This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 38
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22698.91 5899.78 4899.85 5299.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19199.76 5899.75 13899.13 1299.92 9599.07 8699.92 2899.85 36
MP-MVS-pluss99.37 5599.20 7099.88 599.90 499.87 1299.30 24899.52 10197.18 24899.60 11099.79 11798.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17898.79 7099.68 7899.81 9098.43 8399.97 2198.88 10599.90 4399.83 49
HPM-MVScopyleft99.42 4299.28 5699.83 4099.90 499.72 4299.81 2099.54 8597.59 20499.68 7899.63 19898.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 10298.92 11199.65 7399.90 499.37 10399.02 32099.91 397.67 19999.59 11399.75 13895.90 17999.73 21399.53 3399.02 18699.86 33
MSP-MVS99.42 4299.27 6099.88 599.89 899.80 2799.67 6599.50 13698.70 7899.77 5299.49 24898.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CHOSEN 1792x268899.19 8099.10 8099.45 12899.89 898.52 21199.39 22199.94 198.73 7699.11 22199.89 2995.50 19299.94 6999.50 3799.97 799.89 20
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14299.63 10099.84 6398.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 13999.66 8799.68 17498.96 2499.96 3098.62 14699.87 5899.84 40
MP-MVScopyleft99.33 6099.15 7499.87 1199.88 1199.82 2299.66 7099.46 18898.09 14899.48 13499.74 14398.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 3799.30 5099.86 2199.88 1199.79 3099.69 5699.48 15898.12 14299.50 13099.75 13898.78 4899.97 2198.57 15899.89 5299.83 49
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17299.88 1198.53 20799.34 24099.59 5797.55 21098.70 28799.89 2995.83 18199.90 11698.10 19899.90 4399.08 235
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15299.55 12299.64 19298.91 3499.96 3098.72 13399.90 4399.82 54
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18699.48 15898.05 15899.76 5899.86 4798.82 4399.93 8498.82 12599.91 3599.84 40
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13499.68 7899.69 16899.06 1699.96 3098.69 13899.87 5899.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13499.67 8299.69 16898.95 2799.96 3098.69 13899.87 5899.84 40
PGM-MVS99.45 3399.31 4899.86 2199.87 1599.78 3699.58 10999.65 3397.84 17799.71 7299.80 10499.12 1399.97 2198.33 18399.87 5899.83 49
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1499.94 11
test_vis1_n_192098.63 16498.40 17099.31 14899.86 2097.94 24999.67 6599.62 4199.43 799.99 299.91 1987.29 368100.00 199.92 1299.92 2899.98 2
GST-MVS99.40 5099.24 6599.85 2899.86 2099.79 3099.60 9599.67 2397.97 16499.63 10099.68 17498.52 7799.95 5998.38 17799.86 6699.81 61
AllTest98.87 13198.72 13799.31 14899.86 2098.48 21799.56 12299.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
TestCases99.31 14899.86 2098.48 21799.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
PVSNet_Blended_VisFu99.36 5699.28 5699.61 8799.86 2099.07 14699.47 18699.93 297.66 20099.71 7299.86 4797.73 11199.96 3099.47 4499.82 9499.79 74
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 24299.10 2799.81 3899.80 10498.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 8899.50 13699.10 2799.86 2899.82 7598.94 29
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16499.74 14398.81 4499.94 6998.79 12699.86 6699.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6699.84 40
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8899.59 5792.65 38199.71 7299.78 12398.06 10299.90 11698.84 11899.91 3599.74 92
CSCG99.32 6299.32 4099.32 14799.85 2698.29 22699.71 5299.66 2898.11 14499.41 15299.80 10498.37 8899.96 3098.99 9299.96 1499.72 103
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15599.67 2399.13 2299.98 699.92 1496.60 15299.96 3099.95 899.96 1499.95 9
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 10999.69 1899.43 799.98 699.91 1998.62 70100.00 199.97 199.95 1999.90 17
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15899.08 3399.91 1699.81 9099.20 799.96 3098.91 10299.85 7399.79 74
IU-MVS99.84 3299.88 899.32 27098.30 11599.84 3098.86 11399.85 7399.89 20
test_241102_ONE99.84 3299.90 299.48 15899.07 3599.91 1699.74 14399.20 799.76 202
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11699.96 3098.93 9999.86 6699.88 26
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14799.65 3399.10 2799.98 699.92 1497.35 12599.96 3099.94 1099.92 2899.95 9
dcpmvs_299.23 7899.58 798.16 29999.83 3994.68 36099.76 3799.52 10199.07 3599.98 699.88 3598.56 7499.93 8499.67 2199.98 499.87 31
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10198.07 15399.53 12599.63 19898.93 3399.97 2198.74 13099.91 3599.83 49
test_fmvs1_n98.41 17598.14 18699.21 16899.82 4297.71 26199.74 4599.49 14599.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11698.62 8499.79 4399.83 6799.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20796.61 29599.66 8799.89 2995.92 17799.82 17797.46 26399.10 17899.57 157
DeepC-MVS98.35 299.30 6499.19 7199.64 7899.82 4299.23 12399.62 8899.55 7798.94 5499.63 10099.95 395.82 18299.94 6999.37 5299.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9799.88 3594.56 23599.93 8499.67 2198.26 23099.72 103
sd_testset98.75 15398.57 16099.29 15699.81 4698.26 22899.56 12299.62 4198.78 7399.64 9799.88 3592.02 30799.88 13399.54 3198.26 23099.72 103
test_cas_vis1_n_192099.16 8699.01 9999.61 8799.81 4698.86 17899.65 7699.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3099.91 3599.99 1
patch_mono-299.26 7299.62 598.16 29999.81 4694.59 36299.52 14799.64 3699.33 1399.73 6699.90 2599.00 2299.99 499.69 1999.98 499.89 20
test_one_060199.81 4699.88 899.49 14598.97 5199.65 9399.81 9099.09 14
test_part299.81 4699.83 1699.77 52
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 18099.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9599.59 10199.49 14597.03 26699.63 10099.69 16897.27 12999.96 3097.82 22599.84 8199.81 61
SF-MVS99.38 5499.24 6599.79 4999.79 5499.68 4899.57 11699.54 8597.82 18299.71 7299.80 10498.95 2799.93 8498.19 19299.84 8199.74 92
MCST-MVS99.43 4099.30 5099.82 4199.79 5499.74 4199.29 25399.40 22398.79 7099.52 12799.62 20398.91 3499.90 11698.64 14499.75 11699.82 54
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23299.51 11698.73 7699.88 2099.84 6398.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.49 2299.48 1599.54 10099.78 5699.30 11399.89 299.58 6198.56 8999.73 6699.69 16898.55 7599.82 17799.69 1999.85 7399.48 181
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13699.60 9599.45 19999.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1999.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13599.61 9499.45 19999.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1999.85 36
