This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
CHOSEN 280x42099.12 9099.13 7199.08 16699.66 11997.89 23898.43 34799.71 1398.88 4799.62 8899.76 11396.63 15199.70 21099.46 2199.99 199.66 118
patch_mono-299.26 6699.62 198.16 27899.81 4294.59 34199.52 12499.64 3399.33 299.73 5099.90 1099.00 2599.99 199.69 199.98 299.89 2
dcpmvs_299.23 7199.58 298.16 27899.83 3794.68 34099.76 3199.52 9299.07 1899.98 199.88 1998.56 7799.93 7399.67 299.98 299.87 13
CANet99.25 6999.14 7099.59 8799.41 19299.16 12899.35 20999.57 5298.82 5299.51 11399.61 19296.46 15699.95 4799.59 699.98 299.65 122
CHOSEN 1792x268899.19 7499.10 7499.45 12299.89 998.52 20399.39 19199.94 198.73 6199.11 20299.89 1495.50 18999.94 5899.50 1399.97 599.89 2
DeepC-MVS98.35 299.30 5999.19 6699.64 8099.82 3999.23 12199.62 7199.55 6798.94 4199.63 8499.95 295.82 17999.94 5899.37 2899.97 599.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG99.32 5799.32 3699.32 13899.85 2698.29 21799.71 3999.66 2798.11 12099.41 13499.80 8398.37 9499.96 2098.99 6699.96 799.72 96
CANet_DTU98.97 11698.87 10999.25 15299.33 21198.42 21499.08 27299.30 26799.16 699.43 12799.75 11895.27 19799.97 1298.56 13999.95 899.36 188
EI-MVSNet-UG-set99.58 599.57 399.64 8099.78 4899.14 13399.60 7899.45 18799.01 2499.90 499.83 4798.98 2799.93 7399.59 699.95 899.86 15
EI-MVSNet-Vis-set99.58 599.56 599.64 8099.78 4899.15 13299.61 7799.45 18799.01 2499.89 599.82 5499.01 1999.92 8599.56 999.95 899.85 18
UGNet98.87 12198.69 13199.40 12899.22 24198.72 18499.44 16499.68 1999.24 499.18 19399.42 25492.74 27299.96 2099.34 3399.94 1199.53 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SD-MVS99.41 4699.52 899.05 17099.74 7699.68 5499.46 15999.52 9299.11 1199.88 699.91 899.43 197.70 35998.72 11199.93 1299.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-399.57 899.53 799.68 6899.76 5799.29 11499.58 9399.44 19699.01 2499.87 1299.80 8398.97 2899.91 9699.44 2499.92 1399.83 33
Regformer-499.59 399.54 699.73 6199.76 5799.41 10199.58 9399.49 13499.02 2199.88 699.80 8399.00 2599.94 5899.45 2299.92 1399.84 22
APDe-MVS99.66 199.57 399.92 199.77 5399.89 499.75 3399.56 5899.02 2199.88 699.85 3499.18 1099.96 2099.22 4499.92 1399.90 1
HPM-MVS_fast99.51 1599.40 2099.85 2899.91 199.79 3399.76 3199.56 5897.72 16599.76 4499.75 11899.13 1299.92 8599.07 6099.92 1399.85 18
3Dnovator97.25 999.24 7099.05 7999.81 4199.12 26399.66 5999.84 1099.74 1099.09 1598.92 23799.90 1095.94 17399.98 798.95 7099.92 1399.79 62
MP-MVS-pluss99.37 5299.20 6599.88 699.90 499.87 1299.30 21999.52 9297.18 22099.60 9499.79 9598.79 5199.95 4798.83 9699.91 1899.83 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2499.34 3299.88 699.87 1699.86 1399.47 15699.48 14798.05 13399.76 4499.86 2898.82 4899.93 7398.82 10099.91 1899.84 22
HPM-MVScopyleft99.42 4199.28 5499.83 3699.90 499.72 4799.81 1699.54 7597.59 17799.68 6299.63 18298.91 4099.94 5898.58 13499.91 1899.84 22
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.93 11898.67 13399.72 6499.85 2699.53 8599.62 7199.59 4492.65 34999.71 5599.78 10298.06 11099.90 11198.84 9399.91 1899.74 83
CP-MVS99.45 2899.32 3699.85 2899.83 3799.75 4399.69 4299.52 9298.07 12899.53 10999.63 18298.93 3999.97 1298.74 10799.91 1899.83 33
PHI-MVS99.30 5999.17 6899.70 6799.56 15399.52 8899.58 9399.80 897.12 22699.62 8899.73 13198.58 7599.90 11198.61 12899.91 1899.68 112
DeepPCF-MVS98.18 398.81 13699.37 2597.12 32699.60 14391.75 36398.61 33799.44 19699.35 199.83 2099.85 3498.70 6799.81 16499.02 6499.91 1899.81 46
ZNCC-MVS99.47 2499.33 3499.87 1299.87 1699.81 2799.64 6399.67 2298.08 12799.55 10699.64 17698.91 4099.96 2098.72 11199.90 2599.82 40
test_0728_THIRD98.99 3199.81 2599.80 8399.09 1499.96 2098.85 9099.90 2599.88 8
zzz-MVS99.49 1799.36 2799.89 499.90 499.86 1399.36 20399.47 16598.79 5799.68 6299.81 6798.43 8799.97 1298.88 7999.90 2599.83 33
MTAPA99.52 1499.39 2199.89 499.90 499.86 1399.66 5399.47 16598.79 5799.68 6299.81 6798.43 8799.97 1298.88 7999.90 2599.83 33
UA-Net99.42 4199.29 5099.80 4399.62 13599.55 8099.50 13599.70 1598.79 5799.77 3799.96 197.45 12399.96 2098.92 7599.90 2599.89 2
jason99.13 8499.03 8499.45 12299.46 18298.87 16999.12 26399.26 27698.03 13699.79 3099.65 16997.02 13899.85 13699.02 6499.90 2599.65 122
jason: jason.
SteuartSystems-ACMMP99.54 1099.42 1799.87 1299.82 3999.81 2799.59 8599.51 10698.62 6799.79 3099.83 4799.28 499.97 1298.48 14799.90 2599.84 22
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.16 8098.95 10099.78 4899.77 5399.53 8599.41 17999.50 12697.03 23799.04 21899.88 1997.39 12499.92 8598.66 12199.90 2599.87 13
MSDG98.98 11498.80 12099.53 10299.76 5799.19 12398.75 32699.55 6797.25 21499.47 11999.77 10997.82 11599.87 12796.93 27599.90 2599.54 152
COLMAP_ROBcopyleft97.56 698.86 12498.75 12699.17 16099.88 1298.53 19999.34 21299.59 4497.55 18298.70 27099.89 1495.83 17899.90 11198.10 18099.90 2599.08 208
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SMA-MVScopyleft99.44 3299.30 4699.85 2899.73 8499.83 1799.56 10699.47 16597.45 19499.78 3599.82 5499.18 1099.91 9698.79 10299.89 3599.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3299.30 4699.86 2199.88 1299.79 3399.69 4299.48 14798.12 11899.50 11499.75 11898.78 5299.97 1298.57 13699.89 3599.83 33
MVS_111021_LR99.41 4699.33 3499.65 7599.77 5399.51 9098.94 30899.85 698.82 5299.65 7999.74 12498.51 8199.80 16998.83 9699.89 3599.64 129
TSAR-MVS + MP.99.58 599.50 1099.81 4199.91 199.66 5999.63 6599.39 21898.91 4699.78 3599.85 3499.36 299.94 5898.84 9399.88 3899.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
abl_699.44 3299.31 4399.83 3699.85 2699.75 4399.66 5399.59 4498.13 11699.82 2399.81 6798.60 7499.96 2098.46 15199.88 3899.79 62
QAPM98.67 14998.30 16699.80 4399.20 24599.67 5799.77 2899.72 1194.74 33098.73 26299.90 1095.78 18099.98 796.96 27299.88 3899.76 77
MVS_111021_HR99.41 4699.32 3699.66 7199.72 8999.47 9598.95 30699.85 698.82 5299.54 10799.73 13198.51 8199.74 18798.91 7699.88 3899.77 72
DPE-MVScopyleft99.46 2699.32 3699.91 299.78 4899.88 899.36 20399.51 10698.73 6199.88 699.84 4398.72 6599.96 2098.16 17799.87 4299.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS99.49 1799.37 2599.86 2199.87 1699.80 2999.66 5399.67 2298.15 11499.68 6299.69 14999.06 1699.96 2098.69 11699.87 4299.84 22
region2R99.48 2199.35 3099.87 1299.88 1299.80 2999.65 6099.66 2798.13 11699.66 7399.68 15698.96 2999.96 2098.62 12599.87 4299.84 22
#test#99.43 3699.29 5099.86 2199.87 1699.80 2999.55 11599.67 2297.83 15199.68 6299.69 14999.06 1699.96 2098.39 15599.87 4299.84 22
Regformer-199.53 1299.47 1399.72 6499.71 9599.44 9899.49 14599.46 17598.95 4099.83 2099.76 11399.01 1999.93 7399.17 5099.87 4299.80 56
Regformer-299.54 1099.47 1399.75 5499.71 9599.52 8899.49 14599.49 13498.94 4199.83 2099.76 11399.01 1999.94 5899.15 5399.87 4299.80 56
ACMMPR99.49 1799.36 2799.86 2199.87 1699.79 3399.66 5399.67 2298.15 11499.67 6899.69 14998.95 3299.96 2098.69 11699.87 4299.84 22
