This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MVSFormer99.17 7699.12 7099.29 14699.51 15698.94 16299.88 199.46 17397.55 17999.80 2799.65 16597.39 12299.28 27899.03 5999.85 5899.65 119
test_djsdf98.67 14798.57 14898.98 17998.70 32098.91 16699.88 199.46 17397.55 17999.22 17899.88 1795.73 18099.28 27899.03 5997.62 23398.75 241
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 31996.53 29699.88 199.00 30497.79 15498.78 25599.94 391.68 29999.35 26897.21 25196.99 26598.69 257
DROMVSNet99.44 3199.39 1899.58 9099.56 14899.49 9199.88 199.58 4998.38 8399.73 4699.69 14598.20 10099.70 20799.64 199.82 8099.54 149
DVP-MVS++.99.59 399.50 899.88 699.51 15699.88 899.87 599.51 10498.99 2899.88 599.81 6499.27 599.96 1998.85 8799.80 8799.81 44
FOURS199.91 199.93 199.87 599.56 5799.10 1099.81 24
K. test v397.10 28896.79 28998.01 28798.72 31796.33 30399.87 597.05 36097.59 17496.16 34599.80 8088.71 33599.04 31396.69 28496.55 27198.65 279
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 26999.45 9899.86 899.60 4098.23 10298.70 26799.82 5196.80 14299.22 28899.07 5796.38 27698.79 232
v7n97.87 22397.52 23998.92 18998.76 31398.58 19599.84 999.46 17396.20 29498.91 23599.70 13794.89 20899.44 24896.03 29793.89 32798.75 241
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32698.13 22699.84 999.48 14596.68 25697.97 31699.67 15892.92 26498.56 33996.88 27692.60 34298.70 253
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26099.66 5999.84 999.74 1099.09 1398.92 23499.90 995.94 17199.98 698.95 6799.92 1199.79 59
FIs98.78 13898.63 13699.23 15699.18 24799.54 8299.83 1299.59 4398.28 9598.79 25499.81 6496.75 14699.37 26099.08 5696.38 27698.78 233
jajsoiax98.43 15898.28 16598.88 20198.60 33098.43 21299.82 1399.53 8598.19 10698.63 27899.80 8093.22 26099.44 24899.22 4197.50 24498.77 237
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27699.53 8599.82 1399.72 1194.56 33098.08 31099.88 1794.73 21999.98 697.47 23799.76 10099.06 210
nrg03098.64 15098.42 15599.28 14999.05 27599.69 5299.81 1599.46 17398.04 13199.01 21899.82 5196.69 14899.38 25799.34 3094.59 31698.78 233
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17499.68 5799.63 17898.91 3999.94 5798.58 13199.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 8298.99 9099.53 10299.65 11999.06 14399.81 1599.33 24897.43 19599.60 9099.88 1797.14 13199.84 13999.13 5198.94 17899.69 105
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25399.68 5499.81 1599.51 10499.20 498.72 26099.89 1295.68 18299.97 1198.86 8599.86 5199.81 44
GeoE98.85 13098.62 14199.53 10299.61 13499.08 14099.80 1999.51 10497.10 22799.31 15599.78 9995.23 19999.77 17698.21 16799.03 17299.75 75
CS-MVS-test99.30 5899.25 5799.45 12099.46 17799.23 12099.80 1999.57 5198.28 9599.53 10599.44 24498.16 10499.79 16999.38 2499.61 13199.34 186
canonicalmvs99.02 10798.86 11199.51 11099.42 18699.32 10899.80 1999.48 14598.63 6399.31 15598.81 33097.09 13399.75 18399.27 3897.90 22699.47 171
v897.95 21497.63 23098.93 18798.95 28998.81 17999.80 1999.41 20696.03 30999.10 20299.42 25094.92 20699.30 27696.94 27194.08 32598.66 277
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9098.88 16899.80 1999.44 19497.91 14199.36 14699.78 9995.49 18899.43 25297.91 19399.11 16399.62 132
Anonymous2024052196.20 30395.89 30497.13 32197.72 34794.96 33499.79 2499.29 27093.01 34497.20 33399.03 31789.69 32798.36 34291.16 34996.13 28198.07 338
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 30998.53 19999.78 2599.54 7498.07 12599.00 22399.76 11099.01 1999.37 26099.13 5197.23 25898.81 230
PEN-MVS97.76 24197.44 25398.72 22598.77 31298.54 19899.78 2599.51 10497.06 23198.29 30399.64 17292.63 27798.89 33598.09 17893.16 33598.72 247
anonymousdsp98.44 15798.28 16598.94 18598.50 33598.96 15799.77 2799.50 12497.07 22998.87 24299.77 10694.76 21799.28 27898.66 11897.60 23498.57 306
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32496.23 30699.77 2798.68 33897.14 22097.90 31799.93 490.45 31699.18 29697.00 26596.43 27598.67 269
QAPM98.67 14798.30 16499.80 4399.20 24299.67 5799.77 2799.72 1194.74 32798.73 25999.90 995.78 17899.98 696.96 26999.88 3699.76 74
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16299.76 4099.75 11599.13 1299.92 8399.07 5799.92 1199.85 16
v1097.85 22697.52 23998.86 20898.99 28298.67 18799.75 3199.41 20695.70 31298.98 22599.41 25494.75 21899.23 28596.01 29894.63 31598.67 269
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1899.88 599.85 3199.18 1099.96 1999.22 4199.92 1199.90 1
IS-MVSNet99.05 10398.87 10799.57 9299.73 7999.32 10899.75 3199.20 28398.02 13499.56 9899.86 2596.54 15299.67 21398.09 17899.13 16299.73 87
tttt051798.42 15998.14 17199.28 14999.66 11498.38 21599.74 3496.85 36197.68 16699.79 2999.74 12191.39 30699.89 11798.83 9399.56 13399.57 145
baseline99.15 7999.02 8599.53 10299.66 11499.14 13399.72 3599.48 14598.35 8899.42 12799.84 4096.07 16599.79 16999.51 999.14 16199.67 112
RPSCF98.22 17498.62 14196.99 32399.82 3891.58 36099.72 3599.44 19496.61 26399.66 6899.89 1295.92 17299.82 15797.46 23899.10 16699.57 145
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11799.41 13199.80 8098.37 9199.96 1998.99 6399.96 599.72 93
WR-MVS_H98.13 18697.87 20598.90 19599.02 27998.84 17399.70 3899.59 4397.27 20998.40 29599.19 30195.53 18699.23 28598.34 15993.78 32898.61 300
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23496.80 28899.70 3899.60 4097.12 22398.18 30799.70 13791.73 29899.72 19598.39 15297.45 24998.68 262
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3199.37 14399.74 12198.81 4899.94 5798.79 9999.86 5199.84 20
X-MVStestdata96.55 29595.45 31099.87 1299.85 2699.83 1799.69 4099.68 1998.98 3199.37 14364.01 37398.81 4899.94 5798.79 9999.86 5199.84 20
V4298.06 19397.79 20998.86 20898.98 28598.84 17399.69 4099.34 24196.53 26999.30 15799.37 26694.67 22299.32 27397.57 22794.66 31498.42 321
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11599.50 11199.75 11598.78 5199.97 1198.57 13399.89 3399.83 31
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12599.53 10599.63 17898.93 3899.97 1198.74 10499.91 1699.83 31
CS-MVS99.34 5399.31 3999.43 12699.44 18499.47 9599.68 4599.56 5798.41 8099.62 8399.41 25498.35 9299.76 18099.52 799.76 10099.05 211
PS-CasMVS97.93 21597.59 23498.95 18498.99 28299.06 14399.68 4599.52 9197.13 22198.31 30199.68 15292.44 28699.05 31298.51 14294.08 32598.75 241
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7299.86 1299.87 2294.77 21699.84 13999.19 4499.41 14199.74 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS99.18 7499.09 7499.45 12099.49 16899.18 12599.67 4899.53 8597.66 17099.40 13699.44 24498.10 10699.81 16198.94 6899.62 12999.35 184
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6099.77 3699.49 22998.21 9999.95 4698.46 14899.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 9698.97 9499.48 11499.49 16899.14 13399.67 4899.34 24197.31 20599.58 9599.76 11097.65 11899.82 15798.87 8099.07 16999.46 173
CP-MVSNet98.09 19097.78 21299.01 17598.97 28799.24 11999.67 4899.46 17397.25 21198.48 29099.64 17293.79 25199.06 31198.63 12194.10 32498.74 245
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5499.68 5799.81 6498.43 8499.97 1198.88 7699.90 2399.83 31
