This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MVSFormer99.17 7399.12 6799.29 14099.51 15198.94 15499.88 199.46 16797.55 17099.80 2499.65 15897.39 11799.28 26999.03 5399.85 5899.65 112
test_djsdf98.67 14398.57 14498.98 17398.70 30998.91 15899.88 199.46 16797.55 17099.22 16799.88 1595.73 17599.28 26999.03 5397.62 22498.75 231
OurMVSNet-221017-097.88 21597.77 20898.19 26998.71 30896.53 28799.88 199.00 29497.79 14598.78 24599.94 391.68 29299.35 25997.21 24196.99 25698.69 247
K. test v397.10 28196.79 28298.01 28098.72 30696.33 29499.87 497.05 35097.59 16596.16 33599.80 7688.71 32699.04 30496.69 27496.55 26298.65 269
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25899.45 9199.86 599.60 4098.23 9498.70 25799.82 4996.80 13799.22 27999.07 5196.38 26798.79 222
v7n97.87 21797.52 23398.92 18398.76 30298.58 18799.84 699.46 16796.20 28498.91 22599.70 13294.89 20199.44 23996.03 28793.89 31798.75 231
DTE-MVSNet97.51 26797.19 27498.46 24498.63 31598.13 21899.84 699.48 13996.68 24697.97 30699.67 15192.92 25798.56 32996.88 26692.60 33298.70 243
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24999.66 5499.84 699.74 1099.09 1098.92 22499.90 795.94 16699.98 698.95 6299.92 1199.79 53
FIs98.78 13498.63 13399.23 15099.18 23699.54 7799.83 999.59 4398.28 8798.79 24499.81 6296.75 14199.37 25199.08 5096.38 26798.78 223
jajsoiax98.43 15498.28 16198.88 19598.60 31998.43 20499.82 1099.53 8298.19 9898.63 26899.80 7693.22 25399.44 23999.22 3597.50 23598.77 227
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26599.53 8099.82 1099.72 1194.56 32098.08 30099.88 1594.73 21299.98 697.47 22799.76 9599.06 201
nrg03098.64 14698.42 15199.28 14399.05 26499.69 4799.81 1299.46 16798.04 12299.01 20799.82 4996.69 14399.38 24899.34 2494.59 30698.78 223
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16599.68 5399.63 17198.91 3699.94 5498.58 12399.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13599.81 1299.33 24297.43 18699.60 8199.88 1597.14 12699.84 13799.13 4598.94 16999.69 98
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24299.68 4999.81 1299.51 10199.20 498.72 25099.89 1095.68 17799.97 1198.86 7899.86 5199.81 41
canonicalmvs99.02 10498.86 10899.51 10599.42 17599.32 10299.80 1699.48 13998.63 5799.31 14598.81 32097.09 12899.75 17699.27 3297.90 21799.47 163
v897.95 20897.63 22498.93 18198.95 27898.81 17199.80 1699.41 20096.03 29999.10 19199.42 24294.92 19999.30 26796.94 26194.08 31598.66 267
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18897.91 13299.36 13699.78 9595.49 18399.43 24397.91 18399.11 15599.62 125
Anonymous2024052196.20 29695.89 29797.13 31297.72 33694.96 32599.79 1999.29 26293.01 33497.20 32399.03 30889.69 31898.36 33191.16 33896.13 27298.07 327
PS-MVSNAJss98.92 11498.92 9798.90 18998.78 29898.53 19199.78 2099.54 7098.07 11699.00 21299.76 10599.01 1699.37 25199.13 4597.23 24998.81 220
PEN-MVS97.76 23597.44 24798.72 21998.77 30198.54 19099.78 2099.51 10197.06 22198.29 29399.64 16592.63 27098.89 32598.09 16893.16 32598.72 237
anonymousdsp98.44 15398.28 16198.94 17998.50 32498.96 14999.77 2299.50 11997.07 21998.87 23299.77 10194.76 21099.28 26998.66 11097.60 22598.57 296
SixPastTwentyTwo97.50 26897.33 26498.03 27798.65 31396.23 29799.77 2298.68 32897.14 21197.90 30799.93 490.45 30799.18 28797.00 25596.43 26698.67 259
QAPM98.67 14398.30 16099.80 4099.20 23199.67 5299.77 2299.72 1194.74 31798.73 24999.90 795.78 17399.98 696.96 25999.88 3699.76 68
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2599.56 5597.72 15399.76 3799.75 11099.13 1099.92 8099.07 5199.92 1199.85 14
v1097.85 22097.52 23398.86 20298.99 27198.67 17999.75 2699.41 20095.70 30298.98 21599.41 24594.75 21199.23 27696.01 28894.63 30598.67 259
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2699.56 5599.02 1599.88 599.85 2999.18 899.96 1999.22 3599.92 1199.90 1
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2699.20 27398.02 12599.56 8999.86 2396.54 14799.67 20598.09 16899.13 15499.73 80
tttt051798.42 15598.14 16799.28 14399.66 11098.38 20799.74 2996.85 35197.68 15799.79 2699.74 11691.39 29999.89 11498.83 8599.56 12799.57 138
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3099.48 13998.35 8099.42 11799.84 3896.07 16099.79 16599.51 799.14 15399.67 105
RPSCF98.22 17098.62 13896.99 31499.82 3791.58 34999.72 3099.44 18896.61 25399.66 6499.89 1095.92 16799.82 15397.46 22899.10 15899.57 138
CS-MVS99.21 6699.13 6599.45 11599.54 14699.34 10099.71 3299.54 7098.26 9098.99 21499.24 28598.25 9499.88 11998.98 5899.63 12299.12 190
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3299.66 2798.11 10899.41 12199.80 7698.37 8899.96 1998.99 5799.96 599.72 86
WR-MVS_H98.13 18297.87 19998.90 18999.02 26898.84 16599.70 3499.59 4397.27 20098.40 28599.19 29295.53 18199.23 27698.34 15193.78 31898.61 290
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25299.23 22396.80 27999.70 3499.60 4097.12 21498.18 29799.70 13291.73 29199.72 18898.39 14497.45 24098.68 252
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13399.74 11698.81 4599.94 5498.79 9199.86 5199.84 18
X-MVStestdata96.55 28895.45 30399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13364.01 36398.81 4599.94 5498.79 9199.86 5199.84 18
V4298.06 18997.79 20398.86 20298.98 27498.84 16599.69 3699.34 23596.53 25999.30 14699.37 25694.67 21599.32 26497.57 21794.66 30498.42 311
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3699.48 13998.12 10699.50 10199.75 11098.78 4899.97 1198.57 12599.89 3399.83 29
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3699.52 8898.07 11699.53 9699.63 17198.93 3599.97 1198.74 9699.91 1699.83 29
PS-CasMVS97.93 20997.59 22898.95 17898.99 27199.06 13599.68 4199.52 8897.13 21298.31 29199.68 14592.44 27999.05 30398.51 13494.08 31598.75 231
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4199.66 2798.49 6699.86 1199.87 2094.77 20999.84 13799.19 3899.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS99.18 7199.09 7199.45 11599.49 16099.18 11899.67 4399.53 8297.66 16199.40 12699.44 23798.10 10199.81 15798.94 6399.62 12499.35 176
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4399.50 11998.70 5499.77 3399.49 22298.21 9699.95 4398.46 14099.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 9398.97 9199.48 10999.49 16099.14 12699.67 4399.34 23597.31 19699.58 8699.76 10597.65 11399.82 15398.87 7599.07 16199.46 165
CP-MVSNet98.09 18697.78 20699.01 16998.97 27699.24 11399.67 4399.46 16797.25 20298.48 28099.64 16593.79 24499.06 30298.63 11394.10 31498.74 235
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4799.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4799.67 2298.15 10299.68 5399.69 13999.06 1399.96 1998.69 10599.87 4099.84 18
mvs_tets98.40 15998.23 16398.91 18798.67 31298.51 19799.66 4799.53 8298.19 9898.65 26699.81 6292.75 26199.44 23999.31 2797.48 23998.77 227
