This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5498.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 45
MSP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6498.58 14197.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 48
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16598.91 4397.58 1499.54 799.46 997.10 999.94 397.64 5799.84 899.83 5
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9098.43 3299.10 4398.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4899.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4799.14 3698.66 12696.84 5199.56 599.31 3296.34 1999.70 11098.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 698.56 999.45 1499.32 6498.87 1598.47 15798.81 7697.72 698.76 4999.16 5897.05 1099.78 9198.06 3399.66 5799.69 48
DVP-MVS98.74 898.55 1099.29 3199.75 398.23 4899.26 1898.88 4997.52 1599.41 1198.78 10896.00 3499.79 8797.79 4799.59 6899.85 2
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 4898.38 3498.21 19098.52 15397.95 399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
XVS98.70 998.49 1699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6499.20 4995.90 4099.89 3597.85 4399.74 4199.78 13
Regformer-298.69 1198.52 1299.19 4399.35 5698.01 6198.37 16998.81 7697.48 1899.21 2199.21 4596.13 2799.80 7598.40 2299.73 4399.75 28
Regformer-198.66 1298.51 1399.12 5599.35 5697.81 6998.37 16998.76 9497.49 1799.20 2299.21 4596.08 2999.79 8798.42 2099.73 4399.75 28
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 16698.68 11597.04 4698.52 6398.80 10696.78 1299.83 5597.93 3799.61 6499.74 33
Regformer-498.64 1498.53 1198.99 6199.43 5397.37 8298.40 16798.79 8897.46 1999.09 2899.31 3295.86 4299.80 7598.64 399.76 3299.79 10
SD-MVS98.64 1498.68 598.53 8999.33 6198.36 4198.90 7498.85 6497.28 2999.72 399.39 1496.63 1597.60 31398.17 2899.85 399.64 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4599.23 2198.96 3296.10 7998.94 3699.17 5396.06 3099.92 2197.62 5899.78 2399.75 28
ACMMP_NAP98.61 1798.30 3199.55 699.62 3098.95 1398.82 9398.81 7695.80 8799.16 2499.47 895.37 5699.92 2197.89 4199.75 3899.79 10
region2R98.61 1798.38 2099.29 3199.74 798.16 5499.23 2198.93 3796.15 7498.94 3699.17 5395.91 3999.94 397.55 6699.79 1999.78 13
NCCC98.61 1798.35 2499.38 1799.28 7898.61 2398.45 15898.76 9497.82 598.45 6798.93 9396.65 1499.83 5597.38 7399.41 9399.71 43
SF-MVS98.59 2098.32 3099.41 1699.54 3598.71 1899.04 5098.81 7695.12 12399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
Regformer-398.59 2098.50 1498.86 7199.43 5397.05 9698.40 16798.68 11597.43 2099.06 2999.31 3295.80 4399.77 9698.62 599.76 3299.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5599.23 2198.95 3496.10 7998.93 4099.19 5295.70 4499.94 397.62 5899.79 1999.78 13
SMA-MVS98.58 2398.25 3599.56 599.51 3899.04 1198.95 6898.80 8693.67 19199.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
MTAPA98.58 2398.29 3299.46 1299.76 198.64 2198.90 7498.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
HPM-MVS++copyleft98.58 2398.25 3599.55 699.50 4099.08 998.72 11798.66 12697.51 1698.15 7798.83 10395.70 4499.92 2197.53 6899.67 5499.66 62
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5299.09 4498.82 7096.58 6199.10 2799.32 3095.39 5499.82 6297.70 5499.63 6199.72 39
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6699.34 1198.87 5595.96 8298.60 6099.13 6196.05 3299.94 397.77 4899.86 199.77 20
MSLP-MVS++98.56 2898.57 898.55 8599.26 8196.80 10598.71 11899.05 2497.28 2998.84 4399.28 3796.47 1899.40 15098.52 1399.70 5199.47 95
zzz-MVS98.55 2998.25 3599.46 1299.76 198.64 2198.55 14798.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
DeepC-MVS_fast96.70 198.55 2998.34 2699.18 4799.25 8298.04 5998.50 15498.78 9097.72 698.92 4199.28 3795.27 6099.82 6297.55 6699.77 2699.69 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
#test#98.54 3198.27 3399.32 2899.72 1298.29 4598.98 6398.96 3295.65 9598.94 3699.17 5396.06 3099.92 2197.21 7899.78 2399.75 28
APD-MVS_3200maxsize98.53 3298.33 2999.15 5299.50 4097.92 6599.15 3598.81 7696.24 7099.20 2299.37 2295.30 5999.80 7597.73 5099.67 5499.72 39
mPP-MVS98.51 3398.26 3499.25 3999.75 398.04 5999.28 1698.81 7696.24 7098.35 7399.23 4295.46 5099.94 397.42 7199.81 1099.77 20
ZNCC-MVS98.49 3498.20 4199.35 2299.73 1198.39 3399.19 3198.86 6195.77 8898.31 7699.10 6695.46 5099.93 1597.57 6599.81 1099.74 33
PGM-MVS98.49 3498.23 3999.27 3899.72 1298.08 5898.99 6099.49 595.43 10499.03 3099.32 3095.56 4699.94 396.80 10299.77 2699.78 13
EI-MVSNet-Vis-set98.47 3698.39 1998.69 7699.46 4896.49 12098.30 18198.69 11297.21 3698.84 4399.36 2695.41 5399.78 9198.62 599.65 5899.80 9
MVS_111021_HR98.47 3698.34 2698.88 7099.22 9097.32 8397.91 22599.58 397.20 3798.33 7499.00 8295.99 3599.64 12198.05 3599.76 3299.69 48
GST-MVS98.43 3898.12 4499.34 2399.72 1298.38 3499.09 4498.82 7095.71 9198.73 5299.06 7595.27 6099.93 1597.07 8299.63 6199.72 39
EI-MVSNet-UG-set98.41 3998.34 2698.61 8199.45 5196.32 12898.28 18498.68 11597.17 3998.74 5099.37 2295.25 6299.79 8798.57 799.54 8099.73 36
DELS-MVS98.40 4098.20 4198.99 6199.00 10597.66 7197.75 24198.89 4697.71 898.33 7498.97 8494.97 7099.88 4398.42 2099.76 3299.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.98.38 4198.24 3898.81 7299.22 9097.25 9098.11 20998.29 19997.19 3898.99 3599.02 7796.22 2099.67 11798.52 1398.56 13199.51 86
HPM-MVS_fast98.38 4198.13 4399.12 5599.75 397.86 6699.44 498.82 7094.46 15498.94 3699.20 4995.16 6599.74 10297.58 6299.85 399.77 20
HPM-MVScopyleft98.36 4398.10 4599.13 5399.74 797.82 6899.53 198.80 8694.63 14798.61 5998.97 8495.13 6699.77 9697.65 5699.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D-3000-0.198.35 4498.00 5099.38 1799.47 4598.68 2098.67 12898.84 6594.66 14699.11 2699.25 4095.46 5099.81 6696.80 10299.73 4399.63 70
APD-MVScopyleft98.35 4498.00 5099.42 1599.51 3898.72 1798.80 10098.82 7094.52 15199.23 2099.25 4095.54 4899.80 7596.52 11199.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 4698.23 3998.67 7899.27 7996.90 10297.95 22299.58 397.14 4198.44 6899.01 8195.03 6999.62 12697.91 3899.75 3899.50 88
PHI-MVS98.34 4698.06 4699.18 4799.15 9798.12 5799.04 5099.09 2093.32 20498.83 4599.10 6696.54 1699.83 5597.70 5499.76 3299.59 77
testtj98.33 4897.95 5299.47 1199.49 4498.70 1998.83 9098.86 6195.48 10198.91 4299.17 5395.48 4999.93 1595.80 13599.53 8199.76 26
