This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net97.96 5597.62 6098.98 6298.86 11597.47 7898.89 7799.08 2196.67 5798.72 5299.54 193.15 10099.81 6594.87 16198.83 11899.65 63
APDe-MVS99.02 298.84 199.55 599.57 3298.96 1199.39 598.93 3797.38 2399.41 1099.54 196.66 1299.84 5198.86 199.85 399.87 1
SMA-MVS98.58 2298.25 3499.56 499.51 3799.04 1098.95 6798.80 8593.67 19099.37 1299.52 396.52 1699.89 3498.06 3299.81 1099.76 26
test072699.72 1299.25 299.06 4898.88 4997.62 1099.56 499.50 497.42 5
DeepC-MVS95.98 397.88 6197.58 6398.77 7299.25 8196.93 9998.83 8998.75 9696.96 4896.89 14399.50 490.46 15499.87 4397.84 4499.76 3199.52 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO98.87 5597.65 999.53 799.48 697.34 799.94 398.43 1899.80 1699.83 5
ACMMP_NAP98.61 1698.30 3099.55 599.62 2998.95 1298.82 9298.81 7595.80 8699.16 2399.47 795.37 5599.92 2097.89 4099.75 3799.79 10
MSP-MVS99.03 198.83 299.63 399.72 1299.25 298.97 6398.58 14197.62 1099.45 899.46 897.42 599.94 398.47 1599.81 1099.69 47
test_0728_THIRD97.32 2699.45 899.46 897.88 199.94 398.47 1599.86 199.85 2
DPE-MVS98.92 398.67 599.65 299.58 3199.20 698.42 16498.91 4397.58 1399.54 699.46 897.10 899.94 397.64 5699.84 899.83 5
MP-MVS-pluss98.31 4997.92 5399.49 899.72 1298.88 1398.43 16298.78 8994.10 16197.69 11099.42 1195.25 6199.92 2098.09 3199.80 1699.67 57
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 498.75 399.36 2099.22 8998.43 3199.10 4398.87 5597.38 2399.35 1399.40 1297.78 399.87 4397.77 4799.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 2099.24 498.87 5597.62 1099.73 199.39 1397.53 499.74 101
xxxxxxxxxxxxxcwj98.72 898.52 1199.30 2999.46 4798.38 3398.21 18998.71 10797.95 399.32 1499.39 1396.22 1999.84 5197.72 5099.73 4299.67 57
SF-MVS98.59 1998.32 2999.41 1599.54 3498.71 1799.04 5098.81 7595.12 12299.32 1499.39 1396.22 1999.84 5197.72 5099.73 4299.67 57
zzz-MVS98.55 2898.25 3499.46 1199.76 198.64 2098.55 14698.74 9797.27 3298.02 8599.39 1394.81 7299.96 197.91 3799.79 1899.77 20
MTAPA98.58 2298.29 3199.46 1199.76 198.64 2098.90 7398.74 9797.27 3298.02 8599.39 1394.81 7299.96 197.91 3799.79 1899.77 20
VDDNet95.36 17694.53 19297.86 13198.10 17495.13 17998.85 8597.75 25690.46 28798.36 7199.39 1373.27 33299.64 12097.98 3596.58 18498.81 162
SD-MVS98.64 1398.68 498.53 8899.33 6098.36 4098.90 7398.85 6397.28 2899.72 299.39 1396.63 1497.60 31298.17 2799.85 399.64 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 6098.48 1696.30 23799.00 10489.54 30397.43 25898.87 5598.16 299.26 1799.38 2096.12 2799.64 12098.30 2599.77 2599.72 39
EI-MVSNet-UG-set98.41 3898.34 2598.61 8099.45 5096.32 12798.28 18398.68 11597.17 3898.74 4999.37 2195.25 6199.79 8698.57 799.54 7999.73 36
APD-MVS_3200maxsize98.53 3198.33 2899.15 5199.50 3997.92 6499.15 3598.81 7596.24 6999.20 2199.37 2195.30 5899.80 7497.73 4999.67 5399.72 39
abl_698.30 5098.03 4799.13 5299.56 3397.76 6999.13 3998.82 6996.14 7499.26 1799.37 2193.33 9799.93 1496.96 8699.67 5399.69 47
LS3D97.16 10496.66 11298.68 7698.53 14297.19 9198.93 7098.90 4492.83 22395.99 17699.37 2192.12 11799.87 4393.67 20199.57 7098.97 152
EI-MVSNet-Vis-set98.47 3598.39 1898.69 7599.46 4796.49 11998.30 18098.69 11297.21 3598.84 4299.36 2595.41 5299.78 9098.62 599.65 5799.80 9
ACMMPcopyleft98.23 5197.95 5199.09 5699.74 797.62 7399.03 5299.41 695.98 8097.60 11999.36 2594.45 8499.93 1497.14 7898.85 11799.70 45
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS96.59 12495.93 13498.57 8299.34 5796.19 13398.70 12198.39 17889.45 30394.52 19999.35 2791.85 12399.85 4892.89 22598.88 11499.68 53
VDD-MVS95.82 15395.23 16297.61 15298.84 11893.98 22498.68 12497.40 28195.02 12897.95 9399.34 2874.37 33099.78 9098.64 396.80 17799.08 143
SR-MVS98.57 2598.35 2399.24 3999.53 3598.18 5199.09 4498.82 6996.58 6099.10 2699.32 2995.39 5399.82 6197.70 5399.63 6099.72 39
PGM-MVS98.49 3398.23 3899.27 3799.72 1298.08 5798.99 5999.49 595.43 10399.03 2999.32 2995.56 4599.94 396.80 10199.77 2599.78 13
TSAR-MVS + MP.98.78 598.62 699.24 3999.69 2498.28 4699.14 3698.66 12696.84 5099.56 499.31 3196.34 1899.70 10998.32 2499.73 4299.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-398.59 1998.50 1498.86 7099.43 5297.05 9598.40 16698.68 11597.43 1999.06 2899.31 3195.80 4299.77 9598.62 599.76 3199.78 13
Regformer-498.64 1398.53 1098.99 6099.43 5297.37 8198.40 16698.79 8797.46 1899.09 2799.31 3195.86 4199.80 7498.64 399.76 3199.79 10
XVG-OURS96.55 12696.41 11996.99 18098.75 12293.76 23097.50 25598.52 15395.67 9296.83 14499.30 3488.95 18599.53 13795.88 13096.26 19897.69 206
9.1498.06 4599.47 4498.71 11798.82 6994.36 15599.16 2399.29 3596.05 3199.81 6597.00 8299.71 49
MSLP-MVS++98.56 2798.57 798.55 8499.26 8096.80 10498.71 11799.05 2497.28 2898.84 4299.28 3696.47 1799.40 14998.52 1399.70 5099.47 94
DeepC-MVS_fast96.70 198.55 2898.34 2599.18 4699.25 8198.04 5898.50 15398.78 8997.72 698.92 4099.28 3695.27 5999.82 6197.55 6599.77 2599.69 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF94.87 20595.40 15093.26 31098.89 11282.06 33898.33 17298.06 23990.30 29196.56 15699.26 3887.09 22499.49 14093.82 19696.32 19398.24 191
ETH3D-3000-0.198.35 4398.00 4999.38 1699.47 4498.68 1998.67 12798.84 6494.66 14599.11 2599.25 3995.46 4999.81 6596.80 10199.73 4299.63 69
APD-MVScopyleft98.35 4398.00 4999.42 1499.51 3798.72 1698.80 9998.82 6994.52 15099.23 1999.25 3995.54 4799.80 7496.52 11099.77 2599.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 4798.01 4899.28 3499.75 398.18 5199.22 2598.79 8796.13 7597.92 9899.23 4194.54 7999.94 396.74 10599.78 2299.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3298.26 3399.25 3899.75 398.04 5899.28 1698.81 7596.24 6998.35 7299.23 4195.46 4999.94 397.42 7099.81 1099.77 20
MG-MVS97.81 6497.60 6298.44 9599.12 9895.97 14297.75 24098.78 8996.89 4998.46 6399.22 4393.90 9499.68 11594.81 16599.52 8299.67 57
Regformer-198.66 1198.51 1399.12 5499.35 5597.81 6898.37 16898.76 9397.49 1699.20 2199.21 4496.08 2899.79 8698.42 1999.73 4299.75 28
Regformer-298.69 1098.52 1199.19 4299.35 5598.01 6098.37 16898.81 7597.48 1799.21 2099.21 4496.13 2699.80 7498.40 2199.73 4299.75 28
casdiffmvs97.63 7497.41 7698.28 10598.33 15596.14 13498.82 9298.32 18896.38 6697.95 9399.21 4491.23 14099.23 16298.12 2998.37 13999.48 92
Vis-MVSNetpermissive97.42 9097.11 8798.34 10398.66 13296.23 13099.22 2599.00 2796.63 5998.04 8399.21 4488.05 20699.35 15396.01 12799.21 10199.45 100
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS98.70 998.49 1599.34 2299.70 2298.35 4199.29 1498.88 4997.40 2098.46 6399.20 4895.90 3999.89 3497.85 4299.74 4099.78 13
LFMVS95.86 15094.98 17498.47 9398.87 11496.32 12798.84 8896.02 31893.40 20098.62 5799.20 4874.99 32699.63 12397.72 5097.20 17199.46 98
HPM-MVS_fast98.38 4098.13 4299.12 5499.75 397.86 6599.44 498.82 6994.46 15398.94 3599.20 4895.16 6499.74 10197.58 6199.85 399.77 20
ACMMPR98.59 1998.36 2199.29 3099.74 798.15 5499.23 2198.95 3496.10 7898.93 3999.19 5195.70 4399.94 397.62 5799.79 1899.78 13
testtj98.33 4797.95 5199.47 1099.49 4398.70 1898.83 8998.86 6095.48 10098.91 4199.17 5295.48 4899.93 1495.80 13499.53 8099.76 26