EU-MVSNet97.98 20498.03 17997.81 29498.72 30696.65 28499.66 4799.66 2798.09 11198.35 28999.82 4995.25 19398.01 33797.41 23395.30 29498.78 223
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4799.67 2298.15 10299.67 5999.69 13998.95 2899.96 1998.69 10599.87 4099.84 18
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4799.46 16798.09 11199.48 10599.74 11698.29 9299.96 1997.93 18299.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4799.59 4398.13 10499.82 2099.81 6298.60 6999.96 1998.46 14099.88 3699.79 53
test_part197.75 23997.24 27299.29 14099.59 13599.63 6099.65 5499.49 12796.17 28798.44 28299.69 13989.80 31699.47 23198.68 10793.66 31998.78 223
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5499.66 2798.13 10499.66 6499.68 14598.96 2599.96 1998.62 11499.87 4099.84 18
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21698.78 29898.62 18499.65 5499.49 12797.76 14898.49 27999.60 18494.23 23098.97 32098.00 17792.90 32798.70 243
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5799.67 2298.08 11599.55 9399.64 16598.91 3699.96 1998.72 10099.90 2399.82 36
tfpnnormal97.84 22397.47 23998.98 17399.20 23199.22 11599.64 5799.61 3596.32 27498.27 29499.70 13293.35 25099.44 23995.69 29495.40 29298.27 320
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.53 7299.95 4398.61 11799.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.75 5698.61 11799.81 8099.77 63
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5999.39 21098.91 3799.78 3199.85 2999.36 299.94 5498.84 8299.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 29496.03 29396.79 32197.31 34294.14 33499.63 5999.08 28796.17 28797.04 32799.06 30593.94 24097.76 34386.96 35195.06 29998.47 304
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5999.54 7098.36 7999.79 2699.82 4998.86 4099.95 4398.62 11499.81 8099.78 61
RRT_test8_iter0597.72 24597.60 22698.08 27499.23 22396.08 30099.63 5999.49 12797.54 17398.94 22199.81 6287.99 33699.35 25999.21 3796.51 26498.81 220
test072699.85 2599.89 399.62 6599.50 11999.10 899.86 1199.82 4998.94 31
EPNet98.86 11998.71 12499.30 13797.20 34498.18 21499.62 6598.91 30699.28 298.63 26899.81 6295.96 16399.99 199.24 3499.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6599.59 4392.65 33699.71 4699.78 9598.06 10399.90 10698.84 8299.91 1699.74 73
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17599.08 13399.62 6599.36 22697.39 19199.28 15199.68 14596.44 15199.92 8098.37 14898.22 20399.40 173
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6599.69 1898.12 10699.63 7199.84 3898.73 5999.96 1998.55 13199.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6599.55 6398.94 3399.63 7199.95 295.82 17299.94 5499.37 1999.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7199.45 17999.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7299.56 5598.28 8799.74 4199.79 8898.53 7299.95 4398.55 13199.78 8999.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7299.48 13999.08 1199.91 199.81 6299.20 599.96 1998.91 6899.85 5899.79 53
OPU-MVS99.64 7799.56 14399.72 4299.60 7299.70 13299.27 499.42 24498.24 15799.80 8499.79 53
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7299.67 2297.97 12799.63 7199.68 14598.52 7499.95 4398.38 14699.86 5199.81 41
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7299.45 17999.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
ACMH97.28 898.10 18597.99 18398.44 24899.41 17896.96 27399.60 7299.56 5598.09 11198.15 29899.91 590.87 30699.70 20098.88 7197.45 24098.67 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7899.62 3398.21 9799.73 4399.79 8898.68 6399.96 1998.44 14299.77 9299.79 53
thres100view90097.76 23597.45 24298.69 22199.72 8097.86 23399.59 7898.74 32097.93 13099.26 15998.62 32791.75 28999.83 14693.22 32698.18 20798.37 317
thres600view797.86 21997.51 23598.92 18399.72 8097.95 22899.59 7898.74 32097.94 12999.27 15498.62 32791.75 28999.86 12693.73 32298.19 20698.96 212
LCM-MVSNet-Re97.83 22598.15 16696.87 31999.30 20692.25 34799.59 7898.26 33597.43 18696.20 33499.13 29896.27 15698.73 32898.17 16398.99 16799.64 119
baseline198.31 16497.95 18999.38 12599.50 15898.74 17499.59 7898.93 30198.41 7499.14 18399.60 18494.59 21899.79 16598.48 13693.29 32399.61 127
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7899.51 10198.62 5899.79 2699.83 4299.28 399.97 1198.48 13699.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7899.49 12797.03 22499.63 7199.69 13997.27 12499.96 1997.82 19199.84 6599.81 41
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8599.44 18899.01 1899.87 1099.80 7698.97 2499.91 9199.44 1899.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8599.49 12799.02 1599.88 599.80 7699.00 2299.94 5499.45 1699.92 1199.84 18
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8599.65 3297.84 13899.71 4699.80 7699.12 1199.97 1198.33 15299.87 4099.83 29
LPG-MVS_test98.22 17098.13 16898.49 23799.33 19797.05 26399.58 8599.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
PHI-MVS99.30 5599.17 6299.70 6499.56 14399.52 8399.58 8599.80 897.12 21499.62 7599.73 12398.58 7099.90 10698.61 11799.91 1699.68 102
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 9099.54 7097.82 14499.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9099.37 22599.10 899.81 2299.80 7698.94 3199.96 1998.93 6599.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 399.57 9099.51 10199.96 1998.93 6599.86 5199.88 5
Effi-MVS+-dtu98.78 13498.89 10298.47 24399.33 19796.91 27599.57 9099.30 25798.47 6799.41 12198.99 31196.78 13899.74 17798.73 9899.38 13698.74 235
v2v48298.06 18997.77 20898.92 18398.90 28198.82 16999.57 9099.36 22696.65 24999.19 17699.35 26294.20 23199.25 27497.72 20294.97 30198.69 247
DWT-MVSNet_test97.53 26497.40 25397.93 28599.03 26794.86 32799.57 9098.63 32996.59 25798.36 28898.79 32189.32 32199.74 17798.14 16698.16 21199.20 186
DSMNet-mixed97.25 27797.35 25996.95 31797.84 33493.61 34199.57 9096.63 35496.13 29398.87 23298.61 32994.59 21897.70 34495.08 30798.86 17699.55 140
DIV-MVS_2432*160095.00 30894.34 31396.96 31697.07 34795.39 31699.56 9799.44 18895.11 30997.13 32597.32 34591.86 28797.27 34790.35 34181.23 35098.23 323
ETV-MVS99.26 6299.21 5899.40 12299.46 16899.30 10699.56 9799.52 8898.52 6499.44 11399.27 28298.41 8599.86 12699.10 4899.59 12699.04 202
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9799.47 15797.45 18299.78 3199.82 4999.18 899.91 9198.79 9199.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9799.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9799.50 11998.33 8499.41 12199.86 2395.92 16799.83 14699.45 1699.16 15099.70 95
XXY-MVS98.38 16098.09 17399.24 14899.26 21799.32 10299.56 9799.55 6397.45 18298.71 25199.83 4293.23 25199.63 21998.88 7196.32 26998.76 229
ACMH+97.24 1097.92 21297.78 20698.32 25999.46 16896.68 28399.56 9799.54 7098.41 7497.79 31299.87 2090.18 31399.66 20898.05 17697.18 25298.62 281