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11199.68 5799.69 14599.06 1699.96 1998.69 11399.87 4099.84 20
mvs_tets98.40 16398.23 16798.91 19398.67 32398.51 20599.66 5299.53 8598.19 10698.65 27699.81 6492.75 26899.44 24899.31 3397.48 24898.77 237
EU-MVSNet97.98 21098.03 18597.81 30398.72 31796.65 29399.66 5299.66 2798.09 12098.35 29999.82 5195.25 19898.01 34897.41 24395.30 30398.78 233
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11199.67 6399.69 14598.95 3199.96 1998.69 11399.87 4099.84 20
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12099.48 11599.74 12198.29 9699.96 1997.93 19299.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11399.82 2299.81 6498.60 7299.96 1998.46 14899.88 3699.79 59
test_part197.75 24597.24 27899.29 14699.59 14099.63 6599.65 5999.49 13296.17 29798.44 29299.69 14589.80 32599.47 24098.68 11593.66 32998.78 233
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11399.66 6899.68 15298.96 2899.96 1998.62 12299.87 4099.84 20
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 30998.62 19299.65 5999.49 13297.76 15798.49 28999.60 19194.23 23798.97 32998.00 18792.90 33798.70 253
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12499.55 10299.64 17298.91 3999.96 1998.72 10899.90 2399.82 38
tfpnnormal97.84 22997.47 24598.98 17999.20 24299.22 12299.64 6299.61 3596.32 28498.27 30499.70 13793.35 25799.44 24895.69 30495.40 30198.27 330
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8399.76 4099.82 5198.53 7599.95 4698.61 12599.81 8399.77 69
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8399.76 4099.82 5198.75 5998.61 12599.81 8399.77 69
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4399.78 3499.85 3199.36 299.94 5798.84 9099.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 30196.03 30096.79 33097.31 35394.14 34499.63 6499.08 29796.17 29797.04 33799.06 31493.94 24797.76 35486.96 36295.06 30898.47 314
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8799.79 2999.82 5198.86 4399.95 4698.62 12299.81 8399.78 67
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23496.08 30999.63 6499.49 13297.54 18298.94 23199.81 6487.99 34599.35 26899.21 4396.51 27398.81 230
test072699.85 2699.89 499.62 7099.50 12499.10 1099.86 1299.82 5198.94 34
EPNet98.86 12298.71 12799.30 14397.20 35598.18 22299.62 7098.91 31699.28 298.63 27899.81 6495.96 16899.99 199.24 4099.72 10999.73 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34699.71 5099.78 9998.06 10899.90 10998.84 9099.91 1699.74 80
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18699.08 14099.62 7099.36 23297.39 20099.28 16299.68 15296.44 15699.92 8398.37 15698.22 21299.40 181
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11599.63 7999.84 4098.73 6299.96 1998.55 13999.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3899.63 7999.95 295.82 17799.94 5799.37 2599.97 399.73 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2199.89 499.82 5199.01 1999.92 8399.56 599.95 699.85 16
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9599.74 4499.79 9298.53 7599.95 4698.55 13999.78 9499.79 59
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1499.91 199.81 6499.20 799.96 1998.91 7399.85 5899.79 59
OPU-MVS99.64 8099.56 14899.72 4799.60 7799.70 13799.27 599.42 25398.24 16699.80 8799.79 59
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13699.63 7999.68 15298.52 7799.95 4698.38 15499.86 5199.81 44
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2199.90 399.83 4498.98 2699.93 7299.59 299.95 699.86 13
ACMH97.28 898.10 18997.99 18998.44 25599.41 18996.96 28299.60 7799.56 5798.09 12098.15 30899.91 790.87 31399.70 20798.88 7697.45 24998.67 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34199.59 8394.98 36999.13 799.66 6899.93 490.67 31599.84 13999.40 2399.38 14299.80 54
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8399.62 3398.21 10599.73 4699.79 9298.68 6699.96 1998.44 15099.77 9799.79 59
thres100view90097.76 24197.45 24898.69 22799.72 8497.86 24199.59 8398.74 33097.93 13999.26 17098.62 33791.75 29699.83 15093.22 33798.18 21698.37 327
thres600view797.86 22597.51 24198.92 18999.72 8497.95 23699.59 8398.74 33097.94 13899.27 16598.62 33791.75 29699.86 12893.73 33298.19 21598.96 222
LCM-MVSNet-Re97.83 23198.15 17096.87 32899.30 21792.25 35899.59 8398.26 34597.43 19596.20 34499.13 30796.27 16198.73 33898.17 17398.99 17699.64 126
baseline198.31 16897.95 19599.38 13199.50 16698.74 18299.59 8398.93 31198.41 8099.14 19499.60 19194.59 22599.79 16998.48 14493.29 33399.61 134
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8399.51 10498.62 6499.79 2999.83 4499.28 499.97 1198.48 14499.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8399.49 13297.03 23499.63 7999.69 14597.27 12999.96 1997.82 20199.84 6599.81 44
ECVR-MVS1198.04 19998.11 17497.83 30099.74 7293.82 34699.58 9195.40 36899.12 899.65 7499.93 490.73 31499.84 13999.43 2299.38 14299.82 38
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9199.44 19499.01 2199.87 1199.80 8098.97 2799.91 9499.44 2199.92 1199.83 31
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9199.49 13299.02 1899.88 599.80 8099.00 2599.94 5799.45 1999.92 1199.84 20
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9199.65 3297.84 14799.71 5099.80 8099.12 1399.97 1198.33 16099.87 4099.83 31
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20897.05 27199.58 9199.55 6797.46 18899.24 17399.83 4492.58 27899.72 19598.09 17897.51 24298.68 262
PHI-MVS99.30 5899.17 6699.70 6799.56 14899.52 8899.58 9199.80 897.12 22399.62 8399.73 12898.58 7399.90 10998.61 12599.91 1699.68 109
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9799.54 7497.82 15399.71 5099.80 8098.95 3199.93 7298.19 16999.84 6599.74 80
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9799.37 23199.10 1099.81 2499.80 8098.94 3499.96 1998.93 7099.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3399.89 499.57 9799.51 10499.96 1998.93 7099.86 5199.88 7
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20896.91 28499.57 9799.30 26598.47 7399.41 13198.99 32196.78 14399.74 18498.73 10699.38 14298.74 245
v2v48298.06 19397.77 21498.92 18998.90 29298.82 17799.57 9799.36 23296.65 25999.19 18799.35 27294.20 23899.25 28397.72 21294.97 31098.69 257
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27894.86 33699.57 9798.63 33996.59 26798.36 29898.79 33189.32 33099.74 18498.14 17698.16 22099.20 195
DSMNet-mixed97.25 28497.35 26596.95 32697.84 34593.61 35299.57 9796.63 36496.13 30398.87 24298.61 33994.59 22597.70 35595.08 31798.86 18599.55 147
KD-MVS_self_test95.00 31594.34 32096.96 32597.07 35895.39 32599.56 10499.44 19495.11 31997.13 33597.32 35591.86 29497.27 35890.35 35281.23 36198.23 334
ETV-MVS99.26 6699.21 6299.40 12899.46 17799.30 11299.56 10499.52 9198.52 7099.44 12399.27 29298.41 8899.86 12899.10 5499.59 13299.04 212
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 7999.83 1799.56 10499.47 16397.45 19199.78 3499.82 5199.18 1099.91 9498.79 9999.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10499.61 3597.85 14599.36 14699.85 3195.95 16999.85 13496.66 28699.83 7499.59 140
casdiffmvs99.13 8298.98 9399.56 9499.65 11999.16 12899.56 10499.50 12498.33 9299.41 13199.86 2595.92 17299.83 15099.45 1999.16 15899.70 102
