This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer97.57 8397.49 7597.84 13598.07 18195.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26596.91 9299.59 7199.34 111
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13394.58 20397.86 19889.16 18098.41 26596.91 9294.12 22796.88 243
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10594.42 21398.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19698.52 2799.37 798.71 11397.09 4592.99 27199.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
FIs96.51 13096.12 13397.67 15097.13 25097.54 8199.36 899.22 1495.89 8694.03 23398.35 15591.98 12698.44 25596.40 11992.76 25397.01 228
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25997.27 9099.36 899.23 1295.83 8993.93 23598.37 15392.00 12598.32 27496.02 13192.72 25497.00 229
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19897.64 7699.35 1099.06 2297.02 4793.75 24599.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23892.26 11699.49 14598.28 2796.28 20299.08 147
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19897.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26092.30 28099.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35795.90 4099.89 3597.85 4499.74 4199.78 13
tttt051796.07 14395.51 15397.78 13998.41 15394.84 19799.28 1694.33 34694.26 16297.64 12098.64 12684.05 28299.47 15095.34 15497.60 17099.03 150
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
v7n94.19 24993.43 26096.47 22895.90 30794.38 21999.26 1898.34 19291.99 25592.76 27697.13 25388.31 20298.52 24789.48 29787.70 31296.52 291
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15899.24 2099.24 1093.87 17892.53 28496.84 28690.37 16098.24 28493.24 21987.93 31096.38 303
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
QAPM96.29 13795.40 15498.96 6797.85 19597.60 7999.23 2198.93 3789.76 30893.11 26899.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21897.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8799.21 2898.97 3089.96 30491.14 30499.05 7986.64 23799.92 2193.38 21499.47 9097.73 209
DTE-MVSNet93.98 26293.26 26596.14 24896.06 30294.39 21899.20 2998.86 6193.06 21791.78 29897.81 20685.87 25197.58 31990.53 27786.17 32896.46 300
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25395.39 10997.23 13198.99 8691.11 14798.93 20694.60 17598.59 13399.47 98
PEN-MVS94.42 23693.73 24796.49 22696.28 29394.84 19799.17 3399.00 2793.51 20092.23 29297.83 20486.10 24797.90 30892.55 24186.92 32396.74 259
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18699.16 3498.50 16695.87 8893.84 24198.34 15994.51 8598.61 23696.88 9893.45 24397.06 226
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15699.14 3698.41 18093.75 18393.16 26497.46 23287.50 22498.41 26595.63 14894.03 22996.50 296
jajsoiax95.45 17195.03 17596.73 20195.42 32394.63 20699.14 3698.52 15895.74 9293.22 26298.36 15483.87 28798.65 23496.95 9194.04 22896.91 239
PS-CasMVS94.67 21993.99 22996.71 20296.68 27695.26 17999.13 3999.03 2593.68 19392.33 29097.95 19085.35 25998.10 29293.59 21088.16 30996.79 253
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17692.42 28997.90 19487.19 22898.12 29194.32 18788.21 30796.82 252
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 25094.59 8399.39 15597.62 6199.10 11198.70 172
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
K. test v392.55 28591.91 28694.48 30395.64 31489.24 31699.07 5094.88 34094.04 16786.78 33297.59 22477.64 32797.64 31792.08 25089.43 29396.57 281
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
v894.47 23493.77 24396.57 21896.36 29094.83 19999.05 5298.19 21591.92 25793.16 26496.97 27488.82 19398.48 24991.69 26287.79 31196.39 302
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
test_part192.87 28191.72 28796.32 24197.55 21793.50 24799.04 5398.74 10283.31 34090.81 30897.70 21376.61 33098.60 24094.43 18287.30 31896.85 248
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20898.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28796.36 13099.03 5699.03 2595.04 13193.58 24897.93 19288.27 20398.03 29994.13 19386.90 32496.95 233
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
EIA-MVS97.75 7097.58 6798.27 10998.38 15496.44 12699.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
Anonymous2023121194.10 25693.26 26596.61 21299.11 10494.28 22199.01 6098.88 4986.43 32892.81 27497.57 22681.66 29898.68 23294.83 16889.02 30096.88 243
mvs_tets95.41 17595.00 17696.65 20795.58 31694.42 21699.00 6298.55 15195.73 9393.21 26398.38 15283.45 29198.63 23597.09 8494.00 23096.91 239
baseline97.64 7697.44 7998.25 11298.35 15696.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
v1094.29 24393.55 25596.51 22596.39 28994.80 20198.99 6498.19 21591.35 27593.02 27096.99 27288.09 20998.41 26590.50 27888.41 30696.33 306
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
LPG-MVS_test95.62 16595.34 16096.47 22897.46 22493.54 24498.99 6498.54 15494.67 14794.36 21598.77 11485.39 25799.11 18295.71 14494.15 22596.76 257
