DVP-MVS++. | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 29 | 71.25 63 | 95.06 1 | 94.23 5 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 4 | 96.68 2 | 94.95 5 |
|
FOURS1 | | | | | | 95.00 10 | 72.39 42 | 95.06 1 | 93.84 18 | 74.49 117 | 91.30 15 | | | | | | |
|
CP-MVS | | | 87.11 35 | 86.92 36 | 87.68 37 | 94.20 36 | 73.86 8 | 93.98 3 | 92.82 64 | 76.62 72 | 83.68 82 | 94.46 27 | 67.93 88 | 95.95 56 | 84.20 48 | 94.39 59 | 93.23 84 |
|
APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 30 | 94.49 20 | 71.69 58 | 93.83 4 | 93.96 16 | 75.70 92 | 91.06 16 | 96.03 1 | 76.84 15 | 97.03 15 | 89.09 6 | 95.65 32 | 94.47 27 |
|
SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 80 | 72.96 26 | 93.73 5 | 93.67 22 | 80.19 14 | 88.10 27 | 94.80 16 | 73.76 39 | 97.11 13 | 87.51 18 | 95.82 24 | 94.90 8 |
Skip Steuart: Steuart Systems R&D Blog. |
test0726 | | | | | | 95.27 5 | 71.25 63 | 93.60 6 | 94.11 8 | 77.33 49 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 70 | 93.57 7 | 94.06 12 | 77.24 51 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 9 | 96.63 4 | 94.88 9 |
|
OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 47 | 82.45 3 | 96.87 19 | 83.77 53 | 96.48 8 | 94.88 9 |
|
DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 45 | 95.27 5 | 71.25 63 | 93.49 9 | 92.73 65 | 77.33 49 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 7 | 96.41 12 | 93.33 81 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 87.71 34 | 95.34 1 | 71.43 62 | 93.49 9 | 94.23 5 | | | | | 97.49 3 | 89.08 7 | 96.41 12 | 94.21 38 |
|
3Dnovator+ | | 77.84 4 | 85.48 59 | 84.47 74 | 88.51 6 | 91.08 92 | 73.49 17 | 93.18 11 | 93.78 21 | 80.79 10 | 76.66 186 | 93.37 60 | 60.40 188 | 96.75 25 | 77.20 114 | 93.73 68 | 95.29 2 |
|
HFP-MVS | | | 87.58 23 | 87.47 25 | 87.94 17 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 37 | 76.78 67 | 84.91 56 | 94.44 30 | 70.78 61 | 96.61 32 | 84.53 41 | 94.89 46 | 93.66 64 |
|
ACMMPR | | | 87.44 26 | 87.23 31 | 88.08 13 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 39 | 76.78 67 | 84.66 65 | 94.52 23 | 68.81 84 | 96.65 29 | 84.53 41 | 94.90 45 | 94.00 48 |
|
ZNCC-MVS | | | 87.94 18 | 87.85 20 | 88.20 11 | 94.39 26 | 73.33 20 | 93.03 14 | 93.81 20 | 76.81 65 | 85.24 51 | 94.32 35 | 71.76 54 | 96.93 18 | 85.53 29 | 95.79 25 | 94.32 34 |
|
region2R | | | 87.42 28 | 87.20 32 | 88.09 12 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 42 | 76.73 70 | 84.45 68 | 94.52 23 | 69.09 80 | 96.70 26 | 84.37 44 | 94.83 50 | 94.03 45 |
|
MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 32 | 73.46 18 | 92.90 16 | 94.11 8 | 80.27 12 | 91.35 14 | 94.16 41 | 78.35 13 | 96.77 23 | 89.59 3 | 94.22 64 | 94.67 20 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
XVS | | | 87.18 34 | 86.91 37 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 17 | 92.99 49 | 79.14 22 | 83.67 83 | 94.17 40 | 67.45 93 | 96.60 34 | 83.06 60 | 94.50 56 | 94.07 43 |