XXY-MVS98.38 16498.09 17899.24 15499.26 22899.32 10899.56 10499.55 6797.45 19198.71 26199.83 4493.23 25899.63 22898.88 7696.32 27898.76 239
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17796.68 29299.56 10499.54 7498.41 8097.79 32299.87 2290.18 32299.66 21698.05 18697.18 26198.62 291
ACMM97.58 598.37 16598.34 16098.48 24699.41 18997.10 26599.56 10499.45 18598.53 6999.04 21599.85 3193.00 26299.71 20198.74 10497.45 24998.64 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6499.12 7099.74 5999.18 24799.75 4399.56 10499.57 5198.45 7699.49 11499.85 3197.77 11599.94 5798.33 16099.84 6599.52 155
v14419297.92 21897.60 23298.87 20598.83 30498.65 18999.55 11399.34 24196.20 29499.32 15499.40 25894.36 23399.26 28296.37 29395.03 30998.70 253
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11399.67 2297.83 14899.68 5799.69 14599.06 1699.96 1998.39 15299.87 4099.84 20
API-MVS99.04 10499.03 8299.06 16899.40 19499.31 11199.55 11399.56 5798.54 6899.33 15399.39 26298.76 5699.78 17496.98 26799.78 9498.07 338
thisisatest053098.35 16698.03 18599.31 13999.63 12498.56 19699.54 11696.75 36397.53 18499.73 4699.65 16591.25 30999.89 11798.62 12299.56 13399.48 166
MTMP99.54 11698.88 320
v114497.98 21097.69 22398.85 21198.87 29898.66 18899.54 11699.35 23796.27 28899.23 17799.35 27294.67 22299.23 28596.73 28195.16 30698.68 262
v14897.79 23997.55 23598.50 24398.74 31497.72 24799.54 11699.33 24896.26 28998.90 23799.51 22394.68 22199.14 29997.83 20093.15 33698.63 289
CostFormer97.72 25197.73 22097.71 30799.15 25894.02 34599.54 11699.02 30394.67 32899.04 21599.35 27292.35 28899.77 17698.50 14397.94 22599.34 186
MVSTER98.49 15498.32 16299.00 17799.35 20399.02 14699.54 11699.38 22297.41 19899.20 18499.73 12893.86 25099.36 26498.87 8097.56 23898.62 291
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 18996.99 27899.52 12299.49 13298.11 11799.24 17399.34 27596.96 13999.79 16997.95 19199.45 13899.02 215
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15699.28 11499.52 12299.47 16396.11 30499.01 21899.34 27596.20 16399.84 13997.88 19598.82 18799.39 182
v192192097.80 23897.45 24898.84 21298.80 30598.53 19999.52 12299.34 24196.15 30199.24 17399.47 23893.98 24699.29 27795.40 31195.13 30798.69 257
MIMVSNet195.51 31095.04 31496.92 32797.38 35095.60 31699.52 12299.50 12493.65 33896.97 33999.17 30285.28 35596.56 36388.36 35895.55 29898.60 303
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19497.46 25399.51 12699.53 8595.86 31198.54 28699.77 10682.44 36199.66 21698.68 11597.52 24199.50 164
alignmvs98.81 13498.56 14999.58 9099.43 18599.42 10199.51 12698.96 30998.61 6599.35 14998.92 32794.78 21399.77 17699.35 2698.11 22299.54 149
v119297.81 23697.44 25398.91 19398.88 29498.68 18699.51 12699.34 24196.18 29699.20 18499.34 27594.03 24599.36 26495.32 31495.18 30598.69 257
test20.0396.12 30595.96 30296.63 33197.44 34995.45 32399.51 12699.38 22296.55 26896.16 34599.25 29493.76 25396.17 36487.35 36194.22 32298.27 330
mvs_anonymous99.03 10698.99 9099.16 16199.38 19898.52 20399.51 12699.38 22297.79 15499.38 14199.81 6497.30 12799.45 24399.35 2698.99 17699.51 161
TAMVS99.12 8899.08 7599.24 15499.46 17798.55 19799.51 12699.46 17398.09 12099.45 11999.82 5198.34 9399.51 23898.70 11098.93 17999.67 112
test_yl98.86 12298.63 13699.54 9699.49 16899.18 12599.50 13299.07 29998.22 10399.61 8699.51 22395.37 19199.84 13998.60 12898.33 20699.59 140
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16899.18 12599.50 13299.07 29998.22 10399.61 8699.51 22395.37 19199.84 13998.60 12898.33 20699.59 140
tfpn200view997.72 25197.38 26198.72 22599.69 10097.96 23499.50 13298.73 33597.83 14899.17 19198.45 34291.67 30099.83 15093.22 33798.18 21698.37 327
UA-Net99.42 4099.29 4799.80 4399.62 13099.55 8099.50 13299.70 1598.79 5499.77 3699.96 197.45 12199.96 1998.92 7299.90 2399.89 2
pm-mvs197.68 25997.28 27498.88 20199.06 27298.62 19299.50 13299.45 18596.32 28497.87 31899.79 9292.47 28299.35 26897.54 23093.54 33198.67 269
EI-MVSNet98.67 14798.67 13198.68 22899.35 20397.97 23299.50 13299.38 22296.93 24399.20 18499.83 4497.87 11199.36 26498.38 15497.56 23898.71 249
CVMVSNet98.57 15398.67 13198.30 26899.35 20395.59 31799.50 13299.55 6798.60 6699.39 13899.83 4494.48 23099.45 24398.75 10398.56 19999.85 16
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25599.54 8299.50 13299.58 4998.27 9899.35 14999.37 26692.53 28099.65 22099.35 2694.46 31798.72 247
thres40097.77 24097.38 26198.92 18999.69 10097.96 23499.50 13298.73 33597.83 14899.17 19198.45 34291.67 30099.83 15093.22 33798.18 21698.96 222
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13299.50 12497.16 21999.77 3699.82 5198.78 5199.94 5797.56 22899.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RRT_MVS98.60 15298.44 15399.05 17098.88 29499.14 13399.49 14299.38 22297.76 15799.29 16099.86 2595.38 19099.36 26498.81 9897.16 26298.64 281
Regformer-199.53 1299.47 1099.72 6499.71 9099.44 9999.49 14299.46 17398.95 3799.83 1999.76 11099.01 1999.93 7299.17 4799.87 4099.80 54
Regformer-299.54 1099.47 1099.75 5499.71 9099.52 8899.49 14299.49 13298.94 3899.83 1999.76 11099.01 1999.94 5799.15 5099.87 4099.80 54
TransMVSNet (Re)97.15 28696.58 29098.86 20899.12 26098.85 17299.49 14298.91 31695.48 31497.16 33499.80 8093.38 25699.11 30794.16 32991.73 34498.62 291
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28199.36 10699.49 14299.51 10497.95 13798.97 22799.13 30796.30 16099.38 25798.36 15893.34 33298.66 277
EPMVS97.82 23497.65 22798.35 26398.88 29495.98 31099.49 14294.71 37197.57 17799.26 17099.48 23592.46 28599.71 20197.87 19699.08 16899.35 184
Anonymous2023121197.88 22197.54 23898.90 19599.71 9098.53 19999.48 14899.57 5194.16 33398.81 25099.68 15293.23 25899.42 25398.84 9094.42 31998.76 239
v124097.69 25797.32 27198.79 21998.85 30298.43 21299.48 14899.36 23296.11 30499.27 16599.36 26993.76 25399.24 28494.46 32495.23 30498.70 253
VPNet97.84 22997.44 25399.01 17599.21 24098.94 16299.48 14899.57 5198.38 8399.28 16299.73 12888.89 33499.39 25599.19 4493.27 33498.71 249
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29198.98 15099.48 14899.53 8597.76 15798.71 26199.46 24296.43 15799.22 28898.57 13392.87 33998.69 257
TDRefinement95.42 31294.57 31897.97 29189.83 37096.11 30899.48 14898.75 32796.74 25296.68 34099.88 1788.65 33799.71 20198.37 15682.74 35998.09 337
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15399.48 14598.05 13099.76 4099.86 2598.82 4799.93 7298.82 9799.91 1699.84 20
NR-MVSNet97.97 21397.61 23199.02 17498.87 29899.26 11799.47 15399.42 20497.63 17297.08 33699.50 22695.07 20299.13 30297.86 19793.59 33098.68 262
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15399.93 297.66 17099.71 5099.86 2597.73 11699.96 1999.47 1799.82 8099.79 59
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15699.52 9199.11 999.88 599.91 799.43 197.70 35598.72 10899.93 1099.77 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
tpm297.44 27997.34 26897.74 30699.15 25894.36 34299.45 15798.94 31093.45 34298.90 23799.44 24491.35 30799.59 23297.31 24598.07 22399.29 190
FMVSNet297.72 25197.36 26398.80 21899.51 15698.84 17399.45 15799.42 20496.49 27198.86 24799.29 28790.26 31898.98 32296.44 29096.56 27098.58 305
