This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
PLCcopyleft97.93 299.02 2798.94 4999.11 999.46 3399.24 8999.06 4597.96 3399.31 3099.16 197.90 7499.79 4499.36 2798.71 6298.12 8499.65 10499.52 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.45 299.54 599.35 199.72 799.76 199.63 1198.37 299.63 699.03 298.95 3599.98 199.60 799.60 599.05 2499.74 4499.79 38
CNLPA99.03 2699.05 4199.01 1999.27 4399.22 9199.03 4797.98 3299.34 2899.00 398.25 6599.71 4899.31 3198.80 5498.82 4499.48 15299.17 155
xxxxxxxxxxxxxcwj98.14 5097.38 10499.03 1599.65 1799.41 6798.87 5398.24 1699.14 5498.73 499.11 2486.38 15998.92 5799.22 2698.84 4199.76 3599.56 120
SF-MVS99.18 1599.32 2599.03 1599.65 1799.41 6798.87 5398.24 1699.14 5498.73 499.11 2499.92 2798.92 5799.22 2698.84 4199.76 3599.56 120
APDe-MVS99.49 199.64 199.32 299.74 499.74 499.75 198.34 399.56 1098.72 699.57 599.97 699.53 1699.65 299.25 1499.84 599.77 51
AdaColmapbinary99.06 2398.98 4899.15 699.60 2499.30 8499.38 2998.16 2199.02 7398.55 798.71 4999.57 5499.58 1399.09 3497.84 9799.64 10899.36 145
MSLP-MVS++99.15 1799.24 3099.04 1499.52 3199.49 5599.09 4398.07 2999.37 2498.47 897.79 7699.89 3399.50 1798.93 4499.45 499.61 11599.76 55
CNVR-MVS99.23 1399.28 2799.17 499.65 1799.34 7899.46 2398.21 1999.28 3498.47 898.89 4099.94 2499.50 1799.42 1698.61 5399.73 5199.52 127
MTMP98.46 1099.96 11
DPE-MVS99.39 399.55 499.20 399.63 2099.71 899.66 698.33 599.29 3398.40 1199.64 499.98 199.31 3199.56 898.96 3199.85 399.70 86
CPTT-MVS99.14 1899.20 3299.06 1399.58 2599.53 4999.45 2497.80 3699.19 4898.32 1298.58 5299.95 1699.60 799.28 2498.20 8099.64 10899.69 90
DVP-MVS99.34 599.52 899.14 799.68 1199.75 399.64 898.31 799.44 1998.10 1399.28 1499.98 199.30 3399.34 2199.05 2499.81 1699.79 38
MTAPA98.09 1499.97 6
CSCG98.90 2998.93 5098.85 2499.75 399.72 599.49 2096.58 4299.38 2298.05 1598.97 3397.87 7399.49 1997.78 11998.92 3499.78 2899.90 3
SMA-MVS99.38 499.60 299.12 899.76 299.62 2899.39 2898.23 1899.52 1598.03 1699.45 999.98 199.64 599.58 799.30 1199.68 8799.76 55
zzz-MVS99.31 799.44 1599.16 599.73 599.65 1699.63 1198.26 1299.27 3698.01 1799.27 1599.97 699.60 799.59 698.58 5599.71 6799.73 70
SD-MVS99.25 1199.50 1098.96 2098.79 5299.55 4799.33 3198.29 1099.75 197.96 1899.15 2199.95 1699.61 699.17 3099.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft99.25 1199.38 1999.09 1099.69 899.58 4399.56 1698.32 698.85 8997.87 1998.91 3899.92 2799.30 3399.45 1499.38 899.79 2599.58 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 999.44 1599.08 1199.62 2299.58 4399.53 1798.16 2199.21 4597.79 2099.15 2199.96 1199.59 1099.54 1098.86 3999.78 2899.74 66
OMC-MVS98.84 3199.01 4798.65 2999.39 3599.23 9099.22 3496.70 4199.40 2197.77 2197.89 7599.80 4299.21 3599.02 3998.65 5199.57 13799.07 162
NCCC99.05 2499.08 3899.02 1899.62 2299.38 7099.43 2798.21 1999.36 2697.66 2297.79 7699.90 3199.45 2299.17 3098.43 6399.77 3399.51 131
3Dnovator+96.92 798.71 3599.05 4198.32 3399.53 2999.34 7899.06 4594.61 5999.65 497.49 2396.75 9999.86 3699.44 2398.78 5699.30 1199.81 1699.67 96
TSAR-MVS + MP.99.27 999.57 398.92 2298.78 5399.53 4999.72 298.11 2899.73 297.43 2499.15 2199.96 1199.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.32 699.53 799.07 1299.69 899.59 4099.63 1198.31 799.56 1097.37 2599.27 1599.97 699.70 399.35 2099.24 1699.71 6799.76 55
PHI-MVS99.08 2199.43 1798.67 2899.15 4599.59 4099.11 4197.35 3999.14 5497.30 2699.44 1099.96 1199.32 3098.89 4999.39 799.79 2599.58 114
dps94.63 13795.31 15293.84 12095.53 12098.71 12196.54 13080.12 19197.81 15397.21 2796.98 9392.37 12896.34 13692.46 19891.77 19897.26 20097.08 194
TSAR-MVS + GP.98.66 3899.36 2197.85 4597.16 8099.46 5899.03 4794.59 6199.09 6297.19 2899.73 399.95 1699.39 2698.95 4298.69 4999.75 3999.65 103
ACMMPR99.30 899.54 599.03 1599.66 1599.64 2199.68 498.25 1399.56 1097.12 2999.19 1899.95 1699.72 199.43 1599.25 1499.72 5799.77 51
MAR-MVS97.71 6298.04 8197.32 5299.35 4098.91 10697.65 9991.68 10498.00 14097.01 3097.72 8094.83 10898.85 6498.44 8298.86 3999.41 16299.52 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
abl_698.09 3999.33 4199.22 9198.79 5894.96 5398.52 12097.00 3197.30 8699.86 3698.76 6599.69 7899.41 140
