This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MVSFormer99.17 7399.12 6799.29 14099.51 14998.94 15499.88 199.46 16797.55 16899.80 2499.65 15897.39 11799.28 26799.03 5299.85 5899.65 112
test_djsdf98.67 14398.57 14498.98 17298.70 30798.91 15899.88 199.46 16797.55 16899.22 16699.88 1595.73 17599.28 26799.03 5297.62 22498.75 229
OurMVSNet-221017-097.88 21497.77 20798.19 26798.71 30696.53 28599.88 199.00 28897.79 14498.78 24399.94 391.68 28799.35 25797.21 23996.99 25698.69 244
K. test v397.10 27896.79 27998.01 27898.72 30496.33 29299.87 497.05 34397.59 16396.16 32799.80 7688.71 31999.04 30296.69 27296.55 26298.65 267
FC-MVSNet-test98.75 13798.62 13899.15 15699.08 25699.45 9099.86 599.60 4198.23 9398.70 25599.82 4996.80 13799.22 27899.07 5096.38 26698.79 221
v7n97.87 21697.52 23298.92 18298.76 30098.58 18799.84 699.46 16796.20 28298.91 22399.70 13394.89 19999.44 23696.03 28593.89 31698.75 229
DTE-MVSNet97.51 26497.19 27198.46 24198.63 31398.13 21799.84 699.48 13996.68 24397.97 30299.67 15192.92 25598.56 32796.88 26492.60 33198.70 240
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24799.66 5499.84 699.74 1099.09 1098.92 22299.90 795.94 16699.98 598.95 6199.92 1199.79 53
FIs98.78 13498.63 13399.23 14999.18 23499.54 7699.83 999.59 4498.28 8698.79 24299.81 6296.75 14199.37 24999.08 4996.38 26698.78 222
jajsoiax98.43 15498.28 16198.88 19498.60 31798.43 20499.82 1099.53 8398.19 9798.63 26699.80 7693.22 25199.44 23699.22 3497.50 23598.77 225
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26399.53 7999.82 1099.72 1194.56 31398.08 29699.88 1594.73 21099.98 597.47 22599.76 9599.06 199
nrg03098.64 14698.42 15199.28 14299.05 26299.69 4799.81 1299.46 16798.04 12199.01 20599.82 4996.69 14399.38 24699.34 2394.59 30598.78 222
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7197.59 16399.68 5399.63 17098.91 3699.94 5398.58 12099.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13499.81 1299.33 23997.43 18399.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24099.68 4999.81 1299.51 10299.20 498.72 24899.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
canonicalmvs99.02 10498.86 10899.51 10599.42 17399.32 10199.80 1699.48 13998.63 5699.31 14498.81 31697.09 12899.75 17599.27 3197.90 21799.47 162
v897.95 20797.63 22398.93 18098.95 27698.81 17199.80 1699.41 19896.03 29699.10 19099.42 24094.92 19799.30 26596.94 25994.08 31498.66 265
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18299.43 24197.91 18299.11 15599.62 124
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29698.53 19199.78 1999.54 7198.07 11599.00 21099.76 10599.01 1699.37 24999.13 4497.23 24998.81 219
PEN-MVS97.76 23497.44 24698.72 21798.77 29998.54 19099.78 1999.51 10297.06 21898.29 28999.64 16592.63 26798.89 32398.09 16793.16 32498.72 234
anonymousdsp98.44 15398.28 16198.94 17898.50 32298.96 14999.77 2199.50 12097.07 21698.87 23099.77 10194.76 20899.28 26798.66 10797.60 22598.57 294
SixPastTwentyTwo97.50 26597.33 26398.03 27598.65 31196.23 29599.77 2198.68 32297.14 20897.90 30399.93 490.45 30299.18 28697.00 25396.43 26598.67 257
QAPM98.67 14398.30 16099.80 4099.20 22999.67 5299.77 2199.72 1194.74 31098.73 24799.90 795.78 17399.98 596.96 25799.88 3699.76 68
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5697.72 15299.76 3799.75 11199.13 1099.92 7999.07 5099.92 1199.85 14
v1097.85 21997.52 23298.86 20198.99 26998.67 17999.75 2599.41 19895.70 29998.98 21399.41 24394.75 20999.23 27596.01 28694.63 30498.67 257
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5699.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10199.75 2599.20 26998.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
tttt051798.42 15598.14 16799.28 14299.66 10998.38 20799.74 2896.85 34497.68 15699.79 2699.74 11791.39 29499.89 11398.83 8499.56 12799.57 137
baseline99.15 7699.02 8299.53 9899.66 10999.14 12599.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
RPSCF98.22 17098.62 13896.99 30999.82 3791.58 34299.72 2999.44 18796.61 25099.66 6499.89 1095.92 16799.82 15297.46 22699.10 15899.57 137
CS-MVS99.21 6699.13 6599.45 11599.54 14499.34 9999.71 3199.54 7198.26 8998.99 21299.24 28298.25 9499.88 11898.98 5799.63 12299.12 189
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
WR-MVS_H98.13 18197.87 19898.90 18899.02 26698.84 16599.70 3399.59 4497.27 19798.40 28199.19 28995.53 18099.23 27598.34 14993.78 31798.61 288
LTVRE_ROB97.16 1298.02 19697.90 19398.40 24999.23 22196.80 27699.70 3399.60 4197.12 21198.18 29399.70 13391.73 28699.72 18798.39 14197.45 24098.68 249
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11798.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28595.45 29999.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 35698.81 4599.94 5398.79 9099.86 5199.84 18
V4298.06 18897.79 20298.86 20198.98 27298.84 16599.69 3599.34 23296.53 25799.30 14599.37 25394.67 21399.32 26297.57 21594.66 30398.42 309
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11198.78 4899.97 1098.57 12299.89 3399.83 29
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8998.07 11599.53 9599.63 17098.93 3599.97 1098.74 9499.91 1699.83 29
PS-CasMVS97.93 20897.59 22798.95 17798.99 26999.06 13499.68 4099.52 8997.13 20998.31 28799.68 14592.44 27699.05 30198.51 13194.08 31498.75 229
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13099.68 4099.66 2798.49 6599.86 1199.87 2094.77 20799.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS99.18 7199.09 7199.45 11599.49 15899.18 11799.67 4299.53 8397.66 15999.40 12599.44 23598.10 10199.81 15698.94 6299.62 12499.35 175
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 12098.70 5399.77 3399.49 22098.21 9699.95 4298.46 13799.77 9299.88 5
MVS_Test99.10 9398.97 9199.48 10999.49 15899.14 12599.67 4299.34 23297.31 19399.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
CP-MVSNet98.09 18597.78 20599.01 16898.97 27499.24 11299.67 4299.46 16797.25 19998.48 27799.64 16593.79 24299.06 30098.63 11094.10 31398.74 232
