UA-Net | | | 97.96 55 | 97.62 60 | 98.98 62 | 98.86 115 | 97.47 78 | 98.89 77 | 99.08 21 | 96.67 57 | 98.72 52 | 99.54 1 | 93.15 100 | 99.81 65 | 94.87 161 | 98.83 118 | 99.65 63 |
|
APDe-MVS | | | 99.02 2 | 98.84 1 | 99.55 5 | 99.57 32 | 98.96 11 | 99.39 5 | 98.93 37 | 97.38 23 | 99.41 10 | 99.54 1 | 96.66 12 | 99.84 51 | 98.86 1 | 99.85 3 | 99.87 1 |
|
SMA-MVS | | | 98.58 22 | 98.25 34 | 99.56 4 | 99.51 37 | 99.04 10 | 98.95 67 | 98.80 85 | 93.67 190 | 99.37 12 | 99.52 3 | 96.52 16 | 99.89 34 | 98.06 32 | 99.81 10 | 99.76 26 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 48 | 98.88 49 | 97.62 10 | 99.56 4 | 99.50 4 | 97.42 5 | | | | |
|
DeepC-MVS | | 95.98 3 | 97.88 61 | 97.58 63 | 98.77 72 | 99.25 81 | 96.93 99 | 98.83 89 | 98.75 96 | 96.96 48 | 96.89 143 | 99.50 4 | 90.46 154 | 99.87 43 | 97.84 44 | 99.76 31 | 99.52 81 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_241102_TWO | | | | | | | | | 98.87 55 | 97.65 9 | 99.53 7 | 99.48 6 | 97.34 7 | 99.94 3 | 98.43 18 | 99.80 16 | 99.83 5 |
|
ACMMP_NAP | | | 98.61 16 | 98.30 30 | 99.55 5 | 99.62 29 | 98.95 12 | 98.82 92 | 98.81 75 | 95.80 86 | 99.16 23 | 99.47 7 | 95.37 55 | 99.92 20 | 97.89 40 | 99.75 37 | 99.79 10 |
|
MSP-MVS | | | 99.03 1 | 98.83 2 | 99.63 3 | 99.72 12 | 99.25 2 | 98.97 63 | 98.58 141 | 97.62 10 | 99.45 8 | 99.46 8 | 97.42 5 | 99.94 3 | 98.47 15 | 99.81 10 | 99.69 47 |
|
test_0728_THIRD | | | | | | | | | | 97.32 26 | 99.45 8 | 99.46 8 | 97.88 1 | 99.94 3 | 98.47 15 | 99.86 1 | 99.85 2 |
|
DPE-MVS | | | 98.92 3 | 98.67 5 | 99.65 2 | 99.58 31 | 99.20 6 | 98.42 164 | 98.91 43 | 97.58 13 | 99.54 6 | 99.46 8 | 97.10 8 | 99.94 3 | 97.64 56 | 99.84 8 | 99.83 5 |
|
MP-MVS-pluss | | | 98.31 49 | 97.92 53 | 99.49 8 | 99.72 12 | 98.88 13 | 98.43 162 | 98.78 89 | 94.10 161 | 97.69 110 | 99.42 11 | 95.25 61 | 99.92 20 | 98.09 31 | 99.80 16 | 99.67 57 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SteuartSystems-ACMMP | | | 98.90 4 | 98.75 3 | 99.36 20 | 99.22 89 | 98.43 31 | 99.10 43 | 98.87 55 | 97.38 23 | 99.35 13 | 99.40 12 | 97.78 3 | 99.87 43 | 97.77 47 | 99.85 3 | 99.78 13 |
Skip Steuart: Steuart Systems R&D Blog. |
test_241102_ONE | | | | | | 99.71 20 | 99.24 4 | | 98.87 55 | 97.62 10 | 99.73 1 | 99.39 13 | 97.53 4 | 99.74 101 | | | |
|
xxxxxxxxxxxxxcwj | | | 98.72 8 | 98.52 11 | 99.30 29 | 99.46 47 | 98.38 33 | 98.21 189 | 98.71 107 | 97.95 3 | 99.32 14 | 99.39 13 | 96.22 19 | 99.84 51 | 97.72 50 | 99.73 42 | 99.67 57 |
|
SF-MVS | | | 98.59 19 | 98.32 29 | 99.41 15 | 99.54 34 | 98.71 17 | 99.04 50 | 98.81 75 | 95.12 122 | 99.32 14 | 99.39 13 | 96.22 19 | 99.84 51 | 97.72 50 | 99.73 42 | 99.67 57 |
|
zzz-MVS | | | 98.55 28 | 98.25 34 | 99.46 11 | 99.76 1 | 98.64 20 | 98.55 146 | 98.74 97 | 97.27 32 | 98.02 85 | 99.39 13 | 94.81 72 | 99.96 1 | 97.91 37 | 99.79 18 | 99.77 20 |
|
MTAPA | | | 98.58 22 | 98.29 31 | 99.46 11 | 99.76 1 | 98.64 20 | 98.90 73 | 98.74 97 | 97.27 32 | 98.02 85 | 99.39 13 | 94.81 72 | 99.96 1 | 97.91 37 | 99.79 18 | 99.77 20 |
|
VDDNet | | | 95.36 176 | 94.53 192 | 97.86 131 | 98.10 174 | 95.13 179 | 98.85 85 | 97.75 256 | 90.46 287 | 98.36 71 | 99.39 13 | 73.27 332 | 99.64 120 | 97.98 35 | 96.58 184 | 98.81 162 |
|
SD-MVS | | | 98.64 13 | 98.68 4 | 98.53 88 | 99.33 60 | 98.36 40 | 98.90 73 | 98.85 63 | 97.28 28 | 99.72 2 | 99.39 13 | 96.63 14 | 97.60 312 | 98.17 27 | 99.85 3 | 99.64 66 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DeepPCF-MVS | | 96.37 2 | 97.93 60 | 98.48 16 | 96.30 237 | 99.00 104 | 89.54 303 | 97.43 258 | 98.87 55 | 98.16 2 | 99.26 17 | 99.38 20 | 96.12 27 | 99.64 120 | 98.30 25 | 99.77 25 | 99.72 39 |
|
EI-MVSNet-UG-set | | | 98.41 38 | 98.34 25 | 98.61 80 | 99.45 50 | 96.32 127 | 98.28 183 | 98.68 115 | 97.17 38 | 98.74 49 | 99.37 21 | 95.25 61 | 99.79 86 | 98.57 7 | 99.54 79 | 99.73 36 |
|
APD-MVS_3200maxsize | | | 98.53 31 | 98.33 28 | 99.15 51 | 99.50 39 | 97.92 64 | 99.15 35 | 98.81 75 | 96.24 69 | 99.20 21 | 99.37 21 | 95.30 58 | 99.80 74 | 97.73 49 | 99.67 53 | 99.72 39 |
|
abl_6 | | | 98.30 50 | 98.03 47 | 99.13 52 | 99.56 33 | 97.76 69 | 99.13 39 | 98.82 69 | 96.14 74 | 99.26 17 | 99.37 21 | 93.33 97 | 99.93 14 | 96.96 86 | 99.67 53 | 99.69 47 |
|
LS3D | | | 97.16 104 | 96.66 112 | 98.68 76 | 98.53 142 | 97.19 91 | 98.93 70 | 98.90 44 | 92.83 223 | 95.99 176 | 99.37 21 | 92.12 117 | 99.87 43 | 93.67 201 | 99.57 70 | 98.97 152 |
|
EI-MVSNet-Vis-set | | | 98.47 35 | 98.39 18 | 98.69 75 | 99.46 47 | 96.49 119 | 98.30 180 | 98.69 112 | 97.21 35 | 98.84 42 | 99.36 25 | 95.41 52 | 99.78 90 | 98.62 5 | 99.65 57 | 99.80 9 |
|
ACMMP | | | 98.23 51 | 97.95 51 | 99.09 56 | 99.74 7 | 97.62 73 | 99.03 52 | 99.41 6 | 95.98 80 | 97.60 119 | 99.36 25 | 94.45 84 | 99.93 14 | 97.14 78 | 98.85 117 | 99.70 45 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DP-MVS | | | 96.59 124 | 95.93 134 | 98.57 82 | 99.34 57 | 96.19 133 | 98.70 121 | 98.39 178 | 89.45 303 | 94.52 199 | 99.35 27 | 91.85 123 | 99.85 48 | 92.89 225 | 98.88 114 | 99.68 53 |
|
VDD-MVS | | | 95.82 153 | 95.23 162 | 97.61 152 | 98.84 118 | 93.98 224 | 98.68 124 | 97.40 281 | 95.02 128 | 97.95 93 | 99.34 28 | 74.37 330 | 99.78 90 | 98.64 3 | 96.80 177 | 99.08 143 |
|
SR-MVS | | | 98.57 25 | 98.35 23 | 99.24 39 | 99.53 35 | 98.18 51 | 99.09 44 | 98.82 69 | 96.58 60 | 99.10 26 | 99.32 29 | 95.39 53 | 99.82 61 | 97.70 53 | 99.63 60 | 99.72 39 |
|
PGM-MVS | | | 98.49 33 | 98.23 38 | 99.27 37 | 99.72 12 | 98.08 57 | 98.99 59 | 99.49 5 | 95.43 103 | 99.03 29 | 99.32 29 | 95.56 45 | 99.94 3 | 96.80 101 | 99.77 25 | 99.78 13 |
|
TSAR-MVS + MP. | | | 98.78 5 | 98.62 6 | 99.24 39 | 99.69 24 | 98.28 46 | 99.14 36 | 98.66 126 | 96.84 50 | 99.56 4 | 99.31 31 | 96.34 18 | 99.70 109 | 98.32 24 | 99.73 42 | 99.73 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
Regformer-3 | | | 98.59 19 | 98.50 14 | 98.86 70 | 99.43 52 | 97.05 95 | 98.40 166 | 98.68 115 | 97.43 19 | 99.06 28 | 99.31 31 | 95.80 42 | 99.77 95 | 98.62 5 | 99.76 31 | 99.78 13 |
|
Regformer-4 | | | 98.64 13 | 98.53 10 | 98.99 60 | 99.43 52 | 97.37 81 | 98.40 166 | 98.79 87 | 97.46 18 | 99.09 27 | 99.31 31 | 95.86 41 | 99.80 74 | 98.64 3 | 99.76 31 | 99.79 10 |
|
XVG-OURS | | | 96.55 126 | 96.41 119 | 96.99 180 | 98.75 122 | 93.76 230 | 97.50 255 | 98.52 153 | 95.67 92 | 96.83 144 | 99.30 34 | 88.95 185 | 99.53 137 | 95.88 130 | 96.26 198 | 97.69 206 |
|
9.14 | | | | 98.06 45 | | 99.47 44 | | 98.71 117 | 98.82 69 | 94.36 155 | 99.16 23 | 99.29 35 | 96.05 31 | 99.81 65 | 97.00 82 | 99.71 49 | |
|
MSLP-MVS++ | | | 98.56 27 | 98.57 7 | 98.55 84 | 99.26 80 | 96.80 104 | 98.71 117 | 99.05 24 | 97.28 28 | 98.84 42 | 99.28 36 | 96.47 17 | 99.40 149 | 98.52 13 | 99.70 50 | 99.47 94 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 28 | 98.34 25 | 99.18 46 | 99.25 81 | 98.04 58 | 98.50 153 | 98.78 89 | 97.72 6 | 98.92 40 | 99.28 36 | 95.27 59 | 99.82 61 | 97.55 65 | 99.77 25 | 99.69 47 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
RPSCF | | | 94.87 205 | 95.40 150 | 93.26 310 | 98.89 112 | 82.06 338 | 98.33 172 | 98.06 239 | 90.30 291 | 96.56 156 | 99.26 38 | 87.09 224 | 99.49 140 | 93.82 196 | 96.32 193 | 98.24 191 |
|
ETH3D-3000-0.1 | | | 98.35 43 | 98.00 49 | 99.38 16 | 99.47 44 | 98.68 19 | 98.67 127 | 98.84 64 | 94.66 145 | 99.11 25 | 99.25 39 | 95.46 49 | 99.81 65 | 96.80 101 | 99.73 42 | 99.63 69 |
|
APD-MVS | | | 98.35 43 | 98.00 49 | 99.42 14 | 99.51 37 | 98.72 16 | 98.80 99 | 98.82 69 | 94.52 150 | 99.23 19 | 99.25 39 | 95.54 47 | 99.80 74 | 96.52 110 | 99.77 25 | 99.74 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MP-MVS | | | 98.33 47 | 98.01 48 | 99.28 34 | 99.75 3 | 98.18 51 | 99.22 25 | 98.79 87 | 96.13 75 | 97.92 98 | 99.23 41 | 94.54 79 | 99.94 3 | 96.74 105 | 99.78 22 | 99.73 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 98.51 32 | 98.26 33 | 99.25 38 | 99.75 3 | 98.04 58 | 99.28 16 | 98.81 75 | 96.24 69 | 98.35 72 | 99.23 41 | 95.46 49 | 99.94 3 | 97.42 70 | 99.81 10 | 99.77 20 |
|
MG-MVS | | | 97.81 64 | 97.60 62 | 98.44 95 | 99.12 98 | 95.97 142 | 97.75 240 | 98.78 89 | 96.89 49 | 98.46 63 | 99.22 43 | 93.90 94 | 99.68 115 | 94.81 165 | 99.52 82 | 99.67 57 |
|
Regformer-1 | | | 98.66 11 | 98.51 13 | 99.12 54 | 99.35 55 | 97.81 68 | 98.37 168 | 98.76 93 | 97.49 16 | 99.20 21 | 99.21 44 | 96.08 28 | 99.79 86 | 98.42 19 | 99.73 42 | 99.75 28 |
|
Regformer-2 | | | 98.69 10 | 98.52 11 | 99.19 42 | 99.35 55 | 98.01 60 | 98.37 168 | 98.81 75 | 97.48 17 | 99.21 20 | 99.21 44 | 96.13 26 | 99.80 74 | 98.40 21 | 99.73 42 | 99.75 28 |
|
casdiffmvs | | | 97.63 74 | 97.41 76 | 98.28 105 | 98.33 155 | 96.14 134 | 98.82 92 | 98.32 188 | 96.38 66 | 97.95 93 | 99.21 44 | 91.23 140 | 99.23 162 | 98.12 29 | 98.37 139 | 99.48 92 |
|
Vis-MVSNet | | | 97.42 90 | 97.11 87 | 98.34 103 | 98.66 132 | 96.23 130 | 99.22 25 | 99.00 27 | 96.63 59 | 98.04 83 | 99.21 44 | 88.05 206 | 99.35 153 | 96.01 127 | 99.21 101 | 99.45 100 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
XVS | | | 98.70 9 | 98.49 15 | 99.34 22 | 99.70 22 | 98.35 41 | 99.29 14 | 98.88 49 | 97.40 20 | 98.46 63 | 99.20 48 | 95.90 39 | 99.89 34 | 97.85 42 | 99.74 40 | 99.78 13 |