MP-MVScopyleft99.33 5699.15 6999.87 1299.88 1299.82 2399.66 5399.46 17598.09 12399.48 11899.74 12498.29 9899.96 2097.93 19599.87 4299.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.45 2899.31 4399.86 2199.87 1699.78 4099.58 9399.65 3297.84 15099.71 5599.80 8399.12 1399.97 1298.33 16399.87 4299.83 33
DeepC-MVS_fast98.69 199.49 1799.39 2199.77 5099.63 12999.59 7399.36 20399.46 17599.07 1899.79 3099.82 5498.85 4599.92 8598.68 11899.87 4299.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS97.07 1597.74 25097.34 27098.94 18599.70 10297.53 25199.25 24199.51 10691.90 35199.30 16099.63 18298.78 5299.64 22688.09 36399.87 4299.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft99.57 899.47 1399.88 699.85 2699.89 499.57 9999.37 23399.10 1299.81 2599.80 8398.94 3599.96 2098.93 7399.86 5399.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3399.89 499.57 9999.51 10699.96 2098.93 7399.86 5399.88 8
GST-MVS99.40 4999.24 6199.85 2899.86 2299.79 3399.60 7899.67 2297.97 13999.63 8499.68 15698.52 8099.95 4798.38 15799.86 5399.81 46
XVS99.53 1299.42 1799.87 1299.85 2699.83 1799.69 4299.68 1998.98 3499.37 14699.74 12498.81 4999.94 5898.79 10299.86 5399.84 22
X-MVStestdata96.55 29895.45 31399.87 1299.85 2699.83 1799.69 4299.68 1998.98 3499.37 14664.01 37798.81 4999.94 5898.79 10299.86 5399.84 22
APD-MVScopyleft99.27 6499.08 7799.84 3599.75 6899.79 3399.50 13599.50 12697.16 22299.77 3799.82 5498.78 5299.94 5897.56 23199.86 5399.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+97.12 1399.18 7698.97 9699.82 3899.17 25699.68 5499.81 1699.51 10699.20 598.72 26399.89 1495.68 18499.97 1298.86 8899.86 5399.81 46
SED-MVS99.61 299.52 899.88 699.84 3399.90 299.60 7899.48 14799.08 1699.91 299.81 6799.20 799.96 2098.91 7699.85 6099.79 62
IU-MVS99.84 3399.88 899.32 26098.30 9899.84 1598.86 8899.85 6099.89 2
MVSFormer99.17 7899.12 7299.29 14699.51 16198.94 16299.88 299.46 17597.55 18299.80 2899.65 16997.39 12499.28 28299.03 6299.85 6099.65 122
lupinMVS99.13 8499.01 9199.46 12199.51 16198.94 16299.05 27899.16 29197.86 14699.80 2899.56 20897.39 12499.86 13098.94 7199.85 6099.58 147
PVSNet_Blended99.08 10198.97 9699.42 12799.76 5798.79 18098.78 32399.91 396.74 25599.67 6899.49 23397.53 12199.88 12498.98 6799.85 6099.60 139
MVS-HIRNet95.75 31295.16 31697.51 31699.30 22093.69 35398.88 31395.78 36985.09 36398.78 25892.65 36791.29 31099.37 26394.85 32399.85 6099.46 176
PCF-MVS97.08 1497.66 26597.06 28699.47 11999.61 13999.09 13998.04 36099.25 27891.24 35498.51 29099.70 14094.55 23099.91 9692.76 34799.85 6099.42 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSC_two_6792asdad99.87 1299.51 16199.76 4199.33 25099.96 2098.87 8399.84 6799.89 2
No_MVS99.87 1299.51 16199.76 4199.33 25099.96 2098.87 8399.84 6799.89 2
test_241102_TWO99.48 14799.08 1699.88 699.81 6798.94 3599.96 2098.91 7699.84 6799.88 8
xxxxxxxxxxxxxcwj99.43 3699.32 3699.75 5499.76 5799.59 7399.14 26199.53 8699.00 2899.71 5599.80 8398.95 3299.93 7398.19 17299.84 6799.74 83
SF-MVS99.38 5199.24 6199.79 4699.79 4699.68 5499.57 9999.54 7597.82 15699.71 5599.80 8398.95 3299.93 7398.19 17299.84 6799.74 83
MSLP-MVS++99.46 2699.47 1399.44 12699.60 14399.16 12899.41 17999.71 1398.98 3499.45 12299.78 10299.19 999.54 24099.28 3999.84 6799.63 133
DELS-MVS99.48 2199.42 1799.65 7599.72 8999.40 10399.05 27899.66 2799.14 799.57 10199.80 8398.46 8599.94 5899.57 899.84 6799.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.11 9598.90 10599.74 5999.80 4599.46 9699.59 8599.49 13497.03 23799.63 8499.69 14997.27 13199.96 2097.82 20499.84 6799.81 46
LS3D99.27 6499.12 7299.74 5999.18 25099.75 4399.56 10699.57 5298.45 8199.49 11799.85 3497.77 11799.94 5898.33 16399.84 6799.52 158
ETH3 D test640098.70 14598.35 16199.73 6199.69 10599.60 7099.16 25599.45 18795.42 31899.27 16899.60 19597.39 12499.91 9695.36 31699.83 7699.70 105
ETH3D-3000-0.199.21 7299.02 8799.77 5099.73 8499.69 5299.38 19699.51 10697.45 19499.61 9099.75 11898.51 8199.91 9697.45 24399.83 7699.71 103
AllTest98.87 12198.72 12799.31 13999.86 2298.48 20999.56 10699.61 3697.85 14899.36 14999.85 3495.95 17199.85 13696.66 28999.83 7699.59 143
TestCases99.31 13999.86 2298.48 20999.61 3697.85 14899.36 14999.85 3495.95 17199.85 13696.66 28999.83 7699.59 143
CDPH-MVS99.13 8498.91 10499.80 4399.75 6899.71 4999.15 25999.41 20896.60 26899.60 9499.55 21198.83 4799.90 11197.48 23899.83 7699.78 70
ACMMPcopyleft99.45 2899.32 3699.82 3899.89 999.67 5799.62 7199.69 1898.12 11899.63 8499.84 4398.73 6499.96 2098.55 14299.83 7699.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
9.1499.10 7499.72 8999.40 18799.51 10697.53 18799.64 8399.78 10298.84 4699.91 9697.63 22299.82 82
PVSNet_Blended_VisFu99.36 5399.28 5499.61 8599.86 2299.07 14299.47 15699.93 297.66 17399.71 5599.86 2897.73 11899.96 2099.47 2099.82 8299.79 62
DROMVSNet99.44 3299.39 2199.58 9099.56 15399.49 9199.88 299.58 5098.38 8799.73 5099.69 14998.20 10299.70 21099.64 399.82 8299.54 152
SR-MVS-dyc-post99.45 2899.31 4399.85 2899.76 5799.82 2399.63 6599.52 9298.38 8799.76 4499.82 5498.53 7899.95 4798.61 12899.81 8599.77 72
RE-MVS-def99.34 3299.76 5799.82 2399.63 6599.52 9298.38 8799.76 4499.82 5498.75 6098.61 12899.81 8599.77 72
APD-MVS_3200maxsize99.48 2199.35 3099.85 2899.76 5799.83 1799.63 6599.54 7598.36 9199.79 3099.82 5498.86 4499.95 4798.62 12599.81 8599.78 70
OMC-MVS99.08 10199.04 8299.20 15799.67 11098.22 22199.28 22599.52 9298.07 12899.66 7399.81 6797.79 11699.78 17697.79 20699.81 8599.60 139
DVP-MVS++99.59 399.50 1099.88 699.51 16199.88 899.87 699.51 10698.99 3199.88 699.81 6799.27 599.96 2098.85 9099.80 8999.81 46
PC_three_145298.18 11299.84 1599.70 14099.31 398.52 34498.30 16799.80 8999.81 46
OPU-MVS99.64 8099.56 15399.72 4799.60 7899.70 14099.27 599.42 25698.24 16999.80 8999.79 62
MS-PatchMatch97.24 28797.32 27396.99 32798.45 34093.51 35698.82 31999.32 26097.41 20198.13 31299.30 28888.99 33599.56 23795.68 30899.80 8997.90 354
HPM-MVS++copyleft99.39 5099.23 6399.87 1299.75 6899.84 1699.43 17099.51 10698.68 6599.27 16899.53 22098.64 7399.96 2098.44 15399.80 8999.79 62
CNVR-MVS99.42 4199.30 4699.78 4899.62 13599.71 4999.26 23999.52 9298.82 5299.39 14199.71 13698.96 2999.85 13698.59 13399.80 8999.77 72
MG-MVS99.13 8499.02 8799.45 12299.57 14998.63 19199.07 27399.34 24398.99 3199.61 9099.82 5497.98 11299.87 12797.00 26899.80 8999.85 18
test117299.43 3699.29 5099.85 2899.75 6899.82 2399.60 7899.56 5898.28 9999.74 4899.79 9598.53 7899.95 4798.55 14299.78 9699.79 62
CS-MVS99.50 1699.49 1299.52 10899.76 5799.35 10699.90 199.55 6798.56 7199.77 3799.70 14098.75 6099.77 17899.64 399.78 9699.42 181
CS-MVS-test99.42 4199.39 2199.52 10899.77 5399.35 10699.80 2099.57 5298.56 7199.77 3799.44 24898.16 10699.77 17899.64 399.78 9699.42 181
MVP-Stereo97.81 23897.75 22097.99 29297.53 35296.60 29598.96 30298.85 32597.22 21897.23 33499.36 27295.28 19699.46 24595.51 31199.78 9697.92 353
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
API-MVS99.04 10699.03 8499.06 16899.40 19799.31 11299.55 11599.56 5898.54 7399.33 15699.39 26598.76 5799.78 17696.98 27099.78 9698.07 341