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
tfpnnormal93.66 26592.70 27496.55 22296.94 26095.94 15098.97 6899.19 1591.04 28791.38 30297.34 23984.94 26598.61 23685.45 32589.02 30095.11 330
V4294.78 21294.14 21996.70 20496.33 29295.22 18098.97 6898.09 23892.32 24694.31 21897.06 26488.39 20198.55 24492.90 23088.87 30296.34 304
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19599.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs193.94 26393.06 26796.59 21596.49 28595.16 18198.95 7298.03 25092.32 24691.08 30597.84 20184.54 27398.41 26592.16 24886.13 33096.19 311
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23997.27 9098.94 7499.23 1295.13 12595.51 18597.32 24185.73 25298.91 20897.33 7889.55 29196.89 242
RRT_test8_iter0594.56 22694.19 21495.67 26797.60 21091.34 28698.93 7598.42 17994.75 14293.39 25797.87 19779.00 31598.61 23696.78 10790.99 27497.07 225
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
ACMM93.85 995.69 16295.38 15896.61 21297.61 20993.84 23398.91 7798.44 17595.25 11994.28 21998.47 14286.04 25099.12 17995.50 15193.95 23296.87 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TransMVSNet (Re)92.67 28491.51 28996.15 24796.58 28094.65 20498.90 7896.73 32190.86 28989.46 32097.86 19885.62 25498.09 29486.45 31781.12 33895.71 320
EPNet97.28 10096.87 10398.51 9294.98 32696.14 13998.90 7897.02 30998.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MTMP98.89 8294.14 349
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
OurMVSNet-221017-094.21 24794.00 22794.85 29195.60 31589.22 31798.89 8297.43 29095.29 11692.18 29398.52 13982.86 29298.59 24193.46 21391.76 26396.74 259
thisisatest053096.01 14695.36 15997.97 12998.38 15495.52 16998.88 8594.19 34894.04 16797.64 12098.31 16283.82 28999.46 15195.29 15897.70 16798.93 160
UGNet96.78 12196.30 12798.19 11798.24 16695.89 15798.88 8598.93 3797.39 2396.81 15297.84 20182.60 29399.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 33496.64 15798.97 8778.73 31699.85 4996.27 12194.89 21699.12 142
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31595.38 11096.61 15996.88 28284.29 27599.56 13688.11 30696.29 19997.76 206
XXY-MVS95.20 18994.45 20397.46 16196.75 27296.56 12198.86 8998.65 13593.30 21093.27 26198.27 16784.85 26798.87 21594.82 16991.26 27096.96 231
VDDNet95.36 17994.53 19697.86 13498.10 18095.13 18498.85 9097.75 26590.46 29498.36 7699.39 1473.27 34399.64 12597.98 3696.58 18998.81 166
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31595.38 11096.63 15896.90 28184.29 27599.59 13288.65 30596.33 19798.40 189
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33797.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32893.40 20598.62 6299.20 5274.99 33799.63 12897.72 5297.20 17699.46 102
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24796.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
casdiffmvs97.63 7797.41 8098.28 10898.33 16196.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
GBi-Net94.49 23293.80 24096.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 22997.07 26181.16 29997.95 30492.08 25092.14 25796.72 262
test194.49 23293.80 24096.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 22997.07 26181.16 29997.95 30492.08 25092.14 25796.72 262
FMVSNet193.19 27792.07 28296.56 21997.54 21895.00 18898.82 9798.18 21890.38 29792.27 29197.07 26173.68 34297.95 30489.36 29991.30 26896.72 262
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
ACMH92.88 1694.55 22793.95 23196.34 23997.63 20893.26 25798.81 10398.49 17093.43 20489.74 31798.53 13681.91 29699.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19390.22 30598.80 10498.10 23496.57 6296.45 17196.66 29290.81 15198.91 20895.72 14297.99 15597.40 216
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21198.80 10498.56 14997.28 2995.34 18698.28 16487.09 22999.03 19396.07 12694.27 21996.92 234
plane_prior298.80 10497.28 29
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25897.47 8398.79 10899.18 1695.60 9993.92 23697.04 26791.68 13198.48 24995.80 13987.66 31396.79 253
FMVSNet294.47 23493.61 25397.04 18298.21 16996.43 12798.79 10898.27 20592.46 23793.50 25497.09 25881.16 29998.00 30291.09 26791.93 26196.70 266
testgi93.06 27992.45 27894.88 29096.43 28889.90 30698.75 11097.54 28095.60 9991.63 30197.91 19374.46 34097.02 32886.10 31993.67 23697.72 210
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17487.85 33598.75 11095.66 33495.11 12788.96 32296.85 28590.26 16497.65 31695.65 14798.44 14199.22 128
SixPastTwentyTwo93.34 27192.86 27094.75 29595.67 31389.41 31598.75 11096.67 32593.89 17690.15 31598.25 16980.87 30398.27 28390.90 27290.64 27796.57 281
UniMVSNet_ETH3D94.24 24693.33 26296.97 18797.19 24693.38 25398.74 11398.57 14791.21 28493.81 24298.58 13272.85 34498.77 22695.05 16493.93 23398.77 169
