CHOSEN 1792x2688 | | | 97.12 107 | 96.80 101 | 98.08 121 | 99.30 71 | 94.56 209 | 98.05 213 | 99.71 1 | 93.57 195 | 97.09 131 | 98.91 96 | 88.17 202 | 99.89 35 | 96.87 98 | 99.56 76 | 99.81 8 |
|
HyFIR lowres test | | | 96.90 115 | 96.49 119 | 98.14 116 | 99.33 61 | 95.56 162 | 97.38 262 | 99.65 2 | 92.34 239 | 97.61 118 | 98.20 168 | 89.29 172 | 99.10 181 | 96.97 85 | 97.60 166 | 99.77 20 |
|
MVS_111021_LR | | | 98.34 46 | 98.23 39 | 98.67 78 | 99.27 79 | 96.90 102 | 97.95 222 | 99.58 3 | 97.14 41 | 98.44 68 | 99.01 81 | 95.03 69 | 99.62 126 | 97.91 38 | 99.75 38 | 99.50 88 |
|
MVS_111021_HR | | | 98.47 36 | 98.34 26 | 98.88 70 | 99.22 90 | 97.32 83 | 97.91 225 | 99.58 3 | 97.20 37 | 98.33 74 | 99.00 82 | 95.99 35 | 99.64 121 | 98.05 35 | 99.76 32 | 99.69 48 |
|
PGM-MVS | | | 98.49 34 | 98.23 39 | 99.27 38 | 99.72 12 | 98.08 58 | 98.99 60 | 99.49 5 | 95.43 104 | 99.03 30 | 99.32 30 | 95.56 46 | 99.94 3 | 96.80 102 | 99.77 26 | 99.78 13 |
|
ACMMP | | | 98.23 52 | 97.95 52 | 99.09 57 | 99.74 7 | 97.62 74 | 99.03 52 | 99.41 6 | 95.98 81 | 97.60 120 | 99.36 26 | 94.45 85 | 99.93 15 | 97.14 79 | 98.85 118 | 99.70 45 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CSCG | | | 97.85 64 | 97.74 59 | 98.20 113 | 99.67 26 | 95.16 177 | 99.22 25 | 99.32 7 | 93.04 213 | 97.02 137 | 98.92 95 | 95.36 57 | 99.91 30 | 97.43 70 | 99.64 60 | 99.52 82 |
|
PVSNet_BlendedMVS | | | 96.73 120 | 96.60 114 | 97.12 175 | 99.25 82 | 95.35 172 | 98.26 187 | 99.26 8 | 94.28 157 | 97.94 96 | 97.46 226 | 92.74 105 | 99.81 66 | 96.88 95 | 93.32 242 | 96.20 305 |
|
PVSNet_Blended | | | 97.38 94 | 97.12 87 | 98.14 116 | 99.25 82 | 95.35 172 | 97.28 273 | 99.26 8 | 93.13 211 | 97.94 96 | 98.21 167 | 92.74 105 | 99.81 66 | 96.88 95 | 99.40 95 | 99.27 121 |
|
UniMVSNet_NR-MVSNet | | | 95.71 158 | 95.15 166 | 97.40 164 | 96.84 261 | 96.97 98 | 98.74 109 | 99.24 10 | 95.16 120 | 93.88 233 | 97.72 207 | 91.68 127 | 98.31 270 | 95.81 133 | 87.25 314 | 96.92 230 |
|
WR-MVS_H | | | 95.05 195 | 94.46 198 | 96.81 194 | 96.86 260 | 95.82 154 | 99.24 20 | 99.24 10 | 93.87 175 | 92.53 279 | 96.84 280 | 90.37 156 | 98.24 278 | 93.24 213 | 87.93 306 | 96.38 298 |
|
FC-MVSNet-test | | | 96.42 131 | 96.05 131 | 97.53 158 | 96.95 253 | 97.27 86 | 99.36 8 | 99.23 12 | 95.83 86 | 93.93 230 | 98.37 149 | 92.00 121 | 98.32 268 | 96.02 127 | 92.72 250 | 97.00 225 |
|
VPA-MVSNet | | | 95.75 156 | 95.11 169 | 97.69 146 | 97.24 233 | 97.27 86 | 98.94 70 | 99.23 12 | 95.13 122 | 95.51 180 | 97.32 235 | 85.73 248 | 98.91 203 | 97.33 75 | 89.55 287 | 96.89 238 |
|
FIs | | | 96.51 128 | 96.12 130 | 97.67 148 | 97.13 244 | 97.54 77 | 99.36 8 | 99.22 14 | 95.89 83 | 94.03 228 | 98.35 151 | 91.98 122 | 98.44 249 | 96.40 116 | 92.76 249 | 97.01 224 |
|
tfpnnormal | | | 93.66 262 | 92.70 270 | 96.55 219 | 96.94 254 | 95.94 146 | 98.97 64 | 99.19 15 | 91.04 282 | 91.38 297 | 97.34 233 | 84.94 260 | 98.61 231 | 85.45 319 | 89.02 296 | 95.11 321 |
|
UniMVSNet (Re) | | | 95.78 155 | 95.19 165 | 97.58 154 | 96.99 252 | 97.47 79 | 98.79 104 | 99.18 16 | 95.60 96 | 93.92 231 | 97.04 261 | 91.68 127 | 98.48 243 | 95.80 135 | 87.66 309 | 96.79 248 |
|
PVSNet_Blended_VisFu | | | 97.70 71 | 97.46 74 | 98.44 96 | 99.27 79 | 95.91 151 | 98.63 133 | 99.16 17 | 94.48 153 | 97.67 112 | 98.88 98 | 92.80 104 | 99.91 30 | 97.11 80 | 99.12 106 | 99.50 88 |
|
CHOSEN 280x420 | | | 97.18 104 | 97.18 86 | 97.20 169 | 98.81 120 | 93.27 250 | 95.78 324 | 99.15 18 | 95.25 116 | 96.79 150 | 98.11 174 | 92.29 111 | 99.07 184 | 98.56 8 | 99.85 3 | 99.25 123 |
|
D2MVS | | | 95.18 188 | 95.08 170 | 95.48 267 | 97.10 246 | 92.07 266 | 98.30 181 | 99.13 19 | 94.02 166 | 92.90 267 | 96.73 283 | 89.48 167 | 98.73 223 | 94.48 177 | 93.60 236 | 95.65 317 |
|
PHI-MVS | | | 98.34 46 | 98.06 46 | 99.18 47 | 99.15 97 | 98.12 57 | 99.04 50 | 99.09 20 | 93.32 204 | 98.83 45 | 99.10 66 | 96.54 16 | 99.83 55 | 97.70 54 | 99.76 32 | 99.59 77 |
|
UA-Net | | | 97.96 56 | 97.62 61 | 98.98 63 | 98.86 116 | 97.47 79 | 98.89 78 | 99.08 21 | 96.67 58 | 98.72 53 | 99.54 1 | 93.15 101 | 99.81 66 | 94.87 162 | 98.83 119 | 99.65 64 |
|
PatchMatch-RL | | | 96.59 125 | 96.03 133 | 98.27 107 | 99.31 66 | 96.51 119 | 97.91 225 | 99.06 22 | 93.72 183 | 96.92 142 | 98.06 177 | 88.50 196 | 99.65 119 | 91.77 254 | 99.00 110 | 98.66 175 |
|
3Dnovator | | 94.51 5 | 97.46 85 | 96.93 97 | 99.07 58 | 97.78 193 | 97.64 72 | 99.35 10 | 99.06 22 | 97.02 47 | 93.75 240 | 99.16 58 | 89.25 173 | 99.92 21 | 97.22 77 | 99.75 38 | 99.64 67 |
|
MSLP-MVS++ | | | 98.56 28 | 98.57 8 | 98.55 85 | 99.26 81 | 96.80 105 | 98.71 118 | 99.05 24 | 97.28 29 | 98.84 43 | 99.28 37 | 96.47 18 | 99.40 150 | 98.52 13 | 99.70 51 | 99.47 95 |
|
PS-CasMVS | | | 94.67 217 | 93.99 226 | 96.71 198 | 96.68 270 | 95.26 175 | 99.13 39 | 99.03 25 | 93.68 189 | 92.33 285 | 97.95 185 | 85.35 254 | 98.10 286 | 93.59 204 | 88.16 305 | 96.79 248 |
|
TranMVSNet+NR-MVSNet | | | 95.14 190 | 94.48 196 | 97.11 176 | 96.45 281 | 96.36 126 | 99.03 52 | 99.03 25 | 95.04 128 | 93.58 243 | 97.93 187 | 88.27 199 | 98.03 293 | 94.13 187 | 86.90 319 | 96.95 229 |
|
PEN-MVS | | | 94.42 233 | 93.73 244 | 96.49 223 | 96.28 287 | 94.84 193 | 99.17 33 | 99.00 27 | 93.51 196 | 92.23 287 | 97.83 199 | 86.10 243 | 97.90 302 | 92.55 235 | 86.92 318 | 96.74 254 |
|
Vis-MVSNet | | | 97.42 91 | 97.11 88 | 98.34 104 | 98.66 133 | 96.23 131 | 99.22 25 | 99.00 27 | 96.63 60 | 98.04 84 | 99.21 45 | 88.05 207 | 99.35 154 | 96.01 128 | 99.21 102 | 99.45 101 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DU-MVS | | | 95.42 171 | 94.76 183 | 97.40 164 | 96.53 276 | 96.97 98 | 98.66 131 | 98.99 29 | 95.43 104 | 93.88 233 | 97.69 208 | 88.57 192 | 98.31 270 | 95.81 133 | 87.25 314 | 96.92 230 |
|
VPNet | | | 94.99 198 | 94.19 211 | 97.40 164 | 97.16 242 | 96.57 116 | 98.71 118 | 98.97 30 | 95.67 93 | 94.84 191 | 98.24 166 | 80.36 301 | 98.67 228 | 96.46 112 | 87.32 313 | 96.96 227 |
|
OpenMVS | | 93.04 13 | 95.83 153 | 95.00 173 | 98.32 105 | 97.18 241 | 97.32 83 | 99.21 28 | 98.97 30 | 89.96 297 | 91.14 299 | 99.05 76 | 86.64 233 | 99.92 21 | 93.38 208 | 99.47 86 | 97.73 205 |
|
HFP-MVS | | | 98.63 16 | 98.40 18 | 99.32 28 | 99.72 12 | 98.29 45 | 99.23 21 | 98.96 32 | 96.10 79 | 98.94 36 | 99.17 53 | 96.06 30 | 99.92 21 | 97.62 58 | 99.78 23 | 99.75 28 |
|
#test# | | | 98.54 31 | 98.27 33 | 99.32 28 | 99.72 12 | 98.29 45 | 98.98 63 | 98.96 32 | 95.65 95 | 98.94 36 | 99.17 53 | 96.06 30 | 99.92 21 | 97.21 78 | 99.78 23 | 99.75 28 |
|
ACMMPR | | | 98.59 20 | 98.36 22 | 99.29 31 | 99.74 7 | 98.15 55 | 99.23 21 | 98.95 34 | 96.10 79 | 98.93 40 | 99.19 52 | 95.70 44 | 99.94 3 | 97.62 58 | 99.79 19 | 99.78 13 |
|
CP-MVSNet | | | 94.94 204 | 94.30 207 | 96.83 193 | 96.72 268 | 95.56 162 | 99.11 42 | 98.95 34 | 93.89 173 | 92.42 284 | 97.90 189 | 87.19 224 | 98.12 285 | 94.32 181 | 88.21 303 | 96.82 247 |
|
NR-MVSNet | | | 94.98 200 | 94.16 214 | 97.44 160 | 96.53 276 | 97.22 91 | 98.74 109 | 98.95 34 | 94.96 132 | 89.25 313 | 97.69 208 | 89.32 171 | 98.18 280 | 94.59 173 | 87.40 312 | 96.92 230 |
|
region2R | | | 98.61 17 | 98.38 20 | 99.29 31 | 99.74 7 | 98.16 54 | 99.23 21 | 98.93 37 | 96.15 74 | 98.94 36 | 99.17 53 | 95.91 39 | 99.94 3 | 97.55 66 | 99.79 19 | 99.78 13 |
|
APDe-MVS | | | 99.02 3 | 98.84 2 | 99.55 6 | 99.57 33 | 98.96 12 | 99.39 5 | 98.93 37 | 97.38 24 | 99.41 11 | 99.54 1 | 96.66 13 | 99.84 52 | 98.86 1 | 99.85 3 | 99.87 1 |
|
VNet | | | 97.79 67 | 97.40 78 | 98.96 65 | 98.88 114 | 97.55 76 | 98.63 133 | 98.93 37 | 96.74 55 | 99.02 31 | 98.84 102 | 90.33 158 | 99.83 55 | 98.53 9 | 96.66 182 | 99.50 88 |
|
UGNet | | | 96.78 119 | 96.30 124 | 98.19 115 | 98.24 161 | 95.89 153 | 98.88 81 | 98.93 37 | 97.39 23 | 96.81 148 | 97.84 196 | 82.60 287 | 99.90 33 | 96.53 110 | 99.49 84 | 98.79 164 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
sss | | | 97.39 93 | 96.98 96 | 98.61 81 | 98.60 139 | 96.61 113 | 98.22 189 | 98.93 37 | 93.97 170 | 98.01 90 | 98.48 137 | 91.98 122 | 99.85 49 | 96.45 113 | 98.15 147 | 99.39 105 |
|
QAPM | | | 96.29 135 | 95.40 151 | 98.96 65 | 97.85 190 | 97.60 75 | 99.23 21 | 98.93 37 | 89.76 299 | 93.11 263 | 99.02 77 | 89.11 178 | 99.93 15 | 91.99 249 | 99.62 63 | 99.34 108 |
|
DPE-MVS | | | 98.92 4 | 98.67 6 | 99.65 2 | 99.58 32 | 99.20 7 | 98.42 165 | 98.91 43 | 97.58 14 | 99.54 7 | 99.46 9 | 97.10 9 | 99.94 3 | 97.64 57 | 99.84 8 | 99.83 5 |
|
114514_t | | | 96.93 113 | 96.27 125 | 98.92 67 | 99.50 40 | 97.63 73 | 98.85 86 | 98.90 44 | 84.80 328 | 97.77 104 | 99.11 64 | 92.84 103 | 99.66 118 | 94.85 163 | 99.77 26 | 99.47 95 |
|
LS3D | | | 97.16 105 | 96.66 113 | 98.68 77 | 98.53 143 | 97.19 92 | 98.93 71 | 98.90 44 | 92.83 224 | 95.99 177 | 99.37 22 | 92.12 118 | 99.87 44 | 93.67 202 | 99.57 71 | 98.97 153 |
|
DELS-MVS | | | 98.40 40 | 98.20 41 | 98.99 61 | 99.00 105 | 97.66 71 | 97.75 241 | 98.89 46 | 97.71 8 | 98.33 74 | 98.97 84 | 94.97 70 | 99.88 43 | 98.42 20 | 99.76 32 | 99.42 104 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DP-MVS Recon | | | 97.86 63 | 97.46 74 | 99.06 59 | 99.53 36 | 98.35 42 | 98.33 173 | 98.89 46 | 92.62 228 | 98.05 82 | 98.94 92 | 95.34 58 | 99.65 119 | 96.04 126 | 99.42 92 | 99.19 129 |