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 14099.06 1399.96 1898.69 10399.87 4099.84 18
mvs_tets98.40 15998.23 16398.91 18698.67 31098.51 19799.66 4699.53 8398.19 9798.65 26499.81 6292.75 25999.44 23699.31 2697.48 23998.77 225
EU-MVSNet97.98 20398.03 17997.81 29298.72 30496.65 28299.66 4699.66 2798.09 11098.35 28599.82 4995.25 19298.01 33297.41 23195.30 29398.78 222
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 14098.95 2899.96 1898.69 10399.87 4099.84 18
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11798.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4498.13 10399.82 2099.81 6298.60 6999.96 1898.46 13799.88 3699.79 53
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11199.87 4099.84 18
TranMVSNet+NR-MVSNet97.93 20897.66 21998.76 21598.78 29698.62 18499.65 5399.49 12897.76 14798.49 27699.60 18294.23 22898.97 31898.00 17692.90 32698.70 240
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5599.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9899.90 2399.82 36
tfpnnormal97.84 22297.47 23898.98 17299.20 22999.22 11499.64 5599.61 3696.32 27298.27 29099.70 13393.35 24899.44 23695.69 29295.40 29198.27 318
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.53 7299.95 4298.61 11499.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.75 5698.61 11499.81 8099.77 63
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5799.39 20898.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 29196.03 29096.79 31597.31 33894.14 32899.63 5799.08 28196.17 28597.04 31999.06 30293.94 23897.76 33886.96 34495.06 29898.47 302
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 7198.36 7899.79 2699.82 4998.86 4099.95 4298.62 11199.81 8099.78 61
RRT_test8_iter0597.72 24397.60 22598.08 27299.23 22196.08 29899.63 5799.49 12897.54 17198.94 21999.81 6287.99 32999.35 25799.21 3696.51 26398.81 219
test072699.85 2599.89 399.62 6399.50 12099.10 899.86 1199.82 4998.94 31
EPNet98.86 11998.71 12499.30 13797.20 34098.18 21399.62 6398.91 30099.28 298.63 26699.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 11398.67 12899.72 6199.85 2599.53 7999.62 6399.59 4492.65 32899.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17399.08 13299.62 6399.36 22397.39 18899.28 15099.68 14596.44 15199.92 7998.37 14598.22 20399.40 172
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6399.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 12899.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11399.62 6399.55 6498.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12499.61 6999.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7099.56 5698.28 8699.74 4199.79 8898.53 7299.95 4298.55 12899.78 8999.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7099.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
OPU-MVS99.64 7799.56 14199.72 4299.60 7099.70 13399.27 499.42 24298.24 15599.80 8499.79 53
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7099.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14399.86 5199.81 41
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12599.60 7099.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
ACMH97.28 898.10 18497.99 18398.44 24599.41 17696.96 27099.60 7099.56 5698.09 11098.15 29499.91 590.87 30199.70 19998.88 7097.45 24098.67 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7699.62 3498.21 9699.73 4399.79 8898.68 6399.96 1898.44 13999.77 9299.79 53
thres100view90097.76 23497.45 24198.69 21999.72 8097.86 23299.59 7698.74 31497.93 12999.26 15898.62 32391.75 28499.83 14593.22 32498.18 20798.37 315
thres600view797.86 21897.51 23498.92 18299.72 8097.95 22799.59 7698.74 31497.94 12899.27 15398.62 32391.75 28499.86 12593.73 32098.19 20698.96 210
LCM-MVSNet-Re97.83 22498.15 16696.87 31399.30 20492.25 34099.59 7698.26 32997.43 18396.20 32699.13 29596.27 15698.73 32698.17 16298.99 16799.64 118
baseline198.31 16497.95 18899.38 12599.50 15698.74 17499.59 7698.93 29598.41 7399.14 18299.60 18294.59 21699.79 16498.48 13393.29 32299.61 126
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7699.51 10298.62 5799.79 2699.83 4299.28 399.97 1098.48 13399.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 8999.59 7699.49 12897.03 22199.63 7099.69 14097.27 12499.96 1897.82 19099.84 6599.81 41
Regformer-399.57 799.53 599.68 6599.76 5299.29 10699.58 8399.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9499.58 8399.49 12899.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8399.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15099.87 4099.83 29
LPG-MVS_test98.22 17098.13 16898.49 23499.33 19597.05 26199.58 8399.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
PHI-MVS99.30 5599.17 6299.70 6499.56 14199.52 8299.58 8399.80 897.12 21199.62 7499.73 12498.58 7099.90 10598.61 11499.91 1699.68 102
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8899.54 7197.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8899.37 22299.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
test_0728_SECOND99.91 299.84 3299.89 399.57 8899.51 10299.96 1898.93 6499.86 5199.88 5
Effi-MVS+-dtu98.78 13498.89 10298.47 24099.33 19596.91 27299.57 8899.30 25498.47 6699.41 12098.99 30796.78 13899.74 17698.73 9699.38 13698.74 232
v2v48298.06 18897.77 20798.92 18298.90 27998.82 16999.57 8899.36 22396.65 24699.19 17599.35 25994.20 22999.25 27397.72 20194.97 30098.69 244
DWT-MVSNet_test97.53 26197.40 25297.93 28399.03 26594.86 32199.57 8898.63 32396.59 25598.36 28498.79 31789.32 31499.74 17698.14 16598.16 21199.20 185
DSMNet-mixed97.25 27497.35 25896.95 31197.84 33193.61 33499.57 8896.63 34796.13 29098.87 23098.61 32594.59 21697.70 33995.08 30598.86 17699.55 139
ETV-MVS99.26 6299.21 5899.40 12299.46 16599.30 10599.56 9599.52 8998.52 6399.44 11299.27 27998.41 8599.86 12599.10 4799.59 12699.04 200
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9599.47 15797.45 18099.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9599.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12099.56 9599.50 12098.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
