This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
EPNet91.79 8091.02 9094.10 5890.10 31185.25 7396.03 5392.05 28292.83 187.39 15695.78 9679.39 12499.01 7088.13 11397.48 8298.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7196.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3498.40 5398.62 16
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8996.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
UA-Net92.83 6592.54 6993.68 7096.10 10384.71 7895.66 7196.39 10391.92 493.22 5396.49 6983.16 8098.87 8884.47 15595.47 11397.45 96
CANet93.54 5193.20 5794.55 4495.65 12185.73 6794.94 11396.69 8291.89 590.69 10995.88 9381.99 9999.54 1693.14 3197.95 7198.39 36
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13896.70 8091.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 8098.16 55
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6699.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13896.44 9891.69 994.32 2896.56 6787.05 3699.03 6493.35 2697.65 8098.15 56
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 13096.41 10191.60 1093.75 4096.71 5685.95 4899.10 5793.21 3096.65 9698.01 69
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 13095.83 14491.27 1293.60 4696.71 5685.75 5098.86 9192.87 3396.65 9697.96 71
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10896.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15896.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
EI-MVSNet-Vis-set93.01 6492.92 6393.29 7495.01 14183.51 11494.48 14295.77 14890.87 1592.52 7496.67 6084.50 6699.00 7591.99 5794.44 13397.36 97
3Dnovator+87.14 492.42 7391.37 8295.55 495.63 12288.73 497.07 1396.77 7190.84 1684.02 23996.62 6375.95 15999.34 3387.77 11697.68 7898.59 18
HQP_MVS90.60 10790.19 10191.82 14394.70 16182.73 13795.85 6196.22 11490.81 1786.91 16494.86 12474.23 18298.12 13788.15 11189.99 18794.63 198
plane_prior295.85 6190.81 17
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
DELS-MVS93.43 5493.25 5493.97 5995.42 12785.04 7493.06 22397.13 3990.74 2091.84 9095.09 11786.32 4399.21 4791.22 7798.45 5097.65 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS92.74 6792.66 6792.97 8895.20 13684.04 10095.07 10596.51 9690.73 2192.96 6091.19 25484.06 7198.34 12591.72 6996.54 9996.54 130
EI-MVSNet-UG-set92.74 6792.62 6893.12 8094.86 15383.20 12194.40 15095.74 15190.71 2292.05 8596.60 6484.00 7398.99 7791.55 7193.63 14197.17 105
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6197.16 3785.02 6099.49 2391.99 5798.56 4798.47 28
X-MVStestdata88.31 16586.13 20794.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6123.41 36485.02 6099.49 2391.99 5798.56 4798.47 28
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23994.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7690.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
plane_prior382.75 13490.26 3086.91 164
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 21294.00 18297.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6497.33 2290.03 3393.58 4796.96 4684.87 6297.76 16692.19 5098.66 4096.76 121
canonicalmvs93.27 5892.75 6694.85 2795.70 12087.66 1196.33 3596.41 10190.00 3494.09 3394.60 13682.33 9098.62 10692.40 4392.86 16098.27 47
Vis-MVSNetpermissive91.75 8291.23 8593.29 7495.32 13183.78 10696.14 4695.98 13089.89 3590.45 11196.58 6575.09 17198.31 12984.75 15296.90 9097.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet88.84 15287.95 15691.49 15692.68 23283.01 12894.92 11596.31 10689.88 3685.53 19293.85 16776.63 15396.96 23581.91 19379.87 31394.50 209
hse-mvs390.80 9790.15 10392.75 9796.01 10782.66 14195.43 7995.53 16789.80 3793.08 5895.64 10175.77 16099.00 7592.07 5478.05 32296.60 126
hse-mvs289.88 12389.34 12191.51 15594.83 15581.12 17993.94 18593.91 24489.80 3793.08 5893.60 17675.77 16097.66 17392.07 5477.07 32995.74 161
UniMVSNet_NR-MVSNet89.92 12189.29 12391.81 14593.39 21183.72 10794.43 14897.12 4089.80 3786.46 17193.32 18183.16 8097.23 21684.92 14881.02 29594.49 211
alignmvs93.08 6392.50 7094.81 3295.62 12387.61 1295.99 5496.07 12489.77 4094.12 3294.87 12380.56 10898.66 10292.42 4293.10 15598.15 56
TSAR-MVS + GP.93.66 4893.41 5294.41 5296.59 8686.78 2694.40 15093.93 24189.77 4094.21 2995.59 10387.35 3098.61 10792.72 3796.15 10597.83 81
DROMVSNet93.18 6193.44 5192.40 11394.99 14481.96 15696.87 2196.69 8289.72 4292.47 7695.44 10483.30 7998.15 13693.40 2598.10 6397.10 109
IS-MVSNet91.43 8791.09 8992.46 11195.87 11581.38 17196.95 1493.69 25089.72 4289.50 12195.98 8978.57 13497.77 16583.02 17296.50 10198.22 52
plane_prior82.73 13795.21 9589.66 4489.88 192
casdiffmvs92.51 7192.43 7192.74 9894.41 17481.98 15494.54 14096.23 11389.57 4591.96 8796.17 8482.58 8698.01 15390.95 8395.45 11598.23 51
DU-MVS89.34 14088.50 14091.85 14293.04 22283.72 10794.47 14596.59 9289.50 4686.46 17193.29 18477.25 14597.23 21684.92 14881.02 29594.59 202
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9595.47 17189.44 4795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
save fliter97.85 4885.63 6895.21 9596.82 6689.44 47
CANet_DTU90.26 11289.41 11992.81 9393.46 21083.01 12893.48 20294.47 22389.43 4987.76 14894.23 15070.54 23499.03 6484.97 14796.39 10396.38 132
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7396.89 5889.40 5092.81 6496.97 4585.37 5599.24 4490.87 8598.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet89.95 11988.95 13192.95 8994.51 16883.31 11995.70 6895.23 18889.37 5187.58 15093.94 16064.00 29498.78 9983.92 16196.31 10496.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.27 11190.18 10290.53 19093.71 20279.85 21695.77 6597.59 289.31 5286.27 17794.67 13381.93 10097.01 23384.26 15788.09 22294.71 196
UniMVSNet (Re)89.80 12489.07 12892.01 12993.60 20684.52 8494.78 12597.47 889.26 5386.44 17492.32 21682.10 9597.39 20484.81 15180.84 29994.12 223
baseline92.39 7492.29 7492.69 10294.46 17181.77 15994.14 16796.27 10889.22 5491.88 8896.00 8882.35 8997.99 15591.05 7995.27 12098.30 41
3Dnovator86.66 591.73 8390.82 9494.44 4894.59 16586.37 4397.18 797.02 4689.20 5584.31 23496.66 6173.74 19499.17 5086.74 13197.96 7097.79 83
VNet92.24 7591.91 7793.24 7696.59 8683.43 11694.84 12196.44 9889.19 5694.08 3495.90 9277.85 14498.17 13588.90 10393.38 14998.13 58
FIs90.51 10890.35 9890.99 17993.99 19280.98 18295.73 6697.54 389.15 5786.72 16894.68 13281.83 10197.24 21585.18 14588.31 21894.76 195
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7697.51 489.13 5897.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NR-MVSNet88.58 16087.47 16691.93 13693.04 22284.16 9794.77 12696.25 11189.05 5980.04 29893.29 18479.02 12797.05 23081.71 20080.05 31094.59 202
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2796.98 4889.04 6091.98 8697.19 3485.43 5499.56 792.06 5698.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 6196.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