MP-MVScopyleft98.33 4898.01 4999.28 3599.75 398.18 5299.22 2598.79 8896.13 7697.92 9999.23 4294.54 8099.94 396.74 10699.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 5097.92 5499.49 999.72 1298.88 1498.43 16398.78 9094.10 16297.69 11199.42 1295.25 6299.92 2198.09 3299.80 1799.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
abl_698.30 5198.03 4899.13 5399.56 3497.76 7099.13 3998.82 7096.14 7599.26 1899.37 2293.33 9899.93 1596.96 8799.67 5499.69 48
ACMMPcopyleft98.23 5297.95 5299.09 5799.74 797.62 7499.03 5299.41 695.98 8197.60 12099.36 2694.45 8599.93 1597.14 7998.85 11899.70 45
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior398.22 5397.90 5599.19 4399.31 6698.22 4997.80 23798.84 6596.12 7797.89 10198.69 11595.96 3699.70 11096.89 9299.60 6599.65 64
CANet98.05 5497.76 5898.90 6998.73 12497.27 8698.35 17198.78 9097.37 2697.72 10998.96 8991.53 13499.92 2198.79 299.65 5899.51 86
train_agg97.97 5597.52 6999.33 2799.31 6698.50 2897.92 22398.73 10292.98 21697.74 10798.68 11796.20 2399.80 7596.59 10899.57 7199.68 54
ETH3D cwj APD-0.1697.96 5697.52 6999.29 3199.05 10198.52 2698.33 17398.68 11593.18 20898.68 5499.13 6194.62 7799.83 5596.45 11399.55 7999.52 82
ETV-MVS97.96 5697.81 5698.40 10198.42 14797.27 8698.73 11398.55 14696.84 5198.38 7197.44 22995.39 5499.35 15497.62 5898.89 11498.58 181
UA-Net97.96 5697.62 6198.98 6398.86 11697.47 7998.89 7899.08 2196.67 5898.72 5399.54 193.15 10199.81 6694.87 16298.83 11999.65 64
agg_prior197.95 5997.51 7199.28 3599.30 7198.38 3497.81 23698.72 10493.16 21097.57 12198.66 12096.14 2699.81 6696.63 10799.56 7699.66 62
CDPH-MVS97.94 6097.49 7299.28 3599.47 4598.44 3097.91 22598.67 12392.57 23198.77 4898.85 10095.93 3899.72 10495.56 14599.69 5299.68 54
DeepPCF-MVS96.37 297.93 6198.48 1796.30 23899.00 10589.54 30497.43 25998.87 5598.16 299.26 1899.38 2196.12 2899.64 12198.30 2699.77 2699.72 39
DeepC-MVS95.98 397.88 6297.58 6498.77 7399.25 8296.93 10098.83 9098.75 9796.96 4996.89 14499.50 490.46 15599.87 4497.84 4599.76 3299.52 82
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon97.86 6397.46 7499.06 5999.53 3698.35 4298.33 17398.89 4692.62 22898.05 8298.94 9295.34 5899.65 11996.04 12699.42 9299.19 129
CSCG97.85 6497.74 5998.20 11399.67 2695.16 17799.22 2599.32 793.04 21397.02 13798.92 9595.36 5799.91 3097.43 7099.64 6099.52 82
CS-MVS97.81 6597.61 6298.41 10098.52 14497.15 9499.09 4498.55 14696.18 7397.61 11897.20 24494.59 7999.39 15197.62 5899.10 10798.70 169
MG-MVS97.81 6597.60 6398.44 9699.12 9995.97 14397.75 24198.78 9096.89 5098.46 6499.22 4493.90 9599.68 11694.81 16699.52 8399.67 58
VNet97.79 6797.40 7898.96 6598.88 11497.55 7698.63 13398.93 3796.74 5599.02 3198.84 10290.33 15899.83 5598.53 996.66 18299.50 88
EIA-MVS97.75 6897.58 6498.27 10798.38 14996.44 12299.01 5698.60 13495.88 8497.26 12697.53 22394.97 7099.33 15697.38 7399.20 10399.05 146
PS-MVSNAJ97.73 6997.77 5797.62 15298.68 13295.58 16097.34 26898.51 15697.29 2898.66 5697.88 19194.51 8199.90 3397.87 4299.17 10597.39 213
CPTT-MVS97.72 7097.32 8198.92 6799.64 2897.10 9599.12 4198.81 7692.34 23998.09 8099.08 7393.01 10299.92 2196.06 12599.77 2699.75 28
PVSNet_Blended_VisFu97.70 7197.46 7498.44 9699.27 7995.91 15198.63 13399.16 1794.48 15397.67 11298.88 9892.80 10499.91 3097.11 8099.12 10699.50 88
canonicalmvs97.67 7297.23 8498.98 6398.70 12998.38 3499.34 1198.39 17996.76 5497.67 11297.40 23292.26 11299.49 14198.28 2796.28 19899.08 144
xiu_mvs_v2_base97.66 7397.70 6097.56 15698.61 13895.46 16797.44 25798.46 16697.15 4098.65 5798.15 17194.33 8799.80 7597.84 4598.66 12797.41 211
baseline97.64 7497.44 7698.25 11098.35 15196.20 13299.00 5898.32 18996.33 6998.03 8599.17 5391.35 13799.16 16998.10 3198.29 14599.39 105
casdiffmvs97.63 7597.41 7798.28 10698.33 15696.14 13598.82 9398.32 18996.38 6797.95 9499.21 4591.23 14199.23 16398.12 3098.37 14099.48 93
xiu_mvs_v1_base_debu97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base_debi97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
ETH3 D test640097.59 7997.01 9399.34 2399.40 5598.56 2498.20 19398.81 7691.63 26198.44 6898.85 10093.98 9499.82 6294.11 18999.69 5299.64 67
diffmvs97.58 8097.40 7898.13 11898.32 15895.81 15598.06 21298.37 18296.20 7298.74 5098.89 9791.31 13999.25 16098.16 2998.52 13299.34 108
MVSFormer97.57 8197.49 7297.84 13398.07 17695.76 15699.47 298.40 17794.98 13098.79 4698.83 10392.34 10998.41 25996.91 8999.59 6899.34 108
alignmvs97.56 8297.07 9199.01 6098.66 13398.37 4098.83 9098.06 24096.74 5598.00 9297.65 21290.80 14999.48 14598.37 2396.56 18699.19 129
DPM-MVS97.55 8396.99 9599.23 4299.04 10398.55 2597.17 28198.35 18594.85 13797.93 9898.58 12895.07 6899.71 10992.60 23099.34 9899.43 103
OMC-MVS97.55 8397.34 8098.20 11399.33 6195.92 15098.28 18498.59 13695.52 10097.97 9399.10 6693.28 10099.49 14195.09 15998.88 11599.19 129
PAPM_NR97.46 8597.11 8898.50 9199.50 4096.41 12498.63 13398.60 13495.18 11997.06 13598.06 17794.26 8999.57 13093.80 19898.87 11799.52 82
EPP-MVSNet97.46 8597.28 8297.99 12698.64 13595.38 16999.33 1398.31 19193.61 19497.19 12899.07 7494.05 9199.23 16396.89 9298.43 13999.37 107
3Dnovator94.51 597.46 8596.93 9799.07 5897.78 19397.64 7299.35 1099.06 2297.02 4793.75 24099.16 5889.25 17399.92 2197.22 7799.75 3899.64 67
CNLPA97.45 8897.03 9298.73 7499.05 10197.44 8198.07 21198.53 15195.32 11296.80 14998.53 13293.32 9999.72 10494.31 18299.31 10099.02 148
lupinMVS97.44 8997.22 8598.12 12098.07 17695.76 15697.68 24697.76 25694.50 15298.79 4698.61 12392.34 10999.30 15797.58 6299.59 6899.31 114
3Dnovator+94.38 697.43 9096.78 10499.38 1797.83 19198.52 2699.37 798.71 10897.09 4592.99 26699.13 6189.36 17099.89 3596.97 8599.57 7199.71 43
Vis-MVSNetpermissive97.42 9197.11 8898.34 10498.66 13396.23 13199.22 2599.00 2796.63 6098.04 8499.21 4588.05 20799.35 15496.01 12899.21 10299.45 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 9297.25 8397.91 13098.70 12996.80 10598.82 9398.69 11294.53 14998.11 7998.28 16094.50 8499.57 13094.12 18899.49 8497.37 215
sss97.39 9396.98 9698.61 8198.60 13996.61 11398.22 18998.93 3793.97 17098.01 9098.48 13791.98 12299.85 4996.45 11398.15 14799.39 105
PVSNet_Blended97.38 9497.12 8798.14 11699.25 8295.35 17297.28 27399.26 893.13 21197.94 9698.21 16792.74 10599.81 6696.88 9599.40 9599.27 121
112197.37 9596.77 10899.16 5099.34 5897.99 6498.19 19798.68 11590.14 29598.01 9098.97 8494.80 7599.87 4493.36 21099.46 8999.61 72
WTY-MVS97.37 9596.92 9898.72 7598.86 11696.89 10498.31 17998.71 10895.26 11597.67 11298.56 13192.21 11599.78 9195.89 13096.85 17799.48 93
jason97.32 9797.08 9098.06 12397.45 22295.59 15997.87 23197.91 25194.79 13898.55 6298.83 10391.12 14299.23 16397.58 6299.60 6599.34 108
jason: jason.