|
X-MVStestdata | | | 80.37 143 | 77.83 179 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 17 | 92.99 49 | 79.14 22 | 83.67 83 | 12.47 369 | 67.45 93 | 96.60 34 | 83.06 60 | 94.50 56 | 94.07 43 |
|
mPP-MVS | | | 86.67 42 | 86.32 45 | 87.72 32 | 94.41 24 | 73.55 13 | 92.74 19 | 92.22 87 | 76.87 64 | 82.81 95 | 94.25 38 | 66.44 102 | 96.24 42 | 82.88 64 | 94.28 62 | 93.38 78 |
|
ACMMP |  | | 85.89 54 | 85.39 59 | 87.38 44 | 93.59 51 | 72.63 34 | 92.74 19 | 93.18 41 | 76.78 67 | 80.73 120 | 93.82 53 | 64.33 123 | 96.29 40 | 82.67 70 | 90.69 99 | 93.23 84 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS |  | | 87.71 21 | 87.64 23 | 87.93 20 | 94.36 28 | 73.88 7 | 92.71 21 | 92.65 70 | 77.57 42 | 83.84 80 | 94.40 34 | 72.24 50 | 96.28 41 | 85.65 28 | 95.30 40 | 93.62 71 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 38 | 92.78 69 | 71.95 53 | 92.40 22 | 94.74 2 | 75.71 90 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 15 |
|
SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 33 | 73.73 10 | 92.40 22 | 93.63 23 | 74.77 111 | 92.29 7 | 95.97 2 | 74.28 34 | 97.24 11 | 88.58 13 | 96.91 1 | 94.87 11 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
GST-MVS | | | 87.42 28 | 87.26 29 | 87.89 24 | 94.12 39 | 72.97 25 | 92.39 24 | 93.43 33 | 76.89 63 | 84.68 62 | 93.99 50 | 70.67 64 | 96.82 21 | 84.18 49 | 95.01 42 | 93.90 53 |
|
HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 25 | 92.85 60 | 80.26 13 | 87.78 30 | 94.27 36 | 75.89 19 | 96.81 22 | 87.45 19 | 96.44 9 | 93.05 92 |
|
SR-MVS | | | 86.73 39 | 86.67 40 | 86.91 52 | 94.11 40 | 72.11 51 | 92.37 26 | 92.56 73 | 74.50 116 | 86.84 37 | 94.65 20 | 67.31 95 | 95.77 60 | 84.80 37 | 92.85 74 | 92.84 101 |
|
#test# | | | 87.33 31 | 87.13 33 | 87.94 17 | 94.58 16 | 73.54 15 | 92.34 27 | 93.24 37 | 75.23 100 | 84.91 56 | 94.44 30 | 70.78 61 | 96.61 32 | 83.75 54 | 94.89 46 | 93.66 64 |
|
DROMVSNet | | | 86.01 51 | 86.38 43 | 84.91 95 | 89.31 138 | 66.27 167 | 92.32 28 | 93.63 23 | 79.37 21 | 84.17 75 | 91.88 87 | 69.04 83 | 95.43 75 | 83.93 52 | 93.77 67 | 93.01 95 |
|
EPP-MVSNet | | | 83.40 84 | 83.02 84 | 84.57 104 | 90.13 110 | 64.47 202 | 92.32 28 | 90.73 138 | 74.45 120 | 79.35 133 | 91.10 107 | 69.05 82 | 95.12 90 | 72.78 155 | 87.22 141 | 94.13 40 |
|
PHI-MVS | | | 86.43 45 | 86.17 50 | 87.24 46 | 90.88 97 | 70.96 72 | 92.27 30 | 94.07 11 | 72.45 152 | 85.22 52 | 91.90 86 | 69.47 76 | 96.42 38 | 83.28 58 | 95.94 20 | 94.35 32 |
|
testtj | | | 87.78 20 | 87.78 21 | 87.77 26 | 94.55 18 | 72.47 39 | 92.23 31 | 93.49 30 | 74.75 112 | 88.33 25 | 94.43 32 | 73.27 42 | 97.02 16 | 84.18 49 | 94.84 48 | 93.82 58 |
|
HPM-MVS |  | | 87.11 35 | 86.98 35 | 87.50 41 | 93.88 43 | 72.16 49 | 92.19 32 | 93.33 36 | 76.07 84 | 83.81 81 | 93.95 51 | 69.77 74 | 96.01 52 | 85.15 31 | 94.66 52 | 94.32 34 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MTMP | | | | | | | | 92.18 33 | 32.83 374 | | | | | | | | |
