This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3188.53 7292.73 6297.23 2785.20 5699.32 3792.15 4698.83 1798.25 49
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4897.46 297.40 1889.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7286.33 4497.33 397.30 2791.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet91.70 8091.56 7692.13 12495.88 10780.50 18797.33 395.25 18086.15 12689.76 11095.60 9783.42 7498.32 12487.37 11493.25 14597.56 88
HPM-MVScopyleft94.02 3793.88 3894.43 5098.39 2385.78 6497.25 597.07 4586.90 11292.62 6696.80 5184.85 6299.17 4992.43 3698.65 4298.33 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test072698.78 285.93 5797.19 697.47 890.27 2897.64 498.13 191.47 6
3Dnovator86.66 591.73 7990.82 8994.44 4894.59 15686.37 4297.18 797.02 4689.20 5284.31 22296.66 5773.74 18599.17 4986.74 12297.96 6597.79 80
HPM-MVS_fast93.40 5393.22 5193.94 6198.36 2584.83 7597.15 896.80 6885.77 13392.47 7097.13 3582.38 8299.07 5790.51 8198.40 5297.92 74
SED-MVS95.91 196.28 194.80 3398.77 485.99 5497.13 997.44 1390.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
OPU-MVS96.21 198.00 4290.85 197.13 997.08 3792.59 198.94 8092.25 4298.99 1098.84 8
MSP-MVS95.67 296.02 294.64 4098.78 285.93 5797.09 1196.73 7390.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 31
test_0728_SECOND95.01 1598.79 186.43 4097.09 1197.49 599.61 395.62 599.08 798.99 5
3Dnovator+87.14 492.42 7091.37 7795.55 495.63 11688.73 497.07 1396.77 7190.84 1684.02 22796.62 5975.95 15299.34 3387.77 10797.68 7198.59 18
IS-MVSNet91.43 8391.09 8492.46 10995.87 10981.38 16496.95 1493.69 23989.72 4089.50 11395.98 8578.57 12897.77 15883.02 16296.50 9598.22 51
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 2088.63 6893.65 3997.21 2986.10 4499.49 2392.35 4098.77 2498.30 40
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2588.63 6893.53 4697.26 2685.04 5899.54 1692.35 4098.78 2198.50 21
XVS94.45 2094.32 2094.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5597.16 3485.02 5999.49 2391.99 5098.56 4798.47 27
X-MVStestdata88.31 15786.13 19794.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5523.41 34785.02 5999.49 2391.99 5098.56 4798.47 27
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3388.60 7093.58 4397.27 2485.22 5599.54 1692.21 4398.74 2998.56 19
DVP-MVS95.42 595.56 594.98 1998.49 1686.52 3796.91 2097.47 891.73 896.10 1396.69 5489.90 999.30 3994.70 998.04 6399.13 1
mPP-MVS93.99 3893.78 4194.63 4198.50 1585.90 6296.87 2196.91 5688.70 6691.83 8497.17 3383.96 7199.55 1291.44 6698.64 4398.43 33
ACMMPcopyleft93.24 5792.88 6094.30 5498.09 3885.33 7196.86 2297.45 1188.33 7690.15 10797.03 4181.44 9699.51 2190.85 7895.74 10298.04 65
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2588.24 7993.15 5197.04 3986.17 4399.62 192.40 3898.81 1898.52 20
QAPM89.51 12388.15 14393.59 7094.92 14284.58 7996.82 2496.70 7778.43 26583.41 24396.19 7973.18 19399.30 3977.11 24696.54 9396.89 115
CPTT-MVS91.99 7391.80 7392.55 10598.24 3181.98 14996.76 2596.49 9181.89 21890.24 10596.44 6778.59 12798.61 10289.68 8697.85 6997.06 106
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4696.71 2696.98 4889.04 5791.98 7897.19 3185.43 5399.56 792.06 4998.79 1998.44 32
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS93.89 4293.65 4494.62 4296.84 7586.43 4096.69 2797.49 585.15 15193.56 4596.28 7285.60 5099.31 3892.45 3598.79 1998.12 58
SF-MVS94.97 1094.90 1295.20 897.84 4687.76 896.65 2897.48 787.76 9395.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
OpenMVScopyleft83.78 1188.74 14787.29 16193.08 8092.70 22085.39 7096.57 2996.43 9478.74 26280.85 27296.07 8369.64 23399.01 6978.01 23796.65 9094.83 183
GST-MVS94.21 3393.97 3794.90 2498.41 2286.82 2396.54 3097.19 3688.24 7993.26 4796.83 4785.48 5299.59 491.43 6798.40 5298.30 40
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 2087.51 9993.65 3997.21 2986.10 4499.49 2391.68 6198.77 2498.30 40
nrg03091.08 9190.39 9293.17 7793.07 20986.91 2096.41 3296.26 10388.30 7788.37 12894.85 12082.19 8897.64 16791.09 7082.95 25994.96 176
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6496.40 3396.90 5788.20 8294.33 2797.40 1884.75 6399.03 6393.35 2597.99 6498.48 23
canonicalmvs93.27 5692.75 6194.85 2795.70 11487.66 1196.33 3496.41 9590.00 3494.09 3194.60 12982.33 8498.62 10192.40 3892.86 15398.27 46
VDDNet89.56 12288.49 13492.76 9495.07 13482.09 14696.30 3593.19 24581.05 23791.88 8096.86 4561.16 29998.33 12388.43 10092.49 15997.84 77
APD-MVS_3200maxsize93.78 4393.77 4293.80 6797.92 4384.19 9396.30 3596.87 6186.96 10893.92 3597.47 1683.88 7298.96 7992.71 3497.87 6898.26 48
SMA-MVS95.20 795.07 995.59 398.14 3588.48 696.26 3797.28 2985.90 13097.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
CSCG93.23 5893.05 5593.76 6898.04 4084.07 9596.22 3897.37 1984.15 16790.05 10895.66 9687.77 2399.15 5289.91 8498.27 5798.07 62
SD-MVS94.96 1195.33 793.88 6297.25 6986.69 3096.19 3997.11 4390.42 2596.95 1097.27 2489.53 1196.91 22894.38 1398.85 1598.03 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4097.23 3387.28 10294.85 2497.04 3986.99 3699.52 2091.54 6398.33 5598.71 12
MTMP96.16 4060.64 350
CS-MVS92.60 6692.56 6492.73 9695.55 11882.35 14396.14 4296.85 6288.71 6591.44 9291.51 23684.13 6898.48 10891.27 6897.47 7697.34 94
Anonymous2023121186.59 21685.13 22590.98 17196.52 8681.50 15796.14 4296.16 11273.78 30583.65 23792.15 21063.26 28497.37 19482.82 16781.74 27794.06 218
Vis-MVSNetpermissive91.75 7891.23 8093.29 7295.32 12683.78 10296.14 4295.98 12389.89 3590.45 10396.58 6175.09 16298.31 12584.75 14296.90 8497.78 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4496.11 4596.62 8488.14 8496.10 1396.96 4389.09 1598.94 8094.48 1298.68 3598.48 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
9.1494.47 1797.79 4896.08 4697.44 1386.13 12895.10 2297.40 1888.34 1899.22 4593.25 2798.70 32
LFMVS90.08 10989.13 11992.95 8796.71 7882.32 14496.08 4689.91 31786.79 11392.15 7696.81 4962.60 28698.34 12187.18 11693.90 13198.19 52
API-MVS90.66 9890.07 9992.45 11096.36 9084.57 8096.06 4895.22 18382.39 20289.13 11794.27 14180.32 10498.46 11180.16 21496.71 8894.33 206
EPNet91.79 7691.02 8594.10 5890.10 30085.25 7296.03 4992.05 26792.83 187.39 14795.78 9279.39 11899.01 6988.13 10497.48 7598.05 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052988.09 16386.59 18392.58 10496.53 8581.92 15195.99 5095.84 13674.11 30389.06 12095.21 10761.44 29498.81 9283.67 15687.47 22197.01 109