MVS_Test97.28 9897.00 9498.13 11898.33 15695.97 14398.74 10998.07 23694.27 15898.44 6898.07 17692.48 10799.26 15996.43 11598.19 14699.16 134
EPNet97.28 9896.87 10098.51 9094.98 32096.14 13598.90 7497.02 30098.28 195.99 17799.11 6491.36 13699.89 3596.98 8499.19 10499.50 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
DCV-MVSNet97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
IS-MVSNet97.22 10096.88 9998.25 11098.85 11896.36 12699.19 3197.97 24695.39 10697.23 12798.99 8391.11 14398.93 20194.60 17198.59 12999.47 95
PLCcopyleft95.07 497.20 10396.78 10498.44 9699.29 7496.31 13098.14 20498.76 9492.41 23796.39 16898.31 15894.92 7299.78 9194.06 19198.77 12299.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 10497.18 8697.20 16998.81 12093.27 25095.78 32499.15 1895.25 11696.79 15098.11 17492.29 11199.07 18498.56 899.85 399.25 123
LS3D97.16 10596.66 11398.68 7798.53 14397.19 9298.93 7198.90 4492.83 22495.99 17799.37 2292.12 11899.87 4493.67 20299.57 7198.97 153
AdaColmapbinary97.15 10696.70 10998.48 9399.16 9596.69 11098.01 21798.89 4694.44 15596.83 14598.68 11790.69 15299.76 9894.36 17999.29 10198.98 152
Effi-MVS+97.12 10796.69 11098.39 10298.19 16796.72 10997.37 26498.43 17393.71 18497.65 11598.02 17992.20 11699.25 16096.87 9897.79 15899.19 129
CHOSEN 1792x268897.12 10796.80 10198.08 12199.30 7194.56 20998.05 21399.71 193.57 19597.09 13198.91 9688.17 20299.89 3596.87 9899.56 7699.81 8
F-COLMAP97.09 10996.80 10197.97 12799.45 5194.95 19098.55 14798.62 13393.02 21496.17 17398.58 12894.01 9299.81 6693.95 19398.90 11399.14 137
TAMVS97.02 11096.79 10397.70 14598.06 17895.31 17498.52 14998.31 19193.95 17197.05 13698.61 12393.49 9798.52 24195.33 15197.81 15799.29 119
CDS-MVSNet96.99 11196.69 11097.90 13198.05 17995.98 13898.20 19398.33 18893.67 19196.95 13898.49 13693.54 9698.42 25295.24 15797.74 16199.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 11296.55 11698.21 11298.17 17196.07 13797.98 22098.21 20797.24 3597.13 13098.93 9386.88 23099.91 3095.00 16199.37 9798.66 175
114514_t96.93 11396.27 12598.92 6799.50 4097.63 7398.85 8698.90 4484.80 32897.77 10499.11 6492.84 10399.66 11894.85 16399.77 2699.47 95
MAR-MVS96.91 11496.40 12198.45 9598.69 13196.90 10298.66 13198.68 11592.40 23897.07 13497.96 18491.54 13399.75 10093.68 20098.92 11298.69 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 11596.49 11998.14 11699.33 6195.56 16297.38 26299.65 292.34 23997.61 11898.20 16889.29 17299.10 18196.97 8597.60 16699.77 20
Vis-MVSNet (Re-imp)96.87 11696.55 11697.83 13498.73 12495.46 16799.20 2998.30 19794.96 13296.60 15698.87 9990.05 16198.59 23593.67 20298.60 12899.46 99
PAPR96.84 11796.24 12798.65 7998.72 12896.92 10197.36 26698.57 14293.33 20396.67 15297.57 22094.30 8899.56 13291.05 26598.59 12999.47 95
HY-MVS93.96 896.82 11896.23 12898.57 8398.46 14697.00 9798.14 20498.21 20793.95 17196.72 15197.99 18391.58 12999.76 9894.51 17696.54 18798.95 156
UGNet96.78 11996.30 12498.19 11598.24 16195.89 15398.88 8198.93 3797.39 2396.81 14897.84 19682.60 28799.90 3396.53 11099.49 8498.79 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 12096.60 11497.12 17599.25 8295.35 17298.26 18799.26 894.28 15797.94 9697.46 22692.74 10599.81 6696.88 9593.32 24296.20 305
mvs_anonymous96.70 12196.53 11897.18 17198.19 16793.78 23098.31 17998.19 21094.01 16794.47 20298.27 16392.08 12098.46 24697.39 7297.91 15399.31 114
1112_ss96.63 12296.00 13498.50 9198.56 14096.37 12598.18 20198.10 22992.92 21994.84 19198.43 14192.14 11799.58 12994.35 18096.51 18899.56 81
mvs-test196.60 12396.68 11296.37 23397.89 18891.81 27098.56 14598.10 22996.57 6296.52 16397.94 18690.81 14799.45 14895.72 13898.01 15097.86 201
PMMVS96.60 12396.33 12397.41 16297.90 18793.93 22697.35 26798.41 17592.84 22397.76 10597.45 22891.10 14499.20 16696.26 11997.91 15399.11 140
DP-MVS96.59 12595.93 13598.57 8399.34 5896.19 13498.70 12298.39 17989.45 30494.52 20099.35 2891.85 12499.85 4992.89 22698.88 11599.68 54
PatchMatch-RL96.59 12596.03 13398.27 10799.31 6696.51 11997.91 22599.06 2293.72 18396.92 14298.06 17788.50 19699.65 11991.77 25499.00 11098.66 175
XVG-OURS96.55 12796.41 12096.99 18198.75 12393.76 23197.50 25698.52 15395.67 9396.83 14599.30 3588.95 18699.53 13895.88 13196.26 19997.69 207
FIs96.51 12896.12 13097.67 14897.13 24497.54 7799.36 899.22 1495.89 8394.03 22898.35 15191.98 12298.44 24996.40 11692.76 24997.01 224
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18098.77 12293.76 23197.79 23998.50 16195.45 10396.94 13999.09 7187.87 21299.55 13796.76 10595.83 20897.74 204
PS-MVSNAJss96.43 13096.26 12696.92 19095.84 30495.08 18299.16 3498.50 16195.87 8593.84 23698.34 15594.51 8198.61 23196.88 9593.45 23997.06 222
FC-MVSNet-test96.42 13196.05 13197.53 15896.95 25397.27 8699.36 899.23 1295.83 8693.93 23098.37 14992.00 12198.32 26896.02 12792.72 25097.00 225
ab-mvs96.42 13195.71 14398.55 8598.63 13696.75 10897.88 23098.74 9893.84 17696.54 16198.18 17085.34 25599.75 10095.93 12996.35 19299.15 135
PVSNet91.96 1896.35 13396.15 12996.96 18599.17 9492.05 26796.08 31798.68 11593.69 18797.75 10697.80 20288.86 18799.69 11594.26 18499.01 10999.15 135
Test_1112_low_res96.34 13495.66 14798.36 10398.56 14095.94 14697.71 24398.07 23692.10 24894.79 19597.29 23791.75 12699.56 13294.17 18696.50 18999.58 79
Effi-MVS+-dtu96.29 13596.56 11595.51 26697.89 18890.22 29798.80 10098.10 22996.57 6296.45 16796.66 28690.81 14798.91 20395.72 13897.99 15197.40 212
QAPM96.29 13595.40 15198.96 6597.85 19097.60 7599.23 2198.93 3789.76 29993.11 26399.02 7789.11 17899.93 1591.99 24999.62 6399.34 108
Fast-Effi-MVS+96.28 13795.70 14498.03 12498.29 16095.97 14398.58 13998.25 20591.74 25695.29 18497.23 24191.03 14699.15 17292.90 22497.96 15298.97 153
nrg03096.28 13795.72 14097.96 12996.90 25898.15 5599.39 598.31 19195.47 10294.42 20898.35 15192.09 11998.69 22497.50 6989.05 29497.04 223
131496.25 13995.73 13997.79 13697.13 24495.55 16498.19 19798.59 13693.47 19892.03 29197.82 20091.33 13899.49 14194.62 17098.44 13798.32 191
HQP_MVS96.14 14095.90 13696.85 19297.42 22394.60 20798.80 10098.56 14497.28 2995.34 18198.28 16087.09 22599.03 18996.07 12394.27 21596.92 230
tttt051796.07 14195.51 15097.78 13798.41 14894.84 19399.28 1694.33 33794.26 15997.64 11698.64 12284.05 27699.47 14695.34 15097.60 16699.03 147
