This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
PLCcopyleft97.93 299.02 2898.94 5199.11 1099.46 3499.24 9299.06 4697.96 3499.31 3299.16 197.90 7699.79 4599.36 2798.71 6498.12 8699.65 10899.52 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1799.05 299.60 599.98 199.28 3799.61 598.83 4599.70 7999.77 54
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3899.98 199.60 799.60 699.05 2599.74 4599.79 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNLPA99.03 2799.05 4399.01 2099.27 4499.22 9499.03 4897.98 3399.34 3099.00 498.25 6799.71 4999.31 3298.80 5698.82 4799.48 15699.17 159
xxxxxxxxxxxxxcwj98.14 5297.38 10699.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2786.38 16598.92 5999.22 2798.84 4399.76 3699.56 124
SF-MVS99.18 1699.32 2799.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2799.92 2898.92 5999.22 2798.84 4399.76 3699.56 124
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1198.72 799.57 699.97 799.53 1699.65 299.25 1499.84 799.77 54
AdaColmapbinary99.06 2498.98 5099.15 799.60 2599.30 8799.38 3098.16 2299.02 7598.55 898.71 5299.57 5599.58 1399.09 3697.84 10199.64 11299.36 149
MSLP-MVS++99.15 1899.24 3399.04 1599.52 3299.49 5799.09 4498.07 3099.37 2698.47 997.79 7899.89 3499.50 1798.93 4699.45 499.61 11999.76 60
CNVR-MVS99.23 1499.28 3099.17 599.65 1899.34 8199.46 2498.21 2099.28 3698.47 998.89 4399.94 2599.50 1799.42 1798.61 5599.73 5299.52 131
MTMP98.46 1199.96 12
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3598.40 1299.64 499.98 199.31 3299.56 998.96 3299.85 599.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CPTT-MVS99.14 1999.20 3599.06 1499.58 2699.53 5199.45 2597.80 3799.19 5098.32 1398.58 5599.95 1799.60 799.28 2598.20 8299.64 11299.69 95
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2198.10 1499.28 1799.98 199.30 3599.34 2299.05 2599.81 1799.79 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA98.09 1599.97 7
CSCG98.90 3098.93 5298.85 2599.75 399.72 699.49 2196.58 4399.38 2498.05 1698.97 3697.87 7599.49 1997.78 12398.92 3699.78 2999.90 4
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2899.39 2998.23 1999.52 1698.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 9199.76 60
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1699.63 1198.26 1399.27 3898.01 1899.27 1899.97 799.60 799.59 798.58 5799.71 7099.73 75
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4999.33 3298.29 1199.75 197.96 1999.15 2499.95 1799.61 699.17 3199.06 2499.81 1799.84 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9197.87 2098.91 4199.92 2899.30 3599.45 1599.38 899.79 2699.58 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4797.79 2199.15 2499.96 1299.59 1099.54 1198.86 4199.78 2999.74 71
OMC-MVS98.84 3299.01 4998.65 3099.39 3699.23 9399.22 3596.70 4299.40 2397.77 2297.89 7799.80 4399.21 3899.02 4098.65 5399.57 14199.07 166
NCCC99.05 2599.08 4099.02 1999.62 2399.38 7299.43 2898.21 2099.36 2897.66 2397.79 7899.90 3299.45 2299.17 3198.43 6599.77 3499.51 135
3Dnovator+96.92 798.71 3699.05 4398.32 3499.53 3099.34 8199.06 4694.61 6099.65 497.49 2496.75 10199.86 3799.44 2398.78 5899.30 1199.81 1799.67 101
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5199.72 298.11 2999.73 297.43 2599.15 2499.96 1299.59 1099.73 199.07 2399.88 299.82 26
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4099.63 1198.31 899.56 1197.37 2699.27 1899.97 799.70 399.35 2199.24 1699.71 7099.76 60
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4099.11 4297.35 4099.14 5697.30 2799.44 1199.96 1299.32 3198.89 5199.39 799.79 2699.58 118
dps94.63 14295.31 15793.84 12595.53 12198.71 12596.54 13580.12 19797.81 15897.21 2896.98 9592.37 13196.34 14192.46 20591.77 20597.26 20697.08 200
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 6099.03 4894.59 6299.09 6497.19 2999.73 399.95 1799.39 2698.95 4498.69 5199.75 4099.65 108
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2199.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1499.72 5999.77 54
MAR-MVS97.71 6498.04 8397.32 5399.35 4198.91 11097.65 10291.68 10698.00 14597.01 3197.72 8294.83 11098.85 6698.44 8698.86 4199.41 16699.52 131
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