|
AdaColmap | | | 97.15 106 | 96.70 109 | 98.48 93 | 99.16 95 | 96.69 110 | 98.01 217 | 98.89 46 | 94.44 155 | 96.83 145 | 98.68 117 | 90.69 152 | 99.76 98 | 94.36 179 | 99.29 101 | 98.98 152 |
|
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 64 | 98.88 49 | | | | | 99.94 3 | 98.47 15 | 99.81 10 | 99.84 4 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 48 | 98.88 49 | 97.62 11 | 99.56 5 | 99.50 4 | 97.42 6 | | | | |
|
DVP-MVS | | | 98.74 8 | 98.55 10 | 99.29 31 | 99.75 3 | 98.23 48 | 99.26 18 | 98.88 49 | 97.52 15 | 99.41 11 | 98.78 108 | 96.00 34 | 99.79 87 | 97.79 47 | 99.59 68 | 99.85 2 |
|
Anonymous20231211 | | | 94.10 253 | 93.26 261 | 96.61 208 | 99.11 100 | 94.28 217 | 99.01 56 | 98.88 49 | 86.43 319 | 92.81 269 | 97.57 220 | 81.66 292 | 98.68 227 | 94.83 164 | 89.02 296 | 96.88 239 |
|
XVS | | | 98.70 9 | 98.49 16 | 99.34 23 | 99.70 23 | 98.35 42 | 99.29 14 | 98.88 49 | 97.40 21 | 98.46 64 | 99.20 49 | 95.90 40 | 99.89 35 | 97.85 43 | 99.74 41 | 99.78 13 |
|
X-MVStestdata | | | 94.06 257 | 92.30 276 | 99.34 23 | 99.70 23 | 98.35 42 | 99.29 14 | 98.88 49 | 97.40 21 | 98.46 64 | 43.50 347 | 95.90 40 | 99.89 35 | 97.85 43 | 99.74 41 | 99.78 13 |
|
SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 3 | 99.71 20 | 99.24 4 | 99.02 54 | 98.87 55 | 97.65 9 | 99.73 1 | 99.48 6 | 97.53 4 | 99.94 3 | 98.43 18 | 99.81 10 | 99.70 45 |
|
test_241102_TWO | | | | | | | | | 98.87 55 | 97.65 9 | 99.53 8 | 99.48 6 | 97.34 8 | 99.94 3 | 98.43 18 | 99.80 17 | 99.83 5 |
|
test_241102_ONE | | | | | | 99.71 20 | 99.24 4 | | 98.87 55 | 97.62 11 | 99.73 1 | 99.39 14 | 97.53 4 | 99.74 102 | | | |
|
CP-MVS | | | 98.57 26 | 98.36 22 | 99.19 43 | 99.66 27 | 97.86 66 | 99.34 11 | 98.87 55 | 95.96 82 | 98.60 60 | 99.13 61 | 96.05 32 | 99.94 3 | 97.77 48 | 99.86 1 | 99.77 20 |
|
SteuartSystems-ACMMP | | | 98.90 5 | 98.75 4 | 99.36 21 | 99.22 90 | 98.43 32 | 99.10 43 | 98.87 55 | 97.38 24 | 99.35 14 | 99.40 13 | 97.78 3 | 99.87 44 | 97.77 48 | 99.85 3 | 99.78 13 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepPCF-MVS | | 96.37 2 | 97.93 61 | 98.48 17 | 96.30 238 | 99.00 105 | 89.54 304 | 97.43 259 | 98.87 55 | 98.16 2 | 99.26 18 | 99.38 21 | 96.12 28 | 99.64 121 | 98.30 26 | 99.77 26 | 99.72 39 |
|
ZNCC-MVS | | | 98.49 34 | 98.20 41 | 99.35 22 | 99.73 11 | 98.39 33 | 99.19 31 | 98.86 61 | 95.77 88 | 98.31 76 | 99.10 66 | 95.46 50 | 99.93 15 | 97.57 65 | 99.81 10 | 99.74 33 |
|
testtj | | | 98.33 48 | 97.95 52 | 99.47 11 | 99.49 44 | 98.70 19 | 98.83 90 | 98.86 61 | 95.48 101 | 98.91 42 | 99.17 53 | 95.48 49 | 99.93 15 | 95.80 135 | 99.53 81 | 99.76 26 |
|
DTE-MVSNet | | | 93.98 259 | 93.26 261 | 96.14 244 | 96.06 296 | 94.39 214 | 99.20 29 | 98.86 61 | 93.06 212 | 91.78 293 | 97.81 201 | 85.87 247 | 97.58 314 | 90.53 271 | 86.17 323 | 96.46 295 |
|
SD-MVS | | | 98.64 14 | 98.68 5 | 98.53 89 | 99.33 61 | 98.36 41 | 98.90 74 | 98.85 64 | 97.28 29 | 99.72 3 | 99.39 14 | 96.63 15 | 97.60 313 | 98.17 28 | 99.85 3 | 99.64 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ETH3D-3000-0.1 | | | 98.35 44 | 98.00 50 | 99.38 17 | 99.47 45 | 98.68 20 | 98.67 128 | 98.84 65 | 94.66 146 | 99.11 26 | 99.25 40 | 95.46 50 | 99.81 66 | 96.80 102 | 99.73 43 | 99.63 70 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 98.84 65 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test_prior3 | | | 98.22 53 | 97.90 55 | 99.19 43 | 99.31 66 | 98.22 49 | 97.80 237 | 98.84 65 | 96.12 77 | 97.89 101 | 98.69 115 | 95.96 36 | 99.70 110 | 96.89 92 | 99.60 65 | 99.65 64 |
|
test_prior | | | | | 99.19 43 | 99.31 66 | 98.22 49 | | 98.84 65 | | | | | 99.70 110 | | | 99.65 64 |
|
Anonymous20240529 | | | 95.10 192 | 94.22 209 | 97.75 140 | 99.01 104 | 94.26 219 | 98.87 83 | 98.83 69 | 85.79 325 | 96.64 153 | 98.97 84 | 78.73 309 | 99.85 49 | 96.27 118 | 94.89 212 | 99.12 139 |
|
9.14 | | | | 98.06 46 | | 99.47 45 | | 98.71 118 | 98.82 70 | 94.36 156 | 99.16 24 | 99.29 36 | 96.05 32 | 99.81 66 | 97.00 83 | 99.71 50 | |
|
SR-MVS | | | 98.57 26 | 98.35 24 | 99.24 40 | 99.53 36 | 98.18 52 | 99.09 44 | 98.82 70 | 96.58 61 | 99.10 27 | 99.32 30 | 95.39 54 | 99.82 62 | 97.70 54 | 99.63 61 | 99.72 39 |
|
GST-MVS | | | 98.43 38 | 98.12 44 | 99.34 23 | 99.72 12 | 98.38 34 | 99.09 44 | 98.82 70 | 95.71 91 | 98.73 52 | 99.06 75 | 95.27 60 | 99.93 15 | 97.07 82 | 99.63 61 | 99.72 39 |
|
abl_6 | | | 98.30 51 | 98.03 48 | 99.13 53 | 99.56 34 | 97.76 70 | 99.13 39 | 98.82 70 | 96.14 75 | 99.26 18 | 99.37 22 | 93.33 98 | 99.93 15 | 96.96 87 | 99.67 54 | 99.69 48 |
|
HPM-MVS_fast | | | 98.38 41 | 98.13 43 | 99.12 55 | 99.75 3 | 97.86 66 | 99.44 4 | 98.82 70 | 94.46 154 | 98.94 36 | 99.20 49 | 95.16 65 | 99.74 102 | 97.58 62 | 99.85 3 | 99.77 20 |
|
APD-MVS | | | 98.35 44 | 98.00 50 | 99.42 15 | 99.51 38 | 98.72 17 | 98.80 100 | 98.82 70 | 94.52 151 | 99.23 20 | 99.25 40 | 95.54 48 | 99.80 75 | 96.52 111 | 99.77 26 | 99.74 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SF-MVS | | | 98.59 20 | 98.32 30 | 99.41 16 | 99.54 35 | 98.71 18 | 99.04 50 | 98.81 76 | 95.12 123 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 52 | 97.72 51 | 99.73 43 | 99.67 58 |
|
ETH3 D test6400 | | | 97.59 79 | 97.01 93 | 99.34 23 | 99.40 55 | 98.56 24 | 98.20 193 | 98.81 76 | 91.63 261 | 98.44 68 | 98.85 100 | 93.98 94 | 99.82 62 | 94.11 189 | 99.69 52 | 99.64 67 |
|
MVS_0304 | | | 92.81 278 | 92.01 279 | 95.23 274 | 97.46 218 | 91.33 280 | 98.17 202 | 98.81 76 | 91.13 281 | 93.80 238 | 95.68 317 | 66.08 340 | 98.06 291 | 90.79 267 | 96.13 204 | 96.32 302 |
|
ACMMP_NAP | | | 98.61 17 | 98.30 31 | 99.55 6 | 99.62 30 | 98.95 13 | 98.82 93 | 98.81 76 | 95.80 87 | 99.16 24 | 99.47 8 | 95.37 56 | 99.92 21 | 97.89 41 | 99.75 38 | 99.79 10 |
|
Regformer-2 | | | 98.69 11 | 98.52 12 | 99.19 43 | 99.35 56 | 98.01 61 | 98.37 169 | 98.81 76 | 97.48 18 | 99.21 21 | 99.21 45 | 96.13 27 | 99.80 75 | 98.40 22 | 99.73 43 | 99.75 28 |
|
APD-MVS_3200maxsize | | | 98.53 32 | 98.33 29 | 99.15 52 | 99.50 40 | 97.92 65 | 99.15 35 | 98.81 76 | 96.24 70 | 99.20 22 | 99.37 22 | 95.30 59 | 99.80 75 | 97.73 50 | 99.67 54 | 99.72 39 |
|
WR-MVS | | | 95.15 189 | 94.46 198 | 97.22 168 | 96.67 271 | 96.45 121 | 98.21 190 | 98.81 76 | 94.15 160 | 93.16 259 | 97.69 208 | 87.51 218 | 98.30 272 | 95.29 154 | 88.62 300 | 96.90 237 |
|
mPP-MVS | | | 98.51 33 | 98.26 34 | 99.25 39 | 99.75 3 | 98.04 59 | 99.28 16 | 98.81 76 | 96.24 70 | 98.35 73 | 99.23 42 | 95.46 50 | 99.94 3 | 97.42 71 | 99.81 10 | 99.77 20 |
|
CNVR-MVS | | | 98.78 6 | 98.56 9 | 99.45 14 | 99.32 64 | 98.87 15 | 98.47 157 | 98.81 76 | 97.72 6 | 98.76 49 | 99.16 58 | 97.05 10 | 99.78 91 | 98.06 33 | 99.66 57 | 99.69 48 |
|
CPTT-MVS | | | 97.72 70 | 97.32 81 | 98.92 67 | 99.64 28 | 97.10 95 | 99.12 41 | 98.81 76 | 92.34 239 | 98.09 80 | 99.08 73 | 93.01 102 | 99.92 21 | 96.06 125 | 99.77 26 | 99.75 28 |
|
SMA-MVS | | | 98.58 23 | 98.25 35 | 99.56 5 | 99.51 38 | 99.04 11 | 98.95 68 | 98.80 86 | 93.67 191 | 99.37 13 | 99.52 3 | 96.52 17 | 99.89 35 | 98.06 33 | 99.81 10 | 99.76 26 |
|
HPM-MVS | | | 98.36 43 | 98.10 45 | 99.13 53 | 99.74 7 | 97.82 68 | 99.53 1 | 98.80 86 | 94.63 147 | 98.61 59 | 98.97 84 | 95.13 66 | 99.77 96 | 97.65 56 | 99.83 9 | 99.79 10 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
Regformer-4 | | | 98.64 14 | 98.53 11 | 98.99 61 | 99.43 53 | 97.37 82 | 98.40 167 | 98.79 88 | 97.46 19 | 99.09 28 | 99.31 32 | 95.86 42 | 99.80 75 | 98.64 3 | 99.76 32 | 99.79 10 |
|
MP-MVS | | | 98.33 48 | 98.01 49 | 99.28 35 | 99.75 3 | 98.18 52 | 99.22 25 | 98.79 88 | 96.13 76 | 97.92 99 | 99.23 42 | 94.54 80 | 99.94 3 | 96.74 106 | 99.78 23 | 99.73 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CANet | | | 98.05 54 | 97.76 58 | 98.90 69 | 98.73 124 | 97.27 86 | 98.35 171 | 98.78 90 | 97.37 26 | 97.72 109 | 98.96 89 | 91.53 134 | 99.92 21 | 98.79 2 | 99.65 58 | 99.51 86 |
|
MP-MVS-pluss | | | 98.31 50 | 97.92 54 | 99.49 9 | 99.72 12 | 98.88 14 | 98.43 163 | 98.78 90 | 94.10 162 | 97.69 111 | 99.42 12 | 95.25 62 | 99.92 21 | 98.09 32 | 99.80 17 | 99.67 58 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DeepC-MVS_fast | | 96.70 1 | 98.55 29 | 98.34 26 | 99.18 47 | 99.25 82 | 98.04 59 | 98.50 154 | 98.78 90 | 97.72 6 | 98.92 41 | 99.28 37 | 95.27 60 | 99.82 62 | 97.55 66 | 99.77 26 | 99.69 48 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MG-MVS | | | 97.81 65 | 97.60 63 | 98.44 96 | 99.12 99 | 95.97 143 | 97.75 241 | 98.78 90 | 96.89 50 | 98.46 64 | 99.22 44 | 93.90 95 | 99.68 116 | 94.81 166 | 99.52 83 | 99.67 58 |
|
Regformer-1 | | | 98.66 12 | 98.51 13 | 99.12 55 | 99.35 56 | 97.81 69 | 98.37 169 | 98.76 94 | 97.49 17 | 99.20 22 | 99.21 45 | 96.08 29 | 99.79 87 | 98.42 20 | 99.73 43 | 99.75 28 |
|
NCCC | | | 98.61 17 | 98.35 24 | 99.38 17 | 99.28 78 | 98.61 23 | 98.45 158 | 98.76 94 | 97.82 5 | 98.45 67 | 98.93 93 | 96.65 14 | 99.83 55 | 97.38 73 | 99.41 93 | 99.71 43 |
|
