This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15298.61 6498.97 8795.13 7099.77 10197.65 6099.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer97.57 8397.49 7597.84 13598.07 18395.76 16199.47 298.40 18394.98 13598.79 4998.83 10792.34 11398.41 26596.91 9399.59 7199.34 111
test_djsdf96.00 14895.69 14896.93 19295.72 31395.49 17099.47 298.40 18394.98 13594.58 20597.86 20089.16 18198.41 26596.91 9394.12 22796.88 245
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15998.94 3999.20 5295.16 6999.74 10797.58 6699.85 399.77 20
nrg03096.28 13995.72 14397.96 13196.90 26598.15 5699.39 598.31 19795.47 10794.42 21598.35 15692.09 12398.69 23097.50 7389.05 29997.04 228
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2599.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19898.52 2799.37 798.71 11497.09 4692.99 27399.13 6489.36 17599.89 3596.97 8999.57 7599.71 44
FIs96.51 13096.12 13397.67 15297.13 25197.54 8299.36 899.22 1495.89 8794.03 23598.35 15691.98 12698.44 25696.40 12192.76 25397.01 229
FC-MVSNet-test96.42 13396.05 13497.53 16296.95 26097.27 9199.36 899.23 1295.83 9093.93 23798.37 15492.00 12598.32 27496.02 13392.72 25497.00 230
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20097.64 7799.35 1099.06 2297.02 4893.75 24799.16 6189.25 17899.92 2197.22 8199.75 3899.64 70
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1198.39 18596.76 5597.67 11797.40 24092.26 11699.49 14698.28 2796.28 20299.08 148
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8698.60 6599.13 6496.05 3299.94 397.77 5099.86 199.77 20
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14195.38 17399.33 1398.31 19793.61 20097.19 13399.07 7794.05 9599.23 16896.89 9698.43 14399.37 110
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2298.46 6999.20 5295.90 4099.89 3597.85 4599.74 4199.78 13
X-MVStestdata94.06 26392.30 28399.34 2399.70 2398.35 4399.29 1498.88 4997.40 2298.46 6943.50 35995.90 4099.89 3597.85 4599.74 4199.78 13
tttt051796.07 14495.51 15497.78 14198.41 15594.84 19899.28 1694.33 34894.26 16497.64 12198.64 12784.05 28499.47 15195.34 15597.60 17099.03 151
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7498.35 7899.23 4595.46 5199.94 397.42 7599.81 1099.77 20
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9297.79 4999.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v7n94.19 25293.43 26396.47 23095.90 30894.38 22199.26 1898.34 19391.99 25792.76 27897.13 25588.31 20398.52 24889.48 29887.70 31496.52 292
WR-MVS_H95.05 19894.46 20296.81 19996.86 26795.82 15999.24 2099.24 1093.87 18092.53 28696.84 28890.37 16098.24 28593.24 22087.93 31296.38 304
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8398.94 3999.17 5696.06 3099.92 2197.62 6299.78 2399.75 28
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7898.94 3999.17 5695.91 3999.94 397.55 7099.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8398.93 4399.19 5595.70 4499.94 397.62 6299.79 1999.78 13
QAPM96.29 13795.40 15598.96 6797.85 19797.60 8099.23 2198.93 3789.76 31093.11 27099.02 8089.11 18399.93 1591.99 25699.62 6699.34 111
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 8097.92 10499.23 4594.54 8499.94 396.74 11099.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13996.23 13699.22 2599.00 2796.63 6198.04 8999.21 4888.05 21299.35 15996.01 13499.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 22097.02 14298.92 9995.36 5899.91 3097.43 7499.64 6299.52 85
OpenMVScopyleft93.04 1395.83 15695.00 17798.32 10797.18 24897.32 8899.21 2898.97 3089.96 30691.14 30799.05 7986.64 23999.92 2193.38 21599.47 9097.73 210
DTE-MVSNet93.98 26593.26 26896.14 24996.06 30394.39 22099.20 2998.86 6193.06 21991.78 30197.81 20885.87 25397.58 32090.53 27886.17 32996.46 301
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 13095.46 17199.20 2998.30 20394.96 13796.60 16198.87 10390.05 16598.59 24293.67 20998.60 13299.46 102
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9298.31 8199.10 6995.46 5199.93 1597.57 6999.81 1099.74 33
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3197.97 25395.39 11197.23 13298.99 8691.11 14798.93 20794.60 17798.59 13399.47 98
PEN-MVS94.42 23993.73 25096.49 22896.28 29494.84 19899.17 3399.00 2793.51 20292.23 29597.83 20686.10 24997.90 30992.55 24286.92 32496.74 260
PS-MVSNAJss96.43 13296.26 12996.92 19495.84 31195.08 18799.16 3498.50 16795.87 8993.84 24398.34 16094.51 8598.61 23896.88 9993.45 24397.06 227
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7499.20 2299.37 2295.30 6299.80 8097.73 5299.67 5499.72 40
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13296.84 5299.56 599.31 3596.34 1999.70 11598.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp95.42 17494.91 18296.94 19195.10 32695.90 15799.14 3698.41 18193.75 18593.16 26697.46 23487.50 22598.41 26595.63 15094.03 22996.50 297
jajsoiax95.45 17295.03 17696.73 20395.42 32494.63 20799.14 3698.52 15995.74 9393.22 26498.36 15583.87 28998.65 23696.95 9294.04 22896.91 241
PS-CasMVS94.67 22293.99 23196.71 20496.68 27795.26 17999.13 3999.03 2593.68 19592.33 29397.95 19185.35 26198.10 29393.59 21188.16 31196.79 254
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7999.26 1899.37 2293.33 10299.93 1596.96 9199.67 5499.69 51
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24598.09 8599.08 7693.01 10699.92 2196.06 13199.77 2699.75 28
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6699.17 2499.35 2895.34 5999.82 6497.72 5399.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6699.17 2499.35 2895.29 6397.72 5399.65 5899.71 44
CP-MVSNet94.94 20794.30 21196.83 19896.72 27595.56 16699.11 4298.95 3493.89 17892.42 29297.90 19587.19 22998.12 29294.32 18888.21 30996.82 253
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2599.35 1499.40 1397.78 399.87 4497.77 5099.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6599.05 3299.34 3195.34 5999.82 6497.86 4499.64 6299.73 36
CS-MVS97.81 6797.61 6598.41 10298.52 15097.15 9999.09 4698.55 15296.18 7797.61 12397.20 25294.59 8399.39 15697.62 6299.10 11198.70 173
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6299.10 2999.32 3395.39 5599.82 6497.70 5899.63 6499.72 40
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9598.73 5599.06 7895.27 6499.93 1597.07 8699.63 6499.72 40
K. test v392.55 28791.91 28994.48 30495.64 31589.24 31799.07 5094.88 34294.04 16986.78 33597.59 22577.64 33097.64 31892.08 25189.43 29496.57 282