DeepC-MVS88.79 393.31 5692.99 6194.26 5596.07 10585.83 6494.89 11796.99 4789.02 6289.56 11997.37 2382.51 8799.38 2992.20 4998.30 5797.57 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPM-MVS90.12 11389.56 11491.82 14393.14 21783.90 10294.16 16695.74 15188.96 6387.86 14395.43 10772.48 21097.91 16188.10 11490.18 18693.65 252
HQP-NCC94.17 18194.39 15288.81 6485.43 202
ACMP_Plane94.17 18194.39 15288.81 6485.43 202
HQP-MVS89.80 12489.28 12491.34 16294.17 18181.56 16294.39 15296.04 12888.81 6485.43 20293.97 15973.83 19297.96 15787.11 12889.77 19494.50 209
MVS_111021_HR93.45 5293.31 5393.84 6396.99 7684.84 7593.24 21697.24 3088.76 6791.60 9795.85 9486.07 4798.66 10291.91 6298.16 6198.03 67
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6891.83 9297.17 3683.96 7499.55 1291.44 7598.64 4398.43 34
VPNet88.20 16887.47 16690.39 19893.56 20779.46 22194.04 17895.54 16688.67 6986.96 16194.58 13869.33 24897.15 22084.05 16080.53 30594.56 205
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 7093.65 4397.21 3286.10 4599.49 2392.35 4598.77 2498.30 41
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 7093.53 5097.26 2985.04 5999.54 1692.35 4598.78 2198.50 22
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7293.58 4797.27 2785.22 5699.54 1692.21 4898.74 2998.56 19
WR-MVS88.38 16287.67 16290.52 19293.30 21480.18 20193.26 21395.96 13288.57 7385.47 19892.81 20376.12 15596.91 23981.24 20582.29 27494.47 214
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7492.73 6897.23 3085.20 5799.32 3792.15 5198.83 1798.25 50
EIA-MVS91.95 7891.94 7691.98 13295.16 13780.01 21195.36 8096.73 7688.44 7589.34 12392.16 22183.82 7798.45 11889.35 9897.06 8897.48 94
CP-MVSNet87.63 18687.26 17388.74 25493.12 21876.59 28195.29 8996.58 9388.43 7683.49 25492.98 19675.28 16995.83 29278.97 23881.15 29193.79 242
VDD-MVS90.74 9989.92 11193.20 7796.27 9683.02 12795.73 6693.86 24588.42 7792.53 7396.84 5062.09 30298.64 10490.95 8392.62 16397.93 74
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 4096.84 6288.33 7894.19 3097.43 1884.24 6999.01 7093.26 2897.98 6898.52 20
ACMMPcopyleft93.24 5992.88 6494.30 5498.09 4085.33 7296.86 2397.45 1188.33 7890.15 11597.03 4481.44 10299.51 2190.85 8695.74 10898.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
nrg03091.08 9590.39 9793.17 7993.07 22086.91 2096.41 3396.26 10988.30 8088.37 13694.85 12682.19 9497.64 17791.09 7882.95 26694.96 185
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6997.34 1988.28 8195.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2497.32 2488.24 8293.15 5597.04 4286.17 4499.62 192.40 4398.81 1898.52 20
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3197.19 3588.24 8293.26 5196.83 5185.48 5399.59 491.43 7698.40 5398.30 41
PS-CasMVS87.32 20086.88 17888.63 25792.99 22676.33 28695.33 8296.61 9188.22 8483.30 25993.07 19473.03 20495.79 29578.36 24381.00 29793.75 248
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8594.33 2797.40 2184.75 6499.03 6493.35 2697.99 6798.48 24
MVS_111021_LR92.47 7292.29 7492.98 8795.99 10984.43 9293.08 22196.09 12288.20 8591.12 10595.72 9981.33 10497.76 16691.74 6897.37 8496.75 122
CS-MVS92.55 7092.87 6591.58 15294.21 18080.54 19595.30 8696.68 8488.18 8792.09 8494.57 13984.06 7198.05 15092.56 3998.19 6096.15 138
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8988.14 8896.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PEN-MVS86.80 21886.27 20488.40 26192.32 23875.71 29195.18 9896.38 10487.97 8982.82 26393.15 18973.39 20095.92 28776.15 26679.03 32093.59 253
testdata192.15 25087.94 90
VPA-MVSNet89.62 12688.96 13091.60 15193.86 19682.89 13295.46 7897.33 2287.91 9188.43 13593.31 18274.17 18597.40 20187.32 12482.86 27194.52 207
WR-MVS_H87.80 17887.37 16889.10 24493.23 21578.12 25295.61 7497.30 2687.90 9283.72 24692.01 23279.65 12396.01 28476.36 26280.54 30393.16 272
CLD-MVS89.47 13288.90 13391.18 16794.22 17982.07 15292.13 25196.09 12287.90 9285.37 20892.45 21274.38 18097.56 18287.15 12690.43 18293.93 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
abl_693.18 6193.05 5993.57 7397.52 6084.27 9595.53 7796.67 8587.85 9493.20 5497.22 3180.35 10999.18 4991.91 6297.21 8597.26 100
MG-MVS91.77 8191.70 8092.00 13197.08 7580.03 21093.60 19995.18 19187.85 9490.89 10896.47 7082.06 9798.36 12285.07 14697.04 8997.62 87
LCM-MVSNet-Re88.30 16688.32 14788.27 26594.71 16072.41 32093.15 21790.98 31187.77 9679.25 30691.96 23378.35 13795.75 29683.04 17195.62 10996.65 125
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2997.48 787.76 9795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
Effi-MVS+-dtu88.65 15788.35 14489.54 23393.33 21276.39 28494.47 14594.36 22687.70 9885.43 20289.56 29473.45 19797.26 21385.57 14391.28 17394.97 182
mvs-test189.45 13389.14 12690.38 20093.33 21277.63 26794.95 11294.36 22687.70 9887.10 16092.81 20373.45 19798.03 15285.57 14393.04 15695.48 168
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16896.88 5987.67 10092.63 7096.39 7286.62 3998.87 8891.50 7398.67 3798.11 61
test_prior294.12 16887.67 10092.63 7096.39 7286.62 3991.50 7398.67 37
Vis-MVSNet (Re-imp)89.59 12889.44 11790.03 21495.74 11775.85 28995.61 7490.80 31787.66 10287.83 14595.40 10876.79 14996.46 26578.37 24296.73 9397.80 82
CS-MVS-test92.16 7692.35 7291.57 15394.15 18481.18 17795.09 10496.62 8987.64 10390.92 10793.10 19283.86 7698.06 14891.82 6797.98 6895.49 167
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3297.34 1987.51 10493.65 4397.21 3286.10 4599.49 2391.68 7098.77 2498.30 41
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7287.46 10593.75 4097.43 1884.24 6999.01 7092.73 3597.80 7597.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7287.46 10593.75 4097.43 1882.94 8292.73 3597.80 7597.88 77
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8697.78 187.45 10793.26 5197.33 2484.62 6599.51 2190.75 8798.57 4698.32 40
DTE-MVSNet86.11 23585.48 22987.98 27391.65 26174.92 29494.93 11495.75 15087.36 10882.26 26893.04 19572.85 20595.82 29374.04 28277.46 32693.20 270
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10994.85 2497.04 4286.99 3799.52 2091.54 7298.33 5698.71 12
thres100view90087.63 18686.71 18590.38 20096.12 10078.55 24095.03 10991.58 29587.15 11088.06 14092.29 21868.91 25698.10 13970.13 30491.10 17494.48 212
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 11097.12 4087.13 11192.51 7596.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
Effi-MVS+91.59 8691.11 8793.01 8694.35 17883.39 11894.60 13595.10 19587.10 11290.57 11093.10 19281.43 10398.07 14789.29 9994.48 13197.59 90
thres600view787.65 18386.67 18790.59 18796.08 10478.72 23694.88 11891.58 29587.06 11388.08 13992.30 21768.91 25698.10 13970.05 30791.10 17494.96 185