alignmvs93.08 6092.50 6694.81 3295.62 11787.61 1295.99 5096.07 11889.77 3894.12 3094.87 11780.56 10298.66 9792.42 3793.10 14898.15 55
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5187.71 995.98 5297.44 1386.67 11795.25 2197.31 2287.73 2599.24 4393.11 3098.76 2698.40 34
MVSFormer91.68 8191.30 7892.80 9293.86 18583.88 10095.96 5395.90 13184.66 16191.76 8594.91 11577.92 13497.30 19689.64 8797.11 8097.24 98
test_djsdf89.03 13988.64 12990.21 19590.74 28679.28 21995.96 5395.90 13184.66 16185.33 19892.94 18574.02 17997.30 19689.64 8788.53 20494.05 219
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5596.96 5291.75 794.02 3396.83 4788.12 2199.55 1293.41 2498.94 1298.28 44
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 3986.90 2195.88 5696.94 5485.68 13695.05 2397.18 3287.31 3099.07 5791.90 5798.61 4598.28 44
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HQP_MVS90.60 10290.19 9691.82 13894.70 15282.73 13295.85 5796.22 10890.81 1786.91 15494.86 11874.23 17398.12 13288.15 10289.99 18094.63 188
plane_prior295.85 5790.81 17
MSLP-MVS++93.72 4494.08 3392.65 10197.31 6383.43 11195.79 5997.33 2390.03 3393.58 4396.96 4384.87 6197.76 15992.19 4598.66 4096.76 117
FC-MVSNet-test90.27 10690.18 9790.53 18093.71 19179.85 20595.77 6097.59 289.31 4986.27 16794.67 12681.93 9497.01 22284.26 14788.09 21594.71 187
FIs90.51 10390.35 9390.99 16993.99 18180.98 17295.73 6197.54 389.15 5486.72 15894.68 12581.83 9597.24 20485.18 13588.31 21194.76 186
VDD-MVS90.74 9489.92 10593.20 7596.27 9283.02 12295.73 6193.86 23488.42 7592.53 6796.84 4662.09 28998.64 9990.95 7592.62 15697.93 73
UGNet89.95 11388.95 12392.95 8794.51 15983.31 11495.70 6395.23 18189.37 4887.58 14293.94 15264.00 28198.78 9483.92 15196.31 9896.74 119
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMMP_NAP94.74 1494.56 1695.28 698.02 4187.70 1095.68 6497.34 2088.28 7895.30 2097.67 1385.90 4899.54 1693.91 1798.95 1198.60 17
MAR-MVS90.30 10589.37 11393.07 8296.61 8184.48 8495.68 6495.67 14882.36 20487.85 13692.85 18776.63 14698.80 9380.01 21596.68 8995.91 146
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UA-Net92.83 6292.54 6593.68 6996.10 9984.71 7795.66 6696.39 9791.92 493.22 4996.49 6583.16 7598.87 8384.47 14595.47 10797.45 92
NCCC94.81 1394.69 1595.17 1097.83 4787.46 1495.66 6696.93 5592.34 293.94 3496.58 6187.74 2499.44 2792.83 3298.40 5298.62 16
DeepC-MVS_fast89.43 294.04 3693.79 4094.80 3397.48 5886.78 2695.65 6896.89 5889.40 4792.81 5896.97 4285.37 5499.24 4390.87 7798.69 3398.38 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H87.80 17087.37 15989.10 23593.23 20478.12 24195.61 6997.30 2787.90 8883.72 23492.01 22079.65 11796.01 27376.36 25180.54 29593.16 262
Vis-MVSNet (Re-imp)89.59 12189.44 11190.03 20595.74 11175.85 27895.61 6990.80 30287.66 9887.83 13795.40 10276.79 14296.46 25478.37 23196.73 8797.80 79
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7197.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
abl_693.18 5993.05 5593.57 7197.52 5684.27 9295.53 7296.67 8087.85 9093.20 5097.22 2880.35 10399.18 4891.91 5497.21 7997.26 97
VPA-MVSNet89.62 11988.96 12291.60 14693.86 18582.89 12795.46 7397.33 2387.91 8788.43 12793.31 17174.17 17697.40 19087.32 11582.86 26494.52 197
EIA-MVS91.95 7491.94 7191.98 12895.16 13280.01 20095.36 7496.73 7388.44 7389.34 11592.16 20983.82 7398.45 11489.35 8997.06 8297.48 90
tttt051788.61 15087.78 15091.11 16194.96 13977.81 25095.35 7589.69 32185.09 15388.05 13394.59 13066.93 25898.48 10883.27 15992.13 16297.03 108
PS-CasMVS87.32 19186.88 16988.63 24892.99 21576.33 27595.33 7696.61 8588.22 8183.30 24793.07 18273.03 19595.79 28478.36 23281.00 28993.75 239
ETH3 D test640093.64 4793.22 5194.92 2097.79 4886.84 2295.31 7797.26 3082.67 20093.81 3796.29 7187.29 3199.27 4289.87 8598.67 3798.65 15
jajsoiax88.24 15987.50 15590.48 18590.89 28080.14 19295.31 7795.65 15284.97 15584.24 22494.02 14765.31 27597.42 18388.56 9888.52 20593.89 225
ACMM84.12 989.14 13588.48 13591.12 15894.65 15581.22 16895.31 7796.12 11585.31 14785.92 17294.34 13470.19 22798.06 14385.65 13188.86 20194.08 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PGM-MVS93.96 3993.72 4394.68 3898.43 1986.22 4995.30 8097.78 187.45 10093.26 4797.33 2184.62 6499.51 2190.75 7998.57 4698.32 39
LPG-MVS_test89.45 12688.90 12591.12 15894.47 16081.49 15995.30 8096.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
CP-MVSNet87.63 17787.26 16488.74 24593.12 20776.59 27095.29 8296.58 8788.43 7483.49 24292.98 18475.28 16095.83 28178.97 22781.15 28393.79 233
CNVR-MVS95.40 695.37 695.50 598.11 3688.51 595.29 8296.96 5292.09 395.32 1997.08 3789.49 1299.33 3695.10 898.85 1598.66 14
pm-mvs186.61 21485.54 21689.82 21391.44 25280.18 19095.28 8494.85 20383.84 17381.66 26392.62 19672.45 20396.48 25179.67 21978.06 31292.82 275
PS-MVSNAJss89.97 11289.62 10791.02 16691.90 23980.85 17795.26 8595.98 12386.26 12486.21 16894.29 13879.70 11397.65 16588.87 9588.10 21394.57 194
LS3D87.89 16786.32 19292.59 10396.07 10182.92 12695.23 8694.92 19975.66 28882.89 25095.98 8572.48 20199.21 4668.43 30195.23 11595.64 156
mvs_tets88.06 16587.28 16290.38 19090.94 27679.88 20395.22 8795.66 15085.10 15284.21 22593.94 15263.53 28397.40 19088.50 9988.40 20993.87 228
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4485.63 6795.21 8895.47 16489.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
save fliter97.85 4485.63 6795.21 8896.82 6689.44 44
plane_prior82.73 13295.21 8889.66 4189.88 185
PEN-MVS86.80 20886.27 19488.40 25292.32 22775.71 28095.18 9196.38 9887.97 8582.82 25193.15 17873.39 19195.92 27676.15 25579.03 31193.59 244
TransMVSNet (Re)84.43 25483.06 25688.54 24991.72 24578.44 23395.18 9192.82 25182.73 19879.67 28992.12 21273.49 18795.96 27571.10 28668.73 33291.21 308
114514_t89.51 12388.50 13292.54 10698.11 3681.99 14895.16 9396.36 9970.19 32685.81 17395.25 10576.70 14498.63 10082.07 17996.86 8697.00 110
GBi-Net87.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
test187.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
FMVSNet185.85 23084.11 24291.08 16292.81 21883.10 11895.14 9494.94 19481.64 22482.68 25291.64 22859.01 31196.34 26175.37 26183.78 24993.79 233
ETV-MVS92.74 6492.66 6292.97 8695.20 13184.04 9795.07 9796.51 9090.73 2192.96 5491.19 24384.06 6998.34 12191.72 6096.54 9396.54 125