ACMM97.58 598.37 16198.34 15698.48 23999.41 17897.10 25799.56 9799.45 17998.53 6399.04 20499.85 2993.00 25599.71 19498.74 9697.45 24098.64 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6099.12 6799.74 5699.18 23699.75 3899.56 9799.57 5098.45 7099.49 10499.85 2997.77 11099.94 5498.33 15299.84 6599.52 147
v14419297.92 21297.60 22698.87 19998.83 29398.65 18199.55 10699.34 23596.20 28499.32 14499.40 24894.36 22699.26 27396.37 28395.03 30098.70 243
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10699.67 2297.83 13999.68 5399.69 13999.06 1399.96 1998.39 14499.87 4099.84 18
API-MVS99.04 10199.03 7999.06 16299.40 18399.31 10599.55 10699.56 5598.54 6299.33 14399.39 25298.76 5399.78 16996.98 25799.78 8998.07 327
thisisatest053098.35 16298.03 17999.31 13399.63 12098.56 18899.54 10996.75 35397.53 17599.73 4399.65 15891.25 30299.89 11498.62 11499.56 12799.48 158
MTMP99.54 10998.88 310
v114497.98 20497.69 21798.85 20598.87 28798.66 18099.54 10999.35 23196.27 27899.23 16699.35 26294.67 21599.23 27696.73 27195.16 29798.68 252
v14897.79 23397.55 22998.50 23698.74 30397.72 23999.54 10999.33 24296.26 27998.90 22799.51 21694.68 21499.14 29097.83 19093.15 32698.63 279
CostFormer97.72 24597.73 21497.71 29899.15 24794.02 33599.54 10999.02 29394.67 31899.04 20499.35 26292.35 28199.77 17198.50 13597.94 21699.34 178
MVSTER98.49 15098.32 15899.00 17199.35 19299.02 13899.54 10999.38 21697.41 18999.20 17399.73 12393.86 24399.36 25598.87 7597.56 22998.62 281
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22599.41 17896.99 26999.52 11599.49 12798.11 10899.24 16299.34 26596.96 13499.79 16597.95 18199.45 13299.02 205
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15199.28 10899.52 11599.47 15796.11 29499.01 20799.34 26596.20 15899.84 13797.88 18598.82 17899.39 174
v192192097.80 23297.45 24298.84 20698.80 29498.53 19199.52 11599.34 23596.15 29199.24 16299.47 23193.98 23999.29 26895.40 30195.13 29898.69 247
MIMVSNet195.51 30395.04 30796.92 31897.38 33995.60 30799.52 11599.50 11993.65 32896.97 32999.17 29385.28 34696.56 35288.36 34795.55 28998.60 293
UniMVSNet_ETH3D97.32 27596.81 28198.87 19999.40 18397.46 24599.51 11999.53 8295.86 30198.54 27699.77 10182.44 35299.66 20898.68 10797.52 23299.50 156
alignmvs98.81 13098.56 14599.58 8799.43 17499.42 9499.51 11998.96 29998.61 5999.35 13998.92 31794.78 20699.77 17199.35 2098.11 21399.54 142
v119297.81 23097.44 24798.91 18798.88 28398.68 17899.51 11999.34 23596.18 28699.20 17399.34 26594.03 23899.36 25595.32 30495.18 29698.69 247
test20.0396.12 29895.96 29596.63 32297.44 33895.45 31499.51 11999.38 21696.55 25896.16 33599.25 28493.76 24696.17 35387.35 35094.22 31298.27 320
mvs_anonymous99.03 10398.99 8799.16 15599.38 18798.52 19599.51 11999.38 21697.79 14599.38 13199.81 6297.30 12299.45 23499.35 2098.99 16799.51 153
TAMVS99.12 8599.08 7299.24 14899.46 16898.55 18999.51 11999.46 16798.09 11199.45 10999.82 4998.34 8999.51 22998.70 10298.93 17099.67 105
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
tfpn200view997.72 24597.38 25598.72 21999.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.37 317
UA-Net99.42 3899.29 4499.80 4099.62 12699.55 7599.50 12599.70 1598.79 4899.77 3399.96 197.45 11699.96 1998.92 6799.90 2399.89 2
pm-mvs197.68 25397.28 26898.88 19599.06 26198.62 18499.50 12599.45 17996.32 27497.87 30899.79 8892.47 27599.35 25997.54 22093.54 32198.67 259
EI-MVSNet98.67 14398.67 12898.68 22299.35 19297.97 22499.50 12599.38 21696.93 23399.20 17399.83 4297.87 10699.36 25598.38 14697.56 22998.71 239
CVMVSNet98.57 14998.67 12898.30 26199.35 19295.59 30899.50 12599.55 6398.60 6099.39 12899.83 4294.48 22399.45 23498.75 9598.56 19099.85 14
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24499.54 7799.50 12599.58 4998.27 8999.35 13999.37 25692.53 27399.65 21299.35 2094.46 30798.72 237
thres40097.77 23497.38 25598.92 18399.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.96 212
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12599.50 11997.16 21099.77 3399.82 4998.78 4899.94 5497.56 21899.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RRT_MVS98.60 14898.44 14999.05 16498.88 28399.14 12699.49 13599.38 21697.76 14899.29 14999.86 2395.38 18599.36 25598.81 9097.16 25398.64 271
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13599.46 16798.95 3299.83 1799.76 10599.01 1699.93 6999.17 4199.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13599.49 12798.94 3399.83 1799.76 10599.01 1699.94 5499.15 4499.87 4099.80 49
TransMVSNet (Re)97.15 27996.58 28398.86 20299.12 24998.85 16499.49 13598.91 30695.48 30497.16 32499.80 7693.38 24999.11 29894.16 31991.73 33498.62 281
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 27099.36 9999.49 13599.51 10197.95 12898.97 21799.13 29896.30 15599.38 24898.36 15093.34 32298.66 267
EPMVS97.82 22897.65 22198.35 25698.88 28395.98 30199.49 13594.71 35997.57 16899.26 15999.48 22892.46 27899.71 19497.87 18699.08 16099.35 176
Anonymous2023121197.88 21597.54 23298.90 18999.71 8698.53 19199.48 14199.57 5094.16 32398.81 24099.68 14593.23 25199.42 24498.84 8294.42 30998.76 229
v124097.69 25197.32 26598.79 21398.85 29198.43 20499.48 14199.36 22696.11 29499.27 15499.36 25993.76 24699.24 27594.46 31495.23 29598.70 243
VPNet97.84 22397.44 24799.01 16999.21 22998.94 15499.48 14199.57 5098.38 7699.28 15199.73 12388.89 32599.39 24699.19 3893.27 32498.71 239
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17698.92 28098.98 14299.48 14199.53 8297.76 14898.71 25199.46 23596.43 15299.22 27998.57 12592.87 32998.69 247
TDRefinement95.42 30594.57 31197.97 28389.83 35896.11 29999.48 14198.75 31796.74 24296.68 33099.88 1588.65 32899.71 19498.37 14882.74 34898.09 326
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14699.48 13998.05 12199.76 3799.86 2398.82 4499.93 6998.82 8999.91 1699.84 18
NR-MVSNet97.97 20797.61 22599.02 16898.87 28799.26 11199.47 14699.42 19897.63 16397.08 32699.50 21995.07 19699.13 29397.86 18793.59 32098.68 252
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14699.93 297.66 16199.71 4699.86 2397.73 11199.96 1999.47 1499.82 7899.79 53
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14999.52 8899.11 799.88 599.91 599.43 197.70 34498.72 10099.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpm297.44 27297.34 26297.74 29799.15 24794.36 33299.45 15098.94 30093.45 33298.90 22799.44 23791.35 30099.59 22397.31 23598.07 21499.29 181
FMVSNet297.72 24597.36 25798.80 21299.51 15198.84 16599.45 15099.42 19896.49 26198.86 23799.29 27790.26 30998.98 31396.44 28096.56 26198.58 295
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17598.73 17599.45 15099.46 16798.11 10899.46 10899.77 10198.01 10499.37 25198.70 10298.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 11998.63 13399.54 9299.37 18999.66 5499.45 15099.54 7096.61 25399.01 20799.40 24897.09 12899.86 12697.68 20899.53 13099.10 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15499.51 10197.29 19899.59 8499.74 11698.15 10099.96 1996.74 27099.69 10999.81 41