abl_698.09 4099.33 4299.22 9498.79 5994.96 5498.52 12497.00 3297.30 8899.86 3798.76 6799.69 8299.41 144
3Dnovator96.92 798.67 3799.05 4398.23 3899.57 2799.45 6299.11 4294.66 5999.69 396.80 3396.55 11199.61 5299.40 2598.87 5399.49 399.85 599.66 105
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5696.62 3499.16 2399.98 199.12 4799.63 399.19 2099.78 2999.83 25
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7599.64 898.05 3299.53 1496.58 3598.93 3999.92 2899.49 1999.46 1499.32 1099.80 2599.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS99.11 2099.27 3198.93 2299.67 1399.33 8499.51 2098.31 899.28 3696.57 3699.10 3099.90 3299.71 299.19 3098.35 7199.82 1199.71 89
HPM-MVS++copyleft99.10 2199.30 2898.86 2499.69 899.48 5899.59 1698.34 499.26 4196.55 3799.10 3099.96 1299.36 2799.25 2698.37 7099.64 11299.66 105
QAPM98.62 4099.04 4698.13 3999.57 2799.48 5899.17 3894.78 5699.57 996.16 3896.73 10299.80 4399.33 2998.79 5799.29 1399.75 4099.64 112
IB-MVS93.96 1595.02 13396.44 14093.36 14097.05 8399.28 8890.43 20093.39 8398.02 14496.02 3994.92 13592.07 13483.52 20995.38 18695.82 16399.72 5999.59 117
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2023121197.10 8297.06 11997.14 5996.32 9199.52 5498.16 8493.76 7598.84 9595.98 4090.92 16594.58 11598.90 6297.72 12898.10 8899.71 7099.75 67
MVSTER97.16 8097.71 9396.52 8195.97 10498.48 13998.63 6392.10 9798.68 11395.96 4199.23 2091.79 13596.87 12498.76 6097.37 12499.57 14199.68 100
baseline197.58 6898.05 8297.02 6696.21 9799.45 6297.71 10093.71 7998.47 12695.75 4298.78 4793.20 13098.91 6198.52 8198.44 6399.81 1799.53 128
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7895.62 4398.97 3699.94 2599.54 1599.51 1298.79 4999.71 7099.73 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet98.05 5498.86 5497.10 6099.02 4999.43 6698.47 6894.73 5799.05 7295.62 4398.93 3997.62 7995.48 16398.59 7798.55 5899.29 17599.84 21
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
PVSNet_Blended97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
canonicalmvs97.31 7697.81 9296.72 7396.20 9899.45 6298.21 8291.60 10899.22 4595.39 4798.48 5890.95 13899.16 4597.66 13099.05 2599.76 3699.90 4
DELS-MVS98.19 5098.77 5897.52 5198.29 6199.71 999.12 4194.58 6398.80 10195.38 4896.24 11698.24 7297.92 9899.06 3999.52 199.82 1199.79 40
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2499.67 595.63 4698.66 11495.27 4999.11 2799.82 4299.67 499.33 2399.19 2099.73 5299.74 71
ACMMPcopyleft98.74 3499.03 4798.40 3399.36 3999.64 2199.20 3697.75 3898.82 9895.24 5098.85 4499.87 3699.17 4498.74 6397.50 11499.71 7099.76 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet98.46 4299.16 3697.64 4998.48 5899.64 2199.35 3194.71 5899.53 1495.17 5197.63 8499.59 5398.38 8498.88 5298.99 3099.74 4599.86 17
PatchMatch-RL97.77 6298.25 7197.21 5899.11 4799.25 9097.06 12694.09 6898.72 11295.14 5298.47 5996.29 9298.43 8398.65 6797.44 12099.45 16098.94 169
CHOSEN 280x42097.99 5699.24 3396.53 8098.34 6099.61 3398.36 7589.80 14199.27 3895.08 5399.81 198.58 6698.64 7499.02 4098.92 3698.93 18599.48 139
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3398.14 8594.81 5599.31 3295.00 5499.51 899.79 4599.00 5698.94 4598.83 4599.69 8299.57 123
EPP-MVSNet97.75 6398.71 5996.63 7895.68 11499.56 4797.51 10593.10 9299.22 4594.99 5597.18 9397.30 8298.65 7398.83 5498.93 3499.84 799.92 2
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5198.51 6795.52 4899.27 3894.85 5699.56 799.69 5099.04 5399.36 2098.88 3999.60 12799.58 118
DCV-MVSNet97.56 6998.36 6896.62 7996.44 8998.36 15098.37 7391.73 10599.11 6294.80 5798.36 6496.28 9398.60 7798.12 9898.44 6399.76 3699.87 13
RPSCF97.61 6798.16 7896.96 7198.10 6299.00 10398.84 5793.76 7599.45 2094.78 5899.39 1299.31 5898.53 8196.61 15995.43 16997.74 19897.93 192
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8496.28 14297.47 3999.58 894.70 5998.99 3599.85 4097.24 11699.55 1099.34 997.73 20099.56 124
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3899.64 898.28 1299.23 4494.57 6099.35 1499.97 799.55 1499.63 398.66 5299.70 7999.74 71
thres100view90096.72 9496.47 13797.00 6996.31 9299.52 5498.28 7994.01 6997.35 16694.52 6195.90 12286.93 15799.09 5198.07 10497.87 9999.81 1799.63 114