MVS_Test97.28 10097.00 9798.13 12098.33 16195.97 14798.74 11398.07 24294.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26796.97 10298.74 11399.24 1095.16 12393.88 23897.72 21291.68 13198.31 27695.81 13787.25 31996.92 234
NR-MVSNet94.98 20294.16 21797.44 16296.53 28297.22 9598.74 11398.95 3494.96 13589.25 32197.69 21489.32 17598.18 28694.59 17787.40 31696.92 234
ETV-MVS97.96 5897.81 5998.40 10398.42 15297.27 9098.73 11798.55 15196.84 5198.38 7597.44 23595.39 5599.35 15897.62 6198.89 11898.58 184
baseline195.84 15495.12 17198.01 12798.49 15095.98 14298.73 11797.03 30795.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
MVSTER96.06 14495.72 14397.08 18198.23 16795.93 15398.73 11798.27 20594.86 13995.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
ACMP93.49 1095.34 18194.98 17896.43 23397.67 20593.48 24898.73 11798.44 17594.94 13892.53 28498.53 13684.50 27499.14 17795.48 15294.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
VPNet94.99 20094.19 21497.40 16697.16 24896.57 12098.71 12298.97 3095.67 9694.84 19698.24 17080.36 30798.67 23396.46 11587.32 31796.96 231
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
ACMH+92.99 1494.30 24293.77 24395.88 26097.81 19792.04 27498.71 12298.37 18793.99 17290.60 31198.47 14280.86 30499.05 18992.75 23492.40 25696.55 285
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30690.66 29096.49 16898.80 11078.13 32199.83 5596.21 12495.36 21599.44 105
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 31394.52 20599.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20291.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 31395.33 11396.55 16396.53 29884.23 27899.56 13688.11 30696.29 19997.76 206
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 29295.02 13297.95 9899.34 3174.37 34199.78 9598.64 396.80 18299.08 147
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 31395.33 11396.55 16396.53 29884.23 27899.56 13688.11 30696.29 19998.40 189
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
pmmvs691.77 29090.63 29495.17 28194.69 33291.24 29198.67 13297.92 25886.14 33089.62 31897.56 22875.79 33498.34 27290.75 27584.56 33295.94 317
v2v48294.69 21494.03 22396.65 20796.17 29794.79 20298.67 13298.08 24092.72 23094.00 23497.16 25287.69 22198.45 25392.91 22988.87 30296.72 262
DU-MVS95.42 17394.76 18697.40 16696.53 28296.97 10298.66 13598.99 2995.43 10793.88 23897.69 21488.57 19698.31 27695.81 13787.25 31996.92 234
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
Baseline_NR-MVSNet94.35 23993.81 23995.96 25596.20 29594.05 22898.61 14096.67 32591.44 27193.85 24097.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
v114494.59 22493.92 23296.60 21496.21 29494.78 20398.59 14198.14 22891.86 26094.21 22497.02 26987.97 21298.41 26591.72 26189.57 28996.61 276
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25998.59 14198.18 21891.36 27393.52 25198.77 11484.67 27099.72 10889.70 29297.87 15998.02 201
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16595.97 14798.58 14398.25 21091.74 26195.29 18997.23 24791.03 15099.15 17692.90 23097.96 15698.97 156
Anonymous2023120691.66 29191.10 29193.33 31694.02 33887.35 33798.58 14397.26 29990.48 29390.16 31496.31 30483.83 28896.53 33879.36 34389.90 28596.12 312
v14419294.39 23893.70 24996.48 22796.06 30294.35 22098.58 14398.16 22591.45 27094.33 21797.02 26987.50 22498.45 25391.08 26889.11 29796.63 274
v14894.29 24393.76 24595.91 25796.10 30092.93 26498.58 14397.97 25392.59 23593.47 25596.95 27888.53 19998.32 27492.56 24087.06 32196.49 297
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20299.29 7893.24 25898.58 14398.11 23289.92 30593.57 24999.10 6986.37 24399.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_MVS96.04 14595.53 15197.56 15897.07 25497.32 8798.57 14898.09 23895.15 12495.02 19298.44 14488.20 20598.58 24396.17 12593.09 25096.79 253
mvs-test196.60 12596.68 11596.37 23697.89 19391.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14298.01 15497.86 205
FMVSNet394.97 20394.26 21197.11 17998.18 17496.62 11598.56 14998.26 20993.67 19594.09 22997.10 25484.25 27798.01 30092.08 25092.14 25796.70 266
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21996.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
v192192094.20 24893.47 25996.40 23595.98 30594.08 22798.52 15398.15 22691.33 27694.25 22197.20 25086.41 24298.42 25890.04 28689.39 29496.69 271
EU-MVSNet93.66 26594.14 21992.25 32495.96 30683.38 34598.52 15398.12 23094.69 14592.61 28198.13 17787.36 22796.39 34091.82 25890.00 28496.98 230
TAMVS97.02 11296.79 10697.70 14798.06 18395.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20697.41 23294.42 21698.52 15398.59 14191.69 26491.21 30398.35 15584.87 26699.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement91.06 29689.68 30195.21 27985.35 35391.49 28598.51 15797.07 30491.47 26988.83 32597.84 20177.31 32899.09 18692.79 23377.98 34295.04 332
v119294.32 24193.58 25496.53 22396.10 30094.45 21598.50 15898.17 22391.54 26894.19 22597.06 26486.95 23398.43 25790.14 28189.57 28996.70 266
