This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
EPNet97.28 9896.87 10098.51 9094.98 32096.14 13598.90 7497.02 30098.28 195.99 17799.11 6491.36 13699.89 3596.98 8499.19 10499.50 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS96.37 297.93 6198.48 1796.30 23899.00 10589.54 30497.43 25998.87 5598.16 299.26 1899.38 2196.12 2899.64 12198.30 2699.77 2699.72 39
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 4898.38 3498.21 19098.52 15397.95 399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
save fliter99.46 4898.38 3498.21 19098.71 10897.95 3
NCCC98.61 1798.35 2499.38 1799.28 7898.61 2398.45 15898.76 9497.82 598.45 6798.93 9396.65 1499.83 5597.38 7399.41 9399.71 43
CNVR-MVS98.78 698.56 999.45 1499.32 6498.87 1598.47 15798.81 7697.72 698.76 4999.16 5897.05 1099.78 9198.06 3399.66 5799.69 48
DeepC-MVS_fast96.70 198.55 2998.34 2699.18 4799.25 8298.04 5998.50 15498.78 9097.72 698.92 4199.28 3795.27 6099.82 6297.55 6699.77 2699.69 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.40 4098.20 4198.99 6199.00 10597.66 7197.75 24198.89 4697.71 898.33 7498.97 8494.97 7099.88 4398.42 2099.76 3299.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5498.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 45
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 102
MSP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6498.58 14197.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 48
test072699.72 1299.25 299.06 4898.88 4997.62 1199.56 599.50 497.42 6
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16598.91 4397.58 1499.54 799.46 997.10 999.94 397.64 5799.84 899.83 5
DVP-MVS98.74 898.55 1099.29 3199.75 398.23 4899.26 1898.88 4997.52 1599.41 1198.78 10896.00 3499.79 8797.79 4799.59 6899.85 2
HPM-MVS++copyleft98.58 2398.25 3599.55 699.50 4099.08 998.72 11798.66 12697.51 1698.15 7798.83 10395.70 4499.92 2197.53 6899.67 5499.66 62
Regformer-198.66 1298.51 1399.12 5599.35 5697.81 6998.37 16998.76 9497.49 1799.20 2299.21 4596.08 2999.79 8798.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 5698.01 6198.37 16998.81 7697.48 1899.21 2199.21 4596.13 2799.80 7598.40 2299.73 4399.75 28
Regformer-498.64 1498.53 1198.99 6199.43 5397.37 8298.40 16798.79 8897.46 1999.09 2899.31 3295.86 4299.80 7598.64 399.76 3299.79 10
Regformer-398.59 2098.50 1498.86 7199.43 5397.05 9698.40 16798.68 11597.43 2099.06 2999.31 3295.80 4399.77 9698.62 599.76 3299.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6499.20 4995.90 4099.89 3597.85 4399.74 4199.78 13
X-MVStestdata94.06 25792.30 27699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6443.50 34795.90 4099.89 3597.85 4399.74 4199.78 13
UGNet96.78 11996.30 12498.19 11598.24 16195.89 15398.88 8198.93 3797.39 2396.81 14897.84 19682.60 28799.90 3396.53 11099.49 8498.79 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9098.43 3299.10 4398.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4899.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
CANet98.05 5497.76 5898.90 6998.73 12497.27 8698.35 17198.78 9097.37 2697.72 10998.96 8991.53 13499.92 2198.79 299.65 5899.51 86
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
PS-MVSNAJ97.73 6997.77 5797.62 15298.68 13295.58 16097.34 26898.51 15697.29 2898.66 5697.88 19194.51 8199.90 3397.87 4299.17 10597.39 213
SD-MVS98.64 1498.68 598.53 8999.33 6198.36 4198.90 7498.85 6497.28 2999.72 399.39 1496.63 1597.60 31398.17 2899.85 399.64 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++98.56 2898.57 898.55 8599.26 8196.80 10598.71 11899.05 2497.28 2998.84 4399.28 3796.47 1899.40 15098.52 1399.70 5199.47 95
HQP_MVS96.14 14095.90 13696.85 19297.42 22394.60 20798.80 10098.56 14497.28 2995.34 18198.28 16087.09 22599.03 18996.07 12394.27 21596.92 230
plane_prior298.80 10097.28 29
zzz-MVS98.55 2998.25 3599.46 1299.76 198.64 2198.55 14798.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3299.46 1299.76 198.64 2198.90 7498.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
CANet_DTU96.96 11296.55 11698.21 11298.17 17196.07 13797.98 22098.21 20797.24 3597.13 13098.93 9386.88 23099.91 3095.00 16199.37 9798.66 175
EI-MVSNet-Vis-set98.47 3698.39 1998.69 7699.46 4896.49 12098.30 18198.69 11297.21 3698.84 4399.36 2695.41 5399.78 9198.62 599.65 5899.80 9
MVS_111021_HR98.47 3698.34 2698.88 7099.22 9097.32 8397.91 22599.58 397.20 3798.33 7499.00 8295.99 3599.64 12198.05 3599.76 3299.69 48
TSAR-MVS + GP.98.38 4198.24 3898.81 7299.22 9097.25 9098.11 20998.29 19997.19 3898.99 3599.02 7796.22 2099.67 11798.52 1398.56 13199.51 86
EI-MVSNet-UG-set98.41 3998.34 2698.61 8199.45 5196.32 12898.28 18498.68 11597.17 3998.74 5099.37 2295.25 6299.79 8798.57 799.54 8099.73 36
xiu_mvs_v2_base97.66 7397.70 6097.56 15698.61 13895.46 16797.44 25798.46 16697.15 4098.65 5798.15 17194.33 8799.80 7597.84 4598.66 12797.41 211
MVS_111021_LR98.34 4698.23 3998.67 7899.27 7996.90 10297.95 22299.58 397.14 4198.44 6899.01 8195.03 6999.62 12697.91 3899.75 3899.50 88
xiu_mvs_v1_base_debu97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base_debi97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
3Dnovator+94.38 697.43 9096.78 10499.38 1797.83 19198.52 2699.37 798.71 10897.09 4592.99 26699.13 6189.36 17099.89 3596.97 8599.57 7199.71 43
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 16698.68 11597.04 4698.52 6398.80 10696.78 1299.83 5597.93 3799.61 6499.74 33
plane_prior394.61 20597.02 4795.34 181
3Dnovator94.51 597.46 8596.93 9799.07 5897.78 19397.64 7299.35 1099.06 2297.02 4793.75 24099.16 5889.25 17399.92 2197.22 7799.75 3899.64 67
DeepC-MVS95.98 397.88 6297.58 6498.77 7399.25 8296.93 10098.83 9098.75 9796.96 4996.89 14499.50 490.46 15599.87 4497.84 4599.76 3299.52 82
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 6597.60 6398.44 9699.12 9995.97 14397.75 24198.78 9096.89 5098.46 6499.22 4493.90 9599.68 11694.81 16699.52 8399.67 58
ETV-MVS97.96 5697.81 5698.40 10198.42 14797.27 8698.73 11398.55 14696.84 5198.38 7197.44 22995.39 5499.35 15497.62 5898.89 11498.58 181