PLC | | 95.07 4 | 97.20 103 | 96.78 104 | 98.44 96 | 99.29 74 | 96.31 130 | 98.14 204 | 98.76 94 | 92.41 237 | 96.39 168 | 98.31 158 | 94.92 72 | 99.78 91 | 94.06 191 | 98.77 122 | 99.23 124 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DeepC-MVS | | 95.98 3 | 97.88 62 | 97.58 64 | 98.77 73 | 99.25 82 | 96.93 100 | 98.83 90 | 98.75 97 | 96.96 49 | 96.89 144 | 99.50 4 | 90.46 155 | 99.87 44 | 97.84 45 | 99.76 32 | 99.52 82 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
zzz-MVS | | | 98.55 29 | 98.25 35 | 99.46 12 | 99.76 1 | 98.64 21 | 98.55 147 | 98.74 98 | 97.27 33 | 98.02 86 | 99.39 14 | 94.81 73 | 99.96 1 | 97.91 38 | 99.79 19 | 99.77 20 |
|
MTGPA | | | | | | | | | 98.74 98 | | | | | | | | |
|
MTAPA | | | 98.58 23 | 98.29 32 | 99.46 12 | 99.76 1 | 98.64 21 | 98.90 74 | 98.74 98 | 97.27 33 | 98.02 86 | 99.39 14 | 94.81 73 | 99.96 1 | 97.91 38 | 99.79 19 | 99.77 20 |
|
ab-mvs | | | 96.42 131 | 95.71 143 | 98.55 85 | 98.63 136 | 96.75 108 | 97.88 230 | 98.74 98 | 93.84 176 | 96.54 161 | 98.18 170 | 85.34 255 | 99.75 100 | 95.93 129 | 96.35 192 | 99.15 135 |
|
TEST9 | | | | | | 99.31 66 | 98.50 28 | 97.92 223 | 98.73 102 | 92.63 227 | 97.74 107 | 98.68 117 | 96.20 23 | 99.80 75 | | | |
|
train_agg | | | 97.97 55 | 97.52 69 | 99.33 27 | 99.31 66 | 98.50 28 | 97.92 223 | 98.73 102 | 92.98 216 | 97.74 107 | 98.68 117 | 96.20 23 | 99.80 75 | 96.59 108 | 99.57 71 | 99.68 54 |
|
test_8 | | | | | | 99.29 74 | 98.44 30 | 97.89 229 | 98.72 104 | 92.98 216 | 97.70 110 | 98.66 120 | 96.20 23 | 99.80 75 | | | |
|
agg_prior1 | | | 97.95 59 | 97.51 71 | 99.28 35 | 99.30 71 | 98.38 34 | 97.81 236 | 98.72 104 | 93.16 210 | 97.57 121 | 98.66 120 | 96.14 26 | 99.81 66 | 96.63 107 | 99.56 76 | 99.66 62 |
|
agg_prior | | | | | | 99.30 71 | 98.38 34 | | 98.72 104 | | 97.57 121 | | | 99.81 66 | | | |
|
无先验 | | | | | | | | 97.58 253 | 98.72 104 | 91.38 267 | | | | 99.87 44 | 93.36 210 | | 99.60 75 |
|
save fliter | | | | | | 99.46 48 | 98.38 34 | 98.21 190 | 98.71 108 | 97.95 3 | | | | | | | |
|
WTY-MVS | | | 97.37 95 | 96.92 98 | 98.72 75 | 98.86 116 | 96.89 104 | 98.31 179 | 98.71 108 | 95.26 115 | 97.67 112 | 98.56 131 | 92.21 115 | 99.78 91 | 95.89 130 | 96.85 177 | 99.48 93 |
|
3Dnovator+ | | 94.38 6 | 97.43 90 | 96.78 104 | 99.38 17 | 97.83 191 | 98.52 26 | 99.37 7 | 98.71 108 | 97.09 45 | 92.99 266 | 99.13 61 | 89.36 170 | 99.89 35 | 96.97 85 | 99.57 71 | 99.71 43 |
|
旧先验1 | | | | | | 99.29 74 | 97.48 78 | | 98.70 111 | | | 99.09 71 | 95.56 46 | | | 99.47 86 | 99.61 72 |
|
EI-MVSNet-Vis-set | | | 98.47 36 | 98.39 19 | 98.69 76 | 99.46 48 | 96.49 120 | 98.30 181 | 98.69 112 | 97.21 36 | 98.84 43 | 99.36 26 | 95.41 53 | 99.78 91 | 98.62 5 | 99.65 58 | 99.80 9 |
|
新几何1 | | | | | 99.16 50 | 99.34 58 | 98.01 61 | | 98.69 112 | 90.06 296 | 98.13 78 | 98.95 91 | 94.60 78 | 99.89 35 | 91.97 250 | 99.47 86 | 99.59 77 |
|
API-MVS | | | 97.41 92 | 97.25 83 | 97.91 130 | 98.70 129 | 96.80 105 | 98.82 93 | 98.69 112 | 94.53 149 | 98.11 79 | 98.28 160 | 94.50 84 | 99.57 130 | 94.12 188 | 99.49 84 | 97.37 215 |
|
ETH3D cwj APD-0.16 | | | 97.96 56 | 97.52 69 | 99.29 31 | 99.05 101 | 98.52 26 | 98.33 173 | 98.68 115 | 93.18 208 | 98.68 54 | 99.13 61 | 94.62 77 | 99.83 55 | 96.45 113 | 99.55 79 | 99.52 82 |
|
EI-MVSNet-UG-set | | | 98.41 39 | 98.34 26 | 98.61 81 | 99.45 51 | 96.32 128 | 98.28 184 | 98.68 115 | 97.17 39 | 98.74 50 | 99.37 22 | 95.25 62 | 99.79 87 | 98.57 7 | 99.54 80 | 99.73 36 |
|
Regformer-3 | | | 98.59 20 | 98.50 14 | 98.86 71 | 99.43 53 | 97.05 96 | 98.40 167 | 98.68 115 | 97.43 20 | 99.06 29 | 99.31 32 | 95.80 43 | 99.77 96 | 98.62 5 | 99.76 32 | 99.78 13 |
|
testdata | | | | | 98.26 109 | 99.20 93 | 95.36 170 | | 98.68 115 | 91.89 253 | 98.60 60 | 99.10 66 | 94.44 86 | 99.82 62 | 94.27 183 | 99.44 91 | 99.58 79 |
|
1121 | | | 97.37 95 | 96.77 108 | 99.16 50 | 99.34 58 | 97.99 64 | 98.19 197 | 98.68 115 | 90.14 295 | 98.01 90 | 98.97 84 | 94.80 75 | 99.87 44 | 93.36 210 | 99.46 89 | 99.61 72 |
|
MCST-MVS | | | 98.65 13 | 98.37 21 | 99.48 10 | 99.60 31 | 98.87 15 | 98.41 166 | 98.68 115 | 97.04 46 | 98.52 63 | 98.80 106 | 96.78 12 | 99.83 55 | 97.93 37 | 99.61 64 | 99.74 33 |
|
PVSNet | | 91.96 18 | 96.35 133 | 96.15 129 | 96.96 185 | 99.17 94 | 92.05 267 | 96.08 317 | 98.68 115 | 93.69 187 | 97.75 106 | 97.80 202 | 88.86 187 | 99.69 115 | 94.26 184 | 99.01 109 | 99.15 135 |
|
MAR-MVS | | | 96.91 114 | 96.40 121 | 98.45 95 | 98.69 131 | 96.90 102 | 98.66 131 | 98.68 115 | 92.40 238 | 97.07 134 | 97.96 184 | 91.54 133 | 99.75 100 | 93.68 200 | 98.92 112 | 98.69 171 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
原ACMM1 | | | | | 98.65 79 | 99.32 64 | 96.62 111 | | 98.67 123 | 93.27 207 | 97.81 103 | 98.97 84 | 95.18 64 | 99.83 55 | 93.84 196 | 99.46 89 | 99.50 88 |
|
CDPH-MVS | | | 97.94 60 | 97.49 72 | 99.28 35 | 99.47 45 | 98.44 30 | 97.91 225 | 98.67 123 | 92.57 231 | 98.77 48 | 98.85 100 | 95.93 38 | 99.72 104 | 95.56 145 | 99.69 52 | 99.68 54 |
|
UnsupCasMVSNet_eth | | | 90.99 293 | 89.92 295 | 94.19 303 | 94.08 329 | 89.83 299 | 97.13 284 | 98.67 123 | 93.69 187 | 85.83 327 | 96.19 305 | 75.15 326 | 96.74 325 | 89.14 295 | 79.41 335 | 96.00 310 |
|
TSAR-MVS + MP. | | | 98.78 6 | 98.62 7 | 99.24 40 | 99.69 25 | 98.28 47 | 99.14 36 | 98.66 126 | 96.84 51 | 99.56 5 | 99.31 32 | 96.34 19 | 99.70 110 | 98.32 25 | 99.73 43 | 99.73 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ | | | 98.58 23 | 98.25 35 | 99.55 6 | 99.50 40 | 99.08 9 | 98.72 117 | 98.66 126 | 97.51 16 | 98.15 77 | 98.83 103 | 95.70 44 | 99.92 21 | 97.53 68 | 99.67 54 | 99.66 62 |
|
test222 | | | | | | 99.23 89 | 97.17 93 | 97.40 260 | 98.66 126 | 88.68 310 | 98.05 82 | 98.96 89 | 94.14 90 | | | 99.53 81 | 99.61 72 |
|
test11 | | | | | | | | | 98.66 126 | | | | | | | | |
|
XXY-MVS | | | 95.20 187 | 94.45 200 | 97.46 159 | 96.75 266 | 96.56 117 | 98.86 85 | 98.65 130 | 93.30 206 | 93.27 256 | 98.27 163 | 84.85 262 | 98.87 210 | 94.82 165 | 91.26 266 | 96.96 227 |
|
IU-MVS | | | | | | 99.71 20 | 99.23 6 | | 98.64 131 | 95.28 114 | 99.63 4 | | | | 98.35 24 | 99.81 10 | 99.83 5 |
|
TAPA-MVS | | 93.98 7 | 95.35 178 | 94.56 192 | 97.74 141 | 99.13 98 | 94.83 195 | 98.33 173 | 98.64 131 | 86.62 317 | 96.29 170 | 98.61 123 | 94.00 93 | 99.29 158 | 80.00 331 | 99.41 93 | 99.09 141 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
F-COLMAP | | | 97.09 109 | 96.80 101 | 97.97 127 | 99.45 51 | 94.95 190 | 98.55 147 | 98.62 133 | 93.02 214 | 96.17 173 | 98.58 128 | 94.01 92 | 99.81 66 | 93.95 193 | 98.90 113 | 99.14 137 |
|
EIA-MVS | | | 97.75 68 | 97.58 64 | 98.27 107 | 98.38 149 | 96.44 122 | 99.01 56 | 98.60 134 | 95.88 84 | 97.26 126 | 97.53 223 | 94.97 70 | 99.33 156 | 97.38 73 | 99.20 103 | 99.05 146 |
|
PAPM_NR | | | 97.46 85 | 97.11 88 | 98.50 91 | 99.50 40 | 96.41 124 | 98.63 133 | 98.60 134 | 95.18 119 | 97.06 135 | 98.06 177 | 94.26 89 | 99.57 130 | 93.80 198 | 98.87 117 | 99.52 82 |
|
cdsmvs_eth3d_5k | | | 23.98 321 | 31.98 322 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 98.59 136 | 0.00 352 | 0.00 353 | 98.61 123 | 90.60 153 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
1314 | | | 96.25 139 | 95.73 139 | 97.79 136 | 97.13 244 | 95.55 164 | 98.19 197 | 98.59 136 | 93.47 198 | 92.03 291 | 97.82 200 | 91.33 138 | 99.49 141 | 94.62 170 | 98.44 137 | 98.32 191 |
|
CVMVSNet | | | 95.43 170 | 96.04 132 | 93.57 307 | 97.93 185 | 83.62 334 | 98.12 207 | 98.59 136 | 95.68 92 | 96.56 157 | 99.02 77 | 87.51 218 | 97.51 317 | 93.56 206 | 97.44 168 | 99.60 75 |
|
OMC-MVS | | | 97.55 83 | 97.34 80 | 98.20 113 | 99.33 61 | 95.92 150 | 98.28 184 | 98.59 136 | 95.52 100 | 97.97 93 | 99.10 66 | 93.28 100 | 99.49 141 | 95.09 159 | 98.88 115 | 99.19 129 |
|
LTVRE_ROB | | 92.95 15 | 94.60 220 | 93.90 231 | 96.68 202 | 97.41 226 | 94.42 212 | 98.52 149 | 98.59 136 | 91.69 259 | 91.21 298 | 98.35 151 | 84.87 261 | 99.04 188 | 91.06 263 | 93.44 240 | 96.60 272 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MSP-MVS | | | 99.03 2 | 98.83 3 | 99.63 3 | 99.72 12 | 99.25 2 | 98.97 64 | 98.58 141 | 97.62 11 | 99.45 9 | 99.46 9 | 97.42 6 | 99.94 3 | 98.47 15 | 99.81 10 | 99.69 48 |
|
UniMVSNet_ETH3D | | | 94.24 243 | 93.33 258 | 96.97 184 | 97.19 240 | 93.38 247 | 98.74 109 | 98.57 142 | 91.21 279 | 93.81 237 | 98.58 128 | 72.85 334 | 98.77 221 | 95.05 160 | 93.93 229 | 98.77 166 |
|
PAPR | | | 96.84 117 | 96.24 127 | 98.65 79 | 98.72 128 | 96.92 101 | 97.36 266 | 98.57 142 | 93.33 203 | 96.67 152 | 97.57 220 | 94.30 88 | 99.56 132 | 91.05 265 | 98.59 129 | 99.47 95 |
|
HQP_MVS | | | 96.14 140 | 95.90 136 | 96.85 192 | 97.42 223 | 94.60 207 | 98.80 100 | 98.56 144 | 97.28 29 | 95.34 181 | 98.28 160 | 87.09 225 | 99.03 189 | 96.07 123 | 94.27 215 | 96.92 230 |
|
plane_prior5 | | | | | | | | | 98.56 144 | | | | | 99.03 189 | 96.07 123 | 94.27 215 | 96.92 230 |
|
ETV-MVS | | | 97.96 56 | 97.81 56 | 98.40 101 | 98.42 147 | 97.27 86 | 98.73 113 | 98.55 146 | 96.84 51 | 98.38 71 | 97.44 229 | 95.39 54 | 99.35 154 | 97.62 58 | 98.89 114 | 98.58 181 |
|