Vis-MVSNetpermissive99.12 9898.97 10599.56 9799.78 5699.10 14099.68 6299.66 2898.49 9699.86 2899.87 4394.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 8099.04 8999.64 7899.78 5699.27 11799.42 20799.54 8597.29 23999.41 15299.59 21298.42 8599.93 8498.19 19299.69 12799.73 97
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5299.18 1099.96 3099.22 7399.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9399.74 14398.51 7899.80 18898.83 12199.89 5299.64 136
DP-MVS99.16 8698.95 10999.78 5299.77 6299.53 8299.41 20999.50 13697.03 26699.04 23799.88 3597.39 12199.92 9598.66 14299.90 4399.87 31
SR-MVS-dyc-post99.45 3399.31 4899.85 2899.76 6599.82 2299.63 8399.52 10198.38 10599.76 5899.82 7598.53 7699.95 5998.61 14999.81 9799.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10198.38 10599.76 5899.82 7598.75 5598.61 14999.81 9799.77 82
save fliter99.76 6599.59 7099.14 29399.40 22399.00 43
CS-MVS99.50 2099.48 1599.54 10099.76 6599.42 9999.90 199.55 7798.56 8999.78 4899.70 15898.65 6899.79 19199.65 2399.78 10899.41 201
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8598.36 10999.79 4399.82 7598.86 3899.95 5998.62 14699.81 9799.78 80
PVSNet_BlendedMVS98.86 13498.80 13099.03 18799.76 6598.79 18799.28 25899.91 397.42 22899.67 8299.37 28297.53 11899.88 13398.98 9397.29 28998.42 347
PVSNet_Blended99.08 10898.97 10599.42 13399.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24897.53 11899.88 13398.98 9399.85 7399.60 146
MSDG98.98 12298.80 13099.53 10899.76 6599.19 12598.75 36099.55 7797.25 24299.47 13699.77 13197.82 10899.87 14196.93 29799.90 4399.54 162
SR-MVS99.43 4099.29 5499.86 2199.75 7399.83 1699.59 10199.62 4198.21 12799.73 6699.79 11798.68 6499.96 3098.44 17499.77 11199.79 74
HPM-MVS++copyleft99.39 5399.23 6799.87 1199.75 7399.84 1599.43 20099.51 11698.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10199.79 74
新几何199.75 5899.75 7399.59 7099.54 8596.76 28299.29 18299.64 19298.43 8399.94 6996.92 29999.66 13299.72 103
test22299.75 7399.49 8998.91 34599.49 14596.42 31199.34 17399.65 18698.28 9299.69 12799.72 103
testdata99.54 10099.75 7398.95 16599.51 11697.07 26099.43 14599.70 15898.87 3799.94 6997.76 23299.64 13599.72 103
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29199.41 21796.60 29799.60 11099.55 22798.83 4299.90 11697.48 26099.83 9099.78 80
APD-MVScopyleft99.27 7099.08 8499.84 3999.75 7399.79 3099.50 16299.50 13697.16 25099.77 5299.82 7598.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9585.06 41699.13 2299.77 5299.93 987.82 36699.85 15099.38 5099.38 15399.80 70
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10995.40 40399.12 2599.65 9399.93 990.73 33299.84 15799.43 4799.38 15399.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10194.98 40499.13 2299.66 8799.93 990.67 33399.84 15799.40 4899.38 15399.80 70
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 13099.73 97
SD-MVS99.41 4799.52 1199.05 18599.74 8099.68 4899.46 18999.52 10199.11 2699.88 2099.91 1999.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 9898.95 10999.65 7399.74 8099.70 4699.27 26399.57 6496.40 31399.42 14899.68 17498.75 5599.80 18897.98 21199.72 12299.44 197
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9799.39 22199.38 23497.70 19599.28 18399.28 30698.34 8999.85 15096.96 29499.45 14999.69 115
SMA-MVScopyleft99.44 3799.30 5099.85 2899.73 8799.83 1699.56 12299.47 17897.45 22399.78 4899.82 7599.18 1099.91 10598.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 7399.73 8799.33 10699.47 17897.46 22099.12 21999.66 18598.67 6699.91 10597.70 24199.69 12799.71 112
IS-MVSNet99.05 11198.87 12099.57 9599.73 8799.32 10799.75 4199.20 29998.02 16299.56 11899.86 4796.54 15599.67 23798.09 19999.13 17499.73 97
PVSNet96.02 1798.85 14198.84 12798.89 21299.73 8797.28 27198.32 38799.60 5497.86 17299.50 13099.57 22096.75 14899.86 14498.56 16199.70 12699.54 162
9.1499.10 8099.72 9199.40 21799.51 11697.53 21499.64 9799.78 12398.84 4199.91 10597.63 24499.82 94
thres100view90097.76 25897.45 26498.69 24399.72 9197.86 25399.59 10198.74 35897.93 16799.26 19298.62 36391.75 31399.83 17093.22 36698.18 23798.37 353
thres600view797.86 24297.51 25798.92 20399.72 9197.95 24799.59 10198.74 35897.94 16699.27 18898.62 36391.75 31399.86 14493.73 36198.19 23698.96 252
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 10299.05 31299.66 2899.14 2199.57 11799.80 10498.46 8199.94 6999.57 2799.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9398.95 33999.85 698.82 6599.54 12399.73 14998.51 7899.74 20798.91 10299.88 5599.77 82
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 11899.54 23298.58 7299.96 3096.93 29799.75 116
Anonymous2023121197.88 23897.54 25498.90 20999.71 9698.53 20799.48 18099.57 6494.16 36698.81 27099.68 17493.23 27399.42 27898.84 11894.42 35198.76 266
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21299.71 9697.74 25699.12 29799.54 8598.44 10299.42 14899.71 15494.20 24999.92 9598.54 16598.90 19499.00 246
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14899.71 9698.88 17499.80 2599.44 20797.91 16999.36 16799.78 12395.49 19399.43 27797.91 21599.11 17599.62 142
PatchMatch-RL98.84 14498.62 15399.52 11499.71 9699.28 11599.06 31099.77 997.74 19099.50 13099.53 23695.41 19499.84 15797.17 28499.64 13599.44 197
fmvsm_s_conf0.1_n99.29 6699.10 8099.86 2199.70 10199.65 5799.53 14699.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
h-mvs3397.70 27197.28 29298.97 19599.70 10197.27 27299.36 23299.45 19998.94 5499.66 8799.64 19294.93 20999.99 499.48 4284.36 39599.65 129
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11799.52 14797.57 39099.51 299.82 3699.78 12398.09 10099.96 3099.97 199.97 799.94 11
XVG-OURS98.73 15698.68 14298.88 21499.70 10197.73 25798.92 34399.55 7798.52 9499.45 13999.84 6395.27 20099.91 10598.08 20398.84 19899.00 246
TAPA-MVS97.07 1597.74 26497.34 28498.94 19999.70 10197.53 26599.25 27499.51 11691.90 38399.30 17999.63 19898.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvs198.88 13098.79 13399.16 17399.69 10697.61 26499.55 13499.49 14599.32 1499.98 699.91 1991.41 32399.96 3099.82 1699.92 2899.90 17
tfpn200view997.72 26797.38 27798.72 23999.69 10697.96 24599.50 16298.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.37 353
thres40097.77 25797.38 27798.92 20399.69 10697.96 24599.50 16298.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.96 252
Test_1112_low_res98.89 12998.66 14699.57 9599.69 10698.95 16599.03 31799.47 17896.98 26899.15 21599.23 31496.77 14799.89 12798.83 12198.78 20399.86 33
