EPNet | | | 91.79 76 | 91.02 85 | 94.10 58 | 90.10 300 | 85.25 72 | 96.03 49 | 92.05 267 | 92.83 1 | 87.39 147 | 95.78 92 | 79.39 118 | 99.01 69 | 88.13 104 | 97.48 75 | 98.05 64 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
NCCC | | | 94.81 13 | 94.69 15 | 95.17 10 | 97.83 47 | 87.46 14 | 95.66 66 | 96.93 55 | 92.34 2 | 93.94 34 | 96.58 61 | 87.74 24 | 99.44 27 | 92.83 32 | 98.40 52 | 98.62 16 |
|
CNVR-MVS | | | 95.40 6 | 95.37 6 | 95.50 5 | 98.11 36 | 88.51 5 | 95.29 82 | 96.96 52 | 92.09 3 | 95.32 19 | 97.08 37 | 89.49 12 | 99.33 36 | 95.10 8 | 98.85 15 | 98.66 14 |
|
UA-Net | | | 92.83 62 | 92.54 65 | 93.68 69 | 96.10 99 | 84.71 77 | 95.66 66 | 96.39 97 | 91.92 4 | 93.22 49 | 96.49 65 | 83.16 75 | 98.87 83 | 84.47 145 | 95.47 107 | 97.45 92 |
|
CANet | | | 93.54 49 | 93.20 53 | 94.55 44 | 95.65 115 | 85.73 66 | 94.94 105 | 96.69 79 | 91.89 5 | 90.69 101 | 95.88 89 | 81.99 93 | 99.54 16 | 93.14 29 | 97.95 66 | 98.39 35 |
|
Regformer-2 | | | 94.33 27 | 94.22 25 | 94.68 38 | 95.54 119 | 86.75 29 | 94.57 130 | 96.70 77 | 91.84 6 | 94.41 25 | 96.56 63 | 87.19 33 | 99.13 53 | 93.50 20 | 97.65 73 | 98.16 54 |
|
HPM-MVS++ | | | 95.14 9 | 94.91 11 | 95.83 2 | 98.25 29 | 89.65 2 | 95.92 55 | 96.96 52 | 91.75 7 | 94.02 33 | 96.83 47 | 88.12 21 | 99.55 12 | 93.41 24 | 98.94 12 | 98.28 44 |
|
MSP-MVS | | | 95.42 5 | 95.56 5 | 94.98 19 | 98.49 16 | 86.52 37 | 96.91 20 | 97.47 8 | 91.73 8 | 96.10 13 | 96.69 54 | 89.90 9 | 99.30 39 | 94.70 9 | 98.04 63 | 99.13 1 |
|
Regformer-1 | | | 94.22 32 | 94.13 32 | 94.51 46 | 95.54 119 | 86.36 43 | 94.57 130 | 96.44 92 | 91.69 9 | 94.32 28 | 96.56 63 | 87.05 35 | 99.03 63 | 93.35 25 | 97.65 73 | 98.15 55 |
|
Regformer-4 | | | 93.91 40 | 93.81 39 | 94.19 57 | 95.36 123 | 85.47 69 | 94.68 122 | 96.41 95 | 91.60 10 | 93.75 38 | 96.71 52 | 85.95 47 | 99.10 56 | 93.21 28 | 96.65 90 | 98.01 68 |
|
SteuartSystems-ACMMP | | | 95.20 7 | 95.32 8 | 94.85 27 | 96.99 72 | 86.33 44 | 97.33 3 | 97.30 27 | 91.38 11 | 95.39 18 | 97.46 17 | 88.98 16 | 99.40 28 | 94.12 15 | 98.89 14 | 98.82 10 |
Skip Steuart: Steuart Systems R&D Blog. |
Regformer-3 | | | 93.68 45 | 93.64 45 | 93.81 66 | 95.36 123 | 84.61 78 | 94.68 122 | 95.83 137 | 91.27 12 | 93.60 42 | 96.71 52 | 85.75 49 | 98.86 86 | 92.87 31 | 96.65 90 | 97.96 70 |
|
zzz-MVS | | | 94.47 18 | 94.30 21 | 95.00 16 | 98.42 20 | 86.95 18 | 95.06 100 | 96.97 49 | 91.07 13 | 93.14 52 | 97.56 14 | 84.30 66 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 27 |
|
MTAPA | | | 94.42 24 | 94.22 25 | 95.00 16 | 98.42 20 | 86.95 18 | 94.36 150 | 96.97 49 | 91.07 13 | 93.14 52 | 97.56 14 | 84.30 66 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 27 |
|
EI-MVSNet-Vis-set | | | 93.01 61 | 92.92 59 | 93.29 72 | 95.01 135 | 83.51 110 | 94.48 134 | 95.77 141 | 90.87 15 | 92.52 68 | 96.67 56 | 84.50 65 | 99.00 72 | 91.99 50 | 94.44 127 | 97.36 93 |
|
3Dnovator+ | | 87.14 4 | 92.42 70 | 91.37 77 | 95.55 4 | 95.63 116 | 88.73 4 | 97.07 13 | 96.77 71 | 90.84 16 | 84.02 227 | 96.62 59 | 75.95 152 | 99.34 33 | 87.77 107 | 97.68 71 | 98.59 18 |
|
HQP_MVS | | | 90.60 102 | 90.19 96 | 91.82 138 | 94.70 152 | 82.73 132 | 95.85 57 | 96.22 108 | 90.81 17 | 86.91 154 | 94.86 118 | 74.23 173 | 98.12 132 | 88.15 102 | 89.99 180 | 94.63 188 |
|
plane_prior2 | | | | | | | | 95.85 57 | | 90.81 17 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 8 | 98.05 6 | 92.09 4 | 99.55 12 | 95.64 4 | 99.13 3 | 99.13 1 |
|
DELS-MVS | | | 93.43 52 | 93.25 50 | 93.97 59 | 95.42 122 | 85.04 73 | 93.06 213 | 97.13 40 | 90.74 20 | 91.84 82 | 95.09 111 | 86.32 42 | 99.21 46 | 91.22 69 | 98.45 50 | 97.65 82 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ETV-MVS | | | 92.74 64 | 92.66 62 | 92.97 86 | 95.20 131 | 84.04 97 | 95.07 97 | 96.51 90 | 90.73 21 | 92.96 54 | 91.19 243 | 84.06 69 | 98.34 121 | 91.72 60 | 96.54 93 | 96.54 125 |
|
EI-MVSNet-UG-set | | | 92.74 64 | 92.62 63 | 93.12 78 | 94.86 146 | 83.20 116 | 94.40 142 | 95.74 144 | 90.71 22 | 92.05 77 | 96.60 60 | 84.00 70 | 98.99 73 | 91.55 62 | 93.63 135 | 97.17 102 |
|
XVS | | | 94.45 20 | 94.32 20 | 94.85 27 | 98.54 12 | 86.60 35 | 96.93 17 | 97.19 36 | 90.66 23 | 92.85 55 | 97.16 34 | 85.02 59 | 99.49 23 | 91.99 50 | 98.56 47 | 98.47 27 |
|
X-MVStestdata | | | 88.31 157 | 86.13 197 | 94.85 27 | 98.54 12 | 86.60 35 | 96.93 17 | 97.19 36 | 90.66 23 | 92.85 55 | 23.41 347 | 85.02 59 | 99.49 23 | 91.99 50 | 98.56 47 | 98.47 27 |
|
SD-MVS | | | 94.96 11 | 95.33 7 | 93.88 62 | 97.25 69 | 86.69 30 | 96.19 39 | 97.11 43 | 90.42 25 | 96.95 10 | 97.27 24 | 89.53 11 | 96.91 228 | 94.38 13 | 98.85 15 | 98.03 66 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SED-MVS | | | 95.91 1 | 96.28 1 | 94.80 33 | 98.77 4 | 85.99 54 | 97.13 9 | 97.44 13 | 90.31 26 | 97.71 1 | 98.07 4 | 92.31 2 | 99.58 5 | 95.66 2 | 99.13 3 | 98.84 8 |
|
test_241102_TWO | | | | | | | | | 97.44 13 | 90.31 26 | 97.62 5 | 98.07 4 | 91.46 8 | 99.58 5 | 95.66 2 | 99.12 6 | 98.98 6 |
|
DVP-MVS | | | 95.67 2 | 96.02 2 | 94.64 40 | 98.78 2 | 85.93 57 | 97.09 11 | 96.73 73 | 90.27 28 | 97.04 8 | 98.05 6 | 91.47 6 | 99.55 12 | 95.62 5 | 99.08 7 | 98.45 31 |
|
test0726 | | | | | | 98.78 2 | 85.93 57 | 97.19 6 | 97.47 8 | 90.27 28 | 97.64 4 | 98.13 1 | 91.47 6 | | | | |
|
test_241102_ONE | | | | | | 98.77 4 | 85.99 54 | | 97.44 13 | 90.26 30 | 97.71 1 | 97.96 8 | 92.31 2 | 99.38 29 | | | |
|
plane_prior3 | | | | | | | 82.75 129 | | | 90.26 30 | 86.91 154 | | | | | | |
|
DeepPCF-MVS | | 89.96 1 | 94.20 35 | 94.77 13 | 92.49 108 | 96.52 86 | 80.00 201 | 94.00 174 | 97.08 44 | 90.05 32 | 95.65 17 | 97.29 23 | 89.66 10 | 98.97 76 | 93.95 16 | 98.71 30 | 98.50 21 |
|
MSLP-MVS++ | | | 93.72 44 | 94.08 33 | 92.65 101 | 97.31 63 | 83.43 111 | 95.79 59 | 97.33 23 | 90.03 33 | 93.58 43 | 96.96 43 | 84.87 61 | 97.76 159 | 92.19 45 | 98.66 40 | 96.76 117 |
|
canonicalmvs | | | 93.27 56 | 92.75 61 | 94.85 27 | 95.70 114 | 87.66 11 | 96.33 34 | 96.41 95 | 90.00 34 | 94.09 31 | 94.60 129 | 82.33 84 | 98.62 101 | 92.40 38 | 92.86 153 | 98.27 46 |
|
Vis-MVSNet | | | 91.75 78 | 91.23 80 | 93.29 72 | 95.32 126 | 83.78 102 | 96.14 42 | 95.98 123 | 89.89 35 | 90.45 103 | 96.58 61 | 75.09 162 | 98.31 125 | 84.75 142 | 96.90 84 | 97.78 81 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TranMVSNet+NR-MVSNet | | | 88.84 144 | 87.95 147 | 91.49 148 | 92.68 221 | 83.01 123 | 94.92 107 | 96.31 100 | 89.88 36 | 85.53 181 | 93.85 159 | 76.63 146 | 96.96 224 | 81.91 183 | 79.87 304 | 94.50 199 |
|
UniMVSNet_NR-MVSNet | | | 89.92 115 | 89.29 115 | 91.81 140 | 93.39 200 | 83.72 103 | 94.43 140 | 97.12 41 | 89.80 37 | 86.46 161 | 93.32 170 | 83.16 75 | 97.23 206 | 84.92 138 | 81.02 287 | 94.49 201 |
|
alignmvs | | | 93.08 60 | 92.50 66 | 94.81 32 | 95.62 117 | 87.61 12 | 95.99 50 | 96.07 118 | 89.77 38 | 94.12 30 | 94.87 117 | 80.56 102 | 98.66 97 | 92.42 37 | 93.10 148 | 98.15 55 |
|
TSAR-MVS + GP. | | | 93.66 46 | 93.41 48 | 94.41 52 | 96.59 82 | 86.78 26 | 94.40 142 | 93.93 233 | 89.77 38 | 94.21 29 | 95.59 98 | 87.35 29 | 98.61 102 | 92.72 33 | 96.15 99 | 97.83 78 |
|
IS-MVSNet | | | 91.43 83 | 91.09 84 | 92.46 109 | 95.87 109 | 81.38 164 | 96.95 14 | 93.69 239 | 89.72 40 | 89.50 113 | 95.98 85 | 78.57 128 | 97.77 158 | 83.02 162 | 96.50 95 | 98.22 51 |
|
plane_prior | | | | | | | 82.73 132 | 95.21 88 | | 89.66 41 | | | | | | 89.88 185 | |
|
casdiffmvs | | | 92.51 68 | 92.43 67 | 92.74 95 | 94.41 165 | 81.98 149 | 94.54 132 | 96.23 107 | 89.57 42 | 91.96 79 | 96.17 80 | 82.58 80 | 98.01 146 | 90.95 75 | 95.45 109 | 98.23 50 |
|
DU-MVS | | | 89.34 133 | 88.50 132 | 91.85 137 | 93.04 211 | 83.72 103 | 94.47 137 | 96.59 86 | 89.50 43 | 86.46 161 | 93.29 173 | 77.25 138 | 97.23 206 | 84.92 138 | 81.02 287 | 94.59 192 |
|
xxxxxxxxxxxxxcwj | | | 94.65 15 | 94.70 14 | 94.48 47 | 97.85 44 | 85.63 67 | 95.21 88 | 95.47 164 | 89.44 44 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 23 |
|
save fliter | | | | | | 97.85 44 | 85.63 67 | 95.21 88 | 96.82 66 | 89.44 44 | | | | | | | |
|
CANet_DTU | | | 90.26 107 | 89.41 112 | 92.81 91 | 93.46 199 | 83.01 123 | 93.48 192 | 94.47 215 | 89.43 46 | 87.76 140 | 94.23 142 | 70.54 223 | 99.03 63 | 84.97 137 | 96.39 97 | 96.38 127 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 36 | 93.79 40 | 94.80 33 | 97.48 58 | 86.78 26 | 95.65 68 | 96.89 58 | 89.40 47 | 92.81 58 | 96.97 42 | 85.37 54 | 99.24 43 | 90.87 77 | 98.69 33 | 98.38 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
UGNet | | | 89.95 113 | 88.95 123 | 92.95 87 | 94.51 159 | 83.31 114 | 95.70 63 | 95.23 181 | 89.37 48 | 87.58 142 | 93.94 152 | 64.00 281 | 98.78 94 | 83.92 151 | 96.31 98 | 96.74 119 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
FC-MVSNet-test | | | 90.27 106 | 90.18 97 | 90.53 180 | 93.71 191 | 79.85 205 | 95.77 60 | 97.59 2 | 89.31 49 | 86.27 167 | 94.67 126 | 81.93 94 | 97.01 222 | 84.26 147 | 88.09 215 | 94.71 187 |
|
UniMVSNet (Re) | | | 89.80 117 | 89.07 120 | 92.01 125 | 93.60 195 | 84.52 81 | 94.78 117 | 97.47 8 | 89.26 50 | 86.44 164 | 92.32 204 | 82.10 89 | 97.39 193 | 84.81 141 | 80.84 291 | 94.12 213 |