test_040291.32 29390.27 29794.48 30396.60 27991.12 29298.50 15897.22 30086.10 33188.30 32796.98 27377.65 32697.99 30378.13 34792.94 25294.34 336
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
v124094.06 26093.29 26496.34 23996.03 30493.90 23198.44 16598.17 22391.18 28594.13 22897.01 27186.05 24898.42 25889.13 30289.50 29296.70 266
plane_prior94.60 21198.44 16596.74 5594.22 221
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20698.43 16798.39 18496.64 5995.02 19298.78 11285.15 26299.05 18995.21 16294.20 22296.60 277
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
AUN-MVS94.53 22993.73 24796.92 19398.50 14993.52 24698.34 17698.10 23493.83 18195.94 18397.98 18885.59 25599.03 19394.35 18580.94 34098.22 196
DWT-MVSNet_test94.82 20994.36 20896.20 24697.35 23490.79 29798.34 17696.57 32792.91 22595.33 18896.44 30282.00 29599.12 17994.52 17995.78 21398.70 172
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21398.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
test20.0390.89 29890.38 29692.43 32293.48 33988.14 33298.33 17897.56 27593.40 20587.96 32896.71 29180.69 30694.13 34979.15 34486.17 32895.01 334
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
RPSCF94.87 20895.40 15493.26 31898.89 11782.06 34998.33 17898.06 24790.30 29996.56 16199.26 4287.09 22999.49 14593.82 20396.32 19898.24 195
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17898.64 13686.62 32696.29 17498.61 12794.00 9799.29 16280.00 34199.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IterMVS-LS95.46 16995.21 16796.22 24598.12 17893.72 24098.32 18398.13 22993.71 18894.26 22097.31 24292.24 11798.10 29294.63 17290.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous96.70 12396.53 12197.18 17498.19 17293.78 23498.31 18498.19 21594.01 17094.47 20798.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18498.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 16992.90 27296.73 28989.48 17198.73 22894.48 18193.60 24095.65 322
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
DSMNet-mixed92.52 28692.58 27692.33 32394.15 33482.65 34798.30 18694.26 34789.08 31792.65 28095.73 31885.01 26495.76 34286.24 31897.76 16498.59 182
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18998.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
baseline295.11 19394.52 19796.87 19596.65 27893.56 24398.27 19194.10 35093.45 20392.02 29797.43 23687.45 22699.19 17193.88 20197.41 17497.87 204
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19299.26 894.28 16097.94 10097.46 23292.74 10999.81 7096.88 9893.32 24696.20 310
BH-untuned95.95 14995.72 14396.65 20798.55 14692.26 26998.23 19397.79 26393.73 18694.62 20298.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19498.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
WR-MVS95.15 19194.46 20197.22 17196.67 27796.45 12598.21 19598.81 7694.15 16393.16 26497.69 21487.51 22298.30 27895.29 15888.62 30496.90 241
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26698.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
pmmvs593.65 26792.97 26995.68 26695.49 31992.37 26898.20 19897.28 29789.66 31092.58 28297.26 24482.14 29498.09 29493.18 22290.95 27596.58 279
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19897.11 30295.24 12196.54 16596.22 31084.58 27299.53 14287.93 31096.50 19397.39 217
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18495.98 14298.20 19898.33 19393.67 19596.95 14298.49 14093.54 10098.42 25895.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131496.25 14195.73 14297.79 13897.13 25095.55 16898.19 20298.59 14193.47 20292.03 29697.82 20591.33 14299.49 14594.62 17498.44 14198.32 194
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30298.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
MVS94.67 21993.54 25698.08 12396.88 26596.56 12198.19 20298.50 16678.05 34792.69 27998.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16394.64 20598.19 20297.45 28894.56 15196.03 17998.61 12785.02 26399.12 17990.68 27699.06 11299.30 120
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
MVS_030492.81 28292.01 28395.23 27897.46 22491.33 28898.17 20798.81 7691.13 28693.80 24395.68 32366.08 35098.06 29790.79 27396.13 20896.32 307
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30398.16 20897.27 29896.77 5393.14 26798.33 16090.34 16198.42 25885.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15197.00 10198.14 20998.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20998.76 9892.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EG-PatchMatch MVS91.13 29590.12 29894.17 31094.73 33189.00 32198.13 21197.81 26289.22 31685.32 33996.46 30067.71 34798.42 25887.89 31193.82 23595.08 331
EI-MVSNet95.96 14895.83 14196.36 23797.93 19093.70 24198.12 21298.27 20593.70 19095.07 19099.02 8092.23 11898.54 24594.68 17193.46 24196.84 249