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
v894.47 23793.77 24696.57 22096.36 29194.83 20099.05 5298.19 21691.92 25993.16 26696.97 27688.82 19498.48 25091.69 26387.79 31396.39 303
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12899.32 1599.39 1496.22 2099.84 5397.72 5399.73 4399.67 61
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 21098.83 4899.10 6996.54 1699.83 5697.70 5899.76 3299.59 80
test_part194.82 21193.82 24197.82 13898.84 12497.82 7299.03 5598.81 7692.31 24992.51 28897.89 19781.96 29898.67 23494.80 17288.24 30896.98 231
TranMVSNet+NR-MVSNet95.14 19394.48 20097.11 18196.45 28896.36 13199.03 5599.03 2595.04 13393.58 25097.93 19388.27 20498.03 30094.13 19486.90 32596.95 235
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8597.60 12599.36 2694.45 8999.93 1597.14 8398.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15897.24 8099.73 4399.70 48
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6098.60 14095.88 8897.26 13197.53 23094.97 7499.33 16197.38 7799.20 10799.05 150
Anonymous2023121194.10 25993.26 26896.61 21499.11 10494.28 22399.01 6098.88 4986.43 33192.81 27697.57 22781.66 30198.68 23394.83 16989.02 30196.88 245
mvs_tets95.41 17695.00 17796.65 20995.58 31794.42 21899.00 6298.55 15295.73 9493.21 26598.38 15383.45 29398.63 23797.09 8594.00 23096.91 241
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6298.32 19596.33 7398.03 9099.17 5691.35 14199.16 17498.10 3198.29 14999.39 108
v1094.29 24693.55 25896.51 22796.39 29094.80 20298.99 6498.19 21691.35 27793.02 27296.99 27488.09 21098.41 26590.50 27988.41 30796.33 307
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10999.03 3399.32 3395.56 4799.94 396.80 10699.77 2699.78 13
LPG-MVS_test95.62 16695.34 16196.47 23097.46 22593.54 24698.99 6498.54 15594.67 14994.36 21798.77 11485.39 25999.11 18395.71 14694.15 22596.76 258
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9998.94 3999.17 5696.06 3099.92 2197.21 8299.78 2399.75 28
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
tfpnnormal93.66 26892.70 27796.55 22496.94 26195.94 15198.97 6899.19 1591.04 28991.38 30597.34 24184.94 26798.61 23885.45 32689.02 30195.11 331
V4294.78 21594.14 22196.70 20696.33 29395.22 18098.97 6898.09 23992.32 24794.31 22097.06 26688.39 20298.55 24592.90 23188.87 30396.34 305
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19799.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs193.94 26693.06 27096.59 21796.49 28695.16 18198.95 7298.03 25092.32 24791.08 30897.84 20384.54 27598.41 26592.16 24986.13 33196.19 312
Anonymous2024052191.18 29790.44 29893.42 31593.70 34188.47 32998.94 7497.56 27588.46 32289.56 32295.08 33077.15 33396.97 33083.92 33389.55 29194.82 336
VPA-MVSNet95.75 15995.11 17397.69 15097.24 24097.27 9198.94 7499.23 1295.13 12795.51 18697.32 24385.73 25498.91 20997.33 7989.55 29196.89 244
RRT_test8_iter0594.56 22994.19 21695.67 26897.60 21291.34 28798.93 7698.42 18094.75 14493.39 25997.87 19979.00 31898.61 23896.78 10890.99 27497.07 226
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7698.90 4492.83 23095.99 18299.37 2292.12 12299.87 4493.67 20999.57 7598.97 157
ACMM93.85 995.69 16395.38 15996.61 21497.61 21193.84 23598.91 7898.44 17695.25 12194.28 22198.47 14386.04 25299.12 18095.50 15393.95 23296.87 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7998.74 10497.27 3498.02 9199.39 1494.81 7799.96 197.91 3999.79 1999.77 20
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7998.85 6497.28 3099.72 399.39 1496.63 1597.60 31998.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TransMVSNet (Re)92.67 28691.51 29196.15 24896.58 28194.65 20598.90 7996.73 32290.86 29189.46 32397.86 20085.62 25698.09 29586.45 31881.12 34095.71 321
EPNet97.28 10096.87 10398.51 9294.98 32796.14 14098.90 7997.02 31098.28 195.99 18299.11 6791.36 14099.89 3596.98 8899.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MTMP98.89 8394.14 351
UA-Net97.96 5897.62 6498.98 6598.86 12197.47 8498.89 8399.08 2196.67 5998.72 5699.54 193.15 10599.81 7194.87 16798.83 12399.65 67
OurMVSNet-221017-094.21 25094.00 22994.85 29295.60 31689.22 31898.89 8397.43 29195.29 11892.18 29698.52 14082.86 29498.59 24293.46 21491.76 26296.74 260
thisisatest053096.01 14795.36 16097.97 12998.38 15695.52 16998.88 8694.19 35094.04 16997.64 12198.31 16383.82 29199.46 15295.29 15997.70 16798.93 161
UGNet96.78 12196.30 12798.19 11798.24 16895.89 15898.88 8698.93 3797.39 2496.81 15397.84 20382.60 29599.90 3396.53 11599.49 8898.79 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052995.10 19594.22 21497.75 14499.01 10994.26 22598.87 8898.83 6885.79 33796.64 15898.97 8778.73 31999.85 5096.27 12394.89 21699.12 142
thres100view90095.38 17794.70 19097.41 16698.98 11394.92 19698.87 8896.90 31695.38 11296.61 16096.88 28484.29 27799.56 13788.11 30796.29 19997.76 207
XXY-MVS95.20 19094.45 20497.46 16396.75 27396.56 12298.86 9098.65 13693.30 21293.27 26398.27 16884.85 26998.87 21694.82 17091.26 27096.96 233
VDDNet95.36 18094.53 19797.86 13498.10 18295.13 18598.85 9197.75 26590.46 29698.36 7799.39 1473.27 34699.64 12697.98 3696.58 18998.81 167
thres600view795.49 16994.77 18697.67 15298.98 11395.02 18898.85 9196.90 31695.38 11296.63 15996.90 28384.29 27799.59 13388.65 30696.33 19798.40 190
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9198.90 4484.80 34097.77 10999.11 6792.84 10799.66 12394.85 16899.77 2699.47 98
LFMVS95.86 15494.98 17998.47 9698.87 12096.32 13398.84 9496.02 32993.40 20798.62 6399.20 5274.99 34099.63 12997.72 5397.20 17699.46 102
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9598.86 6195.48 10698.91 4599.17 5695.48 5099.93 1595.80 14199.53 8599.76 26
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9598.06 24896.74 5698.00 9797.65 21990.80 15399.48 15098.37 2396.56 19099.19 132
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9598.75 10296.96 5096.89 14999.50 490.46 15999.87 4497.84 4799.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9898.81 7695.80 9199.16 2699.47 895.37 5799.92 2197.89 4299.75 3899.79 10
casdiffmvs97.63 7797.41 8098.28 10898.33 16396.14 14098.82 9898.32 19596.38 7197.95 9999.21 4891.23 14599.23 16898.12 3098.37 14499.48 96
GBi-Net94.49 23593.80 24396.56 22198.21 17195.00 18998.82 9898.18 21992.46 23894.09 23197.07 26381.16 30297.95 30592.08 25192.14 25796.72 263
test194.49 23593.80 24396.56 22198.21 17195.00 18998.82 9898.18 21992.46 23894.09 23197.07 26381.16 30297.95 30592.08 25192.14 25796.72 263