SR-MVS99.43 3699.29 5099.86 2199.75 6899.83 1799.59 8599.62 3498.21 10899.73 5099.79 9598.68 6899.96 2098.44 15399.77 10199.79 62
MSP-MVS99.42 4199.27 5699.88 699.89 999.80 2999.67 4999.50 12698.70 6399.77 3799.49 23398.21 10199.95 4798.46 15199.77 10199.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.01 11298.80 12099.66 7199.56 15399.54 8299.18 25399.70 1598.18 11299.35 15299.63 18296.32 16199.90 11197.48 23899.77 10199.55 150
OpenMVScopyleft96.50 1698.47 15798.12 17599.52 10899.04 27999.53 8599.82 1499.72 1194.56 33398.08 31399.88 1994.73 22199.98 797.47 24099.76 10499.06 214
ZD-MVS99.71 9599.79 3399.61 3696.84 25099.56 10299.54 21698.58 7599.96 2096.93 27599.75 105
MCST-MVS99.43 3699.30 4699.82 3899.79 4699.74 4699.29 22399.40 21498.79 5799.52 11199.62 18898.91 4099.90 11198.64 12399.75 10599.82 40
CNLPA99.14 8298.99 9299.59 8799.58 14799.41 10199.16 25599.44 19698.45 8199.19 19099.49 23398.08 10999.89 11997.73 21399.75 10599.48 169
test_prior399.21 7299.05 7999.68 6899.67 11099.48 9398.96 30299.56 5898.34 9399.01 22199.52 22398.68 6899.83 15397.96 19299.74 10899.74 83
test_prior298.96 30298.34 9399.01 22199.52 22398.68 6897.96 19299.74 108
test1299.75 5499.64 12699.61 6899.29 27299.21 18498.38 9299.89 11999.74 10899.74 83
agg_prior297.21 25499.73 11199.75 78
test9_res97.49 23799.72 11299.75 78
train_agg99.02 10998.77 12399.77 5099.67 11099.65 6299.05 27899.41 20896.28 28998.95 23299.49 23398.76 5799.91 9697.63 22299.72 11299.75 78
agg_prior199.01 11298.76 12599.76 5399.67 11099.62 6698.99 29499.40 21496.26 29298.87 24599.49 23398.77 5599.91 9697.69 21999.72 11299.75 78
EPNet98.86 12498.71 12999.30 14397.20 35998.18 22299.62 7198.91 31999.28 398.63 28199.81 6795.96 17099.99 199.24 4399.72 11299.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon99.12 9098.95 10099.65 7599.74 7699.70 5199.27 23099.57 5296.40 28599.42 13099.68 15698.75 6099.80 16997.98 19199.72 11299.44 179
PVSNet96.02 1798.85 13298.84 11598.89 19899.73 8497.28 25798.32 35399.60 4197.86 14699.50 11499.57 20596.75 14899.86 13098.56 13999.70 11799.54 152
ETH3D cwj APD-0.1699.06 10398.84 11599.72 6499.51 16199.60 7099.23 24499.44 19697.04 23599.39 14199.67 16298.30 9799.92 8597.27 25099.69 11899.64 129
testtj99.12 9098.87 10999.86 2199.72 8999.79 3399.44 16499.51 10697.29 21099.59 9799.74 12498.15 10799.96 2096.74 28399.69 11899.81 46
原ACMM199.65 7599.73 8499.33 10899.47 16597.46 19199.12 20099.66 16898.67 7199.91 9697.70 21899.69 11899.71 103
test22299.75 6899.49 9198.91 31199.49 13496.42 28399.34 15599.65 16998.28 9999.69 11899.72 96
F-COLMAP99.19 7499.04 8299.64 8099.78 4899.27 11799.42 17799.54 7597.29 21099.41 13499.59 19898.42 9099.93 7398.19 17299.69 11899.73 90
DPM-MVS98.95 11798.71 12999.66 7199.63 12999.55 8098.64 33699.10 29797.93 14299.42 13099.55 21198.67 7199.80 16995.80 30599.68 12399.61 137
旧先验199.74 7699.59 7399.54 7599.69 14998.47 8499.68 12399.73 90
112199.09 9998.87 10999.75 5499.74 7699.60 7099.27 23099.48 14796.82 25399.25 17599.65 16998.38 9299.93 7397.53 23499.67 12599.73 90
PS-MVSNAJ99.32 5799.32 3699.30 14399.57 14998.94 16298.97 30199.46 17598.92 4599.71 5599.24 29999.01 1999.98 799.35 2999.66 12698.97 223
新几何199.75 5499.75 6899.59 7399.54 7596.76 25499.29 16399.64 17698.43 8799.94 5896.92 27799.66 12699.72 96
EPNet_dtu98.03 20397.96 19598.23 27498.27 34295.54 32199.23 24498.75 33099.02 2197.82 32399.71 13696.11 16699.48 24293.04 34399.65 12899.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata99.54 9699.75 6898.95 15999.51 10697.07 23299.43 12799.70 14098.87 4399.94 5897.76 20999.64 12999.72 96
PatchMatch-RL98.84 13598.62 14399.52 10899.71 9599.28 11599.06 27699.77 997.74 16499.50 11499.53 22095.41 19199.84 14297.17 26199.64 12999.44 179
NCCC99.34 5599.19 6699.79 4699.61 13999.65 6299.30 21999.48 14798.86 4899.21 18499.63 18298.72 6599.90 11198.25 16899.63 13199.80 56
EIA-MVS99.18 7699.09 7699.45 12299.49 17399.18 12599.67 4999.53 8697.66 17399.40 13999.44 24898.10 10899.81 16498.94 7199.62 13299.35 189
PLCcopyleft97.94 499.02 10998.85 11499.53 10299.66 11999.01 14899.24 24399.52 9296.85 24999.27 16899.48 23998.25 10099.91 9697.76 20999.62 13299.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS99.26 6699.21 6499.40 12899.46 18299.30 11399.56 10699.52 9298.52 7599.44 12699.27 29598.41 9199.86 13099.10 5799.59 13499.04 215
thisisatest053098.35 16898.03 18799.31 13999.63 12998.56 19699.54 11896.75 36697.53 18799.73 5099.65 16991.25 31199.89 11998.62 12599.56 13599.48 169
tttt051798.42 16198.14 17399.28 14999.66 11998.38 21599.74 3696.85 36497.68 16999.79 3099.74 12491.39 30899.89 11998.83 9699.56 13599.57 148
BH-RMVSNet98.41 16398.08 18199.40 12899.41 19298.83 17699.30 21998.77 32997.70 16798.94 23499.65 16992.91 26899.74 18796.52 29199.55 13799.64 129
MAR-MVS98.86 12498.63 13899.54 9699.37 20399.66 5999.45 16099.54 7596.61 26699.01 22199.40 26197.09 13599.86 13097.68 22199.53 13899.10 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051598.14 18797.79 21199.19 15899.50 17198.50 20698.61 33796.82 36596.95 24399.54 10799.43 25191.66 30499.86 13098.08 18599.51 13999.22 197
Fast-Effi-MVS+-dtu98.77 14298.83 11998.60 23199.41 19296.99 27899.52 12499.49 13498.11 12099.24 17699.34 27896.96 14199.79 17297.95 19499.45 14099.02 218
PAPM_NR99.04 10698.84 11599.66 7199.74 7699.44 9899.39 19199.38 22497.70 16799.28 16599.28 29298.34 9599.85 13696.96 27299.45 14099.69 108
TSAR-MVS + GP.99.36 5399.36 2799.36 13299.67 11098.61 19499.07 27399.33 25099.00 2899.82 2399.81 6799.06 1699.84 14299.09 5899.42 14299.65 122
Vis-MVSNetpermissive99.12 9098.97 9699.56 9499.78 4899.10 13899.68 4799.66 2798.49 7799.86 1399.87 2594.77 21899.84 14299.19 4799.41 14399.74 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250696.81 29496.65 29297.29 32299.74 7692.21 36299.60 7885.06 38199.13 899.77 3799.93 487.82 35199.85 13699.38 2799.38 14499.80 56
test111198.04 20198.11 17697.83 30299.74 7693.82 34999.58 9395.40 37199.12 1099.65 7999.93 490.73 31699.84 14299.43 2599.38 14499.82 40
ECVR-MVScopyleft98.04 20198.05 18598.00 29199.74 7694.37 34499.59 8594.98 37299.13 899.66 7399.93 490.67 31799.84 14299.40 2699.38 14499.80 56
Effi-MVS+-dtu98.78 14098.89 10798.47 25099.33 21196.91 28499.57 9999.30 26798.47 7899.41 13498.99 32596.78 14599.74 18798.73 10999.38 14498.74 248
test-LLR98.06 19597.90 20298.55 24098.79 30997.10 26598.67 33297.75 35797.34 20598.61 28498.85 33294.45 23399.45 24697.25 25299.38 14499.10 203
TESTMET0.1,197.55 27097.27 27998.40 25998.93 29396.53 29698.67 33297.61 36096.96 24198.64 28099.28 29288.63 34099.45 24697.30 24999.38 14499.21 198
test-mter97.49 27997.13 28498.55 24098.79 30997.10 26598.67 33297.75 35796.65 26298.61 28498.85 33288.23 34499.45 24697.25 25299.38 14499.10 203
PAPR98.63 15398.34 16299.51 11299.40 19799.03 14598.80 32199.36 23496.33 28699.00 22699.12 31498.46 8599.84 14295.23 31899.37 15199.66 118
xiu_mvs_v1_base_debu99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