tfpn200view996.75 9296.51 13497.03 6496.31 9299.67 1298.41 7093.99 7197.35 16694.52 6195.90 12286.93 15799.14 4698.26 9197.80 10399.82 1199.70 91
thres20096.76 9196.53 13197.03 6496.31 9299.67 1298.37 7393.99 7197.68 16194.49 6395.83 12586.77 15999.18 4298.26 9197.82 10299.82 1199.66 105
CS-MVS98.21 4999.34 2696.89 7295.51 12399.56 4798.85 5593.31 8699.01 7794.48 6499.31 1699.46 5699.31 3299.02 4099.19 2099.90 199.87 13
CLD-MVS96.74 9396.51 13497.01 6896.71 8698.62 13098.73 6094.38 6498.94 8394.46 6597.33 8687.03 15598.07 9297.20 14996.87 13299.72 5999.54 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSDG98.27 4898.29 7098.24 3799.20 4599.22 9499.20 3697.82 3699.37 2694.43 6695.90 12297.31 8199.12 4798.76 6098.35 7199.67 9999.14 163
thres40096.71 9596.45 13997.02 6696.28 9599.63 2498.41 7094.00 7097.82 15694.42 6795.74 12686.26 16699.18 4298.20 9597.79 10499.81 1799.70 91
UGNet97.66 6699.07 4296.01 9497.19 8099.65 1697.09 12493.39 8399.35 2994.40 6898.79 4699.59 5394.24 18398.04 10998.29 7899.73 5299.80 33
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS97.52 7098.39 6796.51 8295.82 10898.73 12497.80 9693.05 9398.76 10894.39 6999.07 3397.03 8698.55 7998.31 9097.61 10999.43 16399.21 158
thres600view796.69 9696.43 14197.00 6996.28 9599.67 1298.41 7093.99 7197.85 15594.29 7095.96 12085.91 16999.19 4098.26 9197.63 10899.82 1199.73 75
DPM-MVS98.31 4798.53 6398.05 4198.76 5598.77 11799.13 4098.07 3099.10 6394.27 7196.70 10399.84 4198.70 7097.90 11798.11 8799.40 16899.28 152
CostFormer94.25 15094.88 16093.51 13695.43 12798.34 15196.21 14480.64 19597.94 15094.01 7298.30 6686.20 16897.52 10992.71 20392.69 19997.23 20798.02 190
IS_MVSNet97.86 5998.86 5496.68 7496.02 10099.72 698.35 7693.37 8598.75 11194.01 7296.88 10098.40 6998.48 8299.09 3699.42 599.83 1099.80 33
GBi-Net96.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
test196.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
FMVSNet397.02 8498.12 8095.73 10193.59 15797.98 16098.34 7791.32 11598.80 10193.92 7497.21 9095.94 10097.63 10898.61 7198.62 5499.61 11999.65 108
train_agg98.73 3599.11 3898.28 3699.36 3999.35 7999.48 2397.96 3498.83 9693.86 7798.70 5399.86 3799.44 2399.08 3898.38 6899.61 11999.58 118
XVS97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
X-MVStestdata97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2899.60 1598.15 2499.08 6693.81 7898.46 6099.95 1799.59 1099.49 1399.21 1999.68 9199.75 67
ETV-MVS98.05 5499.25 3296.65 7695.61 11699.61 3398.26 8193.52 8198.90 8793.74 8199.32 1599.20 5998.90 6299.21 2998.72 5099.87 399.79 40
PCF-MVS97.50 698.18 5198.35 6997.99 4398.65 5699.36 7698.94 5198.14 2698.59 11693.62 8296.61 10799.76 4899.03 5497.77 12497.45 11999.57 14198.89 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.17 10996.99 12195.21 10688.53 20798.54 13698.28 7992.61 9498.85 9193.60 8399.06 3490.39 14098.63 7595.98 18196.68 13699.61 11999.41 144
FMVSNet296.64 9997.50 9895.63 10393.81 15197.98 16098.09 8790.87 12198.99 7993.48 8493.17 15495.25 10597.89 9998.63 6998.80 4899.68 9199.67 101
FMVSNet595.42 12496.47 13794.20 11892.26 17095.99 20695.66 15187.15 16897.87 15393.46 8596.68 10493.79 12497.52 10997.10 15397.21 12699.11 18296.62 206
PVSNet_Blended_VisFu97.41 7498.49 6596.15 8997.49 7199.76 196.02 14693.75 7799.26 4193.38 8693.73 14699.35 5796.47 13898.96 4398.46 6299.77 3499.90 4
TAPA-MVS97.53 598.41 4398.84 5697.91 4599.08 4899.33 8499.15 3997.13 4199.34 3093.20 8797.75 8099.19 6099.20 3998.66 6698.13 8599.66 10499.48 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.26 996.67 9896.69 12796.66 7597.29 7898.46 14196.48 13895.09 5199.21 4793.19 8898.78 4786.73 16098.17 8697.84 12196.32 14799.74 4599.49 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP96.25 1096.62 10196.72 12696.50 8396.96 8498.75 12197.80 9694.30 6698.85 9193.12 8998.78 4786.61 16297.23 11797.73 12796.61 13999.62 11799.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030498.14 5299.03 4797.10 6098.05 6599.63 2499.27 3494.33 6599.63 693.06 9097.32 8799.05 6298.09 9198.82 5598.87 4099.81 1799.89 7