FMVSNet193.19 28092.07 28596.56 22197.54 21995.00 18998.82 9898.18 21990.38 29992.27 29497.07 26373.68 34597.95 30589.36 30091.30 26896.72 263
API-MVS97.41 9497.25 8697.91 13298.70 13596.80 11098.82 9898.69 11894.53 15498.11 8498.28 16594.50 8899.57 13594.12 19599.49 8897.37 220
ACMH92.88 1694.55 23093.95 23396.34 24197.63 21093.26 25898.81 10498.49 17193.43 20689.74 31998.53 13781.91 29999.08 18893.69 20693.30 24796.70 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu96.29 13796.56 11895.51 27197.89 19590.22 30698.80 10598.10 23596.57 6396.45 17296.66 29490.81 15198.91 20995.72 14497.99 15597.40 217
HQP_MVS96.14 14395.90 13996.85 19797.42 23094.60 21298.80 10598.56 15097.28 3095.34 18798.28 16587.09 23199.03 19496.07 12894.27 21996.92 236
plane_prior298.80 10597.28 30
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10598.82 7094.52 15699.23 2099.25 4395.54 4999.80 8096.52 11699.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)95.78 15895.19 16997.58 15896.99 25997.47 8498.79 10999.18 1695.60 10093.92 23897.04 26991.68 13198.48 25095.80 14187.66 31596.79 254
FMVSNet294.47 23793.61 25697.04 18498.21 17196.43 12898.79 10998.27 20692.46 23893.50 25697.09 26081.16 30298.00 30391.09 26891.93 26096.70 267
testgi93.06 28292.45 28194.88 29196.43 28989.90 30798.75 11197.54 28195.60 10091.63 30497.91 19474.46 34397.02 32986.10 32093.67 23697.72 211
LCM-MVSNet-Re95.22 18895.32 16494.91 28998.18 17687.85 33798.75 11195.66 33595.11 12988.96 32596.85 28790.26 16497.65 31795.65 14998.44 14199.22 128
SixPastTwentyTwo93.34 27492.86 27394.75 29695.67 31489.41 31698.75 11196.67 32693.89 17890.15 31798.25 17080.87 30698.27 28490.90 27390.64 27796.57 282
UniMVSNet_ETH3D94.24 24993.33 26596.97 18997.19 24793.38 25498.74 11498.57 14891.21 28693.81 24498.58 13372.85 34798.77 22795.05 16593.93 23398.77 170
MVS_Test97.28 10097.00 9798.13 12098.33 16395.97 14898.74 11498.07 24394.27 16398.44 7398.07 18192.48 11199.26 16496.43 12098.19 15099.16 137
UniMVSNet_NR-MVSNet95.71 16195.15 17097.40 16896.84 26896.97 10398.74 11499.24 1095.16 12593.88 24097.72 21491.68 13198.31 27695.81 13987.25 32096.92 236
NR-MVSNet94.98 20394.16 21997.44 16496.53 28397.22 9698.74 11498.95 3494.96 13789.25 32497.69 21589.32 17698.18 28794.59 17987.40 31896.92 236
ETV-MVS97.96 5897.81 5998.40 10398.42 15497.27 9198.73 11898.55 15296.84 5298.38 7697.44 23795.39 5599.35 15997.62 6298.89 11898.58 185
baseline195.84 15595.12 17298.01 12798.49 15295.98 14398.73 11897.03 30895.37 11496.22 17698.19 17489.96 16799.16 17494.60 17787.48 31698.90 163
MVSTER96.06 14595.72 14397.08 18398.23 16995.93 15498.73 11898.27 20694.86 14195.07 19198.09 18088.21 20598.54 24696.59 11293.46 24196.79 254
ACMP93.49 1095.34 18294.98 17996.43 23597.67 20793.48 24998.73 11898.44 17694.94 14092.53 28698.53 13784.50 27699.14 17895.48 15494.00 23096.66 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12298.66 13297.51 1698.15 8298.83 10795.70 4499.92 2197.53 7299.67 5499.66 65
9.1498.06 4999.47 4898.71 12398.82 7094.36 16199.16 2699.29 3996.05 3299.81 7197.00 8799.71 50
VPNet94.99 20194.19 21697.40 16897.16 24996.57 12198.71 12398.97 3095.67 9794.84 19798.24 17180.36 31098.67 23496.46 11787.32 31996.96 233
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12399.05 2497.28 3098.84 4699.28 4096.47 1899.40 15598.52 1399.70 5199.47 98
ACMH+92.99 1494.30 24593.77 24695.88 26197.81 19992.04 27598.71 12398.37 18893.99 17490.60 31398.47 14380.86 30799.05 19092.75 23592.40 25696.55 286
Anonymous20240521195.28 18594.49 19997.67 15299.00 11093.75 23998.70 12797.04 30790.66 29296.49 16998.80 11078.13 32499.83 5696.21 12695.36 21599.44 105
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12798.39 18589.45 31594.52 20799.35 2891.85 12899.85 5092.89 23398.88 11999.68 57
Fast-Effi-MVS+-dtu95.87 15395.85 14095.91 25897.74 20491.74 28198.69 12998.15 22795.56 10294.92 19597.68 21888.98 18998.79 22593.19 22297.78 16397.20 224
tfpn200view995.32 18494.62 19397.43 16598.94 11594.98 19298.68 13096.93 31495.33 11596.55 16496.53 30084.23 28099.56 13788.11 30796.29 19997.76 207
VDD-MVS95.82 15795.23 16797.61 15798.84 12493.98 23198.68 13097.40 29395.02 13497.95 9999.34 3174.37 34499.78 9698.64 396.80 18299.08 148
thres40095.38 17794.62 19397.65 15598.94 11594.98 19298.68 13096.93 31495.33 11596.55 16496.53 30084.23 28099.56 13788.11 30796.29 19998.40 190
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13398.84 6594.66 15199.11 2899.25 4395.46 5199.81 7196.80 10699.73 4399.63 73
pmmvs691.77 29290.63 29695.17 28294.69 33391.24 29298.67 13397.92 25886.14 33389.62 32097.56 22975.79 33798.34 27290.75 27684.56 33395.94 318
v2v48294.69 21794.03 22596.65 20996.17 29894.79 20398.67 13398.08 24192.72 23194.00 23697.16 25487.69 22298.45 25492.91 23088.87 30396.72 263
DU-MVS95.42 17494.76 18797.40 16896.53 28396.97 10398.66 13698.99 2995.43 10993.88 24097.69 21588.57 19798.31 27695.81 13987.25 32096.92 236
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13698.68 12192.40 24497.07 13997.96 19091.54 13799.75 10593.68 20798.92 11698.69 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
hse-mvs396.17 14295.62 15197.81 13999.03 10894.45 21698.64 13898.75 10297.48 1898.67 5898.72 11989.76 16999.86 4997.95 3781.59 33999.11 143
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 13998.93 3796.74 5699.02 3498.84 10690.33 16299.83 5698.53 996.66 18699.50 91
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13999.16 1794.48 15897.67 11798.88 10292.80 10899.91 3097.11 8499.12 11099.50 91
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13998.60 14095.18 12497.06 14098.06 18294.26 9399.57 13593.80 20598.87 12199.52 85
Baseline_NR-MVSNet94.35 24293.81 24295.96 25696.20 29694.05 23098.61 14296.67 32691.44 27393.85 24297.60 22488.57 19798.14 29094.39 18486.93 32395.68 322
v114494.59 22793.92 23496.60 21696.21 29594.78 20498.59 14398.14 22991.86 26294.21 22697.02 27187.97 21398.41 26591.72 26289.57 28996.61 277
AllTest95.24 18794.65 19296.99 18699.25 8693.21 26098.59 14398.18 21991.36 27593.52 25398.77 11484.67 27299.72 10989.70 29397.87 15998.02 202
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16795.97 14898.58 14598.25 21191.74 26395.29 19097.23 24991.03 15099.15 17792.90 23197.96 15698.97 157
Anonymous2023120691.66 29391.10 29393.33 31894.02 34087.35 33998.58 14597.26 30090.48 29590.16 31696.31 30683.83 29096.53 34079.36 34589.90 28596.12 313