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18698.73 18399.45 15799.46 17398.11 11799.46 11899.77 10698.01 10999.37 26098.70 11098.92 18199.66 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 12298.63 13699.54 9699.37 20099.66 5999.45 15799.54 7496.61 26399.01 21899.40 25897.09 13399.86 12897.68 21899.53 13699.10 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testtj99.12 8898.87 10799.86 2199.72 8499.79 3399.44 16199.51 10497.29 20799.59 9399.74 12198.15 10599.96 1996.74 28099.69 11599.81 44
mvs-test198.86 12298.84 11398.89 19899.33 20897.77 24499.44 16199.30 26598.47 7399.10 20299.43 24796.78 14399.95 4698.73 10699.02 17498.96 222
UGNet98.87 11998.69 12999.40 12899.22 23898.72 18499.44 16199.68 1999.24 399.18 19099.42 25092.74 27099.96 1999.34 3099.94 999.53 154
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 12298.63 13699.54 9699.64 12199.19 12399.44 16199.54 7497.77 15699.30 15799.81 6494.20 23899.93 7299.17 4798.82 18799.49 165
test_040296.64 29496.24 29697.85 29898.85 30296.43 30099.44 16199.26 27393.52 33996.98 33899.52 21988.52 33999.20 29592.58 34697.50 24497.93 349
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20097.01 27699.44 16199.49 13297.54 18298.45 29199.79 9291.95 29299.72 19597.91 19397.49 24798.62 291
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 25298.55 33398.16 22399.43 16793.68 37397.23 33198.46 34189.30 33199.22 28895.43 31098.22 21297.98 346
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16799.51 10498.68 6299.27 16599.53 21698.64 7199.96 1998.44 15099.80 8799.79 59
tpm cat197.39 28097.36 26397.50 31499.17 25393.73 34899.43 16799.31 26191.27 35098.71 26199.08 31194.31 23699.77 17696.41 29298.50 20299.00 216
tpm97.67 26297.55 23598.03 28499.02 27995.01 33299.43 16798.54 34396.44 27899.12 19799.34 27591.83 29599.60 23197.75 20896.46 27499.48 166
GBi-Net97.68 25997.48 24398.29 26999.51 15697.26 26099.43 16799.48 14596.49 27199.07 20999.32 28290.26 31898.98 32297.10 26096.65 26798.62 291
test197.68 25997.48 24398.29 26999.51 15697.26 26099.43 16799.48 14596.49 27199.07 20999.32 28290.26 31898.98 32297.10 26096.65 26798.62 291
FMVSNet196.84 29196.36 29498.29 26999.32 21597.26 26099.43 16799.48 14595.11 31998.55 28599.32 28283.95 35798.98 32295.81 30196.26 27998.62 291
testgi97.65 26497.50 24298.13 28099.36 20296.45 29999.42 17499.48 14597.76 15797.87 31899.45 24391.09 31098.81 33694.53 32398.52 20199.13 198
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17499.54 7497.29 20799.41 13199.59 19498.42 8799.93 7298.19 16999.69 11599.73 87
Anonymous20240521198.30 17097.98 19099.26 15199.57 14498.16 22399.41 17698.55 34296.03 30999.19 18799.74 12191.87 29399.92 8399.16 4998.29 21199.70 102
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13899.16 12899.41 17699.71 1398.98 3199.45 11999.78 9999.19 999.54 23799.28 3699.84 6599.63 130
VNet99.11 9398.90 10399.73 6199.52 15499.56 7899.41 17699.39 21699.01 2199.74 4499.78 9995.56 18599.92 8399.52 798.18 21699.72 93
baseline297.87 22397.55 23598.82 21499.18 24798.02 22999.41 17696.58 36596.97 23796.51 34199.17 30293.43 25599.57 23397.71 21399.03 17298.86 227
DU-MVS98.08 19297.79 20998.96 18298.87 29898.98 15099.41 17699.45 18597.87 14298.71 26199.50 22694.82 21099.22 28898.57 13392.87 33998.68 262
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26798.29 21799.41 17698.85 32295.65 31398.63 27899.67 15894.82 21099.10 30998.07 18592.89 33898.64 281
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26296.33 30399.41 17699.52 9198.06 12999.05 21499.50 22689.64 32899.73 19197.73 21097.38 25598.53 308
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17699.50 12497.03 23499.04 21599.88 1797.39 12299.92 8398.66 11899.90 2399.87 12
9.1499.10 7299.72 8499.40 18499.51 10497.53 18499.64 7899.78 9998.84 4599.91 9497.63 21999.82 80
D2MVS98.41 16198.50 15198.15 27999.26 22896.62 29499.40 18499.61 3597.71 16398.98 22599.36 26996.04 16699.67 21398.70 11097.41 25398.15 336
Anonymous2024052998.09 19097.68 22499.34 13399.66 11498.44 21199.40 18499.43 20293.67 33799.22 17899.89 1290.23 32199.93 7299.26 3998.33 20699.66 115
FMVSNet398.03 20197.76 21798.84 21299.39 19798.98 15099.40 18499.38 22296.67 25799.07 20999.28 28992.93 26398.98 32297.10 26096.65 26798.56 307
LFMVS97.90 22097.35 26599.54 9699.52 15499.01 14899.39 18898.24 34697.10 22799.65 7499.79 9284.79 35699.91 9499.28 3698.38 20599.69 105
HQP_MVS98.27 17398.22 16898.44 25599.29 22196.97 28099.39 18899.47 16398.97 3499.11 19999.61 18892.71 27399.69 21197.78 20497.63 23198.67 269
plane_prior299.39 18898.97 34
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18899.94 198.73 5899.11 19999.89 1295.50 18799.94 5799.50 1099.97 399.89 2
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18899.38 22297.70 16499.28 16299.28 28998.34 9399.85 13496.96 26999.45 13899.69 105
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 7999.69 5299.38 19399.51 10497.45 19199.61 8699.75 11598.51 7899.91 9497.45 24099.83 7499.71 100
gg-mvs-nofinetune96.17 30495.32 31298.73 22398.79 30698.14 22599.38 19394.09 37291.07 35398.07 31391.04 36689.62 32999.35 26896.75 27999.09 16798.68 262
VDDNet97.55 26897.02 28599.16 16199.49 16898.12 22799.38 19399.30 26595.35 31699.68 5799.90 982.62 36099.93 7299.31 3398.13 22199.42 178
pmmvs696.53 29696.09 29997.82 30298.69 32195.47 32299.37 19699.47 16393.46 34197.41 32799.78 9987.06 35099.33 27296.92 27492.70 34198.65 279
PM-MVS92.96 32692.23 32995.14 33895.61 36189.98 36399.37 19698.21 34794.80 32695.04 35297.69 35065.06 36797.90 35194.30 32589.98 34997.54 356
WTY-MVS99.06 10198.88 10699.61 8599.62 13099.16 12899.37 19699.56 5798.04 13199.53 10599.62 18496.84 14199.94 5798.85 8798.49 20399.72 93
IterMVS-LS98.46 15698.42 15598.58 23599.59 14098.00 23099.37 19699.43 20296.94 24299.07 20999.59 19497.87 11199.03 31598.32 16295.62 29698.71 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 25697.28 27498.97 18199.70 9797.27 25899.36 20099.45 18598.94 3899.66 6899.64 17294.93 20499.99 199.48 1584.36 35699.65 119
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20099.51 10498.73 5899.88 599.84 4098.72 6399.96 1998.16 17499.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20099.47 16398.79 5499.68 5799.81 6498.43 8499.97 1198.88 7699.90 2399.83 31
UnsupCasMVSNet_eth96.44 29896.12 29897.40 31698.65 32495.65 31599.36 20099.51 10497.13 22196.04 34798.99 32188.40 34098.17 34496.71 28290.27 34798.40 324
sss99.17 7699.05 7799.53 10299.62 13098.97 15399.36 20099.62 3397.83 14899.67 6399.65 16597.37 12699.95 4699.19 4499.19 15799.68 109
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12499.59 7399.36 20099.46 17399.07 1699.79 2999.82 5198.85 4499.92 8398.68 11599.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 6899.14 6899.59 8799.41 18999.16 12899.35 20699.57 5198.82 4999.51 11099.61 18896.46 15499.95 4699.59 299.98 299.65 119
pmmvs-eth3d95.34 31494.73 31697.15 31995.53 36395.94 31199.35 20699.10 29495.13 31793.55 35597.54 35188.15 34497.91 35094.58 32289.69 35097.61 353
MDTV_nov1_ep13_2view95.18 33099.35 20696.84 24799.58 9595.19 20097.82 20199.46 173
VDD-MVS97.73 24997.35 26598.88 20199.47 17697.12 26499.34 20998.85 32298.19 10699.67 6399.85 3182.98 35899.92 8399.49 1498.32 21099.60 136