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4799.14 3698.66 12696.84 5199.56 599.31 3296.34 1999.70 11098.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPNet_dtu95.21 18694.95 17795.99 24896.17 29190.45 29598.16 20397.27 28896.77 5393.14 26298.33 15690.34 15798.42 25285.57 31798.81 12199.09 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs97.67 7297.23 8498.98 6398.70 12998.38 3499.34 1198.39 17996.76 5497.67 11297.40 23292.26 11299.49 14198.28 2796.28 19899.08 144
alignmvs97.56 8297.07 9199.01 6098.66 13398.37 4098.83 9098.06 24096.74 5598.00 9297.65 21290.80 14999.48 14598.37 2396.56 18699.19 129
VNet97.79 6797.40 7898.96 6598.88 11497.55 7698.63 13398.93 3796.74 5599.02 3198.84 10290.33 15899.83 5598.53 996.66 18299.50 88
plane_prior94.60 20798.44 16196.74 5594.22 217
UA-Net97.96 5697.62 6198.98 6398.86 11697.47 7998.89 7899.08 2196.67 5898.72 5399.54 193.15 10199.81 6694.87 16298.83 11999.65 64
OPM-MVS95.69 16095.33 15996.76 19696.16 29394.63 20298.43 16398.39 17996.64 5995.02 18798.78 10885.15 25799.05 18595.21 15894.20 21896.60 272
Vis-MVSNetpermissive97.42 9197.11 8898.34 10498.66 13396.23 13199.22 2599.00 2796.63 6098.04 8499.21 4588.05 20799.35 15496.01 12899.21 10299.45 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5299.09 4498.82 7096.58 6199.10 2799.32 3095.39 5499.82 6297.70 5499.63 6199.72 39
Effi-MVS+-dtu96.29 13596.56 11595.51 26697.89 18890.22 29798.80 10098.10 22996.57 6296.45 16796.66 28690.81 14798.91 20395.72 13897.99 15197.40 212
mvs-test196.60 12396.68 11296.37 23397.89 18891.81 27098.56 14598.10 22996.57 6296.52 16397.94 18690.81 14799.45 14895.72 13898.01 15097.86 201
HQP-NCC97.20 23798.05 21396.43 6494.45 203
ACMP_Plane97.20 23798.05 21396.43 6494.45 203
HQP-MVS95.72 15795.40 15196.69 20197.20 23794.25 22098.05 21398.46 16696.43 6494.45 20397.73 20586.75 23198.96 19695.30 15294.18 21996.86 243
casdiffmvs97.63 7597.41 7798.28 10698.33 15696.14 13598.82 9398.32 18996.38 6797.95 9499.21 4591.23 14199.23 16398.12 3098.37 14099.48 93
testdata197.32 27096.34 68
baseline97.64 7497.44 7698.25 11098.35 15196.20 13299.00 5898.32 18996.33 6998.03 8599.17 5391.35 13799.16 16998.10 3198.29 14599.39 105
APD-MVS_3200maxsize98.53 3298.33 2999.15 5299.50 4097.92 6599.15 3598.81 7696.24 7099.20 2299.37 2295.30 5999.80 7597.73 5099.67 5499.72 39
mPP-MVS98.51 3398.26 3499.25 3999.75 398.04 5999.28 1698.81 7696.24 7098.35 7399.23 4295.46 5099.94 397.42 7199.81 1099.77 20
diffmvs97.58 8097.40 7898.13 11898.32 15895.81 15598.06 21298.37 18296.20 7298.74 5098.89 9791.31 13999.25 16098.16 2998.52 13299.34 108
CS-MVS97.81 6597.61 6298.41 10098.52 14497.15 9499.09 4498.55 14696.18 7397.61 11897.20 24494.59 7999.39 15197.62 5899.10 10798.70 169
region2R98.61 1798.38 2099.29 3199.74 798.16 5499.23 2198.93 3796.15 7498.94 3699.17 5395.91 3999.94 397.55 6699.79 1999.78 13
abl_698.30 5198.03 4899.13 5399.56 3497.76 7099.13 3998.82 7096.14 7599.26 1899.37 2293.33 9899.93 1596.96 8799.67 5499.69 48
MP-MVScopyleft98.33 4898.01 4999.28 3599.75 398.18 5299.22 2598.79 8896.13 7697.92 9999.23 4294.54 8099.94 396.74 10699.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_prior398.22 5397.90 5599.19 4399.31 6698.22 4997.80 23798.84 6596.12 7797.89 10198.69 11595.96 3699.70 11096.89 9299.60 6599.65 64
test_prior297.80 23796.12 7797.89 10198.69 11595.96 3696.89 9299.60 65
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4599.23 2198.96 3296.10 7998.94 3699.17 5396.06 3099.92 2197.62 5899.78 2399.75 28
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5599.23 2198.95 3496.10 7998.93 4099.19 5295.70 4499.94 397.62 5899.79 1999.78 13
ACMMPcopyleft98.23 5297.95 5299.09 5799.74 797.62 7499.03 5299.41 695.98 8197.60 12099.36 2694.45 8599.93 1597.14 7998.85 11899.70 45
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6699.34 1198.87 5595.96 8298.60 6099.13 6196.05 3299.94 397.77 4899.86 199.77 20
FIs96.51 12896.12 13097.67 14897.13 24497.54 7799.36 899.22 1495.89 8394.03 22898.35 15191.98 12298.44 24996.40 11692.76 24997.01 224
EIA-MVS97.75 6897.58 6498.27 10798.38 14996.44 12299.01 5698.60 13495.88 8497.26 12697.53 22394.97 7099.33 15697.38 7399.20 10399.05 146
PS-MVSNAJss96.43 13096.26 12696.92 19095.84 30495.08 18299.16 3498.50 16195.87 8593.84 23698.34 15594.51 8198.61 23196.88 9593.45 23997.06 222
FC-MVSNet-test96.42 13196.05 13197.53 15896.95 25397.27 8699.36 899.23 1295.83 8693.93 23098.37 14992.00 12198.32 26896.02 12792.72 25097.00 225
ACMMP_NAP98.61 1798.30 3199.55 699.62 3098.95 1398.82 9398.81 7695.80 8799.16 2499.47 895.37 5699.92 2197.89 4199.75 3899.79 10
ZNCC-MVS98.49 3498.20 4199.35 2299.73 1198.39 3399.19 3198.86 6195.77 8898.31 7699.10 6695.46 5099.93 1597.57 6599.81 1099.74 33
jajsoiax95.45 16995.03 17296.73 19795.42 31794.63 20299.14 3698.52 15395.74 8993.22 25798.36 15083.87 28198.65 22996.95 8894.04 22496.91 235
mvs_tets95.41 17395.00 17396.65 20395.58 31094.42 21299.00 5898.55 14695.73 9093.21 25898.38 14883.45 28598.63 23097.09 8194.00 22696.91 235
GST-MVS98.43 3898.12 4499.34 2399.72 1298.38 3499.09 4498.82 7095.71 9198.73 5299.06 7595.27 6099.93 1597.07 8299.63 6199.72 39
CVMVSNet95.43 17096.04 13293.57 30797.93 18583.62 33498.12 20798.59 13695.68 9296.56 15799.02 7787.51 21897.51 31793.56 20697.44 16899.60 75
VPNet94.99 19894.19 21197.40 16497.16 24296.57 11698.71 11898.97 3095.67 9394.84 19198.24 16680.36 30198.67 22896.46 11287.32 31396.96 227
XVG-OURS96.55 12796.41 12096.99 18198.75 12393.76 23197.50 25698.52 15395.67 9396.83 14599.30 3588.95 18699.53 13895.88 13196.26 19997.69 207
#test#98.54 3198.27 3399.32 2899.72 1298.29 4598.98 6398.96 3295.65 9598.94 3699.17 5396.06 3099.92 2197.21 7899.78 2399.75 28
testgi93.06 27692.45 27494.88 28696.43 28289.90 29898.75 10697.54 27095.60 9691.63 29697.91 18874.46 33097.02 32386.10 31393.67 23297.72 206
UniMVSNet (Re)95.78 15595.19 16597.58 15496.99 25297.47 7998.79 10499.18 1695.60 9693.92 23197.04 26191.68 12798.48 24395.80 13587.66 30996.79 248