1112_ss98.98 12298.77 13499.59 9099.68 11099.02 15199.25 27499.48 15897.23 24599.13 21799.58 21696.93 14399.90 11698.87 10898.78 20399.84 40
MM99.40 5099.28 5699.74 6199.67 11199.31 11199.52 14798.87 34499.55 199.74 6499.80 10496.47 15799.98 1399.97 199.97 799.94 11
test_vis1_rt95.81 33595.65 33596.32 36199.67 11191.35 38899.49 17696.74 39798.25 12095.24 37798.10 38274.96 39799.90 11699.53 3398.85 19797.70 382
TEST999.67 11199.65 5799.05 31299.41 21796.22 32398.95 25099.49 24898.77 5199.91 105
train_agg99.02 11698.77 13499.77 5599.67 11199.65 5799.05 31299.41 21796.28 31798.95 25099.49 24898.76 5299.91 10597.63 24499.72 12299.75 88
test_899.67 11199.61 6799.03 31799.41 21796.28 31798.93 25399.48 25398.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22398.87 26399.91 105
test_prior99.68 6899.67 11199.48 9199.56 6999.83 17099.74 92
TSAR-MVS + GP.99.36 5699.36 3299.36 14099.67 11198.61 20299.07 30799.33 26099.00 4399.82 3699.81 9099.06 1699.84 15799.09 8499.42 15199.65 129
OMC-MVS99.08 10899.04 8999.20 16999.67 11198.22 23099.28 25899.52 10198.07 15399.66 8799.81 9097.79 10999.78 19697.79 22799.81 9799.60 146
Anonymous2024052998.09 20497.68 24099.34 14199.66 12098.44 22099.40 21799.43 21393.67 37099.22 19999.89 2990.23 33999.93 8499.26 7098.33 22499.66 125
tttt051798.42 17398.14 18699.28 16099.66 12098.38 22499.74 4596.85 39497.68 19799.79 4399.74 14391.39 32499.89 12798.83 12199.56 14299.57 157
CHOSEN 280x42099.12 9899.13 7799.08 18099.66 12097.89 25098.43 38199.71 1398.88 5999.62 10499.76 13596.63 15199.70 22999.46 4599.99 199.66 125
casdiffmvs_mvgpermissive99.15 8899.02 9599.55 9999.66 12099.09 14199.64 7999.56 6998.26 11999.45 13999.87 4396.03 17199.81 18299.54 3199.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8899.02 9599.53 10899.66 12099.14 13699.72 5099.48 15898.35 11099.42 14899.84 6396.07 16999.79 19199.51 3699.14 17399.67 122
PLCcopyleft97.94 499.02 11698.85 12599.53 10899.66 12099.01 15399.24 27699.52 10196.85 27899.27 18899.48 25398.25 9399.91 10597.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive99.13 9298.98 10499.56 9799.65 12699.16 13099.56 12299.50 13698.33 11399.41 15299.86 4795.92 17799.83 17099.45 4699.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet99.13 9298.99 10199.53 10899.65 12699.06 14799.81 2099.33 26097.43 22699.60 11099.88 3597.14 13199.84 15799.13 8098.94 18999.69 115
thres20097.61 28297.28 29298.62 24799.64 12898.03 23999.26 27298.74 35897.68 19799.09 22798.32 37491.66 31999.81 18292.88 37198.22 23298.03 369
test1299.75 5899.64 12899.61 6799.29 28399.21 20298.38 8799.89 12799.74 11999.74 92
ab-mvs98.86 13498.63 14899.54 10099.64 12899.19 12599.44 19699.54 8597.77 18699.30 17999.81 9094.20 24999.93 8499.17 7898.82 20099.49 179
DPM-MVS98.95 12598.71 13999.66 6999.63 13199.55 7798.64 37099.10 31097.93 16799.42 14899.55 22798.67 6699.80 18895.80 32899.68 13099.61 144
thisisatest053098.35 18198.03 20199.31 14899.63 13198.56 20499.54 13896.75 39697.53 21499.73 6699.65 18691.25 32799.89 12798.62 14699.56 14299.48 181
xiu_mvs_v1_base_debu99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
xiu_mvs_v1_base99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
xiu_mvs_v1_base_debi99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23299.46 18899.07 3599.79 4399.82 7598.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 4299.29 5499.80 4699.62 13799.55 7799.50 16299.70 1598.79 7099.77 5299.96 197.45 12099.96 3098.92 10199.90 4399.89 20
CNVR-MVS99.42 4299.30 5099.78 5299.62 13799.71 4499.26 27299.52 10198.82 6599.39 16099.71 15498.96 2499.85 15098.59 15499.80 10199.77 82
WTY-MVS99.06 11098.88 11999.61 8799.62 13799.16 13099.37 22899.56 6998.04 15999.53 12599.62 20396.84 14499.94 6998.85 11598.49 21999.72 103
sss99.17 8499.05 8799.53 10899.62 13798.97 15899.36 23299.62 4197.83 17899.67 8299.65 18697.37 12499.95 5999.19 7599.19 16899.68 119
mvsany_test199.50 2099.46 2099.62 8499.61 14199.09 14198.94 34199.48 15899.10 2799.96 1499.91 1998.85 3999.96 3099.72 1899.58 14199.82 54
GeoE98.85 14198.62 15399.53 10899.61 14199.08 14499.80 2599.51 11697.10 25899.31 17699.78 12395.23 20499.77 19898.21 19099.03 18499.75 88
diffmvspermissive99.14 9099.02 9599.51 11699.61 14198.96 16299.28 25899.49 14598.46 9899.72 7199.71 15496.50 15699.88 13399.31 6299.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC99.34 5999.19 7199.79 4999.61 14199.65 5799.30 24899.48 15898.86 6099.21 20299.63 19898.72 6199.90 11698.25 18899.63 13799.80 70
PCF-MVS97.08 1497.66 27897.06 30399.47 12599.61 14199.09 14198.04 39599.25 29091.24 38698.51 30899.70 15894.55 23799.91 10592.76 37499.85 7399.42 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 3199.47 1799.44 13299.60 14699.16 13099.41 20999.71 1398.98 4899.45 13999.78 12399.19 999.54 26299.28 6699.84 8199.63 140
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14691.75 38698.61 37199.44 20799.35 1299.83 3599.85 5298.70 6399.81 18299.02 9099.91 3599.81 61
tt080597.97 22897.77 22998.57 25399.59 14896.61 31699.45 19099.08 31398.21 12798.88 26099.80 10488.66 35499.70 22998.58 15597.72 25799.39 205
IterMVS-LS98.46 17098.42 16898.58 25299.59 14898.00 24199.37 22899.43 21396.94 27499.07 22999.59 21297.87 10699.03 34198.32 18595.62 32798.71 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 24897.77 22998.02 30899.58 15096.27 32799.02 32099.48 15897.22 24698.71 28199.70 15892.75 28499.13 32797.46 26396.00 31598.67 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 9098.99 10199.59 9099.58 15099.41 10199.16 28899.44 20798.45 9999.19 20899.49 24898.08 10199.89 12797.73 23699.75 11699.48 181
Anonymous20240521198.30 18597.98 20699.26 16299.57 15298.16 23299.41 20998.55 37196.03 33899.19 20899.74 14391.87 31099.92 9599.16 7998.29 22999.70 113
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15296.36 32499.02 32099.49 14597.18 24898.71 28199.72 15392.72 28799.14 32497.44 26595.86 32198.67 296
PS-MVSNAJ99.32 6299.32 4099.30 15399.57 15298.94 16898.97 33599.46 18898.92 5799.71 7299.24 31399.01 1899.98 1399.35 5399.66 13298.97 250
MG-MVS99.13 9299.02 9599.45 12899.57 15298.63 19999.07 30799.34 25398.99 4599.61 10799.82 7597.98 10499.87 14197.00 29099.80 10199.85 36
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 27898.24 18999.80 10199.79 74
EC-MVSNet99.44 3799.39 2799.58 9399.56 15699.49 8999.88 399.58 6198.38 10599.73 6699.69 16898.20 9599.70 22999.64 2499.82 9499.54 162
PHI-MVS99.30 6499.17 7399.70 6799.56 15699.52 8599.58 10999.80 897.12 25499.62 10499.73 14998.58 7299.90 11698.61 14999.91 3599.68 119