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 20999.59 4397.55 17998.70 26799.89 1295.83 17699.90 10998.10 17799.90 2399.08 204
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet596.43 29996.19 29797.15 31999.11 26295.89 31299.32 21199.52 9194.47 33298.34 30099.07 31287.54 34997.07 35992.61 34595.72 29498.47 314
dp97.75 24597.80 20897.59 31099.10 26593.71 34999.32 21198.88 32096.48 27599.08 20899.55 20792.67 27699.82 15796.52 28898.58 19699.24 192
tpmvs97.98 21098.02 18797.84 29999.04 27694.73 33899.31 21399.20 28396.10 30898.76 25799.42 25094.94 20399.81 16196.97 26898.45 20498.97 220
tpmrst98.33 16798.48 15297.90 29699.16 25594.78 33799.31 21399.11 29397.27 20999.45 11999.59 19495.33 19399.84 13998.48 14498.61 19399.09 203
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21599.52 9197.18 21799.60 9099.79 9298.79 5099.95 4698.83 9399.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5399.19 6499.79 4699.61 13499.65 6299.30 21599.48 14598.86 4599.21 18199.63 17898.72 6399.90 10998.25 16599.63 12899.80 54
JIA-IIPM97.50 27497.02 28598.93 18798.73 31597.80 24399.30 21598.97 30791.73 34998.91 23594.86 36195.10 20199.71 20197.58 22397.98 22499.28 191
BH-RMVSNet98.41 16198.08 17999.40 12899.41 18998.83 17699.30 21598.77 32697.70 16498.94 23199.65 16592.91 26699.74 18496.52 28899.55 13599.64 126
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 21999.40 21298.79 5499.52 10899.62 18498.91 3999.90 10998.64 12099.75 10299.82 38
LF4IMVS97.52 27197.46 24797.70 30898.98 28595.55 31899.29 21998.82 32598.07 12598.66 27099.64 17289.97 32399.61 23097.01 26496.68 26697.94 348
hse-mvs297.50 27497.14 28198.59 23299.49 16897.05 27199.28 22199.22 27998.94 3899.66 6899.42 25094.93 20499.65 22099.48 1583.80 35899.08 204
OPM-MVS98.19 17898.10 17598.45 25298.88 29497.07 26999.28 22199.38 22298.57 6799.22 17899.81 6492.12 28999.66 21698.08 18297.54 24098.61 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvs99.14 8099.02 8599.51 11099.61 13498.96 15799.28 22199.49 13298.46 7599.72 4999.71 13396.50 15399.88 12299.31 3399.11 16399.67 112
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22199.91 397.42 19799.67 6399.37 26697.53 11999.88 12298.98 6497.29 25798.42 321
OMC-MVS99.08 9999.04 8099.20 15799.67 10598.22 22199.28 22199.52 9198.07 12599.66 6899.81 6497.79 11499.78 17497.79 20399.81 8399.60 136
AUN-MVS96.88 29096.31 29598.59 23299.48 17597.04 27499.27 22699.22 27997.44 19498.51 28799.41 25491.97 29199.66 21697.71 21383.83 35799.07 209
pmmvs597.52 27197.30 27398.16 27898.57 33296.73 28999.27 22698.90 31896.14 30298.37 29799.53 21691.54 30599.14 29997.51 23395.87 28998.63 289
131498.68 14698.54 15099.11 16598.89 29398.65 18999.27 22699.49 13296.89 24497.99 31599.56 20497.72 11799.83 15097.74 20999.27 15298.84 229
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22699.48 14596.82 25099.25 17299.65 16598.38 8999.93 7297.53 23199.67 12299.73 87
MVS97.28 28396.55 29199.48 11498.78 30998.95 15999.27 22699.39 21683.53 36198.08 31099.54 21296.97 13899.87 12594.23 32799.16 15899.63 130
BH-untuned98.42 15998.36 15798.59 23299.49 16896.70 29099.27 22699.13 29297.24 21398.80 25299.38 26395.75 17999.74 18497.07 26399.16 15899.33 188
MDTV_nov1_ep1398.32 16299.11 26294.44 34099.27 22698.74 33097.51 18699.40 13699.62 18494.78 21399.76 18097.59 22298.81 189
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22699.57 5196.40 28299.42 12799.68 15298.75 5999.80 16697.98 18899.72 10999.44 176
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25595.32 32699.27 22698.92 31397.37 20199.37 14399.58 19794.90 20799.70 20797.43 24299.21 15599.54 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 26697.28 27498.62 23099.64 12198.03 22899.26 23598.74 33097.68 16699.09 20798.32 34691.66 30299.81 16192.88 34198.22 21298.03 341
CNVR-MVS99.42 4099.30 4399.78 4899.62 13099.71 4999.26 23599.52 9198.82 4999.39 13899.71 13398.96 2899.85 13498.59 13099.80 8799.77 69
1112_ss98.98 11298.77 12199.59 8799.68 10499.02 14699.25 23799.48 14597.23 21499.13 19599.58 19796.93 14099.90 10998.87 8098.78 19099.84 20
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9797.53 25199.25 23799.51 10491.90 34899.30 15799.63 17898.78 5199.64 22388.09 35999.87 4099.65 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11499.01 14899.24 23999.52 9196.85 24699.27 16599.48 23598.25 9899.91 9497.76 20699.62 12999.65 119
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15699.60 7099.23 24099.44 19497.04 23299.39 13899.67 15898.30 9599.92 8397.27 24799.69 11599.64 126
test_post199.23 24065.14 37294.18 24199.71 20197.58 223
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20895.19 32999.23 24099.08 29796.24 29199.10 20299.67 15894.11 24298.93 33296.81 27799.05 17099.48 166
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20896.48 29899.23 24099.15 28996.24 29199.10 20299.67 15894.11 24299.71 20196.81 27799.05 17099.48 166
EPNet_dtu98.03 20197.96 19398.23 27498.27 33995.54 32099.23 24098.75 32799.02 1897.82 32099.71 13396.11 16499.48 23993.04 34099.65 12599.69 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 18197.93 19898.87 20599.18 24798.49 20799.22 24599.33 24896.96 23899.56 9899.38 26394.33 23499.00 32094.83 32198.58 19699.14 196
RPMNet96.72 29395.90 30399.19 15899.18 24798.49 20799.22 24599.52 9188.72 35799.56 9897.38 35394.08 24499.95 4686.87 36398.58 19699.14 196
plane_prior96.97 28099.21 24798.45 7697.60 234
WR-MVS98.06 19397.73 22099.06 16898.86 30199.25 11899.19 24899.35 23797.30 20698.66 27099.43 24793.94 24799.21 29398.58 13194.28 32198.71 249
new-patchmatchnet94.48 32194.08 32195.67 33795.08 36492.41 35799.18 24999.28 27294.55 33193.49 35697.37 35487.86 34897.01 36091.57 34788.36 35197.61 353
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14899.54 8299.18 24999.70 1598.18 10999.35 14999.63 17896.32 15999.90 10997.48 23599.77 9799.55 147
ETH3 D test640098.70 14398.35 15999.73 6199.69 10099.60 7099.16 25199.45 18595.42 31599.27 16599.60 19197.39 12299.91 9495.36 31399.83 7499.70 102
EG-PatchMatch MVS95.97 30795.69 30796.81 32997.78 34692.79 35699.16 25198.93 31196.16 29994.08 35499.22 29782.72 35999.47 24095.67 30697.50 24498.17 335
PatchT97.03 28996.44 29398.79 21998.99 28298.34 21699.16 25199.07 29992.13 34799.52 10897.31 35694.54 22998.98 32288.54 35798.73 19299.03 213
CNLPA99.14 8098.99 9099.59 8799.58 14299.41 10299.16 25199.44 19498.45 7699.19 18799.49 22998.08 10799.89 11797.73 21099.75 10299.48 166
MDA-MVSNet-bldmvs94.96 31693.98 32297.92 29498.24 34197.27 25899.15 25599.33 24893.80 33680.09 36899.03 31788.31 34197.86 35293.49 33594.36 32098.62 291
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25599.41 20696.60 26599.60 9099.55 20798.83 4699.90 10997.48 23599.83 7499.78 67
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25799.53 8599.00 2599.71 5099.80 8098.95 3199.93 7298.19 16999.84 6599.74 80
save fliter99.76 5499.59 7399.14 25799.40 21299.00 25
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9097.74 24599.12 25999.54 7498.44 7999.42 12799.71 13394.20 23899.92 8398.54 14198.90 18399.00 216
jason99.13 8299.03 8299.45 12099.46 17798.87 16999.12 25999.26 27398.03 13399.79 2999.65 16597.02 13699.85 13499.02 6199.90 2399.65 119
jason: jason.