|
HPM-MVS_fast | | | 85.35 63 | 84.95 70 | 86.57 61 | 93.69 48 | 70.58 85 | 92.15 34 | 91.62 113 | 73.89 132 | 82.67 97 | 94.09 44 | 62.60 145 | 95.54 69 | 80.93 81 | 92.93 72 | 93.57 73 |
|
CPTT-MVS | | | 83.73 77 | 83.33 80 | 84.92 94 | 93.28 55 | 70.86 77 | 92.09 35 | 90.38 146 | 68.75 226 | 79.57 130 | 92.83 73 | 60.60 184 | 93.04 184 | 80.92 82 | 91.56 90 | 90.86 162 |
|
APD-MVS_3200maxsize | | | 85.97 52 | 85.88 53 | 86.22 67 | 92.69 72 | 69.53 103 | 91.93 36 | 92.99 49 | 73.54 139 | 85.94 41 | 94.51 26 | 65.80 112 | 95.61 63 | 83.04 62 | 92.51 79 | 93.53 76 |
|
SR-MVS-dyc-post | | | 85.77 55 | 85.61 56 | 86.23 66 | 93.06 62 | 70.63 82 | 91.88 37 | 92.27 83 | 73.53 140 | 85.69 46 | 94.45 28 | 65.00 120 | 95.56 66 | 82.75 65 | 91.87 85 | 92.50 110 |
|
RE-MVS-def | | | | 85.48 57 | | 93.06 62 | 70.63 82 | 91.88 37 | 92.27 83 | 73.53 140 | 85.69 46 | 94.45 28 | 63.87 127 | | 82.75 65 | 91.87 85 | 92.50 110 |
|
APD-MVS |  | | 87.44 26 | 87.52 24 | 87.19 47 | 94.24 34 | 72.39 42 | 91.86 39 | 92.83 61 | 73.01 149 | 88.58 23 | 94.52 23 | 73.36 40 | 96.49 37 | 84.26 46 | 95.01 42 | 92.70 103 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 57 | 92.60 76 | 72.71 30 | 91.81 40 | 93.19 40 | 77.87 36 | 90.32 17 | 94.00 48 | 74.83 27 | 93.78 145 | 87.63 17 | 94.27 63 | 93.65 69 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test1172 | | | 86.20 50 | 86.22 47 | 86.12 70 | 93.95 42 | 69.89 96 | 91.79 41 | 92.28 82 | 75.07 104 | 86.40 39 | 94.58 22 | 65.00 120 | 95.56 66 | 84.34 45 | 92.60 77 | 92.90 99 |
|
DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 14 | 94.80 11 | 72.69 32 | 91.59 42 | 94.10 10 | 75.90 88 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 20 | 96.34 15 | 93.95 50 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
QAPM | | | 80.88 124 | 79.50 140 | 85.03 88 | 88.01 186 | 68.97 114 | 91.59 42 | 92.00 97 | 66.63 248 | 75.15 225 | 92.16 81 | 57.70 201 | 95.45 73 | 63.52 229 | 88.76 122 | 90.66 168 |
|
IS-MVSNet | | | 83.15 87 | 82.81 87 | 84.18 120 | 89.94 117 | 63.30 227 | 91.59 42 | 88.46 209 | 79.04 26 | 79.49 131 | 92.16 81 | 65.10 117 | 94.28 119 | 67.71 197 | 91.86 87 | 94.95 5 |
|
9.14 | | | | 88.26 15 | | 92.84 68 | | 91.52 45 | 94.75 1 | 73.93 131 | 88.57 24 | 94.67 19 | 75.57 23 | 95.79 59 | 86.77 23 | 95.76 28 | |
|
ETH3D-3000-0.1 | | | 88.09 13 | 88.29 14 | 87.50 41 | 92.76 70 | 71.89 56 | 91.43 46 | 94.70 3 | 74.47 118 | 88.86 22 | 94.61 21 | 75.23 24 | 95.84 58 | 86.62 26 | 95.92 21 | 94.78 17 |
|
TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 32 | 93.68 49 | 72.13 50 | 91.41 47 | 92.35 80 | 74.62 115 | 88.90 21 | 93.85 52 | 75.75 20 | 96.00 53 | 87.80 15 | 94.63 53 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepC-MVS_fast | | 79.65 3 | 86.91 38 | 86.62 41 | 87.76 29 | 93.52 52 | 72.37 44 | 91.26 48 | 93.04 43 | 76.62 72 | 84.22 73 | 93.36 61 | 71.44 57 | 96.76 24 | 80.82 83 | 95.33 38 | 94.16 39 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP_MVS | | | 83.64 79 | 83.14 81 | 85.14 85 | 90.08 112 | 68.71 122 | 91.25 49 | 92.44 75 | 79.12 24 | 78.92 138 | 91.00 113 | 60.42 186 | 95.38 80 | 78.71 97 | 86.32 154 | 91.33 146 |