Fast-Effi-MVS+-dtu95.87 15095.85 13795.91 25397.74 19791.74 27498.69 12498.15 22195.56 9894.92 18997.68 21188.98 18498.79 21993.19 21597.78 15997.20 219
CLD-MVS95.62 16395.34 15796.46 22897.52 21593.75 23397.27 27498.46 16695.53 9994.42 20898.00 18286.21 24198.97 19396.25 12094.37 21396.66 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OMC-MVS97.55 8397.34 8098.20 11399.33 6195.92 15098.28 18498.59 13695.52 10097.97 9399.10 6693.28 10099.49 14195.09 15998.88 11599.19 129
testtj98.33 4897.95 5299.47 1199.49 4498.70 1998.83 9098.86 6195.48 10198.91 4299.17 5395.48 4999.93 1595.80 13599.53 8199.76 26
nrg03096.28 13795.72 14097.96 12996.90 25898.15 5599.39 598.31 19195.47 10294.42 20898.35 15192.09 11998.69 22497.50 6989.05 29497.04 223
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18098.77 12293.76 23197.79 23998.50 16195.45 10396.94 13999.09 7187.87 21299.55 13796.76 10595.83 20897.74 204
PGM-MVS98.49 3498.23 3999.27 3899.72 1298.08 5898.99 6099.49 595.43 10499.03 3099.32 3095.56 4699.94 396.80 10299.77 2699.78 13
DU-MVS95.42 17194.76 18397.40 16496.53 27696.97 9898.66 13198.99 2995.43 10493.88 23397.69 20888.57 19298.31 27095.81 13387.25 31496.92 230
IS-MVSNet97.22 10096.88 9998.25 11098.85 11896.36 12699.19 3197.97 24695.39 10697.23 12798.99 8391.11 14398.93 20194.60 17198.59 12999.47 95
thres100view90095.38 17494.70 18697.41 16298.98 10894.92 19198.87 8396.90 30695.38 10796.61 15596.88 27684.29 26999.56 13288.11 30096.29 19597.76 202
thres600view795.49 16694.77 18297.67 14898.98 10895.02 18398.85 8696.90 30695.38 10796.63 15496.90 27584.29 26999.59 12888.65 29996.33 19398.40 186
baseline195.84 15295.12 16898.01 12598.49 14595.98 13898.73 11397.03 29895.37 10996.22 17198.19 16989.96 16399.16 16994.60 17187.48 31098.90 159
tfpn200view995.32 18194.62 18997.43 16198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19597.76 202
thres40095.38 17494.62 18997.65 15198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19598.40 186
CNLPA97.45 8897.03 9298.73 7499.05 10197.44 8198.07 21198.53 15195.32 11296.80 14998.53 13293.32 9999.72 10494.31 18299.31 10099.02 148
OurMVSNet-221017-094.21 24494.00 22494.85 28795.60 30989.22 30998.89 7897.43 28095.29 11392.18 28898.52 13582.86 28698.59 23593.46 20791.76 25996.74 254
IU-MVS99.71 2099.23 698.64 13195.28 11499.63 498.35 2499.81 1099.83 5
WTY-MVS97.37 9596.92 9898.72 7598.86 11696.89 10498.31 17998.71 10895.26 11597.67 11298.56 13192.21 11599.78 9195.89 13096.85 17799.48 93
CHOSEN 280x42097.18 10497.18 8697.20 16998.81 12093.27 25095.78 32499.15 1895.25 11696.79 15098.11 17492.29 11199.07 18498.56 899.85 399.25 123
ACMM93.85 995.69 16095.38 15596.61 20897.61 20493.84 22998.91 7398.44 17095.25 11694.28 21498.47 13886.04 24699.12 17595.50 14793.95 22896.87 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20095.25 18394.57 19197.28 16798.81 12094.92 19198.20 19397.11 29395.24 11896.54 16196.22 30484.58 26699.53 13887.93 30496.50 18997.39 213
PAPM_NR97.46 8597.11 8898.50 9199.50 4096.41 12498.63 13398.60 13495.18 11997.06 13598.06 17794.26 8999.57 13093.80 19898.87 11799.52 82
UniMVSNet_NR-MVSNet95.71 15895.15 16697.40 16496.84 26196.97 9898.74 10999.24 1095.16 12093.88 23397.72 20791.68 12798.31 27095.81 13387.25 31496.92 230
RRT_MVS96.04 14395.53 14897.56 15697.07 24897.32 8398.57 14498.09 23295.15 12195.02 18798.44 14088.20 20198.58 23796.17 12293.09 24696.79 248
VPA-MVSNet95.75 15695.11 16997.69 14697.24 23397.27 8698.94 7099.23 1295.13 12295.51 18097.32 23585.73 24898.91 20397.33 7589.55 28796.89 238
SF-MVS98.59 2098.32 3099.41 1699.54 3598.71 1899.04 5098.81 7695.12 12399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
test-LLR95.10 19294.87 18095.80 25896.77 26389.70 30196.91 29595.21 32795.11 12494.83 19395.72 31487.71 21498.97 19393.06 21898.50 13498.72 167
test0.0.03 194.08 25593.51 25395.80 25895.53 31292.89 25997.38 26295.97 32195.11 12492.51 28196.66 28687.71 21496.94 32487.03 30893.67 23297.57 209
LCM-MVSNet-Re95.22 18595.32 16094.91 28498.18 16987.85 32598.75 10695.66 32595.11 12488.96 31496.85 27990.26 16097.65 31195.65 14398.44 13799.22 125
ITE_SJBPF95.44 27097.42 22391.32 28197.50 27395.09 12793.59 24298.35 15181.70 29198.88 20989.71 28593.39 24196.12 307
TranMVSNet+NR-MVSNet95.14 19094.48 19697.11 17696.45 28196.36 12699.03 5299.03 2595.04 12893.58 24397.93 18788.27 19998.03 29394.13 18786.90 31996.95 229
VDD-MVS95.82 15495.23 16397.61 15398.84 11993.98 22598.68 12597.40 28295.02 12997.95 9499.34 2974.37 33199.78 9198.64 396.80 17899.08 144
MVSFormer97.57 8197.49 7297.84 13398.07 17695.76 15699.47 298.40 17794.98 13098.79 4698.83 10392.34 10998.41 25996.91 8999.59 6899.34 108
test_djsdf96.00 14595.69 14596.93 18895.72 30695.49 16699.47 298.40 17794.98 13094.58 19897.86 19389.16 17698.41 25996.91 8994.12 22396.88 239
NR-MVSNet94.98 20094.16 21497.44 16096.53 27697.22 9198.74 10998.95 3494.96 13289.25 31397.69 20889.32 17198.18 28094.59 17387.40 31296.92 230
XVG-ACMP-BASELINE94.54 22694.14 21695.75 26196.55 27591.65 27698.11 20998.44 17094.96 13294.22 21897.90 18979.18 30799.11 17894.05 19293.85 23096.48 293
Vis-MVSNet (Re-imp)96.87 11696.55 11697.83 13498.73 12495.46 16799.20 2998.30 19794.96 13296.60 15698.87 9990.05 16198.59 23593.67 20298.60 12899.46 99
ACMP93.49 1095.34 17994.98 17596.43 23097.67 20093.48 24298.73 11398.44 17094.94 13592.53 27998.53 13284.50 26899.14 17395.48 14894.00 22696.66 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSTER96.06 14295.72 14097.08 17898.23 16295.93 14998.73 11398.27 20094.86 13695.07 18598.09 17588.21 20098.54 23996.59 10893.46 23796.79 248
DPM-MVS97.55 8396.99 9599.23 4299.04 10398.55 2597.17 28198.35 18594.85 13797.93 9898.58 12895.07 6899.71 10992.60 23099.34 9899.43 103
jason97.32 9797.08 9098.06 12397.45 22295.59 15997.87 23197.91 25194.79 13898.55 6298.83 10391.12 14299.23 16397.58 6299.60 6599.34 108
jason: jason.