MVSTER96.06 14295.72 14097.08 17898.23 16295.93 14998.73 11398.27 20094.86 13695.07 18598.09 17588.21 20098.54 23996.59 10893.46 23796.79 248
RRT_MVS96.04 14395.53 14897.56 15697.07 24897.32 8398.57 14498.09 23295.15 12195.02 18798.44 14088.20 20198.58 23796.17 12293.09 24696.79 248
thisisatest053096.01 14495.36 15697.97 12798.38 14995.52 16598.88 8194.19 33994.04 16497.64 11698.31 15883.82 28399.46 14795.29 15497.70 16398.93 157
test_djsdf96.00 14595.69 14596.93 18895.72 30695.49 16699.47 298.40 17794.98 13094.58 19897.86 19389.16 17698.41 25996.91 8994.12 22396.88 239
EI-MVSNet95.96 14695.83 13896.36 23497.93 18593.70 23798.12 20798.27 20093.70 18695.07 18599.02 7792.23 11498.54 23994.68 16793.46 23796.84 244
BH-untuned95.95 14795.72 14096.65 20398.55 14292.26 26398.23 18897.79 25593.73 18294.62 19798.01 18188.97 18599.00 19293.04 22098.51 13398.68 172
MSDG95.93 14895.30 16297.83 13498.90 11295.36 17096.83 30598.37 18291.32 27294.43 20798.73 11490.27 15999.60 12790.05 27998.82 12098.52 182
BH-RMVSNet95.92 14995.32 16097.69 14698.32 15894.64 20198.19 19797.45 27894.56 14896.03 17598.61 12385.02 25899.12 17590.68 27099.06 10899.30 117
Fast-Effi-MVS+-dtu95.87 15095.85 13795.91 25397.74 19791.74 27498.69 12498.15 22195.56 9894.92 18997.68 21188.98 18498.79 21993.19 21597.78 15997.20 219
LFMVS95.86 15194.98 17598.47 9498.87 11596.32 12898.84 8996.02 31993.40 20198.62 5899.20 4974.99 32799.63 12497.72 5197.20 17299.46 99
baseline195.84 15295.12 16898.01 12598.49 14595.98 13898.73 11397.03 29895.37 10996.22 17198.19 16989.96 16399.16 16994.60 17187.48 31098.90 159
OpenMVScopyleft93.04 1395.83 15395.00 17398.32 10597.18 24197.32 8399.21 2898.97 3089.96 29791.14 29999.05 7686.64 23399.92 2193.38 20899.47 8697.73 205
VDD-MVS95.82 15495.23 16397.61 15398.84 11993.98 22598.68 12597.40 28295.02 12997.95 9499.34 2974.37 33199.78 9198.64 396.80 17899.08 144
UniMVSNet (Re)95.78 15595.19 16597.58 15496.99 25297.47 7998.79 10499.18 1695.60 9693.92 23197.04 26191.68 12798.48 24395.80 13587.66 30996.79 248
VPA-MVSNet95.75 15695.11 16997.69 14697.24 23397.27 8698.94 7099.23 1295.13 12295.51 18097.32 23585.73 24898.91 20397.33 7589.55 28796.89 238
HQP-MVS95.72 15795.40 15196.69 20197.20 23794.25 22098.05 21398.46 16696.43 6494.45 20397.73 20586.75 23198.96 19695.30 15294.18 21996.86 243
UniMVSNet_NR-MVSNet95.71 15895.15 16697.40 16496.84 26196.97 9898.74 10999.24 1095.16 12093.88 23397.72 20791.68 12798.31 27095.81 13387.25 31496.92 230
PatchmatchNetpermissive95.71 15895.52 14996.29 23997.58 20790.72 29196.84 30497.52 27194.06 16397.08 13296.96 27089.24 17498.90 20692.03 24898.37 14099.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 16095.33 15996.76 19696.16 29394.63 20298.43 16398.39 17996.64 5995.02 18798.78 10885.15 25799.05 18595.21 15894.20 21896.60 272
ACMM93.85 995.69 16095.38 15596.61 20897.61 20493.84 22998.91 7398.44 17095.25 11694.28 21498.47 13886.04 24699.12 17595.50 14793.95 22896.87 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 16295.69 14595.44 27097.54 21288.54 31896.97 29097.56 26593.50 19797.52 12396.93 27489.49 16699.16 16995.25 15696.42 19198.64 177
LPG-MVS_test95.62 16395.34 15796.47 22597.46 21893.54 24098.99 6098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
CLD-MVS95.62 16395.34 15796.46 22897.52 21593.75 23397.27 27498.46 16695.53 9994.42 20898.00 18286.21 24198.97 19396.25 12094.37 21396.66 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 16594.89 17997.76 13998.15 17295.15 17996.77 30694.41 33592.95 21897.18 12997.43 23084.78 26399.45 14894.63 16897.73 16298.68 172
thres600view795.49 16694.77 18297.67 14898.98 10895.02 18398.85 8696.90 30695.38 10796.63 15496.90 27584.29 26999.59 12888.65 29996.33 19398.40 186
SCA95.46 16795.13 16796.46 22897.67 20091.29 28297.33 26997.60 26394.68 14396.92 14297.10 24883.97 27898.89 20792.59 23298.32 14499.20 126
IterMVS-LS95.46 16795.21 16496.22 24198.12 17393.72 23698.32 17898.13 22493.71 18494.26 21597.31 23692.24 11398.10 28694.63 16890.12 27896.84 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 16995.03 17296.73 19795.42 31794.63 20299.14 3698.52 15395.74 8993.22 25798.36 15083.87 28198.65 22996.95 8894.04 22496.91 235
CVMVSNet95.43 17096.04 13293.57 30797.93 18583.62 33498.12 20798.59 13695.68 9296.56 15799.02 7787.51 21897.51 31793.56 20697.44 16899.60 75
anonymousdsp95.42 17194.91 17896.94 18795.10 31995.90 15299.14 3698.41 17593.75 17993.16 25997.46 22687.50 22098.41 25995.63 14494.03 22596.50 291
DU-MVS95.42 17194.76 18397.40 16496.53 27696.97 9898.66 13198.99 2995.43 10493.88 23397.69 20888.57 19298.31 27095.81 13387.25 31496.92 230
mvs_tets95.41 17395.00 17396.65 20395.58 31094.42 21299.00 5898.55 14695.73 9093.21 25898.38 14883.45 28598.63 23097.09 8194.00 22696.91 235
thres100view90095.38 17494.70 18697.41 16298.98 10894.92 19198.87 8396.90 30695.38 10796.61 15596.88 27684.29 26999.56 13288.11 30096.29 19597.76 202
thres40095.38 17494.62 18997.65 15198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19598.40 186
BH-w/o95.38 17495.08 17096.26 24098.34 15591.79 27197.70 24497.43 28092.87 22294.24 21797.22 24288.66 19098.84 21391.55 25897.70 16398.16 194
VDDNet95.36 17794.53 19397.86 13298.10 17595.13 18098.85 8697.75 25790.46 28898.36 7299.39 1473.27 33399.64 12197.98 3696.58 18598.81 163
TAPA-MVS93.98 795.35 17894.56 19297.74 14199.13 9894.83 19598.33 17398.64 13186.62 31796.29 17098.61 12394.00 9399.29 15880.00 33199.41 9399.09 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 17994.98 17596.43 23097.67 20093.48 24298.73 11398.44 17094.94 13592.53 27998.53 13284.50 26899.14 17395.48 14894.00 22696.66 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 18094.87 18096.71 19899.29 7493.24 25298.58 13998.11 22789.92 29893.57 24499.10 6686.37 23999.79 8790.78 26898.10 14997.09 220
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 18194.62 18997.43 16198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19597.76 202
Anonymous20240521195.28 18294.49 19597.67 14899.00 10593.75 23398.70 12297.04 29790.66 28596.49 16498.80 10678.13 31299.83 5596.21 12195.36 21199.44 102
thres20095.25 18394.57 19197.28 16798.81 12094.92 19198.20 19397.11 29395.24 11896.54 16196.22 30484.58 26699.53 13887.93 30496.50 18997.39 213