|
LFMVS | | | 95.86 150 | 94.98 174 | 98.47 93 | 98.87 114 | 96.32 127 | 98.84 88 | 96.02 318 | 93.40 200 | 98.62 57 | 99.20 48 | 74.99 326 | 99.63 123 | 97.72 50 | 97.20 171 | 99.46 98 |
|
HPM-MVS_fast | | | 98.38 40 | 98.13 42 | 99.12 54 | 99.75 3 | 97.86 65 | 99.44 4 | 98.82 69 | 94.46 153 | 98.94 35 | 99.20 48 | 95.16 64 | 99.74 101 | 97.58 61 | 99.85 3 | 99.77 20 |
|
ACMMPR | | | 98.59 19 | 98.36 21 | 99.29 30 | 99.74 7 | 98.15 54 | 99.23 21 | 98.95 34 | 96.10 78 | 98.93 39 | 99.19 51 | 95.70 43 | 99.94 3 | 97.62 57 | 99.79 18 | 99.78 13 |
|
testtj | | | 98.33 47 | 97.95 51 | 99.47 10 | 99.49 43 | 98.70 18 | 98.83 89 | 98.86 60 | 95.48 100 | 98.91 41 | 99.17 52 | 95.48 48 | 99.93 14 | 95.80 134 | 99.53 80 | 99.76 26 |
|
HFP-MVS | | | 98.63 15 | 98.40 17 | 99.32 27 | 99.72 12 | 98.29 44 | 99.23 21 | 98.96 32 | 96.10 78 | 98.94 35 | 99.17 52 | 96.06 29 | 99.92 20 | 97.62 57 | 99.78 22 | 99.75 28 |
|
region2R | | | 98.61 16 | 98.38 19 | 99.29 30 | 99.74 7 | 98.16 53 | 99.23 21 | 98.93 37 | 96.15 73 | 98.94 35 | 99.17 52 | 95.91 38 | 99.94 3 | 97.55 65 | 99.79 18 | 99.78 13 |
|
#test# | | | 98.54 30 | 98.27 32 | 99.32 27 | 99.72 12 | 98.29 44 | 98.98 62 | 98.96 32 | 95.65 94 | 98.94 35 | 99.17 52 | 96.06 29 | 99.92 20 | 97.21 77 | 99.78 22 | 99.75 28 |
|
baseline | | | 97.64 73 | 97.44 75 | 98.25 109 | 98.35 150 | 96.20 131 | 99.00 57 | 98.32 188 | 96.33 68 | 98.03 84 | 99.17 52 | 91.35 136 | 99.16 168 | 98.10 30 | 98.29 144 | 99.39 104 |
|
OPU-MVS | | | | | 99.37 19 | 99.24 87 | 99.05 9 | 99.02 54 | | | | 99.16 57 | 97.81 2 | 99.37 152 | 97.24 75 | 99.73 42 | 99.70 45 |
|
CNVR-MVS | | | 98.78 5 | 98.56 8 | 99.45 13 | 99.32 63 | 98.87 14 | 98.47 156 | 98.81 75 | 97.72 6 | 98.76 48 | 99.16 57 | 97.05 9 | 99.78 90 | 98.06 32 | 99.66 56 | 99.69 47 |
|
3Dnovator | | 94.51 5 | 97.46 84 | 96.93 96 | 99.07 57 | 97.78 192 | 97.64 71 | 99.35 10 | 99.06 22 | 97.02 46 | 93.75 239 | 99.16 57 | 89.25 172 | 99.92 20 | 97.22 76 | 99.75 37 | 99.64 66 |
|
ETH3D cwj APD-0.16 | | | 97.96 55 | 97.52 68 | 99.29 30 | 99.05 100 | 98.52 25 | 98.33 172 | 98.68 115 | 93.18 207 | 98.68 53 | 99.13 60 | 94.62 76 | 99.83 54 | 96.45 112 | 99.55 78 | 99.52 81 |
|
CP-MVS | | | 98.57 25 | 98.36 21 | 99.19 42 | 99.66 26 | 97.86 65 | 99.34 11 | 98.87 55 | 95.96 81 | 98.60 59 | 99.13 60 | 96.05 31 | 99.94 3 | 97.77 47 | 99.86 1 | 99.77 20 |
|
3Dnovator+ | | 94.38 6 | 97.43 89 | 96.78 103 | 99.38 16 | 97.83 190 | 98.52 25 | 99.37 7 | 98.71 107 | 97.09 44 | 92.99 265 | 99.13 60 | 89.36 169 | 99.89 34 | 96.97 84 | 99.57 70 | 99.71 43 |
|
EPNet | | | 97.28 97 | 96.87 99 | 98.51 89 | 94.98 319 | 96.14 134 | 98.90 73 | 97.02 299 | 98.28 1 | 95.99 176 | 99.11 63 | 91.36 135 | 99.89 34 | 96.98 83 | 99.19 103 | 99.50 87 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
114514_t | | | 96.93 112 | 96.27 124 | 98.92 66 | 99.50 39 | 97.63 72 | 98.85 85 | 98.90 44 | 84.80 327 | 97.77 103 | 99.11 63 | 92.84 102 | 99.66 117 | 94.85 162 | 99.77 25 | 99.47 94 |
|
ZNCC-MVS | | | 98.49 33 | 98.20 40 | 99.35 21 | 99.73 11 | 98.39 32 | 99.19 31 | 98.86 60 | 95.77 87 | 98.31 75 | 99.10 65 | 95.46 49 | 99.93 14 | 97.57 64 | 99.81 10 | 99.74 33 |
|
testdata | | | | | 98.26 108 | 99.20 92 | 95.36 169 | | 98.68 115 | 91.89 252 | 98.60 59 | 99.10 65 | 94.44 85 | 99.82 61 | 94.27 182 | 99.44 90 | 99.58 78 |
|
PHI-MVS | | | 98.34 45 | 98.06 45 | 99.18 46 | 99.15 96 | 98.12 56 | 99.04 50 | 99.09 20 | 93.32 203 | 98.83 44 | 99.10 65 | 96.54 15 | 99.83 54 | 97.70 53 | 99.76 31 | 99.59 76 |
|
OMC-MVS | | | 97.55 82 | 97.34 79 | 98.20 112 | 99.33 60 | 95.92 149 | 98.28 183 | 98.59 136 | 95.52 99 | 97.97 92 | 99.10 65 | 93.28 99 | 99.49 140 | 95.09 158 | 98.88 114 | 99.19 128 |
|
COLMAP_ROB | | 93.27 12 | 95.33 179 | 94.87 179 | 96.71 197 | 99.29 73 | 93.24 251 | 98.58 138 | 98.11 226 | 89.92 297 | 93.57 243 | 99.10 65 | 86.37 238 | 99.79 86 | 90.78 267 | 98.10 148 | 97.09 219 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
旧先验1 | | | | | | 99.29 73 | 97.48 77 | | 98.70 111 | | | 99.09 70 | 95.56 45 | | | 99.47 85 | 99.61 71 |
|
XVG-OURS-SEG-HR | | | 96.51 127 | 96.34 121 | 97.02 179 | 98.77 121 | 93.76 230 | 97.79 238 | 98.50 160 | 95.45 102 | 96.94 138 | 99.09 70 | 87.87 211 | 99.55 136 | 96.76 104 | 95.83 207 | 97.74 203 |
|
CPTT-MVS | | | 97.72 69 | 97.32 80 | 98.92 66 | 99.64 27 | 97.10 94 | 99.12 41 | 98.81 75 | 92.34 238 | 98.09 79 | 99.08 72 | 93.01 101 | 99.92 20 | 96.06 124 | 99.77 25 | 99.75 28 |
|
EPP-MVSNet | | | 97.46 84 | 97.28 81 | 97.99 125 | 98.64 134 | 95.38 168 | 99.33 13 | 98.31 190 | 93.61 193 | 97.19 127 | 99.07 73 | 94.05 90 | 99.23 162 | 96.89 91 | 98.43 138 | 99.37 106 |
|
GST-MVS | | | 98.43 37 | 98.12 43 | 99.34 22 | 99.72 12 | 98.38 33 | 99.09 44 | 98.82 69 | 95.71 90 | 98.73 51 | 99.06 74 | 95.27 59 | 99.93 14 | 97.07 81 | 99.63 60 | 99.72 39 |
|
OpenMVS | | 93.04 13 | 95.83 152 | 95.00 172 | 98.32 104 | 97.18 240 | 97.32 82 | 99.21 28 | 98.97 30 | 89.96 296 | 91.14 298 | 99.05 75 | 86.64 232 | 99.92 20 | 93.38 207 | 99.47 85 | 97.73 204 |
|
EI-MVSNet | | | 95.96 145 | 95.83 137 | 96.36 233 | 97.93 184 | 93.70 236 | 98.12 206 | 98.27 199 | 93.70 185 | 95.07 184 | 99.02 76 | 92.23 113 | 98.54 238 | 94.68 166 | 93.46 236 | 96.84 243 |
|
CVMVSNet | | | 95.43 169 | 96.04 131 | 93.57 306 | 97.93 184 | 83.62 333 | 98.12 206 | 98.59 136 | 95.68 91 | 96.56 156 | 99.02 76 | 87.51 217 | 97.51 316 | 93.56 205 | 97.44 167 | 99.60 74 |
|
TSAR-MVS + GP. | | | 98.38 40 | 98.24 37 | 98.81 71 | 99.22 89 | 97.25 89 | 98.11 208 | 98.29 198 | 97.19 37 | 98.99 34 | 99.02 76 | 96.22 19 | 99.67 116 | 98.52 13 | 98.56 130 | 99.51 85 |
|
QAPM | | | 96.29 134 | 95.40 150 | 98.96 64 | 97.85 189 | 97.60 74 | 99.23 21 | 98.93 37 | 89.76 298 | 93.11 262 | 99.02 76 | 89.11 177 | 99.93 14 | 91.99 248 | 99.62 62 | 99.34 107 |
|
MVS_111021_LR | | | 98.34 45 | 98.23 38 | 98.67 77 | 99.27 78 | 96.90 101 | 97.95 221 | 99.58 3 | 97.14 40 | 98.44 67 | 99.01 80 | 95.03 68 | 99.62 125 | 97.91 37 | 99.75 37 | 99.50 87 |
|
MVS_111021_HR | | | 98.47 35 | 98.34 25 | 98.88 69 | 99.22 89 | 97.32 82 | 97.91 224 | 99.58 3 | 97.20 36 | 98.33 73 | 99.00 81 | 95.99 34 | 99.64 120 | 98.05 34 | 99.76 31 | 99.69 47 |
|
IS-MVSNet | | | 97.22 99 | 96.88 98 | 98.25 109 | 98.85 117 | 96.36 125 | 99.19 31 | 97.97 245 | 95.39 105 | 97.23 126 | 98.99 82 | 91.11 142 | 98.93 200 | 94.60 170 | 98.59 128 | 99.47 94 |
|
Anonymous20240529 | | | 95.10 191 | 94.22 208 | 97.75 139 | 99.01 103 | 94.26 218 | 98.87 82 | 98.83 68 | 85.79 324 | 96.64 152 | 98.97 83 | 78.73 308 | 99.85 48 | 96.27 117 | 94.89 211 | 99.12 138 |
|
原ACMM1 | | | | | 98.65 78 | 99.32 63 | 96.62 110 | | 98.67 123 | 93.27 206 | 97.81 102 | 98.97 83 | 95.18 63 | 99.83 54 | 93.84 195 | 99.46 88 | 99.50 87 |
|
1121 | | | 97.37 94 | 96.77 107 | 99.16 49 | 99.34 57 | 97.99 63 | 98.19 196 | 98.68 115 | 90.14 294 | 98.01 89 | 98.97 83 | 94.80 74 | 99.87 43 | 93.36 209 | 99.46 88 | 99.61 71 |
|
HPM-MVS | | | 98.36 42 | 98.10 44 | 99.13 52 | 99.74 7 | 97.82 67 | 99.53 1 | 98.80 85 | 94.63 146 | 98.61 58 | 98.97 83 | 95.13 65 | 99.77 95 | 97.65 55 | 99.83 9 | 99.79 10 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DELS-MVS | | | 98.40 39 | 98.20 40 | 98.99 60 | 99.00 104 | 97.66 70 | 97.75 240 | 98.89 46 | 97.71 8 | 98.33 73 | 98.97 83 | 94.97 69 | 99.88 42 | 98.42 19 | 99.76 31 | 99.42 103 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet | | | 98.05 53 | 97.76 57 | 98.90 68 | 98.73 123 | 97.27 85 | 98.35 170 | 98.78 89 | 97.37 25 | 97.72 108 | 98.96 88 | 91.53 133 | 99.92 20 | 98.79 2 | 99.65 57 | 99.51 85 |
|
test222 | | | | | | 99.23 88 | 97.17 92 | 97.40 259 | 98.66 126 | 88.68 309 | 98.05 81 | 98.96 88 | 94.14 89 | | | 99.53 80 | 99.61 71 |
|
æ–°å‡ ä½•1 | | | | | 99.16 49 | 99.34 57 | 98.01 60 | | 98.69 112 | 90.06 295 | 98.13 77 | 98.95 90 | 94.60 77 | 99.89 34 | 91.97 249 | 99.47 85 | 99.59 76 |
|
DP-MVS Recon | | | 97.86 62 | 97.46 73 | 99.06 58 | 99.53 35 | 98.35 41 | 98.33 172 | 98.89 46 | 92.62 227 | 98.05 81 | 98.94 91 | 95.34 57 | 99.65 118 | 96.04 125 | 99.42 91 | 99.19 128 |
|
CANet_DTU | | | 96.96 111 | 96.55 115 | 98.21 111 | 98.17 170 | 96.07 136 | 97.98 219 | 98.21 206 | 97.24 34 | 97.13 129 | 98.93 92 | 86.88 229 | 99.91 29 | 95.00 160 | 99.37 96 | 98.66 174 |
|
NCCC | | | 98.61 16 | 98.35 23 | 99.38 16 | 99.28 77 | 98.61 22 | 98.45 157 | 98.76 93 | 97.82 5 | 98.45 66 | 98.93 92 | 96.65 13 | 99.83 54 | 97.38 72 | 99.41 92 | 99.71 43 |
|
CSCG | | | 97.85 63 | 97.74 58 | 98.20 112 | 99.67 25 | 95.16 176 | 99.22 25 | 99.32 7 | 93.04 212 | 97.02 136 | 98.92 94 | 95.36 56 | 99.91 29 | 97.43 69 | 99.64 59 | 99.52 81 |
|
CHOSEN 1792x2688 | | | 97.12 106 | 96.80 100 | 98.08 120 | 99.30 70 | 94.56 208 | 98.05 212 | 99.71 1 | 93.57 194 | 97.09 130 | 98.91 95 | 88.17 201 | 99.89 34 | 96.87 97 | 99.56 75 | 99.81 8 |
|
diffmvs | | | 97.58 79 | 97.40 77 | 98.13 117 | 98.32 157 | 95.81 154 | 98.06 211 | 98.37 181 | 96.20 71 | 98.74 49 | 98.89 96 | 91.31 138 | 99.25 159 | 98.16 28 | 98.52 131 | 99.34 107 |
|