diffmvs91.37 8991.23 8591.77 14693.09 21980.27 20092.36 24395.52 16887.03 11491.40 10194.93 12080.08 11397.44 19292.13 5394.56 12997.61 88
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11593.92 3797.47 1683.88 7598.96 8392.71 3897.87 7398.26 49
OMC-MVS91.23 9190.62 9693.08 8296.27 9684.07 9893.52 20195.93 13486.95 11689.51 12096.13 8678.50 13598.35 12485.84 13992.90 15996.83 120
tfpn200view987.58 19086.64 18890.41 19795.99 10978.64 23894.58 13691.98 28686.94 11788.09 13791.77 23769.18 25398.10 13970.13 30491.10 17494.48 212
thres40087.62 18886.64 18890.57 18895.99 10978.64 23894.58 13691.98 28686.94 11788.09 13791.77 23769.18 25398.10 13970.13 30491.10 17494.96 185
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11992.62 7296.80 5584.85 6399.17 5092.43 4198.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LFMVS90.08 11489.13 12792.95 8996.71 8282.32 14996.08 5089.91 33286.79 12092.15 8396.81 5362.60 29998.34 12587.18 12593.90 13798.19 53
baseline188.10 17087.28 17190.57 18894.96 14680.07 20694.27 16191.29 30486.74 12187.41 15394.00 15776.77 15096.20 27680.77 21379.31 31895.44 170
LPG-MVS_test89.45 13388.90 13391.12 16894.47 16981.49 16695.30 8696.14 11986.73 12285.45 19995.16 11469.89 24098.10 13987.70 11789.23 20393.77 246
LGP-MVS_train91.12 16894.47 16981.49 16696.14 11986.73 12285.45 19995.16 11469.89 24098.10 13987.70 11789.23 20393.77 246
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12495.25 2197.31 2587.73 2599.24 4493.11 3298.76 2698.40 35
EPNet_dtu86.49 23185.94 21788.14 27090.24 30972.82 31294.11 17092.20 27886.66 12579.42 30592.36 21573.52 19595.81 29471.26 29493.66 14095.80 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMP84.23 889.01 14888.35 14490.99 17994.73 15881.27 17295.07 10595.89 14086.48 12683.67 24894.30 14569.33 24897.99 15587.10 13088.55 21093.72 250
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_Test91.31 9091.11 8791.93 13694.37 17580.14 20393.46 20495.80 14686.46 12791.35 10293.77 17182.21 9398.09 14587.57 11994.95 12297.55 93
test_part189.00 14987.99 15492.04 12895.94 11283.81 10596.14 4696.05 12786.44 12885.69 18693.73 17471.57 21697.66 17385.80 14080.54 30394.66 197
thres20087.21 20786.24 20590.12 21095.36 12878.53 24193.26 21392.10 28086.42 12988.00 14291.11 26069.24 25298.00 15469.58 30891.04 17993.83 241
PAPM_NR91.22 9290.78 9592.52 10997.60 5781.46 16894.37 15796.24 11286.39 13087.41 15394.80 12882.06 9798.48 11382.80 17895.37 11697.61 88
PS-MVSNAJ91.18 9390.92 9191.96 13495.26 13482.60 14492.09 25395.70 15386.27 13191.84 9092.46 21179.70 11998.99 7789.08 10195.86 10794.29 217
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 12297.17 3886.26 13292.83 6397.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PS-MVSNAJss89.97 11889.62 11391.02 17691.90 25080.85 18795.26 9295.98 13086.26 13286.21 17894.29 14679.70 11997.65 17588.87 10488.10 22094.57 204
EPP-MVSNet91.70 8491.56 8192.13 12795.88 11380.50 19797.33 395.25 18786.15 13489.76 11895.60 10283.42 7898.32 12887.37 12393.25 15297.56 92
XVG-OURS89.40 13888.70 13691.52 15494.06 18581.46 16891.27 26996.07 12486.14 13588.89 13095.77 9768.73 25997.26 21387.39 12289.96 18995.83 157
9.1494.47 1797.79 5296.08 5097.44 1286.13 13695.10 2297.40 2188.34 1899.22 4693.25 2998.70 32
xiu_mvs_v2_base91.13 9490.89 9391.86 14094.97 14582.42 14592.24 24795.64 16086.11 13791.74 9593.14 19079.67 12298.89 8789.06 10295.46 11494.28 218
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13897.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+-dtu87.44 19686.72 18489.63 23192.04 24577.68 26694.03 17993.94 24085.81 13982.42 26691.32 25170.33 23697.06 22980.33 22390.23 18594.14 222
XVG-OURS-SEG-HR89.95 11989.45 11691.47 15894.00 19181.21 17691.87 25696.06 12685.78 14088.55 13295.73 9874.67 17897.27 21188.71 10689.64 19695.91 152
HPM-MVS_fast93.40 5593.22 5593.94 6198.36 2584.83 7697.15 896.80 6885.77 14192.47 7697.13 3882.38 8899.07 5890.51 8998.40 5397.92 75
EI-MVSNet89.10 14388.86 13589.80 22591.84 25278.30 24893.70 19695.01 19885.73 14287.15 15795.28 10979.87 11697.21 21883.81 16387.36 23193.88 236
IterMVS-LS88.36 16487.91 15889.70 22993.80 19978.29 24993.73 19395.08 19785.73 14284.75 21791.90 23579.88 11596.92 23883.83 16282.51 27293.89 234
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14495.05 2397.18 3587.31 3199.07 5891.90 6598.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_yl90.69 10190.02 10992.71 9995.72 11882.41 14794.11 17095.12 19385.63 14591.49 9894.70 13074.75 17598.42 12086.13 13792.53 16497.31 98
DCV-MVSNet90.69 10190.02 10992.71 9995.72 11882.41 14794.11 17095.12 19385.63 14591.49 9894.70 13074.75 17598.42 12086.13 13792.53 16497.31 98
K. test v381.59 28980.15 29185.91 31089.89 31769.42 33992.57 23787.71 34585.56 14773.44 33889.71 29155.58 33295.52 30277.17 25669.76 34092.78 286
SixPastTwentyTwo83.91 26982.90 26986.92 29790.99 28370.67 33293.48 20291.99 28585.54 14877.62 31592.11 22660.59 31596.87 24176.05 26777.75 32393.20 270
ITE_SJBPF88.24 26791.88 25177.05 27692.92 26185.54 14880.13 29693.30 18357.29 32996.20 27672.46 29184.71 24991.49 311
RRT_test8_iter0586.90 21486.36 19988.52 25993.00 22573.27 30894.32 15995.96 13285.50 15084.26 23592.86 19860.76 31497.70 17188.32 11082.29 27494.60 201
RRT_MVS88.86 15187.68 16192.39 11792.02 24786.09 5394.38 15694.94 20185.45 15187.14 15993.84 16865.88 28697.11 22488.73 10586.77 23893.98 232
BH-RMVSNet88.37 16387.48 16591.02 17695.28 13279.45 22292.89 22893.07 25985.45 15186.91 16494.84 12770.35 23597.76 16673.97 28394.59 12895.85 155
IterMVS-SCA-FT85.45 24584.53 25088.18 26991.71 25776.87 27890.19 28892.65 26985.40 15381.44 27790.54 27366.79 27495.00 31581.04 20781.05 29392.66 288
GA-MVS86.61 22485.27 23490.66 18591.33 27278.71 23790.40 28293.81 24885.34 15485.12 21289.57 29361.25 30997.11 22480.99 21089.59 19796.15 138
ACMM84.12 989.14 14288.48 14391.12 16894.65 16481.22 17595.31 8396.12 12185.31 15585.92 18294.34 14270.19 23898.06 14885.65 14188.86 20894.08 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bset_n11_16_dypcd86.83 21685.55 22690.65 18688.22 33281.70 16088.88 30890.42 32085.26 15685.49 19690.69 27167.11 26997.02 23289.51 9784.39 25193.23 268
xiu_mvs_v1_base_debu90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
xiu_mvs_v1_base90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
xiu_mvs_v1_base_debi90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2897.49 585.15 16093.56 4996.28 7685.60 5199.31 3892.45 4098.79 1998.12 59
mvs_tets88.06 17387.28 17190.38 20090.94 28779.88 21495.22 9495.66 15785.10 16184.21 23793.94 16063.53 29697.40 20188.50 10888.40 21693.87 237