3Dnovator96.92 798.67 3699.05 4198.23 3799.57 2699.45 6099.11 4194.66 5899.69 396.80 3296.55 10999.61 5199.40 2598.87 5199.49 399.85 399.66 100
SteuartSystems-ACMMP99.20 1499.51 998.83 2699.66 1599.66 1499.71 398.12 2799.14 5496.62 3399.16 2099.98 199.12 4499.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.34 199.17 1699.45 1298.85 2499.55 2899.37 7299.64 898.05 3199.53 1396.58 3498.93 3699.92 2799.49 1999.46 1399.32 1099.80 2499.64 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS99.11 1999.27 2898.93 2199.67 1299.33 8199.51 1998.31 799.28 3496.57 3599.10 2799.90 3199.71 299.19 2998.35 6999.82 1099.71 84
HPM-MVS++copyleft99.10 2099.30 2698.86 2399.69 899.48 5699.59 1598.34 399.26 3996.55 3699.10 2799.96 1199.36 2799.25 2598.37 6899.64 10899.66 100
QAPM98.62 3999.04 4498.13 3899.57 2699.48 5699.17 3794.78 5599.57 996.16 3796.73 10099.80 4299.33 2998.79 5599.29 1399.75 3999.64 107
IB-MVS93.96 1595.02 12896.44 13693.36 13597.05 8299.28 8590.43 19593.39 8298.02 13996.02 3894.92 13392.07 13183.52 20295.38 18095.82 15899.72 5799.59 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2023121197.10 8097.06 11697.14 5896.32 9099.52 5298.16 8293.76 7498.84 9395.98 3990.92 16094.58 11398.90 6097.72 12498.10 8699.71 6799.75 62
MVSTER97.16 7897.71 9196.52 8095.97 10298.48 13598.63 6292.10 9698.68 11095.96 4099.23 1791.79 13296.87 11998.76 5897.37 11999.57 13799.68 95
baseline197.58 6698.05 8097.02 6596.21 9699.45 6097.71 9793.71 7898.47 12295.75 4198.78 4493.20 12798.91 5998.52 7798.44 6199.81 1699.53 124
MP-MVScopyleft99.07 2299.36 2198.74 2799.63 2099.57 4599.66 698.25 1399.00 7595.62 4298.97 3399.94 2499.54 1599.51 1198.79 4699.71 6799.73 70
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet98.05 5398.86 5297.10 5999.02 4899.43 6498.47 6694.73 5699.05 7095.62 4298.93 3697.62 7795.48 15898.59 7398.55 5699.29 17199.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS97.51 6997.71 9197.28 5498.06 6299.61 3397.31 10795.02 5199.08 6495.51 4498.05 6990.11 13898.07 8898.91 4798.40 6499.72 5799.78 44
PVSNet_Blended97.51 6997.71 9197.28 5498.06 6299.61 3397.31 10795.02 5199.08 6495.51 4498.05 6990.11 13898.07 8898.91 4798.40 6499.72 5799.78 44
canonicalmvs97.31 7497.81 9096.72 7296.20 9799.45 6098.21 8091.60 10699.22 4395.39 4698.48 5690.95 13599.16 4297.66 12699.05 2499.76 3599.90 3
DELS-MVS98.19 4898.77 5697.52 5098.29 6099.71 899.12 4094.58 6298.80 9995.38 4796.24 11498.24 7097.92 9399.06 3799.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PGM-MVS98.86 3099.35 2498.29 3499.77 199.63 2499.67 595.63 4598.66 11195.27 4899.11 2499.82 4199.67 499.33 2299.19 2099.73 5199.74 66
ACMMPcopyleft98.74 3399.03 4598.40 3299.36 3899.64 2199.20 3597.75 3798.82 9695.24 4998.85 4199.87 3599.17 4198.74 6197.50 11099.71 6799.76 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet98.46 4199.16 3397.64 4898.48 5799.64 2199.35 3094.71 5799.53 1395.17 5097.63 8299.59 5298.38 8098.88 5098.99 2999.74 4499.86 15
PatchMatch-RL97.77 6098.25 6997.21 5799.11 4699.25 8797.06 12194.09 6798.72 10995.14 5198.47 5796.29 9098.43 7998.65 6597.44 11699.45 15698.94 165
CHOSEN 280x42097.99 5599.24 3096.53 7998.34 5999.61 3398.36 7389.80 13799.27 3695.08 5299.81 198.58 6498.64 7199.02 3998.92 3498.93 18099.48 135
MVS_111021_HR98.59 4099.36 2197.68 4799.42 3499.61 3398.14 8394.81 5499.31 3095.00 5399.51 799.79 4499.00 5398.94 4398.83 4399.69 7899.57 119
EPP-MVSNet97.75 6198.71 5796.63 7795.68 11399.56 4697.51 10193.10 9199.22 4394.99 5497.18 9197.30 8098.65 7098.83 5298.93 3399.84 599.92 1
MVS_111021_LR98.67 3699.41 1897.81 4699.37 3699.53 4998.51 6595.52 4799.27 3694.85 5599.56 699.69 4999.04 5099.36 1998.88 3799.60 12399.58 114
DCV-MVSNet97.56 6798.36 6696.62 7896.44 8898.36 14698.37 7191.73 10399.11 6094.80 5698.36 6296.28 9198.60 7498.12 9498.44 6199.76 3599.87 12
RPSCF97.61 6598.16 7696.96 7098.10 6199.00 9998.84 5693.76 7499.45 1894.78 5799.39 1199.31 5698.53 7796.61 15495.43 16497.74 19297.93 186
DeepPCF-MVS97.74 398.34 4499.46 1197.04 6298.82 5199.33 8196.28 13797.47 3899.58 894.70 5898.99 3299.85 3997.24 11199.55 999.34 997.73 19499.56 120