PVSNet_Blended_VisFu | | | 97.70 70 | 97.46 73 | 98.44 95 | 99.27 78 | 95.91 150 | 98.63 132 | 99.16 17 | 94.48 152 | 97.67 111 | 98.88 97 | 92.80 103 | 99.91 29 | 97.11 79 | 99.12 105 | 99.50 87 |
|
Vis-MVSNet (Re-imp) | | | 96.87 115 | 96.55 115 | 97.83 133 | 98.73 123 | 95.46 166 | 99.20 29 | 98.30 196 | 94.96 131 | 96.60 155 | 98.87 98 | 90.05 160 | 98.59 234 | 93.67 201 | 98.60 127 | 99.46 98 |
|
ETH3 D test6400 | | | 97.59 78 | 97.01 92 | 99.34 22 | 99.40 54 | 98.56 23 | 98.20 192 | 98.81 75 | 91.63 260 | 98.44 67 | 98.85 99 | 93.98 93 | 99.82 61 | 94.11 188 | 99.69 51 | 99.64 66 |
|
CDPH-MVS | | | 97.94 59 | 97.49 71 | 99.28 34 | 99.47 44 | 98.44 29 | 97.91 224 | 98.67 123 | 92.57 230 | 98.77 47 | 98.85 99 | 95.93 37 | 99.72 103 | 95.56 144 | 99.69 51 | 99.68 53 |
|
VNet | | | 97.79 66 | 97.40 77 | 98.96 64 | 98.88 113 | 97.55 75 | 98.63 132 | 98.93 37 | 96.74 54 | 99.02 30 | 98.84 101 | 90.33 157 | 99.83 54 | 98.53 9 | 96.66 181 | 99.50 87 |
|
HPM-MVS++ | | | 98.58 22 | 98.25 34 | 99.55 5 | 99.50 39 | 99.08 8 | 98.72 116 | 98.66 126 | 97.51 15 | 98.15 76 | 98.83 102 | 95.70 43 | 99.92 20 | 97.53 67 | 99.67 53 | 99.66 61 |
|
MVSFormer | | | 97.57 80 | 97.49 71 | 97.84 132 | 98.07 175 | 95.76 155 | 99.47 2 | 98.40 176 | 94.98 129 | 98.79 45 | 98.83 102 | 92.34 108 | 98.41 258 | 96.91 88 | 99.59 67 | 99.34 107 |
|
jason | | | 97.32 96 | 97.08 89 | 98.06 122 | 97.45 221 | 95.59 158 | 97.87 230 | 97.91 250 | 94.79 137 | 98.55 61 | 98.83 102 | 91.12 141 | 99.23 162 | 97.58 61 | 99.60 64 | 99.34 107 |
jason: jason. |
Anonymous202405211 | | | 95.28 181 | 94.49 194 | 97.67 147 | 99.00 104 | 93.75 232 | 98.70 121 | 97.04 296 | 90.66 284 | 96.49 163 | 98.80 105 | 78.13 311 | 99.83 54 | 96.21 120 | 95.36 210 | 99.44 101 |
|
MCST-MVS | | | 98.65 12 | 98.37 20 | 99.48 9 | 99.60 30 | 98.87 14 | 98.41 165 | 98.68 115 | 97.04 45 | 98.52 62 | 98.80 105 | 96.78 11 | 99.83 54 | 97.93 36 | 99.61 63 | 99.74 33 |
|
DVP-MVS | | | 98.74 7 | 98.55 9 | 99.29 30 | 99.75 3 | 98.23 47 | 99.26 18 | 98.88 49 | 97.52 14 | 99.41 10 | 98.78 107 | 96.00 33 | 99.79 86 | 97.79 46 | 99.59 67 | 99.85 2 |
|
OPM-MVS | | | 95.69 159 | 95.33 158 | 96.76 195 | 96.16 292 | 94.63 201 | 98.43 162 | 98.39 178 | 96.64 58 | 95.02 186 | 98.78 107 | 85.15 256 | 99.05 184 | 95.21 157 | 94.20 217 | 96.60 271 |
|
AllTest | | | 95.24 183 | 94.65 187 | 96.99 180 | 99.25 81 | 93.21 252 | 98.59 136 | 98.18 212 | 91.36 267 | 93.52 245 | 98.77 109 | 84.67 263 | 99.72 103 | 89.70 285 | 97.87 154 | 98.02 196 |
|
TestCases | | | | | 96.99 180 | 99.25 81 | 93.21 252 | | 98.18 212 | 91.36 267 | 93.52 245 | 98.77 109 | 84.67 263 | 99.72 103 | 89.70 285 | 97.87 154 | 98.02 196 |
|
LPG-MVS_test | | | 95.62 162 | 95.34 156 | 96.47 224 | 97.46 217 | 93.54 239 | 98.99 59 | 98.54 149 | 94.67 143 | 94.36 209 | 98.77 109 | 85.39 251 | 99.11 177 | 95.71 139 | 94.15 220 | 96.76 251 |
|
LGP-MVS_train | | | | | 96.47 224 | 97.46 217 | 93.54 239 | | 98.54 149 | 94.67 143 | 94.36 209 | 98.77 109 | 85.39 251 | 99.11 177 | 95.71 139 | 94.15 220 | 96.76 251 |
|
MSDG | | | 95.93 147 | 95.30 161 | 97.83 133 | 98.90 111 | 95.36 169 | 96.83 304 | 98.37 181 | 91.32 271 | 94.43 206 | 98.73 113 | 90.27 158 | 99.60 126 | 90.05 278 | 98.82 119 | 98.52 181 |
|
test_prior3 | | | 98.22 52 | 97.90 54 | 99.19 42 | 99.31 65 | 98.22 48 | 97.80 236 | 98.84 64 | 96.12 76 | 97.89 100 | 98.69 114 | 95.96 35 | 99.70 109 | 96.89 91 | 99.60 64 | 99.65 63 |
|
test_prior2 | | | | | | | | 97.80 236 | | 96.12 76 | 97.89 100 | 98.69 114 | 95.96 35 | | 96.89 91 | 99.60 64 | |
|
TEST9 | | | | | | 99.31 65 | 98.50 27 | 97.92 222 | 98.73 101 | 92.63 226 | 97.74 106 | 98.68 116 | 96.20 22 | 99.80 74 | | | |
|
train_agg | | | 97.97 54 | 97.52 68 | 99.33 26 | 99.31 65 | 98.50 27 | 97.92 222 | 98.73 101 | 92.98 215 | 97.74 106 | 98.68 116 | 96.20 22 | 99.80 74 | 96.59 107 | 99.57 70 | 99.68 53 |
|
AdaColmap | | | 97.15 105 | 96.70 108 | 98.48 92 | 99.16 94 | 96.69 109 | 98.01 216 | 98.89 46 | 94.44 154 | 96.83 144 | 98.68 116 | 90.69 151 | 99.76 97 | 94.36 178 | 99.29 100 | 98.98 151 |
|
test_8 | | | | | | 99.29 73 | 98.44 29 | 97.89 228 | 98.72 103 | 92.98 215 | 97.70 109 | 98.66 119 | 96.20 22 | 99.80 74 | | | |
|
agg_prior1 | | | 97.95 58 | 97.51 70 | 99.28 34 | 99.30 70 | 98.38 33 | 97.81 235 | 98.72 103 | 93.16 209 | 97.57 120 | 98.66 119 | 96.14 25 | 99.81 65 | 96.63 106 | 99.56 75 | 99.66 61 |
|
tttt0517 | | | 96.07 140 | 95.51 149 | 97.78 136 | 98.41 147 | 94.84 192 | 99.28 16 | 94.33 336 | 94.26 158 | 97.64 115 | 98.64 121 | 84.05 275 | 99.47 145 | 95.34 149 | 97.60 165 | 99.03 146 |
|
cdsmvs_eth3d_5k | | | 23.98 320 | 31.98 321 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 98.59 136 | 0.00 351 | 0.00 352 | 98.61 122 | 90.60 152 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
lupinMVS | | | 97.44 88 | 97.22 84 | 98.12 119 | 98.07 175 | 95.76 155 | 97.68 245 | 97.76 255 | 94.50 151 | 98.79 45 | 98.61 122 | 92.34 108 | 99.30 156 | 97.58 61 | 99.59 67 | 99.31 113 |
|
BH-RMVSNet | | | 95.92 148 | 95.32 159 | 97.69 145 | 98.32 157 | 94.64 200 | 98.19 196 | 97.45 277 | 94.56 147 | 96.03 174 | 98.61 122 | 85.02 257 | 99.12 174 | 90.68 269 | 99.06 107 | 99.30 116 |
|
TAMVS | | | 97.02 109 | 96.79 102 | 97.70 144 | 98.06 177 | 95.31 173 | 98.52 148 | 98.31 190 | 93.95 170 | 97.05 135 | 98.61 122 | 93.49 96 | 98.52 240 | 95.33 150 | 97.81 156 | 99.29 118 |
|
TAPA-MVS | | 93.98 7 | 95.35 177 | 94.56 191 | 97.74 140 | 99.13 97 | 94.83 194 | 98.33 172 | 98.64 131 | 86.62 316 | 96.29 169 | 98.61 122 | 94.00 92 | 99.29 157 | 80.00 330 | 99.41 92 | 99.09 140 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
UniMVSNet_ETH3D | | | 94.24 242 | 93.33 257 | 96.97 183 | 97.19 239 | 93.38 246 | 98.74 108 | 98.57 142 | 91.21 278 | 93.81 236 | 98.58 127 | 72.85 333 | 98.77 220 | 95.05 159 | 93.93 228 | 98.77 165 |
|
DPM-MVS | | | 97.55 82 | 96.99 94 | 99.23 41 | 99.04 102 | 98.55 24 | 97.17 280 | 98.35 184 | 94.85 136 | 97.93 97 | 98.58 127 | 95.07 67 | 99.71 108 | 92.60 229 | 99.34 97 | 99.43 102 |
|
F-COLMAP | | | 97.09 108 | 96.80 100 | 97.97 126 | 99.45 50 | 94.95 189 | 98.55 146 | 98.62 133 | 93.02 213 | 96.17 172 | 98.58 127 | 94.01 91 | 99.81 65 | 93.95 192 | 98.90 112 | 99.14 136 |
|
WTY-MVS | | | 97.37 94 | 96.92 97 | 98.72 74 | 98.86 115 | 96.89 103 | 98.31 178 | 98.71 107 | 95.26 114 | 97.67 111 | 98.56 130 | 92.21 114 | 99.78 90 | 95.89 129 | 96.85 176 | 99.48 92 |
|
CNLPA | | | 97.45 87 | 97.03 91 | 98.73 73 | 99.05 100 | 97.44 80 | 98.07 210 | 98.53 151 | 95.32 111 | 96.80 148 | 98.53 131 | 93.32 98 | 99.72 103 | 94.31 181 | 99.31 99 | 99.02 147 |
|
ACMP | | 93.49 10 | 95.34 178 | 94.98 174 | 96.43 229 | 97.67 199 | 93.48 241 | 98.73 112 | 98.44 169 | 94.94 134 | 92.53 278 | 98.53 131 | 84.50 267 | 99.14 172 | 95.48 147 | 94.00 225 | 96.66 266 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMH | | 92.88 16 | 94.55 224 | 93.95 227 | 96.34 235 | 97.63 202 | 93.26 250 | 98.81 98 | 98.49 164 | 93.43 199 | 89.74 308 | 98.53 131 | 81.91 289 | 99.08 182 | 93.69 198 | 93.30 242 | 96.70 260 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OurMVSNet-221017-0 | | | 94.21 243 | 94.00 223 | 94.85 286 | 95.60 308 | 89.22 308 | 98.89 77 | 97.43 279 | 95.29 112 | 92.18 287 | 98.52 134 | 82.86 285 | 98.59 234 | 93.46 206 | 91.76 258 | 96.74 253 |
|
CDS-MVSNet | | | 96.99 110 | 96.69 109 | 97.90 130 | 98.05 178 | 95.98 137 | 98.20 192 | 98.33 187 | 93.67 190 | 96.95 137 | 98.49 135 | 93.54 95 | 98.42 251 | 95.24 156 | 97.74 160 | 99.31 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
sss | | | 97.39 92 | 96.98 95 | 98.61 80 | 98.60 138 | 96.61 112 | 98.22 188 | 98.93 37 | 93.97 169 | 98.01 89 | 98.48 136 | 91.98 121 | 99.85 48 | 96.45 112 | 98.15 146 | 99.39 104 |
|
ACMH+ | | 92.99 14 | 94.30 238 | 93.77 239 | 95.88 255 | 97.81 191 | 92.04 267 | 98.71 117 | 98.37 181 | 93.99 168 | 90.60 304 | 98.47 137 | 80.86 297 | 99.05 184 | 92.75 227 | 92.40 251 | 96.55 279 |
|
ACMM | | 93.85 9 | 95.69 159 | 95.38 154 | 96.61 207 | 97.61 203 | 93.84 228 | 98.91 72 | 98.44 169 | 95.25 115 | 94.28 213 | 98.47 137 | 86.04 245 | 99.12 174 | 95.50 146 | 93.95 227 | 96.87 240 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RRT_MVS | | | 96.04 142 | 95.53 147 | 97.56 155 | 97.07 247 | 97.32 82 | 98.57 143 | 98.09 231 | 95.15 120 | 95.02 186 | 98.44 139 | 88.20 200 | 98.58 236 | 96.17 121 | 93.09 245 | 96.79 247 |
|
1112_ss | | | 96.63 121 | 96.00 133 | 98.50 90 | 98.56 139 | 96.37 124 | 98.18 200 | 98.10 228 | 92.92 218 | 94.84 190 | 98.43 140 | 92.14 116 | 99.58 128 | 94.35 179 | 96.51 187 | 99.56 80 |
|
ab-mvs-re | | | 8.20 323 | 10.94 325 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 98.43 140 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
test_yl | | | 97.22 99 | 96.78 103 | 98.54 86 | 98.73 123 | 96.60 113 | 98.45 157 | 98.31 190 | 94.70 139 | 98.02 85 | 98.42 142 | 90.80 148 | 99.70 109 | 96.81 99 | 96.79 178 | 99.34 107 |
|
DCV-MVSNet | | | 97.22 99 | 96.78 103 | 98.54 86 | 98.73 123 | 96.60 113 | 98.45 157 | 98.31 190 | 94.70 139 | 98.02 85 | 98.42 142 | 90.80 148 | 99.70 109 | 96.81 99 | 96.79 178 | 99.34 107 |
|