v14419294.39 24193.70 25296.48 22996.06 30394.35 22298.58 14598.16 22691.45 27294.33 21997.02 27187.50 22598.45 25491.08 26989.11 29896.63 275
v14894.29 24693.76 24895.91 25896.10 30192.93 26598.58 14597.97 25392.59 23693.47 25796.95 28088.53 20098.32 27492.56 24187.06 32296.49 298
COLMAP_ROBcopyleft93.27 1295.33 18394.87 18496.71 20499.29 7893.24 25998.58 14598.11 23389.92 30793.57 25199.10 6986.37 24599.79 9290.78 27598.10 15397.09 225
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_MVS96.04 14695.53 15297.56 16097.07 25597.32 8898.57 15098.09 23995.15 12695.02 19398.44 14588.20 20698.58 24496.17 12793.09 25096.79 254
mvs-test196.60 12596.68 11596.37 23897.89 19591.81 27798.56 15198.10 23596.57 6396.52 16897.94 19290.81 15199.45 15395.72 14498.01 15497.86 206
FMVSNet394.97 20494.26 21397.11 18198.18 17696.62 11698.56 15198.26 21093.67 19794.09 23197.10 25684.25 27998.01 30192.08 25192.14 25796.70 267
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15398.74 10497.27 3498.02 9199.39 1494.81 7799.96 197.91 3999.79 1999.77 20
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15398.62 13993.02 22196.17 17898.58 13394.01 9699.81 7193.95 20098.90 11799.14 140
v192192094.20 25193.47 26296.40 23795.98 30694.08 22998.52 15598.15 22791.33 27894.25 22397.20 25286.41 24498.42 25890.04 28789.39 29596.69 272
EU-MVSNet93.66 26894.14 22192.25 32695.96 30783.38 34798.52 15598.12 23194.69 14792.61 28398.13 17887.36 22896.39 34291.82 25990.00 28496.98 231
TAMVS97.02 11296.79 10697.70 14998.06 18595.31 17898.52 15598.31 19793.95 17697.05 14198.61 12893.49 10198.52 24895.33 15697.81 16199.29 122
LTVRE_ROB92.95 1594.60 22593.90 23696.68 20897.41 23394.42 21898.52 15598.59 14291.69 26691.21 30698.35 15684.87 26899.04 19391.06 27093.44 24496.60 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement91.06 29989.68 30495.21 28085.35 35591.49 28698.51 15997.07 30591.47 27188.83 32897.84 20377.31 33199.09 18792.79 23477.98 34495.04 333
v119294.32 24493.58 25796.53 22596.10 30194.45 21698.50 16098.17 22491.54 27094.19 22797.06 26686.95 23598.43 25790.14 28289.57 28996.70 267
test_040291.32 29590.27 30094.48 30496.60 28091.12 29398.50 16097.22 30186.10 33488.30 33096.98 27577.65 32997.99 30478.13 34992.94 25294.34 338
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16098.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7099.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16398.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3399.66 5799.69 51
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16498.31 19794.70 14598.02 9198.42 14890.80 15399.70 11596.81 10496.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16498.31 19794.70 14598.02 9198.42 14890.80 15399.70 11596.81 10496.79 18399.34 111
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16498.76 9997.82 598.45 7298.93 9796.65 1499.83 5697.38 7799.41 9799.71 44
v124094.06 26393.29 26796.34 24196.03 30593.90 23398.44 16798.17 22491.18 28794.13 23097.01 27386.05 25098.42 25889.13 30389.50 29396.70 267
plane_prior94.60 21298.44 16796.74 5694.22 221
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16998.78 9594.10 16797.69 11699.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS95.69 16395.33 16396.76 20196.16 30094.63 20798.43 16998.39 18596.64 6095.02 19398.78 11285.15 26499.05 19095.21 16394.20 22296.60 278
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17198.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6199.84 899.83 5
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17298.68 12197.04 4798.52 6898.80 11096.78 1299.83 5697.93 3899.61 6799.74 33
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17398.68 12197.43 2199.06 3199.31 3595.80 4399.77 10198.62 599.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17398.79 9297.46 2099.09 3099.31 3595.86 4299.80 8098.64 399.76 3299.79 10
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17598.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17598.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2299.73 4399.75 28
CANet98.05 5697.76 6198.90 7198.73 13097.27 9198.35 17798.78 9597.37 2797.72 11498.96 9391.53 13899.92 2198.79 299.65 5899.51 89
AUN-MVS94.53 23293.73 25096.92 19498.50 15193.52 24898.34 17898.10 23593.83 18395.94 18497.98 18985.59 25799.03 19494.35 18680.94 34298.22 197
DWT-MVSNet_test94.82 21194.36 20996.20 24797.35 23590.79 29898.34 17896.57 32892.91 22695.33 18996.44 30482.00 29799.12 18094.52 18195.78 21398.70 173
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 18098.68 12193.18 21598.68 5799.13 6494.62 8199.83 5696.45 11899.55 8399.52 85
test20.0390.89 30190.38 29992.43 32493.48 34288.14 33498.33 18097.56 27593.40 20787.96 33196.71 29380.69 30994.13 35179.15 34686.17 32995.01 335
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 18098.89 4692.62 23498.05 8798.94 9695.34 5999.65 12496.04 13299.42 9699.19 132
RPSCF94.87 21095.40 15593.26 32098.89 11882.06 35198.33 18098.06 24890.30 30196.56 16299.26 4287.09 23199.49 14693.82 20496.32 19898.24 196
TAPA-MVS93.98 795.35 18194.56 19697.74 14599.13 10294.83 20098.33 18098.64 13786.62 32996.29 17598.61 12894.00 9799.29 16380.00 34399.41 9799.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IterMVS-LS95.46 17095.21 16896.22 24698.12 18093.72 24298.32 18598.13 23093.71 19094.26 22297.31 24492.24 11798.10 29394.63 17490.12 28296.84 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous96.70 12396.53 12197.18 17698.19 17493.78 23698.31 18698.19 21694.01 17294.47 20998.27 16892.08 12498.46 25397.39 7697.91 15799.31 117
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18698.71 11495.26 12097.67 11798.56 13692.21 11999.78 9695.89 13696.85 18199.48 96
D2MVS95.18 19195.08 17495.48 27297.10 25392.07 27398.30 18899.13 1994.02 17192.90 27496.73 29189.48 17298.73 22994.48 18393.60 24095.65 323
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18898.69 11897.21 3798.84 4699.36 2695.41 5499.78 9698.62 599.65 5899.80 9
DSMNet-mixed92.52 28892.58 27992.33 32594.15 33682.65 34998.30 18894.26 34989.08 31992.65 28295.73 32085.01 26695.76 34486.24 31997.76 16498.59 183
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19198.68 12197.17 4098.74 5399.37 2295.25 6699.79 9298.57 799.54 8499.73 36
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19198.59 14295.52 10597.97 9899.10 6993.28 10499.49 14695.09 16498.88 11999.19 132