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15699.54 7999.18 28699.70 1598.18 13299.35 17099.63 19896.32 16399.90 11697.48 26099.77 11199.55 160
dmvs_re98.08 20698.16 18397.85 31999.55 16094.67 36199.70 5398.92 33398.15 13499.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
FA-MVS(test-final)98.75 15398.53 16499.41 13499.55 16099.05 14999.80 2599.01 32296.59 29999.58 11499.59 21295.39 19599.90 11697.78 22899.49 14799.28 219
FE-MVS98.48 16898.17 18299.40 13599.54 16298.96 16299.68 6298.81 35195.54 34499.62 10499.70 15893.82 26499.93 8497.35 27199.46 14899.32 216
test_vis1_n97.92 23497.44 26999.34 14199.53 16398.08 23799.74 4599.49 14599.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11499.97 4
APD_test195.87 33396.49 31794.00 36899.53 16384.01 39799.54 13899.32 27095.91 34097.99 33799.85 5285.49 37599.88 13391.96 37798.84 19898.12 364
iter_conf05_1199.40 5099.32 4099.63 8399.53 16399.47 9399.75 4199.52 10198.11 14499.87 2599.85 5297.72 11299.89 12799.56 2899.97 799.53 167
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18599.53 16398.82 18498.84 35197.51 39197.63 20284.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 201
xiu_mvs_v2_base99.26 7299.25 6499.29 15699.53 16398.91 17299.02 32099.45 19998.80 6999.71 7299.26 31198.94 2999.98 1399.34 5999.23 16598.98 249
fmvsm_s_conf0.1_n_a99.26 7299.06 8699.85 2899.52 16899.62 6599.54 13899.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
LFMVS97.90 23797.35 28199.54 10099.52 16899.01 15399.39 22198.24 37897.10 25899.65 9399.79 11784.79 38099.91 10599.28 6698.38 22199.69 115
VNet99.11 10298.90 11499.73 6499.52 16899.56 7599.41 20999.39 22699.01 4099.74 6499.78 12395.56 19099.92 9599.52 3598.18 23799.72 103
DVP-MVS++99.59 899.50 1399.88 599.51 17199.88 899.87 899.51 11698.99 4599.88 2099.81 9099.27 599.96 3098.85 11599.80 10199.81 61
MSC_two_6792asdad99.87 1199.51 17199.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
No_MVS99.87 1199.51 17199.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
Fast-Effi-MVS+98.70 15798.43 16799.51 11699.51 17199.28 11599.52 14799.47 17896.11 33399.01 24099.34 29296.20 16799.84 15797.88 21798.82 20099.39 205
MVSFormer99.17 8499.12 7899.29 15699.51 17198.94 16899.88 399.46 18897.55 21099.80 4199.65 18697.39 12199.28 30299.03 8899.85 7399.65 129
lupinMVS99.13 9299.01 9999.46 12799.51 17198.94 16899.05 31299.16 30497.86 17299.80 4199.56 22397.39 12199.86 14498.94 9799.85 7399.58 154
GBi-Net97.68 27497.48 25998.29 29099.51 17197.26 27499.43 20099.48 15896.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
test197.68 27497.48 25998.29 29099.51 17197.26 27499.43 20099.48 15896.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
FMVSNet297.72 26797.36 27998.80 23299.51 17198.84 18099.45 19099.42 21596.49 30398.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 331
thisisatest051598.14 19997.79 22499.19 17099.50 18098.50 21498.61 37196.82 39596.95 27299.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 224
baseline198.31 18397.95 21099.38 13999.50 18098.74 19099.59 10198.93 33098.41 10399.14 21699.60 21094.59 23399.79 19198.48 16893.29 36699.61 144
hse-mvs297.50 29097.14 29898.59 24999.49 18297.05 28799.28 25899.22 29598.94 5499.66 8799.42 26694.93 20999.65 24599.48 4283.80 39799.08 235
EIA-MVS99.18 8299.09 8399.45 12899.49 18299.18 12799.67 6599.53 9697.66 20099.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 211
test_yl98.86 13498.63 14899.54 10099.49 18299.18 12799.50 16299.07 31698.22 12599.61 10799.51 24295.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 10099.49 18299.18 12799.50 16299.07 31698.22 12599.61 10799.51 24295.37 19699.84 15798.60 15298.33 22499.59 150
VDDNet97.55 28597.02 30499.16 17399.49 18298.12 23699.38 22699.30 27995.35 34699.68 7899.90 2582.62 38999.93 8499.31 6298.13 24199.42 199
MVS_Test99.10 10698.97 10599.48 12299.49 18299.14 13699.67 6599.34 25397.31 23799.58 11499.76 13597.65 11599.82 17798.87 10899.07 18199.46 192
BH-untuned98.42 17398.36 17198.59 24999.49 18296.70 31099.27 26399.13 30897.24 24498.80 27299.38 27995.75 18499.74 20797.07 28899.16 16999.33 215
AUN-MVS96.88 31596.31 32198.59 24999.48 18997.04 29099.27 26399.22 29597.44 22598.51 30899.41 27091.97 30899.66 24097.71 23983.83 39699.07 240
VDD-MVS97.73 26597.35 28198.88 21499.47 19097.12 28099.34 24098.85 34698.19 12999.67 8299.85 5282.98 38799.92 9599.49 4198.32 22899.60 146
bld_raw_dy_0_6499.05 11199.15 7498.74 23799.46 19196.95 30099.02 32099.47 17898.15 13499.75 6399.56 22397.63 11699.88 13399.35 5399.97 799.40 203
ETV-MVS99.26 7299.21 6999.40 13599.46 19199.30 11399.56 12299.52 10198.52 9499.44 14499.27 30998.41 8699.86 14499.10 8399.59 14099.04 242
Effi-MVS+98.81 14598.59 15999.48 12299.46 19199.12 13998.08 39499.50 13697.50 21899.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 175
jason99.13 9299.03 9199.45 12899.46 19198.87 17599.12 29799.26 28898.03 16199.79 4399.65 18697.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
TAMVS99.12 9899.08 8499.24 16599.46 19198.55 20599.51 15599.46 18898.09 14899.45 13999.82 7598.34 8999.51 26398.70 13598.93 19099.67 122
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19196.68 31399.56 12299.54 8598.41 10397.79 34699.87 4390.18 34099.66 24098.05 20797.18 29498.62 317
MIMVSNet97.73 26597.45 26498.57 25399.45 19797.50 26699.02 32098.98 32596.11 33399.41 15299.14 32490.28 33598.74 36695.74 32998.93 19099.47 187
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19899.65 5799.50 16299.61 4899.45 599.87 2599.92 1497.31 12699.97 2199.95 899.99 199.97 4
test_fmvs297.25 30597.30 28997.09 34799.43 19993.31 37899.73 4898.87 34498.83 6499.28 18399.80 10484.45 38299.66 24097.88 21797.45 27998.30 355
alignmvs98.81 14598.56 16299.58 9399.43 19999.42 9999.51 15598.96 32898.61 8599.35 17098.92 35094.78 21999.77 19899.35 5398.11 24299.54 162
MGCFI-Net99.01 12098.85 12599.50 12199.42 20199.26 11999.82 1699.48 15898.60 8699.28 18398.81 35597.04 13899.76 20299.29 6597.87 25199.47 187
sasdasda99.02 11698.86 12399.51 11699.42 20199.32 10799.80 2599.48 15898.63 8299.31 17698.81 35597.09 13499.75 20599.27 6897.90 24899.47 187
canonicalmvs99.02 11698.86 12399.51 11699.42 20199.32 10799.80 2599.48 15898.63 8299.31 17698.81 35597.09 13499.75 20599.27 6897.90 24899.47 187
HY-MVS97.30 798.85 14198.64 14799.47 12599.42 20199.08 14499.62 8899.36 24397.39 23199.28 18399.68 17496.44 16099.92 9598.37 17998.22 23299.40 203
CDS-MVSNet99.09 10799.03 9199.25 16399.42 20198.73 19199.45 19099.46 18898.11 14499.46 13899.77 13198.01 10399.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 7699.14 7699.59 9099.41 20699.16 13099.35 23799.57 6498.82 6599.51 12999.61 20796.46 15899.95 5999.59 2599.98 499.65 129