xiu_mvs_v1_base99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
xiu_mvs_v1_base_debi99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
MVS_030496.79 29596.52 29597.59 31399.22 24194.92 33699.04 28399.59 4496.49 27498.43 29698.99 32580.48 36899.39 25897.15 26299.27 15598.47 317
131498.68 14898.54 15299.11 16598.89 29698.65 18999.27 23099.49 13496.89 24797.99 31899.56 20897.72 11999.83 15397.74 21299.27 15598.84 232
xiu_mvs_v2_base99.26 6699.25 6099.29 14699.53 15798.91 16699.02 28799.45 18798.80 5699.71 5599.26 29798.94 3599.98 799.34 3399.23 15798.98 222
PatchmatchNetpermissive98.31 17098.36 15998.19 27699.16 25895.32 32799.27 23098.92 31697.37 20499.37 14699.58 20194.90 20999.70 21097.43 24599.21 15899.54 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 18098.16 17198.27 27399.30 22095.55 31999.07 27398.97 31097.57 18099.43 12799.57 20592.72 27399.74 18797.58 22699.20 15999.52 158
sss99.17 7899.05 7999.53 10299.62 13598.97 15399.36 20399.62 3497.83 15199.67 6899.65 16997.37 12899.95 4799.19 4799.19 16099.68 112
MVS97.28 28596.55 29499.48 11698.78 31298.95 15999.27 23099.39 21883.53 36498.08 31399.54 21696.97 14099.87 12794.23 33099.16 16199.63 133
casdiffmvs99.13 8498.98 9599.56 9499.65 12499.16 12899.56 10699.50 12698.33 9699.41 13499.86 2895.92 17499.83 15399.45 2299.16 16199.70 105
BH-untuned98.42 16198.36 15998.59 23299.49 17396.70 29099.27 23099.13 29597.24 21698.80 25599.38 26695.75 18199.74 18797.07 26699.16 16199.33 192
baseline99.15 8199.02 8799.53 10299.66 11999.14 13399.72 3799.48 14798.35 9299.42 13099.84 4396.07 16799.79 17299.51 1299.14 16499.67 115
IS-MVSNet99.05 10598.87 10999.57 9299.73 8499.32 10999.75 3399.20 28698.02 13799.56 10299.86 2896.54 15499.67 21698.09 18199.13 16599.73 90
Patchmatch-test97.93 21797.65 22998.77 22199.18 25097.07 26999.03 28499.14 29496.16 30298.74 26199.57 20594.56 22999.72 19893.36 33999.11 16699.52 158
diffmvs99.14 8299.02 8799.51 11299.61 13998.96 15799.28 22599.49 13498.46 8099.72 5499.71 13696.50 15599.88 12499.31 3699.11 16699.67 115
Vis-MVSNet (Re-imp)98.87 12198.72 12799.31 13999.71 9598.88 16899.80 2099.44 19697.91 14499.36 14999.78 10295.49 19099.43 25597.91 19699.11 16699.62 135
RPSCF98.22 17698.62 14396.99 32799.82 3991.58 36499.72 3799.44 19696.61 26699.66 7399.89 1495.92 17499.82 16097.46 24199.10 16999.57 148
gg-mvs-nofinetune96.17 30795.32 31598.73 22398.79 30998.14 22599.38 19694.09 37591.07 35698.07 31691.04 37089.62 33199.35 27196.75 28299.09 17098.68 265
EPMVS97.82 23697.65 22998.35 26398.88 29795.98 31199.49 14594.71 37497.57 18099.26 17399.48 23992.46 28799.71 20497.87 19999.08 17199.35 189
MVS_Test99.10 9898.97 9699.48 11699.49 17399.14 13399.67 4999.34 24397.31 20899.58 9999.76 11397.65 12099.82 16098.87 8399.07 17299.46 176
ADS-MVSNet298.02 20598.07 18497.87 29999.33 21195.19 33099.23 24499.08 30096.24 29499.10 20599.67 16294.11 24498.93 33696.81 28099.05 17399.48 169
ADS-MVSNet98.20 17998.08 18198.56 23899.33 21196.48 29899.23 24499.15 29296.24 29499.10 20599.67 16294.11 24499.71 20496.81 28099.05 17399.48 169
GeoE98.85 13298.62 14399.53 10299.61 13999.08 14099.80 2099.51 10697.10 23099.31 15899.78 10295.23 20199.77 17898.21 17099.03 17599.75 78
baseline297.87 22597.55 23798.82 21499.18 25098.02 22999.41 17996.58 36896.97 24096.51 34499.17 30693.43 25799.57 23697.71 21699.03 17598.86 230
mvs-test198.86 12498.84 11598.89 19899.33 21197.77 24499.44 16499.30 26798.47 7899.10 20599.43 25196.78 14599.95 4798.73 10999.02 17798.96 225
HyFIR lowres test99.11 9598.92 10299.65 7599.90 499.37 10499.02 28799.91 397.67 17299.59 9799.75 11895.90 17699.73 19499.53 1099.02 17799.86 15
LCM-MVSNet-Re97.83 23398.15 17296.87 33299.30 22092.25 36199.59 8598.26 34897.43 19896.20 34799.13 31196.27 16398.73 34298.17 17698.99 17999.64 129
mvs_anonymous99.03 10898.99 9299.16 16199.38 20198.52 20399.51 12999.38 22497.79 15799.38 14499.81 6797.30 12999.45 24699.35 2998.99 17999.51 164
EPP-MVSNet99.13 8498.99 9299.53 10299.65 12499.06 14399.81 1699.33 25097.43 19899.60 9499.88 1997.14 13399.84 14299.13 5498.94 18199.69 108
MIMVSNet97.73 25197.45 25098.57 23699.45 18797.50 25299.02 28798.98 30996.11 30799.41 13499.14 31090.28 31998.74 34195.74 30698.93 18299.47 174
TAMVS99.12 9099.08 7799.24 15499.46 18298.55 19799.51 12999.46 17598.09 12399.45 12299.82 5498.34 9599.51 24198.70 11398.93 18299.67 115
CDS-MVSNet99.09 9999.03 8499.25 15299.42 18998.73 18399.45 16099.46 17598.11 12099.46 12199.77 10998.01 11199.37 26398.70 11398.92 18499.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM97.59 26997.09 28599.07 16799.06 27598.26 22098.30 35499.10 29794.88 32798.08 31399.34 27896.27 16399.64 22689.87 35698.92 18499.31 193
XVG-OURS-SEG-HR98.69 14798.62 14398.89 19899.71 9597.74 24599.12 26399.54 7598.44 8499.42 13099.71 13694.20 24099.92 8598.54 14498.90 18699.00 219
PMMVS98.80 13998.62 14399.34 13399.27 22998.70 18598.76 32599.31 26397.34 20599.21 18499.07 31697.20 13299.82 16098.56 13998.87 18799.52 158
DSMNet-mixed97.25 28697.35 26796.95 33097.84 34993.61 35599.57 9996.63 36796.13 30698.87 24598.61 34394.59 22797.70 35995.08 32098.86 18899.55 150
XVG-OURS98.73 14498.68 13298.88 20199.70 10297.73 24698.92 30999.55 6798.52 7599.45 12299.84 4395.27 19799.91 9698.08 18598.84 18999.00 219
Fast-Effi-MVS+98.70 14598.43 15699.51 11299.51 16199.28 11599.52 12499.47 16596.11 30799.01 22199.34 27896.20 16599.84 14297.88 19898.82 19099.39 187
ab-mvs98.86 12498.63 13899.54 9699.64 12699.19 12399.44 16499.54 7597.77 15999.30 16099.81 6794.20 24099.93 7399.17 5098.82 19099.49 168
MDTV_nov1_ep1398.32 16499.11 26594.44 34399.27 23098.74 33397.51 18999.40 13999.62 18894.78 21599.76 18497.59 22598.81 192
Test_1112_low_res98.89 12098.66 13699.57 9299.69 10598.95 15999.03 28499.47 16596.98 23999.15 19699.23 30096.77 14799.89 11998.83 9698.78 19399.86 15
1112_ss98.98 11498.77 12399.59 8799.68 10999.02 14699.25 24199.48 14797.23 21799.13 19899.58 20196.93 14299.90 11198.87 8398.78 19399.84 22
PatchT97.03 29196.44 29698.79 21998.99 28598.34 21699.16 25599.07 30292.13 35099.52 11197.31 36094.54 23198.98 32688.54 36198.73 19599.03 216
tpmrst98.33 16998.48 15497.90 29899.16 25894.78 33899.31 21799.11 29697.27 21299.45 12299.59 19895.33 19599.84 14298.48 14798.61 19699.09 207
BH-w/o98.00 21097.89 20698.32 26699.35 20696.20 30799.01 29298.90 32196.42 28398.38 29999.00 32495.26 19999.72 19896.06 29998.61 19699.03 216
cascas97.69 25997.43 25898.48 24698.60 33397.30 25698.18 35899.39 21892.96 34898.41 29798.78 33793.77 25499.27 28598.16 17798.61 19698.86 230
CR-MVSNet98.17 18397.93 20098.87 20599.18 25098.49 20799.22 24999.33 25096.96 24199.56 10299.38 26694.33 23699.00 32494.83 32498.58 19999.14 200
RPMNet96.72 29695.90 30699.19 15899.18 25098.49 20799.22 24999.52 9288.72 36099.56 10297.38 35794.08 24699.95 4786.87 36798.58 19999.14 200
dp97.75 24797.80 21097.59 31399.10 26893.71 35299.32 21598.88 32396.48 27899.08 21199.55 21192.67 27899.82 16096.52 29198.58 19999.24 196