tttt051788.61 15887.78 15991.11 17194.96 14677.81 26195.35 8189.69 33685.09 16288.05 14194.59 13766.93 27198.48 11383.27 16992.13 16997.03 112
XVG-ACMP-BASELINE86.00 23684.84 24489.45 23791.20 27478.00 25491.70 26295.55 16485.05 16382.97 26192.25 22054.49 33897.48 18782.93 17387.45 23092.89 282
jajsoiax88.24 16787.50 16490.48 19590.89 29180.14 20395.31 8395.65 15984.97 16484.24 23694.02 15565.31 28897.42 19488.56 10788.52 21293.89 234
v2v48287.84 17687.06 17590.17 20690.99 28379.23 23394.00 18295.13 19284.87 16585.53 19292.07 23074.45 17997.45 19084.71 15381.75 28393.85 240
v14887.04 21286.32 20289.21 24090.94 28777.26 27393.71 19594.43 22484.84 16684.36 23090.80 26876.04 15797.05 23082.12 18879.60 31593.31 263
v887.50 19586.71 18589.89 21991.37 26979.40 22394.50 14195.38 18184.81 16783.60 25191.33 24976.05 15697.42 19482.84 17680.51 30792.84 284
BH-untuned88.60 15988.13 15290.01 21695.24 13578.50 24393.29 21194.15 23584.75 16884.46 22493.40 17875.76 16297.40 20177.59 25194.52 13094.12 223
OurMVSNet-221017-085.35 24884.64 24887.49 28390.77 29572.59 31794.01 18194.40 22584.72 16979.62 30493.17 18861.91 30496.72 24481.99 19181.16 28993.16 272
MVSFormer91.68 8591.30 8392.80 9493.86 19683.88 10395.96 5795.90 13884.66 17091.76 9394.91 12177.92 14197.30 20789.64 9597.11 8697.24 101
test_djsdf89.03 14688.64 13790.21 20590.74 29779.28 23095.96 5795.90 13884.66 17085.33 21092.94 19774.02 18897.30 20789.64 9588.53 21194.05 229
MVSTER88.84 15288.29 14890.51 19392.95 22780.44 19893.73 19395.01 19884.66 17087.15 15793.12 19172.79 20697.21 21887.86 11587.36 23193.87 237
v7n86.81 21785.76 22489.95 21890.72 29879.25 23295.07 10595.92 13584.45 17382.29 26790.86 26572.60 20997.53 18479.42 23580.52 30693.08 276
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11597.21 3484.33 17493.89 3897.09 3987.20 3399.29 4191.90 6598.44 5198.12 59
ET-MVSNet_ETH3D87.51 19385.91 21892.32 12093.70 20483.93 10192.33 24490.94 31384.16 17572.09 34292.52 21069.90 23995.85 29189.20 10088.36 21797.17 105
CSCG93.23 6093.05 5993.76 6998.04 4284.07 9896.22 4297.37 1884.15 17690.05 11695.66 10087.77 2399.15 5389.91 9298.27 5898.07 63
Baseline_NR-MVSNet87.07 21186.63 19088.40 26191.44 26377.87 25994.23 16492.57 27084.12 17785.74 18592.08 22877.25 14596.04 28182.29 18679.94 31191.30 315
UniMVSNet_ETH3D87.53 19286.37 19891.00 17892.44 23578.96 23594.74 12795.61 16184.07 17885.36 20994.52 14059.78 32197.34 20682.93 17387.88 22596.71 124
thisisatest053088.67 15687.61 16391.86 14094.87 15280.07 20694.63 13489.90 33384.00 17988.46 13493.78 17066.88 27398.46 11583.30 16892.65 16297.06 110
ab-mvs89.41 13688.35 14492.60 10495.15 13982.65 14292.20 24995.60 16283.97 18088.55 13293.70 17574.16 18698.21 13482.46 18389.37 19996.94 116
GeoE90.05 11589.43 11891.90 13995.16 13780.37 19995.80 6394.65 22083.90 18187.55 15294.75 12978.18 13997.62 17981.28 20493.63 14197.71 85
FMVSNet387.40 19886.11 20991.30 16393.79 20183.64 11094.20 16594.81 21483.89 18284.37 22791.87 23668.45 26296.56 25778.23 24585.36 24493.70 251
pm-mvs186.61 22485.54 22789.82 22291.44 26380.18 20195.28 9194.85 21083.84 18381.66 27592.62 20872.45 21296.48 26279.67 23078.06 32192.82 285
v1087.25 20386.38 19789.85 22091.19 27579.50 22094.48 14295.45 17583.79 18483.62 25091.19 25475.13 17097.42 19481.94 19280.60 30192.63 289
testgi80.94 29980.20 29083.18 32687.96 33666.29 34791.28 26890.70 31983.70 18578.12 31092.84 20051.37 34690.82 34963.34 33782.46 27392.43 294
V4287.68 18186.86 17990.15 20890.58 30280.14 20394.24 16395.28 18683.66 18685.67 18791.33 24974.73 17797.41 19984.43 15681.83 28192.89 282
ZD-MVS98.15 3586.62 3597.07 4483.63 18794.19 3096.91 4887.57 2999.26 4391.99 5798.44 51
GBi-Net87.26 20185.98 21491.08 17294.01 18883.10 12395.14 10194.94 20183.57 18884.37 22791.64 24066.59 27896.34 27278.23 24585.36 24493.79 242
test187.26 20185.98 21491.08 17294.01 18883.10 12395.14 10194.94 20183.57 18884.37 22791.64 24066.59 27896.34 27278.23 24585.36 24493.79 242
FMVSNet287.19 20885.82 22091.30 16394.01 18883.67 10994.79 12494.94 20183.57 18883.88 24292.05 23166.59 27896.51 26077.56 25285.01 24793.73 249
SCA86.32 23385.18 23589.73 22892.15 24076.60 28091.12 27291.69 29383.53 19185.50 19588.81 30166.79 27496.48 26276.65 26090.35 18496.12 142
PVSNet_BlendedMVS89.98 11789.70 11290.82 18396.12 10081.25 17393.92 18696.83 6483.49 19289.10 12692.26 21981.04 10698.85 9486.72 13387.86 22692.35 298
DPM-MVS92.58 6991.74 7995.08 1296.19 9889.31 392.66 23396.56 9583.44 19391.68 9695.04 11886.60 4298.99 7785.60 14297.92 7296.93 117
test-LLR85.87 23985.41 23087.25 28990.95 28571.67 32389.55 29589.88 33483.41 19484.54 22187.95 31567.25 26695.11 31281.82 19593.37 15094.97 182
test0.0.03 182.41 28081.69 27684.59 31988.23 33172.89 31190.24 28587.83 34483.41 19479.86 30089.78 29067.25 26688.99 35265.18 33183.42 26491.90 305
v114487.61 18986.79 18390.06 21391.01 28279.34 22693.95 18495.42 18083.36 19685.66 18891.31 25274.98 17397.42 19483.37 16782.06 27793.42 261
PVSNet_Blended_VisFu91.38 8890.91 9292.80 9496.39 9383.17 12294.87 11996.66 8683.29 19789.27 12494.46 14180.29 11199.17 5087.57 11995.37 11696.05 149
IB-MVS80.51 1585.24 25283.26 26491.19 16692.13 24279.86 21591.75 25991.29 30483.28 19880.66 28788.49 30761.28 30898.46 11580.99 21079.46 31695.25 176
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS84.88 25883.98 25687.60 27991.44 26376.03 28890.18 28992.41 27283.24 19981.06 28390.42 27766.60 27794.28 32279.46 23180.98 29892.48 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+89.41 13688.64 13791.71 14894.74 15780.81 18893.54 20095.10 19583.11 20086.82 16790.67 27279.74 11897.75 16980.51 22093.55 14396.57 128
WTY-MVS89.60 12788.92 13291.67 14995.47 12681.15 17892.38 24294.78 21683.11 20089.06 12894.32 14478.67 13296.61 25281.57 20190.89 18097.24 101
LTVRE_ROB82.13 1386.26 23484.90 24290.34 20394.44 17381.50 16492.31 24694.89 20783.03 20279.63 30392.67 20669.69 24397.79 16471.20 29586.26 23991.72 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS87.78 17986.54 19491.48 15794.82 15681.05 18093.91 18993.93 24183.00 20386.93 16293.53 17769.50 24697.67 17286.14 13677.12 32895.73 162
UnsupCasMVSNet_eth80.07 30478.27 30885.46 31285.24 34872.63 31688.45 31594.87 20982.99 20471.64 34588.07 31456.34 33191.75 34673.48 28763.36 35192.01 304
XXY-MVS87.65 18386.85 18090.03 21492.14 24180.60 19493.76 19295.23 18882.94 20584.60 21994.02 15574.27 18195.49 30681.04 20783.68 25994.01 231
mvs_anonymous89.37 13989.32 12289.51 23693.47 20974.22 30091.65 26494.83 21282.91 20685.45 19993.79 16981.23 10596.36 27186.47 13594.09 13597.94 72
BH-w/o87.57 19187.05 17689.12 24394.90 15177.90 25792.41 24093.51 25282.89 20783.70 24791.34 24875.75 16397.07 22875.49 27093.49 14592.39 296
AdaColmapbinary89.89 12289.07 12892.37 11897.41 6383.03 12694.42 14995.92 13582.81 20886.34 17694.65 13473.89 19099.02 6880.69 21595.51 11195.05 180