HFP-MVS98.63 1598.40 1799.32 2799.72 1298.29 4499.23 2198.96 3296.10 7898.94 3599.17 5296.06 2999.92 2097.62 5799.78 2299.75 28
region2R98.61 1698.38 1999.29 3099.74 798.16 5399.23 2198.93 3796.15 7398.94 3599.17 5295.91 3899.94 397.55 6599.79 1899.78 13
#test#98.54 3098.27 3299.32 2799.72 1298.29 4498.98 6298.96 3295.65 9498.94 3599.17 5296.06 2999.92 2097.21 7799.78 2299.75 28
baseline97.64 7397.44 7598.25 10998.35 15096.20 13199.00 5798.32 18896.33 6898.03 8499.17 5291.35 13699.16 16898.10 3098.29 14499.39 104
OPU-MVS99.37 1999.24 8799.05 999.02 5499.16 5797.81 299.37 15297.24 7599.73 4299.70 45
CNVR-MVS98.78 598.56 899.45 1399.32 6398.87 1498.47 15698.81 7597.72 698.76 4899.16 5797.05 999.78 9098.06 3299.66 5699.69 47
3Dnovator94.51 597.46 8496.93 9699.07 5797.78 19297.64 7199.35 1099.06 2297.02 4693.75 23999.16 5789.25 17299.92 2097.22 7699.75 3799.64 66
ETH3D cwj APD-0.1697.96 5597.52 6899.29 3099.05 10098.52 2598.33 17298.68 11593.18 20798.68 5399.13 6094.62 7699.83 5496.45 11299.55 7899.52 81
CP-MVS98.57 2598.36 2199.19 4299.66 2697.86 6599.34 1198.87 5595.96 8198.60 5999.13 6096.05 3199.94 397.77 4799.86 199.77 20
3Dnovator+94.38 697.43 8996.78 10399.38 1697.83 19098.52 2599.37 798.71 10797.09 4492.99 26599.13 6089.36 16999.89 3496.97 8499.57 7099.71 43
EPNet97.28 9796.87 9998.51 8994.98 31996.14 13498.90 7397.02 29998.28 195.99 17699.11 6391.36 13599.89 3496.98 8399.19 10399.50 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 11296.27 12498.92 6699.50 3997.63 7298.85 8598.90 4484.80 32797.77 10399.11 6392.84 10299.66 11794.85 16299.77 2599.47 94
ZNCC-MVS98.49 3398.20 4099.35 2199.73 1198.39 3299.19 3198.86 6095.77 8798.31 7599.10 6595.46 4999.93 1497.57 6499.81 1099.74 33
testdata98.26 10899.20 9295.36 16998.68 11591.89 25298.60 5999.10 6594.44 8599.82 6194.27 18299.44 9099.58 78
PHI-MVS98.34 4598.06 4599.18 4699.15 9698.12 5699.04 5099.09 2093.32 20398.83 4499.10 6596.54 1599.83 5497.70 5399.76 3199.59 76
OMC-MVS97.55 8297.34 7998.20 11299.33 6095.92 14998.28 18398.59 13695.52 9997.97 9299.10 6593.28 9999.49 14095.09 15898.88 11499.19 128
COLMAP_ROBcopyleft93.27 1295.33 17994.87 17996.71 19799.29 7393.24 25198.58 13898.11 22689.92 29793.57 24399.10 6586.37 23899.79 8690.78 26798.10 14897.09 219
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 7397.48 7798.70 11199.09 7095.56 4599.47 8599.61 71
XVG-OURS-SEG-HR96.51 12796.34 12197.02 17998.77 12193.76 23097.79 23898.50 16095.45 10296.94 13899.09 7087.87 21199.55 13696.76 10495.83 20797.74 203
CPTT-MVS97.72 6997.32 8098.92 6699.64 2797.10 9499.12 4198.81 7592.34 23898.09 7999.08 7293.01 10199.92 2096.06 12499.77 2599.75 28
EPP-MVSNet97.46 8497.28 8197.99 12598.64 13495.38 16899.33 1398.31 19093.61 19397.19 12799.07 7394.05 9099.23 16296.89 9198.43 13899.37 106
GST-MVS98.43 3798.12 4399.34 2299.72 1298.38 3399.09 4498.82 6995.71 9098.73 5199.06 7495.27 5999.93 1497.07 8199.63 6099.72 39
OpenMVScopyleft93.04 1395.83 15295.00 17298.32 10497.18 24097.32 8299.21 2898.97 3089.96 29691.14 29899.05 7586.64 23299.92 2093.38 20799.47 8597.73 204
EI-MVSNet95.96 14595.83 13796.36 23397.93 18493.70 23698.12 20698.27 19993.70 18595.07 18499.02 7692.23 11398.54 23894.68 16693.46 23696.84 243
CVMVSNet95.43 16996.04 13193.57 30697.93 18483.62 33398.12 20698.59 13695.68 9196.56 15699.02 7687.51 21797.51 31693.56 20597.44 16799.60 74
TSAR-MVS + GP.98.38 4098.24 3798.81 7199.22 8997.25 8998.11 20898.29 19897.19 3798.99 3499.02 7696.22 1999.67 11698.52 1398.56 13099.51 85
QAPM96.29 13495.40 15098.96 6497.85 18997.60 7499.23 2198.93 3789.76 29893.11 26299.02 7689.11 17799.93 1491.99 24899.62 6299.34 107
MVS_111021_LR98.34 4598.23 3898.67 7799.27 7896.90 10197.95 22199.58 397.14 4098.44 6799.01 8095.03 6899.62 12597.91 3799.75 3799.50 87
MVS_111021_HR98.47 3598.34 2598.88 6999.22 8997.32 8297.91 22499.58 397.20 3698.33 7399.00 8195.99 3499.64 12098.05 3499.76 3199.69 47
IS-MVSNet97.22 9996.88 9898.25 10998.85 11796.36 12599.19 3197.97 24595.39 10597.23 12698.99 8291.11 14298.93 20094.60 17098.59 12899.47 94
Anonymous2024052995.10 19194.22 20897.75 13999.01 10394.26 21898.87 8298.83 6885.79 32496.64 15298.97 8378.73 30899.85 4896.27 11794.89 21199.12 138
原ACMM198.65 7899.32 6396.62 11098.67 12393.27 20697.81 10298.97 8395.18 6399.83 5493.84 19599.46 8899.50 87
112197.37 9496.77 10799.16 4999.34 5797.99 6398.19 19698.68 11590.14 29498.01 8998.97 8394.80 7499.87 4393.36 20999.46 8899.61 71
HPM-MVScopyleft98.36 4298.10 4499.13 5299.74 797.82 6799.53 198.80 8594.63 14698.61 5898.97 8395.13 6599.77 9597.65 5599.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 3998.20 4098.99 6099.00 10497.66 7097.75 24098.89 4697.71 898.33 7398.97 8394.97 6999.88 4298.42 1999.76 3199.42 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 5397.76 5798.90 6898.73 12397.27 8598.35 17098.78 8997.37 2597.72 10898.96 8891.53 13399.92 2098.79 299.65 5799.51 85
test22299.23 8897.17 9297.40 25998.66 12688.68 30998.05 8198.96 8894.14 8999.53 8099.61 71
新几何199.16 4999.34 5798.01 6098.69 11290.06 29598.13 7798.95 9094.60 7799.89 3491.97 24999.47 8599.59 76
DP-MVS Recon97.86 6297.46 7399.06 5899.53 3598.35 4198.33 17298.89 4692.62 22798.05 8198.94 9195.34 5799.65 11896.04 12599.42 9199.19 128
CANet_DTU96.96 11196.55 11598.21 11198.17 17096.07 13697.98 21998.21 20697.24 3497.13 12998.93 9286.88 22999.91 2995.00 16099.37 9698.66 174
NCCC98.61 1698.35 2399.38 1699.28 7798.61 2298.45 15798.76 9397.82 598.45 6698.93 9296.65 1399.83 5497.38 7299.41 9299.71 43
CSCG97.85 6397.74 5898.20 11299.67 2595.16 17699.22 2599.32 793.04 21297.02 13698.92 9495.36 5699.91 2997.43 6999.64 5999.52 81
CHOSEN 1792x268897.12 10696.80 10098.08 12099.30 7094.56 20898.05 21299.71 193.57 19497.09 13098.91 9588.17 20199.89 3496.87 9799.56 7599.81 8
diffmvs97.58 7997.40 7798.13 11798.32 15795.81 15498.06 21198.37 18196.20 7198.74 4998.89 9691.31 13899.25 15998.16 2898.52 13199.34 107
PVSNet_Blended_VisFu97.70 7097.46 7398.44 9599.27 7895.91 15098.63 13299.16 1794.48 15297.67 11198.88 9792.80 10399.91 2997.11 7999.12 10599.50 87
Vis-MVSNet (Re-imp)96.87 11596.55 11597.83 13398.73 12395.46 16699.20 2998.30 19694.96 13196.60 15598.87 9890.05 16098.59 23493.67 20198.60 12799.46 98
ETH3 D test640097.59 7897.01 9299.34 2299.40 5498.56 2398.20 19298.81 7591.63 26098.44 6798.85 9993.98 9399.82 6194.11 18899.69 5199.64 66
CDPH-MVS97.94 5997.49 7199.28 3499.47 4498.44 2997.91 22498.67 12392.57 23098.77 4798.85 9995.93 3799.72 10395.56 14499.69 5199.68 53
VNet97.79 6697.40 7798.96 6498.88 11397.55 7598.63 13298.93 3796.74 5499.02 3098.84 10190.33 15799.83 5498.53 996.66 18199.50 87
HPM-MVS++copyleft98.58 2298.25 3499.55 599.50 3999.08 898.72 11698.66 12697.51 1598.15 7698.83 10295.70 4399.92 2097.53 6799.67 5399.66 61
MVSFormer97.57 8097.49 7197.84 13298.07 17595.76 15599.47 298.40 17694.98 12998.79 4598.83 10292.34 10898.41 25896.91 8899.59 6799.34 107
jason97.32 9697.08 8998.06 12297.45 22195.59 15897.87 23097.91 25094.79 13798.55 6198.83 10291.12 14199.23 16297.58 6199.60 6499.34 107
jason: jason.