mvs-test198.86 11998.84 11098.89 19299.33 19797.77 23699.44 15499.30 25798.47 6799.10 19199.43 23996.78 13899.95 4398.73 9899.02 16598.96 212
UGNet98.87 11698.69 12699.40 12299.22 22798.72 17699.44 15499.68 1999.24 399.18 17999.42 24292.74 26399.96 1999.34 2499.94 999.53 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15499.54 7097.77 14799.30 14699.81 6294.20 23199.93 6999.17 4198.82 17899.49 157
test_040296.64 28796.24 28997.85 29098.85 29196.43 29199.44 15499.26 26593.52 32996.98 32899.52 21288.52 33099.20 28692.58 33597.50 23597.93 338
ACMP97.20 1198.06 18997.94 19198.45 24599.37 18997.01 26799.44 15499.49 12797.54 17398.45 28199.79 8891.95 28599.72 18897.91 18397.49 23898.62 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 24598.55 32298.16 21599.43 16093.68 36197.23 32198.46 33189.30 32299.22 27995.43 30098.22 20397.98 335
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 16099.51 10198.68 5699.27 15499.53 20998.64 6899.96 1998.44 14299.80 8499.79 53
tpm cat197.39 27397.36 25797.50 30599.17 24293.73 33799.43 16099.31 25391.27 34098.71 25199.08 30294.31 22999.77 17196.41 28298.50 19399.00 206
tpm97.67 25697.55 22998.03 27799.02 26895.01 32399.43 16098.54 33396.44 26899.12 18699.34 26591.83 28899.60 22297.75 19896.46 26599.48 158
GBi-Net97.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
test197.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
FMVSNet196.84 28496.36 28798.29 26299.32 20497.26 25299.43 16099.48 13995.11 30998.55 27599.32 27283.95 34898.98 31395.81 29196.26 27098.62 281
testgi97.65 25897.50 23698.13 27399.36 19196.45 29099.42 16799.48 13997.76 14897.87 30899.45 23691.09 30398.81 32694.53 31398.52 19299.13 189
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16799.54 7097.29 19899.41 12199.59 18798.42 8499.93 6998.19 15999.69 10999.73 80
Anonymous20240521198.30 16697.98 18499.26 14599.57 13998.16 21599.41 16998.55 33296.03 29999.19 17699.74 11691.87 28699.92 8099.16 4398.29 20299.70 95
MSLP-MVS++99.46 2499.47 999.44 12099.60 13399.16 12199.41 16999.71 1398.98 2799.45 10999.78 9599.19 799.54 22899.28 3099.84 6599.63 123
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 16999.39 21099.01 1899.74 4199.78 9595.56 18099.92 8099.52 698.18 20799.72 86
baseline297.87 21797.55 22998.82 20899.18 23698.02 22199.41 16996.58 35596.97 22796.51 33199.17 29393.43 24899.57 22497.71 20399.03 16498.86 217
DU-MVS98.08 18897.79 20398.96 17698.87 28798.98 14299.41 16999.45 17997.87 13398.71 25199.50 21994.82 20399.22 27998.57 12592.87 32998.68 252
Baseline_NR-MVSNet97.76 23597.45 24298.68 22299.09 25698.29 20999.41 16998.85 31295.65 30398.63 26899.67 15194.82 20399.10 30098.07 17592.89 32898.64 271
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26899.11 25196.33 29499.41 16999.52 8898.06 12099.05 20399.50 21989.64 31999.73 18497.73 20097.38 24698.53 298
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16999.50 11997.03 22499.04 20499.88 1597.39 11799.92 8098.66 11099.90 2399.87 10
9.1499.10 6999.72 8099.40 17799.51 10197.53 17599.64 7099.78 9598.84 4299.91 9197.63 20999.82 78
D2MVS98.41 15798.50 14798.15 27299.26 21796.62 28599.40 17799.61 3597.71 15498.98 21599.36 25996.04 16199.67 20598.70 10297.41 24498.15 325
Anonymous2024052998.09 18697.68 21899.34 12799.66 11098.44 20399.40 17799.43 19693.67 32799.22 16799.89 1090.23 31299.93 6999.26 3398.33 19799.66 108
FMVSNet398.03 19597.76 21198.84 20699.39 18698.98 14299.40 17799.38 21696.67 24799.07 19899.28 27992.93 25698.98 31397.10 25096.65 25898.56 297
LFMVS97.90 21497.35 25999.54 9299.52 14999.01 14099.39 18198.24 33697.10 21899.65 6899.79 8884.79 34799.91 9199.28 3098.38 19699.69 98
HQP_MVS98.27 16998.22 16498.44 24899.29 21096.97 27199.39 18199.47 15798.97 3099.11 18899.61 18192.71 26699.69 20397.78 19497.63 22298.67 259
plane_prior299.39 18198.97 30
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18199.94 198.73 5299.11 18899.89 1095.50 18299.94 5499.50 899.97 399.89 2
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18199.38 21697.70 15599.28 15199.28 27998.34 8999.85 13296.96 25999.45 13299.69 98
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18699.51 10197.45 18299.61 7799.75 11098.51 7599.91 9197.45 23099.83 7299.71 93
gg-mvs-nofinetune96.17 29795.32 30598.73 21798.79 29598.14 21799.38 18694.09 36091.07 34398.07 30391.04 35689.62 32099.35 25996.75 26999.09 15998.68 252
VDDNet97.55 26297.02 27899.16 15599.49 16098.12 21999.38 18699.30 25795.35 30699.68 5399.90 782.62 35199.93 6999.31 2798.13 21299.42 170
pmmvs696.53 28996.09 29297.82 29398.69 31095.47 31399.37 18999.47 15793.46 33197.41 31799.78 9587.06 34199.33 26396.92 26492.70 33198.65 269
PM-MVS92.96 31992.23 32295.14 32995.61 34989.98 35299.37 18998.21 33794.80 31695.04 34197.69 34065.06 35797.90 34094.30 31589.98 33997.54 345
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 18999.56 5598.04 12299.53 9699.62 17796.84 13699.94 5498.85 8098.49 19499.72 86
IterMVS-LS98.46 15298.42 15198.58 22899.59 13598.00 22299.37 18999.43 19696.94 23299.07 19899.59 18797.87 10699.03 30698.32 15495.62 28798.71 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
hse-mvs397.70 25097.28 26898.97 17599.70 9397.27 25099.36 19399.45 17998.94 3399.66 6499.64 16594.93 19899.99 199.48 1384.36 34699.65 112
DPE-MVScopyleft99.46 2499.32 3099.91 299.78 4499.88 799.36 19399.51 10198.73 5299.88 599.84 3898.72 6099.96 1998.16 16499.87 4099.88 5
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19399.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
UnsupCasMVSNet_eth96.44 29196.12 29197.40 30798.65 31395.65 30699.36 19399.51 10197.13 21296.04 33798.99 31188.40 33198.17 33396.71 27290.27 33798.40 314
sss99.17 7399.05 7499.53 9899.62 12698.97 14599.36 19399.62 3397.83 13999.67 5999.65 15897.37 12199.95 4399.19 3899.19 14999.68 102
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19399.46 16799.07 1399.79 2699.82 4998.85 4199.92 8098.68 10799.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 6499.14 6499.59 8499.41 17899.16 12199.35 19999.57 5098.82 4399.51 10099.61 18196.46 14999.95 4399.59 199.98 299.65 112
pmmvs-eth3d95.34 30794.73 30997.15 31095.53 35195.94 30299.35 19999.10 28495.13 30793.55 34497.54 34188.15 33597.91 33994.58 31289.69 34097.61 342
MDTV_nov1_ep13_2view95.18 32199.35 19996.84 23799.58 8695.19 19497.82 19199.46 165
VDD-MVS97.73 24397.35 25998.88 19599.47 16797.12 25699.34 20298.85 31298.19 9899.67 5999.85 2982.98 34999.92 8099.49 1298.32 20199.60 129
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20299.59 4397.55 17098.70 25799.89 1095.83 17199.90 10698.10 16799.90 2399.08 196