v7n86.81 20785.76 21489.95 20990.72 28779.25 22195.07 9795.92 12884.45 16482.29 25590.86 25472.60 20097.53 17379.42 22480.52 29793.08 266
ACMP84.23 889.01 14188.35 13690.99 16994.73 14981.27 16595.07 9795.89 13386.48 11983.67 23694.30 13769.33 23697.99 14887.10 12188.55 20393.72 241
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
thres100view90087.63 17786.71 17690.38 19096.12 9678.55 22995.03 10191.58 28087.15 10388.06 13292.29 20668.91 24498.10 13470.13 29191.10 16794.48 202
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10297.12 4187.13 10492.51 6996.30 7089.24 1499.34 3393.46 2198.62 4498.73 11
pmmvs683.42 26281.60 26688.87 24088.01 32377.87 24894.96 10394.24 22474.67 29978.80 29491.09 25060.17 30596.49 25077.06 24875.40 32092.23 291
mvs-test189.45 12689.14 11890.38 19093.33 20177.63 25694.95 10494.36 21887.70 9487.10 15192.81 19173.45 18898.03 14585.57 13393.04 14995.48 159
CANet93.54 4993.20 5394.55 4495.65 11585.73 6694.94 10596.69 7991.89 590.69 10195.88 8981.99 9399.54 1693.14 2997.95 6698.39 35
DTE-MVSNet86.11 22585.48 21887.98 26491.65 25074.92 28394.93 10695.75 14387.36 10182.26 25693.04 18372.85 19695.82 28274.04 27177.46 31693.20 260
ETH3D cwj APD-0.1693.91 4093.53 4695.06 1396.76 7787.78 794.92 10797.21 3584.33 16593.89 3697.09 3687.20 3299.29 4191.90 5798.44 5198.12 58
TranMVSNet+NR-MVSNet88.84 14487.95 14791.49 14892.68 22183.01 12394.92 10796.31 10089.88 3685.53 18193.85 15976.63 14696.96 22481.91 18379.87 30494.50 199
DeepC-MVS88.79 393.31 5492.99 5794.26 5596.07 10185.83 6394.89 10996.99 4789.02 5989.56 11197.37 2082.51 8199.38 2992.20 4498.30 5697.57 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view787.65 17486.67 17890.59 17696.08 10078.72 22594.88 11091.58 28087.06 10688.08 13192.30 20568.91 24498.10 13470.05 29491.10 16794.96 176
Anonymous20240521187.68 17286.13 19792.31 11896.66 7980.74 18094.87 11191.49 28480.47 24189.46 11495.44 9954.72 32398.23 12782.19 17789.89 18497.97 69
PVSNet_Blended_VisFu91.38 8490.91 8792.80 9296.39 8983.17 11794.87 11196.66 8183.29 18689.27 11694.46 13380.29 10599.17 4987.57 11095.37 11096.05 143
VNet92.24 7291.91 7293.24 7496.59 8283.43 11194.84 11396.44 9289.19 5394.08 3295.90 8877.85 13798.17 13188.90 9493.38 14298.13 57
MP-MVS-pluss94.21 3394.00 3694.85 2798.17 3486.65 3394.82 11497.17 3986.26 12492.83 5797.87 1085.57 5199.56 794.37 1498.92 1398.34 37
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS87.25 19485.36 22292.90 8997.65 5283.24 11594.81 11592.00 26974.99 29581.92 26295.00 11372.66 19899.05 5966.92 30992.33 16096.40 126
FMVSNet287.19 19985.82 21091.30 15494.01 17783.67 10594.79 11694.94 19483.57 17783.88 23092.05 21966.59 26596.51 24977.56 24185.01 24193.73 240
UniMVSNet (Re)89.80 11789.07 12092.01 12593.60 19584.52 8194.78 11797.47 889.26 5086.44 16492.32 20482.10 8997.39 19384.81 14180.84 29194.12 213
NR-MVSNet88.58 15287.47 15791.93 13293.04 21184.16 9494.77 11896.25 10589.05 5680.04 28693.29 17379.02 12197.05 22081.71 19080.05 30194.59 192
UniMVSNet_ETH3D87.53 18386.37 18891.00 16892.44 22478.96 22494.74 11995.61 15484.07 16985.36 19794.52 13259.78 30897.34 19582.93 16387.88 21896.71 120
F-COLMAP87.95 16686.80 17391.40 15196.35 9180.88 17694.73 12095.45 16879.65 25182.04 26094.61 12871.13 21198.50 10776.24 25491.05 17194.80 185
ACMH80.38 1785.36 23783.68 24890.39 18894.45 16380.63 18294.73 12094.85 20382.09 20877.24 30392.65 19560.01 30697.58 16972.25 28084.87 24292.96 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Regformer-393.68 4593.64 4593.81 6695.36 12384.61 7894.68 12295.83 13791.27 1293.60 4296.71 5285.75 4998.86 8692.87 3196.65 9097.96 70
Regformer-493.91 4093.81 3994.19 5795.36 12385.47 6994.68 12296.41 9591.60 1093.75 3896.71 5285.95 4799.10 5693.21 2896.65 9098.01 68
anonymousdsp87.84 16887.09 16590.12 20089.13 31080.54 18594.67 12495.55 15882.05 20983.82 23292.12 21271.47 20997.15 21087.15 11787.80 22092.67 277
DP-MVS Recon91.95 7491.28 7993.96 6098.33 2785.92 5994.66 12596.66 8182.69 19990.03 10995.82 9182.30 8599.03 6384.57 14496.48 9696.91 114
thisisatest053088.67 14887.61 15491.86 13594.87 14580.07 19594.63 12689.90 31884.00 17088.46 12693.78 16266.88 26098.46 11183.30 15892.65 15597.06 106
Effi-MVS+91.59 8291.11 8293.01 8494.35 16983.39 11394.60 12795.10 18887.10 10590.57 10293.10 18181.43 9798.07 14289.29 9094.48 12597.59 86
tfpn200view987.58 18186.64 17990.41 18795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.48 202
thres40087.62 17986.64 17990.57 17795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.96 176
Regformer-194.22 3294.13 3294.51 4695.54 11986.36 4394.57 13096.44 9291.69 994.32 2896.56 6387.05 3599.03 6393.35 2597.65 7398.15 55
Regformer-294.33 2794.22 2594.68 3895.54 11986.75 2994.57 13096.70 7791.84 694.41 2596.56 6387.19 3399.13 5393.50 2097.65 7398.16 54
casdiffmvs92.51 6892.43 6792.74 9594.41 16581.98 14994.54 13296.23 10789.57 4291.96 7996.17 8082.58 8098.01 14690.95 7595.45 10998.23 50
v887.50 18686.71 17689.89 21091.37 25879.40 21294.50 13395.38 17484.81 15883.60 23991.33 23876.05 14997.42 18382.84 16680.51 29892.84 274
tfpnnormal84.72 25183.23 25489.20 23292.79 21980.05 19794.48 13495.81 13882.38 20381.08 27091.21 24269.01 24396.95 22561.69 32680.59 29490.58 317
EI-MVSNet-Vis-set93.01 6192.92 5993.29 7295.01 13583.51 11094.48 13495.77 14190.87 1592.52 6896.67 5684.50 6599.00 7291.99 5094.44 12797.36 93
v1087.25 19486.38 18789.85 21191.19 26479.50 20994.48 13495.45 16883.79 17483.62 23891.19 24375.13 16197.42 18381.94 18280.60 29392.63 279
Effi-MVS+-dtu88.65 14988.35 13689.54 22493.33 20176.39 27394.47 13794.36 21887.70 9485.43 19089.56 28273.45 18897.26 20285.57 13391.28 16694.97 173
DU-MVS89.34 13388.50 13291.85 13793.04 21183.72 10394.47 13796.59 8689.50 4386.46 16193.29 17377.25 13897.23 20684.92 13881.02 28794.59 192
ACMH+81.04 1485.05 24583.46 25289.82 21394.66 15479.37 21394.44 13994.12 23082.19 20778.04 29892.82 19058.23 31397.54 17273.77 27482.90 26392.54 280
UniMVSNet_NR-MVSNet89.92 11589.29 11591.81 14093.39 20083.72 10394.43 14097.12 4189.80 3786.46 16193.32 17083.16 7597.23 20684.92 13881.02 28794.49 201
AdaColmapbinary89.89 11689.07 12092.37 11597.41 5983.03 12194.42 14195.92 12882.81 19786.34 16694.65 12773.89 18199.02 6780.69 20495.51 10595.05 171