test_part195.56 12195.38 15495.78 9796.07 9998.16 15797.57 10390.78 12597.43 16593.04 9189.12 18089.41 14797.93 9796.38 16797.38 12399.29 17599.78 46
FC-MVSNet-train97.04 8397.91 8996.03 9396.00 10298.41 14696.53 13793.42 8299.04 7493.02 9298.03 7394.32 11897.47 11297.93 11597.77 10599.75 4099.88 11
baseline97.45 7398.70 6095.99 9595.89 10599.36 7698.29 7891.37 11499.21 4792.99 9398.40 6296.87 8797.96 9698.60 7498.60 5699.42 16599.86 17
DI_MVS_plusplus_trai96.90 8897.49 9996.21 8895.61 11699.40 7198.72 6192.11 9699.14 5692.98 9493.08 15795.14 10698.13 9098.05 10897.91 9799.74 4599.73 75
DeepC-MVS97.63 498.33 4698.57 6198.04 4298.62 5799.65 1699.45 2598.15 2499.51 1792.80 9595.74 12696.44 9099.46 2199.37 1999.50 299.78 2999.81 31
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs96.93 8797.43 10496.34 8595.70 11299.50 5697.75 9993.22 8998.98 8092.64 9694.97 13391.71 13698.93 5898.62 7098.52 6199.82 1199.72 86
tpm cat194.06 15194.90 15993.06 14495.42 12998.52 13896.64 13380.67 19497.82 15692.63 9793.39 15195.00 10896.06 14891.36 20891.58 20796.98 20896.66 205
thisisatest053097.23 7898.25 7196.05 9195.60 11899.59 4096.96 12893.23 8799.17 5292.60 9898.75 5096.19 9498.17 8698.19 9696.10 15599.72 5999.77 54
tttt051797.23 7898.24 7496.04 9295.60 11899.60 3896.94 12993.23 8799.15 5392.56 9998.74 5196.12 9798.17 8698.21 9496.10 15599.73 5299.78 46
test0.0.03 196.69 9698.12 8095.01 10895.49 12498.99 10595.86 14890.82 12398.38 12992.54 10096.66 10597.33 8095.75 15397.75 12698.34 7399.60 12799.40 147
EIA-MVS97.70 6598.78 5796.44 8495.72 11199.65 1698.14 8593.72 7898.30 13392.31 10198.63 5497.90 7498.97 5798.92 4898.30 7799.78 2999.80 33
CS-MVS-test97.90 5899.30 2896.26 8695.44 12699.59 4098.63 6391.99 10099.57 992.31 10199.37 1398.60 6499.33 2999.11 3598.93 3499.87 399.93 1
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 6099.44 2798.13 2799.65 492.30 10398.91 4199.95 1799.05 5299.42 1798.95 3399.58 13799.82 26
diffmvs96.83 8997.33 10996.25 8795.76 10999.34 8198.06 9193.22 8999.43 2292.30 10396.90 9989.83 14698.55 7998.00 11298.14 8499.64 11299.70 91
OpenMVScopyleft96.23 1197.95 5798.45 6697.35 5299.52 3299.42 6798.91 5294.61 6098.87 8892.24 10594.61 13799.05 6299.10 4998.64 6899.05 2599.74 4599.51 135
FMVSNet195.77 11796.41 14295.03 10793.42 15897.86 16797.11 12389.89 13898.53 12192.00 10689.17 17793.23 12998.15 8998.07 10498.34 7399.61 11999.69 95
CDPH-MVS98.41 4399.10 3997.61 5099.32 4399.36 7699.49 2196.15 4598.82 9891.82 10798.41 6199.66 5199.10 4998.93 4698.97 3199.75 4099.58 118
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7797.32 5398.84 5199.45 6299.28 3395.43 4999.48 1991.80 10894.83 13698.36 7098.90 6298.09 10197.85 10099.68 9199.15 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_Test97.30 7798.54 6295.87 9695.74 11099.28 8898.19 8391.40 11399.18 5191.59 10998.17 6996.18 9598.63 7598.61 7198.55 5899.66 10499.78 46
Vis-MVSNet (Re-imp)97.40 7598.89 5395.66 10295.99 10399.62 2897.82 9593.22 8998.82 9891.40 11096.94 9798.56 6795.70 15599.14 3399.41 699.79 2699.75 67
TSAR-MVS + COLMAP96.79 9096.55 13097.06 6297.70 7098.46 14199.07 4596.23 4499.38 2491.32 11198.80 4585.61 17198.69 7297.64 13396.92 13199.37 17099.06 167
baseline296.36 10597.82 9194.65 11294.60 14299.09 10196.45 13989.63 14398.36 13191.29 11297.60 8594.13 12196.37 13998.45 8497.70 10699.54 15099.41 144
pmmvs495.09 13195.90 14794.14 11992.29 16997.70 17195.45 15690.31 13298.60 11590.70 11393.25 15289.90 14496.67 13197.13 15195.42 17099.44 16299.28 152
TAMVS95.53 12296.50 13694.39 11793.86 15099.03 10296.67 13289.55 14597.33 16890.64 11493.02 15891.58 13796.21 14297.72 12897.43 12199.43 16399.36 149
EPMVS95.05 13296.86 12592.94 14695.84 10798.96 10896.68 13179.87 19899.05 7290.15 11597.12 9495.99 9997.49 11195.17 19094.75 18897.59 20296.96 202
CDS-MVSNet96.59 10298.02 8594.92 10994.45 14398.96 10897.46 10791.75 10497.86 15490.07 11696.02 11997.25 8396.21 14298.04 10998.38 6899.60 12799.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268896.41 10396.99 12195.74 10098.01 6699.72 697.70 10190.78 12599.13 6190.03 11787.35 19395.36 10498.33 8598.59 7798.91 3899.59 13399.87 13
OPM-MVS96.22 10895.85 15096.65 7697.75 6898.54 13699.00 5095.53 4796.88 17989.88 11895.95 12186.46 16498.07 9297.65 13296.63 13899.67 9998.83 176