|
baseline | | | 92.39 71 | 92.29 69 | 92.69 100 | 94.46 162 | 81.77 153 | 94.14 159 | 96.27 102 | 89.22 51 | 91.88 80 | 96.00 84 | 82.35 83 | 97.99 148 | 91.05 71 | 95.27 114 | 98.30 40 |
|
3Dnovator | | 86.66 5 | 91.73 79 | 90.82 89 | 94.44 48 | 94.59 156 | 86.37 42 | 97.18 7 | 97.02 46 | 89.20 52 | 84.31 222 | 96.66 57 | 73.74 185 | 99.17 49 | 86.74 122 | 97.96 65 | 97.79 80 |
|
VNet | | | 92.24 72 | 91.91 72 | 93.24 74 | 96.59 82 | 83.43 111 | 94.84 113 | 96.44 92 | 89.19 53 | 94.08 32 | 95.90 88 | 77.85 137 | 98.17 131 | 88.90 94 | 93.38 142 | 98.13 57 |
|
FIs | | | 90.51 103 | 90.35 93 | 90.99 169 | 93.99 181 | 80.98 172 | 95.73 61 | 97.54 3 | 89.15 54 | 86.72 158 | 94.68 125 | 81.83 95 | 97.24 204 | 85.18 135 | 88.31 211 | 94.76 186 |
|
DPE-MVS | | | 95.57 3 | 95.67 3 | 95.25 7 | 98.36 25 | 87.28 15 | 95.56 71 | 97.51 4 | 89.13 55 | 97.14 7 | 97.91 9 | 91.64 5 | 99.62 1 | 94.61 11 | 99.17 2 | 98.86 7 |
|
NR-MVSNet | | | 88.58 152 | 87.47 157 | 91.93 132 | 93.04 211 | 84.16 94 | 94.77 118 | 96.25 105 | 89.05 56 | 80.04 286 | 93.29 173 | 79.02 121 | 97.05 220 | 81.71 190 | 80.05 301 | 94.59 192 |
|
MP-MVS | | | 94.25 29 | 94.07 34 | 94.77 35 | 98.47 17 | 86.31 46 | 96.71 26 | 96.98 48 | 89.04 57 | 91.98 78 | 97.19 31 | 85.43 53 | 99.56 7 | 92.06 49 | 98.79 19 | 98.44 32 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APDe-MVS | | | 95.46 4 | 95.64 4 | 94.91 22 | 98.26 28 | 86.29 48 | 97.46 2 | 97.40 18 | 89.03 58 | 96.20 12 | 98.10 2 | 89.39 13 | 99.34 33 | 95.88 1 | 99.03 9 | 99.10 3 |
|
DeepC-MVS | | 88.79 3 | 93.31 54 | 92.99 57 | 94.26 55 | 96.07 101 | 85.83 63 | 94.89 109 | 96.99 47 | 89.02 59 | 89.56 111 | 97.37 20 | 82.51 81 | 99.38 29 | 92.20 44 | 98.30 56 | 97.57 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPM-MVS | | | 90.12 108 | 89.56 108 | 91.82 138 | 93.14 206 | 83.90 99 | 94.16 158 | 95.74 144 | 88.96 60 | 87.86 135 | 95.43 101 | 72.48 201 | 97.91 154 | 88.10 105 | 90.18 179 | 93.65 243 |
|
HQP-NCC | | | | | | 94.17 171 | | 94.39 144 | | 88.81 61 | 85.43 190 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 171 | | 94.39 144 | | 88.81 61 | 85.43 190 | | | | | | |
|
HQP-MVS | | | 89.80 117 | 89.28 116 | 91.34 153 | 94.17 171 | 81.56 155 | 94.39 144 | 96.04 121 | 88.81 61 | 85.43 190 | 93.97 151 | 73.83 183 | 97.96 150 | 87.11 119 | 89.77 187 | 94.50 199 |
|
MVS_111021_HR | | | 93.45 50 | 93.31 49 | 93.84 63 | 96.99 72 | 84.84 74 | 93.24 206 | 97.24 31 | 88.76 64 | 91.60 89 | 95.85 90 | 86.07 46 | 98.66 97 | 91.91 54 | 98.16 59 | 98.03 66 |
|
CS-MVS | | | 92.60 66 | 92.56 64 | 92.73 96 | 95.55 118 | 82.35 143 | 96.14 42 | 96.85 62 | 88.71 65 | 91.44 92 | 91.51 236 | 84.13 68 | 98.48 108 | 91.27 68 | 97.47 76 | 97.34 94 |
|
mPP-MVS | | | 93.99 38 | 93.78 41 | 94.63 41 | 98.50 15 | 85.90 62 | 96.87 21 | 96.91 56 | 88.70 66 | 91.83 84 | 97.17 33 | 83.96 71 | 99.55 12 | 91.44 66 | 98.64 43 | 98.43 33 |
|
VPNet | | | 88.20 160 | 87.47 157 | 90.39 188 | 93.56 196 | 79.46 210 | 94.04 170 | 95.54 160 | 88.67 67 | 86.96 152 | 94.58 131 | 69.33 236 | 97.15 210 | 84.05 150 | 80.53 296 | 94.56 195 |
|
HFP-MVS | | | 94.52 17 | 94.40 19 | 94.86 25 | 98.61 9 | 86.81 24 | 96.94 15 | 97.34 20 | 88.63 68 | 93.65 39 | 97.21 29 | 86.10 44 | 99.49 23 | 92.35 40 | 98.77 24 | 98.30 40 |
|
ACMMPR | | | 94.43 22 | 94.28 22 | 94.91 22 | 98.63 8 | 86.69 30 | 96.94 15 | 97.32 25 | 88.63 68 | 93.53 46 | 97.26 26 | 85.04 58 | 99.54 16 | 92.35 40 | 98.78 21 | 98.50 21 |
|
region2R | | | 94.43 22 | 94.27 24 | 94.92 20 | 98.65 7 | 86.67 32 | 96.92 19 | 97.23 33 | 88.60 70 | 93.58 43 | 97.27 24 | 85.22 55 | 99.54 16 | 92.21 43 | 98.74 29 | 98.56 19 |
|
WR-MVS | | | 88.38 154 | 87.67 153 | 90.52 182 | 93.30 203 | 80.18 190 | 93.26 203 | 95.96 125 | 88.57 71 | 85.47 186 | 92.81 191 | 76.12 148 | 96.91 228 | 81.24 194 | 82.29 267 | 94.47 204 |
|
CP-MVS | | | 94.34 26 | 94.21 27 | 94.74 37 | 98.39 23 | 86.64 34 | 97.60 1 | 97.24 31 | 88.53 72 | 92.73 62 | 97.23 27 | 85.20 56 | 99.32 37 | 92.15 46 | 98.83 17 | 98.25 49 |
|
EIA-MVS | | | 91.95 74 | 91.94 71 | 91.98 128 | 95.16 132 | 80.01 200 | 95.36 74 | 96.73 73 | 88.44 73 | 89.34 115 | 92.16 209 | 83.82 73 | 98.45 114 | 89.35 89 | 97.06 82 | 97.48 90 |
|
CP-MVSNet | | | 87.63 177 | 87.26 164 | 88.74 245 | 93.12 207 | 76.59 270 | 95.29 82 | 96.58 87 | 88.43 74 | 83.49 242 | 92.98 184 | 75.28 160 | 95.83 281 | 78.97 227 | 81.15 283 | 93.79 233 |
|
VDD-MVS | | | 90.74 94 | 89.92 105 | 93.20 75 | 96.27 92 | 83.02 122 | 95.73 61 | 93.86 234 | 88.42 75 | 92.53 67 | 96.84 46 | 62.09 289 | 98.64 99 | 90.95 75 | 92.62 156 | 97.93 73 |
|
ACMMP | | | 93.24 57 | 92.88 60 | 94.30 54 | 98.09 38 | 85.33 71 | 96.86 22 | 97.45 11 | 88.33 76 | 90.15 107 | 97.03 41 | 81.44 96 | 99.51 21 | 90.85 78 | 95.74 102 | 98.04 65 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
nrg030 | | | 91.08 91 | 90.39 92 | 93.17 77 | 93.07 209 | 86.91 20 | 96.41 32 | 96.26 103 | 88.30 77 | 88.37 128 | 94.85 120 | 82.19 88 | 97.64 167 | 91.09 70 | 82.95 259 | 94.96 176 |
|
ACMMP_NAP | | | 94.74 14 | 94.56 16 | 95.28 6 | 98.02 41 | 87.70 10 | 95.68 64 | 97.34 20 | 88.28 78 | 95.30 20 | 97.67 13 | 85.90 48 | 99.54 16 | 93.91 17 | 98.95 11 | 98.60 17 |
|
ZNCC-MVS | | | 94.47 18 | 94.28 22 | 95.03 14 | 98.52 14 | 86.96 17 | 96.85 23 | 97.32 25 | 88.24 79 | 93.15 51 | 97.04 39 | 86.17 43 | 99.62 1 | 92.40 38 | 98.81 18 | 98.52 20 |
|
GST-MVS | | | 94.21 33 | 93.97 37 | 94.90 24 | 98.41 22 | 86.82 23 | 96.54 30 | 97.19 36 | 88.24 79 | 93.26 47 | 96.83 47 | 85.48 52 | 99.59 4 | 91.43 67 | 98.40 52 | 98.30 40 |
|
PS-CasMVS | | | 87.32 191 | 86.88 169 | 88.63 248 | 92.99 215 | 76.33 275 | 95.33 76 | 96.61 85 | 88.22 81 | 83.30 247 | 93.07 182 | 73.03 195 | 95.79 284 | 78.36 232 | 81.00 289 | 93.75 239 |
|
SR-MVS | | | 94.23 31 | 94.17 30 | 94.43 50 | 98.21 33 | 85.78 64 | 96.40 33 | 96.90 57 | 88.20 82 | 94.33 27 | 97.40 18 | 84.75 63 | 99.03 63 | 93.35 25 | 97.99 64 | 98.48 23 |
|
MVS_111021_LR | | | 92.47 69 | 92.29 69 | 92.98 85 | 95.99 104 | 84.43 89 | 93.08 211 | 96.09 116 | 88.20 82 | 91.12 98 | 95.72 95 | 81.33 98 | 97.76 159 | 91.74 59 | 97.37 78 | 96.75 118 |
|
TSAR-MVS + MP. | | | 94.85 12 | 94.94 10 | 94.58 43 | 98.25 29 | 86.33 44 | 96.11 45 | 96.62 84 | 88.14 84 | 96.10 13 | 96.96 43 | 89.09 15 | 98.94 80 | 94.48 12 | 98.68 35 | 98.48 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PEN-MVS | | | 86.80 208 | 86.27 194 | 88.40 252 | 92.32 227 | 75.71 280 | 95.18 91 | 96.38 98 | 87.97 85 | 82.82 251 | 93.15 178 | 73.39 191 | 95.92 276 | 76.15 255 | 79.03 311 | 93.59 244 |
|
testdata1 | | | | | | | | 92.15 239 | | 87.94 86 | | | | | | | |
|
VPA-MVSNet | | | 89.62 119 | 88.96 122 | 91.60 146 | 93.86 185 | 82.89 127 | 95.46 73 | 97.33 23 | 87.91 87 | 88.43 127 | 93.31 171 | 74.17 176 | 97.40 190 | 87.32 115 | 82.86 264 | 94.52 197 |
|
WR-MVS_H | | | 87.80 170 | 87.37 159 | 89.10 235 | 93.23 204 | 78.12 241 | 95.61 69 | 97.30 27 | 87.90 88 | 83.72 234 | 92.01 220 | 79.65 117 | 96.01 273 | 76.36 251 | 80.54 295 | 93.16 262 |
|
CLD-MVS | | | 89.47 125 | 88.90 125 | 91.18 157 | 94.22 170 | 82.07 147 | 92.13 240 | 96.09 116 | 87.90 88 | 85.37 196 | 92.45 200 | 74.38 171 | 97.56 171 | 87.15 117 | 90.43 175 | 93.93 223 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
abl_6 | | | 93.18 59 | 93.05 55 | 93.57 71 | 97.52 56 | 84.27 92 | 95.53 72 | 96.67 80 | 87.85 90 | 93.20 50 | 97.22 28 | 80.35 103 | 99.18 48 | 91.91 54 | 97.21 79 | 97.26 97 |
|
MG-MVS | | | 91.77 77 | 91.70 75 | 92.00 127 | 97.08 71 | 80.03 199 | 93.60 189 | 95.18 184 | 87.85 90 | 90.89 100 | 96.47 66 | 82.06 91 | 98.36 118 | 85.07 136 | 97.04 83 | 97.62 83 |
|
LCM-MVSNet-Re | | | 88.30 158 | 88.32 139 | 88.27 256 | 94.71 151 | 72.41 306 | 93.15 207 | 90.98 296 | 87.77 92 | 79.25 293 | 91.96 221 | 78.35 131 | 95.75 285 | 83.04 161 | 95.62 103 | 96.65 121 |
|
SF-MVS | | | 94.97 10 | 94.90 12 | 95.20 8 | 97.84 46 | 87.76 8 | 96.65 28 | 97.48 7 | 87.76 93 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 23 |
|
Effi-MVS+-dtu | | | 88.65 149 | 88.35 136 | 89.54 224 | 93.33 201 | 76.39 273 | 94.47 137 | 94.36 218 | 87.70 94 | 85.43 190 | 89.56 282 | 73.45 188 | 97.26 202 | 85.57 133 | 91.28 166 | 94.97 173 |
|
mvs-test1 | | | 89.45 126 | 89.14 118 | 90.38 190 | 93.33 201 | 77.63 256 | 94.95 104 | 94.36 218 | 87.70 94 | 87.10 151 | 92.81 191 | 73.45 188 | 98.03 145 | 85.57 133 | 93.04 149 | 95.48 159 |
|
test_prior3 | | | 93.60 48 | 93.53 46 | 93.82 64 | 97.29 65 | 84.49 82 | 94.12 160 | 96.88 59 | 87.67 96 | 92.63 64 | 96.39 68 | 86.62 38 | 98.87 83 | 91.50 64 | 98.67 37 | 98.11 60 |
|
test_prior2 | | | | | | | | 94.12 160 | | 87.67 96 | 92.63 64 | 96.39 68 | 86.62 38 | | 91.50 64 | 98.67 37 | |
|
Vis-MVSNet (Re-imp) | | | 89.59 121 | 89.44 111 | 90.03 205 | 95.74 111 | 75.85 278 | 95.61 69 | 90.80 302 | 87.66 98 | 87.83 137 | 95.40 102 | 76.79 142 | 96.46 254 | 78.37 231 | 96.73 87 | 97.80 79 |
|