XXY-MVS98.38 16098.09 17399.24 14799.26 21599.32 10199.56 9599.55 6497.45 18098.71 24999.83 4293.23 24999.63 21798.88 7096.32 26898.76 227
ACMH+97.24 1097.92 21197.78 20598.32 25799.46 16596.68 28199.56 9599.54 7198.41 7397.79 30899.87 2090.18 30899.66 20798.05 17597.18 25298.62 279
ACMM97.58 598.37 16198.34 15698.48 23699.41 17697.10 25599.56 9599.45 17998.53 6299.04 20299.85 2993.00 25399.71 19398.74 9497.45 24098.64 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6099.12 6799.74 5699.18 23499.75 3899.56 9599.57 5198.45 6999.49 10399.85 2997.77 11099.94 5398.33 15099.84 6599.52 146
v14419297.92 21197.60 22598.87 19898.83 29198.65 18199.55 10399.34 23296.20 28299.32 14399.40 24594.36 22499.26 27296.37 28195.03 29998.70 240
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10399.67 2297.83 13899.68 5399.69 14099.06 1399.96 1898.39 14199.87 4099.84 18
API-MVS99.04 10199.03 7999.06 16199.40 18199.31 10499.55 10399.56 5698.54 6199.33 14299.39 24998.76 5399.78 16896.98 25599.78 8998.07 324
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10696.75 34697.53 17399.73 4399.65 15891.25 29799.89 11398.62 11199.56 12799.48 157
MTMP99.54 10698.88 304
v114497.98 20397.69 21698.85 20498.87 28598.66 18099.54 10699.35 22896.27 27699.23 16599.35 25994.67 21399.23 27596.73 26995.16 29698.68 249
v14897.79 23297.55 22898.50 23398.74 30197.72 23899.54 10699.33 23996.26 27798.90 22599.51 21494.68 21299.14 28897.83 18993.15 32598.63 277
CostFormer97.72 24397.73 21397.71 29699.15 24594.02 32999.54 10699.02 28794.67 31199.04 20299.35 25992.35 27899.77 17098.50 13297.94 21699.34 177
MVSTER98.49 15098.32 15899.00 17099.35 19099.02 13799.54 10699.38 21497.41 18699.20 17299.73 12493.86 24199.36 25398.87 7497.56 22998.62 279
test_part196.83 28196.34 28598.33 25499.46 16596.71 27899.52 11299.63 3391.48 33297.75 30999.76 10587.49 33299.44 23698.37 14593.55 31998.82 218
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22399.41 17696.99 26699.52 11299.49 12898.11 10799.24 16199.34 26296.96 13499.79 16497.95 18099.45 13299.02 203
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 14999.28 10799.52 11299.47 15796.11 29199.01 20599.34 26296.20 15899.84 13697.88 18498.82 17899.39 173
v192192097.80 23197.45 24198.84 20598.80 29298.53 19199.52 11299.34 23296.15 28899.24 16199.47 22993.98 23799.29 26695.40 29995.13 29798.69 244
MIMVSNet195.51 29995.04 30396.92 31297.38 33595.60 30399.52 11299.50 12093.65 32196.97 32199.17 29085.28 33896.56 34588.36 34095.55 28898.60 291
UniMVSNet_ETH3D97.32 27296.81 27898.87 19899.40 18197.46 24499.51 11799.53 8395.86 29898.54 27499.77 10182.44 34499.66 20798.68 10597.52 23299.50 155
alignmvs98.81 13098.56 14599.58 8799.43 17299.42 9399.51 11798.96 29398.61 5899.35 13898.92 31394.78 20499.77 17099.35 1998.11 21399.54 141
v119297.81 22997.44 24698.91 18698.88 28198.68 17899.51 11799.34 23296.18 28499.20 17299.34 26294.03 23699.36 25395.32 30295.18 29598.69 244
test20.0396.12 29495.96 29296.63 31697.44 33495.45 31099.51 11799.38 21496.55 25696.16 32799.25 28193.76 24496.17 34687.35 34394.22 31198.27 318
mvs_anonymous99.03 10398.99 8799.16 15499.38 18598.52 19599.51 11799.38 21497.79 14499.38 13099.81 6297.30 12299.45 23199.35 1998.99 16799.51 152
TAMVS99.12 8599.08 7299.24 14799.46 16598.55 18999.51 11799.46 16798.09 11099.45 10899.82 4998.34 8999.51 22798.70 10098.93 17099.67 105
test_yl98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
tfpn200view997.72 24397.38 25498.72 21799.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.37 315
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7499.50 12399.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
pm-mvs197.68 25097.28 26798.88 19499.06 25998.62 18499.50 12399.45 17996.32 27297.87 30499.79 8892.47 27299.35 25797.54 21893.54 32098.67 257
EI-MVSNet98.67 14398.67 12898.68 22099.35 19097.97 22399.50 12399.38 21496.93 23099.20 17299.83 4297.87 10699.36 25398.38 14397.56 22998.71 236
CVMVSNet98.57 14998.67 12898.30 25999.35 19095.59 30499.50 12399.55 6498.60 5999.39 12799.83 4294.48 22199.45 23198.75 9398.56 19099.85 14
VPA-MVSNet98.29 16797.95 18899.30 13799.16 24299.54 7699.50 12399.58 5098.27 8899.35 13899.37 25392.53 27099.65 21099.35 1994.46 30698.72 234
thres40097.77 23397.38 25498.92 18299.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.96 210
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12399.50 12097.16 20799.77 3399.82 4998.78 4899.94 5397.56 21699.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RRT_MVS98.60 14898.44 14999.05 16398.88 28199.14 12599.49 13399.38 21497.76 14799.29 14899.86 2395.38 18499.36 25398.81 8997.16 25398.64 269
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9199.49 13399.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8299.49 13399.49 12898.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
TransMVSNet (Re)97.15 27696.58 28098.86 20199.12 24798.85 16499.49 13398.91 30095.48 30197.16 31799.80 7693.38 24799.11 29694.16 31791.73 33398.62 279
UniMVSNet (Re)98.29 16798.00 18299.13 15799.00 26899.36 9899.49 13399.51 10297.95 12798.97 21599.13 29596.30 15599.38 24698.36 14893.34 32198.66 265
EPMVS97.82 22797.65 22098.35 25398.88 28195.98 29999.49 13394.71 35297.57 16699.26 15899.48 22692.46 27599.71 19397.87 18599.08 16099.35 175
Anonymous2023121197.88 21497.54 23198.90 18899.71 8698.53 19199.48 13999.57 5194.16 31698.81 23899.68 14593.23 24999.42 24298.84 8194.42 30898.76 227
v124097.69 24897.32 26498.79 21298.85 28998.43 20499.48 13999.36 22396.11 29199.27 15399.36 25693.76 24499.24 27494.46 31295.23 29498.70 240
VPNet97.84 22297.44 24699.01 16899.21 22798.94 15499.48 13999.57 5198.38 7599.28 15099.73 12488.89 31899.39 24499.19 3793.27 32398.71 236
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27898.98 14299.48 13999.53 8397.76 14798.71 24999.46 23396.43 15299.22 27898.57 12292.87 32898.69 244
TDRefinement95.42 30194.57 30797.97 28189.83 35196.11 29799.48 13998.75 31196.74 23996.68 32299.88 1588.65 32199.71 19398.37 14582.74 34598.09 323