MS-PatchMatch95.99 11397.26 11494.51 11497.46 7298.76 12097.27 11386.97 16999.09 6489.83 11993.51 14997.78 7696.18 14497.53 13795.71 16699.35 17198.41 182
HyFIR lowres test95.99 11396.56 12995.32 10597.99 6799.65 1696.54 13588.86 15098.44 12789.77 12084.14 20397.05 8599.03 5498.55 7998.19 8399.73 5299.86 17
FC-MVSNet-test96.07 11297.94 8893.89 12493.60 15698.67 12796.62 13490.30 13498.76 10888.62 12195.57 13197.63 7894.48 17997.97 11397.48 11799.71 7099.52 131
HQP-MVS96.37 10496.58 12896.13 9097.31 7798.44 14398.45 6995.22 5098.86 8988.58 12298.33 6587.00 15697.67 10797.23 14796.56 14199.56 14499.62 115
IterMVS-LS96.12 11197.48 10094.53 11395.19 13297.56 18597.15 12089.19 14899.08 6688.23 12394.97 13394.73 11297.84 10497.86 12098.26 7999.60 12799.88 11
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D97.79 6098.25 7197.26 5798.40 5999.63 2499.53 1898.63 199.25 4388.13 12496.93 9894.14 12099.19 4099.14 3399.23 1799.69 8299.42 143
UA-Net97.13 8199.14 3794.78 11097.21 7999.38 7297.56 10492.04 9898.48 12588.03 12598.39 6399.91 3194.03 18699.33 2399.23 1799.81 1799.25 155
UniMVSNet (Re)94.58 14595.34 15593.71 12992.25 17198.08 15994.97 16391.29 11997.03 17787.94 12693.97 14586.25 16796.07 14796.27 17395.97 16099.72 5999.79 40
MDTV_nov1_ep1395.57 12097.48 10093.35 14195.43 12798.97 10797.19 11983.72 19198.92 8687.91 12797.75 8096.12 9797.88 10296.84 15895.64 16797.96 19698.10 188
GeoE95.98 11597.24 11594.51 11495.02 13599.38 7298.02 9287.86 16498.37 13087.86 12892.99 15993.54 12598.56 7898.61 7197.92 9599.73 5299.85 20
Baseline_NR-MVSNet93.87 15793.98 17993.75 12791.66 18497.02 19895.53 15491.52 11297.16 17487.77 12987.93 19183.69 18196.35 14095.10 19297.23 12599.68 9199.73 75
Fast-Effi-MVS+95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
DROMVSNet95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
UniMVSNet_ETH3D93.15 16692.33 19994.11 12093.91 14898.61 13294.81 17090.98 12097.06 17587.51 13282.27 20776.33 21397.87 10394.79 19697.47 11899.56 14499.81 31
ACMH+95.51 1395.40 12596.00 14494.70 11196.33 9098.79 11496.79 13091.32 11598.77 10787.18 13395.60 13085.46 17296.97 12197.15 15096.59 14099.59 13399.65 108
tmp_tt82.25 20797.73 6988.71 21580.18 21568.65 21899.15 5386.98 13499.47 985.31 17468.35 21687.51 21083.81 21291.64 215
testgi95.67 11997.48 10093.56 13395.07 13499.00 10395.33 15988.47 15698.80 10186.90 13597.30 8892.33 13295.97 15097.66 13097.91 9799.60 12799.38 148
ACMH95.42 1495.27 13095.96 14694.45 11696.83 8598.78 11694.72 17391.67 10798.95 8186.82 13696.42 11383.67 18297.00 12097.48 13996.68 13699.69 8299.76 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet94.59 14495.47 15393.55 13491.85 17997.89 16695.03 16192.00 9997.33 16886.12 13793.19 15387.29 15296.60 13496.12 17696.70 13599.72 5999.80 33
DU-MVS93.98 15494.44 16993.44 13791.66 18497.77 16895.03 16191.57 10997.17 17286.12 13793.13 15581.13 19796.60 13495.10 19297.01 13099.67 9999.80 33
PatchmatchNetpermissive94.70 13997.08 11891.92 16195.53 12198.85 11295.77 14979.54 20098.95 8185.98 13998.52 5696.45 8897.39 11495.32 18794.09 19397.32 20497.38 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet94.01 15294.51 16793.44 13792.56 16497.77 16895.67 15091.57 10997.17 17285.84 14093.13 15580.53 19995.29 16997.01 15496.17 15299.69 8299.75 67
ADS-MVSNet94.65 14197.04 12091.88 16495.68 11498.99 10595.89 14779.03 20599.15 5385.81 14196.96 9698.21 7397.10 11894.48 19894.24 19297.74 19897.21 198
SCA94.95 13497.44 10392.04 15695.55 12099.16 9796.26 14379.30 20299.02 7585.73 14298.18 6897.13 8497.69 10696.03 17994.91 18397.69 20197.65 194
LGP-MVS_train96.23 10796.89 12395.46 10497.32 7598.77 11798.81 5893.60 8098.58 11785.52 14399.08 3286.67 16197.83 10597.87 11997.51 11399.69 8299.73 75
Vis-MVSNetpermissive96.16 11098.22 7593.75 12795.33 13099.70 1197.27 11390.85 12298.30 13385.51 14495.72 12896.45 8893.69 19298.70 6599.00 2999.84 799.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+95.81 11697.31 11394.06 12195.09 13399.35 7997.24 11588.22 15998.54 12085.38 14598.52 5688.68 14898.70 7098.32 8997.93 9499.74 4599.84 21