#test# | | | 94.32 28 | 94.14 31 | 94.86 25 | 98.61 9 | 86.81 24 | 96.43 31 | 97.34 20 | 87.51 99 | 93.65 39 | 97.21 29 | 86.10 44 | 99.49 23 | 91.68 61 | 98.77 24 | 98.30 40 |
|
PGM-MVS | | | 93.96 39 | 93.72 43 | 94.68 38 | 98.43 19 | 86.22 49 | 95.30 80 | 97.78 1 | 87.45 100 | 93.26 47 | 97.33 21 | 84.62 64 | 99.51 21 | 90.75 79 | 98.57 46 | 98.32 39 |
|
DTE-MVSNet | | | 86.11 225 | 85.48 218 | 87.98 264 | 91.65 250 | 74.92 283 | 94.93 106 | 95.75 143 | 87.36 101 | 82.26 256 | 93.04 183 | 72.85 196 | 95.82 282 | 74.04 271 | 77.46 316 | 93.20 260 |
|
testtj | | | 94.39 25 | 94.18 29 | 95.00 16 | 98.24 31 | 86.77 28 | 96.16 40 | 97.23 33 | 87.28 102 | 94.85 24 | 97.04 39 | 86.99 36 | 99.52 20 | 91.54 63 | 98.33 55 | 98.71 12 |
|
thres100view900 | | | 87.63 177 | 86.71 176 | 90.38 190 | 96.12 96 | 78.55 229 | 95.03 101 | 91.58 280 | 87.15 103 | 88.06 132 | 92.29 206 | 68.91 244 | 98.10 134 | 70.13 291 | 91.10 167 | 94.48 202 |
|
MCST-MVS | | | 94.45 20 | 94.20 28 | 95.19 9 | 98.46 18 | 87.50 13 | 95.00 102 | 97.12 41 | 87.13 104 | 92.51 69 | 96.30 70 | 89.24 14 | 99.34 33 | 93.46 21 | 98.62 44 | 98.73 11 |
|
Effi-MVS+ | | | 91.59 82 | 91.11 82 | 93.01 84 | 94.35 169 | 83.39 113 | 94.60 127 | 95.10 188 | 87.10 105 | 90.57 102 | 93.10 181 | 81.43 97 | 98.07 142 | 89.29 90 | 94.48 125 | 97.59 86 |
|
thres600view7 | | | 87.65 174 | 86.67 178 | 90.59 176 | 96.08 100 | 78.72 225 | 94.88 110 | 91.58 280 | 87.06 106 | 88.08 131 | 92.30 205 | 68.91 244 | 98.10 134 | 70.05 294 | 91.10 167 | 94.96 176 |
|
diffmvs | | | 91.37 85 | 91.23 80 | 91.77 141 | 93.09 208 | 80.27 189 | 92.36 232 | 95.52 161 | 87.03 107 | 91.40 94 | 94.93 114 | 80.08 107 | 97.44 181 | 92.13 48 | 94.56 123 | 97.61 84 |
|
APD-MVS_3200maxsize | | | 93.78 43 | 93.77 42 | 93.80 67 | 97.92 43 | 84.19 93 | 96.30 35 | 96.87 61 | 86.96 108 | 93.92 35 | 97.47 16 | 83.88 72 | 98.96 79 | 92.71 34 | 97.87 68 | 98.26 48 |
|
OMC-MVS | | | 91.23 87 | 90.62 91 | 93.08 80 | 96.27 92 | 84.07 95 | 93.52 191 | 95.93 127 | 86.95 109 | 89.51 112 | 96.13 82 | 78.50 129 | 98.35 120 | 85.84 130 | 92.90 152 | 96.83 116 |
|
tfpn200view9 | | | 87.58 181 | 86.64 179 | 90.41 187 | 95.99 104 | 78.64 227 | 94.58 128 | 91.98 271 | 86.94 110 | 88.09 129 | 91.77 225 | 69.18 241 | 98.10 134 | 70.13 291 | 91.10 167 | 94.48 202 |
|
thres400 | | | 87.62 179 | 86.64 179 | 90.57 177 | 95.99 104 | 78.64 227 | 94.58 128 | 91.98 271 | 86.94 110 | 88.09 129 | 91.77 225 | 69.18 241 | 98.10 134 | 70.13 291 | 91.10 167 | 94.96 176 |
|
HPM-MVS | | | 94.02 37 | 93.88 38 | 94.43 50 | 98.39 23 | 85.78 64 | 97.25 5 | 97.07 45 | 86.90 112 | 92.62 66 | 96.80 51 | 84.85 62 | 99.17 49 | 92.43 36 | 98.65 42 | 98.33 38 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
LFMVS | | | 90.08 109 | 89.13 119 | 92.95 87 | 96.71 78 | 82.32 144 | 96.08 46 | 89.91 317 | 86.79 113 | 92.15 76 | 96.81 49 | 62.60 286 | 98.34 121 | 87.18 116 | 93.90 131 | 98.19 52 |
|
baseline1 | | | 88.10 162 | 87.28 162 | 90.57 177 | 94.96 139 | 80.07 195 | 94.27 153 | 91.29 289 | 86.74 114 | 87.41 144 | 94.00 149 | 76.77 143 | 96.20 265 | 80.77 202 | 79.31 309 | 95.44 161 |
|
LPG-MVS_test | | | 89.45 126 | 88.90 125 | 91.12 158 | 94.47 160 | 81.49 159 | 95.30 80 | 96.14 113 | 86.73 115 | 85.45 187 | 95.16 108 | 69.89 229 | 98.10 134 | 87.70 108 | 89.23 196 | 93.77 237 |
|
LGP-MVS_train | | | | | 91.12 158 | 94.47 160 | 81.49 159 | | 96.14 113 | 86.73 115 | 85.45 187 | 95.16 108 | 69.89 229 | 98.10 134 | 87.70 108 | 89.23 196 | 93.77 237 |
|
ETH3D-3000-0.1 | | | 94.61 16 | 94.44 18 | 95.12 11 | 97.70 51 | 87.71 9 | 95.98 52 | 97.44 13 | 86.67 117 | 95.25 21 | 97.31 22 | 87.73 25 | 99.24 43 | 93.11 30 | 98.76 26 | 98.40 34 |
|
EPNet_dtu | | | 86.49 221 | 85.94 207 | 88.14 261 | 90.24 298 | 72.82 299 | 94.11 162 | 92.20 263 | 86.66 118 | 79.42 292 | 92.36 203 | 73.52 186 | 95.81 283 | 71.26 282 | 93.66 134 | 95.80 153 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMP | | 84.23 8 | 89.01 141 | 88.35 136 | 90.99 169 | 94.73 149 | 81.27 165 | 95.07 97 | 95.89 133 | 86.48 119 | 83.67 236 | 94.30 137 | 69.33 236 | 97.99 148 | 87.10 121 | 88.55 203 | 93.72 241 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MVS_Test | | | 91.31 86 | 91.11 82 | 91.93 132 | 94.37 166 | 80.14 192 | 93.46 194 | 95.80 139 | 86.46 120 | 91.35 95 | 93.77 163 | 82.21 87 | 98.09 140 | 87.57 110 | 94.95 116 | 97.55 89 |
|
thres200 | | | 87.21 198 | 86.24 195 | 90.12 200 | 95.36 123 | 78.53 230 | 93.26 203 | 92.10 265 | 86.42 121 | 88.00 134 | 91.11 249 | 69.24 240 | 98.00 147 | 69.58 295 | 91.04 172 | 93.83 232 |
|
PAPM_NR | | | 91.22 88 | 90.78 90 | 92.52 107 | 97.60 53 | 81.46 161 | 94.37 149 | 96.24 106 | 86.39 122 | 87.41 144 | 94.80 122 | 82.06 91 | 98.48 108 | 82.80 168 | 95.37 110 | 97.61 84 |
|
PS-MVSNAJ | | | 91.18 89 | 90.92 86 | 91.96 130 | 95.26 129 | 82.60 138 | 92.09 242 | 95.70 146 | 86.27 123 | 91.84 82 | 92.46 199 | 79.70 113 | 98.99 73 | 89.08 92 | 95.86 101 | 94.29 207 |
|
MP-MVS-pluss | | | 94.21 33 | 94.00 36 | 94.85 27 | 98.17 34 | 86.65 33 | 94.82 114 | 97.17 39 | 86.26 124 | 92.83 57 | 97.87 10 | 85.57 51 | 99.56 7 | 94.37 14 | 98.92 13 | 98.34 37 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PS-MVSNAJss | | | 89.97 112 | 89.62 107 | 91.02 166 | 91.90 239 | 80.85 177 | 95.26 85 | 95.98 123 | 86.26 124 | 86.21 168 | 94.29 138 | 79.70 113 | 97.65 165 | 88.87 95 | 88.10 213 | 94.57 194 |
|
EPP-MVSNet | | | 91.70 80 | 91.56 76 | 92.13 124 | 95.88 107 | 80.50 187 | 97.33 3 | 95.25 180 | 86.15 126 | 89.76 110 | 95.60 97 | 83.42 74 | 98.32 124 | 87.37 114 | 93.25 145 | 97.56 88 |
|
XVG-OURS | | | 89.40 131 | 88.70 128 | 91.52 147 | 94.06 174 | 81.46 161 | 91.27 259 | 96.07 118 | 86.14 127 | 88.89 122 | 95.77 93 | 68.73 247 | 97.26 202 | 87.39 113 | 89.96 182 | 95.83 151 |
|
9.14 | | | | 94.47 17 | | 97.79 48 | | 96.08 46 | 97.44 13 | 86.13 128 | 95.10 22 | 97.40 18 | 88.34 18 | 99.22 45 | 93.25 27 | 98.70 32 | |
|
xiu_mvs_v2_base | | | 91.13 90 | 90.89 88 | 91.86 135 | 94.97 138 | 82.42 139 | 92.24 236 | 95.64 153 | 86.11 129 | 91.74 87 | 93.14 179 | 79.67 116 | 98.89 82 | 89.06 93 | 95.46 108 | 94.28 208 |
|
SMA-MVS | | | 95.20 7 | 95.07 9 | 95.59 3 | 98.14 35 | 88.48 6 | 96.26 37 | 97.28 29 | 85.90 130 | 97.67 3 | 98.10 2 | 88.41 17 | 99.56 7 | 94.66 10 | 99.19 1 | 98.71 12 |
|
Fast-Effi-MVS+-dtu | | | 87.44 187 | 86.72 175 | 89.63 222 | 92.04 234 | 77.68 255 | 94.03 171 | 93.94 232 | 85.81 131 | 82.42 254 | 91.32 240 | 70.33 225 | 97.06 219 | 80.33 212 | 90.23 178 | 94.14 212 |
|
XVG-OURS-SEG-HR | | | 89.95 113 | 89.45 110 | 91.47 149 | 94.00 180 | 81.21 169 | 91.87 245 | 96.06 120 | 85.78 132 | 88.55 124 | 95.73 94 | 74.67 169 | 97.27 200 | 88.71 97 | 89.64 189 | 95.91 146 |
|
HPM-MVS_fast | | | 93.40 53 | 93.22 51 | 93.94 61 | 98.36 25 | 84.83 75 | 97.15 8 | 96.80 68 | 85.77 133 | 92.47 70 | 97.13 35 | 82.38 82 | 99.07 57 | 90.51 81 | 98.40 52 | 97.92 74 |
|
EI-MVSNet | | | 89.10 136 | 88.86 127 | 89.80 216 | 91.84 241 | 78.30 237 | 93.70 186 | 95.01 191 | 85.73 134 | 87.15 148 | 95.28 103 | 79.87 110 | 97.21 208 | 83.81 153 | 87.36 224 | 93.88 227 |
|
IterMVS-LS | | | 88.36 156 | 87.91 149 | 89.70 220 | 93.80 188 | 78.29 238 | 93.73 183 | 95.08 190 | 85.73 134 | 84.75 205 | 91.90 223 | 79.88 109 | 96.92 227 | 83.83 152 | 82.51 265 | 93.89 225 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
APD-MVS | | | 94.24 30 | 94.07 34 | 94.75 36 | 98.06 39 | 86.90 21 | 95.88 56 | 96.94 54 | 85.68 136 | 95.05 23 | 97.18 32 | 87.31 30 | 99.07 57 | 91.90 57 | 98.61 45 | 98.28 44 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_yl | | | 90.69 96 | 90.02 103 | 92.71 97 | 95.72 112 | 82.41 141 | 94.11 162 | 95.12 186 | 85.63 137 | 91.49 90 | 94.70 123 | 74.75 166 | 98.42 116 | 86.13 128 | 92.53 157 | 97.31 95 |
|
DCV-MVSNet | | | 90.69 96 | 90.02 103 | 92.71 97 | 95.72 112 | 82.41 141 | 94.11 162 | 95.12 186 | 85.63 137 | 91.49 90 | 94.70 123 | 74.75 166 | 98.42 116 | 86.13 128 | 92.53 157 | 97.31 95 |
|
K. test v3 | | | 81.59 279 | 80.15 280 | 85.91 299 | 89.89 306 | 69.42 325 | 92.57 226 | 87.71 330 | 85.56 139 | 73.44 321 | 89.71 279 | 55.58 318 | 95.52 292 | 77.17 245 | 69.76 328 | 92.78 276 |
|
SixPastTwentyTwo | | | 83.91 258 | 82.90 258 | 86.92 288 | 90.99 272 | 70.67 318 | 93.48 192 | 91.99 270 | 85.54 140 | 77.62 302 | 92.11 214 | 60.59 302 | 96.87 230 | 76.05 256 | 77.75 313 | 93.20 260 |
|
ITE_SJBPF | | | | | 88.24 258 | 91.88 240 | 77.05 265 | | 92.92 248 | 85.54 140 | 80.13 284 | 93.30 172 | 57.29 315 | 96.20 265 | 72.46 279 | 84.71 243 | 91.49 301 |
|
RRT_test8_iter05 | | | 86.90 205 | 86.36 189 | 88.52 250 | 93.00 214 | 73.27 295 | 94.32 151 | 95.96 125 | 85.50 142 | 84.26 223 | 92.86 186 | 60.76 301 | 97.70 164 | 88.32 101 | 82.29 267 | 94.60 191 |
|
RRT_MVS | | | 88.86 143 | 87.68 152 | 92.39 114 | 92.02 236 | 86.09 52 | 94.38 148 | 94.94 194 | 85.45 143 | 87.14 150 | 93.84 160 | 65.88 273 | 97.11 214 | 88.73 96 | 86.77 231 | 93.98 222 |
|
BH-RMVSNet | | | 88.37 155 | 87.48 156 | 91.02 166 | 95.28 127 | 79.45 211 | 92.89 218 | 93.07 247 | 85.45 143 | 86.91 154 | 94.84 121 | 70.35 224 | 97.76 159 | 73.97 272 | 94.59 122 | 95.85 149 |