CVMVSNet98.57 15598.67 13398.30 26899.35 20695.59 31899.50 13599.55 6798.60 6999.39 14199.83 4794.48 23299.45 24698.75 10698.56 20299.85 18
Effi-MVS+98.81 13698.59 14999.48 11699.46 18299.12 13798.08 35999.50 12697.50 19099.38 14499.41 25896.37 16099.81 16499.11 5698.54 20399.51 164
testgi97.65 26697.50 24498.13 28299.36 20596.45 29999.42 17799.48 14797.76 16097.87 32199.45 24791.09 31298.81 34094.53 32698.52 20499.13 202
tpm cat197.39 28297.36 26597.50 31799.17 25693.73 35199.43 17099.31 26391.27 35398.71 26499.08 31594.31 23899.77 17896.41 29598.50 20599.00 219
WTY-MVS99.06 10398.88 10899.61 8599.62 13599.16 12899.37 19999.56 5898.04 13499.53 10999.62 18896.84 14399.94 5898.85 9098.49 20699.72 96
tpmvs97.98 21298.02 18997.84 30199.04 27994.73 33999.31 21799.20 28696.10 31198.76 26099.42 25494.94 20599.81 16496.97 27198.45 20798.97 223
LFMVS97.90 22297.35 26799.54 9699.52 15999.01 14899.39 19198.24 34997.10 23099.65 7999.79 9584.79 35999.91 9699.28 3998.38 20899.69 108
test_yl98.86 12498.63 13899.54 9699.49 17399.18 12599.50 13599.07 30298.22 10699.61 9099.51 22795.37 19399.84 14298.60 13198.33 20999.59 143
Anonymous2024052998.09 19297.68 22699.34 13399.66 11998.44 21199.40 18799.43 20493.67 34099.22 18199.89 1490.23 32399.93 7399.26 4298.33 20999.66 118
DCV-MVSNet98.86 12498.63 13899.54 9699.49 17399.18 12599.50 13599.07 30298.22 10699.61 9099.51 22795.37 19399.84 14298.60 13198.33 20999.59 143
GA-MVS97.85 22897.47 24799.00 17799.38 20197.99 23198.57 34099.15 29297.04 23598.90 24099.30 28889.83 32699.38 26096.70 28698.33 20999.62 135
VDD-MVS97.73 25197.35 26798.88 20199.47 18197.12 26499.34 21298.85 32598.19 10999.67 6899.85 3482.98 36299.92 8599.49 1798.32 21399.60 139
Anonymous20240521198.30 17297.98 19299.26 15199.57 14998.16 22399.41 17998.55 34596.03 31299.19 19099.74 12491.87 29599.92 8599.16 5298.29 21499.70 105
EGC-MVSNET82.80 33577.86 34197.62 31197.91 34796.12 30899.33 21499.28 2748.40 37825.05 37999.27 29584.11 36099.33 27589.20 35898.22 21597.42 360
GG-mvs-BLEND98.45 25298.55 33698.16 22399.43 17093.68 37697.23 33498.46 34589.30 33399.22 29295.43 31398.22 21597.98 349
thres20097.61 26897.28 27698.62 23099.64 12698.03 22899.26 23998.74 33397.68 16999.09 21098.32 35091.66 30499.81 16492.88 34498.22 21598.03 344
HY-MVS97.30 798.85 13298.64 13799.47 11999.42 18999.08 14099.62 7199.36 23497.39 20399.28 16599.68 15696.44 15899.92 8598.37 15998.22 21599.40 186
thres600view797.86 22797.51 24398.92 18999.72 8997.95 23699.59 8598.74 33397.94 14199.27 16898.62 34191.75 29899.86 13093.73 33598.19 21998.96 225
thres100view90097.76 24397.45 25098.69 22799.72 8997.86 24199.59 8598.74 33397.93 14299.26 17398.62 34191.75 29899.83 15393.22 34098.18 22098.37 330
tfpn200view997.72 25397.38 26398.72 22599.69 10597.96 23499.50 13598.73 33897.83 15199.17 19498.45 34691.67 30299.83 15393.22 34098.18 22098.37 330
VNet99.11 9598.90 10599.73 6199.52 15999.56 7899.41 17999.39 21899.01 2499.74 4899.78 10295.56 18799.92 8599.52 1198.18 22099.72 96
thres40097.77 24297.38 26398.92 18999.69 10597.96 23499.50 13598.73 33897.83 15199.17 19498.45 34691.67 30299.83 15393.22 34098.18 22098.96 225
DWT-MVSNet_test97.53 27297.40 26197.93 29599.03 28194.86 33799.57 9998.63 34296.59 27098.36 30198.79 33589.32 33299.74 18798.14 17998.16 22499.20 199
VDDNet97.55 27097.02 28799.16 16199.49 17398.12 22799.38 19699.30 26795.35 31999.68 6299.90 1082.62 36499.93 7399.31 3698.13 22599.42 181
alignmvs98.81 13698.56 15199.58 9099.43 18899.42 10099.51 12998.96 31298.61 6899.35 15298.92 33194.78 21599.77 17899.35 2998.11 22699.54 152
tpm297.44 28197.34 27097.74 30899.15 26194.36 34599.45 16098.94 31393.45 34598.90 24099.44 24891.35 30999.59 23597.31 24898.07 22799.29 194
JIA-IIPM97.50 27697.02 28798.93 18798.73 31897.80 24399.30 21998.97 31091.73 35298.91 23894.86 36595.10 20399.71 20497.58 22697.98 22899.28 195
CostFormer97.72 25397.73 22297.71 30999.15 26194.02 34899.54 11899.02 30694.67 33199.04 21899.35 27592.35 29099.77 17898.50 14697.94 22999.34 191
canonicalmvs99.02 10998.86 11399.51 11299.42 18999.32 10999.80 2099.48 14798.63 6699.31 15898.81 33497.09 13599.75 18699.27 4197.90 23099.47 174
OpenMVS_ROBcopyleft92.34 2094.38 32593.70 32996.41 33897.38 35493.17 35799.06 27698.75 33086.58 36194.84 35698.26 35181.53 36699.32 27789.01 35997.87 23196.76 361
TR-MVS97.76 24397.41 26098.82 21499.06 27597.87 23998.87 31598.56 34496.63 26598.68 27299.22 30192.49 28399.65 22395.40 31497.79 23298.95 228
DeepMVS_CXcopyleft93.34 34499.29 22482.27 37099.22 28285.15 36296.33 34699.05 31990.97 31499.73 19493.57 33797.77 23398.01 345
CLD-MVS98.16 18498.10 17798.33 26499.29 22496.82 28798.75 32699.44 19697.83 15199.13 19899.55 21192.92 26699.67 21698.32 16597.69 23498.48 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS98.27 17598.22 17098.44 25599.29 22496.97 28099.39 19199.47 16598.97 3799.11 20299.61 19292.71 27599.69 21497.78 20797.63 23598.67 272
plane_prior599.47 16599.69 21497.78 20797.63 23598.67 272
test_djsdf98.67 14998.57 15098.98 17998.70 32398.91 16699.88 299.46 17597.55 18299.22 18199.88 1995.73 18299.28 28299.03 6297.62 23798.75 244
anonymousdsp98.44 15998.28 16798.94 18598.50 33898.96 15799.77 2899.50 12697.07 23298.87 24599.77 10994.76 21999.28 28298.66 12197.60 23898.57 309
plane_prior96.97 28099.21 25198.45 8197.60 238
HQP3-MVS99.39 21897.58 240
HQP-MVS98.02 20597.90 20298.37 26299.19 24796.83 28598.98 29899.39 21898.24 10298.66 27399.40 26192.47 28499.64 22697.19 25897.58 24098.64 284
EI-MVSNet98.67 14998.67 13398.68 22899.35 20697.97 23299.50 13599.38 22496.93 24699.20 18799.83 4797.87 11399.36 26798.38 15797.56 24298.71 252
MVSTER98.49 15698.32 16499.00 17799.35 20699.02 14699.54 11899.38 22497.41 20199.20 18799.73 13193.86 25299.36 26798.87 8397.56 24298.62 294
OPM-MVS98.19 18098.10 17798.45 25298.88 29797.07 26999.28 22599.38 22498.57 7099.22 18199.81 6792.12 29199.66 21998.08 18597.54 24498.61 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D97.32 28496.81 29098.87 20599.40 19797.46 25399.51 12999.53 8695.86 31498.54 28999.77 10982.44 36599.66 21998.68 11897.52 24599.50 167
LPG-MVS_test98.22 17698.13 17498.49 24499.33 21197.05 27199.58 9399.55 6797.46 19199.24 17699.83 4792.58 28099.72 19898.09 18197.51 24698.68 265
LGP-MVS_train98.49 24499.33 21197.05 27199.55 6797.46 19199.24 17699.83 4792.58 28099.72 19898.09 18197.51 24698.68 265
jajsoiax98.43 16098.28 16798.88 20198.60 33398.43 21299.82 1499.53 8698.19 10998.63 28199.80 8393.22 26299.44 25199.22 4497.50 24898.77 240
EG-PatchMatch MVS95.97 31095.69 31096.81 33397.78 35092.79 35999.16 25598.93 31496.16 30294.08 35799.22 30182.72 36399.47 24395.67 30997.50 24898.17 338
test_040296.64 29796.24 29997.85 30098.85 30596.43 30099.44 16499.26 27693.52 34296.98 34199.52 22388.52 34199.20 29992.58 34997.50 24897.93 352