TranMVSNet+NR-MVSNet93.67 16094.14 17293.13 14391.28 19897.58 18395.60 15391.97 10197.06 17584.05 14690.64 17082.22 19296.17 14594.94 19596.78 13399.69 8299.78 46
thisisatest051594.61 14396.89 12391.95 16092.00 17498.47 14092.01 19590.73 12798.18 13883.96 14794.51 13895.13 10793.38 19397.38 14194.74 18999.61 11999.79 40
tfpnnormal93.85 15994.12 17493.54 13593.22 15998.24 15495.45 15691.96 10294.61 20583.91 14890.74 16781.75 19597.04 11997.49 13896.16 15399.68 9199.84 21
WR-MVS_H93.54 16194.67 16592.22 15191.95 17597.91 16594.58 17988.75 15296.64 18683.88 14990.66 16985.13 17594.40 18096.54 16395.91 16299.73 5299.89 7
pm-mvs194.27 14895.57 15292.75 14792.58 16398.13 15894.87 16890.71 12896.70 18583.78 15089.94 17389.85 14594.96 17697.58 13597.07 12799.61 11999.72 86
RPMNet94.66 14097.16 11691.75 16594.98 13698.59 13397.00 12778.37 20997.98 14683.78 15096.27 11594.09 12396.91 12397.36 14296.73 13499.48 15699.09 165
tpmrst93.86 15895.88 14891.50 16895.69 11398.62 13095.64 15279.41 20198.80 10183.76 15295.63 12996.13 9697.25 11592.92 20292.31 20197.27 20596.74 203
MIMVSNet94.49 14797.59 9790.87 18191.74 18298.70 12694.68 17578.73 20797.98 14683.71 15397.71 8394.81 11196.96 12297.97 11397.92 9599.40 16898.04 189
WR-MVS93.43 16494.48 16892.21 15291.52 19197.69 17394.66 17789.98 13696.86 18083.43 15490.12 17185.03 17693.94 18896.02 18095.82 16399.71 7099.82 26
v14892.36 18792.88 19491.75 16591.63 18797.66 17592.64 19290.55 13096.09 19483.34 15588.19 18680.00 20292.74 19793.98 20094.58 19099.58 13799.69 95
TinyColmap94.00 15394.35 17093.60 13195.89 10598.26 15297.49 10688.82 15198.56 11983.21 15691.28 16480.48 20096.68 13097.34 14396.26 15099.53 15298.24 186
CP-MVSNet93.25 16594.00 17892.38 15091.65 18697.56 18594.38 18289.20 14796.05 19683.16 15789.51 17581.97 19396.16 14696.43 16596.56 14199.71 7099.89 7
TransMVSNet (Re)93.45 16294.08 17592.72 14892.83 16097.62 18194.94 16491.54 11195.65 20283.06 15888.93 18183.53 18394.25 18297.41 14097.03 12899.67 9998.40 185
CVMVSNet95.33 12997.09 11793.27 14295.23 13198.39 14895.49 15592.58 9597.71 16083.00 15994.44 14193.28 12893.92 18997.79 12298.54 6099.41 16699.45 141
test-LLR95.50 12397.32 11093.37 13995.49 12498.74 12296.44 14090.82 12398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
TESTMET0.1,194.95 13497.32 11092.20 15392.62 16298.74 12296.44 14086.67 17398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
USDC94.26 14994.83 16193.59 13296.02 10098.44 14397.84 9488.65 15498.86 8982.73 16294.02 14380.56 19896.76 12797.28 14696.15 15499.55 14698.50 180
test-mter94.86 13797.32 11092.00 15892.41 16798.82 11396.18 14586.35 17798.05 14382.28 16396.48 11294.39 11795.46 16598.17 9796.20 15199.32 17399.13 164
pmmvs-eth3d89.81 19889.65 20590.00 18886.94 20995.38 20891.08 19686.39 17694.57 20682.27 16483.03 20664.94 21693.96 18796.57 16293.82 19599.35 17199.24 156
Effi-MVS+-dtu95.74 11898.04 8393.06 14493.92 14799.16 9797.90 9388.16 16199.07 7182.02 16598.02 7494.32 11896.74 12898.53 8097.56 11199.61 11999.62 115
PEN-MVS92.72 17693.20 19292.15 15491.29 19697.31 19594.67 17689.81 13996.19 19281.83 16688.58 18479.06 20895.61 15995.21 18996.27 14899.72 5999.82 26
DTE-MVSNet92.42 18492.85 19591.91 16290.87 20196.97 19994.53 18189.81 13995.86 20181.59 16788.83 18277.88 21195.01 17594.34 19996.35 14699.64 11299.73 75
PS-CasMVS92.72 17693.36 19091.98 15991.62 18897.52 18794.13 18688.98 14995.94 19981.51 16887.35 19379.95 20495.91 15196.37 16896.49 14399.70 7999.89 7
Fast-Effi-MVS+-dtu95.38 12698.20 7692.09 15593.91 14898.87 11197.35 11085.01 18499.08 6681.09 16998.10 7096.36 9195.62 15898.43 8797.03 12899.55 14699.50 137
TDRefinement93.04 16993.57 18692.41 14996.58 8798.77 11797.78 9891.96 10298.12 14180.84 17089.13 17979.87 20587.78 20596.44 16494.50 19199.54 15098.15 187
pmmvs691.90 19192.53 19891.17 17591.81 18097.63 17893.23 18888.37 15893.43 21080.61 17177.32 21187.47 15194.12 18496.58 16195.72 16598.88 18799.53 128
V4293.05 16893.90 18292.04 15691.91 17697.66 17594.91 16589.91 13796.85 18180.58 17289.66 17483.43 18595.37 16795.03 19494.90 18499.59 13399.78 46
CR-MVSNet94.57 14697.34 10891.33 17294.90 13798.59 13397.15 12079.14 20397.98 14680.42 17396.59 11093.50 12796.85 12598.10 9997.49 11599.50 15599.15 160