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet596.43 29296.19 29097.15 31099.11 25195.89 30399.32 20499.52 8894.47 32298.34 29099.07 30387.54 34097.07 34892.61 33495.72 28598.47 304
dp97.75 23997.80 20297.59 30199.10 25493.71 33899.32 20498.88 31096.48 26599.08 19799.55 20092.67 26999.82 15396.52 27898.58 18799.24 183
tpmvs97.98 20498.02 18197.84 29199.04 26594.73 32999.31 20699.20 27396.10 29898.76 24799.42 24294.94 19799.81 15796.97 25898.45 19598.97 210
tpmrst98.33 16398.48 14897.90 28899.16 24494.78 32899.31 20699.11 28397.27 20099.45 10999.59 18795.33 18899.84 13798.48 13698.61 18499.09 195
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20899.52 8897.18 20899.60 8199.79 8898.79 4799.95 4398.83 8599.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5199.19 6099.79 4399.61 13099.65 5799.30 20899.48 13998.86 3999.21 17099.63 17198.72 6099.90 10698.25 15699.63 12299.80 49
JIA-IIPM97.50 26897.02 27898.93 18198.73 30497.80 23599.30 20898.97 29791.73 33998.91 22594.86 35195.10 19599.71 19497.58 21397.98 21599.28 182
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17898.83 16899.30 20898.77 31697.70 15598.94 22199.65 15892.91 25999.74 17796.52 27899.55 12999.64 119
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21299.40 20698.79 4899.52 9899.62 17798.91 3699.90 10698.64 11299.75 9699.82 36
LF4IMVS97.52 26597.46 24197.70 29998.98 27495.55 30999.29 21298.82 31598.07 11698.66 26099.64 16589.97 31499.61 22197.01 25496.68 25797.94 337
OPM-MVS98.19 17498.10 17098.45 24598.88 28397.07 26199.28 21499.38 21698.57 6199.22 16799.81 6292.12 28299.66 20898.08 17297.54 23198.61 290
diffmvs99.14 7799.02 8299.51 10599.61 13098.96 14999.28 21499.49 12798.46 6999.72 4599.71 12896.50 14899.88 11999.31 2799.11 15599.67 105
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21499.91 397.42 18899.67 5999.37 25697.53 11499.88 11998.98 5897.29 24898.42 311
OMC-MVS99.08 9699.04 7799.20 15199.67 10198.22 21399.28 21499.52 8898.07 11699.66 6499.81 6297.79 10999.78 16997.79 19399.81 8099.60 129
AUN-MVS96.88 28396.31 28898.59 22699.48 16697.04 26599.27 21899.22 27097.44 18598.51 27799.41 24591.97 28499.66 20897.71 20383.83 34799.07 200
pmmvs597.52 26597.30 26798.16 27198.57 32196.73 28099.27 21898.90 30896.14 29298.37 28799.53 20991.54 29899.14 29097.51 22395.87 28098.63 279
131498.68 14298.54 14699.11 15998.89 28298.65 18199.27 21899.49 12796.89 23497.99 30599.56 19797.72 11299.83 14697.74 19999.27 14498.84 219
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21899.48 13996.82 24099.25 16199.65 15898.38 8699.93 6997.53 22199.67 11699.73 80
MVS97.28 27696.55 28499.48 10998.78 29898.95 15199.27 21899.39 21083.53 35198.08 30099.54 20596.97 13399.87 12394.23 31799.16 15099.63 123
BH-untuned98.42 15598.36 15398.59 22699.49 16096.70 28199.27 21899.13 28297.24 20498.80 24299.38 25395.75 17499.74 17797.07 25399.16 15099.33 179
MDTV_nov1_ep1398.32 15899.11 25194.44 33199.27 21898.74 32097.51 17799.40 12699.62 17794.78 20699.76 17497.59 21298.81 180
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21899.57 5096.40 27299.42 11799.68 14598.75 5699.80 16297.98 17899.72 10399.44 168
PatchmatchNetpermissive98.31 16498.36 15398.19 26999.16 24495.32 31799.27 21898.92 30397.37 19299.37 13399.58 19094.90 20099.70 20097.43 23299.21 14799.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 26097.28 26898.62 22499.64 11798.03 22099.26 22798.74 32097.68 15799.09 19698.32 33691.66 29599.81 15792.88 33098.22 20398.03 330
CNVR-MVS99.42 3899.30 4099.78 4599.62 12699.71 4499.26 22799.52 8898.82 4399.39 12899.71 12898.96 2599.85 13298.59 12299.80 8499.77 63
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13899.25 22999.48 13997.23 20599.13 18499.58 19096.93 13599.90 10698.87 7598.78 18199.84 18
TAPA-MVS97.07 1597.74 24297.34 26298.94 17999.70 9397.53 24399.25 22999.51 10191.90 33899.30 14699.63 17198.78 4899.64 21488.09 34899.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14099.24 23199.52 8896.85 23699.27 15499.48 22898.25 9499.91 9197.76 19699.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23299.44 18897.04 22299.39 12899.67 15198.30 9199.92 8097.27 23799.69 10999.64 119
test_post199.23 23265.14 36294.18 23499.71 19497.58 213
ADS-MVSNet298.02 19798.07 17797.87 28999.33 19795.19 32099.23 23299.08 28796.24 28199.10 19199.67 15194.11 23598.93 32296.81 26799.05 16299.48 158
ADS-MVSNet98.20 17398.08 17498.56 23199.33 19796.48 28999.23 23299.15 27996.24 28199.10 19199.67 15194.11 23599.71 19496.81 26799.05 16299.48 158
EPNet_dtu98.03 19597.96 18798.23 26798.27 32895.54 31199.23 23298.75 31799.02 1597.82 31099.71 12896.11 15999.48 23093.04 32999.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 17797.93 19298.87 19999.18 23698.49 19999.22 23799.33 24296.96 22899.56 8999.38 25394.33 22799.00 31194.83 31198.58 18799.14 187
RPMNet96.72 28695.90 29699.19 15299.18 23698.49 19999.22 23799.52 8888.72 34799.56 8997.38 34394.08 23799.95 4386.87 35298.58 18799.14 187
plane_prior96.97 27199.21 23998.45 7097.60 225
WR-MVS98.06 18997.73 21499.06 16298.86 29099.25 11299.19 24099.35 23197.30 19798.66 26099.43 23993.94 24099.21 28498.58 12394.28 31198.71 239
new-patchmatchnet94.48 31494.08 31495.67 32895.08 35292.41 34699.18 24199.28 26494.55 32193.49 34597.37 34487.86 33997.01 34991.57 33688.36 34197.61 342
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14399.54 7799.18 24199.70 1598.18 10199.35 13999.63 17196.32 15499.90 10697.48 22599.77 9299.55 140
ETH3 D test640098.70 13998.35 15599.73 5899.69 9699.60 6599.16 24399.45 17995.42 30599.27 15499.60 18497.39 11799.91 9195.36 30399.83 7299.70 95
EG-PatchMatch MVS95.97 30095.69 30096.81 32097.78 33592.79 34599.16 24398.93 30196.16 28994.08 34399.22 28882.72 35099.47 23195.67 29697.50 23598.17 324
PatchT97.03 28296.44 28698.79 21398.99 27198.34 20899.16 24399.07 28992.13 33799.52 9897.31 34694.54 22298.98 31388.54 34698.73 18399.03 203
CNLPA99.14 7798.99 8799.59 8499.58 13799.41 9599.16 24399.44 18898.45 7099.19 17699.49 22298.08 10299.89 11497.73 20099.75 9699.48 158
MDA-MVSNet-bldmvs94.96 30993.98 31597.92 28698.24 33097.27 25099.15 24799.33 24293.80 32680.09 35799.03 30888.31 33297.86 34193.49 32494.36 31098.62 281
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24799.41 20096.60 25599.60 8199.55 20098.83 4399.90 10697.48 22599.83 7299.78 61
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24999.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
save fliter99.76 5299.59 6899.14 24999.40 20699.00 22
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19299.71 8697.74 23799.12 25199.54 7098.44 7399.42 11799.71 12894.20 23199.92 8098.54 13398.90 17499.00 206
jason99.13 7999.03 7999.45 11599.46 16898.87 16199.12 25199.26 26598.03 12499.79 2699.65 15897.02 13199.85 13299.02 5599.90 2399.65 112
jason: jason.