EI-MVSNet-UG-set92.74 6492.62 6393.12 7894.86 14683.20 11694.40 14295.74 14490.71 2292.05 7796.60 6084.00 7098.99 7391.55 6293.63 13597.17 102
TSAR-MVS + GP.93.66 4693.41 4894.41 5296.59 8286.78 2694.40 14293.93 23389.77 3894.21 2995.59 9887.35 2998.61 10292.72 3396.15 9997.83 78
HQP-NCC94.17 17194.39 14488.81 6185.43 190
ACMP_Plane94.17 17194.39 14488.81 6185.43 190
HQP-MVS89.80 11789.28 11691.34 15394.17 17181.56 15594.39 14496.04 12188.81 6185.43 19093.97 15173.83 18397.96 15087.11 11989.77 18794.50 199
TAPA-MVS84.62 688.16 16187.01 16891.62 14596.64 8080.65 18194.39 14496.21 11176.38 28186.19 16995.44 9979.75 11198.08 14162.75 32495.29 11296.13 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RRT_MVS88.86 14387.68 15292.39 11492.02 23686.09 5294.38 14894.94 19485.45 14387.14 15093.84 16065.88 27397.11 21488.73 9686.77 23193.98 222
PAPM_NR91.22 8890.78 9092.52 10797.60 5381.46 16194.37 14996.24 10686.39 12287.41 14494.80 12282.06 9198.48 10882.80 16895.37 11097.61 84
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
RRT_test8_iter0586.90 20586.36 18988.52 25093.00 21473.27 29594.32 15195.96 12585.50 14284.26 22392.86 18660.76 30197.70 16488.32 10182.29 26794.60 191
PLCcopyleft84.53 789.06 13888.03 14592.15 12397.27 6782.69 13594.29 15295.44 17079.71 25084.01 22894.18 14376.68 14598.75 9577.28 24393.41 14195.02 172
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline188.10 16287.28 16290.57 17794.96 13980.07 19594.27 15391.29 28986.74 11487.41 14494.00 14976.77 14396.20 26580.77 20279.31 30995.44 161
COLMAP_ROBcopyleft80.39 1683.96 25782.04 26389.74 21795.28 12779.75 20694.25 15492.28 26175.17 29378.02 29993.77 16358.60 31297.84 15665.06 31785.92 23391.63 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4287.68 17286.86 17090.15 19890.58 29180.14 19294.24 15595.28 17983.66 17685.67 17691.33 23874.73 16897.41 18884.43 14681.83 27492.89 272
Baseline_NR-MVSNet87.07 20286.63 18188.40 25291.44 25277.87 24894.23 15692.57 25784.12 16885.74 17592.08 21677.25 13896.04 27082.29 17679.94 30291.30 305
FMVSNet387.40 18986.11 19991.30 15493.79 19083.64 10694.20 15794.81 20783.89 17284.37 21591.87 22468.45 25096.56 24678.23 23485.36 23893.70 242
OPM-MVS90.12 10889.56 10891.82 13893.14 20683.90 9994.16 15895.74 14488.96 6087.86 13595.43 10172.48 20197.91 15488.10 10590.18 17993.65 243
baseline92.39 7192.29 6992.69 10094.46 16281.77 15394.14 15996.27 10289.22 5191.88 8096.00 8482.35 8397.99 14891.05 7195.27 11498.30 40
test_prior393.60 4893.53 4693.82 6497.29 6584.49 8294.12 16096.88 5987.67 9692.63 6496.39 6886.62 3898.87 8391.50 6498.67 3798.11 60
test_prior294.12 16087.67 9692.63 6496.39 6886.62 3891.50 6498.67 37
test_yl90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
DCV-MVSNet90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
test_prior485.96 5694.11 162
EPNet_dtu86.49 22185.94 20788.14 26190.24 29872.82 29994.11 16292.20 26386.66 11879.42 29292.36 20373.52 18695.81 28371.26 28293.66 13495.80 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNLPA89.07 13787.98 14692.34 11696.87 7484.78 7694.08 16693.24 24481.41 22984.46 21295.13 11075.57 15896.62 23877.21 24493.84 13395.61 157
TEST997.53 5486.49 3894.07 16796.78 6981.61 22692.77 5996.20 7687.71 2699.12 54
train_agg93.44 5193.08 5494.52 4597.53 5486.49 3894.07 16796.78 6981.86 21992.77 5996.20 7687.63 2799.12 5492.14 4798.69 3397.94 71
CDPH-MVS92.83 6292.30 6894.44 4897.79 4886.11 5194.06 16996.66 8180.09 24592.77 5996.63 5886.62 3899.04 6287.40 11298.66 4098.17 53
VPNet88.20 16087.47 15790.39 18893.56 19679.46 21094.04 17095.54 16088.67 6786.96 15294.58 13169.33 23697.15 21084.05 15080.53 29694.56 195
Fast-Effi-MVS+-dtu87.44 18786.72 17589.63 22292.04 23477.68 25594.03 17193.94 23285.81 13182.42 25491.32 24070.33 22597.06 21980.33 21290.23 17894.14 212
test_897.49 5786.30 4794.02 17296.76 7281.86 21992.70 6396.20 7687.63 2799.02 67
OurMVSNet-221017-085.35 23884.64 23787.49 27490.77 28472.59 30494.01 17394.40 21784.72 16079.62 29193.17 17761.91 29196.72 23381.99 18181.16 28193.16 262
v2v48287.84 16887.06 16690.17 19690.99 27279.23 22294.00 17495.13 18584.87 15685.53 18192.07 21874.45 17097.45 17984.71 14381.75 27693.85 231
DeepPCF-MVS89.96 194.20 3594.77 1392.49 10896.52 8680.00 20194.00 17497.08 4490.05 3295.65 1797.29 2389.66 1098.97 7693.95 1698.71 3098.50 21
v114487.61 18086.79 17490.06 20491.01 27179.34 21593.95 17695.42 17383.36 18585.66 17791.31 24174.98 16497.42 18383.37 15782.06 27093.42 252
agg_prior193.29 5592.97 5894.26 5597.38 6085.92 5993.92 17796.72 7581.96 21392.16 7496.23 7487.85 2298.97 7691.95 5398.55 4997.90 75
v14419287.19 19986.35 19089.74 21790.64 28978.24 23993.92 17795.43 17181.93 21585.51 18391.05 25174.21 17597.45 17982.86 16581.56 27893.53 246
PVSNet_BlendedMVS89.98 11189.70 10690.82 17396.12 9681.25 16693.92 17796.83 6483.49 18189.10 11892.26 20781.04 10098.85 8986.72 12587.86 21992.35 288
v192192086.97 20486.06 20289.69 22190.53 29478.11 24293.80 18095.43 17181.90 21785.33 19891.05 25172.66 19897.41 18882.05 18081.80 27593.53 246
v119287.25 19486.33 19190.00 20890.76 28579.04 22393.80 18095.48 16382.57 20185.48 18591.18 24573.38 19297.42 18382.30 17582.06 27093.53 246
XXY-MVS87.65 17486.85 17190.03 20592.14 23080.60 18493.76 18295.23 18182.94 19384.60 20794.02 14774.27 17295.49 29681.04 19683.68 25294.01 221
MVSTER88.84 14488.29 14090.51 18392.95 21680.44 18893.73 18395.01 19184.66 16187.15 14893.12 18072.79 19797.21 20887.86 10687.36 22493.87 228
IterMVS-LS88.36 15687.91 14989.70 22093.80 18878.29 23893.73 18395.08 19085.73 13484.75 20591.90 22379.88 10996.92 22783.83 15282.51 26593.89 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14887.04 20386.32 19289.21 23190.94 27677.26 26293.71 18594.43 21684.84 15784.36 21890.80 25776.04 15097.05 22082.12 17879.60 30693.31 254
EI-MVSNet89.10 13688.86 12789.80 21691.84 24178.30 23793.70 18695.01 19185.73 13487.15 14895.28 10379.87 11097.21 20883.81 15387.36 22493.88 227
CVMVSNet84.69 25284.79 23484.37 30991.84 24164.92 33693.70 18691.47 28566.19 33286.16 17095.28 10367.18 25693.33 32080.89 20190.42 17694.88 181
v124086.78 20985.85 20989.56 22390.45 29577.79 25193.61 18895.37 17681.65 22385.43 19091.15 24771.50 20897.43 18281.47 19382.05 27293.47 250
MG-MVS91.77 7791.70 7592.00 12797.08 7180.03 19993.60 18995.18 18487.85 9090.89 10096.47 6682.06 9198.36 11885.07 13697.04 8397.62 83