|
IterMVS-SCA-FT | | | 85.45 235 | 84.53 239 | 88.18 260 | 91.71 246 | 76.87 267 | 90.19 276 | 92.65 256 | 85.40 145 | 81.44 265 | 90.54 261 | 66.79 261 | 95.00 305 | 81.04 196 | 81.05 285 | 92.66 278 |
|
GA-MVS | | | 86.61 214 | 85.27 223 | 90.66 175 | 91.33 261 | 78.71 226 | 90.40 271 | 93.81 237 | 85.34 146 | 85.12 200 | 89.57 281 | 61.25 296 | 97.11 214 | 80.99 199 | 89.59 190 | 96.15 133 |
|
ACMM | | 84.12 9 | 89.14 135 | 88.48 135 | 91.12 158 | 94.65 155 | 81.22 168 | 95.31 77 | 96.12 115 | 85.31 147 | 85.92 172 | 94.34 134 | 70.19 227 | 98.06 143 | 85.65 131 | 88.86 201 | 94.08 217 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
xiu_mvs_v1_base_debu | | | 90.64 99 | 90.05 100 | 92.40 111 | 93.97 182 | 84.46 85 | 93.32 196 | 95.46 165 | 85.17 148 | 92.25 71 | 94.03 144 | 70.59 219 | 98.57 104 | 90.97 72 | 94.67 118 | 94.18 209 |
|
xiu_mvs_v1_base | | | 90.64 99 | 90.05 100 | 92.40 111 | 93.97 182 | 84.46 85 | 93.32 196 | 95.46 165 | 85.17 148 | 92.25 71 | 94.03 144 | 70.59 219 | 98.57 104 | 90.97 72 | 94.67 118 | 94.18 209 |
|
xiu_mvs_v1_base_debi | | | 90.64 99 | 90.05 100 | 92.40 111 | 93.97 182 | 84.46 85 | 93.32 196 | 95.46 165 | 85.17 148 | 92.25 71 | 94.03 144 | 70.59 219 | 98.57 104 | 90.97 72 | 94.67 118 | 94.18 209 |
|
PHI-MVS | | | 93.89 42 | 93.65 44 | 94.62 42 | 96.84 75 | 86.43 40 | 96.69 27 | 97.49 5 | 85.15 151 | 93.56 45 | 96.28 72 | 85.60 50 | 99.31 38 | 92.45 35 | 98.79 19 | 98.12 58 |
|
mvs_tets | | | 88.06 165 | 87.28 162 | 90.38 190 | 90.94 276 | 79.88 203 | 95.22 87 | 95.66 150 | 85.10 152 | 84.21 225 | 93.94 152 | 63.53 283 | 97.40 190 | 88.50 99 | 88.40 209 | 93.87 228 |
|
tttt0517 | | | 88.61 150 | 87.78 150 | 91.11 161 | 94.96 139 | 77.81 250 | 95.35 75 | 89.69 321 | 85.09 153 | 88.05 133 | 94.59 130 | 66.93 258 | 98.48 108 | 83.27 159 | 92.13 162 | 97.03 108 |
|
XVG-ACMP-BASELINE | | | 86.00 226 | 84.84 233 | 89.45 228 | 91.20 263 | 78.00 243 | 91.70 251 | 95.55 158 | 85.05 154 | 82.97 249 | 92.25 208 | 54.49 324 | 97.48 176 | 82.93 163 | 87.45 223 | 92.89 272 |
|
jajsoiax | | | 88.24 159 | 87.50 155 | 90.48 185 | 90.89 280 | 80.14 192 | 95.31 77 | 95.65 152 | 84.97 155 | 84.24 224 | 94.02 147 | 65.31 275 | 97.42 183 | 88.56 98 | 88.52 205 | 93.89 225 |
|
v2v482 | | | 87.84 168 | 87.06 166 | 90.17 196 | 90.99 272 | 79.23 222 | 94.00 174 | 95.13 185 | 84.87 156 | 85.53 181 | 92.07 218 | 74.45 170 | 97.45 179 | 84.71 143 | 81.75 276 | 93.85 231 |
|
v148 | | | 87.04 203 | 86.32 192 | 89.21 231 | 90.94 276 | 77.26 262 | 93.71 185 | 94.43 216 | 84.84 157 | 84.36 218 | 90.80 257 | 76.04 150 | 97.05 220 | 82.12 178 | 79.60 306 | 93.31 254 |
|
v8 | | | 87.50 186 | 86.71 176 | 89.89 210 | 91.37 258 | 79.40 212 | 94.50 133 | 95.38 174 | 84.81 158 | 83.60 239 | 91.33 238 | 76.05 149 | 97.42 183 | 82.84 166 | 80.51 298 | 92.84 274 |
|
BH-untuned | | | 88.60 151 | 88.13 144 | 90.01 207 | 95.24 130 | 78.50 232 | 93.29 201 | 94.15 227 | 84.75 159 | 84.46 212 | 93.40 167 | 75.76 153 | 97.40 190 | 77.59 240 | 94.52 124 | 94.12 213 |
|
OurMVSNet-221017-0 | | | 85.35 238 | 84.64 237 | 87.49 274 | 90.77 284 | 72.59 304 | 94.01 173 | 94.40 217 | 84.72 160 | 79.62 291 | 93.17 177 | 61.91 291 | 96.72 233 | 81.99 181 | 81.16 281 | 93.16 262 |
|
MVSFormer | | | 91.68 81 | 91.30 78 | 92.80 92 | 93.86 185 | 83.88 100 | 95.96 53 | 95.90 131 | 84.66 161 | 91.76 85 | 94.91 115 | 77.92 134 | 97.30 196 | 89.64 87 | 97.11 80 | 97.24 98 |
|
test_djsdf | | | 89.03 139 | 88.64 129 | 90.21 195 | 90.74 286 | 79.28 219 | 95.96 53 | 95.90 131 | 84.66 161 | 85.33 198 | 92.94 185 | 74.02 179 | 97.30 196 | 89.64 87 | 88.53 204 | 94.05 219 |
|
MVSTER | | | 88.84 144 | 88.29 140 | 90.51 183 | 92.95 216 | 80.44 188 | 93.73 183 | 95.01 191 | 84.66 161 | 87.15 148 | 93.12 180 | 72.79 197 | 97.21 208 | 87.86 106 | 87.36 224 | 93.87 228 |
|
v7n | | | 86.81 207 | 85.76 214 | 89.95 209 | 90.72 287 | 79.25 221 | 95.07 97 | 95.92 128 | 84.45 164 | 82.29 255 | 90.86 254 | 72.60 200 | 97.53 173 | 79.42 224 | 80.52 297 | 93.08 266 |
|
ETH3D cwj APD-0.16 | | | 93.91 40 | 93.53 46 | 95.06 13 | 96.76 77 | 87.78 7 | 94.92 107 | 97.21 35 | 84.33 165 | 93.89 36 | 97.09 36 | 87.20 32 | 99.29 41 | 91.90 57 | 98.44 51 | 98.12 58 |
|
ET-MVSNet_ETH3D | | | 87.51 184 | 85.91 208 | 92.32 117 | 93.70 193 | 83.93 98 | 92.33 233 | 90.94 298 | 84.16 166 | 72.09 325 | 92.52 198 | 69.90 228 | 95.85 280 | 89.20 91 | 88.36 210 | 97.17 102 |
|
CSCG | | | 93.23 58 | 93.05 55 | 93.76 68 | 98.04 40 | 84.07 95 | 96.22 38 | 97.37 19 | 84.15 167 | 90.05 108 | 95.66 96 | 87.77 23 | 99.15 52 | 89.91 84 | 98.27 57 | 98.07 62 |
|
Baseline_NR-MVSNet | | | 87.07 202 | 86.63 181 | 88.40 252 | 91.44 252 | 77.87 248 | 94.23 156 | 92.57 257 | 84.12 168 | 85.74 175 | 92.08 216 | 77.25 138 | 96.04 270 | 82.29 176 | 79.94 302 | 91.30 305 |
|
UniMVSNet_ETH3D | | | 87.53 183 | 86.37 188 | 91.00 168 | 92.44 224 | 78.96 224 | 94.74 119 | 95.61 154 | 84.07 169 | 85.36 197 | 94.52 132 | 59.78 308 | 97.34 195 | 82.93 163 | 87.88 218 | 96.71 120 |
|
thisisatest0530 | | | 88.67 148 | 87.61 154 | 91.86 135 | 94.87 145 | 80.07 195 | 94.63 126 | 89.90 318 | 84.00 170 | 88.46 126 | 93.78 162 | 66.88 260 | 98.46 111 | 83.30 158 | 92.65 155 | 97.06 106 |
|
ab-mvs | | | 89.41 129 | 88.35 136 | 92.60 102 | 95.15 133 | 82.65 136 | 92.20 238 | 95.60 155 | 83.97 171 | 88.55 124 | 93.70 166 | 74.16 177 | 98.21 130 | 82.46 173 | 89.37 192 | 96.94 112 |
|
FMVSNet3 | | | 87.40 189 | 86.11 199 | 91.30 154 | 93.79 190 | 83.64 106 | 94.20 157 | 94.81 207 | 83.89 172 | 84.37 215 | 91.87 224 | 68.45 250 | 96.56 246 | 78.23 234 | 85.36 238 | 93.70 242 |
|
pm-mvs1 | | | 86.61 214 | 85.54 216 | 89.82 213 | 91.44 252 | 80.18 190 | 95.28 84 | 94.85 203 | 83.84 173 | 81.66 263 | 92.62 196 | 72.45 203 | 96.48 251 | 79.67 219 | 78.06 312 | 92.82 275 |
|
v10 | | | 87.25 194 | 86.38 187 | 89.85 211 | 91.19 264 | 79.50 209 | 94.48 134 | 95.45 168 | 83.79 174 | 83.62 238 | 91.19 243 | 75.13 161 | 97.42 183 | 81.94 182 | 80.60 293 | 92.63 279 |
|
testgi | | | 80.94 289 | 80.20 279 | 83.18 313 | 87.96 324 | 66.29 332 | 91.28 258 | 90.70 305 | 83.70 175 | 78.12 297 | 92.84 188 | 51.37 330 | 90.82 334 | 63.34 321 | 82.46 266 | 92.43 284 |
|
V42 | | | 87.68 172 | 86.86 170 | 90.15 198 | 90.58 291 | 80.14 192 | 94.24 155 | 95.28 179 | 83.66 176 | 85.67 176 | 91.33 238 | 74.73 168 | 97.41 188 | 84.43 146 | 81.83 274 | 92.89 272 |
|
GBi-Net | | | 87.26 192 | 85.98 204 | 91.08 162 | 94.01 177 | 83.10 118 | 95.14 94 | 94.94 194 | 83.57 177 | 84.37 215 | 91.64 228 | 66.59 265 | 96.34 261 | 78.23 234 | 85.36 238 | 93.79 233 |
|
test1 | | | 87.26 192 | 85.98 204 | 91.08 162 | 94.01 177 | 83.10 118 | 95.14 94 | 94.94 194 | 83.57 177 | 84.37 215 | 91.64 228 | 66.59 265 | 96.34 261 | 78.23 234 | 85.36 238 | 93.79 233 |
|
FMVSNet2 | | | 87.19 199 | 85.82 210 | 91.30 154 | 94.01 177 | 83.67 105 | 94.79 116 | 94.94 194 | 83.57 177 | 83.88 230 | 92.05 219 | 66.59 265 | 96.51 249 | 77.56 241 | 85.01 241 | 93.73 240 |
|
SCA | | | 86.32 223 | 85.18 224 | 89.73 219 | 92.15 229 | 76.60 269 | 91.12 262 | 91.69 278 | 83.53 180 | 85.50 184 | 88.81 289 | 66.79 261 | 96.48 251 | 76.65 249 | 90.35 177 | 96.12 136 |
|
PVSNet_BlendedMVS | | | 89.98 111 | 89.70 106 | 90.82 173 | 96.12 96 | 81.25 166 | 93.92 177 | 96.83 64 | 83.49 181 | 89.10 118 | 92.26 207 | 81.04 100 | 98.85 89 | 86.72 125 | 87.86 219 | 92.35 288 |
|
DPM-MVS | | | 92.58 67 | 91.74 74 | 95.08 12 | 96.19 94 | 89.31 3 | 92.66 222 | 96.56 89 | 83.44 182 | 91.68 88 | 95.04 112 | 86.60 41 | 98.99 73 | 85.60 132 | 97.92 67 | 96.93 113 |
|
test-LLR | | | 85.87 229 | 85.41 219 | 87.25 280 | 90.95 274 | 71.67 309 | 89.55 283 | 89.88 319 | 83.41 183 | 84.54 209 | 87.95 303 | 67.25 254 | 95.11 302 | 81.82 185 | 93.37 143 | 94.97 173 |
|
test0.0.03 1 | | | 82.41 271 | 81.69 265 | 84.59 307 | 88.23 320 | 72.89 298 | 90.24 273 | 87.83 329 | 83.41 183 | 79.86 288 | 89.78 278 | 67.25 254 | 88.99 337 | 65.18 315 | 83.42 257 | 91.90 295 |
|
v1144 | | | 87.61 180 | 86.79 174 | 90.06 204 | 91.01 271 | 79.34 215 | 93.95 176 | 95.42 173 | 83.36 185 | 85.66 177 | 91.31 241 | 74.98 164 | 97.42 183 | 83.37 157 | 82.06 270 | 93.42 252 |
|
PVSNet_Blended_VisFu | | | 91.38 84 | 90.91 87 | 92.80 92 | 96.39 89 | 83.17 117 | 94.87 111 | 96.66 81 | 83.29 186 | 89.27 116 | 94.46 133 | 80.29 105 | 99.17 49 | 87.57 110 | 95.37 110 | 96.05 143 |
|
IB-MVS | | 80.51 15 | 85.24 242 | 83.26 253 | 91.19 156 | 92.13 231 | 79.86 204 | 91.75 248 | 91.29 289 | 83.28 187 | 80.66 275 | 88.49 295 | 61.28 295 | 98.46 111 | 80.99 199 | 79.46 307 | 95.25 167 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
IterMVS | | | 84.88 248 | 83.98 245 | 87.60 270 | 91.44 252 | 76.03 277 | 90.18 277 | 92.41 259 | 83.24 188 | 81.06 271 | 90.42 265 | 66.60 264 | 94.28 311 | 79.46 220 | 80.98 290 | 92.48 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+ | | | 89.41 129 | 88.64 129 | 91.71 143 | 94.74 148 | 80.81 178 | 93.54 190 | 95.10 188 | 83.11 189 | 86.82 157 | 90.67 260 | 79.74 112 | 97.75 162 | 80.51 209 | 93.55 136 | 96.57 123 |