TransMVSNet (Re)84.43 26483.06 26788.54 25891.72 25678.44 24495.18 9892.82 26482.73 20979.67 30292.12 22473.49 19695.96 28671.10 29968.73 34691.21 318
DP-MVS Recon91.95 7891.28 8493.96 6098.33 2785.92 6094.66 13396.66 8682.69 21090.03 11795.82 9582.30 9199.03 6484.57 15496.48 10296.91 118
ETH3 D test640093.64 4993.22 5594.92 2097.79 5286.84 2295.31 8397.26 2982.67 21193.81 3996.29 7587.29 3299.27 4289.87 9398.67 3798.65 15
v119287.25 20386.33 20190.00 21790.76 29679.04 23493.80 19095.48 17082.57 21285.48 19791.18 25673.38 20197.42 19482.30 18582.06 27793.53 255
API-MVS90.66 10390.07 10592.45 11296.36 9484.57 8196.06 5295.22 19082.39 21389.13 12594.27 14980.32 11098.46 11580.16 22596.71 9494.33 216
tfpnnormal84.72 26183.23 26589.20 24192.79 23080.05 20894.48 14295.81 14582.38 21481.08 28291.21 25369.01 25596.95 23661.69 34280.59 30290.58 329
MAR-MVS90.30 11089.37 12093.07 8496.61 8584.48 8795.68 6995.67 15582.36 21587.85 14492.85 19976.63 15398.80 9880.01 22696.68 9595.91 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline286.50 22985.39 23189.84 22191.12 27976.70 27991.88 25588.58 34182.35 21679.95 29990.95 26473.42 19997.63 17880.27 22489.95 19095.19 177
TAMVS89.21 14188.29 14891.96 13493.71 20282.62 14393.30 21094.19 23382.22 21787.78 14793.94 16078.83 12896.95 23677.70 25092.98 15896.32 133
ACMH+81.04 1485.05 25583.46 26389.82 22294.66 16379.37 22494.44 14794.12 23882.19 21878.04 31192.82 20258.23 32797.54 18373.77 28582.90 27092.54 290
ACMH80.38 1785.36 24783.68 25990.39 19894.45 17280.63 19294.73 12894.85 21082.09 21977.24 31692.65 20760.01 31997.58 18072.25 29284.87 24892.96 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
eth_miper_zixun_eth86.50 22985.77 22388.68 25591.94 24975.81 29090.47 28194.89 20782.05 22084.05 23890.46 27575.96 15896.77 24382.76 17979.36 31793.46 260
anonymousdsp87.84 17687.09 17490.12 21089.13 32180.54 19594.67 13295.55 16482.05 22083.82 24492.12 22471.47 21997.15 22087.15 12687.80 22792.67 287
PVSNet_Blended90.73 10090.32 9991.98 13296.12 10081.25 17392.55 23896.83 6482.04 22289.10 12692.56 20981.04 10698.85 9486.72 13395.91 10695.84 156
cl_fuxian87.14 21086.50 19689.04 24692.20 23977.26 27391.22 27194.70 21882.01 22384.34 23190.43 27678.81 12996.61 25283.70 16581.09 29293.25 266
agg_prior193.29 5792.97 6294.26 5597.38 6485.92 6093.92 18696.72 7881.96 22492.16 8196.23 7887.85 2298.97 8091.95 6198.55 4997.90 76
CDS-MVSNet89.45 13388.51 13992.29 12393.62 20583.61 11293.01 22494.68 21981.95 22587.82 14693.24 18678.69 13196.99 23480.34 22293.23 15396.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14419287.19 20886.35 20089.74 22690.64 30078.24 25093.92 18695.43 17881.93 22685.51 19491.05 26274.21 18497.45 19082.86 17581.56 28593.53 255
PAPR90.02 11689.27 12592.29 12395.78 11680.95 18492.68 23296.22 11481.91 22786.66 16993.75 17382.23 9298.44 11979.40 23694.79 12397.48 94
v192192086.97 21386.06 21289.69 23090.53 30578.11 25393.80 19095.43 17881.90 22885.33 21091.05 26272.66 20797.41 19982.05 19081.80 28293.53 255
CPTT-MVS91.99 7791.80 7892.55 10798.24 3181.98 15496.76 2696.49 9781.89 22990.24 11396.44 7178.59 13398.61 10789.68 9497.85 7497.06 110
train_agg93.44 5393.08 5894.52 4597.53 5886.49 3994.07 17596.78 6981.86 23092.77 6596.20 8087.63 2799.12 5592.14 5298.69 3397.94 72
test_897.49 6186.30 4894.02 18096.76 7281.86 23092.70 6996.20 8087.63 2799.02 68
cl-mvsnet____86.52 22885.78 22188.75 25292.03 24676.46 28290.74 27794.30 22981.83 23283.34 25790.78 26975.74 16596.57 25581.74 19881.54 28693.22 269
cl-mvsnet186.53 22785.78 22188.75 25292.02 24776.45 28390.74 27794.30 22981.83 23283.34 25790.82 26775.75 16396.57 25581.73 19981.52 28793.24 267
v124086.78 21985.85 21989.56 23290.45 30677.79 26293.61 19895.37 18381.65 23485.43 20291.15 25871.50 21897.43 19381.47 20382.05 27993.47 259
FMVSNet185.85 24084.11 25391.08 17292.81 22983.10 12395.14 10194.94 20181.64 23582.68 26491.64 24059.01 32596.34 27275.37 27283.78 25693.79 242
PatchmatchNetpermissive85.85 24084.70 24689.29 23991.76 25575.54 29288.49 31391.30 30381.63 23685.05 21388.70 30571.71 21496.24 27574.61 28089.05 20696.08 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TEST997.53 5886.49 3994.07 17596.78 6981.61 23792.77 6596.20 8087.71 2699.12 55
sss88.93 15088.26 15090.94 18294.05 18680.78 18991.71 26195.38 18181.55 23888.63 13193.91 16475.04 17295.47 30782.47 18291.61 17196.57 128
HY-MVS83.01 1289.03 14687.94 15792.29 12394.86 15382.77 13392.08 25494.49 22281.52 23986.93 16292.79 20578.32 13898.23 13179.93 22790.55 18195.88 154
CNLPA89.07 14487.98 15592.34 11996.87 7884.78 7794.08 17493.24 25581.41 24084.46 22495.13 11675.57 16796.62 24977.21 25593.84 13995.61 165
EPMVS83.90 27082.70 27287.51 28190.23 31072.67 31488.62 31281.96 35681.37 24185.01 21488.34 30966.31 28194.45 31775.30 27387.12 23495.43 171
cl-mvsnet286.78 21985.98 21489.18 24292.34 23777.62 26890.84 27694.13 23781.33 24283.97 24190.15 28173.96 18996.60 25484.19 15882.94 26793.33 262
miper_ehance_all_eth87.22 20686.62 19189.02 24792.13 24277.40 27290.91 27594.81 21481.28 24384.32 23290.08 28379.26 12596.62 24983.81 16382.94 26793.04 277
IU-MVS98.77 486.00 5496.84 6281.26 24497.26 695.50 799.13 399.03 4
CL-MVSNet_2432*160081.74 28680.53 28485.36 31385.96 34372.45 31990.25 28493.07 25981.24 24579.85 30187.29 32570.93 22592.52 34066.95 32269.23 34291.11 322
test20.0379.95 30579.08 30482.55 32985.79 34467.74 34591.09 27391.08 30781.23 24674.48 33489.96 28761.63 30590.15 35060.08 34676.38 33089.76 332
miper_lstm_enhance85.27 25184.59 24987.31 28691.28 27374.63 29587.69 32294.09 23981.20 24781.36 27989.85 28974.97 17494.30 32181.03 20979.84 31493.01 278
TR-MVS86.78 21985.76 22489.82 22294.37 17578.41 24592.47 23992.83 26381.11 24886.36 17592.40 21368.73 25997.48 18773.75 28689.85 19393.57 254
VDDNet89.56 12988.49 14292.76 9695.07 14082.09 15196.30 3693.19 25781.05 24991.88 8896.86 4961.16 31298.33 12788.43 10992.49 16697.84 80
tpm84.73 26084.02 25486.87 30090.33 30768.90 34089.06 30589.94 33180.85 25085.75 18489.86 28868.54 26195.97 28577.76 24984.05 25595.75 160
D2MVS85.90 23885.09 23788.35 26390.79 29477.42 27191.83 25795.70 15380.77 25180.08 29790.02 28466.74 27696.37 26981.88 19487.97 22491.26 316
DWT-MVSNet_test84.95 25783.68 25988.77 25091.43 26673.75 30491.74 26090.98 31180.66 25283.84 24387.36 32362.44 30097.11 22478.84 24085.81 24195.46 169
Anonymous20240521187.68 18186.13 20792.31 12196.66 8380.74 19094.87 11991.49 29980.47 25389.46 12295.44 10454.72 33798.23 13182.19 18789.89 19197.97 70
jason90.80 9790.10 10492.90 9193.04 22283.53 11393.08 22194.15 23580.22 25491.41 10094.91 12176.87 14797.93 16090.28 9196.90 9097.24 101
jason: jason.