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14499.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
NR-MVSNet97.97 20697.61 22499.02 16798.87 28599.26 11099.47 14499.42 19697.63 16197.08 31899.50 21795.07 19599.13 29197.86 18693.59 31898.68 249
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13399.47 14499.93 297.66 15999.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
SD-MVS99.41 4299.52 699.05 16399.74 7099.68 4999.46 14799.52 8999.11 799.88 599.91 599.43 197.70 33998.72 9899.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpm297.44 26997.34 26197.74 29599.15 24594.36 32699.45 14898.94 29493.45 32598.90 22599.44 23591.35 29599.59 22197.31 23398.07 21499.29 180
FMVSNet297.72 24397.36 25698.80 21199.51 14998.84 16599.45 14899.42 19696.49 25998.86 23599.29 27490.26 30498.98 31196.44 27896.56 26198.58 293
CDS-MVSNet99.09 9499.03 7999.25 14599.42 17398.73 17599.45 14899.46 16798.11 10799.46 10799.77 10198.01 10499.37 24998.70 10098.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 11998.63 13399.54 9299.37 18799.66 5499.45 14899.54 7196.61 25099.01 20599.40 24597.09 12899.86 12597.68 20699.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15299.51 10297.29 19599.59 8399.74 11798.15 10099.96 1896.74 26899.69 10999.81 41
mvs-test198.86 11998.84 11098.89 19199.33 19597.77 23599.44 15299.30 25498.47 6699.10 19099.43 23796.78 13899.95 4298.73 9699.02 16598.96 210
UGNet98.87 11698.69 12699.40 12299.22 22598.72 17699.44 15299.68 1999.24 399.18 17899.42 24092.74 26199.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11599.44 15299.54 7197.77 14699.30 14599.81 6294.20 22999.93 6899.17 4098.82 17899.49 156
test_040296.64 28496.24 28697.85 28898.85 28996.43 28999.44 15299.26 26293.52 32296.98 32099.52 21088.52 32399.20 28592.58 33197.50 23597.93 331
ACMP97.20 1198.06 18897.94 19098.45 24299.37 18797.01 26499.44 15299.49 12897.54 17198.45 27899.79 8891.95 28199.72 18797.91 18297.49 23898.62 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 24298.55 32098.16 21499.43 15893.68 35497.23 31598.46 32789.30 31599.22 27895.43 29898.22 20397.98 328
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15899.51 10298.68 5599.27 15399.53 20798.64 6899.96 1898.44 13999.80 8499.79 53
tpm cat197.39 27097.36 25697.50 30399.17 24093.73 33199.43 15899.31 25091.27 33398.71 24999.08 29994.31 22799.77 17096.41 28098.50 19399.00 204
tpm97.67 25397.55 22898.03 27599.02 26695.01 31899.43 15898.54 32796.44 26699.12 18599.34 26291.83 28399.60 22097.75 19796.46 26499.48 157
GBi-Net97.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
test197.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
FMVSNet196.84 28096.36 28498.29 26099.32 20297.26 25099.43 15899.48 13995.11 30598.55 27399.32 26983.95 34098.98 31195.81 28996.26 26998.62 279
testing_294.44 30792.93 31398.98 17294.16 34699.00 14199.42 16599.28 26096.60 25284.86 34396.84 33970.91 34899.27 27098.23 15696.08 27298.68 249
testgi97.65 25597.50 23598.13 27199.36 18996.45 28899.42 16599.48 13997.76 14797.87 30499.45 23491.09 29898.81 32494.53 31198.52 19299.13 188
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 10999.42 16599.54 7197.29 19599.41 12099.59 18598.42 8499.93 6898.19 15899.69 10999.73 80
Anonymous20240521198.30 16697.98 18499.26 14499.57 13798.16 21499.41 16898.55 32696.03 29699.19 17599.74 11791.87 28299.92 7999.16 4298.29 20299.70 95
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12099.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22699.28 2999.84 6599.63 122
VNet99.11 9098.90 10099.73 5899.52 14799.56 7299.41 16899.39 20899.01 1899.74 4199.78 9595.56 17999.92 7999.52 698.18 20799.72 86
baseline297.87 21697.55 22898.82 20799.18 23498.02 22099.41 16896.58 34896.97 22496.51 32399.17 29093.43 24699.57 22297.71 20299.03 16498.86 215
DU-MVS98.08 18797.79 20298.96 17598.87 28598.98 14299.41 16899.45 17997.87 13298.71 24999.50 21794.82 20199.22 27898.57 12292.87 32898.68 249
Baseline_NR-MVSNet97.76 23497.45 24198.68 22099.09 25498.29 20999.41 16898.85 30695.65 30098.63 26699.67 15194.82 20199.10 29898.07 17492.89 32798.64 269
XVG-ACMP-BASELINE97.83 22497.71 21598.20 26699.11 24996.33 29299.41 16899.52 8998.06 11999.05 20199.50 21789.64 31299.73 18397.73 19997.38 24698.53 296
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 7999.41 16899.50 12097.03 22199.04 20299.88 1597.39 11799.92 7998.66 10799.90 2399.87 10
9.1499.10 6999.72 8099.40 17699.51 10297.53 17399.64 6999.78 9598.84 4299.91 9097.63 20799.82 78
D2MVS98.41 15798.50 14798.15 27099.26 21596.62 28399.40 17699.61 3697.71 15398.98 21399.36 25696.04 16199.67 20498.70 10097.41 24498.15 322
Anonymous2024052998.09 18597.68 21799.34 12799.66 10998.44 20399.40 17699.43 19493.67 32099.22 16699.89 1090.23 30799.93 6899.26 3298.33 19799.66 108
FMVSNet398.03 19497.76 21098.84 20599.39 18498.98 14299.40 17699.38 21496.67 24499.07 19699.28 27692.93 25498.98 31197.10 24896.65 25898.56 295
LFMVS97.90 21397.35 25899.54 9299.52 14799.01 13999.39 18098.24 33097.10 21599.65 6799.79 8884.79 33999.91 9099.28 2998.38 19699.69 98
HQP_MVS98.27 16998.22 16498.44 24599.29 20896.97 26899.39 18099.47 15798.97 3099.11 18799.61 17992.71 26499.69 20297.78 19397.63 22298.67 257
plane_prior299.39 18098.97 30
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18199.94 5399.50 899.97 399.89 2
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9199.39 18099.38 21497.70 15499.28 15099.28 27698.34 8999.85 13196.96 25799.45 13299.69 98
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10297.45 18099.61 7699.75 11198.51 7599.91 9097.45 22899.83 7299.71 93
gg-mvs-nofinetune96.17 29395.32 30198.73 21698.79 29398.14 21699.38 18594.09 35391.07 33698.07 29991.04 34989.62 31399.35 25796.75 26799.09 15998.68 249
VDDNet97.55 25997.02 27599.16 15499.49 15898.12 21899.38 18599.30 25495.35 30399.68 5399.90 782.62 34399.93 6899.31 2698.13 21299.42 169
pmmvs696.53 28696.09 28997.82 29198.69 30895.47 30999.37 18899.47 15793.46 32497.41 31299.78 9587.06 33399.33 26196.92 26292.70 33098.65 267