RRT_test8_iter0594.56 22494.19 21195.67 26397.60 20591.34 27898.93 7198.42 17494.75 13993.39 25297.87 19279.00 30898.61 23196.78 10490.99 27097.07 221
test_yl97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
DCV-MVSNet97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
EU-MVSNet93.66 26294.14 21692.25 31695.96 30083.38 33598.52 14998.12 22594.69 14292.61 27698.13 17387.36 22396.39 33391.82 25290.00 28096.98 226
SCA95.46 16795.13 16796.46 22897.67 20091.29 28297.33 26997.60 26394.68 14396.92 14297.10 24883.97 27898.89 20792.59 23298.32 14499.20 126
LPG-MVS_test95.62 16395.34 15796.47 22597.46 21893.54 24098.99 6098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
LGP-MVS_train96.47 22597.46 21893.54 24098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
ETH3D-3000-0.198.35 4498.00 5099.38 1799.47 4598.68 2098.67 12898.84 6594.66 14699.11 2699.25 4095.46 5099.81 6696.80 10299.73 4399.63 70
HPM-MVScopyleft98.36 4398.10 4599.13 5399.74 797.82 6899.53 198.80 8694.63 14798.61 5998.97 8495.13 6699.77 9697.65 5699.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
BH-RMVSNet95.92 14995.32 16097.69 14698.32 15894.64 20198.19 19797.45 27894.56 14896.03 17598.61 12385.02 25899.12 17590.68 27099.06 10899.30 117
ET-MVSNet_ETH3D94.13 25092.98 26497.58 15498.22 16396.20 13297.31 27195.37 32694.53 14979.56 33597.63 21686.51 23497.53 31696.91 8990.74 27299.02 148
API-MVS97.41 9297.25 8397.91 13098.70 12996.80 10598.82 9398.69 11294.53 14998.11 7998.28 16094.50 8499.57 13094.12 18899.49 8497.37 215
APD-MVScopyleft98.35 4498.00 5099.42 1599.51 3898.72 1798.80 10098.82 7094.52 15199.23 2099.25 4095.54 4899.80 7596.52 11199.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS97.44 8997.22 8598.12 12098.07 17695.76 15697.68 24697.76 25694.50 15298.79 4698.61 12392.34 10999.30 15797.58 6299.59 6899.31 114
PVSNet_Blended_VisFu97.70 7197.46 7498.44 9699.27 7995.91 15198.63 13399.16 1794.48 15397.67 11298.88 9892.80 10499.91 3097.11 8099.12 10699.50 88
HPM-MVS_fast98.38 4198.13 4399.12 5599.75 397.86 6699.44 498.82 7094.46 15498.94 3699.20 4995.16 6599.74 10297.58 6299.85 399.77 20
AdaColmapbinary97.15 10696.70 10998.48 9399.16 9596.69 11098.01 21798.89 4694.44 15596.83 14598.68 11790.69 15299.76 9894.36 17999.29 10198.98 152
9.1498.06 4699.47 4598.71 11898.82 7094.36 15699.16 2499.29 3696.05 3299.81 6697.00 8399.71 50
PVSNet_BlendedMVS96.73 12096.60 11497.12 17599.25 8295.35 17298.26 18799.26 894.28 15797.94 9697.46 22692.74 10599.81 6696.88 9593.32 24296.20 305
MVS_Test97.28 9897.00 9498.13 11898.33 15695.97 14398.74 10998.07 23694.27 15898.44 6898.07 17692.48 10799.26 15996.43 11598.19 14699.16 134
tttt051796.07 14195.51 15097.78 13798.41 14894.84 19399.28 1694.33 33794.26 15997.64 11698.64 12284.05 27699.47 14695.34 15097.60 16699.03 147
WR-MVS95.15 18994.46 19897.22 16896.67 27196.45 12198.21 19098.81 7694.15 16093.16 25997.69 20887.51 21898.30 27295.29 15488.62 30096.90 237
EPMVS94.99 19894.48 19696.52 22197.22 23591.75 27397.23 27591.66 34594.11 16197.28 12596.81 28185.70 24998.84 21393.04 22097.28 17198.97 153
MP-MVS-pluss98.31 5097.92 5499.49 999.72 1298.88 1498.43 16398.78 9094.10 16297.69 11199.42 1295.25 6299.92 2198.09 3299.80 1799.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchmatchNetpermissive95.71 15895.52 14996.29 23997.58 20790.72 29196.84 30497.52 27194.06 16397.08 13296.96 27089.24 17498.90 20692.03 24898.37 14099.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053096.01 14495.36 15697.97 12798.38 14995.52 16598.88 8194.19 33994.04 16497.64 11698.31 15883.82 28399.46 14795.29 15497.70 16398.93 157
K. test v392.55 28091.91 28294.48 29795.64 30889.24 30899.07 4794.88 33194.04 16486.78 32297.59 21877.64 31897.64 31292.08 24489.43 28996.57 276
D2MVS95.18 18895.08 17095.48 26797.10 24692.07 26698.30 18199.13 1994.02 16692.90 26796.73 28389.48 16798.73 22394.48 17793.60 23695.65 317
mvs_anonymous96.70 12196.53 11897.18 17198.19 16793.78 23098.31 17998.19 21094.01 16794.47 20298.27 16392.08 12098.46 24697.39 7297.91 15399.31 114
GA-MVS94.81 20894.03 22097.14 17397.15 24393.86 22896.76 30797.58 26494.00 16894.76 19697.04 26180.91 29698.48 24391.79 25396.25 20099.09 141
ACMH+92.99 1494.30 23993.77 24095.88 25697.81 19292.04 26898.71 11898.37 18293.99 16990.60 30598.47 13880.86 29899.05 18592.75 22892.40 25296.55 280
sss97.39 9396.98 9698.61 8198.60 13996.61 11398.22 18998.93 3793.97 17098.01 9098.48 13791.98 12299.85 4996.45 11398.15 14799.39 105
HY-MVS93.96 896.82 11896.23 12898.57 8398.46 14697.00 9798.14 20498.21 20793.95 17196.72 15197.99 18391.58 12999.76 9894.51 17696.54 18798.95 156
TAMVS97.02 11096.79 10397.70 14598.06 17895.31 17498.52 14998.31 19193.95 17197.05 13698.61 12393.49 9798.52 24195.33 15197.81 15799.29 119
CP-MVSNet94.94 20494.30 20796.83 19396.72 26895.56 16299.11 4298.95 3493.89 17392.42 28497.90 18987.19 22498.12 28594.32 18188.21 30396.82 247
SixPastTwentyTwo93.34 26892.86 26694.75 29195.67 30789.41 30798.75 10696.67 31693.89 17390.15 30798.25 16580.87 29798.27 27790.90 26690.64 27396.57 276
WR-MVS_H95.05 19594.46 19896.81 19496.86 26095.82 15499.24 2099.24 1093.87 17592.53 27996.84 28090.37 15698.24 27893.24 21387.93 30696.38 298
ab-mvs96.42 13195.71 14398.55 8598.63 13696.75 10897.88 23098.74 9893.84 17696.54 16198.18 17085.34 25599.75 10095.93 12996.35 19299.15 135
USDC93.33 26992.71 26995.21 27596.83 26290.83 28896.91 29597.50 27393.84 17690.72 30398.14 17277.69 31598.82 21689.51 29093.21 24595.97 311
LF4IMVS93.14 27592.79 26894.20 30295.88 30288.67 31697.66 24897.07 29593.81 17891.71 29497.65 21277.96 31498.81 21791.47 25991.92 25895.12 320
IterMVS-SCA-FT94.11 25293.87 23394.85 28797.98 18490.56 29497.18 27998.11 22793.75 17992.58 27797.48 22583.97 27897.41 31892.48 23991.30 26496.58 274
anonymousdsp95.42 17194.91 17896.94 18795.10 31995.90 15299.14 3698.41 17593.75 17993.16 25997.46 22687.50 22098.41 25995.63 14494.03 22596.50 291
MDTV_nov1_ep1395.40 15197.48 21688.34 32096.85 30397.29 28693.74 18197.48 12497.26 23889.18 17599.05 18591.92 25197.43 169
BH-untuned95.95 14795.72 14096.65 20398.55 14292.26 26398.23 18897.79 25593.73 18294.62 19798.01 18188.97 18599.00 19293.04 22098.51 13398.68 172
PatchMatch-RL96.59 12596.03 13398.27 10799.31 6696.51 11997.91 22599.06 2293.72 18396.92 14298.06 17788.50 19699.65 11991.77 25499.00 11098.66 175
Effi-MVS+97.12 10796.69 11098.39 10298.19 16796.72 10997.37 26498.43 17393.71 18497.65 11598.02 17992.20 11699.25 16096.87 9897.79 15899.19 129