baseline295.11 19494.52 19896.87 19696.65 27993.56 24598.27 19394.10 35293.45 20592.02 30097.43 23887.45 22799.19 17293.88 20297.41 17497.87 205
PVSNet_BlendedMVS96.73 12296.60 11797.12 18099.25 8695.35 17698.26 19499.26 894.28 16297.94 10197.46 23492.74 10999.81 7196.88 9993.32 24696.20 311
BH-untuned95.95 15095.72 14396.65 20998.55 14892.26 27098.23 19597.79 26393.73 18894.62 20498.01 18688.97 19099.00 19893.04 22798.51 13798.68 176
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19698.93 3793.97 17598.01 9598.48 14291.98 12699.85 5096.45 11898.15 15199.39 108
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19798.52 15997.95 399.32 1599.39 1496.22 2099.84 5397.72 5399.73 4399.67 61
save fliter99.46 5198.38 3598.21 19798.71 11497.95 3
WR-MVS95.15 19294.46 20297.22 17396.67 27896.45 12698.21 19798.81 7694.15 16593.16 26697.69 21587.51 22398.30 27895.29 15988.62 30596.90 243
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20098.81 7691.63 26898.44 7398.85 10493.98 9899.82 6494.11 19699.69 5299.64 70
pmmvs593.65 27092.97 27295.68 26795.49 32092.37 26998.20 20097.28 29889.66 31292.58 28497.26 24682.14 29698.09 29593.18 22390.95 27596.58 280
thres20095.25 18694.57 19597.28 17198.81 12694.92 19698.20 20097.11 30395.24 12396.54 16696.22 31284.58 27499.53 14387.93 31196.50 19397.39 218
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18695.98 14398.20 20098.33 19493.67 19796.95 14398.49 14193.54 10098.42 25895.24 16297.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131496.25 14195.73 14297.79 14097.13 25195.55 16898.19 20498.59 14293.47 20492.03 29997.82 20791.33 14299.49 14694.62 17698.44 14198.32 195
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20498.68 12190.14 30498.01 9598.97 8794.80 7999.87 4493.36 21799.46 9399.61 75
MVS94.67 22293.54 25998.08 12396.88 26696.56 12298.19 20498.50 16778.05 34992.69 28198.02 18491.07 14999.63 12990.09 28398.36 14698.04 201
BH-RMVSNet95.92 15295.32 16497.69 15098.32 16594.64 20698.19 20497.45 28994.56 15396.03 18098.61 12885.02 26599.12 18090.68 27799.06 11299.30 120
1112_ss96.63 12496.00 13798.50 9398.56 14696.37 13098.18 20898.10 23592.92 22594.84 19798.43 14692.14 12199.58 13494.35 18696.51 19299.56 84
MVS_030492.81 28492.01 28695.23 27997.46 22591.33 28998.17 20998.81 7691.13 28893.80 24595.68 32566.08 35398.06 29890.79 27496.13 20896.32 308
EPNet_dtu95.21 18994.95 18195.99 25396.17 29890.45 30498.16 21097.27 29996.77 5493.14 26998.33 16190.34 16198.42 25885.57 32498.81 12599.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21198.21 21393.95 17696.72 15697.99 18891.58 13399.76 10394.51 18296.54 19198.95 160
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21198.76 9992.41 24396.39 17398.31 16394.92 7699.78 9694.06 19898.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EG-PatchMatch MVS91.13 29890.12 30194.17 31194.73 33289.00 32298.13 21397.81 26289.22 31885.32 34296.46 30267.71 35098.42 25887.89 31293.82 23595.08 332
EI-MVSNet95.96 14995.83 14196.36 23997.93 19293.70 24398.12 21498.27 20693.70 19295.07 19199.02 8092.23 11898.54 24694.68 17393.46 24196.84 250
CVMVSNet95.43 17396.04 13593.57 31497.93 19283.62 34698.12 21498.59 14295.68 9696.56 16299.02 8087.51 22397.51 32393.56 21397.44 17299.60 78
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21698.29 20597.19 3998.99 3899.02 8096.22 2099.67 12298.52 1398.56 13599.51 89
XVG-ACMP-BASELINE94.54 23194.14 22195.75 26696.55 28291.65 28398.11 21698.44 17694.96 13794.22 22597.90 19579.18 31799.11 18394.05 19993.85 23496.48 299
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21898.53 15795.32 11796.80 15498.53 13793.32 10399.72 10994.31 18999.31 10499.02 152
diffmvs97.58 8297.40 8198.13 12098.32 16595.81 16098.06 21998.37 18896.20 7698.74 5398.89 10191.31 14399.25 16598.16 2998.52 13699.34 111
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 22099.71 193.57 20197.09 13698.91 10088.17 20799.89 3596.87 10299.56 8099.81 8
HQP-NCC97.20 24498.05 22096.43 6894.45 210
ACMP_Plane97.20 24498.05 22096.43 6894.45 210
HQP-MVS95.72 16095.40 15596.69 20797.20 24494.25 22698.05 22098.46 17296.43 6894.45 21097.73 21286.75 23798.96 20295.30 15794.18 22396.86 249
MIMVSNet189.67 31088.28 31493.82 31292.81 34691.08 29498.01 22497.45 28987.95 32487.90 33295.87 31867.63 35194.56 35078.73 34888.18 31095.83 320
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22498.89 4694.44 16096.83 15098.68 12290.69 15699.76 10394.36 18599.29 10598.98 156
FMVSNet591.81 29190.92 29494.49 30397.21 24392.09 27298.00 22697.55 28089.31 31790.86 31095.61 32674.48 34295.32 34785.57 32489.70 28796.07 315
CANet_DTU96.96 11496.55 11998.21 11498.17 17896.07 14297.98 22798.21 21397.24 3697.13 13598.93 9786.88 23699.91 3095.00 16699.37 10198.66 179
MVP-Stereo94.28 24893.92 23495.35 27794.95 32892.60 26897.97 22897.65 26991.61 26990.68 31297.09 26086.32 24698.42 25889.70 29399.34 10295.02 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DIV-MVS_2432*160090.38 30489.38 30793.40 31792.85 34588.94 32397.95 22997.94 25690.35 30090.25 31593.96 33879.82 31295.94 34384.62 33276.69 34695.33 326
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22999.58 397.14 4298.44 7399.01 8495.03 7399.62 13197.91 3999.75 3899.50 91
TEST999.31 7098.50 2997.92 23198.73 10892.63 23397.74 11298.68 12296.20 2399.80 80
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 23198.73 10892.98 22297.74 11298.68 12296.20 2399.80 8096.59 11299.57 7599.68 57
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23398.67 12992.57 23798.77 5198.85 10495.93 3899.72 10995.56 15199.69 5299.68 57
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23399.58 397.20 3898.33 7999.00 8595.99 3599.64 12698.05 3599.76 3299.69 51
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23399.06 2293.72 18996.92 14798.06 18288.50 20199.65 12491.77 26199.00 11498.66 179
OpenMVS_ROBcopyleft86.42 2089.00 31487.43 31993.69 31393.08 34489.42 31597.91 23396.89 31878.58 34885.86 33994.69 33269.48 34998.29 28177.13 35093.29 24893.36 347
test_899.29 7898.44 3197.89 23798.72 11092.98 22297.70 11598.66 12596.20 2399.80 80
ab-mvs96.42 13395.71 14698.55 8798.63 14296.75 11397.88 23898.74 10493.84 18196.54 16698.18 17585.34 26299.75 10595.93 13596.35 19699.15 138
jason97.32 9997.08 9398.06 12597.45 22995.59 16497.87 23997.91 25994.79 14398.55 6798.83 10791.12 14699.23 16897.58 6699.60 6899.34 111
jason: jason.