Fast-Effi-MVS+89.41 12988.64 12991.71 14394.74 14880.81 17893.54 19095.10 18883.11 18986.82 15790.67 26079.74 11297.75 16280.51 20993.55 13696.57 123
OMC-MVS91.23 8790.62 9193.08 8096.27 9284.07 9593.52 19195.93 12786.95 10989.51 11296.13 8278.50 12998.35 12085.84 13092.90 15296.83 116
CANet_DTU90.26 10789.41 11292.81 9193.46 19983.01 12393.48 19294.47 21589.43 4687.76 14094.23 14270.54 22399.03 6384.97 13796.39 9796.38 127
SixPastTwentyTwo83.91 25882.90 25886.92 28890.99 27270.67 31893.48 19291.99 27085.54 14077.62 30292.11 21460.59 30296.87 23076.05 25677.75 31393.20 260
MVS_Test91.31 8691.11 8291.93 13294.37 16680.14 19293.46 19495.80 13986.46 12091.35 9593.77 16382.21 8798.09 14087.57 11094.95 11697.55 89
旧先验293.36 19571.25 32294.37 2697.13 21386.74 122
xiu_mvs_v1_base_debu90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base_debi90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
EU-MVSNet81.32 28480.95 27182.42 31688.50 31663.67 33793.32 19691.33 28764.02 33480.57 27792.83 18961.21 29892.27 32776.34 25280.38 29991.32 304
TAMVS89.21 13488.29 14091.96 13093.71 19182.62 13793.30 20094.19 22582.22 20687.78 13993.94 15278.83 12296.95 22577.70 23992.98 15196.32 128
BH-untuned88.60 15188.13 14490.01 20795.24 13078.50 23293.29 20194.15 22784.75 15984.46 21293.40 16775.76 15397.40 19077.59 24094.52 12494.12 213
无先验93.28 20296.26 10373.95 30499.05 5980.56 20796.59 122
MVS_030483.46 26181.92 26488.10 26290.63 29077.49 25993.26 20393.75 23880.04 24680.44 27987.24 31247.94 33695.55 29075.79 25788.16 21291.26 306
thres20087.21 19886.24 19590.12 20095.36 12378.53 23093.26 20392.10 26586.42 12188.00 13491.11 24969.24 24098.00 14769.58 29591.04 17293.83 232
WR-MVS88.38 15487.67 15390.52 18293.30 20380.18 19093.26 20395.96 12588.57 7185.47 18692.81 19176.12 14896.91 22881.24 19482.29 26794.47 204
MVS_111021_HR93.45 5093.31 4993.84 6396.99 7284.84 7493.24 20697.24 3188.76 6491.60 8995.85 9086.07 4698.66 9791.91 5498.16 5998.03 66
LCM-MVSNet-Re88.30 15888.32 13988.27 25694.71 15172.41 30693.15 20790.98 29687.77 9279.25 29391.96 22178.35 13195.75 28583.04 16195.62 10396.65 121
AllTest83.42 26281.39 26789.52 22595.01 13577.79 25193.12 20890.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
TDRefinement79.81 29477.34 29787.22 28379.24 34175.48 28293.12 20892.03 26876.45 28075.01 31391.58 23349.19 33496.44 25570.22 29069.18 32989.75 320
新几何293.11 210
jason90.80 9390.10 9892.90 8993.04 21183.53 10993.08 21194.15 22780.22 24291.41 9394.91 11576.87 14097.93 15390.28 8396.90 8497.24 98
jason: jason.
MVS_111021_LR92.47 6992.29 6992.98 8595.99 10484.43 8993.08 21196.09 11688.20 8291.12 9895.72 9581.33 9897.76 15991.74 5997.37 7896.75 118
DELS-MVS93.43 5293.25 5093.97 5995.42 12285.04 7393.06 21397.13 4090.74 2091.84 8295.09 11186.32 4299.21 4691.22 6998.45 5097.65 82
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDS-MVSNet89.45 12688.51 13192.29 12093.62 19483.61 10893.01 21494.68 21281.95 21487.82 13893.24 17578.69 12596.99 22380.34 21193.23 14696.28 130
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040281.30 28579.17 29087.67 26993.19 20578.17 24092.98 21591.71 27675.25 29276.02 31090.31 26659.23 31096.37 25850.22 33883.63 25388.47 330
1112_ss88.42 15387.33 16091.72 14294.92 14280.98 17292.97 21694.54 21378.16 27083.82 23293.88 15778.78 12497.91 15479.45 22189.41 19196.26 131
原ACMM292.94 217
BH-RMVSNet88.37 15587.48 15691.02 16695.28 12779.45 21192.89 21893.07 24785.45 14386.91 15494.84 12170.35 22497.76 15973.97 27294.59 12295.85 149
lupinMVS90.92 9290.21 9593.03 8393.86 18583.88 10092.81 21993.86 23479.84 24891.76 8594.29 13877.92 13498.04 14490.48 8297.11 8097.17 102
EG-PatchMatch MVS82.37 27280.34 27688.46 25190.27 29779.35 21492.80 22094.33 22077.14 27773.26 32290.18 26847.47 33896.72 23370.25 28887.32 22689.30 321
PAPR90.02 11089.27 11792.29 12095.78 11080.95 17492.68 22196.22 10881.91 21686.66 15993.75 16582.23 8698.44 11579.40 22594.79 11797.48 90
DPM-MVS92.58 6791.74 7495.08 1296.19 9489.31 392.66 22296.56 8983.44 18291.68 8895.04 11286.60 4198.99 7385.60 13297.92 6796.93 113
131487.51 18486.57 18490.34 19392.42 22579.74 20792.63 22395.35 17878.35 26680.14 28391.62 23274.05 17897.15 21081.05 19593.53 13794.12 213
112190.42 10489.49 10993.20 7597.27 6784.46 8592.63 22395.51 16271.01 32491.20 9796.21 7582.92 7799.05 5980.56 20798.07 6296.10 139
MVS87.44 18786.10 20091.44 15092.61 22283.62 10792.63 22395.66 15067.26 33081.47 26492.15 21077.95 13398.22 12979.71 21895.48 10692.47 283
K. test v381.59 27980.15 28085.91 29989.89 30669.42 32592.57 22687.71 33085.56 13973.44 32189.71 27955.58 31895.52 29277.17 24569.76 32892.78 276
PVSNet_Blended90.73 9590.32 9491.98 12896.12 9681.25 16692.55 22796.83 6482.04 21189.10 11892.56 19781.04 10098.85 8986.72 12595.91 10095.84 150
TR-MVS86.78 20985.76 21489.82 21394.37 16678.41 23492.47 22892.83 25081.11 23686.36 16592.40 20168.73 24797.48 17673.75 27589.85 18693.57 245
pmmvs584.21 25582.84 26088.34 25588.95 31276.94 26692.41 22991.91 27575.63 28980.28 28091.18 24564.59 27995.57 28977.09 24783.47 25592.53 281
BH-w/o87.57 18287.05 16789.12 23494.90 14477.90 24692.41 22993.51 24182.89 19683.70 23591.34 23775.75 15497.07 21875.49 25993.49 13892.39 286
WTY-MVS89.60 12088.92 12491.67 14495.47 12181.15 17092.38 23194.78 20983.11 18989.06 12094.32 13678.67 12696.61 24181.57 19190.89 17397.24 98
diffmvs91.37 8591.23 8091.77 14193.09 20880.27 18992.36 23295.52 16187.03 10791.40 9494.93 11480.08 10797.44 18192.13 4894.56 12397.61 84
ET-MVSNet_ETH3D87.51 18485.91 20892.32 11793.70 19383.93 9892.33 23390.94 29884.16 16672.09 32592.52 19869.90 22895.85 28089.20 9188.36 21097.17 102
OpenMVS_ROBcopyleft74.94 1979.51 29677.03 30186.93 28787.00 32676.23 27692.33 23390.74 30468.93 32874.52 31688.23 30049.58 33296.62 23857.64 33484.29 24587.94 332
LTVRE_ROB82.13 1386.26 22484.90 23190.34 19394.44 16481.50 15792.31 23594.89 20083.03 19179.63 29092.67 19469.69 23297.79 15771.20 28386.26 23291.72 297
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
xiu_mvs_v2_base91.13 9090.89 8891.86 13594.97 13882.42 13992.24 23695.64 15386.11 12991.74 8793.14 17979.67 11698.89 8289.06 9395.46 10894.28 208
test22296.55 8481.70 15492.22 23795.01 19168.36 32990.20 10696.14 8180.26 10697.80 7096.05 143