Patchmtry98.59 13397.15 12079.14 20380.42 173
PatchT93.96 15597.36 10790.00 18894.76 14198.65 12890.11 20378.57 20897.96 14980.42 17396.07 11894.10 12296.85 12598.10 9997.49 11599.26 17799.15 160
v892.87 17093.87 18391.72 16792.05 17397.50 18894.79 17188.20 16096.85 18180.11 17690.01 17282.86 18995.48 16395.15 19194.90 18499.66 10499.80 33
CANet_DTU96.64 9999.08 4093.81 12697.10 8299.42 6798.85 5590.01 13599.31 3279.98 17799.78 299.10 6197.42 11398.35 8898.05 9099.47 15899.53 128
v1092.79 17494.06 17691.31 17391.78 18197.29 19794.87 16886.10 17896.97 17879.82 17888.16 18784.56 17995.63 15796.33 17195.31 17299.65 10899.80 33
EG-PatchMatch MVS92.45 18093.92 18190.72 18292.56 16498.43 14594.88 16784.54 18797.18 17179.55 17986.12 20083.23 18693.15 19697.22 14896.00 15799.67 9999.27 154
v2v48292.77 17593.52 18991.90 16391.59 18997.63 17894.57 18090.31 13296.80 18379.22 18088.74 18381.55 19696.04 14995.26 18894.97 18299.66 10499.69 95
EPNet_dtu96.30 10698.53 6393.70 13098.97 5098.24 15497.36 10994.23 6798.85 9179.18 18199.19 2198.47 6894.09 18597.89 11898.21 8198.39 19198.85 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet92.80 17394.76 16390.51 18391.88 17796.74 20392.48 19388.69 15396.21 19179.00 18291.51 16187.82 15091.83 20195.87 18396.27 14899.21 17898.92 173
pmmvs592.71 17894.27 17190.90 18091.42 19397.74 17093.23 18886.66 17495.99 19878.96 18391.45 16283.44 18495.55 16097.30 14595.05 18099.58 13798.93 170
v114492.81 17294.03 17791.40 17191.68 18397.60 18294.73 17288.40 15796.71 18478.48 18488.14 18884.46 18095.45 16696.31 17295.22 17599.65 10899.76 60
v14419292.38 18593.55 18891.00 17891.44 19297.47 19094.27 18387.41 16796.52 18978.03 18587.50 19282.65 19195.32 16895.82 18495.15 17799.55 14699.78 46
SixPastTwentyTwo93.44 16395.32 15691.24 17492.11 17298.40 14792.77 19188.64 15598.09 14277.83 18693.51 14985.74 17096.52 13796.91 15694.89 18699.59 13399.73 75
MVS-HIRNet92.51 17995.97 14588.48 19693.73 15498.37 14990.33 20175.36 21598.32 13277.78 18789.15 17894.87 10995.14 17397.62 13496.39 14598.51 18897.11 199
v7n91.61 19292.95 19390.04 18790.56 20297.69 17393.74 18785.59 18095.89 20076.95 18886.60 19878.60 21093.76 19197.01 15494.99 18199.65 10899.87 13
v119292.43 18393.61 18591.05 17791.53 19097.43 19194.61 17887.99 16296.60 18776.72 18987.11 19582.74 19095.85 15296.35 17095.30 17399.60 12799.74 71
v192192092.36 18793.57 18690.94 17991.39 19497.39 19394.70 17487.63 16696.60 18776.63 19086.98 19682.89 18895.75 15396.26 17495.14 17899.55 14699.73 75
MDTV_nov1_ep13_2view92.44 18195.66 15188.68 19491.05 20097.92 16492.17 19479.64 19998.83 9676.20 19191.45 16293.51 12695.04 17495.68 18593.70 19697.96 19698.53 179
PM-MVS89.55 19990.30 20488.67 19587.06 20895.60 20790.88 19884.51 18896.14 19375.75 19286.89 19763.47 21994.64 17896.85 15793.89 19499.17 18199.29 151
IterMVS-SCA-FT94.89 13697.87 9091.42 16994.86 13997.70 17197.24 11584.88 18598.93 8475.74 19394.26 14298.25 7196.69 12998.52 8197.68 10799.10 18399.73 75
IterMVS94.81 13897.71 9391.42 16994.83 14097.63 17897.38 10885.08 18298.93 8475.67 19494.02 14397.64 7796.66 13298.45 8497.60 11098.90 18699.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepMVS_CXcopyleft96.85 20087.43 21089.27 14698.30 13375.55 19595.05 13279.47 20692.62 19989.48 20995.18 21495.96 207
v124091.99 19093.33 19190.44 18491.29 19697.30 19694.25 18486.79 17096.43 19075.49 19686.34 19981.85 19495.29 16996.42 16695.22 17599.52 15399.73 75
CMPMVSbinary70.31 1890.74 19491.06 20290.36 18697.32 7597.43 19192.97 19087.82 16593.50 20975.34 19783.27 20584.90 17792.19 20092.64 20491.21 20896.50 21194.46 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpm92.38 18594.79 16289.56 19294.30 14497.50 18894.24 18578.97 20697.72 15974.93 19897.97 7582.91 18796.60 13493.65 20194.81 18798.33 19298.98 168
ambc80.99 21080.04 21690.84 21390.91 19796.09 19474.18 19962.81 21430.59 22582.44 21096.25 17591.77 20595.91 21398.56 178
N_pmnet92.21 18994.60 16689.42 19391.88 17797.38 19489.15 20789.74 14297.89 15273.75 20087.94 19092.23 13393.85 19096.10 17793.20 19898.15 19597.43 196