IterMVS-LS95.46 16795.21 16496.22 24198.12 17393.72 23698.32 17898.13 22493.71 18494.26 21597.31 23692.24 11398.10 28694.63 16890.12 27896.84 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 14695.83 13896.36 23497.93 18593.70 23798.12 20798.27 20093.70 18695.07 18599.02 7792.23 11498.54 23994.68 16793.46 23796.84 244
UnsupCasMVSNet_eth90.99 29389.92 29594.19 30394.08 32989.83 29997.13 28498.67 12393.69 18785.83 32796.19 30575.15 32696.74 32589.14 29579.41 33596.00 310
PVSNet91.96 1896.35 13396.15 12996.96 18599.17 9492.05 26796.08 31798.68 11593.69 18797.75 10697.80 20288.86 18799.69 11594.26 18499.01 10999.15 135
PS-CasMVS94.67 21793.99 22696.71 19896.68 27095.26 17599.13 3999.03 2593.68 18992.33 28597.95 18585.35 25498.10 28693.59 20488.16 30596.79 248
IterMVS94.09 25493.85 23594.80 29097.99 18290.35 29697.18 27998.12 22593.68 18992.46 28397.34 23384.05 27697.41 31892.51 23791.33 26396.62 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SMA-MVS98.58 2398.25 3599.56 599.51 3899.04 1198.95 6898.80 8693.67 19199.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
FMVSNet394.97 20194.26 20897.11 17698.18 16996.62 11198.56 14598.26 20493.67 19194.09 22497.10 24884.25 27198.01 29492.08 24492.14 25396.70 261
CDS-MVSNet96.99 11196.69 11097.90 13198.05 17995.98 13898.20 19398.33 18893.67 19196.95 13898.49 13693.54 9698.42 25295.24 15797.74 16199.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet97.46 8597.28 8297.99 12698.64 13595.38 16999.33 1398.31 19193.61 19497.19 12899.07 7494.05 9199.23 16396.89 9298.43 13999.37 107
CHOSEN 1792x268897.12 10796.80 10198.08 12199.30 7194.56 20998.05 21399.71 193.57 19597.09 13198.91 9688.17 20299.89 3596.87 9899.56 7699.81 8
PEN-MVS94.42 23393.73 24496.49 22396.28 28794.84 19399.17 3399.00 2793.51 19692.23 28797.83 19986.10 24397.90 30292.55 23586.92 31896.74 254
tpmrst95.63 16295.69 14595.44 27097.54 21288.54 31896.97 29097.56 26593.50 19797.52 12396.93 27489.49 16699.16 16995.25 15696.42 19198.64 177
131496.25 13995.73 13997.79 13697.13 24495.55 16498.19 19798.59 13693.47 19892.03 29197.82 20091.33 13899.49 14194.62 17098.44 13798.32 191
baseline295.11 19194.52 19496.87 19196.65 27293.56 23998.27 18694.10 34193.45 19992.02 29297.43 23087.45 22299.19 16793.88 19597.41 17097.87 200
ACMH92.88 1694.55 22593.95 22896.34 23697.63 20393.26 25198.81 9998.49 16593.43 20089.74 30998.53 13281.91 29099.08 18393.69 19993.30 24396.70 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS95.86 15194.98 17598.47 9498.87 11596.32 12898.84 8996.02 31993.40 20198.62 5899.20 4974.99 32799.63 12497.72 5197.20 17299.46 99
test20.0390.89 29490.38 29192.43 31493.48 33188.14 32298.33 17397.56 26593.40 20187.96 31896.71 28580.69 30094.13 34079.15 33486.17 32395.01 325
PAPR96.84 11796.24 12798.65 7998.72 12896.92 10197.36 26698.57 14293.33 20396.67 15297.57 22094.30 8899.56 13291.05 26598.59 12999.47 95
IB-MVS91.98 1793.27 27091.97 28097.19 17097.47 21793.41 24597.09 28595.99 32093.32 20492.47 28295.73 31278.06 31399.53 13894.59 17382.98 32898.62 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS98.34 4698.06 4699.18 4799.15 9798.12 5799.04 5099.09 2093.32 20498.83 4599.10 6696.54 1699.83 5597.70 5499.76 3299.59 77
XXY-MVS95.20 18794.45 20097.46 15996.75 26696.56 11798.86 8598.65 13093.30 20693.27 25698.27 16384.85 26298.87 21094.82 16591.26 26696.96 227
原ACMM198.65 7999.32 6496.62 11198.67 12393.27 20797.81 10398.97 8495.18 6499.83 5593.84 19699.46 8999.50 88
ETH3D cwj APD-0.1697.96 5697.52 6999.29 3199.05 10198.52 2698.33 17398.68 11593.18 20898.68 5499.13 6194.62 7799.83 5596.45 11399.55 7999.52 82
TESTMET0.1,194.18 24893.69 24695.63 26496.92 25589.12 31096.91 29594.78 33293.17 20994.88 19096.45 29578.52 31098.92 20293.09 21798.50 13498.85 160
agg_prior197.95 5997.51 7199.28 3599.30 7198.38 3497.81 23698.72 10493.16 21097.57 12198.66 12096.14 2699.81 6696.63 10799.56 7699.66 62
PVSNet_Blended97.38 9497.12 8798.14 11699.25 8295.35 17297.28 27399.26 893.13 21197.94 9698.21 16792.74 10599.81 6696.88 9599.40 9599.27 121
DTE-MVSNet93.98 25993.26 26196.14 24496.06 29694.39 21499.20 2998.86 6193.06 21291.78 29397.81 20185.87 24797.58 31490.53 27186.17 32396.46 295
CSCG97.85 6497.74 5998.20 11399.67 2695.16 17799.22 2599.32 793.04 21397.02 13798.92 9595.36 5799.91 3097.43 7099.64 6099.52 82
testing_290.61 29788.50 30296.95 18690.08 34095.57 16197.69 24598.06 24093.02 21476.55 33692.48 33261.18 34398.44 24995.45 14991.98 25696.84 244
F-COLMAP97.09 10996.80 10197.97 12799.45 5194.95 19098.55 14798.62 13393.02 21496.17 17398.58 12894.01 9299.81 6693.95 19398.90 11399.14 137
train_agg97.97 5597.52 6999.33 2799.31 6698.50 2897.92 22398.73 10292.98 21697.74 10798.68 11796.20 2399.80 7596.59 10899.57 7199.68 54
test_899.29 7498.44 3097.89 22998.72 10492.98 21697.70 11098.66 12096.20 2399.80 75
thisisatest051595.61 16594.89 17997.76 13998.15 17295.15 17996.77 30694.41 33592.95 21897.18 12997.43 23084.78 26399.45 14894.63 16897.73 16298.68 172
1112_ss96.63 12296.00 13498.50 9198.56 14096.37 12598.18 20198.10 22992.92 21994.84 19198.43 14192.14 11799.58 12994.35 18096.51 18899.56 81
DWT-MVSNet_test94.82 20794.36 20596.20 24297.35 22890.79 28998.34 17296.57 31892.91 22095.33 18396.44 29682.00 28999.12 17594.52 17595.78 20998.70 169
test-mter94.08 25593.51 25395.80 25896.77 26389.70 30196.91 29595.21 32792.89 22194.83 19395.72 31477.69 31598.97 19393.06 21898.50 13498.72 167
BH-w/o95.38 17495.08 17096.26 24098.34 15591.79 27197.70 24497.43 28092.87 22294.24 21797.22 24288.66 19098.84 21391.55 25897.70 16398.16 194
PMMVS96.60 12396.33 12397.41 16297.90 18793.93 22697.35 26798.41 17592.84 22397.76 10597.45 22891.10 14499.20 16696.26 11997.91 15399.11 140
LS3D97.16 10596.66 11398.68 7798.53 14397.19 9298.93 7198.90 4492.83 22495.99 17799.37 2292.12 11899.87 4493.67 20299.57 7198.97 153
v2v48294.69 21294.03 22096.65 20396.17 29194.79 19898.67 12898.08 23492.72 22594.00 22997.16 24687.69 21798.45 24792.91 22388.87 29896.72 257
eth_miper_zixun_eth94.68 21494.41 20395.47 26897.64 20291.71 27596.73 30998.07 23692.71 22693.64 24197.21 24390.54 15498.17 28193.38 20889.76 28296.54 281
TEST999.31 6698.50 2897.92 22398.73 10292.63 22797.74 10798.68 11796.20 2399.80 75
tpm94.13 25093.80 23795.12 27896.50 27887.91 32497.44 25795.89 32492.62 22896.37 16996.30 29984.13 27598.30 27293.24 21391.66 26199.14 137
DP-MVS Recon97.86 6397.46 7499.06 5999.53 3698.35 4298.33 17398.89 4692.62 22898.05 8298.94 9295.34 5899.65 11996.04 12699.42 9299.19 129
v14894.29 24093.76 24295.91 25396.10 29492.93 25898.58 13997.97 24692.59 23093.47 25096.95 27288.53 19598.32 26892.56 23487.06 31696.49 292