PM-MVS92.96 31292.23 31595.14 32295.61 34189.98 34599.37 18898.21 33194.80 30995.04 33397.69 33365.06 35097.90 33594.30 31389.98 33897.54 338
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12099.37 18899.56 5698.04 12199.53 9599.62 17596.84 13699.94 5398.85 7998.49 19499.72 86
IterMVS-LS98.46 15298.42 15198.58 22599.59 13498.00 22199.37 18899.43 19496.94 22999.07 19699.59 18597.87 10699.03 30498.32 15295.62 28698.71 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10298.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
UnsupCasMVSNet_eth96.44 28896.12 28897.40 30598.65 31195.65 30299.36 19299.51 10297.13 20996.04 32998.99 30788.40 32498.17 33096.71 27090.27 33698.40 312
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3497.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6799.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 6499.14 6499.59 8499.41 17699.16 12099.35 19799.57 5198.82 4299.51 9999.61 17996.46 14999.95 4299.59 199.98 299.65 112
pmmvs-eth3d95.34 30394.73 30597.15 30695.53 34395.94 30099.35 19799.10 27895.13 30493.55 33697.54 33488.15 32897.91 33494.58 31089.69 33997.61 335
MDTV_nov1_ep13_2view95.18 31699.35 19796.84 23499.58 8595.19 19397.82 19099.46 164
VDD-MVS97.73 24197.35 25898.88 19499.47 16497.12 25499.34 20098.85 30698.19 9799.67 5999.85 2982.98 34199.92 7999.49 1298.32 20199.60 128
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15399.88 1198.53 19199.34 20099.59 4497.55 16898.70 25599.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet596.43 28996.19 28797.15 30699.11 24995.89 30199.32 20299.52 8994.47 31598.34 28699.07 30087.54 33197.07 34292.61 33095.72 28498.47 302
dp97.75 23897.80 20197.59 29999.10 25293.71 33299.32 20298.88 30496.48 26399.08 19599.55 19892.67 26699.82 15296.52 27698.58 18799.24 182
tpmvs97.98 20398.02 18197.84 28999.04 26394.73 32399.31 20499.20 26996.10 29598.76 24599.42 24094.94 19699.81 15696.97 25698.45 19598.97 208
tpmrst98.33 16398.48 14897.90 28699.16 24294.78 32299.31 20499.11 27797.27 19799.45 10899.59 18595.33 18799.84 13698.48 13398.61 18499.09 194
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8997.18 20599.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15499.63 12299.80 49
JIA-IIPM97.50 26597.02 27598.93 18098.73 30297.80 23499.30 20698.97 29191.73 33198.91 22394.86 34495.10 19499.71 19397.58 21197.98 21599.28 181
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17698.83 16899.30 20698.77 31097.70 15498.94 21999.65 15892.91 25799.74 17696.52 27699.55 12999.64 118
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20498.79 4799.52 9799.62 17598.91 3699.90 10598.64 10999.75 9699.82 36
LF4IMVS97.52 26297.46 24097.70 29798.98 27295.55 30599.29 21098.82 30998.07 11598.66 25899.64 16589.97 30999.61 21997.01 25296.68 25797.94 330
OPM-MVS98.19 17498.10 17098.45 24298.88 28197.07 25999.28 21299.38 21498.57 6099.22 16699.81 6292.12 27999.66 20798.08 17197.54 23198.61 288
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12898.46 6899.72 4599.71 12996.50 14899.88 11899.31 2699.11 15599.67 105
PVSNet_BlendedMVS98.86 11998.80 11599.03 16699.76 5298.79 17299.28 21299.91 397.42 18599.67 5999.37 25397.53 11499.88 11898.98 5797.29 24898.42 309
OMC-MVS99.08 9699.04 7799.20 15099.67 10098.22 21299.28 21299.52 8998.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
pmmvs597.52 26297.30 26698.16 26998.57 31996.73 27799.27 21698.90 30296.14 28998.37 28399.53 20791.54 29399.14 28897.51 22195.87 27998.63 277
131498.68 14298.54 14699.11 15898.89 28098.65 18199.27 21699.49 12896.89 23197.99 30199.56 19597.72 11299.83 14597.74 19899.27 14498.84 217
112199.09 9498.87 10499.75 5199.74 7099.60 6499.27 21699.48 13996.82 23799.25 16099.65 15898.38 8699.93 6897.53 21999.67 11699.73 80
MVS97.28 27396.55 28199.48 10998.78 29698.95 15199.27 21699.39 20883.53 34498.08 29699.54 20396.97 13399.87 12294.23 31599.16 15099.63 122
BH-untuned98.42 15598.36 15398.59 22499.49 15896.70 27999.27 21699.13 27697.24 20198.80 24099.38 25095.75 17499.74 17697.07 25199.16 15099.33 178
MDTV_nov1_ep1398.32 15899.11 24994.44 32599.27 21698.74 31497.51 17599.40 12599.62 17594.78 20499.76 17397.59 21098.81 180
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5196.40 27099.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
PatchmatchNetpermissive98.31 16498.36 15398.19 26799.16 24295.32 31299.27 21698.92 29797.37 18999.37 13299.58 18894.90 19899.70 19997.43 23099.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 25797.28 26798.62 22299.64 11698.03 21999.26 22498.74 31497.68 15699.09 19498.32 33091.66 29099.81 15692.88 32898.22 20398.03 326
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22499.52 8998.82 4299.39 12799.71 12998.96 2599.85 13198.59 11999.80 8499.77 63
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13799.25 22699.48 13997.23 20299.13 18399.58 18896.93 13599.90 10598.87 7498.78 18199.84 18
TAPA-MVS97.07 1597.74 24097.34 26198.94 17899.70 9397.53 24299.25 22699.51 10291.90 33099.30 14599.63 17098.78 4899.64 21288.09 34199.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 13999.24 22899.52 8996.85 23399.27 15399.48 22698.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 14999.60 6499.23 22999.44 18797.04 21999.39 12799.67 15198.30 9199.92 7997.27 23599.69 10999.64 118
test_post199.23 22965.14 35594.18 23299.71 19397.58 211
ADS-MVSNet298.02 19698.07 17797.87 28799.33 19595.19 31599.23 22999.08 28196.24 27999.10 19099.67 15194.11 23398.93 32096.81 26599.05 16299.48 157
ADS-MVSNet98.20 17398.08 17498.56 22899.33 19596.48 28799.23 22999.15 27396.24 27999.10 19099.67 15194.11 23399.71 19396.81 26599.05 16299.48 157
EPNet_dtu98.03 19497.96 18698.23 26598.27 32695.54 30799.23 22998.75 31199.02 1597.82 30699.71 12996.11 15999.48 22893.04 32799.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 17797.93 19198.87 19899.18 23498.49 19999.22 23499.33 23996.96 22599.56 8899.38 25094.33 22599.00 30994.83 30998.58 18799.14 186