thisisatest051587.33 19985.99 21391.37 16193.49 20879.55 21990.63 27989.56 33980.17 25587.56 15190.86 26567.07 27098.28 13081.50 20293.02 15796.29 134
tpmrst85.35 24884.99 23886.43 30390.88 29267.88 34488.71 31091.43 30180.13 25686.08 18188.80 30373.05 20396.02 28382.48 18183.40 26595.40 172
CDPH-MVS92.83 6592.30 7394.44 4897.79 5286.11 5294.06 17796.66 8680.09 25792.77 6596.63 6286.62 3999.04 6387.40 12198.66 4098.17 54
MVS_030483.46 27281.92 27588.10 27190.63 30177.49 27093.26 21393.75 24980.04 25880.44 29187.24 32647.94 35295.55 30075.79 26888.16 21991.26 316
PM-MVS78.11 31576.12 31784.09 32583.54 35270.08 33688.97 30785.27 35179.93 25974.73 33286.43 32934.70 35993.48 33179.43 23472.06 33888.72 342
lupinMVS90.92 9690.21 10093.03 8593.86 19683.88 10392.81 23093.86 24579.84 26091.76 9394.29 14677.92 14198.04 15190.48 9097.11 8697.17 105
PatchMatch-RL86.77 22285.54 22790.47 19695.88 11382.71 13990.54 28092.31 27579.82 26184.32 23291.57 24768.77 25896.39 26873.16 28893.48 14792.32 299
PLCcopyleft84.53 789.06 14588.03 15392.15 12697.27 7182.69 14094.29 16095.44 17779.71 26284.01 24094.18 15176.68 15298.75 10077.28 25493.41 14895.02 181
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
F-COLMAP87.95 17486.80 18291.40 16096.35 9580.88 18694.73 12895.45 17579.65 26382.04 27294.61 13571.13 22198.50 11276.24 26591.05 17894.80 194
MIMVSNet82.59 27980.53 28488.76 25191.51 26278.32 24786.57 32990.13 32679.32 26480.70 28688.69 30652.98 34493.07 33766.03 32888.86 20894.90 189
KD-MVS_2432*160078.50 31376.02 31885.93 30886.22 34174.47 29784.80 33892.33 27379.29 26576.98 31885.92 33353.81 34293.97 32567.39 32057.42 35489.36 334
miper_refine_blended78.50 31376.02 31885.93 30886.22 34174.47 29784.80 33892.33 27379.29 26576.98 31885.92 33353.81 34293.97 32567.39 32057.42 35489.36 334
test-mter84.54 26383.64 26187.25 28990.95 28571.67 32389.55 29589.88 33479.17 26784.54 22187.95 31555.56 33395.11 31281.82 19593.37 15094.97 182
miper_enhance_ethall86.90 21486.18 20689.06 24591.66 26077.58 26990.22 28794.82 21379.16 26884.48 22389.10 29779.19 12696.66 24784.06 15982.94 26792.94 280
MDA-MVSNet-bldmvs78.85 31276.31 31586.46 30289.76 31873.88 30388.79 30990.42 32079.16 26859.18 35488.33 31060.20 31794.04 32462.00 34168.96 34491.48 312
tpmvs83.35 27582.07 27387.20 29391.07 28171.00 33088.31 31691.70 29278.91 27080.49 29087.18 32769.30 25197.08 22768.12 31883.56 26193.51 258
原ACMM192.01 12997.34 6681.05 18096.81 6778.89 27190.45 11195.92 9182.65 8598.84 9680.68 21698.26 5996.14 140
MSDG84.86 25983.09 26690.14 20993.80 19980.05 20889.18 30493.09 25878.89 27178.19 30991.91 23465.86 28797.27 21168.47 31388.45 21493.11 274
PAPM86.68 22385.39 23190.53 19093.05 22179.33 22989.79 29494.77 21778.82 27381.95 27393.24 18676.81 14897.30 20766.94 32393.16 15494.95 188
PVSNet78.82 1885.55 24484.65 24788.23 26894.72 15971.93 32187.12 32692.75 26678.80 27484.95 21590.53 27464.43 29396.71 24674.74 27893.86 13896.06 148
MVP-Stereo85.97 23784.86 24389.32 23890.92 28982.19 15092.11 25294.19 23378.76 27578.77 30891.63 24368.38 26396.56 25775.01 27793.95 13689.20 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVScopyleft83.78 1188.74 15587.29 17093.08 8292.70 23185.39 7196.57 3096.43 10078.74 27680.85 28496.07 8769.64 24499.01 7078.01 24896.65 9694.83 192
DIV-MVS_2432*160080.20 30379.24 30083.07 32785.64 34665.29 35191.01 27493.93 24178.71 27776.32 32286.40 33059.20 32492.93 33872.59 29069.35 34191.00 324
MDTV_nov1_ep1383.56 26291.69 25969.93 33787.75 32191.54 29778.60 27884.86 21688.90 30069.54 24596.03 28270.25 30188.93 207
Patchmatch-RL test81.67 28779.96 29386.81 30185.42 34771.23 32682.17 34987.50 34778.47 27977.19 31782.50 34570.81 22793.48 33182.66 18072.89 33695.71 163
QAPM89.51 13088.15 15193.59 7294.92 14984.58 8096.82 2596.70 8078.43 28083.41 25596.19 8373.18 20299.30 3977.11 25796.54 9996.89 119
131487.51 19386.57 19390.34 20392.42 23679.74 21892.63 23495.35 18578.35 28180.14 29591.62 24474.05 18797.15 22081.05 20693.53 14494.12 223
CR-MVSNet85.35 24883.76 25890.12 21090.58 30279.34 22685.24 33691.96 28878.27 28285.55 19087.87 31871.03 22395.61 29873.96 28489.36 20095.40 172
USDC82.76 27681.26 28187.26 28891.17 27674.55 29689.27 30193.39 25478.26 28375.30 32992.08 22854.43 33996.63 24871.64 29385.79 24390.61 326
new-patchmatchnet76.41 31875.17 32080.13 33282.65 35559.61 35587.66 32391.08 30778.23 28469.85 34683.22 34254.76 33691.63 34864.14 33664.89 34989.16 339
1112_ss88.42 16187.33 16991.72 14794.92 14980.98 18292.97 22694.54 22178.16 28583.82 24493.88 16578.78 13097.91 16179.45 23289.41 19896.26 136
MIMVSNet179.38 30977.28 31185.69 31186.35 34073.67 30591.61 26592.75 26678.11 28672.64 34188.12 31348.16 35191.97 34560.32 34577.49 32591.43 313
MS-PatchMatch85.05 25584.16 25287.73 27791.42 26778.51 24291.25 27093.53 25177.50 28780.15 29491.58 24561.99 30395.51 30375.69 26994.35 13489.16 339
AllTest83.42 27381.39 27989.52 23495.01 14177.79 26293.12 21890.89 31577.41 28876.12 32493.34 17954.08 34097.51 18568.31 31584.27 25393.26 264
TestCases89.52 23495.01 14177.79 26290.89 31577.41 28876.12 32493.34 17954.08 34097.51 18568.31 31584.27 25393.26 264
TESTMET0.1,183.74 27182.85 27086.42 30489.96 31571.21 32789.55 29587.88 34377.41 28883.37 25687.31 32456.71 33093.65 33080.62 21792.85 16194.40 215
gm-plane-assit89.60 32068.00 34277.28 29188.99 29897.57 18179.44 233
EG-PatchMatch MVS82.37 28180.34 28788.46 26090.27 30879.35 22592.80 23194.33 22877.14 29273.26 33990.18 28047.47 35496.72 24470.25 30187.32 23389.30 336
FMVSNet581.52 29179.60 29787.27 28791.17 27677.95 25591.49 26692.26 27776.87 29376.16 32387.91 31751.67 34592.34 34167.74 31981.16 28991.52 310
our_test_381.93 28380.46 28686.33 30588.46 32873.48 30688.46 31491.11 30676.46 29476.69 32088.25 31166.89 27294.36 31968.75 31179.08 31991.14 320
TDRefinement79.81 30677.34 31087.22 29279.24 35775.48 29393.12 21892.03 28376.45 29575.01 33091.58 24549.19 35096.44 26670.22 30369.18 34389.75 333
LF4IMVS80.37 30279.07 30584.27 32386.64 33969.87 33889.39 30091.05 30976.38 29674.97 33190.00 28547.85 35394.25 32374.55 28180.82 30088.69 343