CVMVSNet95.43 17296.04 13593.57 31397.93 19083.62 34498.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26596.55 28191.65 28298.11 21498.44 17594.96 13594.22 22397.90 19479.18 31499.11 18294.05 19893.85 23496.48 298
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21698.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
diffmvs97.58 8297.40 8198.13 12098.32 16395.81 15998.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21899.71 193.57 19997.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
HQP-NCC97.20 24398.05 21896.43 6794.45 208
ACMP_Plane97.20 24398.05 21896.43 6794.45 208
HQP-MVS95.72 15995.40 15496.69 20597.20 24394.25 22498.05 21898.46 17196.43 6794.45 20897.73 21086.75 23598.96 20195.30 15694.18 22396.86 247
MIMVSNet189.67 30888.28 31293.82 31192.81 34391.08 29398.01 22297.45 28887.95 32187.90 32995.87 31667.63 34894.56 34878.73 34688.18 30895.83 319
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22298.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
FMVSNet591.81 28990.92 29294.49 30297.21 24292.09 27198.00 22497.55 27989.31 31590.86 30795.61 32474.48 33995.32 34585.57 32389.70 28796.07 314
CANet_DTU96.96 11496.55 11998.21 11498.17 17696.07 14197.98 22598.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
MVP-Stereo94.28 24593.92 23295.35 27694.95 32792.60 26797.97 22697.65 26991.61 26790.68 31097.09 25886.32 24498.42 25889.70 29299.34 10295.02 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DIV-MVS_2432*160090.38 30289.38 30493.40 31592.85 34288.94 32297.95 22797.94 25690.35 29890.25 31393.96 33579.82 30995.94 34184.62 33176.69 34495.33 325
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 23199.06 2293.72 18796.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
OpenMVS_ROBcopyleft86.42 2089.00 31287.43 31793.69 31293.08 34189.42 31497.91 23196.89 31778.58 34685.86 33694.69 32969.48 34698.29 28177.13 34893.29 24893.36 345
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23698.74 10293.84 17996.54 16598.18 17485.34 26099.75 10495.93 13396.35 19699.15 138
jason97.32 9997.08 9398.06 12597.45 22895.59 16397.87 23797.91 25994.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
test_prior498.01 6297.86 238
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21597.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24598.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
MS-PatchMatch93.84 26493.63 25294.46 30596.18 29689.45 31397.76 24698.27 20592.23 24992.13 29497.49 23079.50 31198.69 22989.75 29099.38 10095.25 326
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24798.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24998.07 24292.10 25394.79 20097.29 24391.75 13099.56 13694.17 19296.50 19399.58 82
BH-w/o95.38 17695.08 17396.26 24498.34 16091.79 27797.70 25097.43 29092.87 22794.24 22297.22 24888.66 19498.84 21891.55 26497.70 16798.16 198
testing_290.61 30188.50 30996.95 18990.08 35095.57 16597.69 25198.06 24793.02 21976.55 34692.48 34261.18 35398.44 25595.45 15391.98 26096.84 249
lupinMVS97.44 9197.22 8898.12 12298.07 18195.76 16097.68 25297.76 26494.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
原ACMM297.67 253
LF4IMVS93.14 27892.79 27294.20 30895.88 30888.67 32597.66 25497.07 30493.81 18291.71 29997.65 21877.96 32398.81 22291.47 26591.92 26295.12 329
新几何297.64 255
MDA-MVSNet-bldmvs89.97 30688.35 31194.83 29395.21 32491.34 28697.64 25597.51 28288.36 32071.17 35296.13 31279.22 31396.63 33783.65 33286.27 32796.52 291
pmmvs-eth3d90.36 30389.05 30794.32 30791.10 34792.12 27097.63 25796.95 31288.86 31884.91 34093.13 33878.32 31896.74 33288.70 30481.81 33794.09 340
TR-MVS94.94 20694.20 21397.17 17597.75 19994.14 22697.59 25897.02 30992.28 24895.75 18497.64 22083.88 28698.96 20189.77 28996.15 20798.40 189
无先验97.58 25998.72 10991.38 27299.87 4493.36 21699.60 78
旧先验297.57 26091.30 27898.67 5899.80 7995.70 146
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31997.53 26196.89 31789.66 31096.82 15196.72 29086.05 24898.95 20595.53 15096.13 20898.79 167
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26298.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 211
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26398.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
tpm94.13 25393.80 24095.12 28296.50 28487.91 33497.44 26395.89 33392.62 23396.37 17396.30 30584.13 28198.30 27893.24 21991.66 26599.14 140
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31297.43 26598.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
test22299.23 9397.17 9797.40 26698.66 13188.68 31998.05 8698.96 9394.14 9499.53 8599.61 75
pmmvs494.69 21493.99 22996.81 19895.74 31195.94 15097.40 26697.67 26890.42 29693.37 25897.59 22489.08 18398.20 28592.97 22891.67 26496.30 308
test0.0.03 194.08 25893.51 25795.80 26295.53 31892.89 26597.38 26895.97 33095.11 12792.51 28696.66 29287.71 21896.94 32987.03 31493.67 23697.57 213
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26899.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