CS-MVS | | | 97.81 65 | 97.61 62 | 98.41 100 | 98.52 144 | 97.15 94 | 99.09 44 | 98.55 146 | 96.18 73 | 97.61 118 | 97.20 244 | 94.59 79 | 99.39 151 | 97.62 58 | 99.10 107 | 98.70 169 |
|
mvs_tets | | | 95.41 173 | 95.00 173 | 96.65 203 | 95.58 310 | 94.42 212 | 99.00 58 | 98.55 146 | 95.73 90 | 93.21 258 | 98.38 148 | 83.45 285 | 98.63 230 | 97.09 81 | 94.00 226 | 96.91 235 |
|
LPG-MVS_test | | | 95.62 163 | 95.34 157 | 96.47 225 | 97.46 218 | 93.54 240 | 98.99 60 | 98.54 149 | 94.67 144 | 94.36 210 | 98.77 110 | 85.39 252 | 99.11 178 | 95.71 140 | 94.15 221 | 96.76 252 |
|
LGP-MVS_train | | | | | 96.47 225 | 97.46 218 | 93.54 240 | | 98.54 149 | 94.67 144 | 94.36 210 | 98.77 110 | 85.39 252 | 99.11 178 | 95.71 140 | 94.15 221 | 96.76 252 |
|
test12 | | | | | 99.18 47 | 99.16 95 | 98.19 51 | | 98.53 151 | | 98.07 81 | | 95.13 66 | 99.72 104 | | 99.56 76 | 99.63 70 |
|
CNLPA | | | 97.45 88 | 97.03 92 | 98.73 74 | 99.05 101 | 97.44 81 | 98.07 211 | 98.53 151 | 95.32 112 | 96.80 149 | 98.53 132 | 93.32 99 | 99.72 104 | 94.31 182 | 99.31 100 | 99.02 148 |
|
xxxxxxxxxxxxxcwj | | | 98.70 9 | 98.50 14 | 99.30 30 | 99.46 48 | 98.38 34 | 98.21 190 | 98.52 153 | 97.95 3 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 52 | 97.72 51 | 99.73 43 | 99.67 58 |
|
jajsoiax | | | 95.45 169 | 95.03 172 | 96.73 197 | 95.42 317 | 94.63 202 | 99.14 36 | 98.52 153 | 95.74 89 | 93.22 257 | 98.36 150 | 83.87 281 | 98.65 229 | 96.95 88 | 94.04 224 | 96.91 235 |
|
XVG-OURS | | | 96.55 127 | 96.41 120 | 96.99 181 | 98.75 123 | 93.76 231 | 97.50 256 | 98.52 153 | 95.67 93 | 96.83 145 | 99.30 35 | 88.95 186 | 99.53 138 | 95.88 131 | 96.26 199 | 97.69 207 |
|
xiu_mvs_v1_base_debu | | | 97.60 76 | 97.56 66 | 97.72 142 | 98.35 151 | 95.98 138 | 97.86 232 | 98.51 156 | 97.13 42 | 99.01 32 | 98.40 145 | 91.56 130 | 99.80 75 | 98.53 9 | 98.68 123 | 97.37 215 |
|
xiu_mvs_v1_base | | | 97.60 76 | 97.56 66 | 97.72 142 | 98.35 151 | 95.98 138 | 97.86 232 | 98.51 156 | 97.13 42 | 99.01 32 | 98.40 145 | 91.56 130 | 99.80 75 | 98.53 9 | 98.68 123 | 97.37 215 |
|
xiu_mvs_v1_base_debi | | | 97.60 76 | 97.56 66 | 97.72 142 | 98.35 151 | 95.98 138 | 97.86 232 | 98.51 156 | 97.13 42 | 99.01 32 | 98.40 145 | 91.56 130 | 99.80 75 | 98.53 9 | 98.68 123 | 97.37 215 |
|
PS-MVSNAJ | | | 97.73 69 | 97.77 57 | 97.62 152 | 98.68 132 | 95.58 160 | 97.34 268 | 98.51 156 | 97.29 28 | 98.66 56 | 97.88 191 | 94.51 81 | 99.90 33 | 97.87 42 | 99.17 105 | 97.39 213 |
|
cascas | | | 94.63 219 | 93.86 234 | 96.93 188 | 96.91 257 | 94.27 218 | 96.00 321 | 98.51 156 | 85.55 326 | 94.54 199 | 96.23 302 | 84.20 274 | 98.87 210 | 95.80 135 | 96.98 176 | 97.66 208 |
|
PS-MVSNAJss | | | 96.43 130 | 96.26 126 | 96.92 190 | 95.84 304 | 95.08 182 | 99.16 34 | 98.50 161 | 95.87 85 | 93.84 236 | 98.34 155 | 94.51 81 | 98.61 231 | 96.88 95 | 93.45 239 | 97.06 222 |
|
MVS | | | 94.67 217 | 93.54 252 | 98.08 121 | 96.88 259 | 96.56 117 | 98.19 197 | 98.50 161 | 78.05 337 | 92.69 274 | 98.02 179 | 91.07 145 | 99.63 124 | 90.09 276 | 98.36 142 | 98.04 196 |
|
XVG-OURS-SEG-HR | | | 96.51 128 | 96.34 122 | 97.02 180 | 98.77 122 | 93.76 231 | 97.79 239 | 98.50 161 | 95.45 103 | 96.94 139 | 99.09 71 | 87.87 212 | 99.55 137 | 96.76 105 | 95.83 208 | 97.74 204 |
|
PVSNet_0 | | 88.72 19 | 91.28 290 | 90.03 294 | 95.00 282 | 97.99 182 | 87.29 328 | 94.84 331 | 98.50 161 | 92.06 249 | 89.86 308 | 95.19 319 | 79.81 303 | 99.39 151 | 92.27 241 | 69.79 341 | 98.33 190 |
|
ACMH | | 92.88 16 | 94.55 225 | 93.95 228 | 96.34 236 | 97.63 203 | 93.26 251 | 98.81 99 | 98.49 165 | 93.43 200 | 89.74 309 | 98.53 132 | 81.91 290 | 99.08 183 | 93.69 199 | 93.30 243 | 96.70 261 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
xiu_mvs_v2_base | | | 97.66 73 | 97.70 60 | 97.56 156 | 98.61 138 | 95.46 167 | 97.44 257 | 98.46 166 | 97.15 40 | 98.65 57 | 98.15 171 | 94.33 87 | 99.80 75 | 97.84 45 | 98.66 127 | 97.41 211 |
|
HQP3-MVS | | | | | | | | | 98.46 166 | | | | | | | 94.18 219 | |
|
HQP-MVS | | | 95.72 157 | 95.40 151 | 96.69 201 | 97.20 237 | 94.25 220 | 98.05 213 | 98.46 166 | 96.43 64 | 94.45 203 | 97.73 205 | 86.75 231 | 98.96 196 | 95.30 152 | 94.18 219 | 96.86 243 |
|
CLD-MVS | | | 95.62 163 | 95.34 157 | 96.46 228 | 97.52 215 | 93.75 233 | 97.27 274 | 98.46 166 | 95.53 99 | 94.42 208 | 98.00 182 | 86.21 241 | 98.97 193 | 96.25 120 | 94.37 213 | 96.66 267 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
XVG-ACMP-BASELINE | | | 94.54 226 | 94.14 216 | 95.75 261 | 96.55 275 | 91.65 276 | 98.11 209 | 98.44 170 | 94.96 132 | 94.22 218 | 97.90 189 | 79.18 307 | 99.11 178 | 94.05 192 | 93.85 230 | 96.48 293 |
|
ACMP | | 93.49 10 | 95.34 179 | 94.98 175 | 96.43 230 | 97.67 200 | 93.48 242 | 98.73 113 | 98.44 170 | 94.94 135 | 92.53 279 | 98.53 132 | 84.50 268 | 99.14 173 | 95.48 148 | 94.00 226 | 96.66 267 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMM | | 93.85 9 | 95.69 160 | 95.38 155 | 96.61 208 | 97.61 204 | 93.84 229 | 98.91 73 | 98.44 170 | 95.25 116 | 94.28 214 | 98.47 138 | 86.04 246 | 99.12 175 | 95.50 147 | 93.95 228 | 96.87 241 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Effi-MVS+ | | | 97.12 107 | 96.69 110 | 98.39 102 | 98.19 167 | 96.72 109 | 97.37 264 | 98.43 173 | 93.71 184 | 97.65 115 | 98.02 179 | 92.20 116 | 99.25 160 | 96.87 98 | 97.79 158 | 99.19 129 |
|
RRT_test8_iter05 | | | 94.56 224 | 94.19 211 | 95.67 263 | 97.60 205 | 91.34 278 | 98.93 71 | 98.42 174 | 94.75 139 | 93.39 252 | 97.87 192 | 79.00 308 | 98.61 231 | 96.78 104 | 90.99 270 | 97.07 221 |
|
anonymousdsp | | | 95.42 171 | 94.91 178 | 96.94 187 | 95.10 319 | 95.90 152 | 99.14 36 | 98.41 175 | 93.75 179 | 93.16 259 | 97.46 226 | 87.50 220 | 98.41 259 | 95.63 144 | 94.03 225 | 96.50 291 |
|
PMMVS | | | 96.60 123 | 96.33 123 | 97.41 162 | 97.90 187 | 93.93 226 | 97.35 267 | 98.41 175 | 92.84 223 | 97.76 105 | 97.45 228 | 91.10 144 | 99.20 166 | 96.26 119 | 97.91 153 | 99.11 140 |
|
MVSFormer | | | 97.57 81 | 97.49 72 | 97.84 133 | 98.07 176 | 95.76 156 | 99.47 2 | 98.40 177 | 94.98 130 | 98.79 46 | 98.83 103 | 92.34 109 | 98.41 259 | 96.91 89 | 99.59 68 | 99.34 108 |
|
test_djsdf | | | 96.00 145 | 95.69 145 | 96.93 188 | 95.72 306 | 95.49 166 | 99.47 2 | 98.40 177 | 94.98 130 | 94.58 198 | 97.86 193 | 89.16 176 | 98.41 259 | 96.91 89 | 94.12 223 | 96.88 239 |
|
OPM-MVS | | | 95.69 160 | 95.33 159 | 96.76 196 | 96.16 293 | 94.63 202 | 98.43 163 | 98.39 179 | 96.64 59 | 95.02 187 | 98.78 108 | 85.15 257 | 99.05 185 | 95.21 158 | 94.20 218 | 96.60 272 |
|
canonicalmvs | | | 97.67 72 | 97.23 84 | 98.98 63 | 98.70 129 | 98.38 34 | 99.34 11 | 98.39 179 | 96.76 54 | 97.67 112 | 97.40 232 | 92.26 112 | 99.49 141 | 98.28 27 | 96.28 198 | 99.08 144 |
|
DP-MVS | | | 96.59 125 | 95.93 135 | 98.57 83 | 99.34 58 | 96.19 134 | 98.70 122 | 98.39 179 | 89.45 304 | 94.52 200 | 99.35 28 | 91.85 124 | 99.85 49 | 92.89 226 | 98.88 115 | 99.68 54 |
|
diffmvs | | | 97.58 80 | 97.40 78 | 98.13 118 | 98.32 158 | 95.81 155 | 98.06 212 | 98.37 182 | 96.20 72 | 98.74 50 | 98.89 97 | 91.31 139 | 99.25 160 | 98.16 29 | 98.52 132 | 99.34 108 |
|
ACMH+ | | 92.99 14 | 94.30 239 | 93.77 240 | 95.88 256 | 97.81 192 | 92.04 268 | 98.71 118 | 98.37 182 | 93.99 169 | 90.60 305 | 98.47 138 | 80.86 298 | 99.05 185 | 92.75 228 | 92.40 252 | 96.55 280 |
|
MSDG | | | 95.93 148 | 95.30 162 | 97.83 134 | 98.90 112 | 95.36 170 | 96.83 305 | 98.37 182 | 91.32 272 | 94.43 207 | 98.73 114 | 90.27 159 | 99.60 127 | 90.05 279 | 98.82 120 | 98.52 182 |
|
DPM-MVS | | | 97.55 83 | 96.99 95 | 99.23 42 | 99.04 103 | 98.55 25 | 97.17 281 | 98.35 185 | 94.85 137 | 97.93 98 | 98.58 128 | 95.07 68 | 99.71 109 | 92.60 230 | 99.34 98 | 99.43 103 |
|
CMPMVS | | 66.06 21 | 89.70 301 | 89.67 297 | 89.78 320 | 93.19 332 | 76.56 341 | 97.00 289 | 98.35 185 | 80.97 334 | 81.57 334 | 97.75 204 | 74.75 328 | 98.61 231 | 89.85 282 | 93.63 234 | 94.17 329 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
v7n | | | 94.19 246 | 93.43 256 | 96.47 225 | 95.90 301 | 94.38 215 | 99.26 18 | 98.34 187 | 91.99 250 | 92.76 271 | 97.13 247 | 88.31 198 | 98.52 241 | 89.48 291 | 87.70 308 | 96.52 286 |
|
CDS-MVSNet | | | 96.99 111 | 96.69 110 | 97.90 131 | 98.05 179 | 95.98 138 | 98.20 193 | 98.33 188 | 93.67 191 | 96.95 138 | 98.49 136 | 93.54 96 | 98.42 252 | 95.24 157 | 97.74 161 | 99.31 114 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
casdiffmvs | | | 97.63 75 | 97.41 77 | 98.28 106 | 98.33 156 | 96.14 135 | 98.82 93 | 98.32 189 | 96.38 67 | 97.95 94 | 99.21 45 | 91.23 141 | 99.23 163 | 98.12 30 | 98.37 140 | 99.48 93 |
|
baseline | | | 97.64 74 | 97.44 76 | 98.25 110 | 98.35 151 | 96.20 132 | 99.00 58 | 98.32 189 | 96.33 69 | 98.03 85 | 99.17 53 | 91.35 137 | 99.16 169 | 98.10 31 | 98.29 145 | 99.39 105 |
|
cl-mvsnet2 | | | 94.68 214 | 94.19 211 | 96.13 245 | 98.11 174 | 93.60 238 | 96.94 292 | 98.31 191 | 92.43 236 | 93.32 255 | 96.87 278 | 86.51 234 | 98.28 276 | 94.10 190 | 91.16 267 | 96.51 289 |
|
test_yl | | | 97.22 100 | 96.78 104 | 98.54 87 | 98.73 124 | 96.60 114 | 98.45 158 | 98.31 191 | 94.70 140 | 98.02 86 | 98.42 143 | 90.80 149 | 99.70 110 | 96.81 100 | 96.79 179 | 99.34 108 |