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20696.99 29499.52 14799.49 14598.11 14499.24 19499.34 29296.96 14299.79 19197.95 21399.45 14999.02 245
BH-RMVSNet98.41 17598.08 19599.40 13599.41 20698.83 18399.30 24898.77 35497.70 19598.94 25299.65 18692.91 28299.74 20796.52 31399.55 14499.64 136
ACMM97.58 598.37 18098.34 17398.48 26499.41 20697.10 28199.56 12299.45 19998.53 9399.04 23799.85 5293.00 27899.71 22398.74 13097.45 27998.64 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 20397.99 20598.44 27499.41 20696.96 29999.60 9599.56 6998.09 14898.15 33099.91 1990.87 33199.70 22998.88 10597.45 27998.67 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 30296.81 31098.87 21899.40 21197.46 26799.51 15599.53 9695.86 34198.54 30799.77 13182.44 39099.66 24098.68 14097.52 27199.50 178
PAPR98.63 16498.34 17399.51 11699.40 21199.03 15098.80 35599.36 24396.33 31499.00 24499.12 32898.46 8199.84 15795.23 34399.37 16099.66 125
API-MVS99.04 11399.03 9199.06 18399.40 21199.31 11199.55 13499.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 366
dongtai93.26 35592.93 35994.25 36799.39 21485.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25499.58 154
mamv499.33 6099.23 6799.62 8499.39 21499.50 8799.50 16299.50 13698.13 13999.76 5899.81 9097.69 11499.88 13399.35 5399.95 1999.49 179
FMVSNet398.03 21697.76 23398.84 22599.39 21498.98 15599.40 21799.38 23496.67 28899.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 333
MVSMamba_pp99.36 5699.28 5699.62 8499.38 21799.50 8799.50 16299.49 14598.55 9199.77 5299.82 7597.62 11799.88 13399.39 4999.96 1499.47 187
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21799.37 10399.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2699.94 11
GA-MVS97.85 24397.47 26199.00 19199.38 21797.99 24298.57 37499.15 30597.04 26598.90 25799.30 30289.83 34299.38 28196.70 30798.33 22499.62 142
mvs_anonymous99.03 11598.99 10199.16 17399.38 21798.52 21199.51 15599.38 23497.79 18399.38 16299.81 9097.30 12799.45 26899.35 5398.99 18799.51 175
testing397.28 30396.76 31298.82 22799.37 22198.07 23899.45 19099.36 24397.56 20997.89 34198.95 34583.70 38598.82 36296.03 32298.56 21499.58 154
ACMP97.20 1198.06 20897.94 21298.45 27199.37 22197.01 29299.44 19699.49 14597.54 21398.45 31299.79 11791.95 30999.72 21797.91 21597.49 27798.62 317
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 13498.63 14899.54 10099.37 22199.66 5399.45 19099.54 8596.61 29599.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 27997.50 25898.13 30399.36 22496.45 32199.42 20799.48 15897.76 18797.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 229
EI-MVSNet98.67 16098.67 14398.68 24499.35 22597.97 24399.50 16299.38 23496.93 27599.20 20599.83 6797.87 10699.36 28898.38 17797.56 26898.71 276
CVMVSNet98.57 16698.67 14398.30 28999.35 22595.59 34099.50 16299.55 7798.60 8699.39 16099.83 6794.48 24099.45 26898.75 12998.56 21499.85 36
BH-w/o98.00 22397.89 21998.32 28799.35 22596.20 33099.01 32698.90 33996.42 31198.38 31599.00 33995.26 20299.72 21796.06 32198.61 20899.03 243
MVSTER98.49 16798.32 17599.00 19199.35 22599.02 15199.54 13899.38 23497.41 22999.20 20599.73 14993.86 26399.36 28898.87 10897.56 26898.62 317
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22997.43 26898.88 34799.36 24396.48 30698.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 23096.91 30299.57 11699.30 27998.47 9799.41 15298.99 34096.78 14699.74 20798.73 13299.38 15398.74 271
CANet_DTU98.97 12498.87 12099.25 16399.33 23098.42 22399.08 30699.30 27999.16 1999.43 14599.75 13895.27 20099.97 2198.56 16199.95 1999.36 210
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23095.19 35299.23 27799.08 31396.24 32199.10 22499.67 18094.11 25398.93 35896.81 30299.05 18299.48 181
ADS-MVSNet98.20 19298.08 19598.56 25699.33 23096.48 32099.23 27799.15 30596.24 32199.10 22499.67 18094.11 25399.71 22396.81 30299.05 18299.48 181
LPG-MVS_test98.22 18998.13 18898.49 26299.33 23097.05 28799.58 10999.55 7797.46 22099.24 19499.83 6792.58 29499.72 21798.09 19997.51 27298.68 289
LGP-MVS_train98.49 26299.33 23097.05 28799.55 7797.46 22099.24 19499.83 6792.58 29499.72 21798.09 19997.51 27298.68 289
FMVSNet196.84 31696.36 32098.29 29099.32 23697.26 27499.43 20099.48 15895.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 317
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23794.34 36797.81 39699.70 1597.12 25497.46 35098.75 36089.71 34399.79 19197.69 24281.69 39999.68 119
c3_l98.12 20298.04 20098.38 28199.30 23897.69 26298.81 35499.33 26096.67 28898.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
SCA98.19 19398.16 18398.27 29499.30 23895.55 34199.07 30798.97 32697.57 20799.43 14599.57 22092.72 28799.74 20797.58 24899.20 16799.52 169
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23892.25 38499.59 10198.26 37697.43 22696.20 37199.13 32596.27 16598.73 36798.17 19598.99 18799.64 136
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23893.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7399.46 192
HQP_MVS98.27 18898.22 18198.44 27499.29 24296.97 29699.39 22199.47 17898.97 5199.11 22199.61 20792.71 28999.69 23497.78 22897.63 26198.67 296
plane_prior799.29 24297.03 291
ITE_SJBPF98.08 30499.29 24296.37 32398.92 33398.34 11198.83 26899.75 13891.09 32899.62 25495.82 32697.40 28598.25 359
DeepMVS_CXcopyleft93.34 37199.29 24282.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21393.57 36397.77 25698.01 370
CLD-MVS98.16 19798.10 19198.33 28499.29 24296.82 30798.75 36099.44 20797.83 17899.13 21799.55 22792.92 28099.67 23798.32 18597.69 25898.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 24796.98 29592.71 289
PMMVS98.80 14898.62 15399.34 14199.27 24798.70 19398.76 35999.31 27497.34 23499.21 20299.07 33097.20 13099.82 17798.56 16198.87 19599.52 169
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24997.38 26998.56 37699.31 27496.65 29098.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
D2MVS98.41 17598.50 16598.15 30299.26 24996.62 31599.40 21799.61 4897.71 19298.98 24699.36 28596.04 17099.67 23798.70 13597.41 28498.15 363
plane_prior199.26 249
XXY-MVS98.38 17998.09 19499.24 16599.26 24999.32 10799.56 12299.55 7797.45 22398.71 28199.83 6793.23 27399.63 25398.88 10596.32 30998.76 266
cl____98.01 22197.84 22298.55 25899.25 25397.97 24398.71 36499.34 25396.47 30898.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25497.95 24798.71 36499.35 24996.50 30298.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