N_pmnet94.95 31795.83 30592.31 34298.47 33679.33 36999.12 25992.81 37693.87 33597.68 32399.13 30793.87 24999.01 31991.38 34896.19 28098.59 304
MDA-MVSNet_test_wron95.45 31194.60 31798.01 28798.16 34297.21 26399.11 26599.24 27793.49 34080.73 36798.98 32493.02 26198.18 34394.22 32894.45 31898.64 281
Patchmtry97.75 24597.40 25998.81 21699.10 26598.87 16999.11 26599.33 24894.83 32598.81 25099.38 26394.33 23499.02 31796.10 29595.57 29798.53 308
YYNet195.36 31394.51 31997.92 29497.89 34497.10 26599.10 26799.23 27893.26 34380.77 36699.04 31692.81 26798.02 34794.30 32594.18 32398.64 281
CANet_DTU98.97 11498.87 10799.25 15299.33 20898.42 21499.08 26899.30 26599.16 599.43 12499.75 11595.27 19599.97 1198.56 13699.95 699.36 183
SCA98.19 17898.16 16998.27 27399.30 21795.55 31899.07 26998.97 30797.57 17799.43 12499.57 20192.72 27199.74 18497.58 22399.20 15699.52 155
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10598.61 19499.07 26999.33 24899.00 2599.82 2299.81 6499.06 1699.84 13999.09 5599.42 14099.65 119
MG-MVS99.13 8299.02 8599.45 12099.57 14498.63 19199.07 26999.34 24198.99 2899.61 8699.82 5197.98 11099.87 12597.00 26599.80 8799.85 16
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9099.28 11499.06 27299.77 997.74 16199.50 11199.53 21695.41 18999.84 13997.17 25899.64 12699.44 176
OpenMVS_ROBcopyleft92.34 2094.38 32293.70 32696.41 33497.38 35093.17 35499.06 27298.75 32786.58 35894.84 35398.26 34781.53 36299.32 27389.01 35597.87 22796.76 357
TEST999.67 10599.65 6299.05 27499.41 20696.22 29398.95 22999.49 22998.77 5499.91 94
train_agg99.02 10798.77 12199.77 5099.67 10599.65 6299.05 27499.41 20696.28 28698.95 22999.49 22998.76 5699.91 9497.63 21999.72 10999.75 75
lupinMVS99.13 8299.01 8999.46 11999.51 15698.94 16299.05 27499.16 28897.86 14399.80 2799.56 20497.39 12299.86 12898.94 6899.85 5899.58 144
DELS-MVS99.48 2099.42 1499.65 7599.72 8499.40 10499.05 27499.66 2799.14 699.57 9799.80 8098.46 8299.94 5799.57 499.84 6599.60 136
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 30096.03 30097.41 31598.13 34395.16 33199.05 27499.20 28393.94 33497.39 32898.79 33191.61 30499.04 31390.43 35195.77 29198.05 340
MVS_030496.79 29296.52 29297.59 31099.22 23894.92 33599.04 27999.59 4396.49 27198.43 29398.99 32180.48 36499.39 25597.15 25999.27 15298.47 314
Patchmatch-test97.93 21597.65 22798.77 22199.18 24797.07 26999.03 28099.14 29196.16 29998.74 25899.57 20194.56 22799.72 19593.36 33699.11 16399.52 155
test_899.67 10599.61 6899.03 28099.41 20696.28 28698.93 23399.48 23598.76 5699.91 94
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10098.95 15999.03 28099.47 16396.98 23699.15 19399.23 29696.77 14599.89 11798.83 9398.78 19099.86 13
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14496.36 30299.02 28399.49 13297.18 21798.71 26199.72 13292.72 27199.14 29997.44 24195.86 29098.67 269
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15298.91 16699.02 28399.45 18598.80 5399.71 5099.26 29398.94 3499.98 699.34 3099.23 15498.98 219
MIMVSNet97.73 24997.45 24898.57 23699.45 18397.50 25299.02 28398.98 30696.11 30499.41 13199.14 30690.28 31798.74 33795.74 30398.93 17999.47 171
IterMVS97.83 23197.77 21498.02 28699.58 14296.27 30599.02 28399.48 14597.22 21598.71 26199.70 13792.75 26899.13 30297.46 23896.00 28498.67 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28399.91 397.67 16999.59 9399.75 11595.90 17499.73 19199.53 699.02 17499.86 13
新几何299.01 288
BH-w/o98.00 20897.89 20498.32 26699.35 20396.20 30799.01 28898.90 31896.42 28098.38 29699.00 32095.26 19799.72 19596.06 29698.61 19399.03 213
agg_prior199.01 11098.76 12399.76 5399.67 10599.62 6698.99 29099.40 21296.26 28998.87 24299.49 22998.77 5499.91 9497.69 21699.72 10999.75 75
test_prior499.56 7898.99 290
无先验98.99 29099.51 10496.89 24499.93 7297.53 23199.72 93
pmmvs498.13 18697.90 20098.81 21698.61 32998.87 16998.99 29099.21 28296.44 27899.06 21399.58 19795.90 17499.11 30797.18 25796.11 28298.46 318
HQP-NCC99.19 24498.98 29498.24 9998.66 270
ACMP_Plane99.19 24498.98 29498.24 9998.66 270
HQP-MVS98.02 20397.90 20098.37 26299.19 24496.83 28598.98 29499.39 21698.24 9998.66 27099.40 25892.47 28299.64 22397.19 25597.58 23698.64 281
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14498.94 16298.97 29799.46 17398.92 4299.71 5099.24 29599.01 1999.98 699.35 2699.66 12398.97 220
MVP-Stereo97.81 23697.75 21897.99 29097.53 34896.60 29598.96 29898.85 32297.22 21597.23 33199.36 26995.28 19499.46 24295.51 30899.78 9497.92 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior399.21 7099.05 7799.68 6899.67 10599.48 9398.96 29899.56 5798.34 8999.01 21899.52 21998.68 6699.83 15097.96 18999.74 10599.74 80
test_prior298.96 29898.34 8999.01 21899.52 21998.68 6697.96 18999.74 105
旧先验298.96 29896.70 25599.47 11699.94 5798.19 169
原ACMM298.95 302
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8499.47 9598.95 30299.85 698.82 4999.54 10399.73 12898.51 7899.74 18498.91 7399.88 3699.77 69
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30499.85 698.82 4999.65 7499.74 12198.51 7899.80 16698.83 9399.89 3399.64 126
pmmvs394.09 32493.25 32796.60 33294.76 36594.49 33998.92 30598.18 34989.66 35496.48 34298.06 34986.28 35197.33 35789.68 35487.20 35397.97 347
XVG-OURS98.73 14298.68 13098.88 20199.70 9797.73 24698.92 30599.55 6798.52 7099.45 11999.84 4095.27 19599.91 9498.08 18298.84 18699.00 216
test22299.75 6499.49 9198.91 30799.49 13296.42 28099.34 15299.65 16598.28 9799.69 11599.72 93
PMMVS286.87 32985.37 33391.35 34590.21 36983.80 36498.89 30897.45 35983.13 36291.67 36095.03 35948.49 37294.70 36685.86 36477.62 36395.54 360
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20797.43 25498.88 30999.36 23296.48 27598.80 25299.55 20795.98 16798.91 33397.27 24795.50 30098.51 310
MVS-HIRNet95.75 30995.16 31397.51 31399.30 21793.69 35098.88 30995.78 36685.09 36098.78 25592.65 36391.29 30899.37 26094.85 32099.85 5899.46 173
TR-MVS97.76 24197.41 25898.82 21499.06 27297.87 23998.87 31198.56 34196.63 26298.68 26999.22 29792.49 28199.65 22095.40 31197.79 22898.95 225