Effi-MVS+97.12 10996.69 11398.39 10498.19 17296.72 11397.37 27098.43 17893.71 18897.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
N_pmnet87.12 31687.77 31585.17 33395.46 32061.92 35897.37 27070.66 36385.83 33388.73 32696.04 31485.33 26197.76 31580.02 34090.48 27895.84 318
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27298.57 14793.33 20796.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
PMMVS96.60 12596.33 12697.41 16497.90 19293.93 23097.35 27398.41 18092.84 22897.76 10997.45 23491.10 14899.20 17096.26 12297.91 15799.11 143
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27498.51 16197.29 2898.66 6097.88 19694.51 8599.90 3397.87 4299.17 10997.39 217
SCA95.46 16995.13 17096.46 23197.67 20591.29 29097.33 27597.60 27394.68 14696.92 14697.10 25483.97 28498.89 21292.59 23898.32 14899.20 129
testdata197.32 27696.34 71
ET-MVSNet_ETH3D94.13 25392.98 26897.58 15698.22 16896.20 13697.31 27795.37 33594.53 15279.56 34597.63 22286.51 23897.53 32196.91 9290.74 27699.02 151
tpm294.19 24993.76 24595.46 27397.23 24089.04 32097.31 27796.85 32087.08 32596.21 17696.79 28883.75 29098.74 22792.43 24696.23 20598.59 182
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27999.26 893.13 21697.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
CLD-MVS95.62 16595.34 16096.46 23197.52 22193.75 23797.27 28098.46 17195.53 10294.42 21398.00 18686.21 24598.97 19896.25 12394.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPMVS94.99 20094.48 19996.52 22497.22 24191.75 27997.23 28191.66 35494.11 16497.28 12996.81 28785.70 25398.84 21893.04 22697.28 17598.97 156
miper_lstm_enhance94.33 24094.07 22295.11 28397.75 19990.97 29497.22 28298.03 25091.67 26592.76 27696.97 27490.03 16697.78 31492.51 24389.64 28896.56 283
YYNet190.70 30089.39 30394.62 29994.79 33090.65 30097.20 28397.46 28687.54 32372.54 35095.74 31786.51 23896.66 33686.00 32086.76 32696.54 286
MDA-MVSNet_test_wron90.71 29989.38 30494.68 29794.83 32990.78 29897.19 28497.46 28687.60 32272.41 35195.72 32086.51 23896.71 33585.92 32186.80 32596.56 283
IterMVS-SCA-FT94.11 25593.87 23694.85 29197.98 18990.56 30297.18 28598.11 23293.75 18392.58 28297.48 23183.97 28497.41 32392.48 24591.30 26896.58 279
IterMVS94.09 25793.85 23894.80 29497.99 18790.35 30497.18 28598.12 23093.68 19392.46 28897.34 23984.05 28297.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28798.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
cl_fuxian94.79 21194.43 20595.89 25997.75 19993.12 26297.16 28898.03 25092.23 24993.46 25697.05 26691.39 13998.01 30093.58 21189.21 29696.53 288
new-patchmatchnet88.50 31387.45 31691.67 32690.31 34985.89 34197.16 28897.33 29489.47 31283.63 34292.77 33976.38 33195.06 34782.70 33477.29 34394.06 341
UnsupCasMVSNet_eth90.99 29789.92 30094.19 30994.08 33589.83 30797.13 29098.67 12893.69 19185.83 33796.19 31175.15 33696.74 33289.14 30179.41 34196.00 315
IB-MVS91.98 1793.27 27391.97 28497.19 17397.47 22393.41 25197.09 29195.99 32993.32 20892.47 28795.73 31878.06 32299.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl-mvsnet_94.51 23194.01 22696.02 25197.58 21293.40 25297.05 29297.96 25591.73 26392.76 27697.08 26089.06 18498.13 29092.61 23590.29 28196.52 291
cl-mvsnet194.52 23094.03 22395.99 25297.57 21693.38 25397.05 29297.94 25691.74 26192.81 27497.10 25489.12 18198.07 29692.60 23690.30 28096.53 288
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20493.31 25597.02 29498.07 24292.23 24993.51 25396.96 27691.85 12898.15 28893.68 20691.16 27196.44 301
CMPMVSbinary66.06 2189.70 30789.67 30289.78 32893.19 34076.56 35197.00 29598.35 19080.97 34481.57 34497.75 20974.75 33898.61 23689.85 28893.63 23894.17 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32796.97 29697.56 27593.50 20197.52 12796.93 28089.49 17099.16 17395.25 16096.42 19598.64 180
dp94.15 25293.90 23494.90 28997.31 23686.82 34096.97 29697.19 30191.22 28396.02 18096.61 29785.51 25699.02 19690.00 28794.30 21898.85 163
cl-mvsnet294.68 21694.19 21496.13 24998.11 17993.60 24296.94 29898.31 19692.43 24193.32 26096.87 28486.51 23898.28 28294.10 19691.16 27196.51 294
PM-MVS87.77 31486.55 31891.40 32791.03 34883.36 34696.92 29995.18 33891.28 28086.48 33593.42 33753.27 35496.74 33289.43 29881.97 33694.11 339
TinyColmap92.31 28791.53 28894.65 29896.92 26189.75 30896.92 29996.68 32490.45 29589.62 31897.85 20076.06 33398.81 22286.74 31592.51 25595.41 324
our_test_393.65 26793.30 26394.69 29695.45 32189.68 31196.91 30197.65 26991.97 25691.66 30096.88 28289.67 16997.93 30788.02 30991.49 26696.48 298
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30996.91 30195.21 33695.11 12794.83 19895.72 32087.71 21898.97 19893.06 22498.50 13898.72 170
TESTMET0.1,194.18 25193.69 25095.63 26896.92 26189.12 31896.91 30194.78 34193.17 21494.88 19596.45 30178.52 31798.92 20793.09 22398.50 13898.85 163
test-mter94.08 25893.51 25795.80 26296.77 26989.70 30996.91 30195.21 33692.89 22694.83 19895.72 32077.69 32498.97 19893.06 22498.50 13898.72 170