N_pmnet94.95 31095.83 29892.31 33398.47 32579.33 35899.12 25192.81 36493.87 32597.68 31399.13 29893.87 24299.01 31091.38 33796.19 27198.59 294
MDA-MVSNet_test_wron95.45 30494.60 31098.01 28098.16 33197.21 25599.11 25799.24 26893.49 33080.73 35698.98 31493.02 25498.18 33294.22 31894.45 30898.64 271
Patchmtry97.75 23997.40 25398.81 21099.10 25498.87 16199.11 25799.33 24294.83 31598.81 24099.38 25394.33 22799.02 30896.10 28595.57 28898.53 298
YYNet195.36 30694.51 31297.92 28697.89 33397.10 25799.10 25999.23 26993.26 33380.77 35599.04 30792.81 26098.02 33694.30 31594.18 31398.64 271
CANet_DTU98.97 11198.87 10499.25 14699.33 19798.42 20699.08 26099.30 25799.16 599.43 11499.75 11095.27 19099.97 1198.56 12899.95 699.36 175
SCA98.19 17498.16 16598.27 26699.30 20695.55 30999.07 26198.97 29797.57 16899.43 11499.57 19492.72 26499.74 17797.58 21399.20 14899.52 147
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10198.61 18699.07 26199.33 24299.00 2299.82 2099.81 6299.06 1399.84 13799.09 4999.42 13499.65 112
MG-MVS99.13 7999.02 8299.45 11599.57 13998.63 18399.07 26199.34 23598.99 2599.61 7799.82 4997.98 10599.87 12397.00 25599.80 8499.85 14
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26499.77 997.74 15299.50 10199.53 20995.41 18499.84 13797.17 24899.64 12099.44 168
OpenMVS_ROBcopyleft92.34 2094.38 31593.70 31996.41 32597.38 33993.17 34399.06 26498.75 31786.58 34894.84 34298.26 33781.53 35399.32 26489.01 34497.87 21896.76 346
TEST999.67 10199.65 5799.05 26699.41 20096.22 28398.95 21999.49 22298.77 5199.91 91
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26699.41 20096.28 27698.95 21999.49 22298.76 5399.91 9197.63 20999.72 10399.75 69
lupinMVS99.13 7999.01 8699.46 11499.51 15198.94 15499.05 26699.16 27897.86 13499.80 2499.56 19797.39 11799.86 12698.94 6399.85 5899.58 137
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26699.66 2799.14 699.57 8899.80 7698.46 7999.94 5499.57 399.84 6599.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 29396.03 29397.41 30698.13 33295.16 32299.05 26699.20 27393.94 32497.39 31898.79 32191.61 29799.04 30490.43 34095.77 28298.05 329
MVS_030496.79 28596.52 28597.59 30199.22 22794.92 32699.04 27199.59 4396.49 26198.43 28398.99 31180.48 35499.39 24697.15 24999.27 14498.47 304
Patchmatch-test97.93 20997.65 22198.77 21599.18 23697.07 26199.03 27299.14 28196.16 28998.74 24899.57 19494.56 22099.72 18893.36 32599.11 15599.52 147
test_899.67 10199.61 6399.03 27299.41 20096.28 27698.93 22399.48 22898.76 5399.91 91
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15199.03 27299.47 15796.98 22699.15 18299.23 28796.77 14099.89 11498.83 8598.78 18199.86 11
IterMVS-SCA-FT97.82 22897.75 21298.06 27699.57 13996.36 29399.02 27599.49 12797.18 20898.71 25199.72 12792.72 26499.14 29097.44 23195.86 28198.67 259
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14798.91 15899.02 27599.45 17998.80 4799.71 4699.26 28398.94 3199.98 699.34 2499.23 14698.98 209
MIMVSNet97.73 24397.45 24298.57 22999.45 17397.50 24499.02 27598.98 29696.11 29499.41 12199.14 29790.28 30898.74 32795.74 29398.93 17099.47 163
IterMVS97.83 22597.77 20898.02 27999.58 13796.27 29699.02 27599.48 13997.22 20698.71 25199.70 13292.75 26199.13 29397.46 22896.00 27598.67 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27599.91 397.67 16099.59 8499.75 11095.90 16999.73 18499.53 599.02 16599.86 11
新几何299.01 280
BH-w/o98.00 20297.89 19898.32 25999.35 19296.20 29899.01 28098.90 30896.42 27098.38 28699.00 31095.26 19299.72 18896.06 28698.61 18499.03 203
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28299.40 20696.26 27998.87 23299.49 22298.77 5199.91 9197.69 20699.72 10399.75 69
test_prior499.56 7398.99 282
无先验98.99 28299.51 10196.89 23499.93 6997.53 22199.72 86
pmmvs498.13 18297.90 19498.81 21098.61 31898.87 16198.99 28299.21 27296.44 26899.06 20299.58 19095.90 16999.11 29897.18 24796.11 27398.46 308
HQP-NCC99.19 23398.98 28698.24 9198.66 260
ACMP_Plane99.19 23398.98 28698.24 9198.66 260
HQP-MVS98.02 19797.90 19498.37 25599.19 23396.83 27698.98 28699.39 21098.24 9198.66 26099.40 24892.47 27599.64 21497.19 24597.58 22798.64 271
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13998.94 15498.97 28999.46 16798.92 3699.71 4699.24 28599.01 1699.98 699.35 2099.66 11798.97 210
MVP-Stereo97.81 23097.75 21297.99 28297.53 33796.60 28698.96 29098.85 31297.22 20697.23 32199.36 25995.28 18999.46 23395.51 29899.78 8997.92 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior399.21 6699.05 7499.68 6599.67 10199.48 8798.96 29099.56 5598.34 8199.01 20799.52 21298.68 6399.83 14697.96 17999.74 9999.74 73
test_prior298.96 29098.34 8199.01 20799.52 21298.68 6397.96 17999.74 99
旧先验298.96 29096.70 24599.47 10699.94 5498.19 159
原ACMM298.95 294
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29499.85 698.82 4399.54 9499.73 12398.51 7599.74 17798.91 6899.88 3699.77 63
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29699.85 698.82 4399.65 6899.74 11698.51 7599.80 16298.83 8599.89 3399.64 119
pmmvs394.09 31793.25 32096.60 32394.76 35394.49 33098.92 29798.18 33989.66 34496.48 33298.06 33986.28 34297.33 34689.68 34387.20 34397.97 336
XVG-OURS98.73 13898.68 12798.88 19599.70 9397.73 23898.92 29799.55 6398.52 6499.45 10999.84 3895.27 19099.91 9198.08 17298.84 17799.00 206
test22299.75 6299.49 8698.91 29999.49 12796.42 27099.34 14299.65 15898.28 9399.69 10999.72 86
PMMVS286.87 32185.37 32591.35 33690.21 35783.80 35398.89 30097.45 34983.13 35291.67 34995.03 34948.49 36294.70 35585.86 35377.62 35295.54 349