RPMNet96.72 28395.90 29399.19 15199.18 23498.49 19999.22 23499.52 8988.72 34099.56 8897.38 33694.08 23599.95 4286.87 34598.58 18799.14 186
plane_prior96.97 26899.21 23698.45 6997.60 225
WR-MVS98.06 18897.73 21399.06 16198.86 28899.25 11199.19 23799.35 22897.30 19498.66 25899.43 23793.94 23899.21 28398.58 12094.28 31098.71 236
new-patchmatchnet94.48 30694.08 30995.67 32195.08 34492.41 33999.18 23899.28 26094.55 31493.49 33797.37 33787.86 33097.01 34391.57 33288.36 34097.61 335
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14199.54 7699.18 23899.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22399.77 9299.55 139
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6499.16 24099.45 17995.42 30299.27 15399.60 18297.39 11799.91 9095.36 30199.83 7299.70 95
EG-PatchMatch MVS95.97 29695.69 29696.81 31497.78 33292.79 33899.16 24098.93 29596.16 28694.08 33599.22 28582.72 34299.47 22995.67 29497.50 23598.17 321
PatchT97.03 27996.44 28398.79 21298.99 26998.34 20899.16 24099.07 28392.13 32999.52 9797.31 33894.54 22098.98 31188.54 33998.73 18399.03 201
CNLPA99.14 7798.99 8799.59 8499.58 13599.41 9499.16 24099.44 18798.45 6999.19 17599.49 22098.08 10299.89 11397.73 19999.75 9699.48 157
MDA-MVSNet-bldmvs94.96 30493.98 31097.92 28498.24 32797.27 24999.15 24499.33 23993.80 31980.09 35099.03 30588.31 32597.86 33693.49 32294.36 30998.62 279
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24499.41 19896.60 25299.60 8099.55 19898.83 4399.90 10597.48 22399.83 7299.78 61
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6799.14 24699.53 8399.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
save fliter99.76 5299.59 6799.14 24699.40 20499.00 22
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23699.12 24899.54 7198.44 7299.42 11699.71 12994.20 22999.92 7998.54 13098.90 17499.00 204
jason99.13 7999.03 7999.45 11599.46 16598.87 16199.12 24899.26 26298.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
N_pmnet94.95 30595.83 29492.31 32698.47 32379.33 35199.12 24892.81 35793.87 31897.68 31099.13 29593.87 24099.01 30891.38 33396.19 27098.59 292
MDA-MVSNet_test_wron95.45 30094.60 30698.01 27898.16 32897.21 25399.11 25499.24 26593.49 32380.73 34998.98 31093.02 25298.18 32994.22 31694.45 30798.64 269
Patchmtry97.75 23897.40 25298.81 20999.10 25298.87 16199.11 25499.33 23994.83 30898.81 23899.38 25094.33 22599.02 30696.10 28395.57 28798.53 296
YYNet195.36 30294.51 30897.92 28497.89 33097.10 25599.10 25699.23 26693.26 32680.77 34899.04 30492.81 25898.02 33194.30 31394.18 31298.64 269
CANet_DTU98.97 11198.87 10499.25 14599.33 19598.42 20699.08 25799.30 25499.16 599.43 11399.75 11195.27 18999.97 1098.56 12599.95 699.36 174
SCA98.19 17498.16 16598.27 26499.30 20495.55 30599.07 25898.97 29197.57 16699.43 11399.57 19292.72 26299.74 17697.58 21199.20 14899.52 146
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25899.33 23999.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
MG-MVS99.13 7999.02 8299.45 11599.57 13798.63 18399.07 25899.34 23298.99 2599.61 7699.82 4997.98 10599.87 12297.00 25399.80 8499.85 14
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10799.06 26199.77 997.74 15199.50 10099.53 20795.41 18399.84 13697.17 24699.64 12099.44 167
OpenMVS_ROBcopyleft92.34 2094.38 30893.70 31196.41 31997.38 33593.17 33699.06 26198.75 31186.58 34194.84 33498.26 33181.53 34599.32 26289.01 33897.87 21896.76 339
TEST999.67 10099.65 5799.05 26399.41 19896.22 28198.95 21799.49 22098.77 5199.91 90
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26399.41 19896.28 27498.95 21799.49 22098.76 5399.91 9097.63 20799.72 10399.75 69
lupinMVS99.13 7999.01 8699.46 11499.51 14998.94 15499.05 26399.16 27297.86 13399.80 2499.56 19597.39 11799.86 12598.94 6299.85 5899.58 136
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9699.05 26399.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 29096.03 29097.41 30498.13 32995.16 31799.05 26399.20 26993.94 31797.39 31398.79 31791.61 29299.04 30290.43 33595.77 28198.05 325
MVS_030496.79 28296.52 28297.59 29999.22 22594.92 32099.04 26899.59 4496.49 25998.43 27998.99 30780.48 34699.39 24497.15 24799.27 14498.47 302
Patchmatch-test97.93 20897.65 22098.77 21499.18 23497.07 25999.03 26999.14 27596.16 28698.74 24699.57 19294.56 21899.72 18793.36 32399.11 15599.52 146
test_899.67 10099.61 6299.03 26999.41 19896.28 27498.93 22199.48 22698.76 5399.91 90
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 26999.47 15796.98 22399.15 18199.23 28496.77 14099.89 11398.83 8498.78 18199.86 11
IterMVS-SCA-FT97.82 22797.75 21198.06 27499.57 13796.36 29199.02 27299.49 12897.18 20598.71 24999.72 12892.72 26299.14 28897.44 22995.86 28098.67 257
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14598.91 15899.02 27299.45 17998.80 4699.71 4699.26 28098.94 3199.98 599.34 2399.23 14698.98 207
MIMVSNet97.73 24197.45 24198.57 22699.45 17197.50 24399.02 27298.98 29096.11 29199.41 12099.14 29490.28 30398.74 32595.74 29198.93 17099.47 162
IterMVS97.83 22497.77 20798.02 27799.58 13596.27 29499.02 27299.48 13997.22 20398.71 24999.70 13392.75 25999.13 29197.46 22696.00 27498.67 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9799.02 27299.91 397.67 15899.59 8399.75 11195.90 16999.73 18399.53 599.02 16599.86 11
新几何299.01 277
BH-w/o98.00 20197.89 19798.32 25799.35 19096.20 29699.01 27798.90 30296.42 26898.38 28299.00 30695.26 19199.72 18796.06 28498.61 18499.03 201
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6098.99 27999.40 20496.26 27798.87 23099.49 22098.77 5199.91 9097.69 20499.72 10399.75 69
test_prior499.56 7298.99 279
无先验98.99 27999.51 10296.89 23199.93 6897.53 21999.72 86
pmmvs498.13 18197.90 19398.81 20998.61 31698.87 16198.99 27999.21 26896.44 26699.06 20099.58 18895.90 16999.11 29697.18 24596.11 27198.46 306
HQP-NCC99.19 23198.98 28398.24 9098.66 258
ACMP_Plane99.19 23198.98 28398.24 9098.66 258
HQP-MVS98.02 19697.90 19398.37 25299.19 23196.83 27398.98 28399.39 20898.24 9098.66 25899.40 24592.47 27299.64 21297.19 24397.58 22798.64 269