ACMMP_NAP99.05 2499.45 1298.58 3099.73 599.60 3899.64 898.28 1199.23 4294.57 5999.35 1299.97 699.55 1499.63 398.66 5099.70 7699.74 66
thres100view90096.72 9296.47 13397.00 6896.31 9199.52 5298.28 7794.01 6897.35 15994.52 6095.90 12086.93 15199.09 4898.07 10097.87 9599.81 1699.63 109
tfpn200view996.75 9096.51 13097.03 6396.31 9199.67 1198.41 6893.99 7097.35 15994.52 6095.90 12086.93 15199.14 4398.26 8797.80 9999.82 1099.70 86
thres20096.76 8996.53 12897.03 6396.31 9199.67 1198.37 7193.99 7097.68 15694.49 6295.83 12386.77 15399.18 3998.26 8797.82 9899.82 1099.66 100
CLD-MVS96.74 9196.51 13097.01 6796.71 8598.62 12698.73 5994.38 6398.94 8194.46 6397.33 8487.03 14998.07 8897.20 14496.87 12799.72 5799.54 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSDG98.27 4798.29 6898.24 3699.20 4499.22 9199.20 3597.82 3599.37 2494.43 6495.90 12097.31 7999.12 4498.76 5898.35 6999.67 9599.14 159
thres40096.71 9396.45 13597.02 6596.28 9499.63 2498.41 6894.00 6997.82 15194.42 6595.74 12486.26 16099.18 3998.20 9197.79 10099.81 1699.70 86
UGNet97.66 6499.07 4096.01 9297.19 7999.65 1697.09 11993.39 8299.35 2794.40 6698.79 4399.59 5294.24 17798.04 10598.29 7699.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS97.52 6898.39 6596.51 8195.82 10798.73 12097.80 9393.05 9298.76 10694.39 6799.07 3097.03 8498.55 7598.31 8697.61 10599.43 15999.21 154
CS-MVS98.06 5299.12 3596.82 7195.83 10699.66 1498.93 5193.12 9098.95 7894.29 6898.55 5399.05 6098.94 5599.05 3898.78 4799.83 899.80 30
thres600view796.69 9496.43 13797.00 6896.28 9499.67 1198.41 6893.99 7097.85 15094.29 6895.96 11885.91 16399.19 3798.26 8797.63 10499.82 1099.73 70
DPM-MVS98.31 4698.53 6198.05 4098.76 5498.77 11399.13 3998.07 2999.10 6194.27 7096.70 10199.84 4098.70 6797.90 11398.11 8599.40 16499.28 148
CostFormer94.25 14594.88 15593.51 13195.43 12498.34 14796.21 13980.64 18997.94 14594.01 7198.30 6486.20 16297.52 10492.71 19692.69 19397.23 20198.02 185
IS_MVSNet97.86 5798.86 5296.68 7396.02 9899.72 598.35 7493.37 8498.75 10894.01 7196.88 9898.40 6798.48 7899.09 3499.42 599.83 899.80 30
GBi-Net96.98 8398.00 8495.78 9593.81 14697.98 15598.09 8591.32 11398.80 9993.92 7397.21 8895.94 9897.89 9498.07 10098.34 7199.68 8799.67 96
test196.98 8398.00 8495.78 9593.81 14697.98 15598.09 8591.32 11398.80 9993.92 7397.21 8895.94 9897.89 9498.07 10098.34 7199.68 8799.67 96
FMVSNet397.02 8298.12 7895.73 9893.59 15297.98 15598.34 7591.32 11398.80 9993.92 7397.21 8895.94 9897.63 10398.61 6998.62 5299.61 11599.65 103
train_agg98.73 3499.11 3698.28 3599.36 3899.35 7699.48 2297.96 3398.83 9493.86 7698.70 5099.86 3699.44 2399.08 3698.38 6699.61 11599.58 114
XVS97.42 7299.62 2898.59 6393.81 7799.95 1699.69 78
X-MVStestdata97.42 7299.62 2898.59 6393.81 7799.95 1699.69 78
X-MVS98.93 2899.37 2098.42 3199.67 1299.62 2899.60 1498.15 2399.08 6493.81 7798.46 5899.95 1699.59 1099.49 1299.21 1999.68 8799.75 62
ETV-MVS98.05 5399.25 2996.65 7595.61 11599.61 3398.26 7993.52 8098.90 8593.74 8099.32 1399.20 5798.90 6099.21 2898.72 4899.87 299.79 38
PCF-MVS97.50 698.18 4998.35 6797.99 4298.65 5599.36 7398.94 5098.14 2598.59 11393.62 8196.61 10599.76 4799.03 5197.77 12097.45 11599.57 13798.89 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.17 10796.99 11895.21 10388.53 20198.54 13298.28 7792.61 9398.85 8993.60 8299.06 3190.39 13798.63 7295.98 17596.68 13199.61 11599.41 140
FMVSNet296.64 9797.50 9695.63 10093.81 14697.98 15598.09 8590.87 11998.99 7693.48 8393.17 15195.25 10397.89 9498.63 6798.80 4599.68 8799.67 96
FMVSNet595.42 12096.47 13394.20 11492.26 16495.99 20095.66 14687.15 16397.87 14893.46 8496.68 10293.79 12297.52 10497.10 14897.21 12199.11 17796.62 200
PVSNet_Blended_VisFu97.41 7298.49 6396.15 8797.49 7099.76 196.02 14193.75 7699.26 3993.38 8593.73 14399.35 5596.47 13398.96 4198.46 6099.77 3399.90 3