Anonymous20240521195.28 18194.49 19497.67 14799.00 10493.75 23298.70 12197.04 29690.66 28496.49 16398.80 10578.13 31199.83 5496.21 12095.36 21099.44 101
MCST-MVS98.65 1298.37 2099.48 999.60 3098.87 1498.41 16598.68 11597.04 4598.52 6298.80 10596.78 1199.83 5497.93 3699.61 6399.74 33
DVP-MVS98.74 798.55 999.29 3099.75 398.23 4799.26 1898.88 4997.52 1499.41 1098.78 10796.00 3399.79 8697.79 4699.59 6799.85 2
OPM-MVS95.69 15995.33 15896.76 19596.16 29294.63 20198.43 16298.39 17896.64 5895.02 18698.78 10785.15 25699.05 18495.21 15794.20 21796.60 271
AllTest95.24 18394.65 18796.99 18099.25 8193.21 25298.59 13698.18 21291.36 26793.52 24598.77 10984.67 26399.72 10389.70 28597.87 15498.02 196
TestCases96.99 18099.25 8193.21 25298.18 21291.36 26793.52 24598.77 10984.67 26399.72 10389.70 28597.87 15498.02 196
LPG-MVS_test95.62 16295.34 15696.47 22497.46 21793.54 23998.99 5998.54 14994.67 14394.36 20998.77 10985.39 25199.11 17795.71 13994.15 22096.76 251
LGP-MVS_train96.47 22497.46 21793.54 23998.54 14994.67 14394.36 20998.77 10985.39 25199.11 17795.71 13994.15 22096.76 251
MSDG95.93 14795.30 16197.83 13398.90 11195.36 16996.83 30498.37 18191.32 27194.43 20698.73 11390.27 15899.60 12690.05 27898.82 11998.52 181
test_prior398.22 5297.90 5499.19 4299.31 6598.22 4897.80 23698.84 6496.12 7697.89 10098.69 11495.96 3599.70 10996.89 9199.60 6499.65 63
test_prior297.80 23696.12 7697.89 10098.69 11495.96 3596.89 9199.60 64
TEST999.31 6598.50 2797.92 22298.73 10192.63 22697.74 10698.68 11696.20 2299.80 74
train_agg97.97 5497.52 6899.33 2699.31 6598.50 2797.92 22298.73 10192.98 21597.74 10698.68 11696.20 2299.80 7496.59 10799.57 7099.68 53
AdaColmapbinary97.15 10596.70 10898.48 9299.16 9496.69 10998.01 21698.89 4694.44 15496.83 14498.68 11690.69 15199.76 9794.36 17899.29 10098.98 151
test_899.29 7398.44 2997.89 22898.72 10392.98 21597.70 10998.66 11996.20 2299.80 74
agg_prior197.95 5897.51 7099.28 3499.30 7098.38 3397.81 23598.72 10393.16 20997.57 12098.66 11996.14 2599.81 6596.63 10699.56 7599.66 61
tttt051796.07 14095.51 14997.78 13698.41 14794.84 19299.28 1694.33 33694.26 15897.64 11598.64 12184.05 27599.47 14595.34 14997.60 16599.03 146
cdsmvs_eth3d_5k23.98 32031.98 3210.00 3360.00 3550.00 3560.00 34798.59 1360.00 3510.00 35298.61 12290.60 1520.00 3530.00 3500.00 3500.00 349
lupinMVS97.44 8897.22 8498.12 11998.07 17595.76 15597.68 24597.76 25594.50 15198.79 4598.61 12292.34 10899.30 15697.58 6199.59 6799.31 113
BH-RMVSNet95.92 14895.32 15997.69 14598.32 15794.64 20098.19 19697.45 27794.56 14796.03 17498.61 12285.02 25799.12 17490.68 26999.06 10799.30 116
TAMVS97.02 10996.79 10297.70 14498.06 17795.31 17398.52 14898.31 19093.95 17097.05 13598.61 12293.49 9698.52 24095.33 15097.81 15699.29 118
TAPA-MVS93.98 795.35 17794.56 19197.74 14099.13 9794.83 19498.33 17298.64 13186.62 31696.29 16998.61 12294.00 9299.29 15780.00 33099.41 9299.09 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 24293.33 25796.97 18397.19 23993.38 24698.74 10898.57 14291.21 27893.81 23698.58 12772.85 33398.77 22095.05 15993.93 22898.77 165
DPM-MVS97.55 8296.99 9499.23 4199.04 10298.55 2497.17 28098.35 18494.85 13697.93 9798.58 12795.07 6799.71 10892.60 22999.34 9799.43 102
F-COLMAP97.09 10896.80 10097.97 12699.45 5094.95 18998.55 14698.62 13393.02 21396.17 17298.58 12794.01 9199.81 6593.95 19298.90 11299.14 136
WTY-MVS97.37 9496.92 9798.72 7498.86 11596.89 10398.31 17898.71 10795.26 11497.67 11198.56 13092.21 11499.78 9095.89 12996.85 17699.48 92
CNLPA97.45 8797.03 9198.73 7399.05 10097.44 8098.07 21098.53 15195.32 11196.80 14898.53 13193.32 9899.72 10394.31 18199.31 9999.02 147
ACMP93.49 1095.34 17894.98 17496.43 22997.67 19993.48 24198.73 11298.44 16994.94 13492.53 27898.53 13184.50 26799.14 17295.48 14794.00 22596.66 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 22493.95 22796.34 23597.63 20293.26 25098.81 9898.49 16493.43 19989.74 30898.53 13181.91 28999.08 18293.69 19893.30 24296.70 260
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 24394.00 22394.85 28695.60 30889.22 30898.89 7797.43 27995.29 11292.18 28798.52 13482.86 28598.59 23493.46 20691.76 25896.74 253
CDS-MVSNet96.99 11096.69 10997.90 13098.05 17895.98 13798.20 19298.33 18793.67 19096.95 13798.49 13593.54 9598.42 25195.24 15697.74 16099.31 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss97.39 9296.98 9598.61 8098.60 13896.61 11298.22 18898.93 3793.97 16998.01 8998.48 13691.98 12199.85 4896.45 11298.15 14699.39 104
ACMH+92.99 1494.30 23893.77 23995.88 25597.81 19192.04 26798.71 11798.37 18193.99 16890.60 30498.47 13780.86 29799.05 18492.75 22792.40 25196.55 279
ACMM93.85 995.69 15995.38 15496.61 20797.61 20393.84 22898.91 7298.44 16995.25 11594.28 21398.47 13786.04 24599.12 17495.50 14693.95 22796.87 240
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS96.04 14295.53 14797.56 15597.07 24797.32 8298.57 14398.09 23195.15 12095.02 18698.44 13988.20 20098.58 23696.17 12193.09 24596.79 247
1112_ss96.63 12196.00 13398.50 9098.56 13996.37 12498.18 20098.10 22892.92 21894.84 19098.43 14092.14 11699.58 12894.35 17996.51 18799.56 80
ab-mvs-re8.20 32310.94 3250.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 35298.43 1400.00 3570.00 3530.00 3500.00 3500.00 349
test_yl97.22 9996.78 10398.54 8698.73 12396.60 11398.45 15798.31 19094.70 13998.02 8598.42 14290.80 14899.70 10996.81 9996.79 17899.34 107
DCV-MVSNet97.22 9996.78 10398.54 8698.73 12396.60 11398.45 15798.31 19094.70 13998.02 8598.42 14290.80 14899.70 10996.81 9996.79 17899.34 107
xiu_mvs_v1_base_debu97.60 7597.56 6597.72 14198.35 15095.98 13797.86 23198.51 15597.13 4199.01 3198.40 14491.56 12999.80 7498.53 998.68 12297.37 214
xiu_mvs_v1_base97.60 7597.56 6597.72 14198.35 15095.98 13797.86 23198.51 15597.13 4199.01 3198.40 14491.56 12999.80 7498.53 998.68 12297.37 214
xiu_mvs_v1_base_debi97.60 7597.56 6597.72 14198.35 15095.98 13797.86 23198.51 15597.13 4199.01 3198.40 14491.56 12999.80 7498.53 998.68 12297.37 214
mvs_tets95.41 17295.00 17296.65 20295.58 30994.42 21199.00 5798.55 14695.73 8993.21 25798.38 14783.45 28498.63 22997.09 8094.00 22596.91 234
FC-MVSNet-test96.42 13096.05 13097.53 15796.95 25297.27 8599.36 899.23 1295.83 8593.93 22998.37 14892.00 12098.32 26796.02 12692.72 24997.00 224