miper_lstm_enhance98.00 20297.91 19398.28 26599.34 19697.43 24698.88 30199.36 22696.48 26598.80 24299.55 20095.98 16298.91 32397.27 23795.50 29198.51 300
MVS-HIRNet95.75 30295.16 30697.51 30499.30 20693.69 33998.88 30195.78 35685.09 35098.78 24592.65 35391.29 30199.37 25194.85 31099.85 5899.46 165
TR-MVS97.76 23597.41 25298.82 20899.06 26197.87 23198.87 30398.56 33196.63 25298.68 25999.22 28892.49 27499.65 21295.40 30197.79 21998.95 215
testdata198.85 30498.32 85
ET-MVSNet_ETH3D96.49 29095.64 30199.05 16499.53 14798.82 16998.84 30597.51 34897.63 16384.77 35199.21 29192.09 28398.91 32398.98 5892.21 33399.41 172
our_test_397.65 25897.68 21897.55 30398.62 31694.97 32498.84 30599.30 25796.83 23998.19 29699.34 26597.01 13299.02 30895.00 30996.01 27498.64 271
MS-PatchMatch97.24 27897.32 26596.99 31498.45 32693.51 34298.82 30799.32 25097.41 18998.13 29999.30 27588.99 32499.56 22595.68 29599.80 8497.90 340
cl_fuxian98.12 18498.04 17898.38 25499.30 20697.69 24298.81 30899.33 24296.67 24798.83 23899.34 26597.11 12798.99 31297.58 21395.34 29398.48 302
ppachtmachnet_test97.49 27097.45 24297.61 30098.62 31695.24 31898.80 30999.46 16796.11 29498.22 29599.62 17796.45 15098.97 32093.77 32195.97 27998.61 290
PAPR98.63 14798.34 15699.51 10599.40 18399.03 13798.80 30999.36 22696.33 27399.00 21299.12 30198.46 7999.84 13795.23 30599.37 14099.66 108
test0.0.03 197.71 24997.42 25198.56 23198.41 32797.82 23498.78 31198.63 32997.34 19398.05 30498.98 31494.45 22498.98 31395.04 30897.15 25498.89 216
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 31199.91 396.74 24299.67 5999.49 22297.53 11499.88 11998.98 5899.85 5899.60 129
PMMVS98.80 13398.62 13899.34 12799.27 21598.70 17798.76 31399.31 25397.34 19399.21 17099.07 30397.20 12599.82 15398.56 12898.87 17599.52 147
test12339.01 33242.50 33428.53 34539.17 36620.91 36798.75 31419.17 36819.83 36338.57 36266.67 36033.16 36515.42 36337.50 36229.66 36149.26 358
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31499.55 6397.25 20299.47 10699.77 10197.82 10899.87 12396.93 26299.90 2399.54 142
CLD-MVS98.16 17898.10 17098.33 25799.29 21096.82 27898.75 31499.44 18897.83 13999.13 18499.55 20092.92 25799.67 20598.32 15497.69 22198.48 302
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 17698.10 17098.41 25099.23 22397.72 23998.72 31799.31 25396.60 25598.88 23099.29 27797.29 12399.13 29397.60 21195.99 27698.38 316
cl-mvsnet_98.01 20097.84 20198.55 23399.25 22197.97 22498.71 31899.34 23596.47 26798.59 27499.54 20595.65 17999.21 28497.21 24195.77 28298.46 308
cl-mvsnet198.01 20097.85 20098.48 23999.24 22297.95 22898.71 31899.35 23196.50 26098.60 27399.54 20595.72 17699.03 30697.21 24195.77 28298.46 308
test-LLR98.06 18997.90 19498.55 23398.79 29597.10 25798.67 32097.75 34497.34 19398.61 27198.85 31894.45 22499.45 23497.25 23999.38 13699.10 191
TESTMET0.1,197.55 26297.27 27198.40 25298.93 27996.53 28798.67 32097.61 34796.96 22898.64 26799.28 27988.63 32999.45 23497.30 23699.38 13699.21 185
test-mter97.49 27097.13 27598.55 23398.79 29597.10 25798.67 32097.75 34496.65 24998.61 27198.85 31888.23 33399.45 23497.25 23999.38 13699.10 191
IB-MVS95.67 1896.22 29495.44 30498.57 22999.21 22996.70 28198.65 32397.74 34696.71 24497.27 32098.54 33086.03 34399.92 8098.47 13986.30 34499.10 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32499.10 28497.93 13099.42 11799.55 20098.67 6699.80 16295.80 29299.68 11499.61 127
thisisatest051598.14 18197.79 20399.19 15299.50 15898.50 19898.61 32596.82 35296.95 23099.54 9499.43 23991.66 29599.86 12698.08 17299.51 13199.22 184
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31399.60 13391.75 34898.61 32599.44 18899.35 199.83 1799.85 2998.70 6299.81 15799.02 5599.91 1699.81 41
cl-mvsnet297.85 22097.64 22398.48 23999.09 25697.87 23198.60 32799.33 24297.11 21798.87 23299.22 28892.38 28099.17 28898.21 15895.99 27698.42 311
GA-MVS97.85 22097.47 23999.00 17199.38 18797.99 22398.57 32899.15 27997.04 22298.90 22799.30 27589.83 31599.38 24896.70 27398.33 19799.62 125
TinyColmap97.12 28096.89 28097.83 29299.07 25995.52 31298.57 32898.74 32097.58 16797.81 31199.79 8888.16 33499.56 22595.10 30697.21 25098.39 315
eth_miper_zixun_eth98.05 19497.96 18798.33 25799.26 21797.38 24798.56 33099.31 25396.65 24998.88 23099.52 21296.58 14599.12 29797.39 23495.53 29098.47 304
CMPMVSbinary69.68 2394.13 31694.90 30891.84 33497.24 34380.01 35798.52 33199.48 13989.01 34591.99 34899.67 15185.67 34599.13 29395.44 29997.03 25596.39 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 27497.20 27397.75 29699.07 25995.20 31998.51 33299.04 29297.99 12698.31 29199.86 2389.02 32399.55 22795.67 29697.36 24798.49 301
ambc93.06 33292.68 35482.36 35498.47 33398.73 32595.09 34097.41 34255.55 36099.10 30096.42 28191.32 33597.71 341
miper_enhance_ethall98.16 17898.08 17498.41 25098.96 27797.72 23998.45 33499.32 25096.95 23098.97 21799.17 29397.06 13099.22 27997.86 18795.99 27698.29 319
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 11097.89 23098.43 33599.71 1398.88 3899.62 7599.76 10596.63 14499.70 20099.46 1599.99 199.66 108
testmvs39.17 33143.78 33325.37 34636.04 36716.84 36898.36 33626.56 36620.06 36238.51 36367.32 35929.64 36615.30 36437.59 36139.90 36043.98 359
FPMVS84.93 32385.65 32482.75 34186.77 36063.39 36498.35 33798.92 30374.11 35483.39 35398.98 31450.85 36192.40 35784.54 35494.97 30192.46 351
KD-MVS_2432*160094.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
miper_refine_blended94.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
CL-MVSNet_2432*160094.49 31393.97 31696.08 32696.16 34893.67 34098.33 34099.38 21695.13 30797.33 31998.15 33892.69 26896.57 35188.67 34579.87 35197.99 334