ab-mvs89.41 12988.35 13692.60 10295.15 13382.65 13692.20 23895.60 15583.97 17188.55 12493.70 16674.16 17798.21 13082.46 17389.37 19296.94 112
testdata192.15 23987.94 86
CLD-MVS89.47 12588.90 12591.18 15794.22 17082.07 14792.13 24096.09 11687.90 8885.37 19692.45 20074.38 17197.56 17187.15 11790.43 17593.93 223
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVP-Stereo85.97 22784.86 23289.32 22990.92 27882.19 14592.11 24194.19 22578.76 26178.77 29591.63 23168.38 25196.56 24675.01 26693.95 13089.20 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-MVSNAJ91.18 8990.92 8691.96 13095.26 12982.60 13892.09 24295.70 14686.27 12391.84 8292.46 19979.70 11398.99 7389.08 9295.86 10194.29 207
HY-MVS83.01 1289.03 13987.94 14892.29 12094.86 14682.77 12892.08 24394.49 21481.52 22886.93 15392.79 19378.32 13298.23 12779.93 21690.55 17495.88 148
baseline286.50 21985.39 22089.84 21291.12 26876.70 26891.88 24488.58 32682.35 20579.95 28790.95 25373.42 19097.63 16880.27 21389.95 18395.19 168
XVG-OURS-SEG-HR89.95 11389.45 11091.47 14994.00 18081.21 16991.87 24596.06 12085.78 13288.55 12495.73 9474.67 16997.27 20088.71 9789.64 18995.91 146
D2MVS85.90 22885.09 22688.35 25490.79 28377.42 26091.83 24695.70 14680.77 23980.08 28590.02 27266.74 26396.37 25881.88 18487.97 21791.26 306
Test_1112_low_res87.65 17486.51 18591.08 16294.94 14179.28 21991.77 24794.30 22176.04 28683.51 24192.37 20277.86 13697.73 16378.69 23089.13 19896.22 132
IB-MVS80.51 1585.24 24283.26 25391.19 15692.13 23179.86 20491.75 24891.29 28983.28 18780.66 27588.49 29561.28 29598.46 11180.99 19979.46 30795.25 167
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test84.95 24783.68 24888.77 24191.43 25573.75 29191.74 24990.98 29680.66 24083.84 23187.36 31062.44 28797.11 21478.84 22985.81 23495.46 160
sss88.93 14288.26 14290.94 17294.05 17580.78 17991.71 25095.38 17481.55 22788.63 12393.91 15675.04 16395.47 29782.47 17291.61 16496.57 123
XVG-ACMP-BASELINE86.00 22684.84 23389.45 22891.20 26378.00 24391.70 25195.55 15885.05 15482.97 24992.25 20854.49 32497.48 17682.93 16387.45 22392.89 272
RPSCF85.07 24484.27 24087.48 27592.91 21770.62 31991.69 25292.46 25876.20 28582.67 25395.22 10663.94 28297.29 19977.51 24285.80 23594.53 196
mvs_anonymous89.37 13289.32 11489.51 22793.47 19874.22 28791.65 25394.83 20582.91 19585.45 18793.79 16181.23 9996.36 26086.47 12794.09 12997.94 71
MIMVSNet179.38 29777.28 29885.69 30086.35 32873.67 29291.61 25492.75 25378.11 27172.64 32488.12 30148.16 33591.97 33060.32 32977.49 31591.43 303
FMVSNet581.52 28179.60 28687.27 27891.17 26577.95 24491.49 25592.26 26276.87 27876.16 30787.91 30551.67 32992.34 32667.74 30681.16 28191.52 300
Anonymous2023120681.03 28779.77 28484.82 30687.85 32570.26 32191.42 25692.08 26673.67 30677.75 30089.25 28462.43 28893.08 32361.50 32782.00 27391.12 311
testing_283.40 26481.02 27090.56 17985.06 33280.51 18691.37 25795.57 15682.92 19467.06 33385.54 32049.47 33397.24 20486.74 12285.44 23793.93 223
testgi80.94 28980.20 27983.18 31387.96 32466.29 33291.28 25890.70 30583.70 17578.12 29792.84 18851.37 33090.82 33463.34 32182.46 26692.43 284
XVG-OURS89.40 13188.70 12891.52 14794.06 17481.46 16191.27 25996.07 11886.14 12788.89 12295.77 9368.73 24797.26 20287.39 11389.96 18295.83 151
MS-PatchMatch85.05 24584.16 24187.73 26891.42 25678.51 23191.25 26093.53 24077.50 27280.15 28291.58 23361.99 29095.51 29375.69 25894.35 12889.16 324
cl_fuxian87.14 20186.50 18689.04 23792.20 22877.26 26291.22 26194.70 21182.01 21284.34 21990.43 26478.81 12396.61 24183.70 15581.09 28493.25 257
SCA86.32 22385.18 22489.73 21992.15 22976.60 26991.12 26291.69 27883.53 18085.50 18488.81 28966.79 26196.48 25176.65 24990.35 17796.12 136
test20.0379.95 29379.08 29182.55 31585.79 32967.74 33091.09 26391.08 29281.23 23474.48 31789.96 27561.63 29290.15 33560.08 33076.38 31889.76 319
miper_ehance_all_eth87.22 19786.62 18289.02 23892.13 23177.40 26190.91 26494.81 20781.28 23284.32 22090.08 27179.26 11996.62 23883.81 15382.94 26093.04 267
cl-mvsnet286.78 20985.98 20489.18 23392.34 22677.62 25790.84 26594.13 22981.33 23183.97 22990.15 26973.96 18096.60 24384.19 14882.94 26093.33 253
cl-mvsnet_86.52 21885.78 21188.75 24392.03 23576.46 27190.74 26694.30 22181.83 22183.34 24590.78 25875.74 15696.57 24481.74 18881.54 27993.22 259
cl-mvsnet186.53 21785.78 21188.75 24392.02 23676.45 27290.74 26694.30 22181.83 22183.34 24590.82 25675.75 15496.57 24481.73 18981.52 28093.24 258
thisisatest051587.33 19085.99 20391.37 15293.49 19779.55 20890.63 26889.56 32480.17 24387.56 14390.86 25467.07 25798.28 12681.50 19293.02 15096.29 129
PatchMatch-RL86.77 21285.54 21690.47 18695.88 10782.71 13490.54 26992.31 26079.82 24984.32 22091.57 23568.77 24696.39 25773.16 27793.48 14092.32 289
eth_miper_zixun_eth86.50 21985.77 21388.68 24691.94 23875.81 27990.47 27094.89 20082.05 20984.05 22690.46 26375.96 15196.77 23282.76 16979.36 30893.46 251
GA-MVS86.61 21485.27 22390.66 17591.33 26178.71 22690.40 27193.81 23785.34 14685.12 20089.57 28161.25 29697.11 21480.99 19989.59 19096.15 133
pmmvs485.43 23683.86 24690.16 19790.02 30382.97 12590.27 27292.67 25575.93 28780.73 27391.74 22771.05 21295.73 28678.85 22883.46 25691.78 296
test0.0.03 182.41 27181.69 26584.59 30788.23 32072.89 29890.24 27387.83 32983.41 18379.86 28889.78 27867.25 25488.99 33765.18 31583.42 25791.90 295
cascas86.43 22284.98 22890.80 17492.10 23380.92 17590.24 27395.91 13073.10 31183.57 24088.39 29665.15 27697.46 17884.90 14091.43 16594.03 220
miper_enhance_ethall86.90 20586.18 19689.06 23691.66 24977.58 25890.22 27594.82 20679.16 25484.48 21189.10 28579.19 12096.66 23684.06 14982.94 26092.94 270
IterMVS-SCA-FT85.45 23584.53 23988.18 26091.71 24676.87 26790.19 27692.65 25685.40 14581.44 26590.54 26166.79 26195.00 30581.04 19681.05 28592.66 278
IterMVS84.88 24883.98 24587.60 27091.44 25276.03 27790.18 27792.41 25983.24 18881.06 27190.42 26566.60 26494.28 31179.46 22080.98 29092.48 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs-eth3d80.97 28878.72 29487.74 26784.99 33379.97 20290.11 27891.65 27975.36 29073.51 32086.03 31759.45 30993.96 31475.17 26372.21 32589.29 322
CHOSEN 1792x268888.84 14487.69 15192.30 11996.14 9581.42 16390.01 27995.86 13574.52 30087.41 14493.94 15275.46 15998.36 11880.36 21095.53 10497.12 105
HyFIR lowres test88.09 16386.81 17291.93 13296.00 10380.63 18290.01 27995.79 14073.42 30887.68 14192.10 21573.86 18297.96 15080.75 20391.70 16397.19 101