TAPA-MVS97.53 598.41 4298.84 5497.91 4499.08 4799.33 8199.15 3897.13 4099.34 2893.20 8697.75 7899.19 5899.20 3698.66 6498.13 8399.66 10099.48 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.26 996.67 9696.69 12496.66 7497.29 7798.46 13796.48 13395.09 5099.21 4593.19 8798.78 4486.73 15498.17 8297.84 11796.32 14299.74 4499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP96.25 1096.62 9996.72 12396.50 8296.96 8398.75 11797.80 9394.30 6598.85 8993.12 8898.78 4486.61 15697.23 11297.73 12396.61 13499.62 11399.71 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030498.14 5099.03 4597.10 5998.05 6499.63 2499.27 3394.33 6499.63 693.06 8997.32 8599.05 6098.09 8798.82 5398.87 3899.81 1699.89 6
FC-MVSNet-train97.04 8197.91 8796.03 9196.00 10098.41 14296.53 13293.42 8199.04 7293.02 9098.03 7194.32 11697.47 10797.93 11197.77 10199.75 3999.88 10
baseline97.45 7198.70 5895.99 9395.89 10399.36 7398.29 7691.37 11299.21 4592.99 9198.40 6096.87 8597.96 9298.60 7198.60 5499.42 16199.86 15
DI_MVS_plusplus_trai96.90 8697.49 9796.21 8695.61 11599.40 6998.72 6092.11 9599.14 5492.98 9293.08 15495.14 10498.13 8698.05 10497.91 9399.74 4499.73 70
DeepC-MVS97.63 498.33 4598.57 5998.04 4198.62 5699.65 1699.45 2498.15 2399.51 1692.80 9395.74 12496.44 8899.46 2199.37 1899.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs96.93 8597.43 10296.34 8495.70 11199.50 5497.75 9693.22 8798.98 7792.64 9494.97 13191.71 13398.93 5698.62 6898.52 5999.82 1099.72 81
tpm cat194.06 14694.90 15493.06 13995.42 12698.52 13496.64 12880.67 18897.82 15192.63 9593.39 14895.00 10696.06 14391.36 20191.58 20096.98 20296.66 199
thisisatest053097.23 7698.25 6996.05 8995.60 11799.59 4096.96 12393.23 8599.17 5092.60 9698.75 4796.19 9298.17 8298.19 9296.10 15099.72 5799.77 51
tttt051797.23 7698.24 7296.04 9095.60 11799.60 3896.94 12493.23 8599.15 5192.56 9798.74 4896.12 9598.17 8298.21 9096.10 15099.73 5199.78 44
test0.0.03 196.69 9498.12 7895.01 10595.49 12298.99 10195.86 14390.82 12198.38 12592.54 9896.66 10397.33 7895.75 14897.75 12298.34 7199.60 12399.40 143
EIA-MVS97.70 6398.78 5596.44 8395.72 11099.65 1698.14 8393.72 7798.30 12892.31 9998.63 5197.90 7298.97 5498.92 4698.30 7599.78 2899.80 30
TSAR-MVS + ACMM98.77 3299.45 1297.98 4399.37 3699.46 5899.44 2698.13 2699.65 492.30 10098.91 3899.95 1699.05 4999.42 1698.95 3299.58 13399.82 23
diffmvs96.83 8797.33 10796.25 8595.76 10899.34 7898.06 8993.22 8799.43 2092.30 10096.90 9789.83 14298.55 7598.00 10898.14 8299.64 10899.70 86
OpenMVScopyleft96.23 1197.95 5698.45 6497.35 5199.52 3199.42 6598.91 5294.61 5998.87 8692.24 10294.61 13599.05 6099.10 4698.64 6699.05 2499.74 4499.51 131
FMVSNet195.77 11496.41 13895.03 10493.42 15397.86 16297.11 11889.89 13498.53 11892.00 10389.17 17293.23 12698.15 8598.07 10098.34 7199.61 11599.69 90
CDPH-MVS98.41 4299.10 3797.61 4999.32 4299.36 7399.49 2096.15 4498.82 9691.82 10498.41 5999.66 5099.10 4698.93 4498.97 3099.75 3999.58 114
COLMAP_ROBcopyleft96.15 1297.78 5998.17 7597.32 5298.84 5099.45 6099.28 3295.43 4899.48 1791.80 10594.83 13498.36 6898.90 6098.09 9797.85 9699.68 8799.15 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_Test97.30 7598.54 6095.87 9495.74 10999.28 8598.19 8191.40 11199.18 4991.59 10698.17 6796.18 9398.63 7298.61 6998.55 5699.66 10099.78 44
Vis-MVSNet (Re-imp)97.40 7398.89 5195.66 9995.99 10199.62 2897.82 9293.22 8798.82 9691.40 10796.94 9598.56 6595.70 15099.14 3299.41 699.79 2599.75 62
TSAR-MVS + COLMAP96.79 8896.55 12797.06 6197.70 6998.46 13799.07 4496.23 4399.38 2291.32 10898.80 4285.61 16598.69 6997.64 12996.92 12699.37 16699.06 163
baseline296.36 10397.82 8994.65 10994.60 13899.09 9796.45 13489.63 13998.36 12691.29 10997.60 8394.13 11996.37 13498.45 8097.70 10299.54 14699.41 140
pmmvs495.09 12695.90 14394.14 11592.29 16397.70 16695.45 15190.31 12898.60 11290.70 11093.25 14989.90 14096.67 12697.13 14695.42 16599.44 15899.28 148
TAMVS95.53 11896.50 13294.39 11393.86 14599.03 9896.67 12789.55 14197.33 16190.64 11193.02 15591.58 13496.21 13797.72 12497.43 11799.43 15999.36 145
EPMVS95.05 12796.86 12292.94 14195.84 10598.96 10496.68 12679.87 19299.05 7090.15 11297.12 9295.99 9797.49 10695.17 18494.75 18297.59 19696.96 196
CDS-MVSNet96.59 10098.02 8394.92 10694.45 13998.96 10497.46 10391.75 10297.86 14990.07 11396.02 11797.25 8196.21 13798.04 10598.38 6699.60 12399.65 103
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268896.41 10196.99 11895.74 9798.01 6599.72 597.70 9890.78 12399.13 5990.03 11487.35 18795.36 10298.33 8198.59 7398.91 3699.59 12999.87 12