USDC93.33 27292.71 27395.21 27996.83 26890.83 29696.91 30197.50 28393.84 17990.72 30998.14 17677.69 32498.82 22189.51 29693.21 24995.97 316
MDTV_nov1_ep13_2view84.26 34396.89 30690.97 28897.90 10489.89 16893.91 20099.18 136
ppachtmachnet_test93.22 27592.63 27594.97 28795.45 32190.84 29596.88 30797.88 26090.60 29192.08 29597.26 24488.08 21097.86 31385.12 32790.33 27996.22 309
tpmvs94.60 22294.36 20895.33 27797.46 22488.60 32696.88 30797.68 26791.29 27993.80 24396.42 30388.58 19599.24 16691.06 26996.04 21098.17 197
MDTV_nov1_ep1395.40 15497.48 22288.34 32996.85 30997.29 29693.74 18597.48 12897.26 24489.18 17999.05 18991.92 25797.43 173
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21290.72 29996.84 31097.52 28194.06 16697.08 13696.96 27689.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31198.37 18791.32 27794.43 21298.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
thisisatest051595.61 16794.89 18297.76 14198.15 17795.15 18396.77 31294.41 34492.95 22397.18 13397.43 23684.78 26899.45 15294.63 17297.73 16698.68 175
GA-MVS94.81 21094.03 22397.14 17697.15 24993.86 23296.76 31397.58 27494.00 17194.76 20197.04 26780.91 30298.48 24991.79 25996.25 20499.09 144
tpm cat193.36 26992.80 27195.07 28597.58 21287.97 33396.76 31397.86 26182.17 34393.53 25096.04 31486.13 24699.13 17889.24 30095.87 21198.10 199
eth_miper_zixun_eth94.68 21694.41 20695.47 27297.64 20791.71 28196.73 31598.07 24292.71 23193.64 24697.21 24990.54 15898.17 28793.38 21489.76 28696.54 286
test_post196.68 31630.43 36187.85 21798.69 22992.59 238
pmmvs386.67 31784.86 32092.11 32588.16 35187.19 33996.63 31794.75 34279.88 34587.22 33192.75 34066.56 34995.20 34681.24 33876.56 34593.96 342
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 23996.61 31898.08 24092.20 25293.89 23796.65 29492.44 11298.30 27894.21 19191.16 27196.34 304
testmvs21.48 33024.95 33311.09 34414.89 3646.47 36696.56 3199.87 3657.55 36017.93 36039.02 3589.43 3675.90 36216.56 36012.72 35920.91 357
test12320.95 33123.72 33412.64 34313.54 3658.19 36596.55 3206.13 3667.48 36116.74 36137.98 35912.97 3646.05 36116.69 3595.43 36023.68 356
CL-MVSNet_2432*160090.11 30489.14 30693.02 32091.86 34588.23 33196.51 32198.07 24290.49 29290.49 31294.41 33084.75 26995.34 34480.79 33974.95 34695.50 323
GG-mvs-BLEND96.59 21596.34 29194.98 19196.51 32188.58 35893.10 26994.34 33480.34 30898.05 29889.53 29596.99 17996.74 259
new_pmnet90.06 30589.00 30893.22 31994.18 33388.32 33096.42 32396.89 31786.19 32985.67 33893.62 33677.18 32997.10 32781.61 33789.29 29594.23 337
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27396.08 32498.68 12093.69 19197.75 11097.80 20788.86 19199.69 11994.26 19099.01 11399.15 138
ADS-MVSNet294.58 22594.40 20795.11 28398.00 18588.74 32496.04 32597.30 29590.15 30096.47 16996.64 29587.89 21497.56 32090.08 28397.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 21098.00 18591.91 27596.04 32597.74 26690.15 30096.47 16996.64 29587.89 21498.96 20190.08 28397.06 17799.02 151
PAPM94.95 20494.00 22797.78 13997.04 25595.65 16296.03 32798.25 21091.23 28294.19 22597.80 20791.27 14498.86 21782.61 33597.61 16998.84 165
cascas94.63 22193.86 23796.93 19196.91 26394.27 22296.00 32898.51 16185.55 33594.54 20496.23 30884.20 28098.87 21595.80 13996.98 18097.66 212
gg-mvs-nofinetune92.21 28890.58 29597.13 17796.75 27295.09 18595.85 32989.40 35785.43 33694.50 20681.98 35180.80 30598.40 27192.16 24898.33 14797.88 203
FPMVS77.62 32177.14 32179.05 33679.25 35760.97 35995.79 33095.94 33165.96 35167.93 35394.40 33137.73 35988.88 35468.83 35188.46 30587.29 348
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25695.78 33199.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
MIMVSNet93.26 27492.21 28196.41 23497.73 20393.13 26195.65 33297.03 30791.27 28194.04 23296.06 31375.33 33597.19 32686.56 31696.23 20598.92 161
KD-MVS_2432*160089.61 30987.96 31394.54 30094.06 33691.59 28395.59 33397.63 27189.87 30688.95 32394.38 33278.28 31996.82 33084.83 32868.05 35095.21 327
miper_refine_blended89.61 30987.96 31394.54 30094.06 33691.59 28395.59 33397.63 27189.87 30688.95 32394.38 33278.28 31996.82 33084.83 32868.05 35095.21 327
PCF-MVS93.45 1194.68 21693.43 26098.42 10198.62 14196.77 11195.48 33598.20 21484.63 33893.34 25998.32 16188.55 19899.81 7084.80 33098.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
JIA-IIPM93.35 27092.49 27795.92 25696.48 28690.65 30095.01 33696.96 31185.93 33296.08 17887.33 34887.70 22098.78 22591.35 26695.58 21498.34 192
CR-MVSNet94.76 21394.15 21896.59 21597.00 25693.43 24994.96 33797.56 27592.46 23796.93 14496.24 30688.15 20797.88 31287.38 31296.65 18798.46 187
RPMNet92.81 28291.34 29097.24 17097.00 25693.43 24994.96 33798.80 8682.27 34296.93 14492.12 34486.98 23299.82 6376.32 34996.65 18798.46 187
UnsupCasMVSNet_bld87.17 31585.12 31993.31 31791.94 34488.77 32394.92 33998.30 20284.30 33982.30 34390.04 34563.96 35297.25 32585.85 32274.47 34893.93 343