testdata198.85 31298.32 93
ET-MVSNet_ETH3D96.49 29795.64 30899.05 17099.53 15298.82 17798.84 31397.51 35897.63 17284.77 36299.21 30092.09 29098.91 33398.98 6492.21 34399.41 180
our_test_397.65 26497.68 22497.55 31298.62 32794.97 33398.84 31399.30 26596.83 24998.19 30699.34 27597.01 13799.02 31795.00 31996.01 28398.64 281
MS-PatchMatch97.24 28597.32 27196.99 32398.45 33793.51 35398.82 31599.32 25897.41 19898.13 30999.30 28588.99 33399.56 23495.68 30599.80 8797.90 351
c3_l98.12 18898.04 18498.38 26199.30 21797.69 25098.81 31699.33 24896.67 25798.83 24899.34 27597.11 13298.99 32197.58 22395.34 30298.48 312
ppachtmachnet_test97.49 27797.45 24897.61 30998.62 32795.24 32798.80 31799.46 17396.11 30498.22 30599.62 18496.45 15598.97 32993.77 33195.97 28898.61 300
PAPR98.63 15198.34 16099.51 11099.40 19499.03 14598.80 31799.36 23296.33 28399.00 22399.12 31098.46 8299.84 13995.23 31599.37 14899.66 115
test0.0.03 197.71 25597.42 25798.56 23898.41 33897.82 24298.78 31998.63 33997.34 20298.05 31498.98 32494.45 23198.98 32295.04 31897.15 26398.89 226
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 31999.91 396.74 25299.67 6399.49 22997.53 11999.88 12298.98 6499.85 5899.60 136
PMMVS98.80 13798.62 14199.34 13399.27 22698.70 18598.76 32199.31 26197.34 20299.21 18199.07 31297.20 13099.82 15798.56 13698.87 18499.52 155
test12339.01 34042.50 34228.53 35539.17 37820.91 37998.75 32219.17 38019.83 37438.57 37366.67 37033.16 37515.42 37437.50 37329.66 37249.26 369
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32299.55 6797.25 21199.47 11699.77 10697.82 11399.87 12596.93 27299.90 2399.54 149
CLD-MVS98.16 18298.10 17598.33 26499.29 22196.82 28798.75 32299.44 19497.83 14899.13 19599.55 20792.92 26499.67 21398.32 16297.69 23098.48 312
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23497.72 24798.72 32599.31 26196.60 26598.88 24099.29 28797.29 12899.13 30297.60 22195.99 28598.38 326
cl____98.01 20697.84 20798.55 24099.25 23297.97 23298.71 32699.34 24196.47 27798.59 28499.54 21295.65 18499.21 29397.21 25195.77 29198.46 318
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23397.95 23698.71 32699.35 23796.50 27098.60 28399.54 21295.72 18199.03 31597.21 25195.77 29198.46 318
test-LLR98.06 19397.90 20098.55 24098.79 30697.10 26598.67 32897.75 35497.34 20298.61 28198.85 32894.45 23199.45 24397.25 24999.38 14299.10 199
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29096.53 29698.67 32897.61 35796.96 23898.64 27799.28 28988.63 33899.45 24397.30 24699.38 14299.21 194
test-mter97.49 27797.13 28298.55 24098.79 30697.10 26598.67 32897.75 35496.65 25998.61 28198.85 32888.23 34299.45 24397.25 24999.38 14299.10 199
IB-MVS95.67 1896.22 30195.44 31198.57 23699.21 24096.70 29098.65 33197.74 35696.71 25497.27 33098.54 34086.03 35299.92 8398.47 14786.30 35499.10 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 11598.71 12799.66 7199.63 12499.55 8098.64 33299.10 29497.93 13999.42 12799.55 20798.67 6999.80 16695.80 30299.68 12099.61 134
thisisatest051598.14 18597.79 20999.19 15899.50 16698.50 20698.61 33396.82 36296.95 24099.54 10399.43 24791.66 30299.86 12898.08 18299.51 13799.22 193
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32299.60 13891.75 35998.61 33399.44 19499.35 199.83 1999.85 3198.70 6599.81 16199.02 6199.91 1699.81 44
cl2297.85 22697.64 22998.48 24699.09 26797.87 23998.60 33599.33 24897.11 22698.87 24299.22 29792.38 28799.17 29798.21 16795.99 28598.42 321
GA-MVS97.85 22697.47 24599.00 17799.38 19897.99 23198.57 33699.15 28997.04 23298.90 23799.30 28589.83 32499.38 25796.70 28398.33 20699.62 132
TinyColmap97.12 28796.89 28797.83 30099.07 27095.52 32198.57 33698.74 33097.58 17697.81 32199.79 9288.16 34399.56 23495.10 31697.21 25998.39 325
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22897.38 25598.56 33899.31 26196.65 25998.88 24099.52 21996.58 15099.12 30697.39 24495.53 29998.47 314
CMPMVSbinary69.68 2394.13 32394.90 31591.84 34397.24 35480.01 36898.52 33999.48 14589.01 35591.99 35999.67 15885.67 35499.13 30295.44 30997.03 26496.39 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 28197.20 27997.75 30599.07 27095.20 32898.51 34099.04 30297.99 13598.31 30199.86 2589.02 33299.55 23695.67 30697.36 25698.49 311
ambc93.06 34192.68 36682.36 36598.47 34198.73 33595.09 35197.41 35255.55 37099.10 30996.42 29191.32 34597.71 352
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28897.72 24798.45 34299.32 25896.95 24098.97 22799.17 30297.06 13599.22 28897.86 19795.99 28598.29 329
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11497.89 23898.43 34399.71 1398.88 4499.62 8399.76 11096.63 14999.70 20799.46 1899.99 199.66 115
testmvs39.17 33943.78 34125.37 35636.04 37916.84 38098.36 34426.56 37820.06 37338.51 37467.32 36929.64 37615.30 37537.59 37239.90 37143.98 370
FPMVS84.93 33185.65 33282.75 35186.77 37263.39 37698.35 34598.92 31374.11 36483.39 36498.98 32450.85 37192.40 36884.54 36594.97 31092.46 362
KD-MVS_2432*160094.62 31893.72 32497.31 31797.19 35695.82 31398.34 34699.20 28395.00 32297.57 32498.35 34487.95 34698.10 34592.87 34277.00 36498.01 342
miper_refine_blended94.62 31893.72 32497.31 31797.19 35695.82 31398.34 34699.20 28395.00 32297.57 32498.35 34487.95 34698.10 34592.87 34277.00 36498.01 342
CL-MVSNet_self_test94.49 32093.97 32396.08 33596.16 35993.67 35198.33 34899.38 22295.13 31797.33 32998.15 34892.69 27596.57 36288.67 35679.87 36297.99 345
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 7997.28 25798.32 34999.60 4097.86 14399.50 11199.57 20196.75 14699.86 12898.56 13699.70 11499.54 149
PAPM97.59 26797.09 28399.07 16799.06 27298.26 22098.30 35099.10 29494.88 32498.08 31099.34 27596.27 16199.64 22389.87 35398.92 18199.31 189
Patchmatch-RL test95.84 30895.81 30695.95 33695.61 36190.57 36198.24 35198.39 34495.10 32195.20 35098.67 33694.78 21397.77 35396.28 29490.02 34899.51 161
UnsupCasMVSNet_bld93.53 32592.51 32896.58 33397.38 35093.82 34698.24 35199.48 14591.10 35293.10 35796.66 35774.89 36598.37 34194.03 33087.71 35297.56 355