TAPA-MVS84.62 688.16 16987.01 17791.62 15096.64 8480.65 19194.39 15296.21 11776.38 29686.19 17995.44 10479.75 11798.08 14662.75 34095.29 11896.13 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dp81.47 29280.23 28985.17 31689.92 31665.49 35086.74 32790.10 32776.30 29881.10 28187.12 32862.81 29895.92 28768.13 31779.88 31294.09 226
CostFormer85.77 24284.94 24188.26 26691.16 27872.58 31889.47 29991.04 31076.26 29986.45 17389.97 28670.74 22896.86 24282.35 18487.07 23695.34 175
RPSCF85.07 25484.27 25187.48 28492.91 22870.62 33391.69 26392.46 27176.20 30082.67 26595.22 11263.94 29597.29 21077.51 25385.80 24294.53 206
Test_1112_low_res87.65 18386.51 19591.08 17294.94 14879.28 23091.77 25894.30 22976.04 30183.51 25392.37 21477.86 14397.73 17078.69 24189.13 20596.22 137
pmmvs485.43 24683.86 25790.16 20790.02 31482.97 13090.27 28392.67 26875.93 30280.73 28591.74 23971.05 22295.73 29778.85 23983.46 26391.78 306
LS3D87.89 17586.32 20292.59 10596.07 10582.92 13195.23 9394.92 20675.66 30382.89 26295.98 8972.48 21099.21 4768.43 31495.23 12195.64 164
pmmvs584.21 26582.84 27188.34 26488.95 32376.94 27792.41 24091.91 29075.63 30480.28 29291.18 25664.59 29295.57 29977.09 25883.47 26292.53 291
Anonymous2024052180.44 30179.21 30184.11 32485.75 34567.89 34392.86 22993.23 25675.61 30575.59 32887.47 32250.03 34794.33 32071.14 29881.21 28890.12 331
pmmvs-eth3d80.97 29878.72 30787.74 27684.99 34979.97 21390.11 29091.65 29475.36 30673.51 33786.03 33259.45 32293.96 32775.17 27472.21 33789.29 337
ppachtmachnet_test81.84 28480.07 29287.15 29488.46 32874.43 29989.04 30692.16 27975.33 30777.75 31388.99 29866.20 28295.37 30865.12 33277.60 32491.65 308
test_040281.30 29579.17 30387.67 27893.19 21678.17 25192.98 22591.71 29175.25 30876.02 32690.31 27859.23 32396.37 26950.22 35583.63 26088.47 345
COLMAP_ROBcopyleft80.39 1683.96 26782.04 27489.74 22695.28 13279.75 21794.25 16292.28 27675.17 30978.02 31293.77 17158.60 32697.84 16365.06 33385.92 24091.63 309
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap79.76 30777.69 30985.97 30791.71 25773.12 30989.55 29590.36 32375.03 31072.03 34390.19 27946.22 35596.19 27863.11 33881.03 29488.59 344
DP-MVS87.25 20385.36 23392.90 9197.65 5683.24 12094.81 12392.00 28474.99 31181.92 27495.00 11972.66 20799.05 6066.92 32592.33 16796.40 131
PatchT82.68 27881.27 28086.89 29990.09 31270.94 33184.06 34290.15 32574.91 31285.63 18983.57 34169.37 24794.87 31665.19 33088.50 21394.84 191
CHOSEN 280x42085.15 25383.99 25588.65 25692.47 23478.40 24679.68 35392.76 26574.90 31381.41 27889.59 29269.85 24295.51 30379.92 22895.29 11892.03 303
gg-mvs-nofinetune81.77 28579.37 29888.99 24890.85 29377.73 26586.29 33079.63 36074.88 31483.19 26069.05 35560.34 31696.11 28075.46 27194.64 12793.11 274
pmmvs683.42 27381.60 27788.87 24988.01 33577.87 25994.96 11194.24 23274.67 31578.80 30791.09 26160.17 31896.49 26177.06 25975.40 33292.23 301
CHOSEN 1792x268888.84 15287.69 16092.30 12296.14 9981.42 17090.01 29195.86 14274.52 31687.41 15393.94 16075.46 16898.36 12280.36 22195.53 11097.12 108
MDA-MVSNet_test_wron79.21 31177.19 31385.29 31488.22 33272.77 31385.87 33290.06 32874.34 31762.62 35387.56 32166.14 28391.99 34466.90 32673.01 33491.10 323
YYNet179.22 31077.20 31285.28 31588.20 33472.66 31585.87 33290.05 33074.33 31862.70 35287.61 32066.09 28492.03 34366.94 32372.97 33591.15 319
Anonymous2024052988.09 17186.59 19292.58 10696.53 8981.92 15795.99 5495.84 14374.11 31989.06 12895.21 11361.44 30798.81 9783.67 16687.47 22897.01 113
无先验93.28 21296.26 10973.95 32099.05 6080.56 21896.59 127
Anonymous2023121186.59 22685.13 23690.98 18196.52 9081.50 16496.14 4696.16 11873.78 32183.65 24992.15 22263.26 29797.37 20582.82 17781.74 28494.06 228
Anonymous2023120681.03 29779.77 29584.82 31887.85 33770.26 33591.42 26792.08 28173.67 32277.75 31389.25 29662.43 30193.08 33661.50 34382.00 28091.12 321
PCF-MVS84.11 1087.74 18086.08 21192.70 10194.02 18784.43 9289.27 30195.87 14173.62 32384.43 22694.33 14378.48 13698.86 9170.27 30094.45 13294.81 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HyFIR lowres test88.09 17186.81 18191.93 13696.00 10880.63 19290.01 29195.79 14773.42 32487.68 14992.10 22773.86 19197.96 15780.75 21491.70 17097.19 104
MDTV_nov1_ep13_2view55.91 36187.62 32473.32 32584.59 22070.33 23674.65 27995.50 166
JIA-IIPM81.04 29678.98 30687.25 28988.64 32573.48 30681.75 35089.61 33873.19 32682.05 27173.71 35266.07 28595.87 29071.18 29784.60 25092.41 295
cascas86.43 23284.98 23990.80 18492.10 24480.92 18590.24 28595.91 13773.10 32783.57 25288.39 30865.15 28997.46 18984.90 15091.43 17294.03 230
ANet_high58.88 32754.22 33172.86 33756.50 36756.67 35880.75 35286.00 34873.09 32837.39 36164.63 35822.17 36479.49 36043.51 35723.96 36282.43 353
ADS-MVSNet281.66 28879.71 29687.50 28291.35 27074.19 30183.33 34588.48 34272.90 32982.24 26985.77 33564.98 29093.20 33564.57 33483.74 25795.12 178
ADS-MVSNet81.56 29079.78 29486.90 29891.35 27071.82 32283.33 34589.16 34072.90 32982.24 26985.77 33564.98 29093.76 32864.57 33483.74 25795.12 178
PVSNet_073.20 2077.22 31674.83 32184.37 32190.70 29971.10 32883.09 34789.67 33772.81 33173.93 33683.13 34360.79 31393.70 32968.54 31250.84 35788.30 346
testdata90.49 19496.40 9277.89 25895.37 18372.51 33293.63 4596.69 5882.08 9697.65 17583.08 17097.39 8395.94 151
PMMVS85.71 24384.96 24087.95 27488.90 32477.09 27588.68 31190.06 32872.32 33386.47 17090.76 27072.15 21394.40 31881.78 19793.49 14592.36 297
Patchmtry82.71 27780.93 28388.06 27290.05 31376.37 28584.74 34091.96 28872.28 33481.32 28087.87 31871.03 22395.50 30568.97 31080.15 30992.32 299
tpm284.08 26682.94 26887.48 28491.39 26871.27 32589.23 30390.37 32271.95 33584.64 21889.33 29567.30 26596.55 25975.17 27487.09 23594.63 198
UnsupCasMVSNet_bld76.23 31973.27 32285.09 31783.79 35172.92 31085.65 33593.47 25371.52 33668.84 34879.08 34949.77 34893.21 33466.81 32760.52 35389.13 341
RPMNet83.95 26881.53 27891.21 16590.58 30279.34 22685.24 33696.76 7271.44 33785.55 19082.97 34470.87 22698.91 8661.01 34489.36 20095.40 172
旧先验293.36 20571.25 33894.37 2697.13 22386.74 131
新几何193.10 8197.30 6884.35 9495.56 16371.09 33991.26 10396.24 7782.87 8498.86 9179.19 23798.10 6396.07 147
112190.42 10989.49 11593.20 7797.27 7184.46 8892.63 23495.51 16971.01 34091.20 10496.21 7982.92 8399.05 6080.56 21898.07 6596.10 145