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
xiu_mvs_v1_base97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
test_prior498.01 6297.86 240
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24498.72 11093.16 21797.57 12698.66 12596.14 2699.81 7196.63 11199.56 8099.66 65
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24598.84 6596.12 8197.89 10698.69 12095.96 3699.70 11596.89 9699.60 6899.65 67
test_prior297.80 24596.12 8197.89 10698.69 12095.96 3696.89 9699.60 68
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18598.77 12893.76 23797.79 24798.50 16795.45 10896.94 14499.09 7487.87 21799.55 14296.76 10995.83 21297.74 209
MS-PatchMatch93.84 26793.63 25594.46 30696.18 29789.45 31497.76 24898.27 20692.23 25192.13 29797.49 23279.50 31498.69 23089.75 29199.38 10095.25 327
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 24998.89 4697.71 898.33 7998.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24998.78 9596.89 5198.46 6999.22 4793.90 9999.68 12194.81 17199.52 8799.67 61
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14695.94 15197.71 25198.07 24392.10 25594.79 20197.29 24591.75 13099.56 13794.17 19396.50 19399.58 82
BH-w/o95.38 17795.08 17496.26 24598.34 16291.79 27897.70 25297.43 29192.87 22894.24 22497.22 25088.66 19598.84 21991.55 26597.70 16798.16 199
lupinMVS97.44 9197.22 8898.12 12298.07 18395.76 16197.68 25397.76 26494.50 15798.79 4998.61 12892.34 11399.30 16297.58 6699.59 7199.31 117
原ACMM297.67 254
LF4IMVS93.14 28192.79 27594.20 30995.88 30988.67 32697.66 25597.07 30593.81 18491.71 30297.65 21977.96 32698.81 22391.47 26691.92 26195.12 330
新几何297.64 256
MDA-MVSNet-bldmvs89.97 30888.35 31394.83 29495.21 32591.34 28797.64 25697.51 28388.36 32371.17 35496.13 31479.22 31696.63 33983.65 33486.27 32896.52 292
pmmvs-eth3d90.36 30589.05 31094.32 30891.10 35092.12 27197.63 25896.95 31388.86 32084.91 34393.13 34178.32 32196.74 33488.70 30581.81 33894.09 342
TR-MVS94.94 20794.20 21597.17 17797.75 20194.14 22897.59 25997.02 31092.28 25095.75 18597.64 22183.88 28898.96 20289.77 29096.15 20798.40 190
无先验97.58 26098.72 11091.38 27499.87 4493.36 21799.60 78
旧先验297.57 26191.30 28098.67 5899.80 8095.70 148
CostFormer94.95 20594.73 18995.60 27097.28 23889.06 32097.53 26296.89 31889.66 31296.82 15296.72 29286.05 25098.95 20695.53 15296.13 20898.79 168
XVG-OURS96.55 12996.41 12396.99 18698.75 12993.76 23797.50 26398.52 15995.67 9796.83 15099.30 3888.95 19199.53 14395.88 13796.26 20397.69 212
xiu_mvs_v2_base97.66 7597.70 6397.56 16098.61 14495.46 17197.44 26498.46 17297.15 4198.65 6298.15 17694.33 9199.80 8097.84 4798.66 13197.41 216
tpm94.13 25693.80 24395.12 28396.50 28587.91 33697.44 26495.89 33492.62 23496.37 17496.30 30784.13 28398.30 27893.24 22091.66 26499.14 140
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24399.00 11089.54 31397.43 26698.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2699.77 2699.72 40
test22299.23 9397.17 9897.40 26798.66 13288.68 32198.05 8798.96 9394.14 9499.53 8599.61 75
pmmvs494.69 21793.99 23196.81 19995.74 31295.94 15197.40 26797.67 26890.42 29893.37 26097.59 22589.08 18498.20 28692.97 22991.67 26396.30 309
test0.0.03 194.08 26193.51 26095.80 26395.53 31992.89 26697.38 26995.97 33195.11 12992.51 28896.66 29487.71 21996.94 33187.03 31593.67 23697.57 214
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26999.65 292.34 24597.61 12398.20 17389.29 17799.10 18696.97 8997.60 17099.77 20
Effi-MVS+97.12 10996.69 11398.39 10498.19 17496.72 11497.37 27198.43 17993.71 19097.65 12098.02 18492.20 12099.25 16596.87 10297.79 16299.19 132
N_pmnet87.12 31887.77 31785.17 33595.46 32161.92 36097.37 27170.66 36585.83 33688.73 32996.04 31685.33 26397.76 31680.02 34290.48 27895.84 319
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27398.57 14893.33 20996.67 15797.57 22794.30 9299.56 13791.05 27298.59 13399.47 98
PMMVS96.60 12596.33 12697.41 16697.90 19493.93 23297.35 27498.41 18192.84 22997.76 11097.45 23691.10 14899.20 17196.26 12497.91 15799.11 143
PS-MVSNAJ97.73 7197.77 6097.62 15698.68 13895.58 16597.34 27598.51 16297.29 2998.66 6197.88 19894.51 8599.90 3397.87 4399.17 10997.39 218
SCA95.46 17095.13 17196.46 23397.67 20791.29 29197.33 27697.60 27394.68 14896.92 14797.10 25683.97 28698.89 21392.59 23998.32 14899.20 129
testdata197.32 27796.34 72
ET-MVSNet_ETH3D94.13 25692.98 27197.58 15898.22 17096.20 13797.31 27895.37 33794.53 15479.56 34897.63 22386.51 24097.53 32296.91 9390.74 27699.02 152
tpm294.19 25293.76 24895.46 27497.23 24189.04 32197.31 27896.85 32187.08 32896.21 17796.79 29083.75 29298.74 22892.43 24796.23 20598.59 183
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 28099.26 893.13 21897.94 10198.21 17292.74 10999.81 7196.88 9999.40 9999.27 124
CLD-MVS95.62 16695.34 16196.46 23397.52 22293.75 23997.27 28198.46 17295.53 10394.42 21598.00 18786.21 24798.97 19996.25 12594.37 21796.66 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPMVS94.99 20194.48 20096.52 22697.22 24291.75 28097.23 28291.66 35694.11 16697.28 13096.81 28985.70 25598.84 21993.04 22797.28 17598.97 157
miper_lstm_enhance94.33 24394.07 22495.11 28497.75 20190.97 29597.22 28398.03 25091.67 26792.76 27896.97 27690.03 16697.78 31592.51 24489.64 28896.56 284
YYNet190.70 30389.39 30694.62 30094.79 33190.65 30197.20 28497.46 28787.54 32672.54 35295.74 31986.51 24096.66 33886.00 32186.76 32796.54 287
MDA-MVSNet_test_wron90.71 30289.38 30794.68 29894.83 33090.78 29997.19 28597.46 28787.60 32572.41 35395.72 32286.51 24096.71 33785.92 32286.80 32696.56 284
IterMVS-SCA-FT94.11 25893.87 23894.85 29297.98 19190.56 30397.18 28698.11 23393.75 18592.58 28497.48 23383.97 28697.41 32492.48 24691.30 26896.58 280
IterMVS94.09 26093.85 24094.80 29597.99 18990.35 30597.18 28698.12 23193.68 19592.46 29197.34 24184.05 28497.41 32492.51 24491.33 26796.62 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28898.35 19194.85 14297.93 10398.58 13395.07 7299.71 11492.60 23799.34 10299.43 106
cl_fuxian94.79 21494.43 20695.89 26097.75 20193.12 26397.16 28998.03 25092.23 25193.46 25897.05 26891.39 13998.01 30193.58 21289.21 29796.53 289
new-patchmatchnet88.50 31587.45 31891.67 32890.31 35285.89 34397.16 28997.33 29589.47 31483.63 34592.77 34276.38 33495.06 34982.70 33677.29 34594.06 343
UnsupCasMVSNet_eth90.99 30089.92 30394.19 31094.08 33789.83 30897.13 29198.67 12993.69 19385.83 34096.19 31375.15 33996.74 33489.14 30279.41 34396.00 316