anonymousdsp93.12 16795.86 14989.93 19091.09 19998.25 15395.12 16085.08 18297.44 16473.30 20190.89 16690.78 13995.25 17197.91 11695.96 16199.71 7099.82 26
GA-MVS93.93 15696.31 14391.16 17693.61 15598.79 11495.39 15890.69 12998.25 13673.28 20296.15 11788.42 14994.39 18197.76 12595.35 17199.58 13799.45 141
test_method87.27 20491.58 20082.25 20775.65 21887.52 21786.81 21172.60 21697.51 16373.20 20385.07 20279.97 20388.69 20497.31 14495.24 17496.53 21098.41 182
pmnet_mix0292.44 18194.68 16489.83 19192.46 16697.65 17789.92 20590.49 13198.76 10873.05 20491.78 16090.08 14394.86 17794.53 19791.94 20498.21 19498.01 191
test20.0390.65 19693.71 18487.09 19890.44 20396.24 20489.74 20685.46 18195.59 20372.99 20590.68 16885.33 17384.41 20895.94 18295.10 17999.52 15397.06 201
MDA-MVSNet-bldmvs87.84 20389.22 20686.23 20181.74 21396.77 20283.74 21389.57 14494.50 20772.83 20696.64 10664.47 21892.71 19881.43 21392.28 20296.81 20998.47 181
MIMVSNet188.61 20190.68 20386.19 20281.56 21495.30 21087.78 20985.98 17994.19 20872.30 20778.84 21078.90 20990.06 20296.59 16095.47 16899.46 15995.49 208
new_pmnet90.45 19792.84 19687.66 19788.96 20696.16 20588.71 20884.66 18697.56 16271.91 20885.60 20186.58 16393.28 19496.07 17893.54 19798.46 18994.39 210
Anonymous2023120690.70 19593.93 18086.92 20090.21 20596.79 20190.30 20286.61 17596.05 19669.25 20988.46 18584.86 17885.86 20797.11 15296.47 14499.30 17497.80 193
RE-MVS-def69.05 210
LTVRE_ROB93.20 1692.84 17194.92 15890.43 18592.83 16098.63 12997.08 12587.87 16397.91 15168.42 21193.54 14879.46 20796.62 13397.55 13697.40 12299.74 4599.92 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
new-patchmatchnet86.12 20587.30 20784.74 20486.92 21095.19 21183.57 21484.42 18992.67 21165.66 21280.32 20864.72 21789.41 20392.33 20789.21 20998.43 19096.69 204
FPMVS83.82 20684.61 20882.90 20690.39 20490.71 21490.85 19984.10 19095.47 20465.15 21383.44 20474.46 21475.48 21181.63 21279.42 21491.42 21687.14 214
PMVScopyleft72.60 1776.39 20977.66 21274.92 21081.04 21569.37 22268.47 21980.54 19685.39 21565.07 21473.52 21272.91 21565.67 21780.35 21476.81 21588.71 21785.25 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gm-plane-assit89.44 20092.82 19785.49 20391.37 19595.34 20979.55 21782.12 19291.68 21364.79 21587.98 18980.26 20195.66 15698.51 8397.56 11199.45 16098.41 182
Gipumacopyleft81.40 20781.78 20980.96 20983.21 21285.61 21879.73 21676.25 21497.33 16864.21 21655.32 21555.55 22086.04 20692.43 20692.20 20396.32 21293.99 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs388.19 20291.27 20184.60 20585.60 21193.66 21285.68 21281.13 19392.36 21263.66 21789.51 17577.10 21293.22 19596.37 16892.40 20098.30 19397.46 195
gg-mvs-nofinetune90.85 19394.14 17287.02 19994.89 13899.25 9098.64 6276.29 21388.24 21457.50 21879.93 20995.45 10395.18 17298.77 5998.07 8999.62 11799.24 156
PMMVS277.26 20879.47 21174.70 21176.00 21788.37 21674.22 21876.34 21278.31 21654.13 21969.96 21352.50 22170.14 21584.83 21188.71 21097.35 20393.58 212
MVEpermissive67.97 1965.53 21367.43 21563.31 21459.33 22174.20 21953.09 22370.43 21766.27 21943.13 22045.98 21930.62 22470.65 21479.34 21586.30 21183.25 22089.33 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN68.30 21168.43 21368.15 21274.70 22071.56 22155.64 22177.24 21077.48 21839.46 22151.95 21841.68 22373.28 21370.65 21679.51 21388.61 21886.20 216
EMVS68.12 21268.11 21468.14 21375.51 21971.76 22055.38 22277.20 21177.78 21737.79 22253.59 21643.61 22274.72 21267.05 21776.70 21688.27 21986.24 215
testmvs31.24 21440.15 21620.86 21612.61 22217.99 22325.16 22413.30 21948.42 22024.82 22353.07 21730.13 22628.47 21842.73 21837.65 21720.79 22151.04 218
test12326.75 21534.25 21718.01 2177.93 22317.18 22424.85 22512.36 22044.83 22116.52 22441.80 22018.10 22728.29 21933.08 21934.79 21818.10 22249.95 219
GG-mvs-BLEND69.11 21098.13 7935.26 2153.49 22498.20 15694.89 1662.38 22198.42 1285.82 22596.37 11498.60 645.97 22098.75 6297.98 9399.01 18498.61 177
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
Anonymous20240521197.40 10596.45 8899.54 5098.08 9093.79 7498.24 13793.55 14794.41 11698.88 6598.04 10998.24 8099.75 4099.76 60
our_test_392.30 16897.58 18390.09 204
Patchmatch-RL test66.86 220
mPP-MVS99.53 3099.89 34
NP-MVS98.57 118