AllTest95.24 18494.65 18896.99 18199.25 8293.21 25398.59 13798.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
LCM-MVSNet-Re95.22 18595.32 16094.91 28498.18 16987.85 32598.75 10695.66 32595.11 12488.96 31496.85 27990.26 16097.65 31195.65 14398.44 13799.22 125
EPNet_dtu95.21 18694.95 17795.99 24896.17 29190.45 29598.16 20397.27 28896.77 5393.14 26298.33 15690.34 15798.42 25285.57 31798.81 12199.09 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 18794.45 20097.46 15996.75 26696.56 11798.86 8598.65 13093.30 20693.27 25698.27 16384.85 26298.87 21094.82 16591.26 26696.96 227
D2MVS95.18 18895.08 17095.48 26797.10 24692.07 26698.30 18199.13 1994.02 16692.90 26796.73 28389.48 16798.73 22394.48 17793.60 23695.65 317
WR-MVS95.15 18994.46 19897.22 16896.67 27196.45 12198.21 19098.81 7694.15 16093.16 25997.69 20887.51 21898.30 27295.29 15488.62 30096.90 237
TranMVSNet+NR-MVSNet95.14 19094.48 19697.11 17696.45 28196.36 12699.03 5299.03 2595.04 12893.58 24397.93 18788.27 19998.03 29394.13 18786.90 31996.95 229
baseline295.11 19194.52 19496.87 19196.65 27293.56 23998.27 18694.10 34193.45 19992.02 29297.43 23087.45 22299.19 16793.88 19597.41 17097.87 200
miper_enhance_ethall95.10 19294.75 18496.12 24697.53 21493.73 23596.61 31298.08 23492.20 24793.89 23296.65 28892.44 10898.30 27294.21 18591.16 26796.34 299
Anonymous2024052995.10 19294.22 20997.75 14099.01 10494.26 21998.87 8398.83 6985.79 32596.64 15398.97 8478.73 30999.85 4996.27 11894.89 21299.12 139
test-LLR95.10 19294.87 18095.80 25896.77 26389.70 30196.91 29595.21 32795.11 12494.83 19395.72 31487.71 21498.97 19393.06 21898.50 13498.72 167
WR-MVS_H95.05 19594.46 19896.81 19496.86 26095.82 15499.24 2099.24 1093.87 17592.53 27996.84 28090.37 15698.24 27893.24 21387.93 30696.38 298
miper_ehance_all_eth95.01 19694.69 18795.97 25097.70 19993.31 24997.02 28898.07 23692.23 24493.51 24896.96 27091.85 12498.15 28293.68 20091.16 26796.44 296
ADS-MVSNet95.00 19794.45 20096.63 20698.00 18091.91 26996.04 31897.74 25890.15 29396.47 16596.64 28987.89 21098.96 19690.08 27797.06 17399.02 148
VPNet94.99 19894.19 21197.40 16497.16 24296.57 11698.71 11898.97 3095.67 9394.84 19198.24 16680.36 30198.67 22896.46 11287.32 31396.96 227
EPMVS94.99 19894.48 19696.52 22197.22 23591.75 27397.23 27591.66 34594.11 16197.28 12596.81 28185.70 24998.84 21393.04 22097.28 17198.97 153
NR-MVSNet94.98 20094.16 21497.44 16096.53 27697.22 9198.74 10998.95 3494.96 13289.25 31397.69 20889.32 17198.18 28094.59 17387.40 31296.92 230
FMVSNet394.97 20194.26 20897.11 17698.18 16996.62 11198.56 14598.26 20493.67 19194.09 22497.10 24884.25 27198.01 29492.08 24492.14 25396.70 261
CostFormer94.95 20294.73 18595.60 26597.28 23189.06 31197.53 25596.89 30889.66 30196.82 14796.72 28486.05 24498.95 20095.53 14696.13 20498.79 164
PAPM94.95 20294.00 22497.78 13797.04 24995.65 15896.03 32098.25 20591.23 27794.19 22097.80 20291.27 14098.86 21282.61 32697.61 16598.84 162
CP-MVSNet94.94 20494.30 20796.83 19396.72 26895.56 16299.11 4298.95 3493.89 17392.42 28497.90 18987.19 22498.12 28594.32 18188.21 30396.82 247
TR-MVS94.94 20494.20 21097.17 17297.75 19494.14 22297.59 25297.02 30092.28 24395.75 17997.64 21483.88 28098.96 19689.77 28396.15 20398.40 186
RPSCF94.87 20695.40 15193.26 31198.89 11382.06 33998.33 17398.06 24090.30 29296.56 15799.26 3987.09 22599.49 14193.82 19796.32 19498.24 192
DWT-MVSNet_test94.82 20794.36 20596.20 24297.35 22890.79 28998.34 17296.57 31892.91 22095.33 18396.44 29682.00 28999.12 17594.52 17595.78 20998.70 169
GA-MVS94.81 20894.03 22097.14 17397.15 24393.86 22896.76 30797.58 26494.00 16894.76 19697.04 26180.91 29698.48 24391.79 25396.25 20099.09 141
cl_fuxian94.79 20994.43 20295.89 25597.75 19493.12 25697.16 28298.03 24392.23 24493.46 25197.05 26091.39 13598.01 29493.58 20589.21 29296.53 283
V4294.78 21094.14 21696.70 20096.33 28695.22 17698.97 6498.09 23292.32 24194.31 21397.06 25888.39 19798.55 23892.90 22488.87 29896.34 299
CR-MVSNet94.76 21194.15 21596.59 21197.00 25093.43 24394.96 32897.56 26592.46 23296.93 14096.24 30088.15 20397.88 30687.38 30696.65 18398.46 184
v2v48294.69 21294.03 22096.65 20396.17 29194.79 19898.67 12898.08 23492.72 22594.00 22997.16 24687.69 21798.45 24792.91 22388.87 29896.72 257
pmmvs494.69 21293.99 22696.81 19495.74 30595.94 14697.40 26097.67 26090.42 29093.37 25397.59 21889.08 17998.20 27992.97 22291.67 26096.30 303
cl-mvsnet294.68 21494.19 21196.13 24598.11 17493.60 23896.94 29298.31 19192.43 23693.32 25596.87 27886.51 23498.28 27694.10 19091.16 26796.51 289
eth_miper_zixun_eth94.68 21494.41 20395.47 26897.64 20291.71 27596.73 30998.07 23692.71 22693.64 24197.21 24390.54 15498.17 28193.38 20889.76 28296.54 281
PCF-MVS93.45 1194.68 21493.43 25698.42 9998.62 13796.77 10795.48 32698.20 20984.63 32993.34 25498.32 15788.55 19499.81 6684.80 32298.96 11198.68 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 21793.54 25298.08 12196.88 25996.56 11798.19 19798.50 16178.05 33792.69 27498.02 17991.07 14599.63 12490.09 27698.36 14298.04 196
PS-CasMVS94.67 21793.99 22696.71 19896.68 27095.26 17599.13 3999.03 2593.68 18992.33 28597.95 18585.35 25498.10 28693.59 20488.16 30596.79 248
cascas94.63 21993.86 23496.93 18896.91 25794.27 21896.00 32198.51 15685.55 32694.54 19996.23 30284.20 27498.87 21095.80 13596.98 17697.66 208
tpmvs94.60 22094.36 20595.33 27397.46 21888.60 31796.88 30197.68 25991.29 27493.80 23896.42 29788.58 19199.24 16291.06 26396.04 20698.17 193
LTVRE_ROB92.95 1594.60 22093.90 23196.68 20297.41 22694.42 21298.52 14998.59 13691.69 25991.21 29898.35 15184.87 26199.04 18891.06 26393.44 24096.60 272
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 22293.92 22996.60 21096.21 28894.78 19998.59 13798.14 22391.86 25594.21 21997.02 26387.97 20898.41 25991.72 25589.57 28596.61 271
ADS-MVSNet294.58 22394.40 20495.11 27998.00 18088.74 31596.04 31897.30 28590.15 29396.47 16596.64 28987.89 21097.56 31590.08 27797.06 17399.02 148
RRT_test8_iter0594.56 22494.19 21195.67 26397.60 20591.34 27898.93 7198.42 17494.75 13993.39 25297.87 19279.00 30898.61 23196.78 10490.99 27097.07 221