PVSNet96.02 1798.85 12798.84 11098.89 19299.73 7597.28 24998.32 34199.60 4097.86 13499.50 10199.57 19496.75 14199.86 12698.56 12899.70 10899.54 142
PAPM97.59 26197.09 27699.07 16199.06 26198.26 21298.30 34299.10 28494.88 31498.08 30099.34 26596.27 15699.64 21489.87 34298.92 17299.31 180
Patchmatch-RL test95.84 30195.81 29995.95 32795.61 34990.57 35098.24 34398.39 33495.10 31195.20 33998.67 32694.78 20697.77 34296.28 28490.02 33899.51 153
UnsupCasMVSNet_bld93.53 31892.51 32196.58 32497.38 33993.82 33698.24 34399.48 13991.10 34293.10 34696.66 34774.89 35598.37 33094.03 32087.71 34297.56 344
LCM-MVSNet86.80 32285.22 32691.53 33587.81 35980.96 35698.23 34598.99 29571.05 35590.13 35096.51 34848.45 36396.88 35090.51 33985.30 34596.76 346
cascas97.69 25197.43 25098.48 23998.60 31997.30 24898.18 34699.39 21092.96 33598.41 28498.78 32393.77 24599.27 27298.16 16498.61 18498.86 217
Effi-MVS+98.81 13098.59 14399.48 10999.46 16899.12 13098.08 34799.50 11997.50 17899.38 13199.41 24596.37 15399.81 15799.11 4798.54 19199.51 153
PCF-MVS97.08 1497.66 25797.06 27799.47 11299.61 13099.09 13298.04 34899.25 26791.24 34198.51 27799.70 13294.55 22199.91 9192.76 33399.85 5899.42 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
bset_n11_16_dypcd98.16 17897.97 18598.73 21798.26 32998.28 21197.99 34998.01 34197.68 15799.10 19199.63 17195.68 17799.15 28998.78 9496.55 26298.75 231
PVSNet_094.43 1996.09 29995.47 30297.94 28499.31 20594.34 33397.81 35099.70 1597.12 21497.46 31698.75 32489.71 31799.79 16597.69 20681.69 34999.68 102
E-PMN80.61 32579.88 32882.81 34090.75 35676.38 36197.69 35195.76 35766.44 35883.52 35292.25 35462.54 35987.16 35968.53 35861.40 35684.89 357
ANet_high77.30 32774.86 33184.62 33975.88 36377.61 35997.63 35293.15 36388.81 34664.27 36089.29 35736.51 36483.93 36175.89 35652.31 35892.33 353
EMVS80.02 32679.22 32982.43 34291.19 35576.40 36097.55 35392.49 36566.36 35983.01 35491.27 35564.63 35885.79 36065.82 35960.65 35785.08 356
MVEpermissive76.82 2176.91 32874.31 33284.70 33885.38 36276.05 36296.88 35493.17 36267.39 35771.28 35989.01 35821.66 36987.69 35871.74 35772.29 35590.35 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft90.99 32090.15 32393.51 33098.73 30490.12 35193.98 35599.45 17979.32 35392.28 34794.91 35069.61 35697.98 33887.42 34995.67 28692.45 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 32974.97 33079.01 34370.98 36455.18 36593.37 35698.21 33765.08 36061.78 36193.83 35221.74 36892.53 35678.59 35591.12 33689.34 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 32481.52 32786.66 33766.61 36568.44 36392.79 35797.92 34268.96 35680.04 35899.85 2985.77 34496.15 35497.86 18743.89 35995.39 350
wuyk23d40.18 33041.29 33536.84 34486.18 36149.12 36679.73 35822.81 36727.64 36125.46 36428.45 36421.98 36748.89 36255.80 36023.56 36212.51 360
uanet_test0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k24.64 33332.85 3360.00 3470.00 3680.00 3690.00 35999.51 1010.00 3640.00 36599.56 19796.58 1450.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas8.27 33511.03 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 36599.01 160.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.30 33411.06 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36599.58 1900.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS99.71 8699.79 3099.61 3596.84 23799.56 8999.54 20598.58 7099.96 1996.93 26299.75 96
IU-MVS99.84 3299.88 799.32 25098.30 8699.84 1398.86 7899.85 5899.89 2
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1998.91 6899.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 174
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8099.90 2399.88 5
GSMVS99.52 147
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20299.52 147
sam_mvs94.72 213
MTGPAbinary99.47 157
test_post65.99 36194.65 21799.73 184
patchmatchnet-post98.70 32594.79 20599.74 177
gm-plane-assit98.54 32392.96 34494.65 31999.15 29699.64 21497.56 218
test9_res97.49 22499.72 10399.75 69
agg_prior297.21 24199.73 10299.75 69
agg_prior99.67 10199.62 6199.40 20698.87 23299.91 91
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
test_prior99.68 6599.67 10199.48 8799.56 5599.83 14699.74 73
新几何199.75 5199.75 6299.59 6899.54 7096.76 24199.29 14999.64 16598.43 8199.94 5496.92 26499.66 11799.72 86
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17999.12 18699.66 15798.67 6699.91 9197.70 20599.69 10999.71 93
testdata299.95 4396.67 275
segment_acmp98.96 25
testdata99.54 9299.75 6298.95 15199.51 10197.07 21999.43 11499.70 13298.87 3999.94 5497.76 19699.64 12099.72 86
test1299.75 5199.64 11799.61 6399.29 26299.21 17098.38 8699.89 11499.74 9999.74 73
plane_prior799.29 21097.03 266
plane_prior699.27 21596.98 27092.71 266
plane_prior599.47 15799.69 20397.78 19497.63 22298.67 259
plane_prior499.61 181
plane_prior397.00 26898.69 5599.11 188
plane_prior199.26 217
n20.00 369
nn0.00 369
door-mid98.05 340
lessismore_v097.79 29598.69 31095.44 31594.75 35895.71 33899.87 2088.69 32799.32 26495.89 28994.93 30398.62 281
LGP-MVS_train98.49 23799.33 19797.05 26399.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
test1199.35 231
door97.92 342
HQP5-MVS96.83 276
BP-MVS97.19 245
HQP4-MVS98.66 26099.64 21498.64 271
HQP3-MVS99.39 21097.58 227
HQP2-MVS92.47 275
NP-MVS99.23 22396.92 27499.40 248
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56
ITE_SJBPF98.08 27499.29 21096.37 29298.92 30398.34 8198.83 23899.75 11091.09 30399.62 22095.82 29097.40 24598.25 322
DeepMVS_CXcopyleft93.34 33199.29 21082.27 35599.22 27085.15 34996.33 33399.05 30690.97 30599.73 18493.57 32397.77 22098.01 331