IB-MVS91.98 1793.27 27691.97 28797.19 17597.47 22493.41 25297.09 29295.99 33093.32 21092.47 29095.73 32078.06 32599.53 14394.59 17982.98 33498.62 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl-mvsnet_94.51 23494.01 22896.02 25297.58 21493.40 25397.05 29397.96 25591.73 26592.76 27897.08 26289.06 18598.13 29192.61 23690.29 28196.52 292
cl-mvsnet194.52 23394.03 22595.99 25397.57 21893.38 25497.05 29397.94 25691.74 26392.81 27697.10 25689.12 18298.07 29792.60 23790.30 28096.53 289
miper_ehance_all_eth95.01 19994.69 19195.97 25597.70 20693.31 25697.02 29598.07 24392.23 25193.51 25596.96 27891.85 12898.15 28993.68 20791.16 27196.44 302
CMPMVSbinary66.06 2189.70 30989.67 30589.78 33093.19 34376.56 35397.00 29698.35 19180.97 34681.57 34797.75 21174.75 34198.61 23889.85 28993.63 23894.17 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpmrst95.63 16595.69 14895.44 27597.54 21988.54 32896.97 29797.56 27593.50 20397.52 12896.93 28289.49 17199.16 17495.25 16196.42 19598.64 181
dp94.15 25593.90 23694.90 29097.31 23786.82 34296.97 29797.19 30291.22 28596.02 18196.61 29985.51 25899.02 19790.00 28894.30 21898.85 164
cl-mvsnet294.68 21994.19 21696.13 25098.11 18193.60 24496.94 29998.31 19792.43 24293.32 26296.87 28686.51 24098.28 28394.10 19791.16 27196.51 295
PM-MVS87.77 31686.55 32091.40 32991.03 35183.36 34896.92 30095.18 34091.28 28286.48 33893.42 34053.27 35696.74 33489.43 29981.97 33794.11 341
TinyColmap92.31 28991.53 29094.65 29996.92 26289.75 30996.92 30096.68 32590.45 29789.62 32097.85 20276.06 33698.81 22386.74 31692.51 25595.41 325
our_test_393.65 27093.30 26694.69 29795.45 32289.68 31296.91 30297.65 26991.97 25891.66 30396.88 28489.67 17097.93 30888.02 31091.49 26596.48 299
test-LLR95.10 19594.87 18495.80 26396.77 27089.70 31096.91 30295.21 33895.11 12994.83 19995.72 32287.71 21998.97 19993.06 22598.50 13898.72 171
TESTMET0.1,194.18 25493.69 25395.63 26996.92 26289.12 31996.91 30294.78 34393.17 21694.88 19696.45 30378.52 32098.92 20893.09 22498.50 13898.85 164
test-mter94.08 26193.51 26095.80 26396.77 27089.70 31096.91 30295.21 33892.89 22794.83 19995.72 32277.69 32798.97 19993.06 22598.50 13898.72 171
USDC93.33 27592.71 27695.21 28096.83 26990.83 29796.91 30297.50 28493.84 18190.72 31198.14 17777.69 32798.82 22289.51 29793.21 24995.97 317
MDTV_nov1_ep13_2view84.26 34596.89 30790.97 29097.90 10589.89 16893.91 20199.18 136
ppachtmachnet_test93.22 27892.63 27894.97 28895.45 32290.84 29696.88 30897.88 26090.60 29392.08 29897.26 24688.08 21197.86 31485.12 32890.33 27996.22 310
tpmvs94.60 22594.36 20995.33 27897.46 22588.60 32796.88 30897.68 26791.29 28193.80 24596.42 30588.58 19699.24 16791.06 27096.04 21098.17 198
MDTV_nov1_ep1395.40 15597.48 22388.34 33196.85 31097.29 29793.74 18797.48 12997.26 24689.18 18099.05 19091.92 25897.43 173
PatchmatchNetpermissive95.71 16195.52 15396.29 24497.58 21490.72 30096.84 31197.52 28294.06 16897.08 13796.96 27889.24 17998.90 21292.03 25598.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MSDG95.93 15195.30 16697.83 13698.90 11795.36 17496.83 31298.37 18891.32 27994.43 21498.73 11890.27 16399.60 13290.05 28698.82 12498.52 186
thisisatest051595.61 16894.89 18397.76 14398.15 17995.15 18396.77 31394.41 34692.95 22497.18 13497.43 23884.78 27099.45 15394.63 17497.73 16698.68 176
GA-MVS94.81 21394.03 22597.14 17897.15 25093.86 23496.76 31497.58 27494.00 17394.76 20297.04 26980.91 30598.48 25091.79 26096.25 20499.09 145
tpm cat193.36 27292.80 27495.07 28697.58 21487.97 33596.76 31497.86 26182.17 34593.53 25296.04 31686.13 24899.13 17989.24 30195.87 21198.10 200
eth_miper_zixun_eth94.68 21994.41 20795.47 27397.64 20991.71 28296.73 31698.07 24392.71 23293.64 24897.21 25190.54 15898.17 28893.38 21589.76 28696.54 287
test_post196.68 31730.43 36387.85 21898.69 23092.59 239
pmmvs386.67 31984.86 32292.11 32788.16 35387.19 34196.63 31894.75 34479.88 34787.22 33492.75 34366.56 35295.20 34881.24 34076.56 34793.96 344
miper_enhance_ethall95.10 19594.75 18896.12 25197.53 22193.73 24196.61 31998.08 24192.20 25493.89 23996.65 29692.44 11298.30 27894.21 19291.16 27196.34 305
testmvs21.48 33224.95 33511.09 34614.89 3666.47 36896.56 3209.87 3677.55 36217.93 36239.02 3609.43 3695.90 36416.56 36212.72 36120.91 359
test12320.95 33323.72 33612.64 34513.54 3678.19 36796.55 3216.13 3687.48 36316.74 36337.98 36112.97 3666.05 36316.69 3615.43 36223.68 358
CL-MVSNet_2432*160090.11 30689.14 30993.02 32291.86 34888.23 33396.51 32298.07 24390.49 29490.49 31494.41 33384.75 27195.34 34680.79 34174.95 34895.50 324
GG-mvs-BLEND96.59 21796.34 29294.98 19296.51 32288.58 36093.10 27194.34 33780.34 31198.05 29989.53 29696.99 17996.74 260
new_pmnet90.06 30789.00 31193.22 32194.18 33588.32 33296.42 32496.89 31886.19 33285.67 34193.62 33977.18 33297.10 32881.61 33989.29 29694.23 339
PVSNet91.96 1896.35 13596.15 13296.96 19099.17 9892.05 27496.08 32598.68 12193.69 19397.75 11197.80 20988.86 19299.69 12094.26 19199.01 11399.15 138
ADS-MVSNet294.58 22894.40 20895.11 28498.00 18788.74 32596.04 32697.30 29690.15 30296.47 17096.64 29787.89 21597.56 32190.08 28497.06 17799.02 152
ADS-MVSNet95.00 20094.45 20496.63 21298.00 18791.91 27696.04 32697.74 26690.15 30296.47 17096.64 29787.89 21598.96 20290.08 28497.06 17799.02 152
PAPM94.95 20594.00 22997.78 14197.04 25695.65 16396.03 32898.25 21191.23 28494.19 22797.80 20991.27 14498.86 21882.61 33797.61 16998.84 166
cascas94.63 22493.86 23996.93 19296.91 26494.27 22496.00 32998.51 16285.55 33894.54 20696.23 31084.20 28298.87 21695.80 14196.98 18097.66 213
gg-mvs-nofinetune92.21 29090.58 29797.13 17996.75 27395.09 18695.85 33089.40 35985.43 33994.50 20881.98 35380.80 30898.40 27192.16 24998.33 14797.88 204
FPMVS77.62 32377.14 32379.05 33879.25 35960.97 36195.79 33195.94 33265.96 35367.93 35594.40 33437.73 36188.88 35668.83 35388.46 30687.29 350
CHOSEN 280x42097.18 10697.18 8997.20 17498.81 12693.27 25795.78 33299.15 1895.25 12196.79 15598.11 17992.29 11599.07 18998.56 899.85 399.25 126
bset_n11_16_dypcd94.89 20994.27 21296.76 20194.41 33495.15 18395.67 33395.64 33695.53 10394.65 20397.52 23187.10 23098.29 28196.58 11491.35 26696.83 252
MIMVSNet93.26 27792.21 28496.41 23697.73 20593.13 26295.65 33497.03 30891.27 28394.04 23496.06 31575.33 33897.19 32786.56 31796.23 20598.92 162