Patchmatch-test81.37 29379.30 29987.58 28090.92 28974.16 30280.99 35187.68 34670.52 34176.63 32188.81 30171.21 22092.76 33960.01 34886.93 23795.83 157
114514_t89.51 13088.50 14092.54 10898.11 3781.99 15395.16 10096.36 10570.19 34285.81 18395.25 11176.70 15198.63 10582.07 18996.86 9297.00 114
N_pmnet68.89 32368.44 32670.23 33989.07 32228.79 36988.06 31719.50 37069.47 34371.86 34484.93 33761.24 31091.75 34654.70 35277.15 32790.15 330
OpenMVS_ROBcopyleft74.94 1979.51 30877.03 31486.93 29687.00 33876.23 28792.33 24490.74 31868.93 34474.52 33388.23 31249.58 34996.62 24957.64 35084.29 25287.94 347
test22296.55 8881.70 16092.22 24895.01 19868.36 34590.20 11496.14 8580.26 11297.80 7596.05 149
MVS87.44 19686.10 21091.44 15992.61 23383.62 11192.63 23495.66 15767.26 34681.47 27692.15 22277.95 14098.22 13379.71 22995.48 11292.47 293
tpm cat181.96 28280.27 28887.01 29591.09 28071.02 32987.38 32591.53 29866.25 34780.17 29386.35 33168.22 26496.15 27969.16 30982.29 27493.86 239
CVMVSNet84.69 26284.79 24584.37 32191.84 25264.92 35293.70 19691.47 30066.19 34886.16 18095.28 10967.18 26893.33 33380.89 21290.42 18394.88 190
CMPMVSbinary59.16 2180.52 30079.20 30284.48 32083.98 35067.63 34689.95 29393.84 24764.79 34966.81 35091.14 25957.93 32895.17 31076.25 26488.10 22090.65 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet81.32 29480.95 28282.42 33088.50 32763.67 35393.32 20691.33 30264.02 35080.57 28992.83 20161.21 31192.27 34276.34 26380.38 30891.32 314
new_pmnet72.15 32170.13 32478.20 33482.95 35465.68 34883.91 34382.40 35562.94 35164.47 35179.82 34842.85 35786.26 35557.41 35174.44 33382.65 352
DSMNet-mixed76.94 31776.29 31678.89 33383.10 35356.11 36087.78 32079.77 35960.65 35275.64 32788.71 30461.56 30688.34 35360.07 34789.29 20292.21 302
pmmvs371.81 32268.71 32581.11 33175.86 35870.42 33486.74 32783.66 35358.95 35368.64 34980.89 34736.93 35889.52 35163.10 33963.59 35083.39 349
MVS-HIRNet73.70 32072.20 32378.18 33591.81 25456.42 35982.94 34882.58 35455.24 35468.88 34766.48 35655.32 33595.13 31158.12 34988.42 21583.01 350
PMMVS259.60 32656.40 32969.21 34068.83 36146.58 36473.02 35877.48 36355.07 35549.21 35772.95 35417.43 36880.04 35949.32 35644.33 35980.99 354
FPMVS64.63 32562.55 32770.88 33870.80 36056.71 35784.42 34184.42 35251.78 35649.57 35681.61 34623.49 36381.48 35840.61 35976.25 33174.46 355
LCM-MVSNet66.00 32462.16 32877.51 33664.51 36458.29 35683.87 34490.90 31448.17 35754.69 35573.31 35316.83 36986.75 35465.47 32961.67 35287.48 348
DeepMVS_CXcopyleft56.31 34574.23 35951.81 36256.67 36844.85 35848.54 35875.16 35027.87 36258.74 36540.92 35852.22 35658.39 358
Gipumacopyleft57.99 32854.91 33067.24 34188.51 32665.59 34952.21 36190.33 32443.58 35942.84 36051.18 36120.29 36685.07 35634.77 36070.45 33951.05 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 32948.46 33363.48 34245.72 36946.20 36573.41 35778.31 36141.03 36030.06 36365.68 3576.05 37083.43 35730.04 36165.86 34760.80 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 33242.29 33446.03 34665.58 36337.41 36673.51 35664.62 36433.99 36128.47 36547.87 36219.90 36767.91 36222.23 36324.45 36132.77 360
EMVS42.07 33341.12 33544.92 34763.45 36535.56 36873.65 35563.48 36533.05 36226.88 36645.45 36321.27 36567.14 36319.80 36423.02 36332.06 361
MVEpermissive39.65 2343.39 33138.59 33757.77 34356.52 36648.77 36355.38 36058.64 36729.33 36328.96 36452.65 3604.68 37164.62 36428.11 36233.07 36059.93 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 33048.47 33256.66 34452.26 36818.98 37141.51 36381.40 35710.10 36444.59 35975.01 35128.51 36168.16 36153.54 35349.31 35882.83 351
wuyk23d21.27 33620.48 33923.63 34968.59 36236.41 36749.57 3626.85 3719.37 3657.89 3674.46 3694.03 37231.37 36617.47 36516.07 3653.12 363
tmp_tt35.64 33439.24 33624.84 34814.87 37023.90 37062.71 35951.51 3696.58 36636.66 36262.08 35944.37 35630.34 36752.40 35422.00 36420.27 362
testmvs8.92 33711.52 3401.12 3511.06 3710.46 37386.02 3310.65 3720.62 3672.74 3689.52 3670.31 3740.45 3692.38 3660.39 3662.46 365
test1238.76 33811.22 3411.39 3500.85 3720.97 37285.76 3340.35 3730.54 3682.45 3698.14 3680.60 3730.48 3682.16 3670.17 3672.71 364
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k22.14 33529.52 3380.00 3520.00 3730.00 3740.00 36495.76 1490.00 3690.00 37094.29 14675.66 1660.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas6.64 3408.86 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37079.70 1190.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re7.82 33910.43 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37093.88 1650.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4798.99 1098.84 8
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
GSMVS96.12 142
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21596.12 142
sam_mvs70.60 229
ambc83.06 32879.99 35663.51 35477.47 35492.86 26274.34 33584.45 33828.74 36095.06 31473.06 28968.89 34590.61 326
MTGPAbinary96.97 49
test_post188.00 3189.81 36669.31 25095.53 30176.65 260
test_post10.29 36570.57 23395.91 289
patchmatchnet-post83.76 34071.53 21796.48 262
GG-mvs-BLEND87.94 27589.73 31977.91 25687.80 31978.23 36280.58 28883.86 33959.88 32095.33 30971.20 29592.22 16890.60 328
MTMP96.16 4460.64 366
test9_res91.91 6298.71 3098.07 63
agg_prior290.54 8898.68 3598.27 47
agg_prior97.38 6485.92 6096.72 7892.16 8198.97 80
test_prior485.96 5794.11 170
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
新几何293.11 220
旧先验196.79 8081.81 15895.67 15596.81 5386.69 3897.66 7996.97 115
原ACMM292.94 227
testdata298.75 10078.30 244
segment_acmp87.16 35
test1294.34 5397.13 7486.15 5196.29 10791.04 10685.08 5899.01 7098.13 6297.86 79
plane_prior794.70 16182.74 136
plane_prior694.52 16782.75 13474.23 182
plane_prior596.22 11498.12 13788.15 11189.99 18794.63 198
plane_prior494.86 124
plane_prior194.59 165
n20.00 374
nn0.00 374
door-mid85.49 349
lessismore_v086.04 30688.46 32868.78 34180.59 35873.01 34090.11 28255.39 33496.43 26775.06 27665.06 34892.90 281
test1196.57 94
door85.33 350
HQP5-MVS81.56 162
BP-MVS87.11 128
HQP4-MVS85.43 20297.96 15794.51 208
HQP3-MVS96.04 12889.77 194
HQP2-MVS73.83 192
NP-MVS94.37 17582.42 14593.98 158
ACMMP++_ref87.47 228
ACMMP++88.01 223
Test By Simon80.02 114