ETVMVS97.50 29096.90 30899.29 15699.23 25598.78 18999.32 24398.90 33997.52 21698.56 30598.09 38384.72 38199.69 23497.86 22097.88 25099.39 205
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25597.72 25898.72 36399.31 27496.60 29798.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
NP-MVS99.23 25596.92 30199.40 273
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25596.80 30899.70 5399.60 5497.12 25498.18 32999.70 15891.73 31599.72 21798.39 17697.45 27998.68 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UGNet98.87 13198.69 14199.40 13599.22 25998.72 19299.44 19699.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5999.94 2599.53 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 24697.44 26999.01 18999.21 26098.94 16899.48 18099.57 6498.38 10599.28 18399.73 14988.89 35099.39 28099.19 7593.27 36798.71 276
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 26096.70 31098.65 36997.74 38896.71 28597.27 35698.54 36686.03 37199.92 9598.47 17186.30 39399.10 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1197.50 29097.10 30198.71 24199.20 26296.91 30299.29 25398.82 34997.89 17098.21 32798.40 37085.63 37499.83 17098.45 17398.04 24499.37 209
tfpnnormal97.84 24697.47 26198.98 19399.20 26299.22 12499.64 7999.61 4896.32 31598.27 32399.70 15893.35 27299.44 27395.69 33195.40 33298.27 357
QAPM98.67 16098.30 17799.80 4699.20 26299.67 5199.77 3499.72 1194.74 36098.73 27999.90 2595.78 18399.98 1396.96 29499.88 5599.76 87
HQP-NCC99.19 26598.98 33298.24 12198.66 290
ACMP_Plane99.19 26598.98 33298.24 12198.66 290
HQP-MVS98.02 21897.90 21598.37 28299.19 26596.83 30598.98 33299.39 22698.24 12198.66 29099.40 27392.47 29899.64 24897.19 28197.58 26698.64 308
testing9197.44 29797.02 30498.71 24199.18 26896.89 30499.19 28499.04 31997.78 18598.31 31998.29 37585.41 37699.85 15098.01 20997.95 24699.39 205
testing9997.36 30096.94 30798.63 24699.18 26896.70 31099.30 24898.93 33097.71 19298.23 32498.26 37684.92 37999.84 15798.04 20897.85 25399.35 211
Patchmatch-test97.93 23197.65 24398.77 23599.18 26897.07 28599.03 31799.14 30796.16 32898.74 27899.57 22094.56 23599.72 21793.36 36599.11 17599.52 169
FIs98.78 14998.63 14899.23 16799.18 26899.54 7999.83 1599.59 5798.28 11698.79 27499.81 9096.75 14899.37 28499.08 8596.38 30798.78 261
baseline297.87 24097.55 25198.82 22799.18 26898.02 24099.41 20996.58 40096.97 26996.51 36899.17 32093.43 27099.57 25897.71 23999.03 18498.86 256
CR-MVSNet98.17 19697.93 21398.87 21899.18 26898.49 21599.22 28199.33 26096.96 27099.56 11899.38 27994.33 24599.00 34694.83 34998.58 21199.14 227
RPMNet96.72 31895.90 33099.19 17099.18 26898.49 21599.22 28199.52 10188.72 39599.56 11897.38 38994.08 25599.95 5986.87 39798.58 21199.14 227
LS3D99.27 7099.12 7899.74 6199.18 26899.75 3999.56 12299.57 6498.45 9999.49 13399.85 5297.77 11099.94 6998.33 18399.84 8199.52 169
tpm cat197.39 29997.36 27997.50 33799.17 27693.73 37299.43 20099.31 27491.27 38598.71 28199.08 32994.31 24799.77 19896.41 31798.50 21899.00 246
3Dnovator+97.12 1399.18 8298.97 10599.82 4199.17 27699.68 4899.81 2099.51 11699.20 1898.72 28099.89 2995.68 18799.97 2198.86 11399.86 6699.81 61
testing22297.16 30896.50 31699.16 17399.16 27898.47 21999.27 26398.66 36797.71 19298.23 32498.15 37882.28 39299.84 15797.36 27097.66 26099.18 226
VPA-MVSNet98.29 18697.95 21099.30 15399.16 27899.54 7999.50 16299.58 6198.27 11899.35 17099.37 28292.53 29699.65 24599.35 5394.46 34998.72 274
tpmrst98.33 18298.48 16697.90 31799.16 27894.78 35899.31 24699.11 30997.27 24099.45 13999.59 21295.33 19899.84 15798.48 16898.61 20899.09 234
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27895.32 34999.27 26398.92 33397.37 23299.37 16499.58 21694.90 21299.70 22997.43 26699.21 16699.54 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 29797.34 28497.74 32899.15 28294.36 36699.45 19098.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 218
CostFormer97.72 26797.73 23697.71 32999.15 28294.02 36999.54 13899.02 32194.67 36199.04 23799.35 28892.35 30499.77 19898.50 16797.94 24799.34 214
TransMVSNet (Re)97.15 30996.58 31498.86 22199.12 28498.85 17999.49 17698.91 33795.48 34597.16 36099.80 10493.38 27199.11 33294.16 35891.73 37798.62 317
3Dnovator97.25 999.24 7799.05 8799.81 4499.12 28499.66 5399.84 1299.74 1099.09 3298.92 25499.90 2595.94 17699.98 1398.95 9699.92 2899.79 74
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28696.33 32599.41 20999.52 10198.06 15799.05 23699.50 24589.64 34599.73 21397.73 23697.38 28798.53 335
FMVSNet596.43 32496.19 32397.15 34399.11 28695.89 33599.32 24399.52 10194.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
MDTV_nov1_ep1398.32 17599.11 28694.44 36499.27 26398.74 35897.51 21799.40 15799.62 20394.78 21999.76 20297.59 24798.81 202
dmvs_testset95.02 34296.12 32491.72 37799.10 28980.43 40599.58 10997.87 38597.47 21995.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 159
Patchmtry97.75 26297.40 27698.81 23099.10 28998.87 17599.11 30399.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
dp97.75 26297.80 22397.59 33499.10 28993.71 37399.32 24398.88 34296.48 30699.08 22899.55 22792.67 29299.82 17796.52 31398.58 21199.24 223
UWE-MVS97.58 28497.29 29198.48 26499.09 29296.25 32899.01 32696.61 39997.86 17299.19 20899.01 33888.72 35199.90 11697.38 26998.69 20699.28 219
cl2297.85 24397.64 24698.48 26499.09 29297.87 25198.60 37399.33 26097.11 25798.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29298.29 22699.41 20998.85 34695.65 34398.63 29899.67 18094.82 21599.10 33498.07 20692.89 37198.64 308
FC-MVSNet-test98.75 15398.62 15399.15 17799.08 29599.45 9699.86 1199.60 5498.23 12498.70 28799.82 7596.80 14599.22 31399.07 8696.38 30798.79 260
iter_conf0598.76 15298.90 11498.33 28499.07 29696.97 29699.50 16299.31 27498.13 13999.48 13499.80 10497.89 10599.46 26699.25 7197.68 25998.56 333
mvsmamba98.92 12798.87 12099.08 18099.07 29699.16 13099.88 399.51 11698.15 13499.40 15799.89 2997.12 13299.33 29499.38 5097.40 28598.73 273
USDC97.34 30197.20 29697.75 32799.07 29695.20 35198.51 37899.04 31997.99 16398.31 31999.86 4789.02 34899.55 26195.67 33397.36 28898.49 338
TinyColmap97.12 31096.89 30997.83 32299.07 29695.52 34498.57 37498.74 35897.58 20697.81 34599.79 11788.16 36199.56 25995.10 34497.21 29298.39 351
pm-mvs197.68 27497.28 29298.88 21499.06 30098.62 20099.50 16299.45 19996.32 31597.87 34299.79 11792.47 29899.35 29197.54 25593.54 36498.67 296
TR-MVS97.76 25897.41 27598.82 22799.06 30097.87 25198.87 34998.56 37096.63 29498.68 28999.22 31592.49 29799.65 24595.40 33997.79 25598.95 254
PAPM97.59 28397.09 30299.07 18299.06 30098.26 22898.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24889.87 38598.92 19299.31 217