xiu_mvs_v1_base_debu | | | 97.60 75 | 97.56 65 | 97.72 141 | 98.35 150 | 95.98 137 | 97.86 231 | 98.51 155 | 97.13 41 | 99.01 31 | 98.40 144 | 91.56 129 | 99.80 74 | 98.53 9 | 98.68 122 | 97.37 214 |
|
xiu_mvs_v1_base | | | 97.60 75 | 97.56 65 | 97.72 141 | 98.35 150 | 95.98 137 | 97.86 231 | 98.51 155 | 97.13 41 | 99.01 31 | 98.40 144 | 91.56 129 | 99.80 74 | 98.53 9 | 98.68 122 | 97.37 214 |
|
xiu_mvs_v1_base_debi | | | 97.60 75 | 97.56 65 | 97.72 141 | 98.35 150 | 95.98 137 | 97.86 231 | 98.51 155 | 97.13 41 | 99.01 31 | 98.40 144 | 91.56 129 | 99.80 74 | 98.53 9 | 98.68 122 | 97.37 214 |
|
mvs_tets | | | 95.41 172 | 95.00 172 | 96.65 202 | 95.58 309 | 94.42 211 | 99.00 57 | 98.55 146 | 95.73 89 | 93.21 257 | 98.38 147 | 83.45 284 | 98.63 229 | 97.09 80 | 94.00 225 | 96.91 234 |
|
FC-MVSNet-test | | | 96.42 130 | 96.05 130 | 97.53 157 | 96.95 252 | 97.27 85 | 99.36 8 | 99.23 12 | 95.83 85 | 93.93 229 | 98.37 148 | 92.00 120 | 98.32 267 | 96.02 126 | 92.72 249 | 97.00 224 |
|
jajsoiax | | | 95.45 168 | 95.03 171 | 96.73 196 | 95.42 316 | 94.63 201 | 99.14 36 | 98.52 153 | 95.74 88 | 93.22 256 | 98.36 149 | 83.87 280 | 98.65 228 | 96.95 87 | 94.04 223 | 96.91 234 |
|
nrg030 | | | 96.28 136 | 95.72 139 | 97.96 128 | 96.90 257 | 98.15 54 | 99.39 5 | 98.31 190 | 95.47 101 | 94.42 207 | 98.35 150 | 92.09 118 | 98.69 223 | 97.50 68 | 89.05 293 | 97.04 222 |
|
FIs | | | 96.51 127 | 96.12 129 | 97.67 147 | 97.13 243 | 97.54 76 | 99.36 8 | 99.22 14 | 95.89 82 | 94.03 227 | 98.35 150 | 91.98 121 | 98.44 248 | 96.40 115 | 92.76 248 | 97.01 223 |
|
ITE_SJBPF | | | | | 95.44 269 | 97.42 222 | 91.32 280 | | 97.50 272 | 95.09 126 | 93.59 241 | 98.35 150 | 81.70 290 | 98.88 208 | 89.71 284 | 93.39 240 | 96.12 306 |
|
LTVRE_ROB | | 92.95 15 | 94.60 219 | 93.90 230 | 96.68 201 | 97.41 225 | 94.42 211 | 98.52 148 | 98.59 136 | 91.69 258 | 91.21 297 | 98.35 150 | 84.87 260 | 99.04 187 | 91.06 262 | 93.44 239 | 96.60 271 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PS-MVSNAJss | | | 96.43 129 | 96.26 125 | 96.92 189 | 95.84 303 | 95.08 181 | 99.16 34 | 98.50 160 | 95.87 84 | 93.84 235 | 98.34 154 | 94.51 80 | 98.61 230 | 96.88 94 | 93.45 238 | 97.06 221 |
|
EPNet_dtu | | | 95.21 185 | 94.95 176 | 95.99 247 | 96.17 290 | 90.45 294 | 98.16 202 | 97.27 287 | 96.77 52 | 93.14 261 | 98.33 155 | 90.34 156 | 98.42 251 | 85.57 316 | 98.81 120 | 99.09 140 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PCF-MVS | | 93.45 11 | 94.68 213 | 93.43 255 | 98.42 98 | 98.62 136 | 96.77 106 | 95.48 325 | 98.20 208 | 84.63 328 | 93.34 253 | 98.32 156 | 88.55 193 | 99.81 65 | 84.80 321 | 98.96 110 | 98.68 171 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thisisatest0530 | | | 96.01 143 | 95.36 155 | 97.97 126 | 98.38 148 | 95.52 164 | 98.88 80 | 94.19 338 | 94.04 163 | 97.64 115 | 98.31 157 | 83.82 282 | 99.46 146 | 95.29 153 | 97.70 162 | 98.93 156 |
|
PLC | | 95.07 4 | 97.20 102 | 96.78 103 | 98.44 95 | 99.29 73 | 96.31 129 | 98.14 203 | 98.76 93 | 92.41 236 | 96.39 167 | 98.31 157 | 94.92 71 | 99.78 90 | 94.06 190 | 98.77 121 | 99.23 123 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
HQP_MVS | | | 96.14 139 | 95.90 135 | 96.85 191 | 97.42 222 | 94.60 206 | 98.80 99 | 98.56 144 | 97.28 28 | 95.34 180 | 98.28 159 | 87.09 224 | 99.03 188 | 96.07 122 | 94.27 214 | 96.92 229 |
|
plane_prior4 | | | | | | | | | | | | 98.28 159 | | | | | |
|
API-MVS | | | 97.41 91 | 97.25 82 | 97.91 129 | 98.70 128 | 96.80 104 | 98.82 92 | 98.69 112 | 94.53 148 | 98.11 78 | 98.28 159 | 94.50 83 | 99.57 129 | 94.12 187 | 99.49 83 | 97.37 214 |
|
mvs_anonymous | | | 96.70 120 | 96.53 117 | 97.18 170 | 98.19 166 | 93.78 229 | 98.31 178 | 98.19 209 | 94.01 166 | 94.47 201 | 98.27 162 | 92.08 119 | 98.46 245 | 97.39 71 | 97.91 152 | 99.31 113 |
|
XXY-MVS | | | 95.20 186 | 94.45 199 | 97.46 158 | 96.75 265 | 96.56 116 | 98.86 84 | 98.65 130 | 93.30 205 | 93.27 255 | 98.27 162 | 84.85 261 | 98.87 209 | 94.82 164 | 91.26 265 | 96.96 226 |
|
SixPastTwentyTwo | | | 93.34 267 | 92.86 265 | 94.75 290 | 95.67 306 | 89.41 306 | 98.75 105 | 96.67 315 | 93.89 172 | 90.15 306 | 98.25 164 | 80.87 296 | 98.27 276 | 90.90 265 | 90.64 272 | 96.57 275 |
|
VPNet | | | 94.99 197 | 94.19 210 | 97.40 163 | 97.16 241 | 96.57 115 | 98.71 117 | 98.97 30 | 95.67 92 | 94.84 190 | 98.24 165 | 80.36 300 | 98.67 227 | 96.46 111 | 87.32 312 | 96.96 226 |
|
PVSNet_Blended | | | 97.38 93 | 97.12 86 | 98.14 115 | 99.25 81 | 95.35 171 | 97.28 272 | 99.26 8 | 93.13 210 | 97.94 95 | 98.21 166 | 92.74 104 | 99.81 65 | 96.88 94 | 99.40 94 | 99.27 120 |
|
HyFIR lowres test | | | 96.90 114 | 96.49 118 | 98.14 115 | 99.33 60 | 95.56 161 | 97.38 261 | 99.65 2 | 92.34 238 | 97.61 117 | 98.20 167 | 89.29 171 | 99.10 180 | 96.97 84 | 97.60 165 | 99.77 20 |
|
baseline1 | | | 95.84 151 | 95.12 167 | 98.01 124 | 98.49 144 | 95.98 137 | 98.73 112 | 97.03 297 | 95.37 108 | 96.22 170 | 98.19 168 | 89.96 162 | 99.16 168 | 94.60 170 | 87.48 309 | 98.90 158 |
|
ab-mvs | | | 96.42 130 | 95.71 142 | 98.55 84 | 98.63 135 | 96.75 107 | 97.88 229 | 98.74 97 | 93.84 175 | 96.54 160 | 98.18 169 | 85.34 254 | 99.75 99 | 95.93 128 | 96.35 191 | 99.15 134 |
|
xiu_mvs_v2_base | | | 97.66 72 | 97.70 59 | 97.56 155 | 98.61 137 | 95.46 166 | 97.44 256 | 98.46 165 | 97.15 39 | 98.65 56 | 98.15 170 | 94.33 86 | 99.80 74 | 97.84 44 | 98.66 126 | 97.41 210 |
|
USDC | | | 93.33 268 | 92.71 268 | 95.21 274 | 96.83 261 | 90.83 287 | 96.91 294 | 97.50 272 | 93.84 175 | 90.72 302 | 98.14 171 | 77.69 314 | 98.82 215 | 89.51 289 | 93.21 244 | 95.97 310 |
|
EU-MVSNet | | | 93.66 261 | 94.14 215 | 92.25 315 | 95.96 299 | 83.38 334 | 98.52 148 | 98.12 224 | 94.69 141 | 92.61 275 | 98.13 172 | 87.36 222 | 96.39 332 | 91.82 251 | 90.00 279 | 96.98 225 |
|
CHOSEN 280x420 | | | 97.18 103 | 97.18 85 | 97.20 168 | 98.81 119 | 93.27 249 | 95.78 323 | 99.15 18 | 95.25 115 | 96.79 149 | 98.11 173 | 92.29 110 | 99.07 183 | 98.56 8 | 99.85 3 | 99.25 122 |
|
MVSTER | | | 96.06 141 | 95.72 139 | 97.08 177 | 98.23 161 | 95.93 148 | 98.73 112 | 98.27 199 | 94.86 135 | 95.07 184 | 98.09 174 | 88.21 199 | 98.54 238 | 96.59 107 | 93.46 236 | 96.79 247 |
|
MVS_Test | | | 97.28 97 | 97.00 93 | 98.13 117 | 98.33 155 | 95.97 142 | 98.74 108 | 98.07 235 | 94.27 157 | 98.44 67 | 98.07 175 | 92.48 106 | 99.26 158 | 96.43 114 | 98.19 145 | 99.16 133 |
|
PAPM_NR | | | 97.46 84 | 97.11 87 | 98.50 90 | 99.50 39 | 96.41 123 | 98.63 132 | 98.60 134 | 95.18 118 | 97.06 134 | 98.06 176 | 94.26 88 | 99.57 129 | 93.80 197 | 98.87 116 | 99.52 81 |
|
PatchMatch-RL | | | 96.59 124 | 96.03 132 | 98.27 106 | 99.31 65 | 96.51 118 | 97.91 224 | 99.06 22 | 93.72 182 | 96.92 141 | 98.06 176 | 88.50 195 | 99.65 118 | 91.77 253 | 99.00 109 | 98.66 174 |
|
Effi-MVS+ | | | 97.12 106 | 96.69 109 | 98.39 101 | 98.19 166 | 96.72 108 | 97.37 263 | 98.43 172 | 93.71 183 | 97.65 114 | 98.02 178 | 92.20 115 | 99.25 159 | 96.87 97 | 97.79 157 | 99.19 128 |
|
MVS | | | 94.67 216 | 93.54 251 | 98.08 120 | 96.88 258 | 96.56 116 | 98.19 196 | 98.50 160 | 78.05 336 | 92.69 273 | 98.02 178 | 91.07 144 | 99.63 123 | 90.09 275 | 98.36 141 | 98.04 195 |
|
BH-untuned | | | 95.95 146 | 95.72 139 | 96.65 202 | 98.55 141 | 92.26 262 | 98.23 187 | 97.79 254 | 93.73 181 | 94.62 196 | 98.01 180 | 88.97 184 | 99.00 191 | 93.04 219 | 98.51 132 | 98.68 171 |
|
CLD-MVS | | | 95.62 162 | 95.34 156 | 96.46 227 | 97.52 214 | 93.75 232 | 97.27 273 | 98.46 165 | 95.53 98 | 94.42 207 | 98.00 181 | 86.21 240 | 98.97 192 | 96.25 119 | 94.37 212 | 96.66 266 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HY-MVS | | 93.96 8 | 96.82 117 | 96.23 127 | 98.57 82 | 98.46 145 | 97.00 96 | 98.14 203 | 98.21 206 | 93.95 170 | 96.72 150 | 97.99 182 | 91.58 128 | 99.76 97 | 94.51 175 | 96.54 186 | 98.95 155 |
|
MAR-MVS | | | 96.91 113 | 96.40 120 | 98.45 94 | 98.69 130 | 96.90 101 | 98.66 130 | 98.68 115 | 92.40 237 | 97.07 133 | 97.96 183 | 91.54 132 | 99.75 99 | 93.68 199 | 98.92 111 | 98.69 170 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PS-CasMVS | | | 94.67 216 | 93.99 225 | 96.71 197 | 96.68 269 | 95.26 174 | 99.13 39 | 99.03 25 | 93.68 188 | 92.33 284 | 97.95 184 | 85.35 253 | 98.10 285 | 93.59 203 | 88.16 304 | 96.79 247 |
|
mvs-test1 | | | 96.60 122 | 96.68 111 | 96.37 232 | 97.89 187 | 91.81 269 | 98.56 144 | 98.10 228 | 96.57 61 | 96.52 162 | 97.94 185 | 90.81 146 | 99.45 147 | 95.72 137 | 98.01 149 | 97.86 200 |
|
TranMVSNet+NR-MVSNet | | | 95.14 189 | 94.48 195 | 97.11 175 | 96.45 280 | 96.36 125 | 99.03 52 | 99.03 25 | 95.04 127 | 93.58 242 | 97.93 186 | 88.27 198 | 98.03 292 | 94.13 186 | 86.90 318 | 96.95 228 |
|
testgi | | | 93.06 275 | 92.45 273 | 94.88 285 | 96.43 281 | 89.90 297 | 98.75 105 | 97.54 269 | 95.60 95 | 91.63 295 | 97.91 187 | 74.46 329 | 97.02 322 | 86.10 312 | 93.67 231 | 97.72 205 |
|
CP-MVSNet | | | 94.94 203 | 94.30 206 | 96.83 192 | 96.72 267 | 95.56 161 | 99.11 42 | 98.95 34 | 93.89 172 | 92.42 283 | 97.90 188 | 87.19 223 | 98.12 284 | 94.32 180 | 88.21 302 | 96.82 246 |
|