OPM-MVS96.22 10695.85 14696.65 7597.75 6798.54 13299.00 4995.53 4696.88 17289.88 11595.95 11986.46 15898.07 8897.65 12896.63 13399.67 9598.83 172
MS-PatchMatch95.99 11197.26 11294.51 11197.46 7198.76 11697.27 10986.97 16499.09 6289.83 11693.51 14697.78 7496.18 13997.53 13395.71 16199.35 16798.41 178
HyFIR lowres test95.99 11196.56 12695.32 10297.99 6699.65 1696.54 13088.86 14698.44 12389.77 11784.14 19697.05 8399.03 5198.55 7598.19 8199.73 5199.86 15
FC-MVSNet-test96.07 11097.94 8693.89 11993.60 15198.67 12396.62 12990.30 13098.76 10688.62 11895.57 12997.63 7694.48 17397.97 10997.48 11399.71 6799.52 127
HQP-MVS96.37 10296.58 12596.13 8897.31 7698.44 13998.45 6795.22 4998.86 8788.58 11998.33 6387.00 15097.67 10297.23 14296.56 13699.56 14099.62 110
IterMVS-LS96.12 10997.48 9894.53 11095.19 12997.56 17997.15 11589.19 14499.08 6488.23 12094.97 13194.73 11097.84 9997.86 11698.26 7799.60 12399.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D97.79 5898.25 6997.26 5698.40 5899.63 2499.53 1798.63 199.25 4188.13 12196.93 9694.14 11899.19 3799.14 3299.23 1799.69 7899.42 139
UA-Net97.13 7999.14 3494.78 10797.21 7899.38 7097.56 10092.04 9798.48 12188.03 12298.39 6199.91 3094.03 18099.33 2299.23 1799.81 1699.25 151
UniMVSNet (Re)94.58 14095.34 15093.71 12492.25 16598.08 15494.97 15891.29 11797.03 17087.94 12393.97 14286.25 16196.07 14296.27 16795.97 15599.72 5799.79 38
MDTV_nov1_ep1395.57 11797.48 9893.35 13695.43 12498.97 10397.19 11483.72 18598.92 8487.91 12497.75 7896.12 9597.88 9796.84 15395.64 16297.96 19098.10 183
Baseline_NR-MVSNet93.87 15293.98 17393.75 12291.66 17897.02 19295.53 14991.52 11097.16 16787.77 12587.93 18583.69 17596.35 13595.10 18697.23 12099.68 8799.73 70
Fast-Effi-MVS+95.38 12296.52 12994.05 11894.15 14199.14 9697.24 11186.79 16598.53 11887.62 12694.51 13687.06 14898.76 6598.60 7198.04 8999.72 5799.77 51
UniMVSNet_ETH3D93.15 16192.33 19394.11 11693.91 14398.61 12894.81 16590.98 11897.06 16887.51 12782.27 20076.33 20697.87 9894.79 19097.47 11499.56 14099.81 28
ACMH+95.51 1395.40 12196.00 14094.70 10896.33 8998.79 11096.79 12591.32 11398.77 10587.18 12895.60 12885.46 16696.97 11697.15 14596.59 13599.59 12999.65 103
tmp_tt82.25 20197.73 6888.71 20980.18 20868.65 21199.15 5186.98 12999.47 885.31 16868.35 20987.51 20383.81 20591.64 208
testgi95.67 11697.48 9893.56 12895.07 13199.00 9995.33 15488.47 15298.80 9986.90 13097.30 8692.33 12995.97 14597.66 12697.91 9399.60 12399.38 144
ACMH95.42 1495.27 12595.96 14294.45 11296.83 8498.78 11294.72 16891.67 10598.95 7886.82 13196.42 11183.67 17697.00 11597.48 13596.68 13199.69 7899.76 55
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet94.59 13995.47 14993.55 12991.85 17397.89 16195.03 15692.00 9897.33 16186.12 13293.19 15087.29 14796.60 12996.12 17096.70 13099.72 5799.80 30
DU-MVS93.98 14994.44 16393.44 13291.66 17897.77 16395.03 15691.57 10797.17 16586.12 13293.13 15281.13 19196.60 12995.10 18697.01 12599.67 9599.80 30
PatchmatchNetpermissive94.70 13497.08 11591.92 15695.53 12098.85 10895.77 14479.54 19498.95 7885.98 13498.52 5496.45 8697.39 10995.32 18194.09 18797.32 19897.38 191
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet94.01 14794.51 16193.44 13292.56 15997.77 16395.67 14591.57 10797.17 16585.84 13593.13 15280.53 19395.29 16497.01 14996.17 14799.69 7899.75 62
ADS-MVSNet94.65 13697.04 11791.88 15995.68 11398.99 10195.89 14279.03 19999.15 5185.81 13696.96 9498.21 7197.10 11394.48 19194.24 18697.74 19297.21 192
SCA94.95 12997.44 10192.04 15195.55 11999.16 9496.26 13879.30 19699.02 7385.73 13798.18 6697.13 8297.69 10196.03 17394.91 17797.69 19597.65 188
LGP-MVS_train96.23 10596.89 12095.46 10197.32 7498.77 11398.81 5793.60 7998.58 11485.52 13899.08 2986.67 15597.83 10097.87 11597.51 10999.69 7899.73 70
Vis-MVSNetpermissive96.16 10898.22 7393.75 12295.33 12799.70 1097.27 10990.85 12098.30 12885.51 13995.72 12696.45 8693.69 18698.70 6399.00 2899.84 599.69 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+95.81 11397.31 11194.06 11795.09 13099.35 7697.24 11188.22 15598.54 11785.38 14098.52 5488.68 14398.70 6798.32 8597.93 9199.74 4499.84 18