CDPH-MVS97.94 6097.49 7299.28 3599.47 4598.44 3097.91 22598.67 12392.57 23198.77 4898.85 10095.93 3899.72 10495.56 14599.69 5299.68 54
CR-MVSNet94.76 21194.15 21596.59 21197.00 25093.43 24394.96 32897.56 26592.46 23296.93 14096.24 30088.15 20397.88 30687.38 30696.65 18398.46 184
GBi-Net94.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
test194.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
FMVSNet294.47 23193.61 24997.04 17998.21 16496.43 12398.79 10498.27 20092.46 23293.50 24997.09 25281.16 29398.00 29691.09 26191.93 25796.70 261
cl-mvsnet294.68 21494.19 21196.13 24598.11 17493.60 23896.94 29298.31 19192.43 23693.32 25596.87 27886.51 23498.28 27694.10 19091.16 26796.51 289
PLCcopyleft95.07 497.20 10396.78 10498.44 9699.29 7496.31 13098.14 20498.76 9492.41 23796.39 16898.31 15894.92 7299.78 9194.06 19198.77 12299.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS96.91 11496.40 12198.45 9598.69 13196.90 10298.66 13198.68 11592.40 23897.07 13497.96 18491.54 13399.75 10093.68 20098.92 11298.69 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CPTT-MVS97.72 7097.32 8198.92 6799.64 2897.10 9599.12 4198.81 7692.34 23998.09 8099.08 7393.01 10299.92 2196.06 12599.77 2699.75 28
HyFIR lowres test96.90 11596.49 11998.14 11699.33 6195.56 16297.38 26299.65 292.34 23997.61 11898.20 16889.29 17299.10 18196.97 8597.60 16699.77 20
pm-mvs193.94 26093.06 26396.59 21196.49 27995.16 17798.95 6898.03 24392.32 24191.08 30097.84 19684.54 26798.41 25992.16 24286.13 32596.19 306
V4294.78 21094.14 21696.70 20096.33 28695.22 17698.97 6498.09 23292.32 24194.31 21397.06 25888.39 19798.55 23892.90 22488.87 29896.34 299
TR-MVS94.94 20494.20 21097.17 17297.75 19494.14 22297.59 25297.02 30092.28 24395.75 17997.64 21483.88 28098.96 19689.77 28396.15 20398.40 186
miper_ehance_all_eth95.01 19694.69 18795.97 25097.70 19993.31 24997.02 28898.07 23692.23 24493.51 24896.96 27091.85 12498.15 28293.68 20091.16 26796.44 296
cl_fuxian94.79 20994.43 20295.89 25597.75 19493.12 25697.16 28298.03 24392.23 24493.46 25197.05 26091.39 13598.01 29493.58 20589.21 29296.53 283
MS-PatchMatch93.84 26193.63 24894.46 29996.18 29089.45 30597.76 24098.27 20092.23 24492.13 28997.49 22479.50 30498.69 22489.75 28499.38 9695.25 319
miper_enhance_ethall95.10 19294.75 18496.12 24697.53 21493.73 23596.61 31298.08 23492.20 24793.89 23296.65 28892.44 10898.30 27294.21 18591.16 26796.34 299
Test_1112_low_res96.34 13495.66 14798.36 10398.56 14095.94 14697.71 24398.07 23692.10 24894.79 19597.29 23791.75 12699.56 13294.17 18696.50 18999.58 79
PVSNet_088.72 1991.28 29090.03 29495.00 28297.99 18287.29 32894.84 33198.50 16192.06 24989.86 30895.19 31979.81 30399.39 15192.27 24169.79 34198.33 190
v7n94.19 24693.43 25696.47 22595.90 30194.38 21599.26 1898.34 18791.99 25092.76 27197.13 24788.31 19898.52 24189.48 29187.70 30896.52 286
our_test_393.65 26493.30 25994.69 29295.45 31589.68 30396.91 29597.65 26191.97 25191.66 29596.88 27689.67 16597.93 30188.02 30391.49 26296.48 293
v894.47 23193.77 24096.57 21596.36 28494.83 19599.05 4998.19 21091.92 25293.16 25996.97 26888.82 18998.48 24391.69 25687.79 30796.39 297
testdata98.26 10999.20 9395.36 17098.68 11591.89 25398.60 6099.10 6694.44 8699.82 6294.27 18399.44 9199.58 79
Patchmatch-RL test91.49 28890.85 28893.41 30891.37 33684.40 33292.81 33895.93 32391.87 25487.25 32094.87 32288.99 18196.53 33192.54 23682.00 33099.30 117
v114494.59 22293.92 22996.60 21096.21 28894.78 19998.59 13798.14 22391.86 25594.21 21997.02 26387.97 20898.41 25991.72 25589.57 28596.61 271
cl-mvsnet194.52 22794.03 22095.99 24897.57 21193.38 24797.05 28697.94 24991.74 25692.81 26997.10 24889.12 17798.07 29092.60 23090.30 27696.53 283
Fast-Effi-MVS+96.28 13795.70 14498.03 12498.29 16095.97 14398.58 13998.25 20591.74 25695.29 18497.23 24191.03 14699.15 17292.90 22497.96 15298.97 153
cl-mvsnet_94.51 22894.01 22396.02 24797.58 20793.40 24697.05 28697.96 24891.73 25892.76 27197.08 25489.06 18098.13 28492.61 22990.29 27796.52 286
LTVRE_ROB92.95 1594.60 22093.90 23196.68 20297.41 22694.42 21298.52 14998.59 13691.69 25991.21 29898.35 15184.87 26199.04 18891.06 26393.44 24096.60 272
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance94.33 23794.07 21995.11 27997.75 19490.97 28697.22 27698.03 24391.67 26092.76 27196.97 26890.03 16297.78 30992.51 23789.64 28496.56 278
ETH3 D test640097.59 7997.01 9399.34 2399.40 5598.56 2498.20 19398.81 7691.63 26198.44 6898.85 10093.98 9499.82 6294.11 18999.69 5299.64 67
MVP-Stereo94.28 24293.92 22995.35 27294.95 32192.60 26197.97 22197.65 26191.61 26290.68 30497.09 25286.32 24098.42 25289.70 28699.34 9895.02 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119294.32 23893.58 25096.53 22096.10 29494.45 21198.50 15498.17 21891.54 26394.19 22097.06 25886.95 22998.43 25190.14 27589.57 28596.70 261
TDRefinement91.06 29289.68 29695.21 27585.35 34391.49 27798.51 15397.07 29591.47 26488.83 31597.84 19677.31 31999.09 18292.79 22777.98 33695.04 323
v14419294.39 23593.70 24596.48 22496.06 29694.35 21698.58 13998.16 22091.45 26594.33 21297.02 26387.50 22098.45 24791.08 26289.11 29396.63 269
Baseline_NR-MVSNet94.35 23693.81 23695.96 25196.20 28994.05 22498.61 13696.67 31691.44 26693.85 23597.60 21788.57 19298.14 28394.39 17886.93 31795.68 316
无先验97.58 25398.72 10491.38 26799.87 4493.36 21099.60 75
AllTest95.24 18494.65 18896.99 18199.25 8293.21 25398.59 13798.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
TestCases96.99 18199.25 8293.21 25398.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
v1094.29 24093.55 25196.51 22296.39 28394.80 19798.99 6098.19 21091.35 27093.02 26596.99 26688.09 20598.41 25990.50 27288.41 30296.33 301
v192192094.20 24593.47 25596.40 23295.98 29994.08 22398.52 14998.15 22191.33 27194.25 21697.20 24486.41 23898.42 25290.04 28089.39 29096.69 266
MSDG95.93 14895.30 16297.83 13498.90 11295.36 17096.83 30598.37 18291.32 27294.43 20798.73 11490.27 15999.60 12790.05 27998.82 12098.52 182
旧先验297.57 25491.30 27398.67 5599.80 7595.70 142
tpmvs94.60 22094.36 20595.33 27397.46 21888.60 31796.88 30197.68 25991.29 27493.80 23896.42 29788.58 19199.24 16291.06 26396.04 20698.17 193
PM-MVS87.77 30686.55 30991.40 31991.03 33883.36 33696.92 29395.18 32991.28 27586.48 32593.42 32753.27 34496.74 32589.43 29281.97 33194.11 330
MIMVSNet93.26 27192.21 27796.41 23197.73 19893.13 25595.65 32597.03 29891.27 27694.04 22796.06 30775.33 32597.19 32186.56 31096.23 20198.92 158
PAPM94.95 20294.00 22497.78 13797.04 24995.65 15896.03 32098.25 20591.23 27794.19 22097.80 20291.27 14098.86 21282.61 32697.61 16598.84 162