CMPMVSbinary59.16 2180.52 29079.20 28984.48 30883.98 33467.63 33189.95 28193.84 23664.79 33366.81 33491.14 24857.93 31495.17 30076.25 25388.10 21390.65 313
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PAPM86.68 21385.39 22090.53 18093.05 21079.33 21889.79 28294.77 21078.82 25981.95 26193.24 17576.81 14197.30 19666.94 30793.16 14794.95 179
test-LLR85.87 22985.41 21987.25 28090.95 27471.67 30989.55 28389.88 31983.41 18384.54 20987.95 30367.25 25495.11 30281.82 18593.37 14394.97 173
TESTMET0.1,183.74 26082.85 25986.42 29589.96 30471.21 31389.55 28387.88 32877.41 27383.37 24487.31 31156.71 31693.65 31780.62 20692.85 15494.40 205
test-mter84.54 25383.64 25087.25 28090.95 27471.67 30989.55 28389.88 31979.17 25384.54 20987.95 30355.56 31995.11 30281.82 18593.37 14394.97 173
TinyColmap79.76 29577.69 29685.97 29891.71 24673.12 29689.55 28390.36 30875.03 29472.03 32690.19 26746.22 33996.19 26763.11 32281.03 28688.59 329
CostFormer85.77 23284.94 23088.26 25791.16 26772.58 30589.47 28791.04 29576.26 28486.45 16389.97 27470.74 21796.86 23182.35 17487.07 22995.34 166
LF4IMVS80.37 29179.07 29284.27 31186.64 32769.87 32489.39 28891.05 29476.38 28174.97 31490.00 27347.85 33794.25 31274.55 27080.82 29288.69 328
USDC82.76 26781.26 26987.26 27991.17 26574.55 28589.27 28993.39 24378.26 26875.30 31292.08 21654.43 32596.63 23771.64 28185.79 23690.61 314
PCF-MVS84.11 1087.74 17186.08 20192.70 9994.02 17684.43 8989.27 28995.87 13473.62 30784.43 21494.33 13578.48 13098.86 8670.27 28794.45 12694.81 184
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpm284.08 25682.94 25787.48 27591.39 25771.27 31189.23 29190.37 30771.95 31984.64 20689.33 28367.30 25396.55 24875.17 26387.09 22894.63 188
MSDG84.86 24983.09 25590.14 19993.80 18880.05 19789.18 29293.09 24678.89 25778.19 29691.91 22265.86 27497.27 20068.47 30088.45 20793.11 264
tpm84.73 25084.02 24386.87 29190.33 29668.90 32689.06 29389.94 31680.85 23885.75 17489.86 27668.54 24995.97 27477.76 23884.05 24895.75 154
ppachtmachnet_test81.84 27580.07 28187.15 28588.46 31774.43 28689.04 29492.16 26475.33 29177.75 30088.99 28666.20 26995.37 29865.12 31677.60 31491.65 298
PM-MVS78.11 30176.12 30484.09 31283.54 33670.08 32288.97 29585.27 33679.93 24774.73 31586.43 31534.70 34393.48 31879.43 22372.06 32688.72 327
MDA-MVSNet-bldmvs78.85 30076.31 30286.46 29389.76 30773.88 29088.79 29690.42 30679.16 25459.18 33888.33 29860.20 30494.04 31362.00 32568.96 33091.48 302
tpmrst85.35 23884.99 22786.43 29490.88 28167.88 32988.71 29791.43 28680.13 24486.08 17188.80 29173.05 19496.02 27282.48 17183.40 25895.40 163
PMMVS85.71 23384.96 22987.95 26588.90 31377.09 26488.68 29890.06 31372.32 31786.47 16090.76 25972.15 20494.40 30881.78 18793.49 13892.36 287
EPMVS83.90 25982.70 26187.51 27290.23 29972.67 30188.62 29981.96 34181.37 23085.01 20288.34 29766.31 26894.45 30775.30 26287.12 22795.43 162
PatchmatchNetpermissive85.85 23084.70 23589.29 23091.76 24475.54 28188.49 30091.30 28881.63 22585.05 20188.70 29371.71 20596.24 26474.61 26989.05 19996.08 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
our_test_381.93 27480.46 27586.33 29688.46 31773.48 29388.46 30191.11 29176.46 27976.69 30588.25 29966.89 25994.36 30968.75 29879.08 31091.14 310
UnsupCasMVSNet_eth80.07 29278.27 29585.46 30185.24 33172.63 30388.45 30294.87 20282.99 19271.64 32888.07 30256.34 31791.75 33173.48 27663.36 33792.01 294
tpmvs83.35 26582.07 26287.20 28491.07 27071.00 31688.31 30391.70 27778.91 25680.49 27887.18 31369.30 23997.08 21768.12 30583.56 25493.51 249
N_pmnet68.89 30968.44 31170.23 32589.07 31128.79 35388.06 30419.50 35469.47 32771.86 32784.93 32161.24 29791.75 33154.70 33677.15 31790.15 318
test_post188.00 3059.81 34969.31 23895.53 29176.65 249
GG-mvs-BLEND87.94 26689.73 30877.91 24587.80 30678.23 34680.58 27683.86 32359.88 30795.33 29971.20 28392.22 16190.60 316
DSMNet-mixed76.94 30376.29 30378.89 31983.10 33756.11 34487.78 30779.77 34360.65 33675.64 31188.71 29261.56 29388.34 33860.07 33189.29 19592.21 292
MDTV_nov1_ep1383.56 25191.69 24869.93 32387.75 30891.54 28278.60 26384.86 20488.90 28869.54 23496.03 27170.25 28888.93 200
miper_lstm_enhance85.27 24184.59 23887.31 27791.28 26274.63 28487.69 30994.09 23181.20 23581.36 26789.85 27774.97 16594.30 31081.03 19879.84 30593.01 268
new-patchmatchnet76.41 30475.17 30580.13 31882.65 33959.61 33987.66 31091.08 29278.23 26969.85 32983.22 32654.76 32291.63 33364.14 32064.89 33589.16 324
MDTV_nov1_ep13_2view55.91 34587.62 31173.32 30984.59 20870.33 22574.65 26895.50 158
tpm cat181.96 27380.27 27787.01 28691.09 26971.02 31587.38 31291.53 28366.25 33180.17 28186.35 31668.22 25296.15 26869.16 29682.29 26793.86 230
PVSNet78.82 1885.55 23484.65 23688.23 25994.72 15071.93 30787.12 31392.75 25378.80 26084.95 20390.53 26264.43 28096.71 23574.74 26793.86 13296.06 142
pmmvs371.81 30868.71 31081.11 31775.86 34270.42 32086.74 31483.66 33858.95 33768.64 33280.89 33136.93 34289.52 33663.10 32363.59 33683.39 334
dp81.47 28280.23 27885.17 30489.92 30565.49 33586.74 31490.10 31276.30 28381.10 26987.12 31462.81 28595.92 27668.13 30479.88 30394.09 216
MIMVSNet82.59 27080.53 27488.76 24291.51 25178.32 23686.57 31690.13 31179.32 25280.70 27488.69 29452.98 32893.07 32466.03 31288.86 20194.90 180
gg-mvs-nofinetune81.77 27679.37 28788.99 23990.85 28277.73 25486.29 31779.63 34474.88 29883.19 24869.05 33860.34 30396.11 26975.46 26094.64 12193.11 264
testmvs8.92 32211.52 3241.12 3361.06 3540.46 35686.02 3180.65 3560.62 3502.74 3519.52 3500.31 3570.45 3532.38 3490.39 3492.46 349
YYNet179.22 29877.20 29985.28 30388.20 32272.66 30285.87 31990.05 31574.33 30262.70 33687.61 30866.09 27192.03 32866.94 30772.97 32391.15 309
MDA-MVSNet_test_wron79.21 29977.19 30085.29 30288.22 32172.77 30085.87 31990.06 31374.34 30162.62 33787.56 30966.14 27091.99 32966.90 31073.01 32291.10 312
test1238.76 32311.22 3251.39 3350.85 3550.97 35585.76 3210.35 3570.54 3512.45 3528.14 3510.60 3560.48 3522.16 3500.17 3502.71 348
UnsupCasMVSNet_bld76.23 30573.27 30785.09 30583.79 33572.92 29785.65 32293.47 24271.52 32068.84 33179.08 33349.77 33193.21 32166.81 31160.52 33989.13 326
CR-MVSNet85.35 23883.76 24790.12 20090.58 29179.34 21585.24 32391.96 27378.27 26785.55 17987.87 30671.03 21395.61 28773.96 27389.36 19395.40 163
RPMNet83.18 26680.87 27390.12 20090.58 29179.34 21585.24 32390.78 30371.44 32185.55 17982.97 32870.87 21595.61 28761.01 32889.36 19395.40 163