ACMP97.20 1198.06 19597.94 19998.45 25299.37 20397.01 27699.44 16499.49 13497.54 18598.45 29499.79 9591.95 29499.72 19897.91 19697.49 25198.62 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets98.40 16598.23 16998.91 19398.67 32698.51 20599.66 5399.53 8698.19 10998.65 27999.81 6792.75 27099.44 25199.31 3697.48 25298.77 240
ACMM97.58 598.37 16798.34 16298.48 24699.41 19297.10 26599.56 10699.45 18798.53 7499.04 21899.85 3493.00 26499.71 20498.74 10797.45 25398.64 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 19197.99 19198.44 25599.41 19296.96 28299.60 7899.56 5898.09 12398.15 31199.91 890.87 31599.70 21098.88 7997.45 25398.67 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB97.16 1298.02 20597.90 20298.40 25999.23 23796.80 28899.70 4099.60 4197.12 22698.18 31099.70 14091.73 30099.72 19898.39 15597.45 25398.68 265
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++97.43 256
D2MVS98.41 16398.50 15398.15 28199.26 23196.62 29499.40 18799.61 3697.71 16698.98 22899.36 27296.04 16899.67 21698.70 11397.41 25798.15 339
ITE_SJBPF98.08 28399.29 22496.37 30198.92 31698.34 9398.83 25199.75 11891.09 31299.62 23295.82 30397.40 25898.25 335
XVG-ACMP-BASELINE97.83 23397.71 22498.20 27599.11 26596.33 30399.41 17999.52 9298.06 13299.05 21799.50 23089.64 33099.73 19497.73 21397.38 25998.53 311
USDC97.34 28397.20 28197.75 30799.07 27395.20 32998.51 34499.04 30597.99 13898.31 30499.86 2889.02 33499.55 23995.67 30997.36 26098.49 314
PVSNet_BlendedMVS98.86 12498.80 12099.03 17399.76 5798.79 18099.28 22599.91 397.42 20099.67 6899.37 26997.53 12199.88 12498.98 6797.29 26198.42 324
PS-MVSNAJss98.92 11998.92 10298.90 19598.78 31298.53 19999.78 2699.54 7598.07 12899.00 22699.76 11399.01 1999.37 26399.13 5497.23 26298.81 233
TinyColmap97.12 28996.89 28997.83 30299.07 27395.52 32298.57 34098.74 33397.58 17997.81 32499.79 9588.16 34599.56 23795.10 31997.21 26398.39 328
ACMMP++_ref97.19 264
ACMH+97.24 1097.92 22097.78 21498.32 26699.46 18296.68 29299.56 10699.54 7598.41 8597.79 32599.87 2590.18 32499.66 21998.05 18997.18 26598.62 294
RRT_MVS98.60 15498.44 15599.05 17098.88 29799.14 13399.49 14599.38 22497.76 16099.29 16399.86 2895.38 19299.36 26798.81 10197.16 26698.64 284
test0.0.03 197.71 25797.42 25998.56 23898.41 34197.82 24298.78 32398.63 34297.34 20598.05 31798.98 32894.45 23398.98 32695.04 32197.15 26798.89 229
CMPMVSbinary69.68 2394.13 32694.90 31891.84 34797.24 35880.01 37298.52 34399.48 14789.01 35891.99 36299.67 16285.67 35799.13 30695.44 31297.03 26896.39 363
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OurMVSNet-221017-097.88 22397.77 21698.19 27698.71 32296.53 29699.88 299.00 30797.79 15798.78 25899.94 391.68 30199.35 27197.21 25496.99 26998.69 260
LF4IMVS97.52 27397.46 24997.70 31098.98 28895.55 31999.29 22398.82 32898.07 12898.66 27399.64 17689.97 32599.61 23397.01 26796.68 27097.94 351
GBi-Net97.68 26197.48 24598.29 26999.51 16197.26 26099.43 17099.48 14796.49 27499.07 21299.32 28590.26 32098.98 32697.10 26396.65 27198.62 294
test197.68 26197.48 24598.29 26999.51 16197.26 26099.43 17099.48 14796.49 27499.07 21299.32 28590.26 32098.98 32697.10 26396.65 27198.62 294
FMVSNet398.03 20397.76 21998.84 21299.39 20098.98 15099.40 18799.38 22496.67 26099.07 21299.28 29292.93 26598.98 32697.10 26396.65 27198.56 310
FMVSNet297.72 25397.36 26598.80 21899.51 16198.84 17399.45 16099.42 20696.49 27498.86 25099.29 29090.26 32098.98 32696.44 29396.56 27498.58 308
bset_n11_16_dypcd98.16 18497.97 19398.73 22398.26 34398.28 21997.99 36198.01 35497.68 16999.10 20599.63 18295.68 18499.15 30298.78 10596.55 27598.75 244
K. test v397.10 29096.79 29198.01 28998.72 32096.33 30399.87 697.05 36397.59 17796.16 34899.80 8388.71 33799.04 31796.69 28796.55 27598.65 282
RRT_test8_iter0597.72 25397.60 23498.08 28399.23 23796.08 31099.63 6599.49 13497.54 18598.94 23499.81 6787.99 34799.35 27199.21 4696.51 27798.81 233
tpm97.67 26497.55 23798.03 28699.02 28295.01 33399.43 17098.54 34696.44 28199.12 20099.34 27891.83 29799.60 23497.75 21196.46 27899.48 169
SixPastTwentyTwo97.50 27697.33 27298.03 28698.65 32796.23 30699.77 2898.68 34197.14 22397.90 32099.93 490.45 31899.18 30097.00 26896.43 27998.67 272
FIs98.78 14098.63 13899.23 15699.18 25099.54 8299.83 1399.59 4498.28 9998.79 25799.81 6796.75 14899.37 26399.08 5996.38 28098.78 236
FC-MVSNet-test98.75 14398.62 14399.15 16399.08 27299.45 9799.86 999.60 4198.23 10598.70 27099.82 5496.80 14499.22 29299.07 6096.38 28098.79 235
XXY-MVS98.38 16698.09 18099.24 15499.26 23199.32 10999.56 10699.55 6797.45 19498.71 26499.83 4793.23 26099.63 23198.88 7996.32 28298.76 242
FMVSNet196.84 29396.36 29798.29 26999.32 21897.26 26099.43 17099.48 14795.11 32298.55 28899.32 28583.95 36198.98 32695.81 30496.26 28398.62 294
N_pmnet94.95 32095.83 30892.31 34698.47 33979.33 37399.12 26392.81 37993.87 33897.68 32699.13 31193.87 25199.01 32391.38 35196.19 28498.59 307
Anonymous2024052196.20 30695.89 30797.13 32597.72 35194.96 33599.79 2599.29 27293.01 34797.20 33699.03 32189.69 32998.36 34691.16 35296.13 28598.07 341
pmmvs498.13 18897.90 20298.81 21698.61 33298.87 16998.99 29499.21 28596.44 28199.06 21699.58 20195.90 17699.11 31197.18 26096.11 28698.46 321
our_test_397.65 26697.68 22697.55 31598.62 33094.97 33498.84 31799.30 26796.83 25298.19 30999.34 27897.01 13999.02 32195.00 32296.01 28798.64 284
IterMVS97.83 23397.77 21698.02 28899.58 14796.27 30599.02 28799.48 14797.22 21898.71 26499.70 14092.75 27099.13 30697.46 24196.00 28898.67 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.85 22897.64 23198.48 24699.09 27097.87 23998.60 33999.33 25097.11 22998.87 24599.22 30192.38 28999.17 30198.21 17095.99 28998.42 324
miper_ehance_all_eth98.18 18298.10 17798.41 25799.23 23797.72 24798.72 32999.31 26396.60 26898.88 24399.29 29097.29 13099.13 30697.60 22495.99 28998.38 329
miper_enhance_ethall98.16 18498.08 18198.41 25798.96 29197.72 24798.45 34699.32 26096.95 24398.97 23099.17 30697.06 13799.22 29297.86 20095.99 28998.29 332
ppachtmachnet_test97.49 27997.45 25097.61 31298.62 33095.24 32898.80 32199.46 17596.11 30798.22 30899.62 18896.45 15798.97 33393.77 33495.97 29298.61 303
pmmvs597.52 27397.30 27598.16 27898.57 33596.73 28999.27 23098.90 32196.14 30598.37 30099.53 22091.54 30799.14 30397.51 23695.87 29398.63 292
IterMVS-SCA-FT97.82 23697.75 22098.06 28599.57 14996.36 30299.02 28799.49 13497.18 22098.71 26499.72 13592.72 27399.14 30397.44 24495.86 29498.67 272
cl____98.01 20897.84 20998.55 24099.25 23597.97 23298.71 33099.34 24396.47 28098.59 28799.54 21695.65 18699.21 29797.21 25495.77 29598.46 321
DIV-MVS_self_test98.01 20897.85 20898.48 24699.24 23697.95 23698.71 33099.35 23996.50 27398.60 28699.54 21695.72 18399.03 31997.21 25495.77 29598.46 321
new_pmnet96.38 30396.03 30397.41 31898.13 34695.16 33299.05 27899.20 28693.94 33797.39 33198.79 33591.61 30699.04 31790.43 35495.77 29598.05 343
FMVSNet596.43 30296.19 30097.15 32399.11 26595.89 31399.32 21599.52 9294.47 33598.34 30399.07 31687.54 35297.07 36392.61 34895.72 29898.47 317
Gipumacopyleft90.99 33190.15 33493.51 34398.73 31890.12 36693.98 36899.45 18779.32 36692.28 36194.91 36469.61 37097.98 35387.42 36495.67 29992.45 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