jajsoiax95.45 16895.03 17196.73 19695.42 31694.63 20199.14 3698.52 15395.74 8893.22 25698.36 14983.87 28098.65 22896.95 8794.04 22396.91 234
nrg03096.28 13695.72 13997.96 12896.90 25798.15 5499.39 598.31 19095.47 10194.42 20798.35 15092.09 11898.69 22397.50 6889.05 29397.04 222
FIs96.51 12796.12 12997.67 14797.13 24397.54 7699.36 899.22 1495.89 8294.03 22798.35 15091.98 12198.44 24896.40 11592.76 24897.01 223
ITE_SJBPF95.44 26997.42 22291.32 28097.50 27295.09 12693.59 24198.35 15081.70 29098.88 20889.71 28493.39 24096.12 306
LTVRE_ROB92.95 1594.60 21993.90 23096.68 20197.41 22594.42 21198.52 14898.59 13691.69 25891.21 29798.35 15084.87 26099.04 18791.06 26293.44 23996.60 271
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 12996.26 12596.92 18995.84 30395.08 18199.16 3498.50 16095.87 8493.84 23598.34 15494.51 8098.61 23096.88 9493.45 23897.06 221
EPNet_dtu95.21 18594.95 17695.99 24796.17 29090.45 29498.16 20297.27 28796.77 5293.14 26198.33 15590.34 15698.42 25185.57 31698.81 12099.09 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 21393.43 25598.42 9898.62 13696.77 10695.48 32598.20 20884.63 32893.34 25398.32 15688.55 19399.81 6584.80 32198.96 11098.68 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 14395.36 15597.97 12698.38 14895.52 16498.88 8094.19 33894.04 16397.64 11598.31 15783.82 28299.46 14695.29 15397.70 16298.93 156
PLCcopyleft95.07 497.20 10296.78 10398.44 9599.29 7396.31 12998.14 20398.76 9392.41 23696.39 16798.31 15794.92 7199.78 9094.06 19098.77 12199.23 123
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP_MVS96.14 13995.90 13596.85 19197.42 22294.60 20698.80 9998.56 14497.28 2895.34 18098.28 15987.09 22499.03 18896.07 12294.27 21496.92 229
plane_prior498.28 159
API-MVS97.41 9197.25 8297.91 12998.70 12896.80 10498.82 9298.69 11294.53 14898.11 7898.28 15994.50 8399.57 12994.12 18799.49 8397.37 214
mvs_anonymous96.70 12096.53 11797.18 17098.19 16693.78 22998.31 17898.19 20994.01 16694.47 20198.27 16292.08 11998.46 24597.39 7197.91 15299.31 113
XXY-MVS95.20 18694.45 19997.46 15896.75 26596.56 11698.86 8498.65 13093.30 20593.27 25598.27 16284.85 26198.87 20994.82 16491.26 26596.96 226
SixPastTwentyTwo93.34 26792.86 26594.75 29095.67 30689.41 30698.75 10596.67 31593.89 17290.15 30698.25 16480.87 29698.27 27690.90 26590.64 27296.57 275
VPNet94.99 19794.19 21097.40 16397.16 24196.57 11598.71 11798.97 3095.67 9294.84 19098.24 16580.36 30098.67 22796.46 11187.32 31296.96 226
PVSNet_Blended97.38 9397.12 8698.14 11599.25 8195.35 17197.28 27299.26 893.13 21097.94 9598.21 16692.74 10499.81 6596.88 9499.40 9499.27 120
HyFIR lowres test96.90 11496.49 11898.14 11599.33 6095.56 16197.38 26199.65 292.34 23897.61 11798.20 16789.29 17199.10 18096.97 8497.60 16599.77 20
baseline195.84 15195.12 16798.01 12498.49 14495.98 13798.73 11297.03 29795.37 10896.22 17098.19 16889.96 16299.16 16894.60 17087.48 30998.90 158
ab-mvs96.42 13095.71 14298.55 8498.63 13596.75 10797.88 22998.74 9793.84 17596.54 16098.18 16985.34 25499.75 9995.93 12896.35 19199.15 134
xiu_mvs_v2_base97.66 7297.70 5997.56 15598.61 13795.46 16697.44 25698.46 16597.15 3998.65 5698.15 17094.33 8699.80 7497.84 4498.66 12697.41 210
USDC93.33 26892.71 26895.21 27496.83 26190.83 28796.91 29497.50 27293.84 17590.72 30298.14 17177.69 31498.82 21589.51 28993.21 24495.97 310
EU-MVSNet93.66 26194.14 21592.25 31595.96 29983.38 33498.52 14898.12 22494.69 14192.61 27598.13 17287.36 22296.39 33291.82 25190.00 27996.98 225
CHOSEN 280x42097.18 10397.18 8597.20 16898.81 11993.27 24995.78 32399.15 1895.25 11596.79 14998.11 17392.29 11099.07 18398.56 899.85 399.25 122
MVSTER96.06 14195.72 13997.08 17798.23 16195.93 14898.73 11298.27 19994.86 13595.07 18498.09 17488.21 19998.54 23896.59 10793.46 23696.79 247
MVS_Test97.28 9797.00 9398.13 11798.33 15595.97 14298.74 10898.07 23594.27 15798.44 6798.07 17592.48 10699.26 15896.43 11498.19 14599.16 133
PAPM_NR97.46 8497.11 8798.50 9099.50 3996.41 12398.63 13298.60 13495.18 11897.06 13498.06 17694.26 8899.57 12993.80 19798.87 11699.52 81
PatchMatch-RL96.59 12496.03 13298.27 10699.31 6596.51 11897.91 22499.06 2293.72 18296.92 14198.06 17688.50 19599.65 11891.77 25399.00 10998.66 174
Effi-MVS+97.12 10696.69 10998.39 10198.19 16696.72 10897.37 26398.43 17293.71 18397.65 11498.02 17892.20 11599.25 15996.87 9797.79 15799.19 128
MVS94.67 21693.54 25198.08 12096.88 25896.56 11698.19 19698.50 16078.05 33692.69 27398.02 17891.07 14499.63 12390.09 27598.36 14198.04 195
BH-untuned95.95 14695.72 13996.65 20298.55 14192.26 26298.23 18797.79 25493.73 18194.62 19698.01 18088.97 18499.00 19193.04 21998.51 13298.68 171
CLD-MVS95.62 16295.34 15696.46 22797.52 21493.75 23297.27 27398.46 16595.53 9894.42 20798.00 18186.21 24098.97 19296.25 11994.37 21296.66 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HY-MVS93.96 896.82 11796.23 12798.57 8298.46 14597.00 9698.14 20398.21 20693.95 17096.72 15097.99 18291.58 12899.76 9794.51 17596.54 18698.95 155
MAR-MVS96.91 11396.40 12098.45 9498.69 13096.90 10198.66 13098.68 11592.40 23797.07 13397.96 18391.54 13299.75 9993.68 19998.92 11198.69 170
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 21693.99 22596.71 19796.68 26995.26 17499.13 3999.03 2593.68 18892.33 28497.95 18485.35 25398.10 28593.59 20388.16 30496.79 247
mvs-test196.60 12296.68 11196.37 23297.89 18791.81 26998.56 14498.10 22896.57 6196.52 16297.94 18590.81 14699.45 14795.72 13798.01 14997.86 200
TranMVSNet+NR-MVSNet95.14 18994.48 19597.11 17596.45 28096.36 12599.03 5299.03 2595.04 12793.58 24297.93 18688.27 19898.03 29294.13 18686.90 31896.95 228
testgi93.06 27592.45 27394.88 28596.43 28189.90 29798.75 10597.54 26995.60 9591.63 29597.91 18774.46 32997.02 32286.10 31293.67 23197.72 205
CP-MVSNet94.94 20394.30 20696.83 19296.72 26795.56 16199.11 4298.95 3493.89 17292.42 28397.90 18887.19 22398.12 28494.32 18088.21 30296.82 246
XVG-ACMP-BASELINE94.54 22594.14 21595.75 26096.55 27491.65 27598.11 20898.44 16994.96 13194.22 21797.90 18879.18 30699.11 17794.05 19193.85 22996.48 292
PS-MVSNAJ97.73 6897.77 5697.62 15198.68 13195.58 15997.34 26798.51 15597.29 2798.66 5597.88 19094.51 8099.90 3297.87 4199.17 10497.39 212
RRT_test8_iter0594.56 22394.19 21095.67 26297.60 20491.34 27798.93 7098.42 17394.75 13893.39 25197.87 19179.00 30798.61 23096.78 10390.99 26997.07 220