Patchmtry82.71 26880.93 27288.06 26390.05 30276.37 27484.74 32591.96 27372.28 31881.32 26887.87 30671.03 21395.50 29568.97 29780.15 30092.32 289
FPMVS64.63 31162.55 31270.88 32470.80 34456.71 34184.42 32684.42 33751.78 34049.57 34081.61 33023.49 34681.48 34340.61 34276.25 31974.46 339
PatchT82.68 26981.27 26886.89 29090.09 30170.94 31784.06 32790.15 31074.91 29685.63 17883.57 32569.37 23594.87 30665.19 31488.50 20694.84 182
new_pmnet72.15 30770.13 30978.20 32082.95 33865.68 33383.91 32882.40 34062.94 33564.47 33579.82 33242.85 34186.26 34057.41 33574.44 32182.65 336
LCM-MVSNet66.00 31062.16 31377.51 32264.51 34858.29 34083.87 32990.90 29948.17 34154.69 33973.31 33616.83 35286.75 33965.47 31361.67 33887.48 333
ADS-MVSNet281.66 27879.71 28587.50 27391.35 25974.19 28883.33 33088.48 32772.90 31382.24 25785.77 31864.98 27793.20 32264.57 31883.74 25095.12 169
ADS-MVSNet81.56 28079.78 28386.90 28991.35 25971.82 30883.33 33089.16 32572.90 31382.24 25785.77 31864.98 27793.76 31564.57 31883.74 25095.12 169
PVSNet_073.20 2077.22 30274.83 30684.37 30990.70 28871.10 31483.09 33289.67 32272.81 31573.93 31983.13 32760.79 30093.70 31668.54 29950.84 34188.30 331
MVS-HIRNet73.70 30672.20 30878.18 32191.81 24356.42 34382.94 33382.58 33955.24 33868.88 33066.48 33955.32 32195.13 30158.12 33388.42 20883.01 335
Patchmatch-RL test81.67 27779.96 28286.81 29285.42 33071.23 31282.17 33487.50 33278.47 26477.19 30482.50 32970.81 21693.48 31882.66 17072.89 32495.71 155
JIA-IIPM81.04 28678.98 29387.25 28088.64 31473.48 29381.75 33589.61 32373.19 31082.05 25973.71 33566.07 27295.87 27971.18 28584.60 24492.41 285
Patchmatch-test81.37 28379.30 28887.58 27190.92 27874.16 28980.99 33687.68 33170.52 32576.63 30688.81 28971.21 21092.76 32560.01 33286.93 23095.83 151
ANet_high58.88 31354.22 31672.86 32356.50 35156.67 34280.75 33786.00 33373.09 31237.39 34464.63 34122.17 34779.49 34543.51 34023.96 34582.43 337
CHOSEN 280x42085.15 24383.99 24488.65 24792.47 22378.40 23579.68 33892.76 25274.90 29781.41 26689.59 28069.85 23195.51 29379.92 21795.29 11292.03 293
ambc83.06 31479.99 34063.51 33877.47 33992.86 24974.34 31884.45 32228.74 34495.06 30473.06 27868.89 33190.61 314
EMVS42.07 31841.12 31944.92 33263.45 34935.56 35273.65 34063.48 34933.05 34626.88 34945.45 34621.27 34867.14 34719.80 34723.02 34632.06 345
E-PMN43.23 31742.29 31846.03 33165.58 34737.41 35073.51 34164.62 34833.99 34528.47 34847.87 34519.90 35067.91 34622.23 34624.45 34432.77 344
PMVScopyleft47.18 2252.22 31548.46 31763.48 32845.72 35246.20 34973.41 34278.31 34541.03 34430.06 34665.68 3406.05 35383.43 34230.04 34465.86 33360.80 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS259.60 31256.40 31469.21 32668.83 34546.58 34873.02 34377.48 34755.07 33949.21 34172.95 33717.43 35180.04 34449.32 33944.33 34280.99 338
tmp_tt35.64 31939.24 32024.84 33314.87 35323.90 35462.71 34451.51 3536.58 34936.66 34562.08 34244.37 34030.34 35152.40 33722.00 34720.27 346
MVEpermissive39.65 2343.39 31638.59 32157.77 32956.52 35048.77 34755.38 34558.64 35129.33 34728.96 34752.65 3434.68 35464.62 34828.11 34533.07 34359.93 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft57.99 31454.91 31567.24 32788.51 31565.59 33452.21 34690.33 30943.58 34342.84 34351.18 34420.29 34985.07 34134.77 34370.45 32751.05 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d21.27 32120.48 32323.63 33468.59 34636.41 35149.57 3476.85 3559.37 3487.89 3504.46 3524.03 35531.37 35017.47 34816.07 3483.12 347
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34897.45 110.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k22.14 32029.52 3220.00 3370.00 3560.00 3570.00 34895.76 1420.00 3520.00 35394.29 13875.66 1570.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.64 3258.86 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35379.70 1130.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.82 32410.43 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35393.88 1570.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS98.77 486.00 5396.84 6381.26 23397.26 695.50 799.13 399.03 4
test_241102_TWO97.44 1390.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_241102_ONE98.77 485.99 5497.44 1390.26 3097.71 197.96 892.31 299.38 29
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 136
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 20696.12 136
sam_mvs70.60 218
MTGPAbinary96.97 49
test_post10.29 34870.57 22295.91 278
patchmatchnet-post83.76 32471.53 20796.48 251
gm-plane-assit89.60 30968.00 32877.28 27688.99 28697.57 17079.44 222
test9_res91.91 5498.71 3098.07 62
agg_prior290.54 8098.68 3598.27 46
agg_prior97.38 6085.92 5996.72 7592.16 7498.97 76
TestCases89.52 22595.01 13577.79 25190.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
test_prior93.82 6497.29 6584.49 8296.88 5998.87 8398.11 60
新几何193.10 7997.30 6484.35 9195.56 15771.09 32391.26 9696.24 7382.87 7898.86 8679.19 22698.10 6196.07 141
旧先验196.79 7681.81 15295.67 14896.81 4986.69 3797.66 7296.97 111
原ACMM192.01 12597.34 6281.05 17196.81 6778.89 25790.45 10395.92 8782.65 7998.84 9180.68 20598.26 5896.14 134
testdata298.75 9578.30 233
segment_acmp87.16 34
testdata90.49 18496.40 8877.89 24795.37 17672.51 31693.63 4196.69 5482.08 9097.65 16583.08 16097.39 7795.94 145
test1294.34 5397.13 7086.15 5096.29 10191.04 9985.08 5799.01 6998.13 6097.86 76
plane_prior794.70 15282.74 131
plane_prior694.52 15882.75 12974.23 173
plane_prior596.22 10898.12 13288.15 10289.99 18094.63 188
plane_prior494.86 118
plane_prior382.75 12990.26 3086.91 154
plane_prior194.59 156
n20.00 358
nn0.00 358
door-mid85.49 334
lessismore_v086.04 29788.46 31768.78 32780.59 34273.01 32390.11 27055.39 32096.43 25675.06 26565.06 33492.90 271
LGP-MVS_train91.12 15894.47 16081.49 15996.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
test1196.57 88
door85.33 335
HQP5-MVS81.56 155
BP-MVS87.11 119
HQP4-MVS85.43 19097.96 15094.51 198
HQP3-MVS96.04 12189.77 187
HQP2-MVS73.83 183
NP-MVS94.37 16682.42 13993.98 150
ACMMP++_ref87.47 221
ACMMP++88.01 216
Test By Simon80.02 108
ITE_SJBPF88.24 25891.88 24077.05 26592.92 24885.54 14080.13 28493.30 17257.29 31596.20 26572.46 27984.71 24391.49 301
DeepMVS_CXcopyleft56.31 33074.23 34351.81 34656.67 35244.85 34248.54 34275.16 33427.87 34558.74 34940.92 34152.22 34058.39 342