ACMH92.88 1694.55 22593.95 22896.34 23697.63 20393.26 25198.81 9998.49 16593.43 20089.74 30998.53 13281.91 29099.08 18393.69 19993.30 24396.70 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE94.54 22694.14 21695.75 26196.55 27591.65 27698.11 20998.44 17094.96 13294.22 21897.90 18979.18 30799.11 17894.05 19293.85 23096.48 293
cl-mvsnet194.52 22794.03 22095.99 24897.57 21193.38 24797.05 28697.94 24991.74 25692.81 26997.10 24889.12 17798.07 29092.60 23090.30 27696.53 283
cl-mvsnet_94.51 22894.01 22396.02 24797.58 20793.40 24697.05 28697.96 24891.73 25892.76 27197.08 25489.06 18098.13 28492.61 22990.29 27796.52 286
GBi-Net94.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
test194.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
v894.47 23193.77 24096.57 21596.36 28494.83 19599.05 4998.19 21091.92 25293.16 25996.97 26888.82 18998.48 24391.69 25687.79 30796.39 297
FMVSNet294.47 23193.61 24997.04 17998.21 16496.43 12398.79 10498.27 20092.46 23293.50 24997.09 25281.16 29398.00 29691.09 26191.93 25796.70 261
Patchmatch-test94.42 23393.68 24796.63 20697.60 20591.76 27294.83 33297.49 27589.45 30494.14 22297.10 24888.99 18198.83 21585.37 32098.13 14899.29 119
PEN-MVS94.42 23393.73 24496.49 22396.28 28794.84 19399.17 3399.00 2793.51 19692.23 28797.83 19986.10 24397.90 30292.55 23586.92 31896.74 254
v14419294.39 23593.70 24596.48 22496.06 29694.35 21698.58 13998.16 22091.45 26594.33 21297.02 26387.50 22098.45 24791.08 26289.11 29396.63 269
Baseline_NR-MVSNet94.35 23693.81 23695.96 25196.20 28994.05 22498.61 13696.67 31691.44 26693.85 23597.60 21788.57 19298.14 28394.39 17886.93 31795.68 316
miper_lstm_enhance94.33 23794.07 21995.11 27997.75 19490.97 28697.22 27698.03 24391.67 26092.76 27196.97 26890.03 16297.78 30992.51 23789.64 28496.56 278
v119294.32 23893.58 25096.53 22096.10 29494.45 21198.50 15498.17 21891.54 26394.19 22097.06 25886.95 22998.43 25190.14 27589.57 28596.70 261
ACMH+92.99 1494.30 23993.77 24095.88 25697.81 19292.04 26898.71 11898.37 18293.99 16990.60 30598.47 13880.86 29899.05 18592.75 22892.40 25296.55 280
v14894.29 24093.76 24295.91 25396.10 29492.93 25898.58 13997.97 24692.59 23093.47 25096.95 27288.53 19598.32 26892.56 23487.06 31696.49 292
v1094.29 24093.55 25196.51 22296.39 28394.80 19798.99 6098.19 21091.35 27093.02 26596.99 26688.09 20598.41 25990.50 27288.41 30296.33 301
MVP-Stereo94.28 24293.92 22995.35 27294.95 32192.60 26197.97 22197.65 26191.61 26290.68 30497.09 25286.32 24098.42 25289.70 28699.34 9895.02 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 24393.33 25896.97 18497.19 24093.38 24798.74 10998.57 14291.21 27993.81 23798.58 12872.85 33498.77 22195.05 16093.93 22998.77 166
OurMVSNet-221017-094.21 24494.00 22494.85 28795.60 30989.22 30998.89 7897.43 28095.29 11392.18 28898.52 13582.86 28698.59 23593.46 20791.76 25996.74 254
v192192094.20 24593.47 25596.40 23295.98 29994.08 22398.52 14998.15 22191.33 27194.25 21697.20 24486.41 23898.42 25290.04 28089.39 29096.69 266
v7n94.19 24693.43 25696.47 22595.90 30194.38 21599.26 1898.34 18791.99 25092.76 27197.13 24788.31 19898.52 24189.48 29187.70 30896.52 286
tpm294.19 24693.76 24295.46 26997.23 23489.04 31297.31 27196.85 31187.08 31696.21 17296.79 28283.75 28498.74 22292.43 24096.23 20198.59 179
TESTMET0.1,194.18 24893.69 24695.63 26496.92 25589.12 31096.91 29594.78 33293.17 20994.88 19096.45 29578.52 31098.92 20293.09 21798.50 13498.85 160
dp94.15 24993.90 23194.90 28597.31 23086.82 33096.97 29097.19 29291.22 27896.02 17696.61 29185.51 25199.02 19190.00 28194.30 21498.85 160
ET-MVSNet_ETH3D94.13 25092.98 26497.58 15498.22 16396.20 13297.31 27195.37 32694.53 14979.56 33597.63 21686.51 23497.53 31696.91 8990.74 27299.02 148
tpm94.13 25093.80 23795.12 27896.50 27887.91 32497.44 25795.89 32492.62 22896.37 16996.30 29984.13 27598.30 27293.24 21391.66 26199.14 137
IterMVS-SCA-FT94.11 25293.87 23394.85 28797.98 18490.56 29497.18 27998.11 22793.75 17992.58 27797.48 22583.97 27897.41 31892.48 23991.30 26496.58 274
Anonymous2023121194.10 25393.26 26196.61 20899.11 10094.28 21799.01 5698.88 4986.43 31992.81 26997.57 22081.66 29298.68 22794.83 16489.02 29696.88 239
IterMVS94.09 25493.85 23594.80 29097.99 18290.35 29697.18 27998.12 22593.68 18992.46 28397.34 23384.05 27697.41 31892.51 23791.33 26396.62 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 25593.51 25395.80 25896.77 26389.70 30196.91 29595.21 32792.89 22194.83 19395.72 31477.69 31598.97 19393.06 21898.50 13498.72 167
test0.0.03 194.08 25593.51 25395.80 25895.53 31292.89 25997.38 26295.97 32195.11 12492.51 28196.66 28687.71 21496.94 32487.03 30893.67 23297.57 209
v124094.06 25793.29 26096.34 23696.03 29893.90 22798.44 16198.17 21891.18 28094.13 22397.01 26586.05 24498.42 25289.13 29689.50 28896.70 261
X-MVStestdata94.06 25792.30 27699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6443.50 34795.90 4099.89 3597.85 4399.74 4199.78 13
DTE-MVSNet93.98 25993.26 26196.14 24496.06 29694.39 21499.20 2998.86 6193.06 21291.78 29397.81 20185.87 24797.58 31490.53 27186.17 32396.46 295
pm-mvs193.94 26093.06 26396.59 21196.49 27995.16 17798.95 6898.03 24392.32 24191.08 30097.84 19684.54 26798.41 25992.16 24286.13 32596.19 306
MS-PatchMatch93.84 26193.63 24894.46 29996.18 29089.45 30597.76 24098.27 20092.23 24492.13 28997.49 22479.50 30498.69 22489.75 28499.38 9695.25 319
tfpnnormal93.66 26292.70 27096.55 21996.94 25495.94 14698.97 6499.19 1591.04 28291.38 29797.34 23384.94 26098.61 23185.45 31989.02 29695.11 321
EU-MVSNet93.66 26294.14 21692.25 31695.96 30083.38 33598.52 14998.12 22594.69 14292.61 27698.13 17387.36 22396.39 33391.82 25290.00 28096.98 226
our_test_393.65 26493.30 25994.69 29295.45 31589.68 30396.91 29597.65 26191.97 25191.66 29596.88 27689.67 16597.93 30188.02 30391.49 26296.48 293
pmmvs593.65 26492.97 26595.68 26295.49 31392.37 26298.20 19397.28 28789.66 30192.58 27797.26 23882.14 28898.09 28893.18 21690.95 27196.58 274
tpm cat193.36 26692.80 26795.07 28197.58 20787.97 32396.76 30797.86 25382.17 33393.53 24596.04 30886.13 24299.13 17489.24 29495.87 20798.10 195
JIA-IIPM93.35 26792.49 27395.92 25296.48 28090.65 29295.01 32796.96 30285.93 32396.08 17487.33 33887.70 21698.78 22091.35 26095.58 21098.34 189
SixPastTwentyTwo93.34 26892.86 26694.75 29195.67 30789.41 30798.75 10696.67 31693.89 17390.15 30798.25 16580.87 29798.27 27790.90 26690.64 27396.57 276