|
WTY-MVS | | | 89.60 120 | 88.92 124 | 91.67 144 | 95.47 121 | 81.15 170 | 92.38 231 | 94.78 209 | 83.11 189 | 89.06 120 | 94.32 136 | 78.67 126 | 96.61 241 | 81.57 191 | 90.89 173 | 97.24 98 |
|
LTVRE_ROB | | 82.13 13 | 86.26 224 | 84.90 231 | 90.34 193 | 94.44 164 | 81.50 157 | 92.31 235 | 94.89 200 | 83.03 191 | 79.63 290 | 92.67 194 | 69.69 232 | 97.79 157 | 71.20 283 | 86.26 232 | 91.72 297 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UnsupCasMVSNet_eth | | | 80.07 292 | 78.27 295 | 85.46 301 | 85.24 331 | 72.63 303 | 88.45 302 | 94.87 202 | 82.99 192 | 71.64 328 | 88.07 302 | 56.34 317 | 91.75 331 | 73.48 276 | 63.36 337 | 92.01 294 |
|
XXY-MVS | | | 87.65 174 | 86.85 171 | 90.03 205 | 92.14 230 | 80.60 184 | 93.76 182 | 95.23 181 | 82.94 193 | 84.60 207 | 94.02 147 | 74.27 172 | 95.49 296 | 81.04 196 | 83.68 252 | 94.01 221 |
|
testing_2 | | | 83.40 264 | 81.02 270 | 90.56 179 | 85.06 332 | 80.51 186 | 91.37 257 | 95.57 156 | 82.92 194 | 67.06 333 | 85.54 320 | 49.47 333 | 97.24 204 | 86.74 122 | 85.44 237 | 93.93 223 |
|
mvs_anonymous | | | 89.37 132 | 89.32 114 | 89.51 227 | 93.47 198 | 74.22 287 | 91.65 253 | 94.83 205 | 82.91 195 | 85.45 187 | 93.79 161 | 81.23 99 | 96.36 260 | 86.47 127 | 94.09 129 | 97.94 71 |
|
BH-w/o | | | 87.57 182 | 87.05 167 | 89.12 234 | 94.90 144 | 77.90 246 | 92.41 229 | 93.51 241 | 82.89 196 | 83.70 235 | 91.34 237 | 75.75 154 | 97.07 218 | 75.49 259 | 93.49 138 | 92.39 286 |
|
AdaColmap | | | 89.89 116 | 89.07 120 | 92.37 115 | 97.41 59 | 83.03 121 | 94.42 141 | 95.92 128 | 82.81 197 | 86.34 166 | 94.65 127 | 73.89 181 | 99.02 67 | 80.69 204 | 95.51 105 | 95.05 171 |
|
TransMVSNet (Re) | | | 84.43 254 | 83.06 256 | 88.54 249 | 91.72 245 | 78.44 233 | 95.18 91 | 92.82 251 | 82.73 198 | 79.67 289 | 92.12 212 | 73.49 187 | 95.96 275 | 71.10 286 | 68.73 332 | 91.21 308 |
|
DP-MVS Recon | | | 91.95 74 | 91.28 79 | 93.96 60 | 98.33 27 | 85.92 59 | 94.66 125 | 96.66 81 | 82.69 199 | 90.03 109 | 95.82 91 | 82.30 85 | 99.03 63 | 84.57 144 | 96.48 96 | 96.91 114 |
|
ETH3 D test6400 | | | 93.64 47 | 93.22 51 | 94.92 20 | 97.79 48 | 86.84 22 | 95.31 77 | 97.26 30 | 82.67 200 | 93.81 37 | 96.29 71 | 87.29 31 | 99.27 42 | 89.87 85 | 98.67 37 | 98.65 15 |
|
v1192 | | | 87.25 194 | 86.33 191 | 90.00 208 | 90.76 285 | 79.04 223 | 93.80 180 | 95.48 163 | 82.57 201 | 85.48 185 | 91.18 245 | 73.38 192 | 97.42 183 | 82.30 175 | 82.06 270 | 93.53 246 |
|
API-MVS | | | 90.66 98 | 90.07 99 | 92.45 110 | 96.36 90 | 84.57 80 | 96.06 48 | 95.22 183 | 82.39 202 | 89.13 117 | 94.27 141 | 80.32 104 | 98.46 111 | 80.16 214 | 96.71 88 | 94.33 206 |
|
tfpnnormal | | | 84.72 251 | 83.23 254 | 89.20 232 | 92.79 219 | 80.05 197 | 94.48 134 | 95.81 138 | 82.38 203 | 81.08 270 | 91.21 242 | 69.01 243 | 96.95 225 | 61.69 326 | 80.59 294 | 90.58 317 |
|
MAR-MVS | | | 90.30 105 | 89.37 113 | 93.07 82 | 96.61 81 | 84.48 84 | 95.68 64 | 95.67 148 | 82.36 204 | 87.85 136 | 92.85 187 | 76.63 146 | 98.80 93 | 80.01 215 | 96.68 89 | 95.91 146 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
baseline2 | | | 86.50 219 | 85.39 220 | 89.84 212 | 91.12 268 | 76.70 268 | 91.88 244 | 88.58 326 | 82.35 205 | 79.95 287 | 90.95 253 | 73.42 190 | 97.63 168 | 80.27 213 | 89.95 183 | 95.19 168 |
|
TAMVS | | | 89.21 134 | 88.29 140 | 91.96 130 | 93.71 191 | 82.62 137 | 93.30 200 | 94.19 225 | 82.22 206 | 87.78 139 | 93.94 152 | 78.83 122 | 96.95 225 | 77.70 239 | 92.98 151 | 96.32 128 |
|
ACMH+ | | 81.04 14 | 85.05 245 | 83.46 252 | 89.82 213 | 94.66 154 | 79.37 213 | 94.44 139 | 94.12 230 | 82.19 207 | 78.04 298 | 92.82 190 | 58.23 313 | 97.54 172 | 73.77 274 | 82.90 263 | 92.54 280 |
|
ACMH | | 80.38 17 | 85.36 237 | 83.68 248 | 90.39 188 | 94.45 163 | 80.63 182 | 94.73 120 | 94.85 203 | 82.09 208 | 77.24 303 | 92.65 195 | 60.01 306 | 97.58 169 | 72.25 280 | 84.87 242 | 92.96 269 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
eth_miper_zixun_eth | | | 86.50 219 | 85.77 213 | 88.68 246 | 91.94 238 | 75.81 279 | 90.47 270 | 94.89 200 | 82.05 209 | 84.05 226 | 90.46 263 | 75.96 151 | 96.77 232 | 82.76 169 | 79.36 308 | 93.46 251 |
|
anonymousdsp | | | 87.84 168 | 87.09 165 | 90.12 200 | 89.13 310 | 80.54 185 | 94.67 124 | 95.55 158 | 82.05 209 | 83.82 232 | 92.12 212 | 71.47 209 | 97.15 210 | 87.15 117 | 87.80 220 | 92.67 277 |
|
PVSNet_Blended | | | 90.73 95 | 90.32 94 | 91.98 128 | 96.12 96 | 81.25 166 | 92.55 227 | 96.83 64 | 82.04 211 | 89.10 118 | 92.56 197 | 81.04 100 | 98.85 89 | 86.72 125 | 95.91 100 | 95.84 150 |
|
cl_fuxian | | | 87.14 201 | 86.50 186 | 89.04 237 | 92.20 228 | 77.26 262 | 91.22 261 | 94.70 211 | 82.01 212 | 84.34 219 | 90.43 264 | 78.81 123 | 96.61 241 | 83.70 155 | 81.09 284 | 93.25 257 |
|
agg_prior1 | | | 93.29 55 | 92.97 58 | 94.26 55 | 97.38 60 | 85.92 59 | 93.92 177 | 96.72 75 | 81.96 213 | 92.16 74 | 96.23 74 | 87.85 22 | 98.97 76 | 91.95 53 | 98.55 49 | 97.90 75 |
|
CDS-MVSNet | | | 89.45 126 | 88.51 131 | 92.29 120 | 93.62 194 | 83.61 108 | 93.01 214 | 94.68 212 | 81.95 214 | 87.82 138 | 93.24 175 | 78.69 125 | 96.99 223 | 80.34 211 | 93.23 146 | 96.28 130 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
v144192 | | | 87.19 199 | 86.35 190 | 89.74 217 | 90.64 289 | 78.24 239 | 93.92 177 | 95.43 171 | 81.93 215 | 85.51 183 | 91.05 251 | 74.21 175 | 97.45 179 | 82.86 165 | 81.56 278 | 93.53 246 |
|
PAPR | | | 90.02 110 | 89.27 117 | 92.29 120 | 95.78 110 | 80.95 174 | 92.68 221 | 96.22 108 | 81.91 216 | 86.66 159 | 93.75 165 | 82.23 86 | 98.44 115 | 79.40 225 | 94.79 117 | 97.48 90 |
|
v1921920 | | | 86.97 204 | 86.06 202 | 89.69 221 | 90.53 294 | 78.11 242 | 93.80 180 | 95.43 171 | 81.90 217 | 85.33 198 | 91.05 251 | 72.66 198 | 97.41 188 | 82.05 180 | 81.80 275 | 93.53 246 |
|
CPTT-MVS | | | 91.99 73 | 91.80 73 | 92.55 105 | 98.24 31 | 81.98 149 | 96.76 25 | 96.49 91 | 81.89 218 | 90.24 105 | 96.44 67 | 78.59 127 | 98.61 102 | 89.68 86 | 97.85 69 | 97.06 106 |
|
train_agg | | | 93.44 51 | 93.08 54 | 94.52 45 | 97.53 54 | 86.49 38 | 94.07 167 | 96.78 69 | 81.86 219 | 92.77 59 | 96.20 76 | 87.63 27 | 99.12 54 | 92.14 47 | 98.69 33 | 97.94 71 |
|
test_8 | | | | | | 97.49 57 | 86.30 47 | 94.02 172 | 96.76 72 | 81.86 219 | 92.70 63 | 96.20 76 | 87.63 27 | 99.02 67 | | | |
|
cl-mvsnet_ | | | 86.52 218 | 85.78 211 | 88.75 243 | 92.03 235 | 76.46 271 | 90.74 266 | 94.30 221 | 81.83 221 | 83.34 245 | 90.78 258 | 75.74 156 | 96.57 244 | 81.74 188 | 81.54 279 | 93.22 259 |
|
cl-mvsnet1 | | | 86.53 217 | 85.78 211 | 88.75 243 | 92.02 236 | 76.45 272 | 90.74 266 | 94.30 221 | 81.83 221 | 83.34 245 | 90.82 256 | 75.75 154 | 96.57 244 | 81.73 189 | 81.52 280 | 93.24 258 |
|
v1240 | | | 86.78 209 | 85.85 209 | 89.56 223 | 90.45 295 | 77.79 251 | 93.61 188 | 95.37 176 | 81.65 223 | 85.43 190 | 91.15 247 | 71.50 208 | 97.43 182 | 81.47 193 | 82.05 272 | 93.47 250 |
|
FMVSNet1 | | | 85.85 230 | 84.11 242 | 91.08 162 | 92.81 218 | 83.10 118 | 95.14 94 | 94.94 194 | 81.64 224 | 82.68 252 | 91.64 228 | 59.01 311 | 96.34 261 | 75.37 261 | 83.78 249 | 93.79 233 |
|
PatchmatchNet | | | 85.85 230 | 84.70 235 | 89.29 230 | 91.76 244 | 75.54 281 | 88.49 300 | 91.30 288 | 81.63 225 | 85.05 201 | 88.70 293 | 71.71 205 | 96.24 264 | 74.61 269 | 89.05 199 | 96.08 140 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TEST9 | | | | | | 97.53 54 | 86.49 38 | 94.07 167 | 96.78 69 | 81.61 226 | 92.77 59 | 96.20 76 | 87.71 26 | 99.12 54 | | | |
|
sss | | | 88.93 142 | 88.26 142 | 90.94 172 | 94.05 175 | 80.78 179 | 91.71 250 | 95.38 174 | 81.55 227 | 88.63 123 | 93.91 156 | 75.04 163 | 95.47 297 | 82.47 172 | 91.61 164 | 96.57 123 |
|
HY-MVS | | 83.01 12 | 89.03 139 | 87.94 148 | 92.29 120 | 94.86 146 | 82.77 128 | 92.08 243 | 94.49 214 | 81.52 228 | 86.93 153 | 92.79 193 | 78.32 132 | 98.23 127 | 79.93 216 | 90.55 174 | 95.88 148 |
|
CNLPA | | | 89.07 137 | 87.98 146 | 92.34 116 | 96.87 74 | 84.78 76 | 94.08 166 | 93.24 244 | 81.41 229 | 84.46 212 | 95.13 110 | 75.57 158 | 96.62 238 | 77.21 244 | 93.84 133 | 95.61 157 |
|
EPMVS | | | 83.90 259 | 82.70 261 | 87.51 272 | 90.23 299 | 72.67 301 | 88.62 299 | 81.96 341 | 81.37 230 | 85.01 202 | 88.34 297 | 66.31 268 | 94.45 307 | 75.30 262 | 87.12 227 | 95.43 162 |
|
cl-mvsnet2 | | | 86.78 209 | 85.98 204 | 89.18 233 | 92.34 226 | 77.62 257 | 90.84 265 | 94.13 229 | 81.33 231 | 83.97 229 | 90.15 269 | 73.96 180 | 96.60 243 | 84.19 148 | 82.94 260 | 93.33 253 |
|
miper_ehance_all_eth | | | 87.22 197 | 86.62 182 | 89.02 238 | 92.13 231 | 77.40 261 | 90.91 264 | 94.81 207 | 81.28 232 | 84.32 220 | 90.08 271 | 79.26 119 | 96.62 238 | 83.81 153 | 82.94 260 | 93.04 267 |
|
IU-MVS | | | | | | 98.77 4 | 86.00 53 | | 96.84 63 | 81.26 233 | 97.26 6 | | | | 95.50 7 | 99.13 3 | 99.03 4 |
|
test20.03 | | | 79.95 293 | 79.08 291 | 82.55 315 | 85.79 329 | 67.74 330 | 91.09 263 | 91.08 292 | 81.23 234 | 74.48 317 | 89.96 275 | 61.63 292 | 90.15 335 | 60.08 330 | 76.38 318 | 89.76 319 |
|