|
DCV-MVSNet | | | 97.22 100 | 96.78 104 | 98.54 87 | 98.73 124 | 96.60 114 | 98.45 158 | 98.31 191 | 94.70 140 | 98.02 86 | 98.42 143 | 90.80 149 | 99.70 110 | 96.81 100 | 96.79 179 | 99.34 108 |
|
nrg030 | | | 96.28 137 | 95.72 140 | 97.96 129 | 96.90 258 | 98.15 55 | 99.39 5 | 98.31 191 | 95.47 102 | 94.42 208 | 98.35 151 | 92.09 119 | 98.69 224 | 97.50 69 | 89.05 294 | 97.04 223 |
|
TAMVS | | | 97.02 110 | 96.79 103 | 97.70 145 | 98.06 178 | 95.31 174 | 98.52 149 | 98.31 191 | 93.95 171 | 97.05 136 | 98.61 123 | 93.49 97 | 98.52 241 | 95.33 151 | 97.81 157 | 99.29 119 |
|
EPP-MVSNet | | | 97.46 85 | 97.28 82 | 97.99 126 | 98.64 135 | 95.38 169 | 99.33 13 | 98.31 191 | 93.61 194 | 97.19 128 | 99.07 74 | 94.05 91 | 99.23 163 | 96.89 92 | 98.43 139 | 99.37 107 |
|
UnsupCasMVSNet_bld | | | 87.17 307 | 85.12 310 | 93.31 310 | 91.94 335 | 88.77 314 | 94.92 330 | 98.30 197 | 84.30 330 | 82.30 333 | 90.04 335 | 63.96 342 | 97.25 320 | 85.85 316 | 74.47 340 | 93.93 334 |
|
Vis-MVSNet (Re-imp) | | | 96.87 116 | 96.55 116 | 97.83 134 | 98.73 124 | 95.46 167 | 99.20 29 | 98.30 197 | 94.96 132 | 96.60 156 | 98.87 99 | 90.05 161 | 98.59 235 | 93.67 202 | 98.60 128 | 99.46 99 |
|
TSAR-MVS + GP. | | | 98.38 41 | 98.24 38 | 98.81 72 | 99.22 90 | 97.25 90 | 98.11 209 | 98.29 199 | 97.19 38 | 98.99 35 | 99.02 77 | 96.22 20 | 99.67 117 | 98.52 13 | 98.56 131 | 99.51 86 |
|
MS-PatchMatch | | | 93.84 261 | 93.63 248 | 94.46 299 | 96.18 290 | 89.45 305 | 97.76 240 | 98.27 200 | 92.23 244 | 92.13 289 | 97.49 224 | 79.50 304 | 98.69 224 | 89.75 284 | 99.38 96 | 95.25 319 |
|
EI-MVSNet | | | 95.96 146 | 95.83 138 | 96.36 234 | 97.93 185 | 93.70 237 | 98.12 207 | 98.27 200 | 93.70 186 | 95.07 185 | 99.02 77 | 92.23 114 | 98.54 239 | 94.68 167 | 93.46 237 | 96.84 244 |
|
MVSTER | | | 96.06 142 | 95.72 140 | 97.08 178 | 98.23 162 | 95.93 149 | 98.73 113 | 98.27 200 | 94.86 136 | 95.07 185 | 98.09 175 | 88.21 200 | 98.54 239 | 96.59 108 | 93.46 237 | 96.79 248 |
|
FMVSNet2 | | | 94.47 231 | 93.61 249 | 97.04 179 | 98.21 164 | 96.43 123 | 98.79 104 | 98.27 200 | 92.46 232 | 93.50 249 | 97.09 252 | 81.16 293 | 98.00 296 | 91.09 261 | 91.93 257 | 96.70 261 |
|
FMVSNet3 | | | 94.97 201 | 94.26 208 | 97.11 176 | 98.18 169 | 96.62 111 | 98.56 145 | 98.26 204 | 93.67 191 | 94.09 224 | 97.10 248 | 84.25 271 | 98.01 294 | 92.08 244 | 92.14 253 | 96.70 261 |
|
Fast-Effi-MVS+ | | | 96.28 137 | 95.70 144 | 98.03 124 | 98.29 160 | 95.97 143 | 98.58 139 | 98.25 205 | 91.74 256 | 95.29 184 | 97.23 241 | 91.03 146 | 99.15 172 | 92.90 224 | 97.96 152 | 98.97 153 |
|
PAPM | | | 94.95 202 | 94.00 224 | 97.78 137 | 97.04 249 | 95.65 158 | 96.03 320 | 98.25 205 | 91.23 277 | 94.19 220 | 97.80 202 | 91.27 140 | 98.86 212 | 82.61 326 | 97.61 165 | 98.84 162 |
|
CANet_DTU | | | 96.96 112 | 96.55 116 | 98.21 112 | 98.17 171 | 96.07 137 | 97.98 220 | 98.21 207 | 97.24 35 | 97.13 130 | 98.93 93 | 86.88 230 | 99.91 30 | 95.00 161 | 99.37 97 | 98.66 175 |
|
HY-MVS | | 93.96 8 | 96.82 118 | 96.23 128 | 98.57 83 | 98.46 146 | 97.00 97 | 98.14 204 | 98.21 207 | 93.95 171 | 96.72 151 | 97.99 183 | 91.58 129 | 99.76 98 | 94.51 176 | 96.54 187 | 98.95 156 |
|
PCF-MVS | | 93.45 11 | 94.68 214 | 93.43 256 | 98.42 99 | 98.62 137 | 96.77 107 | 95.48 326 | 98.20 209 | 84.63 329 | 93.34 254 | 98.32 157 | 88.55 194 | 99.81 66 | 84.80 322 | 98.96 111 | 98.68 172 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
v8 | | | 94.47 231 | 93.77 240 | 96.57 215 | 96.36 284 | 94.83 195 | 99.05 49 | 98.19 210 | 91.92 252 | 93.16 259 | 96.97 268 | 88.82 189 | 98.48 243 | 91.69 256 | 87.79 307 | 96.39 297 |
|
v10 | | | 94.29 240 | 93.55 251 | 96.51 222 | 96.39 283 | 94.80 197 | 98.99 60 | 98.19 210 | 91.35 270 | 93.02 265 | 96.99 266 | 88.09 205 | 98.41 259 | 90.50 272 | 88.41 302 | 96.33 301 |
|
mvs_anonymous | | | 96.70 121 | 96.53 118 | 97.18 171 | 98.19 167 | 93.78 230 | 98.31 179 | 98.19 210 | 94.01 167 | 94.47 202 | 98.27 163 | 92.08 120 | 98.46 246 | 97.39 72 | 97.91 153 | 99.31 114 |
|
AllTest | | | 95.24 184 | 94.65 188 | 96.99 181 | 99.25 82 | 93.21 253 | 98.59 137 | 98.18 213 | 91.36 268 | 93.52 246 | 98.77 110 | 84.67 264 | 99.72 104 | 89.70 286 | 97.87 155 | 98.02 197 |
|
TestCases | | | | | 96.99 181 | 99.25 82 | 93.21 253 | | 98.18 213 | 91.36 268 | 93.52 246 | 98.77 110 | 84.67 264 | 99.72 104 | 89.70 286 | 97.87 155 | 98.02 197 |
|
GBi-Net | | | 94.49 229 | 93.80 237 | 96.56 216 | 98.21 164 | 95.00 184 | 98.82 93 | 98.18 213 | 92.46 232 | 94.09 224 | 97.07 255 | 81.16 293 | 97.95 298 | 92.08 244 | 92.14 253 | 96.72 257 |
|
test1 | | | 94.49 229 | 93.80 237 | 96.56 216 | 98.21 164 | 95.00 184 | 98.82 93 | 98.18 213 | 92.46 232 | 94.09 224 | 97.07 255 | 81.16 293 | 97.95 298 | 92.08 244 | 92.14 253 | 96.72 257 |
|
FMVSNet1 | | | 93.19 274 | 92.07 278 | 96.56 216 | 97.54 212 | 95.00 184 | 98.82 93 | 98.18 213 | 90.38 291 | 92.27 286 | 97.07 255 | 73.68 332 | 97.95 298 | 89.36 293 | 91.30 264 | 96.72 257 |
|
v1192 | | | 94.32 238 | 93.58 250 | 96.53 220 | 96.10 294 | 94.45 211 | 98.50 154 | 98.17 218 | 91.54 263 | 94.19 220 | 97.06 258 | 86.95 229 | 98.43 251 | 90.14 275 | 89.57 285 | 96.70 261 |
|
v1240 | | | 94.06 257 | 93.29 260 | 96.34 236 | 96.03 298 | 93.90 227 | 98.44 161 | 98.17 218 | 91.18 280 | 94.13 223 | 97.01 265 | 86.05 244 | 98.42 252 | 89.13 296 | 89.50 288 | 96.70 261 |
|
v144192 | | | 94.39 235 | 93.70 245 | 96.48 224 | 96.06 296 | 94.35 216 | 98.58 139 | 98.16 220 | 91.45 265 | 94.33 212 | 97.02 263 | 87.50 220 | 98.45 247 | 91.08 262 | 89.11 293 | 96.63 269 |
|
Fast-Effi-MVS+-dtu | | | 95.87 150 | 95.85 137 | 95.91 253 | 97.74 197 | 91.74 274 | 98.69 124 | 98.15 221 | 95.56 98 | 94.92 189 | 97.68 211 | 88.98 184 | 98.79 219 | 93.19 215 | 97.78 159 | 97.20 219 |
|
v1921920 | | | 94.20 245 | 93.47 255 | 96.40 232 | 95.98 299 | 94.08 223 | 98.52 149 | 98.15 221 | 91.33 271 | 94.25 216 | 97.20 244 | 86.41 238 | 98.42 252 | 90.04 280 | 89.39 290 | 96.69 266 |
|
v1144 | | | 94.59 222 | 93.92 229 | 96.60 210 | 96.21 288 | 94.78 199 | 98.59 137 | 98.14 223 | 91.86 255 | 94.21 219 | 97.02 263 | 87.97 208 | 98.41 259 | 91.72 255 | 89.57 285 | 96.61 271 |
|
IterMVS-LS | | | 95.46 167 | 95.21 164 | 96.22 241 | 98.12 173 | 93.72 236 | 98.32 178 | 98.13 224 | 93.71 184 | 94.26 215 | 97.31 236 | 92.24 113 | 98.10 286 | 94.63 168 | 90.12 278 | 96.84 244 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EU-MVSNet | | | 93.66 262 | 94.14 216 | 92.25 316 | 95.96 300 | 83.38 335 | 98.52 149 | 98.12 225 | 94.69 142 | 92.61 276 | 98.13 173 | 87.36 223 | 96.39 333 | 91.82 252 | 90.00 280 | 96.98 226 |
|
IterMVS | | | 94.09 254 | 93.85 235 | 94.80 290 | 97.99 182 | 90.35 296 | 97.18 279 | 98.12 225 | 93.68 189 | 92.46 283 | 97.34 233 | 84.05 276 | 97.41 318 | 92.51 237 | 91.33 263 | 96.62 270 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 94.11 252 | 93.87 233 | 94.85 287 | 97.98 184 | 90.56 294 | 97.18 279 | 98.11 227 | 93.75 179 | 92.58 277 | 97.48 225 | 83.97 278 | 97.41 318 | 92.48 239 | 91.30 264 | 96.58 274 |
|
COLMAP_ROB | | 93.27 12 | 95.33 180 | 94.87 180 | 96.71 198 | 99.29 74 | 93.24 252 | 98.58 139 | 98.11 227 | 89.92 298 | 93.57 244 | 99.10 66 | 86.37 239 | 99.79 87 | 90.78 268 | 98.10 149 | 97.09 220 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Effi-MVS+-dtu | | | 96.29 135 | 96.56 115 | 95.51 266 | 97.89 188 | 90.22 297 | 98.80 100 | 98.10 229 | 96.57 62 | 96.45 167 | 96.66 286 | 90.81 147 | 98.91 203 | 95.72 138 | 97.99 151 | 97.40 212 |
|
mvs-test1 | | | 96.60 123 | 96.68 112 | 96.37 233 | 97.89 188 | 91.81 270 | 98.56 145 | 98.10 229 | 96.57 62 | 96.52 163 | 97.94 186 | 90.81 147 | 99.45 148 | 95.72 138 | 98.01 150 | 97.86 201 |
|
1112_ss | | | 96.63 122 | 96.00 134 | 98.50 91 | 98.56 140 | 96.37 125 | 98.18 201 | 98.10 229 | 92.92 219 | 94.84 191 | 98.43 141 | 92.14 117 | 99.58 129 | 94.35 180 | 96.51 188 | 99.56 81 |
|
RRT_MVS | | | 96.04 143 | 95.53 148 | 97.56 156 | 97.07 248 | 97.32 83 | 98.57 144 | 98.09 232 | 95.15 121 | 95.02 187 | 98.44 140 | 88.20 201 | 98.58 237 | 96.17 122 | 93.09 246 | 96.79 248 |
|
V42 | | | 94.78 210 | 94.14 216 | 96.70 200 | 96.33 286 | 95.22 176 | 98.97 64 | 98.09 232 | 92.32 241 | 94.31 213 | 97.06 258 | 88.39 197 | 98.55 238 | 92.90 224 | 88.87 298 | 96.34 299 |
|
miper_enhance_ethall | | | 95.10 192 | 94.75 184 | 96.12 246 | 97.53 214 | 93.73 235 | 96.61 312 | 98.08 234 | 92.20 247 | 93.89 232 | 96.65 288 | 92.44 108 | 98.30 272 | 94.21 185 | 91.16 267 | 96.34 299 |
|
v2v482 | | | 94.69 212 | 94.03 220 | 96.65 203 | 96.17 291 | 94.79 198 | 98.67 128 | 98.08 234 | 92.72 225 | 94.00 229 | 97.16 246 | 87.69 217 | 98.45 247 | 92.91 223 | 88.87 298 | 96.72 257 |
|
miper_ehance_all_eth | | | 95.01 196 | 94.69 187 | 95.97 250 | 97.70 199 | 93.31 249 | 97.02 288 | 98.07 236 | 92.23 244 | 93.51 248 | 96.96 270 | 91.85 124 | 98.15 282 | 93.68 200 | 91.16 267 | 96.44 296 |
|