LCM-MVSNet86.80 33085.22 33491.53 34487.81 37180.96 36798.23 35398.99 30571.05 36590.13 36196.51 35848.45 37396.88 36190.51 35085.30 35596.76 357
cascas97.69 25797.43 25698.48 24698.60 33097.30 25698.18 35499.39 21692.96 34598.41 29498.78 33393.77 25299.27 28198.16 17498.61 19398.86 227
Effi-MVS+98.81 13498.59 14799.48 11499.46 17799.12 13798.08 35599.50 12497.50 18799.38 14199.41 25496.37 15899.81 16199.11 5398.54 20099.51 161
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13499.09 13998.04 35699.25 27591.24 35198.51 28799.70 13794.55 22899.91 9492.76 34499.85 5899.42 178
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34098.28 21997.99 35798.01 35197.68 16699.10 20299.63 17895.68 18299.15 29898.78 10296.55 27198.75 241
PVSNet_094.43 1996.09 30695.47 30997.94 29299.31 21694.34 34397.81 35899.70 1597.12 22397.46 32698.75 33489.71 32699.79 16997.69 21681.69 36099.68 109
E-PMN80.61 33379.88 33682.81 35090.75 36876.38 37297.69 35995.76 36766.44 36983.52 36392.25 36462.54 36987.16 37068.53 36961.40 36784.89 368
ANet_high77.30 33574.86 33984.62 34975.88 37577.61 37097.63 36093.15 37588.81 35664.27 37189.29 36736.51 37483.93 37275.89 36752.31 36992.33 364
EMVS80.02 33479.22 33782.43 35291.19 36776.40 37197.55 36192.49 37766.36 37083.01 36591.27 36564.63 36885.79 37165.82 37060.65 36885.08 367
MVEpermissive76.82 2176.91 33674.31 34084.70 34885.38 37476.05 37396.88 36293.17 37467.39 36871.28 37089.01 36821.66 37987.69 36971.74 36872.29 36690.35 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 32791.36 33090.31 34695.85 36073.72 37494.89 36399.25 27568.39 36795.82 34899.02 31980.50 36398.95 33193.64 33394.89 31398.25 332
Gipumacopyleft90.99 32890.15 33193.51 33998.73 31590.12 36293.98 36499.45 18579.32 36392.28 35894.91 36069.61 36697.98 34987.42 36095.67 29592.45 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 33774.97 33879.01 35370.98 37655.18 37793.37 36598.21 34765.08 37161.78 37293.83 36221.74 37892.53 36778.59 36691.12 34689.34 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 33281.52 33586.66 34766.61 37768.44 37592.79 36697.92 35268.96 36680.04 36999.85 3185.77 35396.15 36597.86 19743.89 37095.39 361
wuyk23d40.18 33841.29 34336.84 35486.18 37349.12 37879.73 36722.81 37927.64 37225.46 37528.45 37421.98 37748.89 37355.80 37123.56 37312.51 371
test_blank0.13 3440.17 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3761.57 3750.00 3800.00 3760.00 3740.00 3740.00 372
uanet_test0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
cdsmvs_eth3d_5k24.64 34132.85 3440.00 3570.00 3800.00 3810.00 36899.51 1040.00 3750.00 37699.56 20496.58 1500.00 3760.00 3740.00 3740.00 372
pcd_1.5k_mvsjas8.27 34311.03 3460.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 37699.01 190.00 3760.00 3740.00 3740.00 372
sosnet-low-res0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
sosnet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
uncertanet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
Regformer0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
ab-mvs-re8.30 34211.06 3450.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 37699.58 1970.00 3800.00 3760.00 3740.00 3740.00 372
uanet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
MSC_two_6792asdad99.87 1299.51 15699.76 4199.33 24899.96 1998.87 8099.84 6599.89 2
PC_three_145298.18 10999.84 1499.70 13799.31 398.52 34098.30 16499.80 8799.81 44
No_MVS99.87 1299.51 15699.76 4199.33 24899.96 1998.87 8099.84 6599.89 2
test_one_060199.81 4199.88 899.49 13298.97 3499.65 7499.81 6499.09 14
eth-test20.00 380
eth-test0.00 380
ZD-MVS99.71 9099.79 3399.61 3596.84 24799.56 9899.54 21298.58 7399.96 1996.93 27299.75 102
IU-MVS99.84 3399.88 899.32 25898.30 9499.84 1498.86 8599.85 5899.89 2
test_241102_TWO99.48 14599.08 1499.88 599.81 6498.94 3499.96 1998.91 7399.84 6599.88 7
test_241102_ONE99.84 3399.90 299.48 14599.07 1699.91 199.74 12199.20 799.76 180
test_0728_THIRD98.99 2899.81 2499.80 8099.09 1499.96 1998.85 8799.90 2399.88 7
GSMVS99.52 155
test_part299.81 4199.83 1799.77 36
sam_mvs194.86 20999.52 155
sam_mvs94.72 220
MTGPAbinary99.47 163
test_post65.99 37194.65 22499.73 191
patchmatchnet-post98.70 33594.79 21299.74 184
gm-plane-assit98.54 33492.96 35594.65 32999.15 30599.64 22397.56 228
test9_res97.49 23499.72 10999.75 75
agg_prior297.21 25199.73 10899.75 75
agg_prior99.67 10599.62 6699.40 21298.87 24299.91 94
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14599.36 14699.85 3195.95 16999.85 13496.66 28699.83 7499.59 140
test_prior99.68 6899.67 10599.48 9399.56 5799.83 15099.74 80
新几何199.75 5499.75 6499.59 7399.54 7496.76 25199.29 16099.64 17298.43 8499.94 5796.92 27499.66 12399.72 93
旧先验199.74 7299.59 7399.54 7499.69 14598.47 8199.68 12099.73 87
原ACMM199.65 7599.73 7999.33 10799.47 16397.46 18899.12 19799.66 16498.67 6999.91 9497.70 21599.69 11599.71 100
testdata299.95 4696.67 285
segment_acmp98.96 28
testdata99.54 9699.75 6498.95 15999.51 10497.07 22999.43 12499.70 13798.87 4299.94 5797.76 20699.64 12699.72 93
test1299.75 5499.64 12199.61 6899.29 27099.21 18198.38 8999.89 11799.74 10599.74 80
plane_prior799.29 22197.03 275
plane_prior699.27 22696.98 27992.71 273
plane_prior599.47 16399.69 21197.78 20497.63 23198.67 269
plane_prior499.61 188
plane_prior397.00 27798.69 6199.11 199
plane_prior199.26 228
n20.00 381
nn0.00 381
door-mid98.05 350
lessismore_v097.79 30498.69 32195.44 32494.75 37095.71 34999.87 2288.69 33699.32 27395.89 29994.93 31298.62 291
LGP-MVS_train98.49 24499.33 20897.05 27199.55 6797.46 18899.24 17399.83 4492.58 27899.72 19598.09 17897.51 24298.68 262
test1199.35 237
door97.92 352
HQP5-MVS96.83 285
BP-MVS97.19 255
HQP4-MVS98.66 27099.64 22398.64 281
HQP3-MVS99.39 21697.58 236
HQP2-MVS92.47 282
NP-MVS99.23 23496.92 28399.40 258
ACMMP++_ref97.19 260
ACMMP++97.43 252
Test By Simon98.75 59
ITE_SJBPF98.08 28199.29 22196.37 30198.92 31398.34 8998.83 24899.75 11591.09 31099.62 22995.82 30097.40 25498.25 332
DeepMVS_CXcopyleft93.34 34099.29 22182.27 36699.22 27985.15 35996.33 34399.05 31590.97 31299.73 19193.57 33497.77 22998.01 342