miper_lstm_enhance | | | 85.27 241 | 84.59 238 | 87.31 277 | 91.28 262 | 74.63 284 | 87.69 309 | 94.09 231 | 81.20 235 | 81.36 267 | 89.85 277 | 74.97 165 | 94.30 310 | 81.03 198 | 79.84 305 | 93.01 268 |
|
TR-MVS | | | 86.78 209 | 85.76 214 | 89.82 213 | 94.37 166 | 78.41 234 | 92.47 228 | 92.83 250 | 81.11 236 | 86.36 165 | 92.40 201 | 68.73 247 | 97.48 176 | 73.75 275 | 89.85 186 | 93.57 245 |
|
VDDNet | | | 89.56 122 | 88.49 134 | 92.76 94 | 95.07 134 | 82.09 146 | 96.30 35 | 93.19 245 | 81.05 237 | 91.88 80 | 96.86 45 | 61.16 299 | 98.33 123 | 88.43 100 | 92.49 159 | 97.84 77 |
|
tpm | | | 84.73 250 | 84.02 243 | 86.87 291 | 90.33 296 | 68.90 326 | 89.06 293 | 89.94 316 | 80.85 238 | 85.75 174 | 89.86 276 | 68.54 249 | 95.97 274 | 77.76 238 | 84.05 248 | 95.75 154 |
|
D2MVS | | | 85.90 228 | 85.09 226 | 88.35 254 | 90.79 283 | 77.42 260 | 91.83 246 | 95.70 146 | 80.77 239 | 80.08 285 | 90.02 272 | 66.74 263 | 96.37 258 | 81.88 184 | 87.97 217 | 91.26 306 |
|
DWT-MVSNet_test | | | 84.95 247 | 83.68 248 | 88.77 241 | 91.43 255 | 73.75 291 | 91.74 249 | 90.98 296 | 80.66 240 | 83.84 231 | 87.36 310 | 62.44 287 | 97.11 214 | 78.84 229 | 85.81 234 | 95.46 160 |
|
Anonymous202405211 | | | 87.68 172 | 86.13 197 | 92.31 118 | 96.66 79 | 80.74 180 | 94.87 111 | 91.49 284 | 80.47 241 | 89.46 114 | 95.44 99 | 54.72 323 | 98.23 127 | 82.19 177 | 89.89 184 | 97.97 69 |
|
jason | | | 90.80 93 | 90.10 98 | 92.90 89 | 93.04 211 | 83.53 109 | 93.08 211 | 94.15 227 | 80.22 242 | 91.41 93 | 94.91 115 | 76.87 140 | 97.93 153 | 90.28 83 | 96.90 84 | 97.24 98 |
jason: jason. |
thisisatest0515 | | | 87.33 190 | 85.99 203 | 91.37 152 | 93.49 197 | 79.55 208 | 90.63 268 | 89.56 324 | 80.17 243 | 87.56 143 | 90.86 254 | 67.07 257 | 98.28 126 | 81.50 192 | 93.02 150 | 96.29 129 |
|
tpmrst | | | 85.35 238 | 84.99 227 | 86.43 294 | 90.88 281 | 67.88 329 | 88.71 297 | 91.43 286 | 80.13 244 | 86.08 171 | 88.80 291 | 73.05 194 | 96.02 272 | 82.48 171 | 83.40 258 | 95.40 163 |
|
CDPH-MVS | | | 92.83 62 | 92.30 68 | 94.44 48 | 97.79 48 | 86.11 51 | 94.06 169 | 96.66 81 | 80.09 245 | 92.77 59 | 96.63 58 | 86.62 38 | 99.04 62 | 87.40 112 | 98.66 40 | 98.17 53 |
|
MVS_0304 | | | 83.46 261 | 81.92 264 | 88.10 262 | 90.63 290 | 77.49 259 | 93.26 203 | 93.75 238 | 80.04 246 | 80.44 279 | 87.24 312 | 47.94 336 | 95.55 290 | 75.79 257 | 88.16 212 | 91.26 306 |
|
PM-MVS | | | 78.11 301 | 76.12 304 | 84.09 312 | 83.54 336 | 70.08 322 | 88.97 295 | 85.27 336 | 79.93 247 | 74.73 315 | 86.43 315 | 34.70 343 | 93.48 318 | 79.43 223 | 72.06 326 | 88.72 327 |
|
lupinMVS | | | 90.92 92 | 90.21 95 | 93.03 83 | 93.86 185 | 83.88 100 | 92.81 219 | 93.86 234 | 79.84 248 | 91.76 85 | 94.29 138 | 77.92 134 | 98.04 144 | 90.48 82 | 97.11 80 | 97.17 102 |
|
PatchMatch-RL | | | 86.77 212 | 85.54 216 | 90.47 186 | 95.88 107 | 82.71 134 | 90.54 269 | 92.31 260 | 79.82 249 | 84.32 220 | 91.57 235 | 68.77 246 | 96.39 257 | 73.16 277 | 93.48 140 | 92.32 289 |
|
PLC | | 84.53 7 | 89.06 138 | 88.03 145 | 92.15 123 | 97.27 67 | 82.69 135 | 94.29 152 | 95.44 170 | 79.71 250 | 84.01 228 | 94.18 143 | 76.68 145 | 98.75 95 | 77.28 243 | 93.41 141 | 95.02 172 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
F-COLMAP | | | 87.95 166 | 86.80 173 | 91.40 151 | 96.35 91 | 80.88 176 | 94.73 120 | 95.45 168 | 79.65 251 | 82.04 260 | 94.61 128 | 71.13 211 | 98.50 107 | 76.24 254 | 91.05 171 | 94.80 185 |
|
MIMVSNet | | | 82.59 270 | 80.53 274 | 88.76 242 | 91.51 251 | 78.32 236 | 86.57 316 | 90.13 311 | 79.32 252 | 80.70 274 | 88.69 294 | 52.98 328 | 93.07 324 | 66.03 312 | 88.86 201 | 94.90 180 |
|
test-mter | | | 84.54 253 | 83.64 250 | 87.25 280 | 90.95 274 | 71.67 309 | 89.55 283 | 89.88 319 | 79.17 253 | 84.54 209 | 87.95 303 | 55.56 319 | 95.11 302 | 81.82 185 | 93.37 143 | 94.97 173 |
|
miper_enhance_ethall | | | 86.90 205 | 86.18 196 | 89.06 236 | 91.66 249 | 77.58 258 | 90.22 275 | 94.82 206 | 79.16 254 | 84.48 211 | 89.10 285 | 79.19 120 | 96.66 236 | 84.06 149 | 82.94 260 | 92.94 270 |
|
MDA-MVSNet-bldmvs | | | 78.85 300 | 76.31 302 | 86.46 293 | 89.76 307 | 73.88 290 | 88.79 296 | 90.42 306 | 79.16 254 | 59.18 338 | 88.33 298 | 60.20 304 | 94.04 313 | 62.00 325 | 68.96 330 | 91.48 302 |
|
tpmvs | | | 83.35 265 | 82.07 262 | 87.20 284 | 91.07 270 | 71.00 316 | 88.31 303 | 91.70 277 | 78.91 256 | 80.49 278 | 87.18 313 | 69.30 239 | 97.08 217 | 68.12 305 | 83.56 254 | 93.51 249 |
|
原ACMM1 | | | | | 92.01 125 | 97.34 62 | 81.05 171 | | 96.81 67 | 78.89 257 | 90.45 103 | 95.92 87 | 82.65 79 | 98.84 91 | 80.68 205 | 98.26 58 | 96.14 134 |
|
MSDG | | | 84.86 249 | 83.09 255 | 90.14 199 | 93.80 188 | 80.05 197 | 89.18 292 | 93.09 246 | 78.89 257 | 78.19 296 | 91.91 222 | 65.86 274 | 97.27 200 | 68.47 300 | 88.45 207 | 93.11 264 |
|
PAPM | | | 86.68 213 | 85.39 220 | 90.53 180 | 93.05 210 | 79.33 218 | 89.79 282 | 94.77 210 | 78.82 259 | 81.95 261 | 93.24 175 | 76.81 141 | 97.30 196 | 66.94 307 | 93.16 147 | 94.95 179 |
|
PVSNet | | 78.82 18 | 85.55 234 | 84.65 236 | 88.23 259 | 94.72 150 | 71.93 307 | 87.12 313 | 92.75 253 | 78.80 260 | 84.95 203 | 90.53 262 | 64.43 280 | 96.71 235 | 74.74 267 | 93.86 132 | 96.06 142 |
|
MVP-Stereo | | | 85.97 227 | 84.86 232 | 89.32 229 | 90.92 278 | 82.19 145 | 92.11 241 | 94.19 225 | 78.76 261 | 78.77 295 | 91.63 231 | 68.38 251 | 96.56 246 | 75.01 266 | 93.95 130 | 89.20 323 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
OpenMVS | | 83.78 11 | 88.74 147 | 87.29 161 | 93.08 80 | 92.70 220 | 85.39 70 | 96.57 29 | 96.43 94 | 78.74 262 | 80.85 272 | 96.07 83 | 69.64 233 | 99.01 69 | 78.01 237 | 96.65 90 | 94.83 183 |
|
MDTV_nov1_ep13 | | | | 83.56 251 | | 91.69 248 | 69.93 323 | 87.75 308 | 91.54 282 | 78.60 263 | 84.86 204 | 88.90 288 | 69.54 234 | 96.03 271 | 70.25 288 | 88.93 200 | |
|
Patchmatch-RL test | | | 81.67 277 | 79.96 282 | 86.81 292 | 85.42 330 | 71.23 312 | 82.17 334 | 87.50 332 | 78.47 264 | 77.19 304 | 82.50 329 | 70.81 216 | 93.48 318 | 82.66 170 | 72.89 324 | 95.71 155 |
|
QAPM | | | 89.51 123 | 88.15 143 | 93.59 70 | 94.92 142 | 84.58 79 | 96.82 24 | 96.70 77 | 78.43 265 | 83.41 243 | 96.19 79 | 73.18 193 | 99.30 39 | 77.11 246 | 96.54 93 | 96.89 115 |
|
1314 | | | 87.51 184 | 86.57 184 | 90.34 193 | 92.42 225 | 79.74 207 | 92.63 223 | 95.35 178 | 78.35 266 | 80.14 283 | 91.62 232 | 74.05 178 | 97.15 210 | 81.05 195 | 93.53 137 | 94.12 213 |
|
CR-MVSNet | | | 85.35 238 | 83.76 247 | 90.12 200 | 90.58 291 | 79.34 215 | 85.24 323 | 91.96 273 | 78.27 267 | 85.55 179 | 87.87 306 | 71.03 213 | 95.61 287 | 73.96 273 | 89.36 193 | 95.40 163 |
|
USDC | | | 82.76 267 | 81.26 269 | 87.26 279 | 91.17 265 | 74.55 285 | 89.27 289 | 93.39 243 | 78.26 268 | 75.30 312 | 92.08 216 | 54.43 325 | 96.63 237 | 71.64 281 | 85.79 236 | 90.61 314 |
|
new-patchmatchnet | | | 76.41 304 | 75.17 305 | 80.13 318 | 82.65 339 | 59.61 339 | 87.66 310 | 91.08 292 | 78.23 269 | 69.85 329 | 83.22 326 | 54.76 322 | 91.63 333 | 64.14 320 | 64.89 335 | 89.16 324 |
|
1112_ss | | | 88.42 153 | 87.33 160 | 91.72 142 | 94.92 142 | 80.98 172 | 92.97 216 | 94.54 213 | 78.16 270 | 83.82 232 | 93.88 157 | 78.78 124 | 97.91 154 | 79.45 221 | 89.41 191 | 96.26 131 |
|
MIMVSNet1 | | | 79.38 297 | 77.28 298 | 85.69 300 | 86.35 328 | 73.67 292 | 91.61 254 | 92.75 253 | 78.11 271 | 72.64 324 | 88.12 301 | 48.16 335 | 91.97 330 | 60.32 329 | 77.49 315 | 91.43 303 |
|
MS-PatchMatch | | | 85.05 245 | 84.16 241 | 87.73 268 | 91.42 256 | 78.51 231 | 91.25 260 | 93.53 240 | 77.50 272 | 80.15 282 | 91.58 233 | 61.99 290 | 95.51 293 | 75.69 258 | 94.35 128 | 89.16 324 |
|
AllTest | | | 83.42 262 | 81.39 267 | 89.52 225 | 95.01 135 | 77.79 251 | 93.12 208 | 90.89 300 | 77.41 273 | 76.12 308 | 93.34 168 | 54.08 326 | 97.51 174 | 68.31 302 | 84.27 246 | 93.26 255 |
|
TestCases | | | | | 89.52 225 | 95.01 135 | 77.79 251 | | 90.89 300 | 77.41 273 | 76.12 308 | 93.34 168 | 54.08 326 | 97.51 174 | 68.31 302 | 84.27 246 | 93.26 255 |
|
TESTMET0.1,1 | | | 83.74 260 | 82.85 259 | 86.42 295 | 89.96 304 | 71.21 313 | 89.55 283 | 87.88 328 | 77.41 273 | 83.37 244 | 87.31 311 | 56.71 316 | 93.65 317 | 80.62 206 | 92.85 154 | 94.40 205 |
|
gm-plane-assit | | | | | | 89.60 309 | 68.00 328 | | | 77.28 276 | | 88.99 286 | | 97.57 170 | 79.44 222 | | |
|
EG-PatchMatch MVS | | | 82.37 272 | 80.34 276 | 88.46 251 | 90.27 297 | 79.35 214 | 92.80 220 | 94.33 220 | 77.14 277 | 73.26 322 | 90.18 268 | 47.47 338 | 96.72 233 | 70.25 288 | 87.32 226 | 89.30 321 |
|
FMVSNet5 | | | 81.52 281 | 79.60 286 | 87.27 278 | 91.17 265 | 77.95 244 | 91.49 255 | 92.26 262 | 76.87 278 | 76.16 307 | 87.91 305 | 51.67 329 | 92.34 326 | 67.74 306 | 81.16 281 | 91.52 300 |
|
our_test_3 | | | 81.93 274 | 80.46 275 | 86.33 296 | 88.46 317 | 73.48 293 | 88.46 301 | 91.11 291 | 76.46 279 | 76.69 305 | 88.25 299 | 66.89 259 | 94.36 309 | 68.75 298 | 79.08 310 | 91.14 310 |
|
TDRefinement | | | 79.81 294 | 77.34 297 | 87.22 283 | 79.24 341 | 75.48 282 | 93.12 208 | 92.03 268 | 76.45 280 | 75.01 313 | 91.58 233 | 49.19 334 | 96.44 255 | 70.22 290 | 69.18 329 | 89.75 320 |