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13798.94 15498.97 28699.46 16798.92 3599.71 4699.24 28299.01 1699.98 599.35 1999.66 11798.97 208
MVP-Stereo97.81 22997.75 21197.99 28097.53 33396.60 28498.96 28798.85 30697.22 20397.23 31599.36 25695.28 18899.46 23095.51 29699.78 8997.92 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8698.96 28799.56 5698.34 8099.01 20599.52 21098.68 6399.83 14597.96 17899.74 9999.74 73
test_prior298.96 28798.34 8099.01 20599.52 21098.68 6397.96 17899.74 99
旧先验298.96 28796.70 24299.47 10599.94 5398.19 158
原ACMM298.95 291
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8898.95 29199.85 698.82 4299.54 9399.73 12498.51 7599.74 17698.91 6799.88 3699.77 63
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8498.94 29399.85 698.82 4299.65 6799.74 11798.51 7599.80 16198.83 8499.89 3399.64 118
pmmvs394.09 31093.25 31296.60 31794.76 34594.49 32498.92 29498.18 33389.66 33796.48 32498.06 33286.28 33497.33 34189.68 33787.20 34297.97 329
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23798.92 29499.55 6498.52 6399.45 10899.84 3895.27 18999.91 9098.08 17198.84 17799.00 204
test22299.75 6299.49 8598.91 29699.49 12896.42 26899.34 14199.65 15898.28 9399.69 10999.72 86
PMMVS286.87 31485.37 31891.35 32990.21 35083.80 34698.89 29797.45 34283.13 34591.67 34195.03 34248.49 35594.70 34885.86 34677.62 34795.54 342
miper_lstm_enhance98.00 20197.91 19298.28 26399.34 19497.43 24598.88 29899.36 22396.48 26398.80 24099.55 19895.98 16298.91 32197.27 23595.50 29098.51 298
MVS-HIRNet95.75 29895.16 30297.51 30299.30 20493.69 33398.88 29895.78 34985.09 34398.78 24392.65 34691.29 29699.37 24994.85 30899.85 5899.46 164
TR-MVS97.76 23497.41 25198.82 20799.06 25997.87 23098.87 30098.56 32596.63 24998.68 25799.22 28592.49 27199.65 21095.40 29997.79 21998.95 213
testdata198.85 30198.32 84
ET-MVSNet_ETH3D96.49 28795.64 29799.05 16399.53 14598.82 16998.84 30297.51 34197.63 16184.77 34499.21 28892.09 28098.91 32198.98 5792.21 33299.41 171
our_test_397.65 25597.68 21797.55 30198.62 31494.97 31998.84 30299.30 25496.83 23698.19 29299.34 26297.01 13299.02 30695.00 30796.01 27398.64 269
MS-PatchMatch97.24 27597.32 26496.99 30998.45 32493.51 33598.82 30499.32 24797.41 18698.13 29599.30 27288.99 31799.56 22395.68 29399.80 8497.90 333
cl_fuxian98.12 18398.04 17898.38 25199.30 20497.69 24198.81 30599.33 23996.67 24498.83 23699.34 26297.11 12798.99 31097.58 21195.34 29298.48 300
ppachtmachnet_test97.49 26797.45 24197.61 29898.62 31495.24 31398.80 30699.46 16796.11 29198.22 29199.62 17596.45 15098.97 31893.77 31995.97 27898.61 288
PAPR98.63 14798.34 15699.51 10599.40 18199.03 13698.80 30699.36 22396.33 27199.00 21099.12 29898.46 7999.84 13695.23 30399.37 14099.66 108
test0.0.03 197.71 24797.42 25098.56 22898.41 32597.82 23398.78 30898.63 32397.34 19098.05 30098.98 31094.45 22298.98 31195.04 30697.15 25498.89 214
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30899.91 396.74 23999.67 5999.49 22097.53 11499.88 11898.98 5799.85 5899.60 128
PMMVS98.80 13398.62 13899.34 12799.27 21398.70 17798.76 31099.31 25097.34 19099.21 16999.07 30097.20 12599.82 15298.56 12598.87 17599.52 146
test12339.01 32542.50 32728.53 33839.17 35920.91 36098.75 31119.17 36119.83 35638.57 35566.67 35333.16 35815.42 35637.50 35529.66 35449.26 351
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11598.75 31199.55 6497.25 19999.47 10599.77 10197.82 10899.87 12296.93 26099.90 2399.54 141
CLD-MVS98.16 17898.10 17098.33 25499.29 20896.82 27598.75 31199.44 18797.83 13899.13 18399.55 19892.92 25599.67 20498.32 15297.69 22198.48 300
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 17698.10 17098.41 24799.23 22197.72 23898.72 31499.31 25096.60 25298.88 22899.29 27497.29 12399.13 29197.60 20995.99 27598.38 314
cl-mvsnet_98.01 19997.84 20098.55 23099.25 21997.97 22398.71 31599.34 23296.47 26598.59 27299.54 20395.65 17899.21 28397.21 23995.77 28198.46 306
cl-mvsnet198.01 19997.85 19998.48 23699.24 22097.95 22798.71 31599.35 22896.50 25898.60 27199.54 20395.72 17699.03 30497.21 23995.77 28198.46 306
test-LLR98.06 18897.90 19398.55 23098.79 29397.10 25598.67 31797.75 33797.34 19098.61 26998.85 31494.45 22299.45 23197.25 23799.38 13699.10 190
TESTMET0.1,197.55 25997.27 26998.40 24998.93 27796.53 28598.67 31797.61 34096.96 22598.64 26599.28 27688.63 32299.45 23197.30 23499.38 13699.21 184
test-mter97.49 26797.13 27298.55 23098.79 29397.10 25598.67 31797.75 33796.65 24698.61 26998.85 31488.23 32699.45 23197.25 23799.38 13699.10 190
IB-MVS95.67 1896.22 29195.44 30098.57 22699.21 22796.70 27998.65 32097.74 33996.71 24197.27 31498.54 32686.03 33599.92 7998.47 13686.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7498.64 32199.10 27897.93 12999.42 11699.55 19898.67 6699.80 16195.80 29099.68 11499.61 126
thisisatest051598.14 18097.79 20299.19 15199.50 15698.50 19898.61 32296.82 34596.95 22799.54 9399.43 23791.66 29099.86 12598.08 17199.51 13199.22 183
DeepPCF-MVS98.18 398.81 13099.37 1997.12 30899.60 13291.75 34198.61 32299.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
cl-mvsnet297.85 21997.64 22298.48 23699.09 25497.87 23098.60 32499.33 23997.11 21498.87 23099.22 28592.38 27799.17 28798.21 15795.99 27598.42 309
GA-MVS97.85 21997.47 23899.00 17099.38 18597.99 22298.57 32599.15 27397.04 21998.90 22599.30 27289.83 31099.38 24696.70 27198.33 19799.62 124
TinyColmap97.12 27796.89 27797.83 29099.07 25795.52 30898.57 32598.74 31497.58 16597.81 30799.79 8888.16 32799.56 22395.10 30497.21 25098.39 313
eth_miper_zixun_eth98.05 19397.96 18698.33 25499.26 21597.38 24698.56 32799.31 25096.65 24698.88 22899.52 21096.58 14599.12 29597.39 23295.53 28998.47 302
CMPMVSbinary69.68 2394.13 30994.90 30491.84 32797.24 33980.01 35098.52 32899.48 13989.01 33891.99 34099.67 15185.67 33799.13 29195.44 29797.03 25596.39 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 27197.20 27097.75 29499.07 25795.20 31498.51 32999.04 28697.99 12598.31 28799.86 2389.02 31699.55 22595.67 29497.36 24798.49 299