XVG-ACMP-BASELINE | | | 94.54 225 | 94.14 215 | 95.75 260 | 96.55 274 | 91.65 275 | 98.11 208 | 98.44 169 | 94.96 131 | 94.22 217 | 97.90 188 | 79.18 306 | 99.11 177 | 94.05 191 | 93.85 229 | 96.48 292 |
|
PS-MVSNAJ | | | 97.73 68 | 97.77 56 | 97.62 151 | 98.68 131 | 95.58 159 | 97.34 267 | 98.51 155 | 97.29 27 | 98.66 55 | 97.88 190 | 94.51 80 | 99.90 32 | 97.87 41 | 99.17 104 | 97.39 212 |
|
RRT_test8_iter05 | | | 94.56 223 | 94.19 210 | 95.67 262 | 97.60 204 | 91.34 277 | 98.93 70 | 98.42 173 | 94.75 138 | 93.39 251 | 97.87 191 | 79.00 307 | 98.61 230 | 96.78 103 | 90.99 269 | 97.07 220 |
|
TransMVSNet (Re) | | | 92.67 278 | 91.51 283 | 96.15 242 | 96.58 273 | 94.65 199 | 98.90 73 | 96.73 311 | 90.86 283 | 89.46 311 | 97.86 192 | 85.62 249 | 98.09 287 | 86.45 310 | 81.12 332 | 95.71 314 |
|
test_djsdf | | | 96.00 144 | 95.69 144 | 96.93 187 | 95.72 305 | 95.49 165 | 99.47 2 | 98.40 176 | 94.98 129 | 94.58 197 | 97.86 192 | 89.16 175 | 98.41 258 | 96.91 88 | 94.12 222 | 96.88 238 |
|
TinyColmap | | | 92.31 282 | 91.53 282 | 94.65 293 | 96.92 254 | 89.75 299 | 96.92 292 | 96.68 314 | 90.45 288 | 89.62 309 | 97.85 194 | 76.06 322 | 98.81 216 | 86.74 308 | 92.51 250 | 95.41 317 |
|
pm-mvs1 | | | 93.94 259 | 93.06 262 | 96.59 210 | 96.49 278 | 95.16 176 | 98.95 67 | 98.03 242 | 92.32 240 | 91.08 299 | 97.84 195 | 84.54 266 | 98.41 258 | 92.16 241 | 86.13 324 | 96.19 305 |
|
UGNet | | | 96.78 118 | 96.30 123 | 98.19 114 | 98.24 160 | 95.89 152 | 98.88 80 | 98.93 37 | 97.39 22 | 96.81 147 | 97.84 195 | 82.60 286 | 99.90 32 | 96.53 109 | 99.49 83 | 98.79 163 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TDRefinement | | | 91.06 291 | 89.68 295 | 95.21 274 | 85.35 342 | 91.49 276 | 98.51 152 | 97.07 294 | 91.47 263 | 88.83 314 | 97.84 195 | 77.31 318 | 99.09 181 | 92.79 226 | 77.98 335 | 95.04 322 |
|
PEN-MVS | | | 94.42 232 | 93.73 243 | 96.49 222 | 96.28 286 | 94.84 192 | 99.17 33 | 99.00 27 | 93.51 195 | 92.23 286 | 97.83 198 | 86.10 242 | 97.90 301 | 92.55 234 | 86.92 317 | 96.74 253 |
|
1314 | | | 96.25 138 | 95.73 138 | 97.79 135 | 97.13 243 | 95.55 163 | 98.19 196 | 98.59 136 | 93.47 197 | 92.03 290 | 97.82 199 | 91.33 137 | 99.49 140 | 94.62 169 | 98.44 136 | 98.32 190 |
|
DTE-MVSNet | | | 93.98 258 | 93.26 260 | 96.14 243 | 96.06 295 | 94.39 213 | 99.20 29 | 98.86 60 | 93.06 211 | 91.78 292 | 97.81 200 | 85.87 246 | 97.58 313 | 90.53 270 | 86.17 322 | 96.46 294 |
|
PAPM | | | 94.95 201 | 94.00 223 | 97.78 136 | 97.04 248 | 95.65 157 | 96.03 319 | 98.25 204 | 91.23 276 | 94.19 219 | 97.80 201 | 91.27 139 | 98.86 211 | 82.61 325 | 97.61 164 | 98.84 161 |
|
PVSNet | | 91.96 18 | 96.35 132 | 96.15 128 | 96.96 184 | 99.17 93 | 92.05 266 | 96.08 316 | 98.68 115 | 93.69 186 | 97.75 105 | 97.80 201 | 88.86 186 | 99.69 114 | 94.26 183 | 99.01 108 | 99.15 134 |
|
CMPMVS | | 66.06 21 | 89.70 300 | 89.67 296 | 89.78 319 | 93.19 331 | 76.56 340 | 97.00 288 | 98.35 184 | 80.97 333 | 81.57 333 | 97.75 203 | 74.75 327 | 98.61 230 | 89.85 281 | 93.63 233 | 94.17 328 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
NP-MVS | | | | | | 97.28 230 | 94.51 209 | | | | | 97.73 204 | | | | | |
|
HQP-MVS | | | 95.72 156 | 95.40 150 | 96.69 200 | 97.20 236 | 94.25 219 | 98.05 212 | 98.46 165 | 96.43 63 | 94.45 202 | 97.73 204 | 86.75 230 | 98.96 195 | 95.30 151 | 94.18 218 | 96.86 242 |
|
UniMVSNet_NR-MVSNet | | | 95.71 157 | 95.15 165 | 97.40 163 | 96.84 260 | 96.97 97 | 98.74 108 | 99.24 10 | 95.16 119 | 93.88 232 | 97.72 206 | 91.68 126 | 98.31 269 | 95.81 132 | 87.25 313 | 96.92 229 |
|
DU-MVS | | | 95.42 170 | 94.76 182 | 97.40 163 | 96.53 275 | 96.97 97 | 98.66 130 | 98.99 29 | 95.43 103 | 93.88 232 | 97.69 207 | 88.57 191 | 98.31 269 | 95.81 132 | 87.25 313 | 96.92 229 |
|
WR-MVS | | | 95.15 188 | 94.46 197 | 97.22 167 | 96.67 270 | 96.45 120 | 98.21 189 | 98.81 75 | 94.15 159 | 93.16 258 | 97.69 207 | 87.51 217 | 98.30 271 | 95.29 153 | 88.62 299 | 96.90 236 |
|
NR-MVSNet | | | 94.98 199 | 94.16 213 | 97.44 159 | 96.53 275 | 97.22 90 | 98.74 108 | 98.95 34 | 94.96 131 | 89.25 312 | 97.69 207 | 89.32 170 | 98.18 279 | 94.59 172 | 87.40 311 | 96.92 229 |
|
Fast-Effi-MVS+-dtu | | | 95.87 149 | 95.85 136 | 95.91 252 | 97.74 196 | 91.74 273 | 98.69 123 | 98.15 220 | 95.56 97 | 94.92 188 | 97.68 210 | 88.98 183 | 98.79 218 | 93.19 214 | 97.78 158 | 97.20 218 |
|
alignmvs | | | 97.56 81 | 97.07 90 | 99.01 59 | 98.66 132 | 98.37 39 | 98.83 89 | 98.06 239 | 96.74 54 | 98.00 91 | 97.65 211 | 90.80 148 | 99.48 144 | 98.37 22 | 96.56 185 | 99.19 128 |
|
LF4IMVS | | | 93.14 274 | 92.79 267 | 94.20 301 | 95.88 301 | 88.67 315 | 97.66 247 | 97.07 294 | 93.81 177 | 91.71 293 | 97.65 211 | 77.96 313 | 98.81 216 | 91.47 258 | 91.92 257 | 95.12 319 |
|
lessismore_v0 | | | | | 94.45 299 | 94.93 321 | 88.44 318 | | 91.03 345 | | 86.77 322 | 97.64 213 | 76.23 321 | 98.42 251 | 90.31 273 | 85.64 325 | 96.51 288 |
|
TR-MVS | | | 94.94 203 | 94.20 209 | 97.17 171 | 97.75 193 | 94.14 221 | 97.59 251 | 97.02 299 | 92.28 242 | 95.75 178 | 97.64 213 | 83.88 279 | 98.96 195 | 89.77 282 | 96.15 202 | 98.40 185 |
|
ET-MVSNet_ETH3D | | | 94.13 249 | 92.98 263 | 97.58 153 | 98.22 162 | 96.20 131 | 97.31 270 | 95.37 325 | 94.53 148 | 79.56 334 | 97.63 215 | 86.51 233 | 97.53 315 | 96.91 88 | 90.74 271 | 99.02 147 |
|
Baseline_NR-MVSNet | | | 94.35 235 | 93.81 235 | 95.96 250 | 96.20 288 | 94.05 223 | 98.61 135 | 96.67 315 | 91.44 265 | 93.85 234 | 97.60 216 | 88.57 191 | 98.14 282 | 94.39 177 | 86.93 316 | 95.68 315 |
|
pmmvs4 | | | 94.69 211 | 93.99 225 | 96.81 193 | 95.74 304 | 95.94 145 | 97.40 259 | 97.67 259 | 90.42 289 | 93.37 252 | 97.59 217 | 89.08 178 | 98.20 278 | 92.97 221 | 91.67 259 | 96.30 302 |
|
K. test v3 | | | 92.55 279 | 91.91 281 | 94.48 296 | 95.64 307 | 89.24 307 | 99.07 47 | 94.88 330 | 94.04 163 | 86.78 321 | 97.59 217 | 77.64 317 | 97.64 311 | 92.08 243 | 89.43 288 | 96.57 275 |
|
Anonymous20231211 | | | 94.10 252 | 93.26 260 | 96.61 207 | 99.11 99 | 94.28 216 | 99.01 55 | 98.88 49 | 86.43 318 | 92.81 268 | 97.57 219 | 81.66 291 | 98.68 226 | 94.83 163 | 89.02 295 | 96.88 238 |
|
PAPR | | | 96.84 116 | 96.24 126 | 98.65 78 | 98.72 127 | 96.92 100 | 97.36 265 | 98.57 142 | 93.33 202 | 96.67 151 | 97.57 219 | 94.30 87 | 99.56 131 | 91.05 264 | 98.59 128 | 99.47 94 |
|
pmmvs6 | | | 91.77 285 | 90.63 288 | 95.17 276 | 94.69 325 | 91.24 282 | 98.67 127 | 97.92 249 | 86.14 320 | 89.62 309 | 97.56 221 | 75.79 323 | 98.34 265 | 90.75 268 | 84.56 326 | 95.94 311 |
|
EIA-MVS | | | 97.75 67 | 97.58 63 | 98.27 106 | 98.38 148 | 96.44 121 | 99.01 55 | 98.60 134 | 95.88 83 | 97.26 125 | 97.53 222 | 94.97 69 | 99.33 155 | 97.38 72 | 99.20 102 | 99.05 145 |
|
MS-PatchMatch | | | 93.84 260 | 93.63 247 | 94.46 298 | 96.18 289 | 89.45 304 | 97.76 239 | 98.27 199 | 92.23 243 | 92.13 288 | 97.49 223 | 79.50 303 | 98.69 223 | 89.75 283 | 99.38 95 | 95.25 318 |
|
IterMVS-SCA-FT | | | 94.11 251 | 93.87 232 | 94.85 286 | 97.98 183 | 90.56 293 | 97.18 278 | 98.11 226 | 93.75 178 | 92.58 276 | 97.48 224 | 83.97 277 | 97.41 317 | 92.48 238 | 91.30 263 | 96.58 273 |
|
anonymousdsp | | | 95.42 170 | 94.91 177 | 96.94 186 | 95.10 318 | 95.90 151 | 99.14 36 | 98.41 174 | 93.75 178 | 93.16 258 | 97.46 225 | 87.50 219 | 98.41 258 | 95.63 143 | 94.03 224 | 96.50 290 |
|
PVSNet_BlendedMVS | | | 96.73 119 | 96.60 113 | 97.12 174 | 99.25 81 | 95.35 171 | 98.26 186 | 99.26 8 | 94.28 156 | 97.94 95 | 97.46 225 | 92.74 104 | 99.81 65 | 96.88 94 | 93.32 241 | 96.20 304 |
|
PMMVS | | | 96.60 122 | 96.33 122 | 97.41 161 | 97.90 186 | 93.93 225 | 97.35 266 | 98.41 174 | 92.84 222 | 97.76 104 | 97.45 227 | 91.10 143 | 99.20 165 | 96.26 118 | 97.91 152 | 99.11 139 |
|
ETV-MVS | | | 97.96 55 | 97.81 55 | 98.40 100 | 98.42 146 | 97.27 85 | 98.73 112 | 98.55 146 | 96.84 50 | 98.38 70 | 97.44 228 | 95.39 53 | 99.35 153 | 97.62 57 | 98.89 113 | 98.58 180 |
|
thisisatest0515 | | | 95.61 164 | 94.89 178 | 97.76 138 | 98.15 171 | 95.15 178 | 96.77 305 | 94.41 334 | 92.95 217 | 97.18 128 | 97.43 229 | 84.78 262 | 99.45 147 | 94.63 167 | 97.73 161 | 98.68 171 |
|
baseline2 | | | 95.11 190 | 94.52 193 | 96.87 190 | 96.65 271 | 93.56 238 | 98.27 185 | 94.10 340 | 93.45 198 | 92.02 291 | 97.43 229 | 87.45 221 | 99.19 166 | 93.88 194 | 97.41 169 | 97.87 199 |
|
canonicalmvs | | | 97.67 71 | 97.23 83 | 98.98 62 | 98.70 128 | 98.38 33 | 99.34 11 | 98.39 178 | 96.76 53 | 97.67 111 | 97.40 231 | 92.26 111 | 99.49 140 | 98.28 26 | 96.28 197 | 99.08 143 |
|
tfpnnormal | | | 93.66 261 | 92.70 269 | 96.55 218 | 96.94 253 | 95.94 145 | 98.97 63 | 99.19 15 | 91.04 281 | 91.38 296 | 97.34 232 | 84.94 259 | 98.61 230 | 85.45 318 | 89.02 295 | 95.11 320 |
|
IterMVS | | | 94.09 253 | 93.85 234 | 94.80 289 | 97.99 181 | 90.35 295 | 97.18 278 | 98.12 224 | 93.68 188 | 92.46 282 | 97.34 232 | 84.05 275 | 97.41 317 | 92.51 236 | 91.33 262 | 96.62 269 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VPA-MVSNet | | | 95.75 155 | 95.11 168 | 97.69 145 | 97.24 232 | 97.27 85 | 98.94 69 | 99.23 12 | 95.13 121 | 95.51 179 | 97.32 234 | 85.73 247 | 98.91 202 | 97.33 74 | 89.55 286 | 96.89 237 |
|