TransMVSNet (Re)92.67 27891.51 28396.15 24296.58 27394.65 19998.90 7396.73 31190.86 28389.46 31197.86 19285.62 24998.09 28786.45 31081.12 33295.71 314
test_djsdf96.00 14495.69 14496.93 18795.72 30595.49 16599.47 298.40 17694.98 12994.58 19797.86 19289.16 17598.41 25896.91 8894.12 22296.88 238
TinyColmap92.31 28291.53 28294.65 29396.92 25489.75 29996.92 29296.68 31490.45 28889.62 30997.85 19476.06 32298.81 21686.74 30892.51 25095.41 317
pm-mvs193.94 25993.06 26296.59 21096.49 27895.16 17698.95 6798.03 24292.32 24091.08 29997.84 19584.54 26698.41 25892.16 24186.13 32496.19 305
UGNet96.78 11896.30 12398.19 11498.24 16095.89 15298.88 8098.93 3797.39 2296.81 14797.84 19582.60 28699.90 3296.53 10999.49 8398.79 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 29189.68 29595.21 27485.35 34291.49 27698.51 15297.07 29491.47 26388.83 31497.84 19577.31 31899.09 18192.79 22677.98 33595.04 322
PEN-MVS94.42 23293.73 24396.49 22296.28 28694.84 19299.17 3399.00 2793.51 19592.23 28697.83 19886.10 24297.90 30192.55 23486.92 31796.74 253
131496.25 13895.73 13897.79 13597.13 24395.55 16398.19 19698.59 13693.47 19792.03 29097.82 19991.33 13799.49 14094.62 16998.44 13698.32 190
DTE-MVSNet93.98 25893.26 26096.14 24396.06 29594.39 21399.20 2998.86 6093.06 21191.78 29297.81 20085.87 24697.58 31390.53 27086.17 32296.46 294
PAPM94.95 20194.00 22397.78 13697.04 24895.65 15796.03 31998.25 20491.23 27694.19 21997.80 20191.27 13998.86 21182.61 32597.61 16498.84 161
PVSNet91.96 1896.35 13296.15 12896.96 18499.17 9392.05 26696.08 31698.68 11593.69 18697.75 10597.80 20188.86 18699.69 11494.26 18399.01 10899.15 134
CMPMVSbinary66.06 2189.70 30089.67 29689.78 31993.19 33176.56 34097.00 28898.35 18480.97 33381.57 33397.75 20374.75 32798.61 23089.85 28193.63 23394.17 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 23094.51 20997.73 204
HQP-MVS95.72 15695.40 15096.69 20097.20 23694.25 21998.05 21298.46 16596.43 6394.45 20297.73 20486.75 23098.96 19595.30 15194.18 21896.86 242
UniMVSNet_NR-MVSNet95.71 15795.15 16597.40 16396.84 26096.97 9798.74 10899.24 1095.16 11993.88 23297.72 20691.68 12698.31 26995.81 13287.25 31396.92 229
DU-MVS95.42 17094.76 18297.40 16396.53 27596.97 9798.66 13098.99 2995.43 10393.88 23297.69 20788.57 19198.31 26995.81 13287.25 31396.92 229
WR-MVS95.15 18894.46 19797.22 16796.67 27096.45 12098.21 18998.81 7594.15 15993.16 25897.69 20787.51 21798.30 27195.29 15388.62 29996.90 236
NR-MVSNet94.98 19994.16 21397.44 15996.53 27597.22 9098.74 10898.95 3494.96 13189.25 31297.69 20789.32 17098.18 27994.59 17287.40 31196.92 229
Fast-Effi-MVS+-dtu95.87 14995.85 13695.91 25297.74 19691.74 27398.69 12398.15 22095.56 9794.92 18897.68 21088.98 18398.79 21893.19 21497.78 15897.20 218
alignmvs97.56 8197.07 9099.01 5998.66 13298.37 3998.83 8998.06 23996.74 5498.00 9197.65 21190.80 14899.48 14498.37 2296.56 18599.19 128
LF4IMVS93.14 27492.79 26794.20 30195.88 30188.67 31597.66 24797.07 29493.81 17791.71 29397.65 21177.96 31398.81 21691.47 25891.92 25795.12 319
lessismore_v094.45 29994.93 32188.44 31891.03 34586.77 32297.64 21376.23 32198.42 25190.31 27385.64 32596.51 288
TR-MVS94.94 20394.20 20997.17 17197.75 19394.14 22197.59 25197.02 29992.28 24295.75 17897.64 21383.88 27998.96 19589.77 28296.15 20298.40 185
ET-MVSNet_ETH3D94.13 24992.98 26397.58 15398.22 16296.20 13197.31 27095.37 32594.53 14879.56 33497.63 21586.51 23397.53 31596.91 8890.74 27199.02 147
Baseline_NR-MVSNet94.35 23593.81 23595.96 25096.20 28894.05 22398.61 13596.67 31591.44 26593.85 23497.60 21688.57 19198.14 28294.39 17786.93 31695.68 315
pmmvs494.69 21193.99 22596.81 19395.74 30495.94 14597.40 25997.67 25990.42 28993.37 25297.59 21789.08 17898.20 27892.97 22191.67 25996.30 302
K. test v392.55 27991.91 28194.48 29695.64 30789.24 30799.07 4794.88 33094.04 16386.78 32197.59 21777.64 31797.64 31192.08 24389.43 28896.57 275
Anonymous2023121194.10 25293.26 26096.61 20799.11 9994.28 21699.01 5598.88 4986.43 31892.81 26897.57 21981.66 29198.68 22694.83 16389.02 29596.88 238
PAPR96.84 11696.24 12698.65 7898.72 12796.92 10097.36 26598.57 14293.33 20296.67 15197.57 21994.30 8799.56 13191.05 26498.59 12899.47 94
pmmvs691.77 28590.63 28895.17 27694.69 32591.24 28298.67 12797.92 24986.14 32089.62 30997.56 22175.79 32398.34 26590.75 26884.56 32695.94 311
EIA-MVS97.75 6797.58 6398.27 10698.38 14896.44 12199.01 5598.60 13495.88 8397.26 12597.53 22294.97 6999.33 15597.38 7299.20 10299.05 145
MS-PatchMatch93.84 26093.63 24794.46 29896.18 28989.45 30497.76 23998.27 19992.23 24392.13 28897.49 22379.50 30398.69 22389.75 28399.38 9595.25 318
IterMVS-SCA-FT94.11 25193.87 23294.85 28697.98 18390.56 29397.18 27898.11 22693.75 17892.58 27697.48 22483.97 27797.41 31792.48 23891.30 26396.58 273
anonymousdsp95.42 17094.91 17796.94 18695.10 31895.90 15199.14 3698.41 17493.75 17893.16 25897.46 22587.50 21998.41 25895.63 14394.03 22496.50 290
PVSNet_BlendedMVS96.73 11996.60 11397.12 17499.25 8195.35 17198.26 18699.26 894.28 15697.94 9597.46 22592.74 10499.81 6596.88 9493.32 24196.20 304
PMMVS96.60 12296.33 12297.41 16197.90 18693.93 22597.35 26698.41 17492.84 22297.76 10497.45 22791.10 14399.20 16596.26 11897.91 15299.11 139
ETV-MVS97.96 5597.81 5598.40 10098.42 14697.27 8598.73 11298.55 14696.84 5098.38 7097.44 22895.39 5399.35 15397.62 5798.89 11398.58 180
thisisatest051595.61 16494.89 17897.76 13898.15 17195.15 17896.77 30594.41 33492.95 21797.18 12897.43 22984.78 26299.45 14794.63 16797.73 16198.68 171
baseline295.11 19094.52 19396.87 19096.65 27193.56 23898.27 18594.10 34093.45 19892.02 29197.43 22987.45 22199.19 16693.88 19497.41 16997.87 199
canonicalmvs97.67 7197.23 8398.98 6298.70 12898.38 3399.34 1198.39 17896.76 5397.67 11197.40 23192.26 11199.49 14098.28 2696.28 19799.08 143
tfpnnormal93.66 26192.70 26996.55 21896.94 25395.94 14598.97 6399.19 1591.04 28191.38 29697.34 23284.94 25998.61 23085.45 31889.02 29595.11 320
IterMVS94.09 25393.85 23494.80 28997.99 18190.35 29597.18 27898.12 22493.68 18892.46 28297.34 23284.05 27597.41 31792.51 23691.33 26296.62 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet95.75 15595.11 16897.69 14597.24 23297.27 8598.94 6999.23 1295.13 12195.51 17997.32 23485.73 24798.91 20297.33 7489.55 28696.89 237