dp94.15 24993.90 23194.90 28597.31 23086.82 33096.97 29097.19 29291.22 27896.02 17696.61 29185.51 25199.02 19190.00 28194.30 21498.85 160
UniMVSNet_ETH3D94.24 24393.33 25896.97 18497.19 24093.38 24798.74 10998.57 14291.21 27993.81 23798.58 12872.85 33498.77 22195.05 16093.93 22998.77 166
v124094.06 25793.29 26096.34 23696.03 29893.90 22798.44 16198.17 21891.18 28094.13 22397.01 26586.05 24498.42 25289.13 29689.50 28896.70 261
MVS_030492.81 27892.01 27995.23 27497.46 21891.33 28098.17 20298.81 7691.13 28193.80 23895.68 31766.08 34098.06 29190.79 26796.13 20496.32 302
tfpnnormal93.66 26292.70 27096.55 21996.94 25495.94 14698.97 6499.19 1591.04 28291.38 29797.34 23384.94 26098.61 23185.45 31989.02 29695.11 321
MDTV_nov1_ep13_2view84.26 33396.89 30090.97 28397.90 10089.89 16493.91 19499.18 133
TransMVSNet (Re)92.67 27991.51 28496.15 24396.58 27494.65 20098.90 7496.73 31290.86 28489.46 31297.86 19385.62 25098.09 28886.45 31181.12 33395.71 315
Anonymous20240521195.28 18294.49 19597.67 14899.00 10593.75 23398.70 12297.04 29790.66 28596.49 16498.80 10678.13 31299.83 5596.21 12195.36 21199.44 102
ppachtmachnet_test93.22 27292.63 27194.97 28395.45 31590.84 28796.88 30197.88 25290.60 28692.08 29097.26 23888.08 20697.86 30885.12 32190.33 27596.22 304
Anonymous2023120691.66 28791.10 28693.33 30994.02 33087.35 32798.58 13997.26 28990.48 28790.16 30696.31 29883.83 28296.53 33179.36 33389.90 28196.12 307
VDDNet95.36 17794.53 19397.86 13298.10 17595.13 18098.85 8697.75 25790.46 28898.36 7299.39 1473.27 33399.64 12197.98 3696.58 18598.81 163
TinyColmap92.31 28391.53 28394.65 29496.92 25589.75 30096.92 29396.68 31590.45 28989.62 31097.85 19576.06 32398.81 21786.74 30992.51 25195.41 318
pmmvs494.69 21293.99 22696.81 19495.74 30595.94 14697.40 26097.67 26090.42 29093.37 25397.59 21889.08 17998.20 27992.97 22291.67 26096.30 303
FMVSNet193.19 27492.07 27896.56 21697.54 21295.00 18498.82 9398.18 21390.38 29192.27 28697.07 25573.68 33297.95 29889.36 29391.30 26496.72 257
RPSCF94.87 20695.40 15193.26 31198.89 11382.06 33998.33 17398.06 24090.30 29296.56 15799.26 3987.09 22599.49 14193.82 19796.32 19498.24 192
ADS-MVSNet294.58 22394.40 20495.11 27998.00 18088.74 31596.04 31897.30 28590.15 29396.47 16596.64 28987.89 21097.56 31590.08 27797.06 17399.02 148
ADS-MVSNet95.00 19794.45 20096.63 20698.00 18091.91 26996.04 31897.74 25890.15 29396.47 16596.64 28987.89 21098.96 19690.08 27797.06 17399.02 148
112197.37 9596.77 10899.16 5099.34 5897.99 6498.19 19798.68 11590.14 29598.01 9098.97 8494.80 7599.87 4493.36 21099.46 8999.61 72
新几何199.16 5099.34 5898.01 6198.69 11290.06 29698.13 7898.95 9194.60 7899.89 3591.97 25099.47 8699.59 77
OpenMVScopyleft93.04 1395.83 15395.00 17398.32 10597.18 24197.32 8399.21 2898.97 3089.96 29791.14 29999.05 7686.64 23399.92 2193.38 20899.47 8697.73 205
COLMAP_ROBcopyleft93.27 1295.33 18094.87 18096.71 19899.29 7493.24 25298.58 13998.11 22789.92 29893.57 24499.10 6686.37 23999.79 8790.78 26898.10 14997.09 220
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
QAPM96.29 13595.40 15198.96 6597.85 19097.60 7599.23 2198.93 3789.76 29993.11 26399.02 7789.11 17899.93 1591.99 24999.62 6399.34 108
gm-plane-assit95.88 30287.47 32689.74 30096.94 27399.19 16793.32 212
pmmvs593.65 26492.97 26595.68 26295.49 31392.37 26298.20 19397.28 28789.66 30192.58 27797.26 23882.14 28898.09 28893.18 21690.95 27196.58 274
CostFormer94.95 20294.73 18595.60 26597.28 23189.06 31197.53 25596.89 30889.66 30196.82 14796.72 28486.05 24498.95 20095.53 14696.13 20498.79 164
new-patchmatchnet88.50 30587.45 30791.67 31890.31 33985.89 33197.16 28297.33 28489.47 30383.63 33292.77 32976.38 32195.06 33882.70 32577.29 33794.06 332
Patchmatch-test94.42 23393.68 24796.63 20697.60 20591.76 27294.83 33297.49 27589.45 30494.14 22297.10 24888.99 18198.83 21585.37 32098.13 14899.29 119
DP-MVS96.59 12595.93 13598.57 8399.34 5896.19 13498.70 12298.39 17989.45 30494.52 20099.35 2891.85 12499.85 4992.89 22698.88 11599.68 54
FMVSNet591.81 28590.92 28794.49 29697.21 23692.09 26598.00 21997.55 26989.31 30690.86 30295.61 31874.48 32995.32 33685.57 31789.70 28396.07 309
EG-PatchMatch MVS91.13 29190.12 29394.17 30494.73 32589.00 31398.13 20697.81 25489.22 30785.32 32996.46 29467.71 33798.42 25287.89 30593.82 23195.08 322
DSMNet-mixed92.52 28192.58 27292.33 31594.15 32882.65 33798.30 18194.26 33889.08 30892.65 27595.73 31285.01 25995.76 33486.24 31297.76 16098.59 179
pmmvs-eth3d90.36 29889.05 30094.32 30191.10 33792.12 26497.63 25196.95 30388.86 30984.91 33093.13 32878.32 31196.74 32588.70 29881.81 33294.09 331
test22299.23 8997.17 9397.40 26098.66 12688.68 31098.05 8298.96 8994.14 9099.53 8199.61 72
MDA-MVSNet-bldmvs89.97 30088.35 30494.83 28995.21 31891.34 27897.64 24997.51 27288.36 31171.17 34296.13 30679.22 30696.63 33083.65 32386.27 32296.52 286
MIMVSNet189.67 30288.28 30593.82 30592.81 33491.08 28598.01 21797.45 27887.95 31287.90 31995.87 31067.63 33894.56 33978.73 33688.18 30495.83 314
MDA-MVSNet_test_wron90.71 29589.38 29994.68 29394.83 32390.78 29097.19 27897.46 27687.60 31372.41 34195.72 31486.51 23496.71 32885.92 31586.80 32096.56 278
YYNet190.70 29689.39 29894.62 29594.79 32490.65 29297.20 27797.46 27687.54 31472.54 34095.74 31186.51 23496.66 32986.00 31486.76 32196.54 281
Patchmtry93.22 27292.35 27595.84 25796.77 26393.09 25794.66 33397.56 26587.37 31592.90 26796.24 30088.15 20397.90 30287.37 30790.10 27996.53 283
tpm294.19 24693.76 24295.46 26997.23 23489.04 31297.31 27196.85 31187.08 31696.21 17296.79 28283.75 28498.74 22292.43 24096.23 20198.59 179
PatchT93.06 27691.97 28096.35 23596.69 26992.67 26094.48 33497.08 29486.62 31797.08 13292.23 33387.94 20997.90 30278.89 33596.69 18198.49 183
TAPA-MVS93.98 795.35 17894.56 19297.74 14199.13 9894.83 19598.33 17398.64 13186.62 31796.29 17098.61 12394.00 9399.29 15880.00 33199.41 9399.09 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous2023121194.10 25393.26 26196.61 20899.11 10094.28 21799.01 5698.88 4986.43 31992.81 26997.57 22081.66 29298.68 22794.83 16489.02 29696.88 239
new_pmnet90.06 29989.00 30193.22 31294.18 32788.32 32196.42 31696.89 30886.19 32085.67 32893.62 32677.18 32097.10 32281.61 32889.29 29194.23 328
pmmvs691.77 28690.63 28995.17 27794.69 32691.24 28398.67 12897.92 25086.14 32189.62 31097.56 22275.79 32498.34 26690.75 26984.56 32795.94 312
test_040291.32 28990.27 29294.48 29796.60 27391.12 28498.50 15497.22 29186.10 32288.30 31796.98 26777.65 31797.99 29778.13 33792.94 24894.34 327
JIA-IIPM93.35 26792.49 27395.92 25296.48 28090.65 29295.01 32796.96 30285.93 32396.08 17487.33 33887.70 21698.78 22091.35 26095.58 21098.34 189