IterMVS-LS | | | 95.46 166 | 95.21 163 | 96.22 240 | 98.12 172 | 93.72 235 | 98.32 177 | 98.13 223 | 93.71 183 | 94.26 214 | 97.31 235 | 92.24 112 | 98.10 285 | 94.63 167 | 90.12 277 | 96.84 243 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Test_1112_low_res | | | 96.34 133 | 95.66 146 | 98.36 102 | 98.56 139 | 95.94 145 | 97.71 242 | 98.07 235 | 92.10 247 | 94.79 194 | 97.29 236 | 91.75 125 | 99.56 131 | 94.17 185 | 96.50 188 | 99.58 78 |
|
ppachtmachnet_test | | | 93.22 271 | 92.63 270 | 94.97 282 | 95.45 314 | 90.84 286 | 96.88 300 | 97.88 251 | 90.60 285 | 92.08 289 | 97.26 237 | 88.08 205 | 97.86 307 | 85.12 320 | 90.33 274 | 96.22 303 |
|
pmmvs5 | | | 93.65 263 | 92.97 264 | 95.68 261 | 95.49 312 | 92.37 261 | 98.20 192 | 97.28 286 | 89.66 300 | 92.58 276 | 97.26 237 | 82.14 287 | 98.09 287 | 93.18 215 | 90.95 270 | 96.58 273 |
|
MDTV_nov1_ep13 | | | | 95.40 150 | | 97.48 215 | 88.34 319 | 96.85 302 | 97.29 285 | 93.74 180 | 97.48 123 | 97.26 237 | 89.18 174 | 99.05 184 | 91.92 250 | 97.43 168 | |
|
Fast-Effi-MVS+ | | | 96.28 136 | 95.70 143 | 98.03 123 | 98.29 159 | 95.97 142 | 98.58 138 | 98.25 204 | 91.74 255 | 95.29 183 | 97.23 240 | 91.03 145 | 99.15 171 | 92.90 223 | 97.96 151 | 98.97 152 |
|
BH-w/o | | | 95.38 173 | 95.08 169 | 96.26 239 | 98.34 154 | 91.79 270 | 97.70 243 | 97.43 279 | 92.87 221 | 94.24 216 | 97.22 241 | 88.66 189 | 98.84 212 | 91.55 257 | 97.70 162 | 98.16 193 |
|
eth_miper_zixun_eth | | | 94.68 213 | 94.41 202 | 95.47 267 | 97.64 201 | 91.71 274 | 96.73 308 | 98.07 235 | 92.71 225 | 93.64 240 | 97.21 242 | 90.54 153 | 98.17 280 | 93.38 207 | 89.76 281 | 96.54 280 |
|
CS-MVS | | | 97.81 64 | 97.61 61 | 98.41 99 | 98.52 143 | 97.15 93 | 99.09 44 | 98.55 146 | 96.18 72 | 97.61 117 | 97.20 243 | 94.59 78 | 99.39 150 | 97.62 57 | 99.10 106 | 98.70 168 |
|
v1921920 | | | 94.20 244 | 93.47 254 | 96.40 231 | 95.98 298 | 94.08 222 | 98.52 148 | 98.15 220 | 91.33 270 | 94.25 215 | 97.20 243 | 86.41 237 | 98.42 251 | 90.04 279 | 89.39 289 | 96.69 265 |
|
v2v482 | | | 94.69 211 | 94.03 219 | 96.65 202 | 96.17 290 | 94.79 197 | 98.67 127 | 98.08 233 | 92.72 224 | 94.00 228 | 97.16 245 | 87.69 216 | 98.45 246 | 92.91 222 | 88.87 297 | 96.72 256 |
|
v7n | | | 94.19 245 | 93.43 255 | 96.47 224 | 95.90 300 | 94.38 214 | 99.26 18 | 98.34 186 | 91.99 249 | 92.76 270 | 97.13 246 | 88.31 197 | 98.52 240 | 89.48 290 | 87.70 307 | 96.52 285 |
|
cl-mvsnet1 | | | 94.52 226 | 94.03 219 | 95.99 247 | 97.57 210 | 93.38 246 | 97.05 285 | 97.94 248 | 91.74 255 | 92.81 268 | 97.10 247 | 89.12 176 | 98.07 289 | 92.60 229 | 90.30 275 | 96.53 282 |
|
SCA | | | 95.46 166 | 95.13 166 | 96.46 227 | 97.67 199 | 91.29 281 | 97.33 268 | 97.60 262 | 94.68 142 | 96.92 141 | 97.10 247 | 83.97 277 | 98.89 206 | 92.59 231 | 98.32 143 | 99.20 125 |
|
Patchmatch-test | | | 94.42 232 | 93.68 246 | 96.63 205 | 97.60 204 | 91.76 271 | 94.83 331 | 97.49 274 | 89.45 303 | 94.14 221 | 97.10 247 | 88.99 180 | 98.83 214 | 85.37 319 | 98.13 147 | 99.29 118 |
|
FMVSNet3 | | | 94.97 200 | 94.26 207 | 97.11 175 | 98.18 168 | 96.62 110 | 98.56 144 | 98.26 203 | 93.67 190 | 94.09 223 | 97.10 247 | 84.25 270 | 98.01 293 | 92.08 243 | 92.14 252 | 96.70 260 |
|
MVP-Stereo | | | 94.28 241 | 93.92 228 | 95.35 271 | 94.95 320 | 92.60 260 | 97.97 220 | 97.65 260 | 91.61 261 | 90.68 303 | 97.09 251 | 86.32 239 | 98.42 251 | 89.70 285 | 99.34 97 | 95.02 323 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
FMVSNet2 | | | 94.47 230 | 93.61 248 | 97.04 178 | 98.21 163 | 96.43 122 | 98.79 103 | 98.27 199 | 92.46 231 | 93.50 248 | 97.09 251 | 81.16 292 | 98.00 295 | 91.09 260 | 91.93 256 | 96.70 260 |
|
cl-mvsnet_ | | | 94.51 227 | 94.01 222 | 96.02 246 | 97.58 206 | 93.40 245 | 97.05 285 | 97.96 247 | 91.73 257 | 92.76 270 | 97.08 253 | 89.06 179 | 98.13 283 | 92.61 228 | 90.29 276 | 96.52 285 |
|
GBi-Net | | | 94.49 228 | 93.80 236 | 96.56 215 | 98.21 163 | 95.00 183 | 98.82 92 | 98.18 212 | 92.46 231 | 94.09 223 | 97.07 254 | 81.16 292 | 97.95 297 | 92.08 243 | 92.14 252 | 96.72 256 |
|
test1 | | | 94.49 228 | 93.80 236 | 96.56 215 | 98.21 163 | 95.00 183 | 98.82 92 | 98.18 212 | 92.46 231 | 94.09 223 | 97.07 254 | 81.16 292 | 97.95 297 | 92.08 243 | 92.14 252 | 96.72 256 |
|
FMVSNet1 | | | 93.19 273 | 92.07 277 | 96.56 215 | 97.54 211 | 95.00 183 | 98.82 92 | 98.18 212 | 90.38 290 | 92.27 285 | 97.07 254 | 73.68 331 | 97.95 297 | 89.36 292 | 91.30 263 | 96.72 256 |
|
v1192 | | | 94.32 237 | 93.58 249 | 96.53 219 | 96.10 293 | 94.45 210 | 98.50 153 | 98.17 217 | 91.54 262 | 94.19 219 | 97.06 257 | 86.95 228 | 98.43 250 | 90.14 274 | 89.57 284 | 96.70 260 |
|
V42 | | | 94.78 209 | 94.14 215 | 96.70 199 | 96.33 285 | 95.22 175 | 98.97 63 | 98.09 231 | 92.32 240 | 94.31 212 | 97.06 257 | 88.39 196 | 98.55 237 | 92.90 223 | 88.87 297 | 96.34 298 |
|
cl_fuxian | | | 94.79 208 | 94.43 201 | 95.89 254 | 97.75 193 | 93.12 255 | 97.16 281 | 98.03 242 | 92.23 243 | 93.46 250 | 97.05 259 | 91.39 134 | 98.01 293 | 93.58 204 | 89.21 291 | 96.53 282 |
|
GA-MVS | | | 94.81 207 | 94.03 219 | 97.14 172 | 97.15 242 | 93.86 227 | 96.76 306 | 97.58 263 | 94.00 167 | 94.76 195 | 97.04 260 | 80.91 295 | 98.48 242 | 91.79 252 | 96.25 199 | 99.09 140 |
|
UniMVSNet (Re) | | | 95.78 154 | 95.19 164 | 97.58 153 | 96.99 251 | 97.47 78 | 98.79 103 | 99.18 16 | 95.60 95 | 93.92 230 | 97.04 260 | 91.68 126 | 98.48 242 | 95.80 134 | 87.66 308 | 96.79 247 |
|
v144192 | | | 94.39 234 | 93.70 244 | 96.48 223 | 96.06 295 | 94.35 215 | 98.58 138 | 98.16 219 | 91.45 264 | 94.33 211 | 97.02 262 | 87.50 219 | 98.45 246 | 91.08 261 | 89.11 292 | 96.63 268 |
|
v1144 | | | 94.59 221 | 93.92 228 | 96.60 209 | 96.21 287 | 94.78 198 | 98.59 136 | 98.14 222 | 91.86 254 | 94.21 218 | 97.02 262 | 87.97 207 | 98.41 258 | 91.72 254 | 89.57 284 | 96.61 270 |
|
v1240 | | | 94.06 256 | 93.29 259 | 96.34 235 | 96.03 297 | 93.90 226 | 98.44 160 | 98.17 217 | 91.18 279 | 94.13 222 | 97.01 264 | 86.05 243 | 98.42 251 | 89.13 295 | 89.50 287 | 96.70 260 |
|
v10 | | | 94.29 239 | 93.55 250 | 96.51 221 | 96.39 282 | 94.80 196 | 98.99 59 | 98.19 209 | 91.35 269 | 93.02 264 | 96.99 265 | 88.09 204 | 98.41 258 | 90.50 271 | 88.41 301 | 96.33 300 |
|
test_0402 | | | 91.32 288 | 90.27 291 | 94.48 296 | 96.60 272 | 91.12 283 | 98.50 153 | 97.22 290 | 86.10 321 | 88.30 316 | 96.98 266 | 77.65 316 | 97.99 296 | 78.13 336 | 92.94 247 | 94.34 326 |
|
miper_lstm_enhance | | | 94.33 236 | 94.07 218 | 95.11 278 | 97.75 193 | 90.97 285 | 97.22 275 | 98.03 242 | 91.67 259 | 92.76 270 | 96.97 267 | 90.03 161 | 97.78 308 | 92.51 236 | 89.64 283 | 96.56 277 |
|
v8 | | | 94.47 230 | 93.77 239 | 96.57 214 | 96.36 283 | 94.83 194 | 99.05 49 | 98.19 209 | 91.92 251 | 93.16 258 | 96.97 267 | 88.82 188 | 98.48 242 | 91.69 255 | 87.79 306 | 96.39 296 |
|
miper_ehance_all_eth | | | 95.01 195 | 94.69 186 | 95.97 249 | 97.70 198 | 93.31 248 | 97.02 287 | 98.07 235 | 92.23 243 | 93.51 247 | 96.96 269 | 91.85 123 | 98.15 281 | 93.68 199 | 91.16 266 | 96.44 295 |
|
PatchmatchNet | | | 95.71 157 | 95.52 148 | 96.29 238 | 97.58 206 | 90.72 290 | 96.84 303 | 97.52 270 | 94.06 162 | 97.08 131 | 96.96 269 | 89.24 173 | 98.90 205 | 92.03 247 | 98.37 139 | 99.26 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v148 | | | 94.29 239 | 93.76 241 | 95.91 252 | 96.10 293 | 92.93 257 | 98.58 138 | 97.97 245 | 92.59 229 | 93.47 249 | 96.95 271 | 88.53 194 | 98.32 267 | 92.56 233 | 87.06 315 | 96.49 291 |
|
gm-plane-assit | | | | | | 95.88 301 | 87.47 325 | | | 89.74 299 | | 96.94 272 | | 99.19 166 | 93.32 211 | | |
|
tpmrst | | | 95.63 161 | 95.69 144 | 95.44 269 | 97.54 211 | 88.54 317 | 96.97 289 | 97.56 264 | 93.50 196 | 97.52 122 | 96.93 273 | 89.49 165 | 99.16 168 | 95.25 155 | 96.42 190 | 98.64 176 |
|
thres600view7 | | | 95.49 165 | 94.77 181 | 97.67 147 | 98.98 107 | 95.02 182 | 98.85 85 | 96.90 305 | 95.38 106 | 96.63 153 | 96.90 274 | 84.29 268 | 99.59 127 | 88.65 298 | 96.33 192 | 98.40 185 |
|
our_test_3 | | | 93.65 263 | 93.30 258 | 94.69 291 | 95.45 314 | 89.68 302 | 96.91 294 | 97.65 260 | 91.97 250 | 91.66 294 | 96.88 275 | 89.67 164 | 97.93 300 | 88.02 302 | 91.49 261 | 96.48 292 |
|
thres100view900 | | | 95.38 173 | 94.70 185 | 97.41 161 | 98.98 107 | 94.92 190 | 98.87 82 | 96.90 305 | 95.38 106 | 96.61 154 | 96.88 275 | 84.29 268 | 99.56 131 | 88.11 299 | 96.29 194 | 97.76 201 |
|
cl-mvsnet2 | | | 94.68 213 | 94.19 210 | 96.13 244 | 98.11 173 | 93.60 237 | 96.94 291 | 98.31 190 | 92.43 235 | 93.32 254 | 96.87 277 | 86.51 233 | 98.28 275 | 94.10 189 | 91.16 266 | 96.51 288 |
|
LCM-MVSNet-Re | | | 95.22 184 | 95.32 159 | 94.91 283 | 98.18 168 | 87.85 324 | 98.75 105 | 95.66 324 | 95.11 123 | 88.96 313 | 96.85 278 | 90.26 159 | 97.65 310 | 95.65 142 | 98.44 136 | 99.22 124 |
|
WR-MVS_H | | | 95.05 194 | 94.46 197 | 96.81 193 | 96.86 259 | 95.82 153 | 99.24 20 | 99.24 10 | 93.87 174 | 92.53 278 | 96.84 279 | 90.37 155 | 98.24 277 | 93.24 212 | 87.93 305 | 96.38 297 |
|
EPMVS | | | 94.99 197 | 94.48 195 | 96.52 220 | 97.22 234 | 91.75 272 | 97.23 274 | 91.66 344 | 94.11 160 | 97.28 124 | 96.81 280 | 85.70 248 | 98.84 212 | 93.04 219 | 97.28 170 | 98.97 152 |