IterMVS-LS95.46 16695.21 16396.22 24098.12 17293.72 23598.32 17798.13 22393.71 18394.26 21497.31 23592.24 11298.10 28594.63 16790.12 27796.84 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 13395.66 14698.36 10298.56 13995.94 14597.71 24298.07 23592.10 24794.79 19497.29 23691.75 12599.56 13194.17 18596.50 18899.58 78
ppachtmachnet_test93.22 27192.63 27094.97 28295.45 31490.84 28696.88 30097.88 25190.60 28592.08 28997.26 23788.08 20597.86 30785.12 32090.33 27496.22 303
pmmvs593.65 26392.97 26495.68 26195.49 31292.37 26198.20 19297.28 28689.66 30092.58 27697.26 23782.14 28798.09 28793.18 21590.95 27096.58 273
MDTV_nov1_ep1395.40 15097.48 21588.34 31996.85 30297.29 28593.74 18097.48 12397.26 23789.18 17499.05 18491.92 25097.43 168
Fast-Effi-MVS+96.28 13695.70 14398.03 12398.29 15995.97 14298.58 13898.25 20491.74 25595.29 18397.23 24091.03 14599.15 17192.90 22397.96 15198.97 152
BH-w/o95.38 17395.08 16996.26 23998.34 15491.79 27097.70 24397.43 27992.87 22194.24 21697.22 24188.66 18998.84 21291.55 25797.70 16298.16 193
eth_miper_zixun_eth94.68 21394.41 20295.47 26797.64 20191.71 27496.73 30898.07 23592.71 22593.64 24097.21 24290.54 15398.17 28093.38 20789.76 28196.54 280
CS-MVS97.81 6497.61 6198.41 9998.52 14397.15 9399.09 4498.55 14696.18 7297.61 11797.20 24394.59 7899.39 15097.62 5799.10 10698.70 168
v192192094.20 24493.47 25496.40 23195.98 29894.08 22298.52 14898.15 22091.33 27094.25 21597.20 24386.41 23798.42 25190.04 27989.39 28996.69 265
v2v48294.69 21194.03 21996.65 20296.17 29094.79 19798.67 12798.08 23392.72 22494.00 22897.16 24587.69 21698.45 24692.91 22288.87 29796.72 256
v7n94.19 24593.43 25596.47 22495.90 30094.38 21499.26 1898.34 18691.99 24992.76 27097.13 24688.31 19798.52 24089.48 29087.70 30796.52 285
cl-mvsnet194.52 22694.03 21995.99 24797.57 21093.38 24697.05 28597.94 24891.74 25592.81 26897.10 24789.12 17698.07 28992.60 22990.30 27596.53 282
SCA95.46 16695.13 16696.46 22797.67 19991.29 28197.33 26897.60 26294.68 14296.92 14197.10 24783.97 27798.89 20692.59 23198.32 14399.20 125
Patchmatch-test94.42 23293.68 24696.63 20597.60 20491.76 27194.83 33197.49 27489.45 30394.14 22197.10 24788.99 18098.83 21485.37 31998.13 14799.29 118
FMVSNet394.97 20094.26 20797.11 17598.18 16896.62 11098.56 14498.26 20393.67 19094.09 22397.10 24784.25 27098.01 29392.08 24392.14 25296.70 260
MVP-Stereo94.28 24193.92 22895.35 27194.95 32092.60 26097.97 22097.65 26091.61 26190.68 30397.09 25186.32 23998.42 25189.70 28599.34 9795.02 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 23093.61 24897.04 17898.21 16396.43 12298.79 10398.27 19992.46 23193.50 24897.09 25181.16 29298.00 29591.09 26091.93 25696.70 260
cl-mvsnet_94.51 22794.01 22296.02 24697.58 20693.40 24597.05 28597.96 24791.73 25792.76 27097.08 25389.06 17998.13 28392.61 22890.29 27696.52 285
GBi-Net94.49 22893.80 23696.56 21598.21 16395.00 18398.82 9298.18 21292.46 23194.09 22397.07 25481.16 29297.95 29792.08 24392.14 25296.72 256
test194.49 22893.80 23696.56 21598.21 16395.00 18398.82 9298.18 21292.46 23194.09 22397.07 25481.16 29297.95 29792.08 24392.14 25296.72 256
FMVSNet193.19 27392.07 27796.56 21597.54 21195.00 18398.82 9298.18 21290.38 29092.27 28597.07 25473.68 33197.95 29789.36 29291.30 26396.72 256
v119294.32 23793.58 24996.53 21996.10 29394.45 21098.50 15398.17 21791.54 26294.19 21997.06 25786.95 22898.43 25090.14 27489.57 28496.70 260
V4294.78 20994.14 21596.70 19996.33 28595.22 17598.97 6398.09 23192.32 24094.31 21297.06 25788.39 19698.55 23792.90 22388.87 29796.34 298
cl_fuxian94.79 20894.43 20195.89 25497.75 19393.12 25597.16 28198.03 24292.23 24393.46 25097.05 25991.39 13498.01 29393.58 20489.21 29196.53 282
GA-MVS94.81 20794.03 21997.14 17297.15 24293.86 22796.76 30697.58 26394.00 16794.76 19597.04 26080.91 29598.48 24291.79 25296.25 19999.09 140
UniMVSNet (Re)95.78 15495.19 16497.58 15396.99 25197.47 7898.79 10399.18 1695.60 9593.92 23097.04 26091.68 12698.48 24295.80 13487.66 30896.79 247
v14419294.39 23493.70 24496.48 22396.06 29594.35 21598.58 13898.16 21991.45 26494.33 21197.02 26287.50 21998.45 24691.08 26189.11 29296.63 268
v114494.59 22193.92 22896.60 20996.21 28794.78 19898.59 13698.14 22291.86 25494.21 21897.02 26287.97 20798.41 25891.72 25489.57 28496.61 270
v124094.06 25693.29 25996.34 23596.03 29793.90 22698.44 16098.17 21791.18 27994.13 22297.01 26486.05 24398.42 25189.13 29589.50 28796.70 260
v1094.29 23993.55 25096.51 22196.39 28294.80 19698.99 5998.19 20991.35 26993.02 26496.99 26588.09 20498.41 25890.50 27188.41 30196.33 300
test_040291.32 28890.27 29194.48 29696.60 27291.12 28398.50 15397.22 29086.10 32188.30 31696.98 26677.65 31697.99 29678.13 33692.94 24794.34 326
miper_lstm_enhance94.33 23694.07 21895.11 27897.75 19390.97 28597.22 27598.03 24291.67 25992.76 27096.97 26790.03 16197.78 30892.51 23689.64 28396.56 277
v894.47 23093.77 23996.57 21496.36 28394.83 19499.05 4998.19 20991.92 25193.16 25896.97 26788.82 18898.48 24291.69 25587.79 30696.39 296
miper_ehance_all_eth95.01 19594.69 18695.97 24997.70 19893.31 24897.02 28798.07 23592.23 24393.51 24796.96 26991.85 12398.15 28193.68 19991.16 26696.44 295
PatchmatchNetpermissive95.71 15795.52 14896.29 23897.58 20690.72 29096.84 30397.52 27094.06 16297.08 13196.96 26989.24 17398.90 20592.03 24798.37 13999.26 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 23993.76 24195.91 25296.10 29392.93 25798.58 13897.97 24592.59 22993.47 24996.95 27188.53 19498.32 26792.56 23387.06 31596.49 291
gm-plane-assit95.88 30187.47 32589.74 29996.94 27299.19 16693.32 211
tpmrst95.63 16195.69 14495.44 26997.54 21188.54 31796.97 28997.56 26493.50 19697.52 12296.93 27389.49 16599.16 16895.25 15596.42 19098.64 176
thres600view795.49 16594.77 18197.67 14798.98 10795.02 18298.85 8596.90 30595.38 10696.63 15396.90 27484.29 26899.59 12788.65 29896.33 19298.40 185
our_test_393.65 26393.30 25894.69 29195.45 31489.68 30296.91 29497.65 26091.97 25091.66 29496.88 27589.67 16497.93 30088.02 30291.49 26196.48 292
thres100view90095.38 17394.70 18597.41 16198.98 10794.92 19098.87 8296.90 30595.38 10696.61 15496.88 27584.29 26899.56 13188.11 29996.29 19497.76 201
cl-mvsnet294.68 21394.19 21096.13 24498.11 17393.60 23796.94 29198.31 19092.43 23593.32 25496.87 27786.51 23398.28 27594.10 18991.16 26696.51 288
LCM-MVSNet-Re95.22 18495.32 15994.91 28398.18 16887.85 32498.75 10595.66 32495.11 12388.96 31396.85 27890.26 15997.65 31095.65 14298.44 13699.22 124