TranMVSNet+NR-MVSNet93.67 15594.14 16693.13 13891.28 19297.58 17795.60 14891.97 9997.06 16884.05 14190.64 16582.22 18696.17 14094.94 18996.78 12899.69 7899.78 44
thisisatest051594.61 13896.89 12091.95 15592.00 16898.47 13692.01 19090.73 12498.18 13383.96 14294.51 13695.13 10593.38 18797.38 13794.74 18399.61 11599.79 38
tfpnnormal93.85 15494.12 16893.54 13093.22 15498.24 15095.45 15191.96 10094.61 19883.91 14390.74 16281.75 18997.04 11497.49 13496.16 14899.68 8799.84 18
WR-MVS_H93.54 15694.67 15992.22 14691.95 16997.91 16094.58 17488.75 14896.64 17983.88 14490.66 16485.13 16994.40 17496.54 15895.91 15799.73 5199.89 6
pm-mvs194.27 14395.57 14892.75 14292.58 15898.13 15394.87 16390.71 12596.70 17883.78 14589.94 16889.85 14194.96 17197.58 13197.07 12299.61 11599.72 81
RPMNet94.66 13597.16 11391.75 16094.98 13298.59 12997.00 12278.37 20397.98 14183.78 14596.27 11394.09 12196.91 11897.36 13896.73 12999.48 15299.09 161
tpmrst93.86 15395.88 14491.50 16395.69 11298.62 12695.64 14779.41 19598.80 9983.76 14795.63 12796.13 9497.25 11092.92 19592.31 19597.27 19996.74 197
MIMVSNet94.49 14297.59 9590.87 17691.74 17698.70 12294.68 17078.73 20197.98 14183.71 14897.71 8194.81 10996.96 11797.97 10997.92 9299.40 16498.04 184
WR-MVS93.43 15994.48 16292.21 14791.52 18597.69 16894.66 17289.98 13296.86 17383.43 14990.12 16685.03 17093.94 18296.02 17495.82 15899.71 6799.82 23
v14892.36 18192.88 18891.75 16091.63 18197.66 17092.64 18790.55 12796.09 18783.34 15088.19 18080.00 19692.74 19193.98 19394.58 18499.58 13399.69 90
TinyColmap94.00 14894.35 16493.60 12695.89 10398.26 14897.49 10288.82 14798.56 11683.21 15191.28 15980.48 19496.68 12597.34 13996.26 14599.53 14898.24 181
CP-MVSNet93.25 16094.00 17292.38 14591.65 18097.56 17994.38 17789.20 14396.05 18983.16 15289.51 17081.97 18796.16 14196.43 16096.56 13699.71 6799.89 6
TransMVSNet (Re)93.45 15794.08 16992.72 14392.83 15597.62 17594.94 15991.54 10995.65 19583.06 15388.93 17583.53 17794.25 17697.41 13697.03 12399.67 9598.40 180
CVMVSNet95.33 12497.09 11493.27 13795.23 12898.39 14495.49 15092.58 9497.71 15583.00 15494.44 13893.28 12593.92 18397.79 11898.54 5899.41 16299.45 137
test-LLR95.50 11997.32 10893.37 13495.49 12298.74 11896.44 13590.82 12198.18 13382.75 15596.60 10694.67 11195.54 15698.09 9796.00 15299.20 17498.93 166
TESTMET0.1,194.95 12997.32 10892.20 14892.62 15798.74 11896.44 13586.67 16798.18 13382.75 15596.60 10694.67 11195.54 15698.09 9796.00 15299.20 17498.93 166
USDC94.26 14494.83 15693.59 12796.02 9898.44 13997.84 9188.65 15098.86 8782.73 15794.02 14080.56 19296.76 12297.28 14196.15 14999.55 14298.50 176
test-mter94.86 13297.32 10892.00 15392.41 16198.82 10996.18 14086.35 17198.05 13882.28 15896.48 11094.39 11595.46 16098.17 9396.20 14699.32 16999.13 160
pmmvs-eth3d89.81 19289.65 19890.00 18386.94 20395.38 20291.08 19186.39 17094.57 19982.27 15983.03 19964.94 20993.96 18196.57 15793.82 18999.35 16799.24 152
Effi-MVS+-dtu95.74 11598.04 8193.06 13993.92 14299.16 9497.90 9088.16 15799.07 6982.02 16098.02 7294.32 11696.74 12398.53 7697.56 10799.61 11599.62 110
PEN-MVS92.72 17193.20 18692.15 14991.29 19097.31 18994.67 17189.81 13596.19 18581.83 16188.58 17879.06 20195.61 15495.21 18396.27 14399.72 5799.82 23
DTE-MVSNet92.42 17892.85 18991.91 15790.87 19596.97 19394.53 17689.81 13595.86 19481.59 16288.83 17677.88 20495.01 17094.34 19296.35 14199.64 10899.73 70
PS-CasMVS92.72 17193.36 18491.98 15491.62 18297.52 18194.13 18188.98 14595.94 19281.51 16387.35 18779.95 19795.91 14696.37 16296.49 13899.70 7699.89 6
Fast-Effi-MVS+-dtu95.38 12298.20 7492.09 15093.91 14398.87 10797.35 10685.01 17899.08 6481.09 16498.10 6896.36 8995.62 15398.43 8397.03 12399.55 14299.50 133
TDRefinement93.04 16493.57 18092.41 14496.58 8698.77 11397.78 9591.96 10098.12 13680.84 16589.13 17479.87 19887.78 19896.44 15994.50 18599.54 14698.15 182
pmmvs691.90 18592.53 19291.17 17091.81 17497.63 17293.23 18388.37 15493.43 20380.61 16677.32 20487.47 14694.12 17896.58 15695.72 16098.88 18299.53 124
V4293.05 16393.90 17692.04 15191.91 17097.66 17094.91 16089.91 13396.85 17480.58 16789.66 16983.43 17995.37 16295.03 18894.90 17899.59 12999.78 44