eth_miper_zixun_eth | | | 94.68 214 | 94.41 203 | 95.47 268 | 97.64 202 | 91.71 275 | 96.73 309 | 98.07 236 | 92.71 226 | 93.64 241 | 97.21 243 | 90.54 154 | 98.17 281 | 93.38 208 | 89.76 282 | 96.54 281 |
|
MVS_Test | | | 97.28 98 | 97.00 94 | 98.13 118 | 98.33 156 | 95.97 143 | 98.74 109 | 98.07 236 | 94.27 158 | 98.44 68 | 98.07 176 | 92.48 107 | 99.26 159 | 96.43 115 | 98.19 146 | 99.16 134 |
|
Test_1112_low_res | | | 96.34 134 | 95.66 147 | 98.36 103 | 98.56 140 | 95.94 146 | 97.71 243 | 98.07 236 | 92.10 248 | 94.79 195 | 97.29 237 | 91.75 126 | 99.56 132 | 94.17 186 | 96.50 189 | 99.58 79 |
|
alignmvs | | | 97.56 82 | 97.07 91 | 99.01 60 | 98.66 133 | 98.37 40 | 98.83 90 | 98.06 240 | 96.74 55 | 98.00 92 | 97.65 212 | 90.80 149 | 99.48 145 | 98.37 23 | 96.56 186 | 99.19 129 |
|
testing_2 | | | 90.61 297 | 88.50 302 | 96.95 186 | 90.08 340 | 95.57 161 | 97.69 245 | 98.06 240 | 93.02 214 | 76.55 336 | 92.48 332 | 61.18 343 | 98.44 249 | 95.45 149 | 91.98 256 | 96.84 244 |
|
RPSCF | | | 94.87 206 | 95.40 151 | 93.26 311 | 98.89 113 | 82.06 339 | 98.33 173 | 98.06 240 | 90.30 292 | 96.56 157 | 99.26 39 | 87.09 225 | 99.49 141 | 93.82 197 | 96.32 194 | 98.24 192 |
|
miper_lstm_enhance | | | 94.33 237 | 94.07 219 | 95.11 279 | 97.75 194 | 90.97 286 | 97.22 276 | 98.03 243 | 91.67 260 | 92.76 271 | 96.97 268 | 90.03 162 | 97.78 309 | 92.51 237 | 89.64 284 | 96.56 278 |
|
cl_fuxian | | | 94.79 209 | 94.43 202 | 95.89 255 | 97.75 194 | 93.12 256 | 97.16 282 | 98.03 243 | 92.23 244 | 93.46 251 | 97.05 260 | 91.39 135 | 98.01 294 | 93.58 205 | 89.21 292 | 96.53 283 |
|
pm-mvs1 | | | 93.94 260 | 93.06 263 | 96.59 211 | 96.49 279 | 95.16 177 | 98.95 68 | 98.03 243 | 92.32 241 | 91.08 300 | 97.84 196 | 84.54 267 | 98.41 259 | 92.16 242 | 86.13 325 | 96.19 306 |
|
v148 | | | 94.29 240 | 93.76 242 | 95.91 253 | 96.10 294 | 92.93 258 | 98.58 139 | 97.97 246 | 92.59 230 | 93.47 250 | 96.95 272 | 88.53 195 | 98.32 268 | 92.56 234 | 87.06 316 | 96.49 292 |
|
IS-MVSNet | | | 97.22 100 | 96.88 99 | 98.25 110 | 98.85 118 | 96.36 126 | 99.19 31 | 97.97 246 | 95.39 106 | 97.23 127 | 98.99 83 | 91.11 143 | 98.93 201 | 94.60 171 | 98.59 129 | 99.47 95 |
|
cl-mvsnet_ | | | 94.51 228 | 94.01 223 | 96.02 247 | 97.58 207 | 93.40 246 | 97.05 286 | 97.96 248 | 91.73 258 | 92.76 271 | 97.08 254 | 89.06 180 | 98.13 284 | 92.61 229 | 90.29 277 | 96.52 286 |
|
cl-mvsnet1 | | | 94.52 227 | 94.03 220 | 95.99 248 | 97.57 211 | 93.38 247 | 97.05 286 | 97.94 249 | 91.74 256 | 92.81 269 | 97.10 248 | 89.12 177 | 98.07 290 | 92.60 230 | 90.30 276 | 96.53 283 |
|
pmmvs6 | | | 91.77 286 | 90.63 289 | 95.17 277 | 94.69 326 | 91.24 283 | 98.67 128 | 97.92 250 | 86.14 321 | 89.62 310 | 97.56 222 | 75.79 324 | 98.34 266 | 90.75 269 | 84.56 327 | 95.94 312 |
|
jason | | | 97.32 97 | 97.08 90 | 98.06 123 | 97.45 222 | 95.59 159 | 97.87 231 | 97.91 251 | 94.79 138 | 98.55 62 | 98.83 103 | 91.12 142 | 99.23 163 | 97.58 62 | 99.60 65 | 99.34 108 |
jason: jason. |
ppachtmachnet_test | | | 93.22 272 | 92.63 271 | 94.97 283 | 95.45 315 | 90.84 287 | 96.88 301 | 97.88 252 | 90.60 286 | 92.08 290 | 97.26 238 | 88.08 206 | 97.86 308 | 85.12 321 | 90.33 275 | 96.22 304 |
|
tpm cat1 | | | 93.36 266 | 92.80 267 | 95.07 281 | 97.58 207 | 87.97 323 | 96.76 307 | 97.86 253 | 82.17 333 | 93.53 245 | 96.04 308 | 86.13 242 | 99.13 174 | 89.24 294 | 95.87 207 | 98.10 195 |
|
EG-PatchMatch MVS | | | 91.13 291 | 90.12 293 | 94.17 304 | 94.73 325 | 89.00 313 | 98.13 206 | 97.81 254 | 89.22 307 | 85.32 329 | 96.46 294 | 67.71 337 | 98.42 252 | 87.89 305 | 93.82 231 | 95.08 322 |
|
BH-untuned | | | 95.95 147 | 95.72 140 | 96.65 203 | 98.55 142 | 92.26 263 | 98.23 188 | 97.79 255 | 93.73 182 | 94.62 197 | 98.01 181 | 88.97 185 | 99.00 192 | 93.04 220 | 98.51 133 | 98.68 172 |
|
lupinMVS | | | 97.44 89 | 97.22 85 | 98.12 120 | 98.07 176 | 95.76 156 | 97.68 246 | 97.76 256 | 94.50 152 | 98.79 46 | 98.61 123 | 92.34 109 | 99.30 157 | 97.58 62 | 99.59 68 | 99.31 114 |
|
VDDNet | | | 95.36 177 | 94.53 193 | 97.86 132 | 98.10 175 | 95.13 180 | 98.85 86 | 97.75 257 | 90.46 288 | 98.36 72 | 99.39 14 | 73.27 333 | 99.64 121 | 97.98 36 | 96.58 185 | 98.81 163 |
|
ADS-MVSNet | | | 95.00 197 | 94.45 200 | 96.63 206 | 98.00 180 | 91.91 269 | 96.04 318 | 97.74 258 | 90.15 293 | 96.47 165 | 96.64 289 | 87.89 210 | 98.96 196 | 90.08 277 | 97.06 173 | 99.02 148 |
|
tpmvs | | | 94.60 220 | 94.36 205 | 95.33 273 | 97.46 218 | 88.60 317 | 96.88 301 | 97.68 259 | 91.29 274 | 93.80 238 | 96.42 297 | 88.58 191 | 99.24 162 | 91.06 263 | 96.04 206 | 98.17 193 |
|
pmmvs4 | | | 94.69 212 | 93.99 226 | 96.81 194 | 95.74 305 | 95.94 146 | 97.40 260 | 97.67 260 | 90.42 290 | 93.37 253 | 97.59 218 | 89.08 179 | 98.20 279 | 92.97 222 | 91.67 260 | 96.30 303 |
|
our_test_3 | | | 93.65 264 | 93.30 259 | 94.69 292 | 95.45 315 | 89.68 303 | 96.91 295 | 97.65 261 | 91.97 251 | 91.66 295 | 96.88 276 | 89.67 165 | 97.93 301 | 88.02 303 | 91.49 262 | 96.48 293 |
|
MVP-Stereo | | | 94.28 242 | 93.92 229 | 95.35 272 | 94.95 321 | 92.60 261 | 97.97 221 | 97.65 261 | 91.61 262 | 90.68 304 | 97.09 252 | 86.32 240 | 98.42 252 | 89.70 286 | 99.34 98 | 95.02 324 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
SCA | | | 95.46 167 | 95.13 167 | 96.46 228 | 97.67 200 | 91.29 282 | 97.33 269 | 97.60 263 | 94.68 143 | 96.92 142 | 97.10 248 | 83.97 278 | 98.89 207 | 92.59 232 | 98.32 144 | 99.20 126 |
|
GA-MVS | | | 94.81 208 | 94.03 220 | 97.14 173 | 97.15 243 | 93.86 228 | 96.76 307 | 97.58 264 | 94.00 168 | 94.76 196 | 97.04 261 | 80.91 296 | 98.48 243 | 91.79 253 | 96.25 200 | 99.09 141 |
|
test20.03 | | | 90.89 294 | 90.38 291 | 92.43 314 | 93.48 331 | 88.14 322 | 98.33 173 | 97.56 265 | 93.40 201 | 87.96 318 | 96.71 285 | 80.69 300 | 94.13 340 | 79.15 334 | 86.17 323 | 95.01 325 |
|
CR-MVSNet | | | 94.76 211 | 94.15 215 | 96.59 211 | 97.00 250 | 93.43 243 | 94.96 328 | 97.56 265 | 92.46 232 | 96.93 140 | 96.24 300 | 88.15 203 | 97.88 306 | 87.38 306 | 96.65 183 | 98.46 184 |
|
Patchmtry | | | 93.22 272 | 92.35 275 | 95.84 257 | 96.77 263 | 93.09 257 | 94.66 333 | 97.56 265 | 87.37 315 | 92.90 267 | 96.24 300 | 88.15 203 | 97.90 302 | 87.37 307 | 90.10 279 | 96.53 283 |
|
tpmrst | | | 95.63 162 | 95.69 145 | 95.44 270 | 97.54 212 | 88.54 318 | 96.97 290 | 97.56 265 | 93.50 197 | 97.52 123 | 96.93 274 | 89.49 166 | 99.16 169 | 95.25 156 | 96.42 191 | 98.64 177 |
|
FMVSNet5 | | | 91.81 285 | 90.92 287 | 94.49 296 | 97.21 236 | 92.09 265 | 98.00 219 | 97.55 269 | 89.31 306 | 90.86 302 | 95.61 318 | 74.48 329 | 95.32 336 | 85.57 317 | 89.70 283 | 96.07 309 |
|
testgi | | | 93.06 276 | 92.45 274 | 94.88 286 | 96.43 282 | 89.90 298 | 98.75 106 | 97.54 270 | 95.60 96 | 91.63 296 | 97.91 188 | 74.46 330 | 97.02 323 | 86.10 313 | 93.67 232 | 97.72 206 |
|
PatchmatchNet | | | 95.71 158 | 95.52 149 | 96.29 239 | 97.58 207 | 90.72 291 | 96.84 304 | 97.52 271 | 94.06 163 | 97.08 132 | 96.96 270 | 89.24 174 | 98.90 206 | 92.03 248 | 98.37 140 | 99.26 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDA-MVSNet-bldmvs | | | 89.97 300 | 88.35 304 | 94.83 289 | 95.21 318 | 91.34 278 | 97.64 249 | 97.51 272 | 88.36 311 | 71.17 342 | 96.13 306 | 79.22 306 | 96.63 330 | 83.65 323 | 86.27 322 | 96.52 286 |
|
USDC | | | 93.33 269 | 92.71 269 | 95.21 275 | 96.83 262 | 90.83 288 | 96.91 295 | 97.50 273 | 93.84 176 | 90.72 303 | 98.14 172 | 77.69 315 | 98.82 216 | 89.51 290 | 93.21 245 | 95.97 311 |
|
ITE_SJBPF | | | | | 95.44 270 | 97.42 223 | 91.32 281 | | 97.50 273 | 95.09 127 | 93.59 242 | 98.35 151 | 81.70 291 | 98.88 209 | 89.71 285 | 93.39 241 | 96.12 307 |
|
Patchmatch-test | | | 94.42 233 | 93.68 247 | 96.63 206 | 97.60 205 | 91.76 272 | 94.83 332 | 97.49 275 | 89.45 304 | 94.14 222 | 97.10 248 | 88.99 181 | 98.83 215 | 85.37 320 | 98.13 148 | 99.29 119 |
|
YYNet1 | | | 90.70 296 | 89.39 298 | 94.62 295 | 94.79 324 | 90.65 292 | 97.20 277 | 97.46 276 | 87.54 314 | 72.54 340 | 95.74 311 | 86.51 234 | 96.66 329 | 86.00 314 | 86.76 321 | 96.54 281 |
|
MDA-MVSNet_test_wron | | | 90.71 295 | 89.38 299 | 94.68 293 | 94.83 323 | 90.78 290 | 97.19 278 | 97.46 276 | 87.60 313 | 72.41 341 | 95.72 314 | 86.51 234 | 96.71 328 | 85.92 315 | 86.80 320 | 96.56 278 |
|
BH-RMVSNet | | | 95.92 149 | 95.32 160 | 97.69 146 | 98.32 158 | 94.64 201 | 98.19 197 | 97.45 278 | 94.56 148 | 96.03 175 | 98.61 123 | 85.02 258 | 99.12 175 | 90.68 270 | 99.06 108 | 99.30 117 |
|
MIMVSNet1 | | | 89.67 302 | 88.28 305 | 93.82 305 | 92.81 334 | 91.08 285 | 98.01 217 | 97.45 278 | 87.95 312 | 87.90 319 | 95.87 310 | 67.63 338 | 94.56 339 | 78.73 336 | 88.18 304 | 95.83 314 |
|
OurMVSNet-221017-0 | | | 94.21 244 | 94.00 224 | 94.85 287 | 95.60 309 | 89.22 309 | 98.89 78 | 97.43 280 | 95.29 113 | 92.18 288 | 98.52 135 | 82.86 286 | 98.59 235 | 93.46 207 | 91.76 259 | 96.74 254 |
|
BH-w/o | | | 95.38 174 | 95.08 170 | 96.26 240 | 98.34 155 | 91.79 271 | 97.70 244 | 97.43 280 | 92.87 222 | 94.24 217 | 97.22 242 | 88.66 190 | 98.84 213 | 91.55 258 | 97.70 163 | 98.16 194 |
|
