21469.96 20852.50 21670.14 21084.83 20688.71 20597.35 19993.58 207
E-PMN68.30 20668.43 20868.15 20774.70 21571.56 21655.64 21677.24 20677.48 21339.46 21651.95 21341.68 21873.28 20870.65 21179.51 20888.61 21386.20 211
EMVS68.12 20768.11 20968.14 20875.51 21471.76 21555.38 21777.20 20777.78 21237.79 21753.59 21143.61 21774.72 20767.05 21276.70 21188.27 21486.24 210
MVEpermissive67.97 1965.53 20867.43 21063.31 20959.33 21674.20 21453.09 21870.43 21266.27 21443.13 21545.98 21430.62 21970.65 20979.34 21086.30 20683.25 21589.33 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND69.11 20598.13 7835.26 2103.49 21998.20 15394.89 1632.38 21698.42 1255.82 22096.37 11398.60 645.97 21598.75 6197.98 9199.01 18198.61 174
testmvs31.24 20940.15 21120.86 21112.61 21717.99 21825.16 21913.30 21448.42 21524.82 21853.07 21230.13 22128.47 21342.73 21337.65 21220.79 21651.04 213
test12326.75 21034.25 21218.01 2127.93 21817.18 21924.85 22012.36 21544.83 21616.52 21941.80 21518.10 22228.29 21433.08 21434.79 21318.10 21749.95 214
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def69.05 205
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13393.55 14594.41 11598.88 6498.04 10698.24 7999.75 3999.76 57
our_test_392.30 16497.58 17990.09 201
ambc80.99 20580.04 21290.84 20990.91 19496.09 18974.18 19662.81 20930.59 22082.44 20596.25 17191.77 20095.91 20898.56 175
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 215
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
mPP-MVS99.53 3099.89 34
NP-MVS98.57 116
Patchmtry98.59 13097.15 11779.14 19980.42 170
DeepMVS_CXcopyleft96.85 19687.43 20689.27 14498.30 12975.55 19295.05 13179.47 20192.62 19589.48 20495.18 20995.96 202