nrg03098.64 16398.42 16899.28 16099.05 30399.69 4799.81 2099.46 18898.04 15999.01 24099.82 7596.69 15099.38 28199.34 5994.59 34898.78 261
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24699.20 29996.10 33798.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 250
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11499.04 30499.53 8299.82 1699.72 1194.56 36398.08 33299.88 3594.73 22599.98 1397.47 26299.76 11499.06 241
WR-MVS_H98.13 20097.87 22098.90 20999.02 30698.84 18099.70 5399.59 5797.27 24098.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 326
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 20098.54 37296.44 30999.12 21999.34 29291.83 31299.60 25697.75 23496.46 30599.48 181
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25399.39 22697.06 26297.41 35198.15 37893.92 26198.68 36891.71 37898.34 22299.45 195
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30897.16 27899.29 25399.39 22697.06 26297.41 35198.15 37883.46 38698.68 36895.27 34298.34 22299.45 195
UniMVSNet (Re)98.29 18698.00 20499.13 17899.00 30899.36 10599.49 17699.51 11697.95 16598.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 304
v1097.85 24397.52 25598.86 22198.99 31198.67 19599.75 4199.41 21795.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 296
PS-CasMVS97.93 23197.59 25098.95 19898.99 31199.06 14799.68 6299.52 10197.13 25298.31 31999.68 17492.44 30299.05 33898.51 16694.08 35798.75 268
PatchT97.03 31396.44 31898.79 23398.99 31198.34 22599.16 28899.07 31692.13 38299.52 12797.31 39294.54 23898.98 34888.54 39098.73 20599.03 243
V4298.06 20897.79 22498.86 22198.98 31498.84 18099.69 5699.34 25396.53 30199.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25398.82 34998.07 15398.66 29099.64 19289.97 34199.61 25597.01 28996.68 29997.94 376
CP-MVSNet98.09 20497.78 22799.01 18998.97 31699.24 12299.67 6599.46 18897.25 24298.48 31199.64 19293.79 26599.06 33798.63 14594.10 35698.74 271
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31797.72 25898.45 38099.32 27096.95 27298.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
v897.95 23097.63 24798.93 20198.95 31898.81 18699.80 2599.41 21796.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 304
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31996.53 31898.67 36697.61 38996.96 27098.64 29799.28 30688.63 35699.45 26897.30 27399.38 15399.21 225
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19698.92 32098.98 15599.48 18099.53 9697.76 18798.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 284
v2v48298.06 20897.77 22998.92 20398.90 32198.82 18499.57 11699.36 24396.65 29099.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 284
131498.68 15998.54 16399.11 17998.89 32298.65 19799.27 26399.49 14596.89 27697.99 33799.56 22397.72 11299.83 17097.74 23599.27 16498.84 258
OPM-MVS98.19 19398.10 19198.45 27198.88 32397.07 28599.28 25899.38 23498.57 8899.22 19999.81 9092.12 30599.66 24098.08 20397.54 27098.61 326
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119297.81 25397.44 26998.91 20798.88 32398.68 19499.51 15599.34 25396.18 32699.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 284
EPMVS97.82 25197.65 24398.35 28398.88 32395.98 33399.49 17694.71 40697.57 20799.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 211
v114497.98 22597.69 23998.85 22498.87 32698.66 19699.54 13899.35 24996.27 31999.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 289
DU-MVS98.08 20697.79 22498.96 19698.87 32698.98 15599.41 20999.45 19997.87 17198.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 289
NR-MVSNet97.97 22897.61 24899.02 18898.87 32699.26 11999.47 18699.42 21597.63 20297.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 289
WR-MVS98.06 20897.73 23699.06 18398.86 32999.25 12199.19 28499.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 276
v124097.69 27297.32 28798.79 23398.85 33098.43 22199.48 18099.36 24396.11 33399.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 280
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19699.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
v14419297.92 23497.60 24998.87 21898.83 33298.65 19799.55 13499.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 280
v192192097.80 25597.45 26498.84 22598.80 33398.53 20799.52 14799.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 284
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33498.14 23499.38 22694.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 17998.68 289
test-LLR98.06 20897.90 21598.55 25898.79 33497.10 28198.67 36697.75 38697.34 23498.61 30198.85 35294.45 24299.45 26897.25 27599.38 15399.10 230
test-mter97.49 29597.13 30098.55 25898.79 33497.10 28198.67 36697.75 38696.65 29098.61 30198.85 35288.23 36099.45 26897.25 27599.38 15399.10 230
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 222
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26399.13 29498.33 37597.36 23399.07 22998.94 34695.64 18999.15 32392.95 37098.68 20796.12 397
PS-MVSNAJss98.92 12798.92 11198.90 20998.78 33798.53 20799.78 3299.54 8598.07 15399.00 24499.76 13599.01 1899.37 28499.13 8097.23 29198.81 259
MVS97.28 30396.55 31599.48 12298.78 33798.95 16599.27 26399.39 22683.53 39998.08 33299.54 23296.97 14199.87 14194.23 35699.16 16999.63 140
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23698.78 33798.62 20099.65 7699.49 14597.76 18798.49 31099.60 21094.23 24898.97 35598.00 21092.90 37098.70 280
PEN-MVS97.76 25897.44 26998.72 23998.77 34298.54 20699.78 3299.51 11697.06 26298.29 32299.64 19292.63 29398.89 36198.09 19993.16 36898.72 274
v7n97.87 24097.52 25598.92 20398.76 34398.58 20399.84 1299.46 18896.20 32498.91 25599.70 15894.89 21399.44 27396.03 32293.89 36098.75 268
v14897.79 25697.55 25198.50 26198.74 34497.72 25899.54 13899.33 26096.26 32098.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 315
JIA-IIPM97.50 29097.02 30498.93 20198.73 34597.80 25599.30 24898.97 32691.73 38498.91 25594.86 39995.10 20699.71 22397.58 24897.98 24599.28 219
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19979.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7099.66 2898.09 14898.35 31799.82 7595.25 20398.01 38197.41 26795.30 33498.78 261
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20496.16 37299.80 10488.71 35299.04 33996.69 30896.55 30498.65 306
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18398.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 284
test_djsdf98.67 16098.57 16098.98 19398.70 35098.91 17299.88 399.46 18897.55 21099.22 19999.88 3595.73 18599.28 30299.03 8897.62 26398.75 268