PVSNet_088.72 1991.28 29490.03 29995.00 28697.99 18787.29 33894.84 34098.50 16692.06 25489.86 31695.19 32579.81 31099.39 15592.27 24769.79 34998.33 193
Patchmatch-test94.42 23693.68 25196.63 21097.60 21091.76 27894.83 34197.49 28589.45 31394.14 22797.10 25488.99 18598.83 22085.37 32698.13 15299.29 122
Patchmtry93.22 27592.35 27995.84 26196.77 26993.09 26394.66 34297.56 27587.37 32492.90 27296.24 30688.15 20797.90 30887.37 31390.10 28396.53 288
PatchT93.06 27991.97 28496.35 23896.69 27592.67 26694.48 34397.08 30386.62 32697.08 13692.23 34387.94 21397.90 30878.89 34596.69 18598.49 186
LCM-MVSNet78.70 31876.24 32386.08 33177.26 35971.99 35594.34 34496.72 32261.62 35376.53 34789.33 34633.91 36192.78 35181.85 33674.60 34793.46 344
PMMVS277.95 32075.44 32485.46 33282.54 35474.95 35394.23 34593.08 35272.80 35074.68 34887.38 34736.36 36091.56 35273.95 35063.94 35289.87 347
MVS-HIRNet89.46 31188.40 31092.64 32197.58 21282.15 34894.16 34693.05 35375.73 34990.90 30682.52 35079.42 31298.33 27383.53 33398.68 12797.43 214
Patchmatch-RL test91.49 29290.85 29393.41 31491.37 34684.40 34292.81 34795.93 33291.87 25987.25 33094.87 32888.99 18596.53 33892.54 24282.00 33599.30 120
ambc89.49 32986.66 35275.78 35292.66 34896.72 32286.55 33492.50 34146.01 35597.90 30890.32 27982.09 33494.80 335
EMVS64.07 32663.26 32966.53 34181.73 35658.81 36291.85 34984.75 36051.93 35759.09 35675.13 35543.32 35779.09 35842.03 35739.47 35561.69 354
E-PMN64.94 32564.25 32767.02 34082.28 35559.36 36191.83 35085.63 35952.69 35560.22 35577.28 35441.06 35880.12 35746.15 35641.14 35461.57 355
ANet_high69.08 32265.37 32680.22 33565.99 36171.96 35690.91 35190.09 35682.62 34149.93 35878.39 35329.36 36281.75 35562.49 35338.52 35686.95 350
tmp_tt68.90 32366.97 32574.68 33850.78 36359.95 36087.13 35283.47 36138.80 35862.21 35496.23 30864.70 35176.91 35988.91 30330.49 35787.19 349
MVEpermissive62.14 2263.28 32759.38 33074.99 33774.33 36065.47 35785.55 35380.50 36252.02 35651.10 35775.00 35610.91 36680.50 35651.60 35553.40 35378.99 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 32463.57 32873.09 33957.90 36251.22 36385.05 35493.93 35154.45 35444.32 35983.57 34913.22 36389.15 35358.68 35481.00 33978.91 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 31976.75 32283.38 33495.54 31780.43 35079.42 35597.40 29264.67 35273.46 34980.82 35245.65 35693.14 35066.32 35287.43 31576.56 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d30.17 32830.18 33230.16 34278.61 35843.29 36466.79 35614.21 36417.31 35914.82 36211.93 36211.55 36541.43 36037.08 35819.30 3585.76 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.98 32931.98 3310.00 3450.00 3660.00 3670.00 35798.59 1410.00 3620.00 36398.61 12790.60 1570.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.88 33310.50 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36394.51 850.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.20 33210.94 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36398.43 1450.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.46 5198.70 1998.79 9193.21 21298.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 102
test_post31.83 36088.83 19298.91 208
patchmatchnet-post95.10 32789.42 17398.89 212
gm-plane-assit95.88 30887.47 33689.74 30996.94 27999.19 17193.32 218
test9_res96.39 12099.57 7599.69 51
agg_prior295.87 13699.57 7599.68 57
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
TestCases96.99 18499.25 8693.21 25998.18 21891.36 27393.52 25198.77 11484.67 27099.72 10889.70 29297.87 15998.02 201
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
新几何199.16 5099.34 6298.01 6298.69 11790.06 30398.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21197.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
testdata299.89 3591.65 263
segment_acmp96.85 11
testdata98.26 11199.20 9795.36 17498.68 12091.89 25898.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
plane_prior797.42 22994.63 206
plane_prior697.35 23494.61 20987.09 229
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 234
plane_prior498.28 164
plane_prior394.61 20997.02 4795.34 186
plane_prior197.37 233
n20.00 367
nn0.00 367
door-mid94.37 345
lessismore_v094.45 30694.93 32888.44 32891.03 35586.77 33397.64 22076.23 33298.42 25890.31 28085.64 33196.51 294
LGP-MVS_train96.47 22897.46 22493.54 24498.54 15494.67 14794.36 21598.77 11485.39 25799.11 18295.71 14494.15 22596.76 257
test1198.66 131
door94.64 343
HQP5-MVS94.25 224
BP-MVS95.30 156
HQP4-MVS94.45 20898.96 20196.87 245
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 235
NP-MVS97.28 23794.51 21497.73 210
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80
ITE_SJBPF95.44 27497.42 22991.32 28997.50 28395.09 13093.59 24798.35 15581.70 29798.88 21489.71 29193.39 24596.12 312
DeepMVS_CXcopyleft86.78 33097.09 25372.30 35495.17 33975.92 34884.34 34195.19 32570.58 34595.35 34379.98 34289.04 29992.68 346