USDC93.33 26992.71 26995.21 27596.83 26290.83 28896.91 29597.50 27393.84 17690.72 30398.14 17277.69 31598.82 21689.51 29093.21 24595.97 311
IB-MVS91.98 1793.27 27091.97 28097.19 17097.47 21793.41 24597.09 28595.99 32093.32 20492.47 28295.73 31278.06 31399.53 13894.59 17382.98 32898.62 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 27192.21 27796.41 23197.73 19893.13 25595.65 32597.03 29891.27 27694.04 22796.06 30775.33 32597.19 32186.56 31096.23 20198.92 158
ppachtmachnet_test93.22 27292.63 27194.97 28395.45 31590.84 28796.88 30197.88 25290.60 28692.08 29097.26 23888.08 20697.86 30885.12 32190.33 27596.22 304
Patchmtry93.22 27292.35 27595.84 25796.77 26393.09 25794.66 33397.56 26587.37 31592.90 26796.24 30088.15 20397.90 30287.37 30790.10 27996.53 283
FMVSNet193.19 27492.07 27896.56 21697.54 21295.00 18498.82 9398.18 21390.38 29192.27 28697.07 25573.68 33297.95 29889.36 29391.30 26496.72 257
LF4IMVS93.14 27592.79 26894.20 30295.88 30288.67 31697.66 24897.07 29593.81 17891.71 29497.65 21277.96 31498.81 21791.47 25991.92 25895.12 320
testgi93.06 27692.45 27494.88 28696.43 28289.90 29898.75 10697.54 27095.60 9691.63 29697.91 18874.46 33097.02 32386.10 31393.67 23297.72 206
PatchT93.06 27691.97 28096.35 23596.69 26992.67 26094.48 33497.08 29486.62 31797.08 13292.23 33387.94 20997.90 30278.89 33596.69 18198.49 183
MVS_030492.81 27892.01 27995.23 27497.46 21891.33 28098.17 20298.81 7691.13 28193.80 23895.68 31766.08 34098.06 29190.79 26796.13 20496.32 302
TransMVSNet (Re)92.67 27991.51 28496.15 24396.58 27494.65 20098.90 7496.73 31290.86 28489.46 31297.86 19385.62 25098.09 28886.45 31181.12 33395.71 315
K. test v392.55 28091.91 28294.48 29795.64 30889.24 30899.07 4794.88 33194.04 16486.78 32297.59 21877.64 31897.64 31292.08 24489.43 28996.57 276
DSMNet-mixed92.52 28192.58 27292.33 31594.15 32882.65 33798.30 18194.26 33889.08 30892.65 27595.73 31285.01 25995.76 33486.24 31297.76 16098.59 179
RPMNet92.52 28191.17 28596.59 21197.00 25093.43 24394.96 32897.26 28982.27 33296.93 14092.12 33486.98 22897.88 30676.32 33996.65 18398.46 184
TinyColmap92.31 28391.53 28394.65 29496.92 25589.75 30096.92 29396.68 31590.45 28989.62 31097.85 19576.06 32398.81 21786.74 30992.51 25195.41 318
gg-mvs-nofinetune92.21 28490.58 29097.13 17496.75 26695.09 18195.85 32289.40 34885.43 32794.50 20181.98 34180.80 29998.40 26592.16 24298.33 14397.88 199
FMVSNet591.81 28590.92 28794.49 29697.21 23692.09 26598.00 21997.55 26989.31 30690.86 30295.61 31874.48 32995.32 33685.57 31789.70 28396.07 309
pmmvs691.77 28690.63 28995.17 27794.69 32691.24 28398.67 12897.92 25086.14 32189.62 31097.56 22275.79 32498.34 26690.75 26984.56 32795.94 312
Anonymous2023120691.66 28791.10 28693.33 30994.02 33087.35 32798.58 13997.26 28990.48 28790.16 30696.31 29883.83 28296.53 33179.36 33389.90 28196.12 307
Patchmatch-RL test91.49 28890.85 28893.41 30891.37 33684.40 33292.81 33895.93 32391.87 25487.25 32094.87 32288.99 18196.53 33192.54 23682.00 33099.30 117
test_040291.32 28990.27 29294.48 29796.60 27391.12 28498.50 15497.22 29186.10 32288.30 31796.98 26777.65 31797.99 29778.13 33792.94 24894.34 327
PVSNet_088.72 1991.28 29090.03 29495.00 28297.99 18287.29 32894.84 33198.50 16192.06 24989.86 30895.19 31979.81 30399.39 15192.27 24169.79 34198.33 190
EG-PatchMatch MVS91.13 29190.12 29394.17 30494.73 32589.00 31398.13 20697.81 25489.22 30785.32 32996.46 29467.71 33798.42 25287.89 30593.82 23195.08 322
TDRefinement91.06 29289.68 29695.21 27585.35 34391.49 27798.51 15397.07 29591.47 26488.83 31597.84 19677.31 31999.09 18292.79 22777.98 33695.04 323
UnsupCasMVSNet_eth90.99 29389.92 29594.19 30394.08 32989.83 29997.13 28498.67 12393.69 18785.83 32796.19 30575.15 32696.74 32589.14 29579.41 33596.00 310
test20.0390.89 29490.38 29192.43 31493.48 33188.14 32298.33 17397.56 26593.40 20187.96 31896.71 28580.69 30094.13 34079.15 33486.17 32395.01 325
MDA-MVSNet_test_wron90.71 29589.38 29994.68 29394.83 32390.78 29097.19 27897.46 27687.60 31372.41 34195.72 31486.51 23496.71 32885.92 31586.80 32096.56 278
YYNet190.70 29689.39 29894.62 29594.79 32490.65 29297.20 27797.46 27687.54 31472.54 34095.74 31186.51 23496.66 32986.00 31486.76 32196.54 281
testing_290.61 29788.50 30296.95 18690.08 34095.57 16197.69 24598.06 24093.02 21476.55 33692.48 33261.18 34398.44 24995.45 14991.98 25696.84 244
pmmvs-eth3d90.36 29889.05 30094.32 30191.10 33792.12 26497.63 25196.95 30388.86 30984.91 33093.13 32878.32 31196.74 32588.70 29881.81 33294.09 331
new_pmnet90.06 29989.00 30193.22 31294.18 32788.32 32196.42 31696.89 30886.19 32085.67 32893.62 32677.18 32097.10 32281.61 32889.29 29194.23 328
MDA-MVSNet-bldmvs89.97 30088.35 30494.83 28995.21 31891.34 27897.64 24997.51 27288.36 31171.17 34296.13 30679.22 30696.63 33083.65 32386.27 32296.52 286
CMPMVSbinary66.06 2189.70 30189.67 29789.78 32093.19 33276.56 34197.00 28998.35 18580.97 33481.57 33497.75 20474.75 32898.61 23189.85 28293.63 23494.17 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 30288.28 30593.82 30592.81 33491.08 28598.01 21797.45 27887.95 31287.90 31995.87 31067.63 33894.56 33978.73 33688.18 30495.83 314
MVS-HIRNet89.46 30388.40 30392.64 31397.58 20782.15 33894.16 33793.05 34475.73 33990.90 30182.52 34079.42 30598.33 26783.53 32498.68 12397.43 210
OpenMVS_ROBcopyleft86.42 2089.00 30487.43 30893.69 30693.08 33389.42 30697.91 22596.89 30878.58 33685.86 32694.69 32369.48 33698.29 27577.13 33893.29 24493.36 336
new-patchmatchnet88.50 30587.45 30791.67 31890.31 33985.89 33197.16 28297.33 28489.47 30383.63 33292.77 32976.38 32195.06 33882.70 32577.29 33794.06 332
PM-MVS87.77 30686.55 30991.40 31991.03 33883.36 33696.92 29395.18 32991.28 27586.48 32593.42 32753.27 34496.74 32589.43 29281.97 33194.11 330
UnsupCasMVSNet_bld87.17 30785.12 31093.31 31091.94 33588.77 31494.92 33098.30 19784.30 33082.30 33390.04 33563.96 34297.25 32085.85 31674.47 34093.93 334
N_pmnet87.12 30887.77 30685.17 32595.46 31461.92 34897.37 26470.66 35485.83 32488.73 31696.04 30885.33 25697.76 31080.02 33090.48 27495.84 313
pmmvs386.67 30984.86 31192.11 31788.16 34187.19 32996.63 31194.75 33379.88 33587.22 32192.75 33066.56 33995.20 33781.24 32976.56 33893.96 333