IterMVS-LS98.46 15898.42 15798.58 23599.59 14598.00 23099.37 19999.43 20496.94 24599.07 21299.59 19897.87 11399.03 31998.32 16595.62 30098.71 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.75 24797.40 26198.81 21699.10 26898.87 16999.11 26999.33 25094.83 32898.81 25399.38 26694.33 23699.02 32196.10 29895.57 30198.53 311
MIMVSNet195.51 31395.04 31796.92 33197.38 35495.60 31799.52 12499.50 12693.65 34196.97 34299.17 30685.28 35896.56 36788.36 36295.55 30298.60 306
eth_miper_zixun_eth98.05 20097.96 19598.33 26499.26 23197.38 25598.56 34299.31 26396.65 26298.88 24399.52 22396.58 15299.12 31097.39 24795.53 30398.47 317
miper_lstm_enhance98.00 21097.91 20198.28 27299.34 21097.43 25498.88 31399.36 23496.48 27898.80 25599.55 21195.98 16998.91 33797.27 25095.50 30498.51 313
tfpnnormal97.84 23197.47 24798.98 17999.20 24599.22 12299.64 6399.61 3696.32 28798.27 30799.70 14093.35 25999.44 25195.69 30795.40 30598.27 333
c3_l98.12 19098.04 18698.38 26199.30 22097.69 25098.81 32099.33 25096.67 26098.83 25199.34 27897.11 13498.99 32597.58 22695.34 30698.48 315
EU-MVSNet97.98 21298.03 18797.81 30598.72 32096.65 29399.66 5399.66 2798.09 12398.35 30299.82 5495.25 20098.01 35297.41 24695.30 30798.78 236
v124097.69 25997.32 27398.79 21998.85 30598.43 21299.48 15199.36 23496.11 30799.27 16899.36 27293.76 25599.24 28894.46 32795.23 30898.70 256
v119297.81 23897.44 25598.91 19398.88 29798.68 18699.51 12999.34 24396.18 29999.20 18799.34 27894.03 24799.36 26795.32 31795.18 30998.69 260
v114497.98 21297.69 22598.85 21198.87 30198.66 18899.54 11899.35 23996.27 29199.23 18099.35 27594.67 22499.23 28996.73 28495.16 31098.68 265
v192192097.80 24097.45 25098.84 21298.80 30898.53 19999.52 12499.34 24396.15 30499.24 17699.47 24293.98 24899.29 28195.40 31495.13 31198.69 260
Anonymous2023120696.22 30496.03 30396.79 33497.31 35794.14 34799.63 6599.08 30096.17 30097.04 34099.06 31893.94 24997.76 35886.96 36695.06 31298.47 317
v14419297.92 22097.60 23498.87 20598.83 30798.65 18999.55 11599.34 24396.20 29799.32 15799.40 26194.36 23599.26 28696.37 29695.03 31398.70 256
v2v48298.06 19597.77 21698.92 18998.90 29598.82 17799.57 9999.36 23496.65 26299.19 19099.35 27594.20 24099.25 28797.72 21594.97 31498.69 260
FPMVS84.93 33485.65 33582.75 35586.77 37663.39 38098.35 34998.92 31674.11 36783.39 36798.98 32850.85 37592.40 37284.54 36994.97 31492.46 366
lessismore_v097.79 30698.69 32495.44 32594.75 37395.71 35299.87 2588.69 33899.32 27795.89 30294.93 31698.62 294
test_method91.10 33091.36 33390.31 35095.85 36473.72 37894.89 36799.25 27868.39 37095.82 35199.02 32380.50 36798.95 33593.64 33694.89 31798.25 335
V4298.06 19597.79 21198.86 20898.98 28898.84 17399.69 4299.34 24396.53 27299.30 16099.37 26994.67 22499.32 27797.57 23094.66 31898.42 324
v1097.85 22897.52 24198.86 20898.99 28598.67 18799.75 3399.41 20895.70 31598.98 22899.41 25894.75 22099.23 28996.01 30194.63 31998.67 272
nrg03098.64 15298.42 15799.28 14999.05 27899.69 5299.81 1699.46 17598.04 13499.01 22199.82 5496.69 15099.38 26099.34 3394.59 32098.78 236
VPA-MVSNet98.29 17397.95 19799.30 14399.16 25899.54 8299.50 13599.58 5098.27 10199.35 15299.37 26992.53 28299.65 22399.35 2994.46 32198.72 250
MDA-MVSNet_test_wron95.45 31494.60 32098.01 28998.16 34597.21 26399.11 26999.24 28093.49 34380.73 37098.98 32893.02 26398.18 34794.22 33194.45 32298.64 284
Anonymous2023121197.88 22397.54 24098.90 19599.71 9598.53 19999.48 15199.57 5294.16 33698.81 25399.68 15693.23 26099.42 25698.84 9394.42 32398.76 242
MDA-MVSNet-bldmvs94.96 31993.98 32597.92 29698.24 34497.27 25899.15 25999.33 25093.80 33980.09 37199.03 32188.31 34397.86 35693.49 33894.36 32498.62 294
WR-MVS98.06 19597.73 22299.06 16898.86 30499.25 11999.19 25299.35 23997.30 20998.66 27399.43 25193.94 24999.21 29798.58 13494.28 32598.71 252
test20.0396.12 30895.96 30596.63 33597.44 35395.45 32499.51 12999.38 22496.55 27196.16 34899.25 29893.76 25596.17 36887.35 36594.22 32698.27 333
YYNet195.36 31694.51 32297.92 29697.89 34897.10 26599.10 27199.23 28193.26 34680.77 36999.04 32092.81 26998.02 35194.30 32894.18 32798.64 284
CP-MVSNet98.09 19297.78 21499.01 17598.97 29099.24 12099.67 4999.46 17597.25 21498.48 29399.64 17693.79 25399.06 31598.63 12494.10 32898.74 248
v897.95 21697.63 23298.93 18798.95 29298.81 17999.80 2099.41 20896.03 31299.10 20599.42 25494.92 20899.30 28096.94 27494.08 32998.66 280
PS-CasMVS97.93 21797.59 23698.95 18498.99 28599.06 14399.68 4799.52 9297.13 22498.31 30499.68 15692.44 28899.05 31698.51 14594.08 32998.75 244
v7n97.87 22597.52 24198.92 18998.76 31698.58 19599.84 1099.46 17596.20 29798.91 23899.70 14094.89 21099.44 25196.03 30093.89 33198.75 244
WR-MVS_H98.13 18897.87 20798.90 19599.02 28298.84 17399.70 4099.59 4497.27 21298.40 29899.19 30595.53 18899.23 28998.34 16293.78 33298.61 303
test_part197.75 24797.24 28099.29 14699.59 14599.63 6599.65 6099.49 13496.17 30098.44 29599.69 14989.80 32799.47 24398.68 11893.66 33398.78 236
NR-MVSNet97.97 21597.61 23399.02 17498.87 30199.26 11899.47 15699.42 20697.63 17597.08 33999.50 23095.07 20499.13 30697.86 20093.59 33498.68 265
pm-mvs197.68 26197.28 27698.88 20199.06 27598.62 19299.50 13599.45 18796.32 28797.87 32199.79 9592.47 28499.35 27197.54 23393.54 33598.67 272
UniMVSNet (Re)98.29 17398.00 19099.13 16499.00 28499.36 10599.49 14599.51 10697.95 14098.97 23099.13 31196.30 16299.38 26098.36 16193.34 33698.66 280
baseline198.31 17097.95 19799.38 13199.50 17198.74 18299.59 8598.93 31498.41 8599.14 19799.60 19594.59 22799.79 17298.48 14793.29 33799.61 137
VPNet97.84 23197.44 25599.01 17599.21 24398.94 16299.48 15199.57 5298.38 8799.28 16599.73 13188.89 33699.39 25899.19 4793.27 33898.71 252
PEN-MVS97.76 24397.44 25598.72 22598.77 31598.54 19899.78 2699.51 10697.06 23498.29 30699.64 17692.63 27998.89 33998.09 18193.16 33998.72 250
v14897.79 24197.55 23798.50 24398.74 31797.72 24799.54 11899.33 25096.26 29298.90 24099.51 22794.68 22399.14 30397.83 20393.15 34098.63 292
TranMVSNet+NR-MVSNet97.93 21797.66 22898.76 22298.78 31298.62 19299.65 6099.49 13497.76 16098.49 29299.60 19594.23 23998.97 33398.00 19092.90 34198.70 256
Baseline_NR-MVSNet97.76 24397.45 25098.68 22899.09 27098.29 21799.41 17998.85 32595.65 31698.63 28199.67 16294.82 21299.10 31398.07 18892.89 34298.64 284
UniMVSNet_NR-MVSNet98.22 17697.97 19398.96 18298.92 29498.98 15099.48 15199.53 8697.76 16098.71 26499.46 24696.43 15999.22 29298.57 13692.87 34398.69 260
DU-MVS98.08 19497.79 21198.96 18298.87 30198.98 15099.41 17999.45 18797.87 14598.71 26499.50 23094.82 21299.22 29298.57 13692.87 34398.68 265
pmmvs696.53 29996.09 30297.82 30498.69 32495.47 32399.37 19999.47 16593.46 34497.41 33099.78 10287.06 35399.33 27596.92 27792.70 34598.65 282
DTE-MVSNet97.51 27597.19 28298.46 25198.63 32998.13 22699.84 1099.48 14796.68 25997.97 31999.67 16292.92 26698.56 34396.88 27992.60 34698.70 256