|
LF4IMVS | | | 80.37 291 | 79.07 292 | 84.27 311 | 86.64 327 | 69.87 324 | 89.39 288 | 91.05 294 | 76.38 281 | 74.97 314 | 90.00 273 | 47.85 337 | 94.25 312 | 74.55 270 | 80.82 292 | 88.69 328 |
|
TAPA-MVS | | 84.62 6 | 88.16 161 | 87.01 168 | 91.62 145 | 96.64 80 | 80.65 181 | 94.39 144 | 96.21 111 | 76.38 281 | 86.19 169 | 95.44 99 | 79.75 111 | 98.08 141 | 62.75 324 | 95.29 112 | 96.13 135 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
dp | | | 81.47 282 | 80.23 278 | 85.17 304 | 89.92 305 | 65.49 335 | 86.74 314 | 90.10 312 | 76.30 283 | 81.10 269 | 87.12 314 | 62.81 285 | 95.92 276 | 68.13 304 | 79.88 303 | 94.09 216 |
|
CostFormer | | | 85.77 232 | 84.94 230 | 88.26 257 | 91.16 267 | 72.58 305 | 89.47 287 | 91.04 295 | 76.26 284 | 86.45 163 | 89.97 274 | 70.74 217 | 96.86 231 | 82.35 174 | 87.07 229 | 95.34 166 |
|
RPSCF | | | 85.07 244 | 84.27 240 | 87.48 275 | 92.91 217 | 70.62 319 | 91.69 252 | 92.46 258 | 76.20 285 | 82.67 253 | 95.22 106 | 63.94 282 | 97.29 199 | 77.51 242 | 85.80 235 | 94.53 196 |
|
Test_1112_low_res | | | 87.65 174 | 86.51 185 | 91.08 162 | 94.94 141 | 79.28 219 | 91.77 247 | 94.30 221 | 76.04 286 | 83.51 241 | 92.37 202 | 77.86 136 | 97.73 163 | 78.69 230 | 89.13 198 | 96.22 132 |
|
pmmvs4 | | | 85.43 236 | 83.86 246 | 90.16 197 | 90.02 303 | 82.97 125 | 90.27 272 | 92.67 255 | 75.93 287 | 80.73 273 | 91.74 227 | 71.05 212 | 95.73 286 | 78.85 228 | 83.46 256 | 91.78 296 |
|
LS3D | | | 87.89 167 | 86.32 192 | 92.59 103 | 96.07 101 | 82.92 126 | 95.23 86 | 94.92 199 | 75.66 288 | 82.89 250 | 95.98 85 | 72.48 201 | 99.21 46 | 68.43 301 | 95.23 115 | 95.64 156 |
|
pmmvs5 | | | 84.21 255 | 82.84 260 | 88.34 255 | 88.95 312 | 76.94 266 | 92.41 229 | 91.91 275 | 75.63 289 | 80.28 280 | 91.18 245 | 64.59 279 | 95.57 289 | 77.09 247 | 83.47 255 | 92.53 281 |
|
pmmvs-eth3d | | | 80.97 288 | 78.72 294 | 87.74 267 | 84.99 333 | 79.97 202 | 90.11 278 | 91.65 279 | 75.36 290 | 73.51 320 | 86.03 317 | 59.45 309 | 93.96 314 | 75.17 263 | 72.21 325 | 89.29 322 |
|
ppachtmachnet_test | | | 81.84 275 | 80.07 281 | 87.15 285 | 88.46 317 | 74.43 286 | 89.04 294 | 92.16 264 | 75.33 291 | 77.75 300 | 88.99 286 | 66.20 269 | 95.37 298 | 65.12 316 | 77.60 314 | 91.65 298 |
|
test_0402 | | | 81.30 285 | 79.17 290 | 87.67 269 | 93.19 205 | 78.17 240 | 92.98 215 | 91.71 276 | 75.25 292 | 76.02 310 | 90.31 266 | 59.23 310 | 96.37 258 | 50.22 338 | 83.63 253 | 88.47 330 |
|
COLMAP_ROB | | 80.39 16 | 83.96 257 | 82.04 263 | 89.74 217 | 95.28 127 | 79.75 206 | 94.25 154 | 92.28 261 | 75.17 293 | 78.02 299 | 93.77 163 | 58.60 312 | 97.84 156 | 65.06 317 | 85.92 233 | 91.63 299 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TinyColmap | | | 79.76 295 | 77.69 296 | 85.97 298 | 91.71 246 | 73.12 296 | 89.55 283 | 90.36 308 | 75.03 294 | 72.03 326 | 90.19 267 | 46.22 339 | 96.19 267 | 63.11 322 | 81.03 286 | 88.59 329 |
|
DP-MVS | | | 87.25 194 | 85.36 222 | 92.90 89 | 97.65 52 | 83.24 115 | 94.81 115 | 92.00 269 | 74.99 295 | 81.92 262 | 95.00 113 | 72.66 198 | 99.05 59 | 66.92 309 | 92.33 160 | 96.40 126 |
|
PatchT | | | 82.68 269 | 81.27 268 | 86.89 290 | 90.09 301 | 70.94 317 | 84.06 327 | 90.15 310 | 74.91 296 | 85.63 178 | 83.57 325 | 69.37 235 | 94.87 306 | 65.19 314 | 88.50 206 | 94.84 182 |
|
CHOSEN 280x420 | | | 85.15 243 | 83.99 244 | 88.65 247 | 92.47 223 | 78.40 235 | 79.68 338 | 92.76 252 | 74.90 297 | 81.41 266 | 89.59 280 | 69.85 231 | 95.51 293 | 79.92 217 | 95.29 112 | 92.03 293 |
|
gg-mvs-nofinetune | | | 81.77 276 | 79.37 287 | 88.99 239 | 90.85 282 | 77.73 254 | 86.29 317 | 79.63 344 | 74.88 298 | 83.19 248 | 69.05 338 | 60.34 303 | 96.11 269 | 75.46 260 | 94.64 121 | 93.11 264 |
|
pmmvs6 | | | 83.42 262 | 81.60 266 | 88.87 240 | 88.01 323 | 77.87 248 | 94.96 103 | 94.24 224 | 74.67 299 | 78.80 294 | 91.09 250 | 60.17 305 | 96.49 250 | 77.06 248 | 75.40 320 | 92.23 291 |
|
CHOSEN 1792x2688 | | | 88.84 144 | 87.69 151 | 92.30 119 | 96.14 95 | 81.42 163 | 90.01 279 | 95.86 135 | 74.52 300 | 87.41 144 | 93.94 152 | 75.46 159 | 98.36 118 | 80.36 210 | 95.53 104 | 97.12 105 |
|
MDA-MVSNet_test_wron | | | 79.21 299 | 77.19 300 | 85.29 302 | 88.22 321 | 72.77 300 | 85.87 319 | 90.06 313 | 74.34 301 | 62.62 337 | 87.56 309 | 66.14 270 | 91.99 329 | 66.90 310 | 73.01 322 | 91.10 312 |
|
YYNet1 | | | 79.22 298 | 77.20 299 | 85.28 303 | 88.20 322 | 72.66 302 | 85.87 319 | 90.05 315 | 74.33 302 | 62.70 336 | 87.61 308 | 66.09 271 | 92.03 328 | 66.94 307 | 72.97 323 | 91.15 309 |
|
Anonymous20240529 | | | 88.09 163 | 86.59 183 | 92.58 104 | 96.53 85 | 81.92 151 | 95.99 50 | 95.84 136 | 74.11 303 | 89.06 120 | 95.21 107 | 61.44 294 | 98.81 92 | 83.67 156 | 87.47 221 | 97.01 109 |
|
无先验 | | | | | | | | 93.28 202 | 96.26 103 | 73.95 304 | | | | 99.05 59 | 80.56 207 | | 96.59 122 |
|
Anonymous20231211 | | | 86.59 216 | 85.13 225 | 90.98 171 | 96.52 86 | 81.50 157 | 96.14 42 | 96.16 112 | 73.78 305 | 83.65 237 | 92.15 210 | 63.26 284 | 97.37 194 | 82.82 167 | 81.74 277 | 94.06 218 |
|
Anonymous20231206 | | | 81.03 287 | 79.77 284 | 84.82 306 | 87.85 325 | 70.26 321 | 91.42 256 | 92.08 266 | 73.67 306 | 77.75 300 | 89.25 284 | 62.43 288 | 93.08 323 | 61.50 327 | 82.00 273 | 91.12 311 |
|
PCF-MVS | | 84.11 10 | 87.74 171 | 86.08 201 | 92.70 99 | 94.02 176 | 84.43 89 | 89.27 289 | 95.87 134 | 73.62 307 | 84.43 214 | 94.33 135 | 78.48 130 | 98.86 86 | 70.27 287 | 94.45 126 | 94.81 184 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HyFIR lowres test | | | 88.09 163 | 86.81 172 | 91.93 132 | 96.00 103 | 80.63 182 | 90.01 279 | 95.79 140 | 73.42 308 | 87.68 141 | 92.10 215 | 73.86 182 | 97.96 150 | 80.75 203 | 91.70 163 | 97.19 101 |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 345 | 87.62 311 | | 73.32 309 | 84.59 208 | | 70.33 225 | | 74.65 268 | | 95.50 158 |
|
JIA-IIPM | | | 81.04 286 | 78.98 293 | 87.25 280 | 88.64 314 | 73.48 293 | 81.75 335 | 89.61 323 | 73.19 310 | 82.05 259 | 73.71 335 | 66.07 272 | 95.87 279 | 71.18 285 | 84.60 244 | 92.41 285 |
|
cascas | | | 86.43 222 | 84.98 228 | 90.80 174 | 92.10 233 | 80.92 175 | 90.24 273 | 95.91 130 | 73.10 311 | 83.57 240 | 88.39 296 | 65.15 276 | 97.46 178 | 84.90 140 | 91.43 165 | 94.03 220 |
|
ANet_high | | | 58.88 313 | 54.22 316 | 72.86 323 | 56.50 351 | 56.67 342 | 80.75 337 | 86.00 333 | 73.09 312 | 37.39 344 | 64.63 341 | 22.17 347 | 79.49 345 | 43.51 340 | 23.96 345 | 82.43 337 |
|
ADS-MVSNet2 | | | 81.66 278 | 79.71 285 | 87.50 273 | 91.35 259 | 74.19 288 | 83.33 330 | 88.48 327 | 72.90 313 | 82.24 257 | 85.77 318 | 64.98 277 | 93.20 322 | 64.57 318 | 83.74 250 | 95.12 169 |
|
ADS-MVSNet | | | 81.56 280 | 79.78 283 | 86.90 289 | 91.35 259 | 71.82 308 | 83.33 330 | 89.16 325 | 72.90 313 | 82.24 257 | 85.77 318 | 64.98 277 | 93.76 315 | 64.57 318 | 83.74 250 | 95.12 169 |
|
PVSNet_0 | | 73.20 20 | 77.22 302 | 74.83 306 | 84.37 309 | 90.70 288 | 71.10 314 | 83.09 332 | 89.67 322 | 72.81 315 | 73.93 319 | 83.13 327 | 60.79 300 | 93.70 316 | 68.54 299 | 50.84 341 | 88.30 331 |
|
testdata | | | | | 90.49 184 | 96.40 88 | 77.89 247 | | 95.37 176 | 72.51 316 | 93.63 41 | 96.69 54 | 82.08 90 | 97.65 165 | 83.08 160 | 97.39 77 | 95.94 145 |
|
PMMVS | | | 85.71 233 | 84.96 229 | 87.95 265 | 88.90 313 | 77.09 264 | 88.68 298 | 90.06 313 | 72.32 317 | 86.47 160 | 90.76 259 | 72.15 204 | 94.40 308 | 81.78 187 | 93.49 138 | 92.36 287 |
|
Patchmtry | | | 82.71 268 | 80.93 272 | 88.06 263 | 90.05 302 | 76.37 274 | 84.74 325 | 91.96 273 | 72.28 318 | 81.32 268 | 87.87 306 | 71.03 213 | 95.50 295 | 68.97 297 | 80.15 300 | 92.32 289 |
|
tpm2 | | | 84.08 256 | 82.94 257 | 87.48 275 | 91.39 257 | 71.27 311 | 89.23 291 | 90.37 307 | 71.95 319 | 84.64 206 | 89.33 283 | 67.30 253 | 96.55 248 | 75.17 263 | 87.09 228 | 94.63 188 |
|
UnsupCasMVSNet_bld | | | 76.23 305 | 73.27 307 | 85.09 305 | 83.79 335 | 72.92 297 | 85.65 322 | 93.47 242 | 71.52 320 | 68.84 331 | 79.08 333 | 49.77 331 | 93.21 321 | 66.81 311 | 60.52 339 | 89.13 326 |
|
RPMNet | | | 83.18 266 | 80.87 273 | 90.12 200 | 90.58 291 | 79.34 215 | 85.24 323 | 90.78 303 | 71.44 321 | 85.55 179 | 82.97 328 | 70.87 215 | 95.61 287 | 61.01 328 | 89.36 193 | 95.40 163 |
|
旧先验2 | | | | | | | | 93.36 195 | | 71.25 322 | 94.37 26 | | | 97.13 213 | 86.74 122 | | |
|
新几何1 | | | | | 93.10 79 | 97.30 64 | 84.35 91 | | 95.56 157 | 71.09 323 | 91.26 96 | 96.24 73 | 82.87 78 | 98.86 86 | 79.19 226 | 98.10 61 | 96.07 141 |
|
1121 | | | 90.42 104 | 89.49 109 | 93.20 75 | 97.27 67 | 84.46 85 | 92.63 223 | 95.51 162 | 71.01 324 | 91.20 97 | 96.21 75 | 82.92 77 | 99.05 59 | 80.56 207 | 98.07 62 | 96.10 139 |
|
Patchmatch-test | | | 81.37 283 | 79.30 288 | 87.58 271 | 90.92 278 | 74.16 289 | 80.99 336 | 87.68 331 | 70.52 325 | 76.63 306 | 88.81 289 | 71.21 210 | 92.76 325 | 60.01 332 | 86.93 230 | 95.83 151 |
|
114514_t | | | 89.51 123 | 88.50 132 | 92.54 106 | 98.11 36 | 81.99 148 | 95.16 93 | 96.36 99 | 70.19 326 | 85.81 173 | 95.25 105 | 76.70 144 | 98.63 100 | 82.07 179 | 96.86 86 | 97.00 110 |