WR-MVS_H95.05 19494.46 19796.81 19396.86 25995.82 15399.24 2099.24 1093.87 17492.53 27896.84 27990.37 15598.24 27793.24 21287.93 30596.38 297
EPMVS94.99 19794.48 19596.52 22097.22 23491.75 27297.23 27491.66 34494.11 16097.28 12496.81 28085.70 24898.84 21293.04 21997.28 17098.97 152
tpm294.19 24593.76 24195.46 26897.23 23389.04 31197.31 27096.85 31087.08 31596.21 17196.79 28183.75 28398.74 22192.43 23996.23 20098.59 178
D2MVS95.18 18795.08 16995.48 26697.10 24592.07 26598.30 18099.13 1994.02 16592.90 26696.73 28289.48 16698.73 22294.48 17693.60 23595.65 316
CostFormer94.95 20194.73 18495.60 26497.28 23089.06 31097.53 25496.89 30789.66 30096.82 14696.72 28386.05 24398.95 19995.53 14596.13 20398.79 163
test20.0390.89 29390.38 29092.43 31393.48 33088.14 32198.33 17297.56 26493.40 20087.96 31796.71 28480.69 29994.13 33979.15 33386.17 32295.01 324
Effi-MVS+-dtu96.29 13496.56 11495.51 26597.89 18790.22 29698.80 9998.10 22896.57 6196.45 16696.66 28590.81 14698.91 20295.72 13797.99 15097.40 211
test0.0.03 194.08 25493.51 25295.80 25795.53 31192.89 25897.38 26195.97 32095.11 12392.51 28096.66 28587.71 21396.94 32387.03 30793.67 23197.57 208
miper_enhance_ethall95.10 19194.75 18396.12 24597.53 21393.73 23496.61 31198.08 23392.20 24693.89 23196.65 28792.44 10798.30 27194.21 18491.16 26696.34 298
ADS-MVSNet294.58 22294.40 20395.11 27898.00 17988.74 31496.04 31797.30 28490.15 29296.47 16496.64 28887.89 20997.56 31490.08 27697.06 17299.02 147
ADS-MVSNet95.00 19694.45 19996.63 20598.00 17991.91 26896.04 31797.74 25790.15 29296.47 16496.64 28887.89 20998.96 19590.08 27697.06 17299.02 147
dp94.15 24893.90 23094.90 28497.31 22986.82 32996.97 28997.19 29191.22 27796.02 17596.61 29085.51 25099.02 19090.00 28094.30 21398.85 159
tfpn200view995.32 18094.62 18897.43 16098.94 10994.98 18698.68 12496.93 30395.33 10996.55 15896.53 29184.23 27199.56 13188.11 29996.29 19497.76 201
thres40095.38 17394.62 18897.65 15098.94 10994.98 18698.68 12496.93 30395.33 10996.55 15896.53 29184.23 27199.56 13188.11 29996.29 19498.40 185
EG-PatchMatch MVS91.13 29090.12 29294.17 30394.73 32489.00 31298.13 20597.81 25389.22 30685.32 32896.46 29367.71 33698.42 25187.89 30493.82 23095.08 321
TESTMET0.1,194.18 24793.69 24595.63 26396.92 25489.12 30996.91 29494.78 33193.17 20894.88 18996.45 29478.52 30998.92 20193.09 21698.50 13398.85 159
DWT-MVSNet_test94.82 20694.36 20496.20 24197.35 22790.79 28898.34 17196.57 31792.91 21995.33 18296.44 29582.00 28899.12 17494.52 17495.78 20898.70 168
tpmvs94.60 21994.36 20495.33 27297.46 21788.60 31696.88 30097.68 25891.29 27393.80 23796.42 29688.58 19099.24 16191.06 26296.04 20598.17 192
Anonymous2023120691.66 28691.10 28593.33 30894.02 32987.35 32698.58 13897.26 28890.48 28690.16 30596.31 29783.83 28196.53 33079.36 33289.90 28096.12 306
tpm94.13 24993.80 23695.12 27796.50 27787.91 32397.44 25695.89 32392.62 22796.37 16896.30 29884.13 27498.30 27193.24 21291.66 26099.14 136
CR-MVSNet94.76 21094.15 21496.59 21097.00 24993.43 24294.96 32797.56 26492.46 23196.93 13996.24 29988.15 20297.88 30587.38 30596.65 18298.46 183
Patchmtry93.22 27192.35 27495.84 25696.77 26293.09 25694.66 33297.56 26487.37 31492.90 26696.24 29988.15 20297.90 30187.37 30690.10 27896.53 282
tmp_tt68.90 31466.97 31574.68 32950.78 35259.95 34987.13 34283.47 35138.80 34762.21 34396.23 30164.70 34076.91 34988.91 29630.49 34687.19 339
cascas94.63 21893.86 23396.93 18796.91 25694.27 21796.00 32098.51 15585.55 32594.54 19896.23 30184.20 27398.87 20995.80 13496.98 17597.66 207
thres20095.25 18294.57 19097.28 16698.81 11994.92 19098.20 19297.11 29295.24 11796.54 16096.22 30384.58 26599.53 13787.93 30396.50 18897.39 212
UnsupCasMVSNet_eth90.99 29289.92 29494.19 30294.08 32889.83 29897.13 28398.67 12393.69 18685.83 32696.19 30475.15 32596.74 32489.14 29479.41 33496.00 309
MDA-MVSNet-bldmvs89.97 29988.35 30394.83 28895.21 31791.34 27797.64 24897.51 27188.36 31071.17 34196.13 30579.22 30596.63 32983.65 32286.27 32196.52 285
MIMVSNet93.26 27092.21 27696.41 23097.73 19793.13 25495.65 32497.03 29791.27 27594.04 22696.06 30675.33 32497.19 32086.56 30996.23 20098.92 157
tpm cat193.36 26592.80 26695.07 28097.58 20687.97 32296.76 30697.86 25282.17 33293.53 24496.04 30786.13 24199.13 17389.24 29395.87 20698.10 194
N_pmnet87.12 30787.77 30585.17 32495.46 31361.92 34797.37 26370.66 35385.83 32388.73 31596.04 30785.33 25597.76 30980.02 32990.48 27395.84 312
MIMVSNet189.67 30188.28 30493.82 30492.81 33391.08 28498.01 21697.45 27787.95 31187.90 31895.87 30967.63 33794.56 33878.73 33588.18 30395.83 313
YYNet190.70 29589.39 29794.62 29494.79 32390.65 29197.20 27697.46 27587.54 31372.54 33995.74 31086.51 23396.66 32886.00 31386.76 32096.54 280
DSMNet-mixed92.52 28092.58 27192.33 31494.15 32782.65 33698.30 18094.26 33789.08 30792.65 27495.73 31185.01 25895.76 33386.24 31197.76 15998.59 178
IB-MVS91.98 1793.27 26991.97 27997.19 16997.47 21693.41 24497.09 28495.99 31993.32 20392.47 28195.73 31178.06 31299.53 13794.59 17282.98 32798.62 177
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 19194.87 17995.80 25796.77 26289.70 30096.91 29495.21 32695.11 12394.83 19295.72 31387.71 21398.97 19293.06 21798.50 13398.72 166
test-mter94.08 25493.51 25295.80 25796.77 26289.70 30096.91 29495.21 32692.89 22094.83 19295.72 31377.69 31498.97 19293.06 21798.50 13398.72 166
MDA-MVSNet_test_wron90.71 29489.38 29894.68 29294.83 32290.78 28997.19 27797.46 27587.60 31272.41 34095.72 31386.51 23396.71 32785.92 31486.80 31996.56 277
MVS_030492.81 27792.01 27895.23 27397.46 21791.33 27998.17 20198.81 7591.13 28093.80 23795.68 31666.08 33998.06 29090.79 26696.13 20396.32 301
FMVSNet591.81 28490.92 28694.49 29597.21 23592.09 26498.00 21897.55 26889.31 30590.86 30195.61 31774.48 32895.32 33585.57 31689.70 28296.07 308
PVSNet_088.72 1991.28 28990.03 29395.00 28197.99 18187.29 32794.84 33098.50 16092.06 24889.86 30795.19 31879.81 30299.39 15092.27 24069.79 34098.33 189
DeepMVS_CXcopyleft86.78 32197.09 24672.30 34395.17 32975.92 33784.34 33095.19 31870.58 33495.35 33479.98 33189.04 29492.68 336
patchmatchnet-post95.10 32089.42 16898.89 206
Patchmatch-RL test91.49 28790.85 28793.41 30791.37 33584.40 33192.81 33795.93 32291.87 25387.25 31994.87 32188.99 18096.53 33092.54 23582.00 32999.30 116