|
tpm2 | | | 94.19 245 | 93.76 241 | 95.46 268 | 97.23 233 | 89.04 311 | 97.31 270 | 96.85 310 | 87.08 315 | 96.21 171 | 96.79 281 | 83.75 283 | 98.74 221 | 92.43 239 | 96.23 200 | 98.59 178 |
|
D2MVS | | | 95.18 187 | 95.08 169 | 95.48 266 | 97.10 245 | 92.07 265 | 98.30 180 | 99.13 19 | 94.02 165 | 92.90 266 | 96.73 282 | 89.48 166 | 98.73 222 | 94.48 176 | 93.60 235 | 95.65 316 |
|
CostFormer | | | 94.95 201 | 94.73 184 | 95.60 264 | 97.28 230 | 89.06 310 | 97.53 254 | 96.89 307 | 89.66 300 | 96.82 146 | 96.72 283 | 86.05 243 | 98.95 199 | 95.53 145 | 96.13 203 | 98.79 163 |
|
test20.03 | | | 90.89 293 | 90.38 290 | 92.43 313 | 93.48 330 | 88.14 321 | 98.33 172 | 97.56 264 | 93.40 200 | 87.96 317 | 96.71 284 | 80.69 299 | 94.13 339 | 79.15 333 | 86.17 322 | 95.01 324 |
|
Effi-MVS+-dtu | | | 96.29 134 | 96.56 114 | 95.51 265 | 97.89 187 | 90.22 296 | 98.80 99 | 98.10 228 | 96.57 61 | 96.45 166 | 96.66 285 | 90.81 146 | 98.91 202 | 95.72 137 | 97.99 150 | 97.40 211 |
|
test0.0.03 1 | | | 94.08 254 | 93.51 252 | 95.80 257 | 95.53 311 | 92.89 258 | 97.38 261 | 95.97 320 | 95.11 123 | 92.51 280 | 96.66 285 | 87.71 213 | 96.94 323 | 87.03 307 | 93.67 231 | 97.57 208 |
|
miper_enhance_ethall | | | 95.10 191 | 94.75 183 | 96.12 245 | 97.53 213 | 93.73 234 | 96.61 311 | 98.08 233 | 92.20 246 | 93.89 231 | 96.65 287 | 92.44 107 | 98.30 271 | 94.21 184 | 91.16 266 | 96.34 298 |
|
ADS-MVSNet2 | | | 94.58 222 | 94.40 203 | 95.11 278 | 98.00 179 | 88.74 314 | 96.04 317 | 97.30 284 | 90.15 292 | 96.47 164 | 96.64 288 | 87.89 209 | 97.56 314 | 90.08 276 | 97.06 172 | 99.02 147 |
|
ADS-MVSNet | | | 95.00 196 | 94.45 199 | 96.63 205 | 98.00 179 | 91.91 268 | 96.04 317 | 97.74 257 | 90.15 292 | 96.47 164 | 96.64 288 | 87.89 209 | 98.96 195 | 90.08 276 | 97.06 172 | 99.02 147 |
|
dp | | | 94.15 248 | 93.90 230 | 94.90 284 | 97.31 229 | 86.82 329 | 96.97 289 | 97.19 291 | 91.22 277 | 96.02 175 | 96.61 290 | 85.51 250 | 99.02 190 | 90.00 280 | 94.30 213 | 98.85 159 |
|
tfpn200view9 | | | 95.32 180 | 94.62 188 | 97.43 160 | 98.94 109 | 94.98 186 | 98.68 124 | 96.93 303 | 95.33 109 | 96.55 158 | 96.53 291 | 84.23 271 | 99.56 131 | 88.11 299 | 96.29 194 | 97.76 201 |
|
thres400 | | | 95.38 173 | 94.62 188 | 97.65 150 | 98.94 109 | 94.98 186 | 98.68 124 | 96.93 303 | 95.33 109 | 96.55 158 | 96.53 291 | 84.23 271 | 99.56 131 | 88.11 299 | 96.29 194 | 98.40 185 |
|
EG-PatchMatch MVS | | | 91.13 290 | 90.12 292 | 94.17 303 | 94.73 324 | 89.00 312 | 98.13 205 | 97.81 253 | 89.22 306 | 85.32 328 | 96.46 293 | 67.71 336 | 98.42 251 | 87.89 304 | 93.82 230 | 95.08 321 |
|
TESTMET0.1,1 | | | 94.18 247 | 93.69 245 | 95.63 263 | 96.92 254 | 89.12 309 | 96.91 294 | 94.78 331 | 93.17 208 | 94.88 189 | 96.45 294 | 78.52 309 | 98.92 201 | 93.09 216 | 98.50 133 | 98.85 159 |
|
DWT-MVSNet_test | | | 94.82 206 | 94.36 204 | 96.20 241 | 97.35 227 | 90.79 288 | 98.34 171 | 96.57 317 | 92.91 219 | 95.33 182 | 96.44 295 | 82.00 288 | 99.12 174 | 94.52 174 | 95.78 208 | 98.70 168 |
|
tpmvs | | | 94.60 219 | 94.36 204 | 95.33 272 | 97.46 217 | 88.60 316 | 96.88 300 | 97.68 258 | 91.29 273 | 93.80 237 | 96.42 296 | 88.58 190 | 99.24 161 | 91.06 262 | 96.04 205 | 98.17 192 |
|
Anonymous20231206 | | | 91.66 286 | 91.10 285 | 93.33 308 | 94.02 329 | 87.35 326 | 98.58 138 | 97.26 288 | 90.48 286 | 90.16 305 | 96.31 297 | 83.83 281 | 96.53 330 | 79.36 332 | 89.90 280 | 96.12 306 |
|
tpm | | | 94.13 249 | 93.80 236 | 95.12 277 | 96.50 277 | 87.91 323 | 97.44 256 | 95.89 323 | 92.62 227 | 96.37 168 | 96.30 298 | 84.13 274 | 98.30 271 | 93.24 212 | 91.66 260 | 99.14 136 |
|
CR-MVSNet | | | 94.76 210 | 94.15 214 | 96.59 210 | 97.00 249 | 93.43 242 | 94.96 327 | 97.56 264 | 92.46 231 | 96.93 139 | 96.24 299 | 88.15 202 | 97.88 305 | 87.38 305 | 96.65 182 | 98.46 183 |
|
Patchmtry | | | 93.22 271 | 92.35 274 | 95.84 256 | 96.77 262 | 93.09 256 | 94.66 332 | 97.56 264 | 87.37 314 | 92.90 266 | 96.24 299 | 88.15 202 | 97.90 301 | 87.37 306 | 90.10 278 | 96.53 282 |
|
tmp_tt | | | 68.90 314 | 66.97 315 | 74.68 329 | 50.78 352 | 59.95 349 | 87.13 342 | 83.47 351 | 38.80 347 | 62.21 343 | 96.23 301 | 64.70 340 | 76.91 349 | 88.91 296 | 30.49 346 | 87.19 339 |
|
cascas | | | 94.63 218 | 93.86 233 | 96.93 187 | 96.91 256 | 94.27 217 | 96.00 320 | 98.51 155 | 85.55 325 | 94.54 198 | 96.23 301 | 84.20 273 | 98.87 209 | 95.80 134 | 96.98 175 | 97.66 207 |
|
thres200 | | | 95.25 182 | 94.57 190 | 97.28 166 | 98.81 119 | 94.92 190 | 98.20 192 | 97.11 292 | 95.24 117 | 96.54 160 | 96.22 303 | 84.58 265 | 99.53 137 | 87.93 303 | 96.50 188 | 97.39 212 |
|
UnsupCasMVSNet_eth | | | 90.99 292 | 89.92 294 | 94.19 302 | 94.08 328 | 89.83 298 | 97.13 283 | 98.67 123 | 93.69 186 | 85.83 326 | 96.19 304 | 75.15 325 | 96.74 324 | 89.14 294 | 79.41 334 | 96.00 309 |
|
MDA-MVSNet-bldmvs | | | 89.97 299 | 88.35 303 | 94.83 288 | 95.21 317 | 91.34 277 | 97.64 248 | 97.51 271 | 88.36 310 | 71.17 341 | 96.13 305 | 79.22 305 | 96.63 329 | 83.65 322 | 86.27 321 | 96.52 285 |
|
MIMVSNet | | | 93.26 270 | 92.21 276 | 96.41 230 | 97.73 197 | 93.13 254 | 95.65 324 | 97.03 297 | 91.27 275 | 94.04 226 | 96.06 306 | 75.33 324 | 97.19 320 | 86.56 309 | 96.23 200 | 98.92 157 |
|
tpm cat1 | | | 93.36 265 | 92.80 266 | 95.07 280 | 97.58 206 | 87.97 322 | 96.76 306 | 97.86 252 | 82.17 332 | 93.53 244 | 96.04 307 | 86.13 241 | 99.13 173 | 89.24 293 | 95.87 206 | 98.10 194 |
|
N_pmnet | | | 87.12 307 | 87.77 305 | 85.17 324 | 95.46 313 | 61.92 347 | 97.37 263 | 70.66 353 | 85.83 323 | 88.73 315 | 96.04 307 | 85.33 255 | 97.76 309 | 80.02 329 | 90.48 273 | 95.84 312 |
|
MIMVSNet1 | | | 89.67 301 | 88.28 304 | 93.82 304 | 92.81 333 | 91.08 284 | 98.01 216 | 97.45 277 | 87.95 311 | 87.90 318 | 95.87 309 | 67.63 337 | 94.56 338 | 78.73 335 | 88.18 303 | 95.83 313 |
|
YYNet1 | | | 90.70 295 | 89.39 297 | 94.62 294 | 94.79 323 | 90.65 291 | 97.20 276 | 97.46 275 | 87.54 313 | 72.54 339 | 95.74 310 | 86.51 233 | 96.66 328 | 86.00 313 | 86.76 320 | 96.54 280 |
|
DSMNet-mixed | | | 92.52 280 | 92.58 271 | 92.33 314 | 94.15 327 | 82.65 336 | 98.30 180 | 94.26 337 | 89.08 307 | 92.65 274 | 95.73 311 | 85.01 258 | 95.76 333 | 86.24 311 | 97.76 159 | 98.59 178 |
|
IB-MVS | | 91.98 17 | 93.27 269 | 91.97 279 | 97.19 169 | 97.47 216 | 93.41 244 | 97.09 284 | 95.99 319 | 93.32 203 | 92.47 281 | 95.73 311 | 78.06 312 | 99.53 137 | 94.59 172 | 82.98 327 | 98.62 177 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-LLR | | | 95.10 191 | 94.87 179 | 95.80 257 | 96.77 262 | 89.70 300 | 96.91 294 | 95.21 326 | 95.11 123 | 94.83 192 | 95.72 313 | 87.71 213 | 98.97 192 | 93.06 217 | 98.50 133 | 98.72 166 |
|
test-mter | | | 94.08 254 | 93.51 252 | 95.80 257 | 96.77 262 | 89.70 300 | 96.91 294 | 95.21 326 | 92.89 220 | 94.83 192 | 95.72 313 | 77.69 314 | 98.97 192 | 93.06 217 | 98.50 133 | 98.72 166 |
|
MDA-MVSNet_test_wron | | | 90.71 294 | 89.38 298 | 94.68 292 | 94.83 322 | 90.78 289 | 97.19 277 | 97.46 275 | 87.60 312 | 72.41 340 | 95.72 313 | 86.51 233 | 96.71 327 | 85.92 314 | 86.80 319 | 96.56 277 |
|
MVS_0304 | | | 92.81 277 | 92.01 278 | 95.23 273 | 97.46 217 | 91.33 279 | 98.17 201 | 98.81 75 | 91.13 280 | 93.80 237 | 95.68 316 | 66.08 339 | 98.06 290 | 90.79 266 | 96.13 203 | 96.32 301 |
|
FMVSNet5 | | | 91.81 284 | 90.92 286 | 94.49 295 | 97.21 235 | 92.09 264 | 98.00 218 | 97.55 268 | 89.31 305 | 90.86 301 | 95.61 317 | 74.48 328 | 95.32 335 | 85.57 316 | 89.70 282 | 96.07 308 |
|
PVSNet_0 | | 88.72 19 | 91.28 289 | 90.03 293 | 95.00 281 | 97.99 181 | 87.29 327 | 94.84 330 | 98.50 160 | 92.06 248 | 89.86 307 | 95.19 318 | 79.81 302 | 99.39 150 | 92.27 240 | 69.79 340 | 98.33 189 |
|
DeepMVS_CX | | | | | 86.78 321 | 97.09 246 | 72.30 343 | | 95.17 329 | 75.92 337 | 84.34 330 | 95.19 318 | 70.58 334 | 95.35 334 | 79.98 331 | 89.04 294 | 92.68 336 |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 320 | 89.42 168 | 98.89 206 | | | |
|
Patchmatch-RL test | | | 91.49 287 | 90.85 287 | 93.41 307 | 91.37 335 | 84.40 331 | 92.81 337 | 95.93 322 | 91.87 253 | 87.25 319 | 94.87 321 | 88.99 180 | 96.53 330 | 92.54 235 | 82.00 329 | 99.30 116 |
|
OpenMVS_ROB | | 86.42 20 | 89.00 303 | 87.43 307 | 93.69 305 | 93.08 332 | 89.42 305 | 97.91 224 | 96.89 307 | 78.58 335 | 85.86 325 | 94.69 322 | 69.48 335 | 98.29 274 | 77.13 337 | 93.29 243 | 93.36 335 |
|
FPMVS | | | 77.62 312 | 77.14 311 | 79.05 327 | 79.25 346 | 60.97 348 | 95.79 322 | 95.94 321 | 65.96 340 | 67.93 342 | 94.40 323 | 37.73 348 | 88.88 344 | 68.83 340 | 88.46 300 | 87.29 338 |
|
GG-mvs-BLEND | | | | | 96.59 210 | 96.34 284 | 94.98 186 | 96.51 314 | 88.58 348 | | 93.10 263 | 94.34 324 | 80.34 301 | 98.05 291 | 89.53 288 | 96.99 174 | 96.74 253 |
|
new_pmnet | | | 90.06 298 | 89.00 300 | 93.22 311 | 94.18 326 | 88.32 320 | 96.42 315 | 96.89 307 | 86.19 319 | 85.67 327 | 93.62 325 | 77.18 319 | 97.10 321 | 81.61 327 | 89.29 290 | 94.23 327 |
|
PM-MVS | | | 87.77 305 | 86.55 308 | 91.40 318 | 91.03 337 | 83.36 335 | 96.92 292 | 95.18 328 | 91.28 274 | 86.48 324 | 93.42 326 | 53.27 343 | 96.74 324 | 89.43 291 | 81.97 330 | 94.11 329 |