|
N_pmnet | | | 68.89 309 | 68.44 311 | 70.23 325 | 89.07 311 | 28.79 353 | 88.06 304 | 19.50 354 | 69.47 327 | 71.86 327 | 84.93 321 | 61.24 297 | 91.75 331 | 54.70 336 | 77.15 317 | 90.15 318 |
|
OpenMVS_ROB | | 74.94 19 | 79.51 296 | 77.03 301 | 86.93 287 | 87.00 326 | 76.23 276 | 92.33 233 | 90.74 304 | 68.93 328 | 74.52 316 | 88.23 300 | 49.58 332 | 96.62 238 | 57.64 334 | 84.29 245 | 87.94 332 |
|
test222 | | | | | | 96.55 84 | 81.70 154 | 92.22 237 | 95.01 191 | 68.36 329 | 90.20 106 | 96.14 81 | 80.26 106 | | | 97.80 70 | 96.05 143 |
|
MVS | | | 87.44 187 | 86.10 200 | 91.44 150 | 92.61 222 | 83.62 107 | 92.63 223 | 95.66 150 | 67.26 330 | 81.47 264 | 92.15 210 | 77.95 133 | 98.22 129 | 79.71 218 | 95.48 106 | 92.47 283 |
|
tpm cat1 | | | 81.96 273 | 80.27 277 | 87.01 286 | 91.09 269 | 71.02 315 | 87.38 312 | 91.53 283 | 66.25 331 | 80.17 281 | 86.35 316 | 68.22 252 | 96.15 268 | 69.16 296 | 82.29 267 | 93.86 230 |
|
CVMVSNet | | | 84.69 252 | 84.79 234 | 84.37 309 | 91.84 241 | 64.92 336 | 93.70 186 | 91.47 285 | 66.19 332 | 86.16 170 | 95.28 103 | 67.18 256 | 93.33 320 | 80.89 201 | 90.42 176 | 94.88 181 |
|
CMPMVS | | 59.16 21 | 80.52 290 | 79.20 289 | 84.48 308 | 83.98 334 | 67.63 331 | 89.95 281 | 93.84 236 | 64.79 333 | 66.81 334 | 91.14 248 | 57.93 314 | 95.17 300 | 76.25 253 | 88.10 213 | 90.65 313 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 81.32 284 | 80.95 271 | 82.42 316 | 88.50 316 | 63.67 337 | 93.32 196 | 91.33 287 | 64.02 334 | 80.57 277 | 92.83 189 | 61.21 298 | 92.27 327 | 76.34 252 | 80.38 299 | 91.32 304 |
|
new_pmnet | | | 72.15 307 | 70.13 309 | 78.20 320 | 82.95 338 | 65.68 333 | 83.91 328 | 82.40 340 | 62.94 335 | 64.47 335 | 79.82 332 | 42.85 341 | 86.26 340 | 57.41 335 | 74.44 321 | 82.65 336 |
|
DSMNet-mixed | | | 76.94 303 | 76.29 303 | 78.89 319 | 83.10 337 | 56.11 344 | 87.78 307 | 79.77 343 | 60.65 336 | 75.64 311 | 88.71 292 | 61.56 293 | 88.34 338 | 60.07 331 | 89.29 195 | 92.21 292 |
|
pmmvs3 | | | 71.81 308 | 68.71 310 | 81.11 317 | 75.86 342 | 70.42 320 | 86.74 314 | 83.66 338 | 58.95 337 | 68.64 332 | 80.89 331 | 36.93 342 | 89.52 336 | 63.10 323 | 63.59 336 | 83.39 334 |
|
MVS-HIRNet | | | 73.70 306 | 72.20 308 | 78.18 321 | 91.81 243 | 56.42 343 | 82.94 333 | 82.58 339 | 55.24 338 | 68.88 330 | 66.48 339 | 55.32 321 | 95.13 301 | 58.12 333 | 88.42 208 | 83.01 335 |
|
PMMVS2 | | | 59.60 312 | 56.40 314 | 69.21 326 | 68.83 345 | 46.58 348 | 73.02 343 | 77.48 347 | 55.07 339 | 49.21 341 | 72.95 337 | 17.43 351 | 80.04 344 | 49.32 339 | 44.33 342 | 80.99 338 |
|
FPMVS | | | 64.63 311 | 62.55 312 | 70.88 324 | 70.80 344 | 56.71 341 | 84.42 326 | 84.42 337 | 51.78 340 | 49.57 340 | 81.61 330 | 23.49 346 | 81.48 343 | 40.61 342 | 76.25 319 | 74.46 339 |
|
LCM-MVSNet | | | 66.00 310 | 62.16 313 | 77.51 322 | 64.51 348 | 58.29 340 | 83.87 329 | 90.90 299 | 48.17 341 | 54.69 339 | 73.31 336 | 16.83 352 | 86.75 339 | 65.47 313 | 61.67 338 | 87.48 333 |
|
DeepMVS_CX | | | | | 56.31 330 | 74.23 343 | 51.81 346 | | 56.67 352 | 44.85 342 | 48.54 342 | 75.16 334 | 27.87 345 | 58.74 349 | 40.92 341 | 52.22 340 | 58.39 342 |
|
Gipuma | | | 57.99 314 | 54.91 315 | 67.24 327 | 88.51 315 | 65.59 334 | 52.21 346 | 90.33 309 | 43.58 343 | 42.84 343 | 51.18 344 | 20.29 349 | 85.07 341 | 34.77 343 | 70.45 327 | 51.05 343 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS | | 47.18 22 | 52.22 315 | 48.46 317 | 63.48 328 | 45.72 352 | 46.20 349 | 73.41 342 | 78.31 345 | 41.03 344 | 30.06 346 | 65.68 340 | 6.05 353 | 83.43 342 | 30.04 344 | 65.86 333 | 60.80 340 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 43.23 317 | 42.29 318 | 46.03 331 | 65.58 347 | 37.41 350 | 73.51 341 | 64.62 348 | 33.99 345 | 28.47 348 | 47.87 345 | 19.90 350 | 67.91 346 | 22.23 346 | 24.45 344 | 32.77 344 |
|
EMVS | | | 42.07 318 | 41.12 319 | 44.92 332 | 63.45 349 | 35.56 352 | 73.65 340 | 63.48 349 | 33.05 346 | 26.88 349 | 45.45 346 | 21.27 348 | 67.14 347 | 19.80 347 | 23.02 346 | 32.06 345 |
|
MVE | | 39.65 23 | 43.39 316 | 38.59 321 | 57.77 329 | 56.52 350 | 48.77 347 | 55.38 345 | 58.64 351 | 29.33 347 | 28.96 347 | 52.65 343 | 4.68 354 | 64.62 348 | 28.11 345 | 33.07 343 | 59.93 341 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 21.27 321 | 20.48 323 | 23.63 334 | 68.59 346 | 36.41 351 | 49.57 347 | 6.85 355 | 9.37 348 | 7.89 350 | 4.46 352 | 4.03 355 | 31.37 350 | 17.47 348 | 16.07 348 | 3.12 347 |
|
tmp_tt | | | 35.64 319 | 39.24 320 | 24.84 333 | 14.87 353 | 23.90 354 | 62.71 344 | 51.51 353 | 6.58 349 | 36.66 345 | 62.08 342 | 44.37 340 | 30.34 351 | 52.40 337 | 22.00 347 | 20.27 346 |
|
testmvs | | | 8.92 322 | 11.52 324 | 1.12 336 | 1.06 354 | 0.46 356 | 86.02 318 | 0.65 356 | 0.62 350 | 2.74 351 | 9.52 350 | 0.31 357 | 0.45 353 | 2.38 349 | 0.39 349 | 2.46 349 |
|
test123 | | | 8.76 323 | 11.22 325 | 1.39 335 | 0.85 355 | 0.97 355 | 85.76 321 | 0.35 357 | 0.54 351 | 2.45 352 | 8.14 351 | 0.60 356 | 0.48 352 | 2.16 350 | 0.17 350 | 2.71 348 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
cdsmvs_eth3d_5k | | | 22.14 320 | 29.52 322 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 95.76 142 | 0.00 352 | 0.00 353 | 94.29 138 | 75.66 157 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 6.64 325 | 8.86 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 79.70 113 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 7.82 324 | 10.43 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 93.88 157 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
OPU-MVS | | | | | 96.21 1 | 98.00 42 | 90.85 1 | 97.13 9 | | | | 97.08 37 | 92.59 1 | 98.94 80 | 92.25 42 | 98.99 10 | 98.84 8 |
|
test_0728_SECOND | | | | | 95.01 15 | 98.79 1 | 86.43 40 | 97.09 11 | 97.49 5 | | | | | 99.61 3 | 95.62 5 | 99.08 7 | 98.99 5 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 136 |
|
test_part2 | | | | | | 98.55 11 | 87.22 16 | | | | 96.40 11 | | | | | | |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 97.45 11 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 206 | | | | 96.12 136 |
|
sam_mvs | | | | | | | | | | | | | 70.60 218 | | | | |
|
ambc | | | | | 83.06 314 | 79.99 340 | 63.51 338 | 77.47 339 | 92.86 249 | | 74.34 318 | 84.45 322 | 28.74 344 | 95.06 304 | 73.06 278 | 68.89 331 | 90.61 314 |
|
MTGPA | | | | | | | | | 96.97 49 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 305 | | | | 9.81 349 | 69.31 238 | 95.53 291 | 76.65 249 | | |
|
test_post | | | | | | | | | | | | 10.29 348 | 70.57 222 | 95.91 278 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 324 | 71.53 207 | 96.48 251 | | | |
|
GG-mvs-BLEND | | | | | 87.94 266 | 89.73 308 | 77.91 245 | 87.80 306 | 78.23 346 | | 80.58 276 | 83.86 323 | 59.88 307 | 95.33 299 | 71.20 283 | 92.22 161 | 90.60 316 |
|
MTMP | | | | | | | | 96.16 40 | 60.64 350 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 54 | 98.71 30 | 98.07 62 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 80 | 98.68 35 | 98.27 46 |
|
agg_prior | | | | | | 97.38 60 | 85.92 59 | | 96.72 75 | | 92.16 74 | | | 98.97 76 | | | |
|
test_prior4 | | | | | | | 85.96 56 | 94.11 162 | | | | | | | | | |
|
test_prior | | | | | 93.82 64 | 97.29 65 | 84.49 82 | | 96.88 59 | | | | | 98.87 83 | | | 98.11 60 |
|
新几何2 | | | | | | | | 93.11 210 | | | | | | | | | |
|
旧先验1 | | | | | | 96.79 76 | 81.81 152 | | 95.67 148 | | | 96.81 49 | 86.69 37 | | | 97.66 72 | 96.97 111 |
|
原ACMM2 | | | | | | | | 92.94 217 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 95 | 78.30 233 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 34 | | | | |
|
test12 | | | | | 94.34 53 | 97.13 70 | 86.15 50 | | 96.29 101 | | 91.04 99 | | 85.08 57 | 99.01 69 | | 98.13 60 | 97.86 76 |
|
plane_prior7 | | | | | | 94.70 152 | 82.74 131 | | | | | | | | | | |
|
plane_prior6 | | | | | | 94.52 158 | 82.75 129 | | | | | | 74.23 173 | | | | |
|
plane_prior5 | | | | | | | | | 96.22 108 | | | | | 98.12 132 | 88.15 102 | 89.99 180 | 94.63 188 |
|
plane_prior4 | | | | | | | | | | | | 94.86 118 | | | | | |
|
plane_prior1 | | | | | | 94.59 156 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 334 | | | | | | | | |
|
lessismore_v0 | | | | | 86.04 297 | 88.46 317 | 68.78 327 | | 80.59 342 | | 73.01 323 | 90.11 270 | 55.39 320 | 96.43 256 | 75.06 265 | 65.06 334 | 92.90 271 |
|
test11 | | | | | | | | | 96.57 88 | | | | | | | | |
|
door | | | | | | | | | 85.33 335 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 155 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 119 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 190 | | | 97.96 150 | | | 94.51 198 |
|
HQP3-MVS | | | | | | | | | 96.04 121 | | | | | | | 89.77 187 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 183 | | | | |
|
NP-MVS | | | | | | 94.37 166 | 82.42 139 | | | | | 93.98 150 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 221 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 216 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 108 | | | | |
|