LCM-MVSNet78.70 31076.24 31486.08 32377.26 34971.99 34594.34 33596.72 31361.62 34376.53 33789.33 33633.91 35192.78 34281.85 32774.60 33993.46 335
Gipumacopyleft78.40 31176.75 31383.38 32695.54 31180.43 34079.42 34697.40 28264.67 34273.46 33980.82 34245.65 34693.14 34166.32 34287.43 31176.56 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 31275.44 31585.46 32482.54 34474.95 34394.23 33693.08 34372.80 34074.68 33887.38 33736.36 35091.56 34373.95 34063.94 34289.87 338
FPMVS77.62 31377.14 31279.05 32879.25 34760.97 34995.79 32395.94 32265.96 34167.93 34394.40 32437.73 34988.88 34568.83 34188.46 30187.29 339
ANet_high69.08 31465.37 31780.22 32765.99 35171.96 34690.91 34290.09 34782.62 33149.93 34878.39 34329.36 35281.75 34662.49 34338.52 34686.95 341
tmp_tt68.90 31566.97 31674.68 33050.78 35359.95 35087.13 34383.47 35238.80 34862.21 34496.23 30264.70 34176.91 35088.91 29730.49 34787.19 340
PMVScopyleft61.03 2365.95 31663.57 31973.09 33157.90 35251.22 35385.05 34593.93 34254.45 34444.32 34983.57 33913.22 35389.15 34458.68 34481.00 33478.91 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 31764.25 31867.02 33282.28 34559.36 35191.83 34185.63 35052.69 34560.22 34577.28 34441.06 34880.12 34846.15 34641.14 34461.57 346
EMVS64.07 31863.26 32066.53 33381.73 34658.81 35291.85 34084.75 35151.93 34759.09 34675.13 34543.32 34779.09 34942.03 34739.47 34561.69 345
MVEpermissive62.14 2263.28 31959.38 32174.99 32974.33 35065.47 34785.55 34480.50 35352.02 34651.10 34775.00 34610.91 35680.50 34751.60 34553.40 34378.99 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 32030.18 32330.16 33478.61 34843.29 35466.79 34714.21 35517.31 34914.82 35211.93 35211.55 35541.43 35137.08 34819.30 3485.76 349
cdsmvs_eth3d_5k23.98 32131.98 3220.00 3370.00 3560.00 3570.00 34898.59 1360.00 3520.00 35398.61 12390.60 1530.00 3540.00 3510.00 3510.00 350
testmvs21.48 32224.95 32411.09 33614.89 3546.47 35696.56 3139.87 3567.55 35017.93 35039.02 3489.43 3575.90 35316.56 35012.72 34920.91 348
test12320.95 32323.72 32512.64 33513.54 3558.19 35596.55 3146.13 3577.48 35116.74 35137.98 34912.97 3546.05 35216.69 3495.43 35023.68 347
ab-mvs-re8.20 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.43 1410.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.88 32510.50 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35394.51 810.00 3540.00 3510.00 3510.00 350
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.71 2099.23 698.64 13195.28 11499.63 498.35 2499.81 1099.83 5
OPU-MVS99.37 2099.24 8899.05 1099.02 5499.16 5897.81 299.37 15397.24 7699.73 4399.70 45
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 102
9.1498.06 4699.47 4598.71 11898.82 7094.36 15699.16 2499.29 3696.05 3299.81 6697.00 8399.71 50
save fliter99.46 4898.38 3498.21 19098.71 10897.95 3
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6498.88 4999.94 398.47 1599.81 1099.84 4
test072699.72 1299.25 299.06 4898.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 126
test_part299.63 2999.18 899.27 17
test_part10.00 3370.00 3570.00 34898.84 650.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs189.45 16899.20 126
sam_mvs88.99 181
ambc89.49 32186.66 34275.78 34292.66 33996.72 31386.55 32492.50 33146.01 34597.90 30290.32 27382.09 32994.80 326
MTGPAbinary98.74 98
test_post196.68 31030.43 35187.85 21398.69 22492.59 232
test_post31.83 35088.83 18898.91 203
patchmatchnet-post95.10 32189.42 16998.89 207
GG-mvs-BLEND96.59 21196.34 28594.98 18796.51 31588.58 34993.10 26494.34 32580.34 30298.05 29289.53 28996.99 17596.74 254
MTMP98.89 7894.14 340
gm-plane-assit95.88 30287.47 32689.74 30096.94 27399.19 16793.32 212
test9_res96.39 11799.57 7199.69 48
TEST999.31 6698.50 2897.92 22398.73 10292.63 22797.74 10798.68 11796.20 2399.80 75
test_899.29 7498.44 3097.89 22998.72 10492.98 21697.70 11098.66 12096.20 2399.80 75
agg_prior295.87 13299.57 7199.68 54
agg_prior99.30 7198.38 3498.72 10497.57 12199.81 66
TestCases96.99 18199.25 8293.21 25398.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
test_prior498.01 6197.86 232
test_prior297.80 23796.12 7797.89 10198.69 11595.96 3696.89 9299.60 65
test_prior99.19 4399.31 6698.22 4998.84 6599.70 11099.65 64
旧先验297.57 25491.30 27398.67 5599.80 7595.70 142
新几何297.64 249
新几何199.16 5099.34 5898.01 6198.69 11290.06 29698.13 7898.95 9194.60 7899.89 3591.97 25099.47 8699.59 77
旧先验199.29 7497.48 7898.70 11199.09 7195.56 4699.47 8699.61 72
无先验97.58 25398.72 10491.38 26799.87 4493.36 21099.60 75
原ACMM297.67 247
原ACMM198.65 7999.32 6496.62 11198.67 12393.27 20797.81 10398.97 8495.18 6499.83 5593.84 19699.46 8999.50 88
test22299.23 8997.17 9397.40 26098.66 12688.68 31098.05 8298.96 8994.14 9099.53 8199.61 72
testdata299.89 3591.65 257
segment_acmp96.85 11
testdata98.26 10999.20 9395.36 17098.68 11591.89 25398.60 6099.10 6694.44 8699.82 6294.27 18399.44 9199.58 79
testdata197.32 27096.34 68
test1299.18 4799.16 9598.19 5198.53 15198.07 8195.13 6699.72 10499.56 7699.63 70
plane_prior797.42 22394.63 202
plane_prior697.35 22894.61 20587.09 225
plane_prior598.56 14499.03 18996.07 12394.27 21596.92 230
plane_prior498.28 160
plane_prior394.61 20597.02 4795.34 181
plane_prior298.80 10097.28 29
plane_prior197.37 227
plane_prior94.60 20798.44 16196.74 5594.22 217
n20.00 358
nn0.00 358
door-mid94.37 336
lessismore_v094.45 30094.93 32288.44 31991.03 34686.77 32397.64 21476.23 32298.42 25290.31 27485.64 32696.51 289
LGP-MVS_train96.47 22597.46 21893.54 24098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
test1198.66 126
door94.64 334
HQP5-MVS94.25 220
HQP-NCC97.20 23798.05 21396.43 6494.45 203
ACMP_Plane97.20 23798.05 21396.43 6494.45 203
BP-MVS95.30 152
HQP4-MVS94.45 20398.96 19696.87 241
HQP3-MVS98.46 16694.18 219
HQP2-MVS86.75 231
NP-MVS97.28 23194.51 21097.73 205
MDTV_nov1_ep13_2view84.26 33396.89 30090.97 28397.90 10089.89 16493.91 19499.18 133
MDTV_nov1_ep1395.40 15197.48 21688.34 32096.85 30397.29 28693.74 18197.48 12497.26 23889.18 17599.05 18591.92 25197.43 169
ACMMP++_ref92.97 247
ACMMP++93.61 235
Test By Simon94.64 76
ITE_SJBPF95.44 27097.42 22391.32 28197.50 27395.09 12793.59 24298.35 15181.70 29198.88 20989.71 28593.39 24196.12 307
DeepMVS_CXcopyleft86.78 32297.09 24772.30 34495.17 33075.92 33884.34 33195.19 31970.58 33595.35 33579.98 33289.04 29592.68 337