KD-MVS_2432*160089.61 31187.96 31594.54 30194.06 33891.59 28495.59 33597.63 27189.87 30888.95 32694.38 33578.28 32296.82 33284.83 32968.05 35295.21 328
miper_refine_blended89.61 31187.96 31594.54 30194.06 33891.59 28495.59 33597.63 27189.87 30888.95 32694.38 33578.28 32296.82 33284.83 32968.05 35295.21 328
PCF-MVS93.45 1194.68 21993.43 26398.42 10198.62 14396.77 11295.48 33798.20 21584.63 34193.34 26198.32 16288.55 19999.81 7184.80 33198.96 11598.68 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
JIA-IIPM93.35 27392.49 28095.92 25796.48 28790.65 30195.01 33896.96 31285.93 33596.08 17987.33 35087.70 22198.78 22691.35 26795.58 21498.34 193
CR-MVSNet94.76 21694.15 22096.59 21797.00 25793.43 25094.96 33997.56 27592.46 23896.93 14596.24 30888.15 20897.88 31387.38 31396.65 18798.46 188
RPMNet92.81 28491.34 29297.24 17297.00 25793.43 25094.96 33998.80 8782.27 34496.93 14592.12 34686.98 23499.82 6476.32 35196.65 18798.46 188
UnsupCasMVSNet_bld87.17 31785.12 32193.31 31991.94 34788.77 32494.92 34198.30 20384.30 34282.30 34690.04 34763.96 35597.25 32685.85 32374.47 35093.93 345
PVSNet_088.72 1991.28 29690.03 30295.00 28797.99 18987.29 34094.84 34298.50 16792.06 25689.86 31895.19 32779.81 31399.39 15692.27 24869.79 35198.33 194
Patchmatch-test94.42 23993.68 25496.63 21297.60 21291.76 27994.83 34397.49 28689.45 31594.14 22997.10 25688.99 18698.83 22185.37 32798.13 15299.29 122
Patchmtry93.22 27892.35 28295.84 26296.77 27093.09 26494.66 34497.56 27587.37 32792.90 27496.24 30888.15 20897.90 30987.37 31490.10 28396.53 289
PatchT93.06 28291.97 28796.35 24096.69 27692.67 26794.48 34597.08 30486.62 32997.08 13792.23 34587.94 21497.90 30978.89 34796.69 18598.49 187
LCM-MVSNet78.70 32076.24 32586.08 33377.26 36171.99 35794.34 34696.72 32361.62 35576.53 34989.33 34833.91 36392.78 35381.85 33874.60 34993.46 346
PMMVS277.95 32275.44 32685.46 33482.54 35674.95 35594.23 34793.08 35472.80 35274.68 35087.38 34936.36 36291.56 35473.95 35263.94 35489.87 349
MVS-HIRNet89.46 31388.40 31292.64 32397.58 21482.15 35094.16 34893.05 35575.73 35190.90 30982.52 35279.42 31598.33 27383.53 33598.68 12797.43 215
Patchmatch-RL test91.49 29490.85 29593.41 31691.37 34984.40 34492.81 34995.93 33391.87 26187.25 33394.87 33188.99 18696.53 34092.54 24382.00 33699.30 120
ambc89.49 33186.66 35475.78 35492.66 35096.72 32386.55 33792.50 34446.01 35797.90 30990.32 28082.09 33594.80 337
EMVS64.07 32863.26 33166.53 34381.73 35858.81 36491.85 35184.75 36251.93 35959.09 35875.13 35743.32 35979.09 36042.03 35939.47 35761.69 356
E-PMN64.94 32764.25 32967.02 34282.28 35759.36 36391.83 35285.63 36152.69 35760.22 35777.28 35641.06 36080.12 35946.15 35841.14 35661.57 357
ANet_high69.08 32465.37 32880.22 33765.99 36371.96 35890.91 35390.09 35882.62 34349.93 36078.39 35529.36 36481.75 35762.49 35538.52 35886.95 352
tmp_tt68.90 32566.97 32774.68 34050.78 36559.95 36287.13 35483.47 36338.80 36062.21 35696.23 31064.70 35476.91 36188.91 30430.49 35987.19 351
MVEpermissive62.14 2263.28 32959.38 33274.99 33974.33 36265.47 35985.55 35580.50 36452.02 35851.10 35975.00 35810.91 36880.50 35851.60 35753.40 35578.99 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 32663.57 33073.09 34157.90 36451.22 36585.05 35693.93 35354.45 35644.32 36183.57 35113.22 36589.15 35558.68 35681.00 34178.91 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 32176.75 32483.38 33695.54 31880.43 35279.42 35797.40 29364.67 35473.46 35180.82 35445.65 35893.14 35266.32 35487.43 31776.56 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d30.17 33030.18 33430.16 34478.61 36043.29 36666.79 35814.21 36617.31 36114.82 36411.93 36411.55 36741.43 36237.08 36019.30 3605.76 360
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k23.98 33131.98 3330.00 3470.00 3680.00 3690.00 35998.59 1420.00 3640.00 36598.61 12890.60 1570.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.88 33510.50 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36594.51 850.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.20 33410.94 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36598.43 1460.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS99.46 5198.70 1998.79 9293.21 21498.67 5898.97 8795.70 4499.83 5696.07 12899.58 74
IU-MVS99.71 2099.23 698.64 13795.28 11999.63 498.35 2499.81 1099.83 5
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
test_0728_THIRD97.32 2899.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17399.20 129
sam_mvs88.99 186
MTGPAbinary98.74 104
test_post31.83 36288.83 19398.91 209
patchmatchnet-post95.10 32989.42 17498.89 213
gm-plane-assit95.88 30987.47 33889.74 31196.94 28199.19 17293.32 219
test9_res96.39 12299.57 7599.69 51
agg_prior295.87 13899.57 7599.68 57
agg_prior99.30 7598.38 3598.72 11097.57 12699.81 71
TestCases96.99 18699.25 8693.21 26098.18 21991.36 27593.52 25398.77 11484.67 27299.72 10989.70 29397.87 15998.02 202
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
新几何199.16 5099.34 6298.01 6298.69 11890.06 30598.13 8398.95 9594.60 8299.89 3591.97 25799.47 9099.59 80
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21397.81 10898.97 8795.18 6899.83 5693.84 20399.46 9399.50 91
testdata299.89 3591.65 264
segment_acmp96.85 11
testdata98.26 11199.20 9795.36 17498.68 12191.89 26098.60 6599.10 6994.44 9099.82 6494.27 19099.44 9599.58 82
test1299.18 4799.16 9998.19 5298.53 15798.07 8695.13 7099.72 10999.56 8099.63 73
plane_prior797.42 23094.63 207
plane_prior697.35 23594.61 21087.09 231
plane_prior598.56 15099.03 19496.07 12894.27 21996.92 236
plane_prior498.28 165
plane_prior394.61 21097.02 4895.34 187
plane_prior197.37 234
n20.00 369
nn0.00 369
door-mid94.37 347
lessismore_v094.45 30794.93 32988.44 33091.03 35786.77 33697.64 22176.23 33598.42 25890.31 28185.64 33296.51 295
LGP-MVS_train96.47 23097.46 22593.54 24698.54 15594.67 14994.36 21798.77 11485.39 25999.11 18395.71 14694.15 22596.76 258
test1198.66 132
door94.64 345
HQP5-MVS94.25 226
BP-MVS95.30 157
HQP4-MVS94.45 21098.96 20296.87 247
HQP3-MVS98.46 17294.18 223
HQP2-MVS86.75 237
NP-MVS97.28 23894.51 21597.73 212
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80
ITE_SJBPF95.44 27597.42 23091.32 29097.50 28495.09 13293.59 24998.35 15681.70 30098.88 21589.71 29293.39 24596.12 313
DeepMVS_CXcopyleft86.78 33297.09 25472.30 35695.17 34175.92 35084.34 34495.19 32770.58 34895.35 34579.98 34489.04 30092.68 348