ET-MVSNet_ETH3D96.49 30095.64 31199.05 17099.53 15798.82 17798.84 31797.51 36197.63 17584.77 36599.21 30492.09 29298.91 33798.98 6792.21 34799.41 185
TransMVSNet (Re)97.15 28896.58 29398.86 20899.12 26398.85 17299.49 14598.91 31995.48 31797.16 33799.80 8393.38 25899.11 31194.16 33291.73 34898.62 294
ambc93.06 34592.68 37082.36 36998.47 34598.73 33895.09 35497.41 35655.55 37499.10 31396.42 29491.32 34997.71 355
PMVScopyleft70.75 2275.98 34174.97 34279.01 35770.98 38055.18 38193.37 36998.21 35065.08 37461.78 37593.83 36621.74 38292.53 37178.59 37091.12 35089.34 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UnsupCasMVSNet_eth96.44 30196.12 30197.40 31998.65 32795.65 31699.36 20399.51 10697.13 22496.04 35098.99 32588.40 34298.17 34896.71 28590.27 35198.40 327
Patchmatch-RL test95.84 31195.81 30995.95 34095.61 36590.57 36598.24 35598.39 34795.10 32495.20 35398.67 34094.78 21597.77 35796.28 29790.02 35299.51 164
PM-MVS92.96 32992.23 33295.14 34295.61 36589.98 36799.37 19998.21 35094.80 32995.04 35597.69 35465.06 37197.90 35594.30 32889.98 35397.54 359
pmmvs-eth3d95.34 31794.73 31997.15 32395.53 36795.94 31299.35 20999.10 29795.13 32093.55 35897.54 35588.15 34697.91 35494.58 32589.69 35497.61 356
new-patchmatchnet94.48 32494.08 32495.67 34195.08 36892.41 36099.18 25399.28 27494.55 33493.49 35997.37 35887.86 35097.01 36491.57 35088.36 35597.61 356
UnsupCasMVSNet_bld93.53 32892.51 33196.58 33797.38 35493.82 34998.24 35599.48 14791.10 35593.10 36096.66 36174.89 36998.37 34594.03 33387.71 35697.56 358
pmmvs394.09 32793.25 33096.60 33694.76 36994.49 34298.92 30998.18 35289.66 35796.48 34598.06 35386.28 35497.33 36189.68 35787.20 35797.97 350
IB-MVS95.67 1896.22 30495.44 31498.57 23699.21 24396.70 29098.65 33597.74 35996.71 25797.27 33398.54 34486.03 35599.92 8598.47 15086.30 35899.10 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet86.80 33385.22 33791.53 34887.81 37580.96 37198.23 35798.99 30871.05 36890.13 36496.51 36248.45 37796.88 36590.51 35385.30 35996.76 361
h-mvs3397.70 25897.28 27698.97 18199.70 10297.27 25899.36 20399.45 18798.94 4199.66 7399.64 17694.93 20699.99 199.48 1884.36 36099.65 122
AUN-MVS96.88 29296.31 29898.59 23299.48 18097.04 27499.27 23099.22 28297.44 19798.51 29099.41 25891.97 29399.66 21997.71 21683.83 36199.07 213
hse-mvs297.50 27697.14 28398.59 23299.49 17397.05 27199.28 22599.22 28298.94 4199.66 7399.42 25494.93 20699.65 22399.48 1883.80 36299.08 208
TDRefinement95.42 31594.57 32197.97 29389.83 37496.11 30999.48 15198.75 33096.74 25596.68 34399.88 1988.65 33999.71 20498.37 15982.74 36398.09 340
PVSNet_094.43 1996.09 30995.47 31297.94 29499.31 21994.34 34697.81 36299.70 1597.12 22697.46 32998.75 33889.71 32899.79 17297.69 21981.69 36499.68 112
KD-MVS_self_test95.00 31894.34 32396.96 32997.07 36295.39 32699.56 10699.44 19695.11 32297.13 33897.32 35991.86 29697.27 36290.35 35581.23 36598.23 337
CL-MVSNet_self_test94.49 32393.97 32696.08 33996.16 36393.67 35498.33 35299.38 22495.13 32097.33 33298.15 35292.69 27796.57 36688.67 36079.87 36697.99 348
PMMVS286.87 33285.37 33691.35 34990.21 37383.80 36898.89 31297.45 36283.13 36591.67 36395.03 36348.49 37694.70 37085.86 36877.62 36795.54 364
KD-MVS_2432*160094.62 32193.72 32797.31 32097.19 36095.82 31498.34 35099.20 28695.00 32597.57 32798.35 34887.95 34898.10 34992.87 34577.00 36898.01 345
miper_refine_blended94.62 32193.72 32797.31 32097.19 36095.82 31498.34 35099.20 28695.00 32597.57 32798.35 34887.95 34898.10 34992.87 34577.00 36898.01 345
MVEpermissive76.82 2176.91 34074.31 34484.70 35285.38 37876.05 37796.88 36693.17 37767.39 37171.28 37389.01 37221.66 38387.69 37371.74 37272.29 37090.35 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 33779.88 33982.81 35490.75 37276.38 37697.69 36395.76 37066.44 37283.52 36692.25 36862.54 37387.16 37468.53 37361.40 37184.89 372
EMVS80.02 33879.22 34082.43 35691.19 37176.40 37597.55 36592.49 38066.36 37383.01 36891.27 36964.63 37285.79 37565.82 37460.65 37285.08 371
ANet_high77.30 33974.86 34384.62 35375.88 37977.61 37497.63 36493.15 37888.81 35964.27 37489.29 37136.51 37883.93 37675.89 37152.31 37392.33 368
tmp_tt82.80 33581.52 33886.66 35166.61 38168.44 37992.79 37097.92 35568.96 36980.04 37299.85 3485.77 35696.15 36997.86 20043.89 37495.39 365
testmvs39.17 34343.78 34525.37 36036.04 38316.84 38498.36 34826.56 38220.06 37638.51 37767.32 37329.64 38015.30 37937.59 37639.90 37543.98 374
test12339.01 34442.50 34628.53 35939.17 38220.91 38398.75 32619.17 38419.83 37738.57 37666.67 37433.16 37915.42 37837.50 37729.66 37649.26 373
wuyk23d40.18 34241.29 34736.84 35886.18 37749.12 38279.73 37122.81 38327.64 37525.46 37828.45 37821.98 38148.89 37755.80 37523.56 37712.51 375
test_blank0.13 3480.17 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3801.57 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.64 34532.85 3480.00 3610.00 3840.00 3850.00 37299.51 1060.00 3790.00 38099.56 20896.58 1520.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas8.27 34711.03 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 38099.01 190.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.30 34611.06 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.58 2010.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.91 199.93 199.87 699.56 5899.10 1299.81 25
test_one_060199.81 4299.88 899.49 13498.97 3799.65 7999.81 6799.09 14
eth-test20.00 384
eth-test0.00 384
test_241102_ONE99.84 3399.90 299.48 14799.07 1899.91 299.74 12499.20 799.76 184
save fliter99.76 5799.59 7399.14 26199.40 21499.00 28
test072699.85 2699.89 499.62 7199.50 12699.10 1299.86 1399.82 5498.94 35
GSMVS99.52 158
test_part299.81 4299.83 1799.77 37
sam_mvs194.86 21199.52 158
sam_mvs94.72 222
MTGPAbinary99.47 165
test_post199.23 24465.14 37694.18 24399.71 20497.58 226
test_post65.99 37594.65 22699.73 194
patchmatchnet-post98.70 33994.79 21499.74 187
MTMP99.54 11898.88 323
gm-plane-assit98.54 33792.96 35894.65 33299.15 30999.64 22697.56 231
TEST999.67 11099.65 6299.05 27899.41 20896.22 29698.95 23299.49 23398.77 5599.91 96
test_899.67 11099.61 6899.03 28499.41 20896.28 28998.93 23699.48 23998.76 5799.91 96
agg_prior99.67 11099.62 6699.40 21498.87 24599.91 96
test_prior499.56 7898.99 294
test_prior99.68 6899.67 11099.48 9399.56 5899.83 15399.74 83
旧先验298.96 30296.70 25899.47 11999.94 5898.19 172
新几何299.01 292
无先验98.99 29499.51 10696.89 24799.93 7397.53 23499.72 96
原ACMM298.95 306
testdata299.95 4796.67 288
segment_acmp98.96 29
testdata198.85 31698.32 97
plane_prior799.29 22497.03 275
plane_prior699.27 22996.98 27992.71 275
plane_prior499.61 192
plane_prior397.00 27798.69 6499.11 202
plane_prior299.39 19198.97 37
plane_prior199.26 231
n20.00 385
nn0.00 385
door-mid98.05 353
test1199.35 239
door97.92 355
HQP5-MVS96.83 285
HQP-NCC99.19 24798.98 29898.24 10298.66 273
ACMP_Plane99.19 24798.98 29898.24 10298.66 273
BP-MVS97.19 258
HQP4-MVS98.66 27399.64 22698.64 284
HQP2-MVS92.47 284
NP-MVS99.23 23796.92 28399.40 261
MDTV_nov1_ep13_2view95.18 33199.35 20996.84 25099.58 9995.19 20297.82 20499.46 176
Test By Simon98.75 60