N_pmnet87.12 30887.77 30685.17 32595.46 31461.92 34897.37 26470.66 35485.83 32488.73 31696.04 30885.33 25697.76 31080.02 33090.48 27495.84 313
Anonymous2024052995.10 19294.22 20997.75 14099.01 10494.26 21998.87 8398.83 6985.79 32596.64 15398.97 8478.73 30999.85 4996.27 11894.89 21299.12 139
cascas94.63 21993.86 23496.93 18896.91 25794.27 21896.00 32198.51 15685.55 32694.54 19996.23 30284.20 27498.87 21095.80 13596.98 17697.66 208
gg-mvs-nofinetune92.21 28490.58 29097.13 17496.75 26695.09 18195.85 32289.40 34885.43 32794.50 20181.98 34180.80 29998.40 26592.16 24298.33 14397.88 199
114514_t96.93 11396.27 12598.92 6799.50 4097.63 7398.85 8698.90 4484.80 32897.77 10499.11 6492.84 10399.66 11894.85 16399.77 2699.47 95
PCF-MVS93.45 1194.68 21493.43 25698.42 9998.62 13796.77 10795.48 32698.20 20984.63 32993.34 25498.32 15788.55 19499.81 6684.80 32298.96 11198.68 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UnsupCasMVSNet_bld87.17 30785.12 31093.31 31091.94 33588.77 31494.92 33098.30 19784.30 33082.30 33390.04 33563.96 34297.25 32085.85 31674.47 34093.93 334
ANet_high69.08 31465.37 31780.22 32765.99 35171.96 34690.91 34290.09 34782.62 33149.93 34878.39 34329.36 35281.75 34662.49 34338.52 34686.95 341
RPMNet92.52 28191.17 28596.59 21197.00 25093.43 24394.96 32897.26 28982.27 33296.93 14092.12 33486.98 22897.88 30676.32 33996.65 18398.46 184
tpm cat193.36 26692.80 26795.07 28197.58 20787.97 32396.76 30797.86 25382.17 33393.53 24596.04 30886.13 24299.13 17489.24 29495.87 20798.10 195
CMPMVSbinary66.06 2189.70 30189.67 29789.78 32093.19 33276.56 34197.00 28998.35 18580.97 33481.57 33497.75 20474.75 32898.61 23189.85 28293.63 23494.17 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs386.67 30984.86 31192.11 31788.16 34187.19 32996.63 31194.75 33379.88 33587.22 32192.75 33066.56 33995.20 33781.24 32976.56 33893.96 333
OpenMVS_ROBcopyleft86.42 2089.00 30487.43 30893.69 30693.08 33389.42 30697.91 22596.89 30878.58 33685.86 32694.69 32369.48 33698.29 27577.13 33893.29 24493.36 336
MVS94.67 21793.54 25298.08 12196.88 25996.56 11798.19 19798.50 16178.05 33792.69 27498.02 17991.07 14599.63 12490.09 27698.36 14298.04 196
DeepMVS_CXcopyleft86.78 32297.09 24772.30 34495.17 33075.92 33884.34 33195.19 31970.58 33595.35 33579.98 33289.04 29592.68 337
MVS-HIRNet89.46 30388.40 30392.64 31397.58 20782.15 33894.16 33793.05 34475.73 33990.90 30182.52 34079.42 30598.33 26783.53 32498.68 12397.43 210
PMMVS277.95 31275.44 31585.46 32482.54 34474.95 34394.23 33693.08 34372.80 34074.68 33887.38 33736.36 35091.56 34373.95 34063.94 34289.87 338
FPMVS77.62 31377.14 31279.05 32879.25 34760.97 34995.79 32395.94 32265.96 34167.93 34394.40 32437.73 34988.88 34568.83 34188.46 30187.29 339
Gipumacopyleft78.40 31176.75 31383.38 32695.54 31180.43 34079.42 34697.40 28264.67 34273.46 33980.82 34245.65 34693.14 34166.32 34287.43 31176.56 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 31076.24 31486.08 32377.26 34971.99 34594.34 33596.72 31361.62 34376.53 33789.33 33633.91 35192.78 34281.85 32774.60 33993.46 335
PMVScopyleft61.03 2365.95 31663.57 31973.09 33157.90 35251.22 35385.05 34593.93 34254.45 34444.32 34983.57 33913.22 35389.15 34458.68 34481.00 33478.91 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 31764.25 31867.02 33282.28 34559.36 35191.83 34185.63 35052.69 34560.22 34577.28 34441.06 34880.12 34846.15 34641.14 34461.57 346
MVEpermissive62.14 2263.28 31959.38 32174.99 32974.33 35065.47 34785.55 34480.50 35352.02 34651.10 34775.00 34610.91 35680.50 34751.60 34553.40 34378.99 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS64.07 31863.26 32066.53 33381.73 34658.81 35291.85 34084.75 35151.93 34759.09 34675.13 34543.32 34779.09 34942.03 34739.47 34561.69 345
tmp_tt68.90 31566.97 31674.68 33050.78 35359.95 35087.13 34383.47 35238.80 34862.21 34496.23 30264.70 34176.91 35088.91 29730.49 34787.19 340
wuyk23d30.17 32030.18 32330.16 33478.61 34843.29 35466.79 34714.21 35517.31 34914.82 35211.93 35211.55 35541.43 35137.08 34819.30 3485.76 349
testmvs21.48 32224.95 32411.09 33614.89 3546.47 35696.56 3139.87 3567.55 35017.93 35039.02 3489.43 3575.90 35316.56 35012.72 34920.91 348
test12320.95 32323.72 32512.64 33513.54 3558.19 35596.55 3146.13 3577.48 35116.74 35137.98 34912.97 3546.05 35216.69 3495.43 35023.68 347
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.98 32131.98 3220.00 3370.00 3560.00 3570.00 34898.59 1360.00 3520.00 35398.61 12390.60 1530.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.88 32510.50 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35394.51 810.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.20 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.43 1410.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS99.37 2099.24 8899.05 1099.02 5499.16 5897.81 299.37 15397.24 7699.73 4399.70 45
test_0728_SECOND99.71 199.72 1299.35 198.97 6498.88 4999.94 398.47 1599.81 1099.84 4
GSMVS99.20 126
test_part299.63 2999.18 899.27 17
test_part10.00 3370.00 3570.00 34898.84 650.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs189.45 16899.20 126
sam_mvs88.99 181
ambc89.49 32186.66 34275.78 34292.66 33996.72 31386.55 32492.50 33146.01 34597.90 30290.32 27382.09 32994.80 326
MTGPAbinary98.74 98
test_post196.68 31030.43 35187.85 21398.69 22492.59 232
test_post31.83 35088.83 18898.91 203
patchmatchnet-post95.10 32189.42 16998.89 207
GG-mvs-BLEND96.59 21196.34 28594.98 18796.51 31588.58 34993.10 26494.34 32580.34 30298.05 29289.53 28996.99 17596.74 254
MTMP98.89 7894.14 340
test9_res96.39 11799.57 7199.69 48
agg_prior295.87 13299.57 7199.68 54
agg_prior99.30 7198.38 3498.72 10497.57 12199.81 66
test_prior498.01 6197.86 232
test_prior99.19 4399.31 6698.22 4998.84 6599.70 11099.65 64
新几何297.64 249
旧先验199.29 7497.48 7898.70 11199.09 7195.56 4699.47 8699.61 72
原ACMM297.67 247
testdata299.89 3591.65 257
segment_acmp96.85 11
test1299.18 4799.16 9598.19 5198.53 15198.07 8195.13 6699.72 10499.56 7699.63 70
plane_prior797.42 22394.63 202
plane_prior697.35 22894.61 20587.09 225
plane_prior598.56 14499.03 18996.07 12394.27 21596.92 230
plane_prior498.28 160
plane_prior197.37 227
n20.00 358
nn0.00 358
door-mid94.37 336
lessismore_v094.45 30094.93 32288.44 31991.03 34686.77 32397.64 21476.23 32298.42 25290.31 27485.64 32696.51 289
test1198.66 126
door94.64 334
HQP5-MVS94.25 220
BP-MVS95.30 152
HQP4-MVS94.45 20398.96 19696.87 241
HQP3-MVS98.46 16694.18 219
HQP2-MVS86.75 231
NP-MVS97.28 23194.51 21097.73 205
ACMMP++_ref92.97 247
ACMMP++93.61 235
Test By Simon94.64 76