OpenMVS_ROBcopyleft86.42 2089.00 30387.43 30793.69 30593.08 33289.42 30597.91 22496.89 30778.58 33585.86 32594.69 32269.48 33598.29 27477.13 33793.29 24393.36 335
FPMVS77.62 31277.14 31179.05 32779.25 34660.97 34895.79 32295.94 32165.96 34067.93 34294.40 32337.73 34888.88 34468.83 34088.46 30087.29 338
GG-mvs-BLEND96.59 21096.34 28494.98 18696.51 31488.58 34893.10 26394.34 32480.34 30198.05 29189.53 28896.99 17496.74 253
new_pmnet90.06 29889.00 30093.22 31194.18 32688.32 32096.42 31596.89 30786.19 31985.67 32793.62 32577.18 31997.10 32181.61 32789.29 29094.23 327
PM-MVS87.77 30586.55 30891.40 31891.03 33783.36 33596.92 29295.18 32891.28 27486.48 32493.42 32653.27 34396.74 32489.43 29181.97 33094.11 329
pmmvs-eth3d90.36 29789.05 29994.32 30091.10 33692.12 26397.63 25096.95 30288.86 30884.91 32993.13 32778.32 31096.74 32488.70 29781.81 33194.09 330
new-patchmatchnet88.50 30487.45 30691.67 31790.31 33885.89 33097.16 28197.33 28389.47 30283.63 33192.77 32876.38 32095.06 33782.70 32477.29 33694.06 331
pmmvs386.67 30884.86 31092.11 31688.16 34087.19 32896.63 31094.75 33279.88 33487.22 32092.75 32966.56 33895.20 33681.24 32876.56 33793.96 332
ambc89.49 32086.66 34175.78 34192.66 33896.72 31286.55 32392.50 33046.01 34497.90 30190.32 27282.09 32894.80 325
testing_290.61 29688.50 30196.95 18590.08 33995.57 16097.69 24498.06 23993.02 21376.55 33592.48 33161.18 34298.44 24895.45 14891.98 25596.84 243
PatchT93.06 27591.97 27996.35 23496.69 26892.67 25994.48 33397.08 29386.62 31697.08 13192.23 33287.94 20897.90 30178.89 33496.69 18098.49 182
RPMNet92.52 28091.17 28496.59 21097.00 24993.43 24294.96 32797.26 28882.27 33196.93 13992.12 33386.98 22797.88 30576.32 33896.65 18298.46 183
UnsupCasMVSNet_bld87.17 30685.12 30993.31 30991.94 33488.77 31394.92 32998.30 19684.30 32982.30 33290.04 33463.96 34197.25 31985.85 31574.47 33993.93 333
LCM-MVSNet78.70 30976.24 31386.08 32277.26 34871.99 34494.34 33496.72 31261.62 34276.53 33689.33 33533.91 35092.78 34181.85 32674.60 33893.46 334
PMMVS277.95 31175.44 31485.46 32382.54 34374.95 34294.23 33593.08 34272.80 33974.68 33787.38 33636.36 34991.56 34273.95 33963.94 34189.87 337
JIA-IIPM93.35 26692.49 27295.92 25196.48 27990.65 29195.01 32696.96 30185.93 32296.08 17387.33 33787.70 21598.78 21991.35 25995.58 20998.34 188
PMVScopyleft61.03 2365.95 31563.57 31873.09 33057.90 35151.22 35285.05 34493.93 34154.45 34344.32 34883.57 33813.22 35289.15 34358.68 34381.00 33378.91 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 30288.40 30292.64 31297.58 20682.15 33794.16 33693.05 34375.73 33890.90 30082.52 33979.42 30498.33 26683.53 32398.68 12297.43 209
gg-mvs-nofinetune92.21 28390.58 28997.13 17396.75 26595.09 18095.85 32189.40 34785.43 32694.50 20081.98 34080.80 29898.40 26492.16 24198.33 14297.88 198
Gipumacopyleft78.40 31076.75 31283.38 32595.54 31080.43 33979.42 34597.40 28164.67 34173.46 33880.82 34145.65 34593.14 34066.32 34187.43 31076.56 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 31365.37 31680.22 32665.99 35071.96 34590.91 34190.09 34682.62 33049.93 34778.39 34229.36 35181.75 34562.49 34238.52 34586.95 340
E-PMN64.94 31664.25 31767.02 33182.28 34459.36 35091.83 34085.63 34952.69 34460.22 34477.28 34341.06 34780.12 34746.15 34541.14 34361.57 345
EMVS64.07 31763.26 31966.53 33281.73 34558.81 35191.85 33984.75 35051.93 34659.09 34575.13 34443.32 34679.09 34842.03 34639.47 34461.69 344
MVEpermissive62.14 2263.28 31859.38 32074.99 32874.33 34965.47 34685.55 34380.50 35252.02 34551.10 34675.00 34510.91 35580.50 34651.60 34453.40 34278.99 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 25692.30 27599.34 2299.70 2298.35 4199.29 1498.88 4997.40 2098.46 6343.50 34695.90 3999.89 3497.85 4299.74 4099.78 13
testmvs21.48 32124.95 32311.09 33514.89 3536.47 35596.56 3129.87 3557.55 34917.93 34939.02 3479.43 3565.90 35216.56 34912.72 34820.91 347
test12320.95 32223.72 32412.64 33413.54 3548.19 35496.55 3136.13 3567.48 35016.74 35037.98 34812.97 3536.05 35116.69 3485.43 34923.68 346
test_post31.83 34988.83 18798.91 202
test_post196.68 30930.43 35087.85 21298.69 22392.59 231
wuyk23d30.17 31930.18 32230.16 33378.61 34743.29 35366.79 34614.21 35417.31 34814.82 35111.93 35111.55 35441.43 35037.08 34719.30 3475.76 348
uanet_test0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
pcd_1.5k_mvsjas7.88 32410.50 3260.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 35294.51 800.00 3530.00 3500.00 3500.00 349
sosnet-low-res0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
sosnet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
uncertanet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
Regformer0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
uanet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
IU-MVS99.71 2099.23 598.64 13195.28 11399.63 398.35 2399.81 1099.83 5
save fliter99.46 4798.38 3398.21 18998.71 10797.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 6398.88 4999.94 398.47 1599.81 1099.84 4
GSMVS99.20 125
test_part299.63 2899.18 799.27 16
test_part10.00 3360.00 3560.00 34798.84 640.00 3570.00 3530.00 3500.00 3500.00 349
sam_mvs189.45 16799.20 125
sam_mvs88.99 180
MTGPAbinary98.74 97
MTMP98.89 7794.14 339
test9_res96.39 11699.57 7099.69 47
agg_prior295.87 13199.57 7099.68 53
agg_prior99.30 7098.38 3398.72 10397.57 12099.81 65
test_prior498.01 6097.86 231
test_prior99.19 4299.31 6598.22 4898.84 6499.70 10999.65 63
旧先验297.57 25391.30 27298.67 5499.80 7495.70 141
新几何297.64 248
无先验97.58 25298.72 10391.38 26699.87 4393.36 20999.60 74
原ACMM297.67 246
testdata299.89 3491.65 256
segment_acmp96.85 10
testdata197.32 26996.34 67
test1299.18 4699.16 9498.19 5098.53 15198.07 8095.13 6599.72 10399.56 7599.63 69
plane_prior797.42 22294.63 201
plane_prior697.35 22794.61 20487.09 224
plane_prior598.56 14499.03 18896.07 12294.27 21496.92 229
plane_prior394.61 20497.02 4695.34 180
plane_prior298.80 9997.28 28
plane_prior197.37 226
plane_prior94.60 20698.44 16096.74 5494.22 216
n20.00 357
nn0.00 357
door-mid94.37 335
test1198.66 126
door94.64 333
HQP5-MVS94.25 219
HQP-NCC97.20 23698.05 21296.43 6394.45 202
ACMP_Plane97.20 23698.05 21296.43 6394.45 202
BP-MVS95.30 151
HQP4-MVS94.45 20298.96 19596.87 240
HQP3-MVS98.46 16594.18 218
HQP2-MVS86.75 230
MDTV_nov1_ep13_2view84.26 33296.89 29990.97 28297.90 9989.89 16393.91 19399.18 132
ACMMP++_ref92.97 246
ACMMP++93.61 234
Test By Simon94.64 75