VDD-MVS | | | 95.82 154 | 95.23 163 | 97.61 153 | 98.84 119 | 93.98 225 | 98.68 125 | 97.40 282 | 95.02 129 | 97.95 94 | 99.34 29 | 74.37 331 | 99.78 91 | 98.64 3 | 96.80 178 | 99.08 144 |
|
Gipuma | | | 78.40 311 | 76.75 313 | 83.38 326 | 95.54 311 | 80.43 340 | 79.42 346 | 97.40 282 | 64.67 342 | 73.46 339 | 80.82 342 | 45.65 346 | 93.14 341 | 66.32 342 | 87.43 311 | 76.56 344 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new-patchmatchnet | | | 88.50 305 | 87.45 307 | 91.67 318 | 90.31 339 | 85.89 331 | 97.16 282 | 97.33 284 | 89.47 303 | 83.63 332 | 92.77 329 | 76.38 321 | 95.06 338 | 82.70 325 | 77.29 337 | 94.06 332 |
|
ADS-MVSNet2 | | | 94.58 223 | 94.40 204 | 95.11 279 | 98.00 180 | 88.74 315 | 96.04 318 | 97.30 285 | 90.15 293 | 96.47 165 | 96.64 289 | 87.89 210 | 97.56 315 | 90.08 277 | 97.06 173 | 99.02 148 |
|
MDTV_nov1_ep13 | | | | 95.40 151 | | 97.48 216 | 88.34 320 | 96.85 303 | 97.29 286 | 93.74 181 | 97.48 124 | 97.26 238 | 89.18 175 | 99.05 185 | 91.92 251 | 97.43 169 | |
|
pmmvs5 | | | 93.65 264 | 92.97 265 | 95.68 262 | 95.49 313 | 92.37 262 | 98.20 193 | 97.28 287 | 89.66 301 | 92.58 277 | 97.26 238 | 82.14 288 | 98.09 288 | 93.18 216 | 90.95 271 | 96.58 274 |
|
EPNet_dtu | | | 95.21 186 | 94.95 177 | 95.99 248 | 96.17 291 | 90.45 295 | 98.16 203 | 97.27 288 | 96.77 53 | 93.14 262 | 98.33 156 | 90.34 157 | 98.42 252 | 85.57 317 | 98.81 121 | 99.09 141 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Anonymous20231206 | | | 91.66 287 | 91.10 286 | 93.33 309 | 94.02 330 | 87.35 327 | 98.58 139 | 97.26 289 | 90.48 287 | 90.16 306 | 96.31 298 | 83.83 282 | 96.53 331 | 79.36 333 | 89.90 281 | 96.12 307 |
|
RPMNet | | | 92.52 281 | 91.17 285 | 96.59 211 | 97.00 250 | 93.43 243 | 94.96 328 | 97.26 289 | 82.27 332 | 96.93 140 | 92.12 334 | 86.98 228 | 97.88 306 | 76.32 339 | 96.65 183 | 98.46 184 |
|
test_0402 | | | 91.32 289 | 90.27 292 | 94.48 297 | 96.60 273 | 91.12 284 | 98.50 154 | 97.22 291 | 86.10 322 | 88.30 317 | 96.98 267 | 77.65 317 | 97.99 297 | 78.13 337 | 92.94 248 | 94.34 327 |
|
dp | | | 94.15 249 | 93.90 231 | 94.90 285 | 97.31 230 | 86.82 330 | 96.97 290 | 97.19 292 | 91.22 278 | 96.02 176 | 96.61 291 | 85.51 251 | 99.02 191 | 90.00 281 | 94.30 214 | 98.85 160 |
|
thres200 | | | 95.25 183 | 94.57 191 | 97.28 167 | 98.81 120 | 94.92 191 | 98.20 193 | 97.11 293 | 95.24 118 | 96.54 161 | 96.22 304 | 84.58 266 | 99.53 138 | 87.93 304 | 96.50 189 | 97.39 213 |
|
PatchT | | | 93.06 276 | 91.97 280 | 96.35 235 | 96.69 269 | 92.67 260 | 94.48 334 | 97.08 294 | 86.62 317 | 97.08 132 | 92.23 333 | 87.94 209 | 97.90 302 | 78.89 335 | 96.69 181 | 98.49 183 |
|
TDRefinement | | | 91.06 292 | 89.68 296 | 95.21 275 | 85.35 343 | 91.49 277 | 98.51 153 | 97.07 295 | 91.47 264 | 88.83 315 | 97.84 196 | 77.31 319 | 99.09 182 | 92.79 227 | 77.98 336 | 95.04 323 |
|
LF4IMVS | | | 93.14 275 | 92.79 268 | 94.20 302 | 95.88 302 | 88.67 316 | 97.66 248 | 97.07 295 | 93.81 178 | 91.71 294 | 97.65 212 | 77.96 314 | 98.81 217 | 91.47 259 | 91.92 258 | 95.12 320 |
|
Anonymous202405211 | | | 95.28 182 | 94.49 195 | 97.67 148 | 99.00 105 | 93.75 233 | 98.70 122 | 97.04 297 | 90.66 285 | 96.49 164 | 98.80 106 | 78.13 312 | 99.83 55 | 96.21 121 | 95.36 211 | 99.44 102 |
|
baseline1 | | | 95.84 152 | 95.12 168 | 98.01 125 | 98.49 145 | 95.98 138 | 98.73 113 | 97.03 298 | 95.37 109 | 96.22 171 | 98.19 169 | 89.96 163 | 99.16 169 | 94.60 171 | 87.48 310 | 98.90 159 |
|
MIMVSNet | | | 93.26 271 | 92.21 277 | 96.41 231 | 97.73 198 | 93.13 255 | 95.65 325 | 97.03 298 | 91.27 276 | 94.04 227 | 96.06 307 | 75.33 325 | 97.19 321 | 86.56 310 | 96.23 201 | 98.92 158 |
|
EPNet | | | 97.28 98 | 96.87 100 | 98.51 90 | 94.98 320 | 96.14 135 | 98.90 74 | 97.02 300 | 98.28 1 | 95.99 177 | 99.11 64 | 91.36 136 | 99.89 35 | 96.98 84 | 99.19 104 | 99.50 88 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TR-MVS | | | 94.94 204 | 94.20 210 | 97.17 172 | 97.75 194 | 94.14 222 | 97.59 252 | 97.02 300 | 92.28 243 | 95.75 179 | 97.64 214 | 83.88 280 | 98.96 196 | 89.77 283 | 96.15 203 | 98.40 186 |
|
JIA-IIPM | | | 93.35 267 | 92.49 273 | 95.92 252 | 96.48 280 | 90.65 292 | 95.01 327 | 96.96 302 | 85.93 323 | 96.08 174 | 87.33 338 | 87.70 216 | 98.78 220 | 91.35 260 | 95.58 210 | 98.34 189 |
|
pmmvs-eth3d | | | 90.36 298 | 89.05 300 | 94.32 301 | 91.10 337 | 92.12 264 | 97.63 251 | 96.95 303 | 88.86 309 | 84.91 330 | 93.13 328 | 78.32 311 | 96.74 325 | 88.70 298 | 81.81 332 | 94.09 331 |
|
tfpn200view9 | | | 95.32 181 | 94.62 189 | 97.43 161 | 98.94 110 | 94.98 187 | 98.68 125 | 96.93 304 | 95.33 110 | 96.55 159 | 96.53 292 | 84.23 272 | 99.56 132 | 88.11 300 | 96.29 195 | 97.76 202 |
|
thres400 | | | 95.38 174 | 94.62 189 | 97.65 151 | 98.94 110 | 94.98 187 | 98.68 125 | 96.93 304 | 95.33 110 | 96.55 159 | 96.53 292 | 84.23 272 | 99.56 132 | 88.11 300 | 96.29 195 | 98.40 186 |
|
thres100view900 | | | 95.38 174 | 94.70 186 | 97.41 162 | 98.98 108 | 94.92 191 | 98.87 83 | 96.90 306 | 95.38 107 | 96.61 155 | 96.88 276 | 84.29 269 | 99.56 132 | 88.11 300 | 96.29 195 | 97.76 202 |
|
thres600view7 | | | 95.49 166 | 94.77 182 | 97.67 148 | 98.98 108 | 95.02 183 | 98.85 86 | 96.90 306 | 95.38 107 | 96.63 154 | 96.90 275 | 84.29 269 | 99.59 128 | 88.65 299 | 96.33 193 | 98.40 186 |
|
CostFormer | | | 94.95 202 | 94.73 185 | 95.60 265 | 97.28 231 | 89.06 311 | 97.53 255 | 96.89 308 | 89.66 301 | 96.82 147 | 96.72 284 | 86.05 244 | 98.95 200 | 95.53 146 | 96.13 204 | 98.79 164 |
|
new_pmnet | | | 90.06 299 | 89.00 301 | 93.22 312 | 94.18 327 | 88.32 321 | 96.42 316 | 96.89 308 | 86.19 320 | 85.67 328 | 93.62 326 | 77.18 320 | 97.10 322 | 81.61 328 | 89.29 291 | 94.23 328 |
|
OpenMVS_ROB | | 86.42 20 | 89.00 304 | 87.43 308 | 93.69 306 | 93.08 333 | 89.42 306 | 97.91 225 | 96.89 308 | 78.58 336 | 85.86 326 | 94.69 323 | 69.48 336 | 98.29 275 | 77.13 338 | 93.29 244 | 93.36 336 |
|
tpm2 | | | 94.19 246 | 93.76 242 | 95.46 269 | 97.23 234 | 89.04 312 | 97.31 271 | 96.85 311 | 87.08 316 | 96.21 172 | 96.79 282 | 83.75 284 | 98.74 222 | 92.43 240 | 96.23 201 | 98.59 179 |
|
TransMVSNet (Re) | | | 92.67 279 | 91.51 284 | 96.15 243 | 96.58 274 | 94.65 200 | 98.90 74 | 96.73 312 | 90.86 284 | 89.46 312 | 97.86 193 | 85.62 250 | 98.09 288 | 86.45 311 | 81.12 333 | 95.71 315 |
|
ambc | | | | | 89.49 321 | 86.66 342 | 75.78 342 | 92.66 339 | 96.72 313 | | 86.55 324 | 92.50 331 | 46.01 345 | 97.90 302 | 90.32 273 | 82.09 329 | 94.80 326 |
|
LCM-MVSNet | | | 78.70 310 | 76.24 314 | 86.08 323 | 77.26 349 | 71.99 345 | 94.34 335 | 96.72 313 | 61.62 343 | 76.53 337 | 89.33 336 | 33.91 351 | 92.78 342 | 81.85 327 | 74.60 339 | 93.46 335 |
|
TinyColmap | | | 92.31 283 | 91.53 283 | 94.65 294 | 96.92 255 | 89.75 300 | 96.92 293 | 96.68 315 | 90.45 289 | 89.62 310 | 97.85 195 | 76.06 323 | 98.81 217 | 86.74 309 | 92.51 251 | 95.41 318 |
|
Baseline_NR-MVSNet | | | 94.35 236 | 93.81 236 | 95.96 251 | 96.20 289 | 94.05 224 | 98.61 136 | 96.67 316 | 91.44 266 | 93.85 235 | 97.60 217 | 88.57 192 | 98.14 283 | 94.39 178 | 86.93 317 | 95.68 316 |
|
SixPastTwentyTwo | | | 93.34 268 | 92.86 266 | 94.75 291 | 95.67 307 | 89.41 307 | 98.75 106 | 96.67 316 | 93.89 173 | 90.15 307 | 98.25 165 | 80.87 297 | 98.27 277 | 90.90 266 | 90.64 273 | 96.57 276 |
|
DWT-MVSNet_test | | | 94.82 207 | 94.36 205 | 96.20 242 | 97.35 228 | 90.79 289 | 98.34 172 | 96.57 318 | 92.91 220 | 95.33 183 | 96.44 296 | 82.00 289 | 99.12 175 | 94.52 175 | 95.78 209 | 98.70 169 |
|
LFMVS | | | 95.86 151 | 94.98 175 | 98.47 94 | 98.87 115 | 96.32 128 | 98.84 89 | 96.02 319 | 93.40 201 | 98.62 58 | 99.20 49 | 74.99 327 | 99.63 124 | 97.72 51 | 97.20 172 | 99.46 99 |
|
IB-MVS | | 91.98 17 | 93.27 270 | 91.97 280 | 97.19 170 | 97.47 217 | 93.41 245 | 97.09 285 | 95.99 320 | 93.32 204 | 92.47 282 | 95.73 312 | 78.06 313 | 99.53 138 | 94.59 173 | 82.98 328 | 98.62 178 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test0.0.03 1 | | | 94.08 255 | 93.51 253 | 95.80 258 | 95.53 312 | 92.89 259 | 97.38 262 | 95.97 321 | 95.11 124 | 92.51 281 | 96.66 286 | 87.71 214 | 96.94 324 | 87.03 308 | 93.67 232 | 97.57 209 |
|
FPMVS | | | 77.62 313 | 77.14 312 | 79.05 328 | 79.25 347 | 60.97 349 | 95.79 323 | 95.94 322 | 65.96 341 | 67.93 343 | 94.40 324 | 37.73 349 | 88.88 345 | 68.83 341 | 88.46 301 | 87.29 339 |
|
Patchmatch-RL test | | | 91.49 288 | 90.85 288 | 93.41 308 | 91.37 336 | 84.40 332 | 92.81 338 | 95.93 323 | 91.87 254 | 87.25 320 | 94.87 322 | 88.99 181 | 96.53 331 | 92.54 236 | 82.00 330 | 99.30 117 |
|
tpm | | | 94.13 250 | 93.80 237 | 95.12 278 | 96.50 278 | 87.91 324 | 97.44 257 | 95.89 324 | 92.62 228 | 96.37 169 | 96.30 299 | 84.13 275 | 98.30 272 | 93.24 213 | 91.66 261 | 99.14 137 |
|
LCM-MVSNet-Re | | | 95.22 185 | 95.32 160 | 94.91 284 | 98.18 169 | 87.85 325 | 98.75 106 | 95.66 325 | 95.11 124 | 88.96 314 | 96.85 279 | 90.26 160 | 97.65 311 | 95.65 143 | 98.44 137 | 99.22 125 |
|
ET-MVSNet_ETH3D | | | 94.13 250 | 92.98 264 | 97.58 154 | 98.22 163 | 96.20 132 | 97.31 271 | 95.37 326 | 94.53 149 | 79.56 335 | 97.63 216 | 86.51 234 | 97.53 316 | 96.91 89 | 90.74 272 | 99.02 148 |
|