CR-MVSNet94.57 14197.34 10691.33 16794.90 13398.59 12997.15 11579.14 19797.98 14180.42 16896.59 10893.50 12496.85 12098.10 9597.49 11199.50 15199.15 156
Patchmtry98.59 12997.15 11579.14 19780.42 168
PatchT93.96 15097.36 10590.00 18394.76 13798.65 12490.11 19878.57 20297.96 14480.42 16896.07 11694.10 12096.85 12098.10 9597.49 11199.26 17299.15 156
v892.87 16593.87 17791.72 16292.05 16797.50 18294.79 16688.20 15696.85 17480.11 17190.01 16782.86 18395.48 15895.15 18594.90 17899.66 10099.80 30
CANet_DTU96.64 9799.08 3893.81 12197.10 8199.42 6598.85 5590.01 13199.31 3079.98 17299.78 299.10 5997.42 10898.35 8498.05 8899.47 15499.53 124
v1092.79 16994.06 17091.31 16891.78 17597.29 19194.87 16386.10 17296.97 17179.82 17388.16 18184.56 17395.63 15296.33 16595.31 16799.65 10499.80 30
EG-PatchMatch MVS92.45 17593.92 17590.72 17792.56 15998.43 14194.88 16284.54 18197.18 16479.55 17486.12 19483.23 18093.15 19097.22 14396.00 15299.67 9599.27 150
v2v48292.77 17093.52 18391.90 15891.59 18397.63 17294.57 17590.31 12896.80 17679.22 17588.74 17781.55 19096.04 14495.26 18294.97 17699.66 10099.69 90
EPNet_dtu96.30 10498.53 6193.70 12598.97 4998.24 15097.36 10594.23 6698.85 8979.18 17699.19 1898.47 6694.09 17997.89 11498.21 7998.39 18698.85 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet92.80 16894.76 15890.51 17891.88 17196.74 19792.48 18888.69 14996.21 18479.00 17791.51 15687.82 14591.83 19595.87 17796.27 14399.21 17398.92 169
pmmvs592.71 17394.27 16590.90 17591.42 18797.74 16593.23 18386.66 16895.99 19178.96 17891.45 15783.44 17895.55 15597.30 14095.05 17499.58 13398.93 166
v114492.81 16794.03 17191.40 16691.68 17797.60 17694.73 16788.40 15396.71 17778.48 17988.14 18284.46 17495.45 16196.31 16695.22 16999.65 10499.76 55
v14419292.38 17993.55 18291.00 17391.44 18697.47 18494.27 17887.41 16296.52 18278.03 18087.50 18682.65 18595.32 16395.82 17895.15 17199.55 14299.78 44
SixPastTwentyTwo93.44 15895.32 15191.24 16992.11 16698.40 14392.77 18688.64 15198.09 13777.83 18193.51 14685.74 16496.52 13296.91 15194.89 18099.59 12999.73 70
MVS-HIRNet92.51 17495.97 14188.48 19093.73 14998.37 14590.33 19675.36 20998.32 12777.78 18289.15 17394.87 10795.14 16897.62 13096.39 14098.51 18397.11 193
v7n91.61 18692.95 18790.04 18290.56 19697.69 16893.74 18285.59 17495.89 19376.95 18386.60 19278.60 20393.76 18597.01 14994.99 17599.65 10499.87 12
v119292.43 17793.61 17991.05 17291.53 18497.43 18594.61 17387.99 15896.60 18076.72 18487.11 18982.74 18495.85 14796.35 16495.30 16899.60 12399.74 66
v192192092.36 18193.57 18090.94 17491.39 18897.39 18794.70 16987.63 16196.60 18076.63 18586.98 19082.89 18295.75 14896.26 16895.14 17299.55 14299.73 70
MDTV_nov1_ep13_2view92.44 17695.66 14788.68 18891.05 19497.92 15992.17 18979.64 19398.83 9476.20 18691.45 15793.51 12395.04 16995.68 17993.70 19097.96 19098.53 175
PM-MVS89.55 19390.30 19788.67 18987.06 20295.60 20190.88 19384.51 18296.14 18675.75 18786.89 19163.47 21294.64 17296.85 15293.89 18899.17 17699.29 147
IterMVS-SCA-FT94.89 13197.87 8891.42 16494.86 13597.70 16697.24 11184.88 17998.93 8275.74 18894.26 13998.25 6996.69 12498.52 7797.68 10399.10 17899.73 70
IterMVS94.81 13397.71 9191.42 16494.83 13697.63 17297.38 10485.08 17698.93 8275.67 18994.02 14097.64 7596.66 12798.45 8097.60 10698.90 18199.72 81
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepMVS_CXcopyleft96.85 19487.43 20489.27 14298.30 12875.55 19095.05 13079.47 19992.62 19389.48 20295.18 20795.96 201
v124091.99 18493.33 18590.44 17991.29 19097.30 19094.25 17986.79 16596.43 18375.49 19186.34 19381.85 18895.29 16496.42 16195.22 16999.52 14999.73 70
CMPMVSbinary70.31 1890.74 18891.06 19590.36 18197.32 7497.43 18592.97 18587.82 16093.50 20275.34 19283.27 19884.90 17192.19 19492.64 19791.21 20196.50 20494.46 203
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpm92.38 17994.79 15789.56 18694.30 14097.50 18294.24 18078.97 20097.72 15474.93 19397.97 7382.91 18196.60 12993.65 19494.81 18198.33 18798.98 164
ambc80.99 20380.04 21090.84 20790.91 19296.09 18774.18 19462.81 20730.59 21882.44 20396.25 16991.77 19895.91 20698.56 174