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22899.47 17893.46 37497.41 35199.78 12387.06 36999.33 29496.92 29992.70 37498.65 306
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4388.69 35399.32 29795.89 32594.93 34398.62 317
mvs_tets98.40 17898.23 18098.91 20798.67 35398.51 21399.66 7099.53 9698.19 12998.65 29699.81 9092.75 28499.44 27399.31 6297.48 27898.77 264
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30698.67 296
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23299.51 11697.13 25296.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35698.13 23599.84 1299.48 15896.68 28797.97 33999.67 18092.92 28098.56 37096.88 30192.60 37598.70 280
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28198.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 308
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18896.11 33398.22 32699.62 20396.45 15998.97 35593.77 36095.97 31998.61 326
pmmvs498.13 20097.90 21598.81 23098.61 35998.87 17598.99 32999.21 29896.44 30999.06 23499.58 21695.90 17999.11 33297.18 28396.11 31398.46 344
jajsoiax98.43 17298.28 17898.88 21498.60 36098.43 22199.82 1699.53 9698.19 12998.63 29899.80 10493.22 27599.44 27399.22 7397.50 27498.77 264
cascas97.69 27297.43 27398.48 26498.60 36097.30 27098.18 39299.39 22692.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20898.86 256
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26398.90 33996.14 33198.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 315
GG-mvs-BLEND98.45 27198.55 36398.16 23299.43 20093.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23297.98 374
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24897.56 253
anonymousdsp98.44 17198.28 17898.94 19998.50 36598.96 16299.77 3499.50 13697.07 26098.87 26399.77 13194.76 22399.28 30298.66 14297.60 26498.57 332
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29792.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 330
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22998.13 33199.30 30288.99 34999.56 25995.68 33299.80 10197.90 379
test_fmvsmconf0.01_n99.22 7999.03 9199.79 4998.42 36899.48 9199.55 13499.51 11699.39 1099.78 4899.93 994.80 21799.95 5999.93 1199.95 1999.94 11
test0.0.03 197.71 27097.42 27498.56 25698.41 36997.82 25498.78 35798.63 36897.34 23498.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 255
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27798.75 35599.02 3897.82 34499.71 15496.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27299.15 29199.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 317
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27799.11 30399.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 308
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31299.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24299.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23297.42 387
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28199.10 30599.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 308
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11696.63 39896.13 33298.87 26398.61 36594.59 23397.70 38895.08 34598.86 19699.55 160
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29498.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29498.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28898.93 33096.16 32894.08 38599.22 31582.72 38899.47 26595.67 33397.50 27498.17 362
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24697.23 35799.36 28595.28 19999.46 26695.51 33599.78 10897.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15599.38 23496.55 30096.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15891.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14799.50 13693.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 329
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31098.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25196.76 390
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8399.08 31396.17 32797.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15889.01 39391.99 39499.67 18085.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 13498.71 13999.30 15397.20 38898.18 23199.62 8898.91 33799.28 1698.63 29899.81 9095.96 17399.99 499.24 7299.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12299.44 20795.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 29095.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23495.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7998.25 37798.28 11694.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 175
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22898.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23799.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5698.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28699.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 18098.75 35596.74 28396.68 36799.88 3588.65 35599.71 22398.37 17982.74 39898.09 365
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5285.77 37296.15 39997.86 22043.89 40995.39 399
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1160.00 4140.00 41599.56 22396.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2160.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 27895.47 336
PC_three_145298.18 13299.84 3099.70 15899.31 398.52 37198.30 18799.80 10199.81 61
test_241102_TWO99.48 15899.08 3399.88 2099.81 9098.94 2999.96 3098.91 10299.84 8199.88 26
test_0728_THIRD98.99 4599.81 3899.80 10499.09 1499.96 3098.85 11599.90 4399.88 26
GSMVS99.52 169
sam_mvs194.86 21499.52 169
sam_mvs94.72 226
MTGPAbinary99.47 178
test_post199.23 27765.14 41194.18 25299.71 22397.58 248
test_post65.99 41094.65 23299.73 213
patchmatchnet-post98.70 36194.79 21899.74 207
MTMP99.54 13898.88 342
test9_res97.49 25999.72 12299.75 88
agg_prior297.21 27799.73 12199.75 88
test_prior499.56 7598.99 329
test_prior298.96 33698.34 11199.01 24099.52 23998.68 6497.96 21299.74 119
旧先验298.96 33696.70 28699.47 13699.94 6998.19 192
新几何299.01 326
无先验98.99 32999.51 11696.89 27699.93 8497.53 25699.72 103
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata198.85 35098.32 114
plane_prior599.47 17899.69 23497.78 22897.63 26198.67 296
plane_prior499.61 207
plane_prior397.00 29398.69 7999.11 221
plane_prior299.39 22198.97 51
plane_prior96.97 29699.21 28398.45 9997.60 264
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24898.64 308
HQP3-MVS99.39 22697.58 266
HQP2-MVS92.47 298
MDTV_nov1_ep13_2view95.18 35399.35 23796.84 27999.58 11495.19 20597.82 22599.46 192
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55