test-LLR | | | 95.10 192 | 94.87 180 | 95.80 258 | 96.77 263 | 89.70 301 | 96.91 295 | 95.21 327 | 95.11 124 | 94.83 193 | 95.72 314 | 87.71 214 | 98.97 193 | 93.06 218 | 98.50 134 | 98.72 167 |
|
test-mter | | | 94.08 255 | 93.51 253 | 95.80 258 | 96.77 263 | 89.70 301 | 96.91 295 | 95.21 327 | 92.89 221 | 94.83 193 | 95.72 314 | 77.69 315 | 98.97 193 | 93.06 218 | 98.50 134 | 98.72 167 |
|
PM-MVS | | | 87.77 306 | 86.55 309 | 91.40 319 | 91.03 338 | 83.36 336 | 96.92 293 | 95.18 329 | 91.28 275 | 86.48 325 | 93.42 327 | 53.27 344 | 96.74 325 | 89.43 292 | 81.97 331 | 94.11 330 |
|
DeepMVS_CX | | | | | 86.78 322 | 97.09 247 | 72.30 344 | | 95.17 330 | 75.92 338 | 84.34 331 | 95.19 319 | 70.58 335 | 95.35 335 | 79.98 332 | 89.04 295 | 92.68 337 |
|
K. test v3 | | | 92.55 280 | 91.91 282 | 94.48 297 | 95.64 308 | 89.24 308 | 99.07 47 | 94.88 331 | 94.04 164 | 86.78 322 | 97.59 218 | 77.64 318 | 97.64 312 | 92.08 244 | 89.43 289 | 96.57 276 |
|
TESTMET0.1,1 | | | 94.18 248 | 93.69 246 | 95.63 264 | 96.92 255 | 89.12 310 | 96.91 295 | 94.78 332 | 93.17 209 | 94.88 190 | 96.45 295 | 78.52 310 | 98.92 202 | 93.09 217 | 98.50 134 | 98.85 160 |
|
pmmvs3 | | | 86.67 309 | 84.86 311 | 92.11 317 | 88.16 341 | 87.19 329 | 96.63 311 | 94.75 333 | 79.88 335 | 87.22 321 | 92.75 330 | 66.56 339 | 95.20 337 | 81.24 329 | 76.56 338 | 93.96 333 |
|
door | | | | | | | | | 94.64 334 | | | | | | | | |
|
thisisatest0515 | | | 95.61 165 | 94.89 179 | 97.76 139 | 98.15 172 | 95.15 179 | 96.77 306 | 94.41 335 | 92.95 218 | 97.18 129 | 97.43 230 | 84.78 263 | 99.45 148 | 94.63 168 | 97.73 162 | 98.68 172 |
|
door-mid | | | | | | | | | 94.37 336 | | | | | | | | |
|
tttt0517 | | | 96.07 141 | 95.51 150 | 97.78 137 | 98.41 148 | 94.84 193 | 99.28 16 | 94.33 337 | 94.26 159 | 97.64 116 | 98.64 122 | 84.05 276 | 99.47 146 | 95.34 150 | 97.60 166 | 99.03 147 |
|
DSMNet-mixed | | | 92.52 281 | 92.58 272 | 92.33 315 | 94.15 328 | 82.65 337 | 98.30 181 | 94.26 338 | 89.08 308 | 92.65 275 | 95.73 312 | 85.01 259 | 95.76 334 | 86.24 312 | 97.76 160 | 98.59 179 |
|
thisisatest0530 | | | 96.01 144 | 95.36 156 | 97.97 127 | 98.38 149 | 95.52 165 | 98.88 81 | 94.19 339 | 94.04 164 | 97.64 116 | 98.31 158 | 83.82 283 | 99.46 147 | 95.29 154 | 97.70 163 | 98.93 157 |
|
MTMP | | | | | | | | 98.89 78 | 94.14 340 | | | | | | | | |
|
baseline2 | | | 95.11 191 | 94.52 194 | 96.87 191 | 96.65 272 | 93.56 239 | 98.27 186 | 94.10 341 | 93.45 199 | 92.02 292 | 97.43 230 | 87.45 222 | 99.19 167 | 93.88 195 | 97.41 170 | 97.87 200 |
|
PMVS | | 61.03 23 | 65.95 316 | 63.57 319 | 73.09 331 | 57.90 352 | 51.22 353 | 85.05 345 | 93.93 342 | 54.45 344 | 44.32 349 | 83.57 339 | 13.22 353 | 89.15 344 | 58.68 344 | 81.00 334 | 78.91 343 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 77.95 312 | 75.44 315 | 85.46 324 | 82.54 344 | 74.95 343 | 94.23 336 | 93.08 343 | 72.80 340 | 74.68 338 | 87.38 337 | 36.36 350 | 91.56 343 | 73.95 340 | 63.94 342 | 89.87 338 |
|
MVS-HIRNet | | | 89.46 303 | 88.40 303 | 92.64 313 | 97.58 207 | 82.15 338 | 94.16 337 | 93.05 344 | 75.73 339 | 90.90 301 | 82.52 340 | 79.42 305 | 98.33 267 | 83.53 324 | 98.68 123 | 97.43 210 |
|
EPMVS | | | 94.99 198 | 94.48 196 | 96.52 221 | 97.22 235 | 91.75 273 | 97.23 275 | 91.66 345 | 94.11 161 | 97.28 125 | 96.81 281 | 85.70 249 | 98.84 213 | 93.04 220 | 97.28 171 | 98.97 153 |
|
lessismore_v0 | | | | | 94.45 300 | 94.93 322 | 88.44 319 | | 91.03 346 | | 86.77 323 | 97.64 214 | 76.23 322 | 98.42 252 | 90.31 274 | 85.64 326 | 96.51 289 |
|
ANet_high | | | 69.08 314 | 65.37 317 | 80.22 327 | 65.99 351 | 71.96 346 | 90.91 342 | 90.09 347 | 82.62 331 | 49.93 348 | 78.39 343 | 29.36 352 | 81.75 346 | 62.49 343 | 38.52 346 | 86.95 341 |
|
gg-mvs-nofinetune | | | 92.21 284 | 90.58 290 | 97.13 174 | 96.75 266 | 95.09 181 | 95.85 322 | 89.40 348 | 85.43 327 | 94.50 201 | 81.98 341 | 80.80 299 | 98.40 265 | 92.16 242 | 98.33 143 | 97.88 199 |
|
GG-mvs-BLEND | | | | | 96.59 211 | 96.34 285 | 94.98 187 | 96.51 315 | 88.58 349 | | 93.10 264 | 94.34 325 | 80.34 302 | 98.05 292 | 89.53 289 | 96.99 175 | 96.74 254 |
|
E-PMN | | | 64.94 317 | 64.25 318 | 67.02 332 | 82.28 345 | 59.36 351 | 91.83 341 | 85.63 350 | 52.69 345 | 60.22 345 | 77.28 344 | 41.06 348 | 80.12 348 | 46.15 346 | 41.14 344 | 61.57 346 |
|
EMVS | | | 64.07 318 | 63.26 320 | 66.53 333 | 81.73 346 | 58.81 352 | 91.85 340 | 84.75 351 | 51.93 347 | 59.09 346 | 75.13 345 | 43.32 347 | 79.09 349 | 42.03 347 | 39.47 345 | 61.69 345 |
|
tmp_tt | | | 68.90 315 | 66.97 316 | 74.68 330 | 50.78 353 | 59.95 350 | 87.13 343 | 83.47 352 | 38.80 348 | 62.21 344 | 96.23 302 | 64.70 341 | 76.91 350 | 88.91 297 | 30.49 347 | 87.19 340 |
|
MVE | | 62.14 22 | 63.28 319 | 59.38 321 | 74.99 329 | 74.33 350 | 65.47 347 | 85.55 344 | 80.50 353 | 52.02 346 | 51.10 347 | 75.00 346 | 10.91 356 | 80.50 347 | 51.60 345 | 53.40 343 | 78.99 342 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
N_pmnet | | | 87.12 308 | 87.77 306 | 85.17 325 | 95.46 314 | 61.92 348 | 97.37 264 | 70.66 354 | 85.83 324 | 88.73 316 | 96.04 308 | 85.33 256 | 97.76 310 | 80.02 330 | 90.48 274 | 95.84 313 |
|
wuyk23d | | | 30.17 320 | 30.18 323 | 30.16 334 | 78.61 348 | 43.29 354 | 66.79 347 | 14.21 355 | 17.31 349 | 14.82 352 | 11.93 352 | 11.55 355 | 41.43 351 | 37.08 348 | 19.30 348 | 5.76 349 |
|
testmvs | | | 21.48 322 | 24.95 324 | 11.09 336 | 14.89 354 | 6.47 356 | 96.56 313 | 9.87 356 | 7.55 350 | 17.93 350 | 39.02 348 | 9.43 357 | 5.90 353 | 16.56 350 | 12.72 349 | 20.91 348 |
|
test123 | | | 20.95 323 | 23.72 325 | 12.64 335 | 13.54 355 | 8.19 355 | 96.55 314 | 6.13 357 | 7.48 351 | 16.74 351 | 37.98 349 | 12.97 354 | 6.05 352 | 16.69 349 | 5.43 350 | 23.68 347 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 7.88 325 | 10.50 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 94.51 81 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
ab-mvs-re | | | 8.20 324 | 10.94 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 98.43 141 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
OPU-MVS | | | | | 99.37 20 | 99.24 88 | 99.05 10 | 99.02 54 | | | | 99.16 58 | 97.81 2 | 99.37 153 | 97.24 76 | 99.73 43 | 99.70 45 |
|
test_0728_THIRD | | | | | | | | | | 97.32 27 | 99.45 9 | 99.46 9 | 97.88 1 | 99.94 3 | 98.47 15 | 99.86 1 | 99.85 2 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 126 |
|
test_part2 | | | | | | 99.63 29 | 99.18 8 | | | | 99.27 17 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 168 | | | | 99.20 126 |
|
sam_mvs | | | | | | | | | | | | | 88.99 181 | | | | |
|
test_post1 | | | | | | | | 96.68 310 | | | | 30.43 351 | 87.85 213 | 98.69 224 | 92.59 232 | | |
|
test_post | | | | | | | | | | | | 31.83 350 | 88.83 188 | 98.91 203 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 321 | 89.42 169 | 98.89 207 | | | |
|
gm-plane-assit | | | | | | 95.88 302 | 87.47 326 | | | 89.74 300 | | 96.94 273 | | 99.19 167 | 93.32 212 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 117 | 99.57 71 | 99.69 48 |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 132 | 99.57 71 | 99.68 54 |
|
test_prior4 | | | | | | | 98.01 61 | 97.86 232 | | | | | | | | | |
|
test_prior2 | | | | | | | | 97.80 237 | | 96.12 77 | 97.89 101 | 98.69 115 | 95.96 36 | | 96.89 92 | 99.60 65 | |
|
旧先验2 | | | | | | | | 97.57 254 | | 91.30 273 | 98.67 55 | | | 99.80 75 | 95.70 142 | | |
|
新几何2 | | | | | | | | 97.64 249 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 97.67 247 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.89 35 | 91.65 257 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 11 | | | | |
|
testdata1 | | | | | | | | 97.32 270 | | 96.34 68 | | | | | | | |
|
plane_prior7 | | | | | | 97.42 223 | 94.63 202 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 228 | 94.61 205 | | | | | | 87.09 225 | | | | |
|
plane_prior4 | | | | | | | | | | | | 98.28 160 | | | | | |
|
plane_prior3 | | | | | | | 94.61 205 | | | 97.02 47 | 95.34 181 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 100 | | 97.28 29 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 227 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 207 | 98.44 161 | | 96.74 55 | | | | | | 94.22 217 | |
|
HQP5-MVS | | | | | | | 94.25 220 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.20 237 | | 98.05 213 | | 96.43 64 | 94.45 203 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 237 | | 98.05 213 | | 96.43 64 | 94.45 203 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 152 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 203 | | | 98.96 196 | | | 96.87 241 |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 231 | | | | |
|
NP-MVS | | | | | | 97.28 231 | 94.51 210 | | | | | 97.73 205 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 333 | 96.89 300 | | 90.97 283 | 97.90 100 | | 89.89 164 | | 93.91 194 | | 99.18 133 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 247 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 235 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 76 | | | | |
|