N_pmnet92.21 18394.60 16089.42 18791.88 17197.38 18889.15 20189.74 13897.89 14773.75 19587.94 18492.23 13093.85 18496.10 17193.20 19298.15 18997.43 190
anonymousdsp93.12 16295.86 14589.93 18591.09 19398.25 14995.12 15585.08 17697.44 15873.30 19690.89 16190.78 13695.25 16697.91 11295.96 15699.71 6799.82 23
GA-MVS93.93 15196.31 13991.16 17193.61 15098.79 11095.39 15390.69 12698.25 13173.28 19796.15 11588.42 14494.39 17597.76 12195.35 16699.58 13399.45 137
test20.0390.65 19093.71 17887.09 19290.44 19796.24 19889.74 20085.46 17595.59 19672.99 19890.68 16385.33 16784.41 20195.94 17695.10 17399.52 14997.06 195
MDA-MVSNet-bldmvs87.84 19789.22 19986.23 19581.74 20796.77 19683.74 20689.57 14094.50 20072.83 19996.64 10464.47 21192.71 19281.43 20692.28 19696.81 20398.47 177
MIMVSNet188.61 19590.68 19686.19 19681.56 20895.30 20487.78 20385.98 17394.19 20172.30 20078.84 20378.90 20290.06 19696.59 15595.47 16399.46 15595.49 202
new_pmnet90.45 19192.84 19087.66 19188.96 20096.16 19988.71 20284.66 18097.56 15771.91 20185.60 19586.58 15793.28 18896.07 17293.54 19198.46 18494.39 204
Anonymous2023120690.70 18993.93 17486.92 19490.21 19996.79 19590.30 19786.61 16996.05 18969.25 20288.46 17984.86 17285.86 20097.11 14796.47 13999.30 17097.80 187
LTVRE_ROB93.20 1692.84 16694.92 15390.43 18092.83 15598.63 12597.08 12087.87 15997.91 14668.42 20393.54 14579.46 20096.62 12897.55 13297.40 11899.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
new-patchmatchnet86.12 19887.30 20084.74 19886.92 20495.19 20583.57 20784.42 18392.67 20465.66 20480.32 20164.72 21089.41 19792.33 20089.21 20298.43 18596.69 198
FPMVS83.82 19984.61 20182.90 20090.39 19890.71 20890.85 19484.10 18495.47 19765.15 20583.44 19774.46 20775.48 20481.63 20579.42 20791.42 20987.14 208
PMVScopyleft72.60 1776.39 20277.66 20574.92 20381.04 20969.37 21568.47 21280.54 19085.39 20865.07 20673.52 20572.91 20865.67 21080.35 20776.81 20888.71 21085.25 211
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gm-plane-assit89.44 19492.82 19185.49 19791.37 18995.34 20379.55 21082.12 18691.68 20664.79 20787.98 18380.26 19595.66 15198.51 7997.56 10799.45 15698.41 178
Gipumacopyleft81.40 20081.78 20280.96 20283.21 20685.61 21179.73 20976.25 20897.33 16164.21 20855.32 20855.55 21386.04 19992.43 19992.20 19796.32 20593.99 205
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs388.19 19691.27 19484.60 19985.60 20593.66 20685.68 20581.13 18792.36 20563.66 20989.51 17077.10 20593.22 18996.37 16292.40 19498.30 18897.46 189
gg-mvs-nofinetune90.85 18794.14 16687.02 19394.89 13499.25 8798.64 6176.29 20788.24 20757.50 21079.93 20295.45 10195.18 16798.77 5798.07 8799.62 11399.24 152
PMMVS277.26 20179.47 20474.70 20476.00 21188.37 21074.22 21176.34 20678.31 20954.13 21169.96 20652.50 21470.14 20884.83 20488.71 20397.35 19793.58 206
MVEpermissive67.97 1965.53 20667.43 20863.31 20759.33 21474.20 21253.09 21670.43 21066.27 21243.13 21245.98 21230.62 21770.65 20779.34 20886.30 20483.25 21389.33 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN68.30 20468.43 20668.15 20574.70 21371.56 21455.64 21477.24 20477.48 21139.46 21351.95 21141.68 21673.28 20670.65 20979.51 20688.61 21186.20 210
EMVS68.12 20568.11 20768.14 20675.51 21271.76 21355.38 21577.20 20577.78 21037.79 21453.59 20943.61 21574.72 20567.05 21076.70 20988.27 21286.24 209
testmvs31.24 20740.15 20920.86 20912.61 21517.99 21625.16 21713.30 21248.42 21324.82 21553.07 21030.13 21928.47 21142.73 21137.65 21020.79 21451.04 212
test12326.75 20834.25 21018.01 2107.93 21617.18 21724.85 21812.36 21344.83 21416.52 21641.80 21318.10 22028.29 21233.08 21234.79 21118.10 21549.95 213
GG-mvs-BLEND69.11 20398.13 7735.26 2083.49 21798.20 15294.89 1612.38 21498.42 1245.82 21796.37 11298.60 635.97 21398.75 6097.98 9099.01 17998.61 173
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1499.79 44
SR-MVS99.67 1298.25 1399.94 24
Anonymous20240521197.40 10396.45 8799.54 4898.08 8893.79 7398.24 13293.55 14494.41 11498.88 6398.04 10598.24 7899.75 3999.76 55
our_test_392.30 16297.58 17790.09 199
test_part199.62 110
Patchmatch-RL test66.86 213
mPP-MVS99.53 2999.89 33
NP-MVS98.57 115