ambc93.06 32592.68 34782.36 34798.47 33098.73 31995.09 33297.41 33555.55 35399.10 29896.42 27991.32 33497.71 334
miper_enhance_ethall98.16 17898.08 17498.41 24798.96 27597.72 23898.45 33199.32 24796.95 22798.97 21599.17 29097.06 13099.22 27897.86 18695.99 27598.29 317
CHOSEN 280x42099.12 8599.13 6599.08 15999.66 10997.89 22998.43 33299.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
testmvs39.17 32443.78 32625.37 33936.04 36016.84 36198.36 33326.56 35920.06 35538.51 35667.32 35229.64 35915.30 35737.59 35439.90 35343.98 352
FPMVS84.93 31685.65 31782.75 33486.77 35363.39 35798.35 33498.92 29774.11 34783.39 34698.98 31050.85 35492.40 35084.54 34794.97 30092.46 344
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24898.32 33599.60 4197.86 13399.50 10099.57 19296.75 14199.86 12598.56 12599.70 10899.54 141
PAPM97.59 25897.09 27399.07 16099.06 25998.26 21198.30 33699.10 27894.88 30798.08 29699.34 26296.27 15699.64 21289.87 33698.92 17299.31 179
Patchmatch-RL test95.84 29795.81 29595.95 32095.61 34190.57 34398.24 33798.39 32895.10 30695.20 33198.67 32294.78 20497.77 33796.28 28290.02 33799.51 152
UnsupCasMVSNet_bld93.53 31192.51 31496.58 31897.38 33593.82 33098.24 33799.48 13991.10 33593.10 33896.66 34074.89 34798.37 32894.03 31887.71 34197.56 337
LCM-MVSNet86.80 31585.22 31991.53 32887.81 35280.96 34998.23 33998.99 28971.05 34890.13 34296.51 34148.45 35696.88 34490.51 33485.30 34496.76 339
cascas97.69 24897.43 24998.48 23698.60 31797.30 24798.18 34099.39 20892.96 32798.41 28098.78 31993.77 24399.27 27098.16 16398.61 18498.86 215
Effi-MVS+98.81 13098.59 14399.48 10999.46 16599.12 12998.08 34199.50 12097.50 17699.38 13099.41 24396.37 15399.81 15699.11 4698.54 19199.51 152
PCF-MVS97.08 1497.66 25497.06 27499.47 11299.61 12999.09 13198.04 34299.25 26491.24 33498.51 27599.70 13394.55 21999.91 9092.76 32999.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 29595.47 29897.94 28299.31 20394.34 32797.81 34399.70 1597.12 21197.46 31198.75 32089.71 31199.79 16497.69 20481.69 34699.68 102
E-PMN80.61 31879.88 32182.81 33390.75 34976.38 35497.69 34495.76 35066.44 35183.52 34592.25 34762.54 35287.16 35268.53 35161.40 34984.89 350
ANet_high77.30 32074.86 32484.62 33275.88 35677.61 35297.63 34593.15 35688.81 33964.27 35389.29 35036.51 35783.93 35475.89 34952.31 35192.33 346
EMVS80.02 31979.22 32282.43 33591.19 34876.40 35397.55 34692.49 35866.36 35283.01 34791.27 34864.63 35185.79 35365.82 35260.65 35085.08 349
MVEpermissive76.82 2176.91 32174.31 32584.70 33185.38 35576.05 35596.88 34793.17 35567.39 35071.28 35289.01 35121.66 36287.69 35171.74 35072.29 34890.35 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft90.99 31390.15 31693.51 32398.73 30290.12 34493.98 34899.45 17979.32 34692.28 33994.91 34369.61 34997.98 33387.42 34295.67 28592.45 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 32274.97 32379.01 33670.98 35755.18 35893.37 34998.21 33165.08 35361.78 35493.83 34521.74 36192.53 34978.59 34891.12 33589.34 348
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 31781.52 32086.66 33066.61 35868.44 35692.79 35097.92 33568.96 34980.04 35199.85 2985.77 33696.15 34797.86 18643.89 35295.39 343
wuyk23d40.18 32341.29 32836.84 33786.18 35449.12 35979.73 35122.81 36027.64 35425.46 35728.45 35721.98 36048.89 35555.80 35323.56 35512.51 353
uanet_test0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k24.64 32632.85 3290.00 3400.00 3610.00 3620.00 35299.51 1020.00 3570.00 35899.56 19596.58 1450.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas8.27 32811.03 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 35899.01 160.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.30 32711.06 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35899.58 1880.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS99.71 8699.79 3099.61 3696.84 23499.56 8899.54 20398.58 7099.96 1896.93 26099.75 96
IU-MVS99.84 3299.88 799.32 24798.30 8599.84 1398.86 7799.85 5899.89 2
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11799.20 599.76 173
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20099.52 146
sam_mvs94.72 211
MTGPAbinary99.47 157
test_post65.99 35494.65 21599.73 183
patchmatchnet-post98.70 32194.79 20399.74 176
gm-plane-assit98.54 32192.96 33794.65 31299.15 29399.64 21297.56 216
test9_res97.49 22299.72 10399.75 69
agg_prior297.21 23999.73 10299.75 69
agg_prior99.67 10099.62 6099.40 20498.87 23099.91 90
TestCases99.31 13399.86 2198.48 20199.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
test_prior99.68 6599.67 10099.48 8699.56 5699.83 14599.74 73
新几何199.75 5199.75 6299.59 6799.54 7196.76 23899.29 14899.64 16598.43 8199.94 5396.92 26299.66 11799.72 86
旧先验199.74 7099.59 6799.54 7199.69 14098.47 7899.68 11499.73 80
原ACMM199.65 7299.73 7599.33 10099.47 15797.46 17799.12 18599.66 15798.67 6699.91 9097.70 20399.69 10999.71 93
testdata299.95 4296.67 273
segment_acmp98.96 25
testdata99.54 9299.75 6298.95 15199.51 10297.07 21699.43 11399.70 13398.87 3999.94 5397.76 19599.64 12099.72 86
test1299.75 5199.64 11699.61 6299.29 25999.21 16998.38 8699.89 11399.74 9999.74 73
plane_prior799.29 20897.03 263
plane_prior699.27 21396.98 26792.71 264
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 257
plane_prior499.61 179
plane_prior397.00 26598.69 5499.11 187
plane_prior199.26 215
n20.00 362
nn0.00 362
door-mid98.05 334
lessismore_v097.79 29398.69 30895.44 31194.75 35195.71 33099.87 2088.69 32099.32 26295.89 28794.93 30298.62 279
LGP-MVS_train98.49 23499.33 19597.05 26199.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
test1199.35 228
door97.92 335
HQP5-MVS96.83 273
BP-MVS97.19 243
HQP4-MVS98.66 25899.64 21298.64 269
HQP3-MVS99.39 20897.58 227
HQP2-MVS92.47 272
NP-MVS99.23 22196.92 27199.40 245
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56
ITE_SJBPF98.08 27299.29 20896.37 29098.92 29798.34 8098.83 23699.75 11191.09 29899.62 21895.82 28897.40 24598.25 320
DeepMVS_CXcopyleft93.34 32499.29 20882.27 34899.22 26785.15 34296.33 32599.05 30390.97 30099.73 18393.57 32197.77 22098.01 327