|
pmmvs-eth3d | | | 90.36 297 | 89.05 299 | 94.32 300 | 91.10 336 | 92.12 263 | 97.63 250 | 96.95 302 | 88.86 308 | 84.91 329 | 93.13 327 | 78.32 310 | 96.74 324 | 88.70 297 | 81.81 331 | 94.09 330 |
|
new-patchmatchnet | | | 88.50 304 | 87.45 306 | 91.67 317 | 90.31 338 | 85.89 330 | 97.16 281 | 97.33 283 | 89.47 302 | 83.63 331 | 92.77 328 | 76.38 320 | 95.06 337 | 82.70 324 | 77.29 336 | 94.06 331 |
|
pmmvs3 | | | 86.67 308 | 84.86 310 | 92.11 316 | 88.16 340 | 87.19 328 | 96.63 310 | 94.75 332 | 79.88 334 | 87.22 320 | 92.75 329 | 66.56 338 | 95.20 336 | 81.24 328 | 76.56 337 | 93.96 332 |
|
ambc | | | | | 89.49 320 | 86.66 341 | 75.78 341 | 92.66 338 | 96.72 312 | | 86.55 323 | 92.50 330 | 46.01 344 | 97.90 301 | 90.32 272 | 82.09 328 | 94.80 325 |
|
testing_2 | | | 90.61 296 | 88.50 301 | 96.95 185 | 90.08 339 | 95.57 160 | 97.69 244 | 98.06 239 | 93.02 213 | 76.55 335 | 92.48 331 | 61.18 342 | 98.44 248 | 95.45 148 | 91.98 255 | 96.84 243 |
|
PatchT | | | 93.06 275 | 91.97 279 | 96.35 234 | 96.69 268 | 92.67 259 | 94.48 333 | 97.08 293 | 86.62 316 | 97.08 131 | 92.23 332 | 87.94 208 | 97.90 301 | 78.89 334 | 96.69 180 | 98.49 182 |
|
RPMNet | | | 92.52 280 | 91.17 284 | 96.59 210 | 97.00 249 | 93.43 242 | 94.96 327 | 97.26 288 | 82.27 331 | 96.93 139 | 92.12 333 | 86.98 227 | 97.88 305 | 76.32 338 | 96.65 182 | 98.46 183 |
|
UnsupCasMVSNet_bld | | | 87.17 306 | 85.12 309 | 93.31 309 | 91.94 334 | 88.77 313 | 94.92 329 | 98.30 196 | 84.30 329 | 82.30 332 | 90.04 334 | 63.96 341 | 97.25 319 | 85.85 315 | 74.47 339 | 93.93 333 |
|
LCM-MVSNet | | | 78.70 309 | 76.24 313 | 86.08 322 | 77.26 348 | 71.99 344 | 94.34 334 | 96.72 312 | 61.62 342 | 76.53 336 | 89.33 335 | 33.91 350 | 92.78 341 | 81.85 326 | 74.60 338 | 93.46 334 |
|
PMMVS2 | | | 77.95 311 | 75.44 314 | 85.46 323 | 82.54 343 | 74.95 342 | 94.23 335 | 93.08 342 | 72.80 339 | 74.68 337 | 87.38 336 | 36.36 349 | 91.56 342 | 73.95 339 | 63.94 341 | 89.87 337 |
|
JIA-IIPM | | | 93.35 266 | 92.49 272 | 95.92 251 | 96.48 279 | 90.65 291 | 95.01 326 | 96.96 301 | 85.93 322 | 96.08 173 | 87.33 337 | 87.70 215 | 98.78 219 | 91.35 259 | 95.58 209 | 98.34 188 |
|
PMVS | | 61.03 23 | 65.95 315 | 63.57 318 | 73.09 330 | 57.90 351 | 51.22 352 | 85.05 344 | 93.93 341 | 54.45 343 | 44.32 348 | 83.57 338 | 13.22 352 | 89.15 343 | 58.68 343 | 81.00 333 | 78.91 342 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS-HIRNet | | | 89.46 302 | 88.40 302 | 92.64 312 | 97.58 206 | 82.15 337 | 94.16 336 | 93.05 343 | 75.73 338 | 90.90 300 | 82.52 339 | 79.42 304 | 98.33 266 | 83.53 323 | 98.68 122 | 97.43 209 |
|
gg-mvs-nofinetune | | | 92.21 283 | 90.58 289 | 97.13 173 | 96.75 265 | 95.09 180 | 95.85 321 | 89.40 347 | 85.43 326 | 94.50 200 | 81.98 340 | 80.80 298 | 98.40 264 | 92.16 241 | 98.33 142 | 97.88 198 |
|
Gipuma | | | 78.40 310 | 76.75 312 | 83.38 325 | 95.54 310 | 80.43 339 | 79.42 345 | 97.40 281 | 64.67 341 | 73.46 338 | 80.82 341 | 45.65 345 | 93.14 340 | 66.32 341 | 87.43 310 | 76.56 343 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ANet_high | | | 69.08 313 | 65.37 316 | 80.22 326 | 65.99 350 | 71.96 345 | 90.91 341 | 90.09 346 | 82.62 330 | 49.93 347 | 78.39 342 | 29.36 351 | 81.75 345 | 62.49 342 | 38.52 345 | 86.95 340 |
|
E-PMN | | | 64.94 316 | 64.25 317 | 67.02 331 | 82.28 344 | 59.36 350 | 91.83 340 | 85.63 349 | 52.69 344 | 60.22 344 | 77.28 343 | 41.06 347 | 80.12 347 | 46.15 345 | 41.14 343 | 61.57 345 |
|
EMVS | | | 64.07 317 | 63.26 319 | 66.53 332 | 81.73 345 | 58.81 351 | 91.85 339 | 84.75 350 | 51.93 346 | 59.09 345 | 75.13 344 | 43.32 346 | 79.09 348 | 42.03 346 | 39.47 344 | 61.69 344 |
|
MVE | | 62.14 22 | 63.28 318 | 59.38 320 | 74.99 328 | 74.33 349 | 65.47 346 | 85.55 343 | 80.50 352 | 52.02 345 | 51.10 346 | 75.00 345 | 10.91 355 | 80.50 346 | 51.60 344 | 53.40 342 | 78.99 341 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
X-MVStestdata | | | 94.06 256 | 92.30 275 | 99.34 22 | 99.70 22 | 98.35 41 | 99.29 14 | 98.88 49 | 97.40 20 | 98.46 63 | 43.50 346 | 95.90 39 | 99.89 34 | 97.85 42 | 99.74 40 | 99.78 13 |
|
testmvs | | | 21.48 321 | 24.95 323 | 11.09 335 | 14.89 353 | 6.47 355 | 96.56 312 | 9.87 355 | 7.55 349 | 17.93 349 | 39.02 347 | 9.43 356 | 5.90 352 | 16.56 349 | 12.72 348 | 20.91 347 |
|
test123 | | | 20.95 322 | 23.72 324 | 12.64 334 | 13.54 354 | 8.19 354 | 96.55 313 | 6.13 356 | 7.48 350 | 16.74 350 | 37.98 348 | 12.97 353 | 6.05 351 | 16.69 348 | 5.43 349 | 23.68 346 |
|
test_post | | | | | | | | | | | | 31.83 349 | 88.83 187 | 98.91 202 | | | |
|
test_post1 | | | | | | | | 96.68 309 | | | | 30.43 350 | 87.85 212 | 98.69 223 | 92.59 231 | | |
|
wuyk23d | | | 30.17 319 | 30.18 322 | 30.16 333 | 78.61 347 | 43.29 353 | 66.79 346 | 14.21 354 | 17.31 348 | 14.82 351 | 11.93 351 | 11.55 354 | 41.43 350 | 37.08 347 | 19.30 347 | 5.76 348 |
|
uanet_test | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
pcd_1.5k_mvsjas | | | 7.88 324 | 10.50 326 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 94.51 80 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sosnet-low-res | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sosnet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
uncertanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
Regformer | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
uanet | | | 0.00 325 | 0.00 327 | 0.00 336 | 0.00 355 | 0.00 356 | 0.00 347 | 0.00 357 | 0.00 351 | 0.00 352 | 0.00 352 | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
IU-MVS | | | | | | 99.71 20 | 99.23 5 | | 98.64 131 | 95.28 113 | 99.63 3 | | | | 98.35 23 | 99.81 10 | 99.83 5 |
|
save fliter | | | | | | 99.46 47 | 98.38 33 | 98.21 189 | 98.71 107 | 97.95 3 | | | | | | | |
|
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 63 | 98.88 49 | | | | | 99.94 3 | 98.47 15 | 99.81 10 | 99.84 4 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 125 |
|
test_part2 | | | | | | 99.63 28 | 99.18 7 | | | | 99.27 16 | | | | | | |
|
test_part1 | | | | | 0.00 336 | | 0.00 356 | 0.00 347 | 98.84 64 | | | | 0.00 357 | 0.00 353 | 0.00 350 | 0.00 350 | 0.00 349 |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 167 | | | | 99.20 125 |
|
sam_mvs | | | | | | | | | | | | | 88.99 180 | | | | |
|
MTGPA | | | | | | | | | 98.74 97 | | | | | | | | |
|
MTMP | | | | | | | | 98.89 77 | 94.14 339 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 116 | 99.57 70 | 99.69 47 |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 131 | 99.57 70 | 99.68 53 |
|
agg_prior | | | | | | 99.30 70 | 98.38 33 | | 98.72 103 | | 97.57 120 | | | 99.81 65 | | | |
|
test_prior4 | | | | | | | 98.01 60 | 97.86 231 | | | | | | | | | |
|
test_prior | | | | | 99.19 42 | 99.31 65 | 98.22 48 | | 98.84 64 | | | | | 99.70 109 | | | 99.65 63 |
|
旧先验2 | | | | | | | | 97.57 253 | | 91.30 272 | 98.67 54 | | | 99.80 74 | 95.70 141 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 97.64 248 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 97.58 252 | 98.72 103 | 91.38 266 | | | | 99.87 43 | 93.36 209 | | 99.60 74 |
|
原ACMM2 | | | | | | | | 97.67 246 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.89 34 | 91.65 256 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 10 | | | | |
|
testdata1 | | | | | | | | 97.32 269 | | 96.34 67 | | | | | | | |
|
test12 | | | | | 99.18 46 | 99.16 94 | 98.19 50 | | 98.53 151 | | 98.07 80 | | 95.13 65 | 99.72 103 | | 99.56 75 | 99.63 69 |
|
plane_prior7 | | | | | | 97.42 222 | 94.63 201 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 227 | 94.61 204 | | | | | | 87.09 224 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 144 | | | | | 99.03 188 | 96.07 122 | 94.27 214 | 96.92 229 |
|
plane_prior3 | | | | | | | 94.61 204 | | | 97.02 46 | 95.34 180 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 99 | | 97.28 28 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 226 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 206 | 98.44 160 | | 96.74 54 | | | | | | 94.22 216 | |
|
n2 | | | | | | | | | 0.00 357 | | | | | | | | |
|
nn | | | | | | | | | 0.00 357 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 335 | | | | | | | | |
|
test11 | | | | | | | | | 98.66 126 | | | | | | | | |
|
door | | | | | | | | | 94.64 333 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 219 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.20 236 | | 98.05 212 | | 96.43 63 | 94.45 202 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 236 | | 98.05 212 | | 96.43 63 | 94.45 202 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 151 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 202 | | | 98.96 195 | | | 96.87 240 |
|
HQP3-MVS | | | | | | | | | 98.46 165 | | | | | | | 94.18 218 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 230 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 332 | 96.89 299 | | 90.97 282 | 97.90 99 | | 89.89 163 | | 93.91 193 | | 99.18 132 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 246 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 234 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 75 | | | | |
|