|
plane_prior2 | | | | | | | | 91.25 49 | | 79.12 24 | | | | | | | |
|
NCCC | | | 88.06 14 | 88.01 18 | 88.24 10 | 94.41 24 | 73.62 11 | 91.22 51 | 92.83 61 | 81.50 6 | 85.79 45 | 93.47 59 | 73.02 45 | 97.00 17 | 84.90 33 | 94.94 44 | 94.10 41 |
|
CS-MVS-test | | | 85.02 69 | 85.21 64 | 84.46 108 | 89.28 140 | 65.70 179 | 91.16 52 | 93.56 26 | 77.83 38 | 81.80 105 | 89.89 133 | 70.67 64 | 95.61 63 | 80.39 87 | 92.34 82 | 92.06 127 |
|
API-MVS | | | 81.99 105 | 81.23 109 | 84.26 118 | 90.94 95 | 70.18 93 | 91.10 53 | 89.32 176 | 71.51 170 | 78.66 143 | 88.28 179 | 65.26 115 | 95.10 94 | 64.74 225 | 91.23 95 | 87.51 266 |
|
EPNet | | | 83.72 78 | 82.92 86 | 86.14 69 | 84.22 254 | 69.48 104 | 91.05 54 | 85.27 257 | 81.30 7 | 76.83 181 | 91.65 91 | 66.09 107 | 95.56 66 | 76.00 126 | 93.85 66 | 93.38 78 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_part1 | | | 82.78 94 | 82.08 98 | 84.89 96 | 90.66 100 | 66.97 158 | 90.96 55 | 92.93 57 | 77.19 54 | 80.53 122 | 90.04 130 | 63.44 130 | 95.39 79 | 76.04 125 | 76.90 255 | 92.31 117 |
|
ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 17 | 93.70 47 | 73.05 23 | 90.86 56 | 93.59 25 | 76.27 81 | 88.14 26 | 95.09 15 | 71.06 59 | 96.67 28 | 87.67 16 | 96.37 14 | 94.09 42 |
|
CSCG | | | 86.41 47 | 86.19 49 | 87.07 50 | 92.91 65 | 72.48 38 | 90.81 57 | 93.56 26 | 73.95 129 | 83.16 88 | 91.07 109 | 75.94 18 | 95.19 88 | 79.94 92 | 94.38 60 | 93.55 74 |
|
abl_6 | | | 85.23 64 | 84.95 70 | 86.07 71 | 92.23 79 | 70.48 86 | 90.80 58 | 92.08 92 | 73.51 142 | 85.26 50 | 94.16 41 | 62.75 144 | 95.92 57 | 82.46 72 | 91.30 94 | 91.81 134 |
|
MSLP-MVS++ | | | 85.43 61 | 85.76 55 | 84.45 109 | 91.93 83 | 70.24 87 | 90.71 59 | 92.86 59 | 77.46 48 | 84.22 73 | 92.81 75 | 67.16 97 | 92.94 186 | 80.36 88 | 94.35 61 | 90.16 186 |
|
3Dnovator | | 76.31 5 | 83.38 85 | 82.31 94 | 86.59 60 | 87.94 187 | 72.94 29 | 90.64 60 | 92.14 91 | 77.21 53 | 75.47 211 | 92.83 73 | 58.56 195 | 94.72 110 | 73.24 151 | 92.71 76 | 92.13 125 |
|
ETH3 D test6400 | | | 87.50 25 | 87.44 26 | 87.70 35 | 93.71 46 | 71.75 57 | 90.62 61 | 94.05 15 | 70.80 180 | 87.59 33 | 93.51 56 | 77.57 14 | 96.63 31 | 83.31 55 | 95.77 26 | 94.72 19 |
|
OpenMVS |  | 72.83 10 | 79.77 153 | 78.33 168 | 84.09 123 | 85.17 239 | 69.91 94 | 90.57 62 | 90.97 133 | 66.70 244 | 72.17 257 | 91.91 85 | 54.70 223 | 93.96 133 | 61.81 248 | 90.95 97 | 88.41 250 |
|
CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 9 | 90.51 63 | 93.00 47 | 80.90 9 | 88.06 28 | 94.06 46 | 76.43 16 | 96.84 20 | 88.48 14 | 95.99 19 | 94.34 33 |
|
MVSFormer | | | 82.85 93 | 82.05 99 | 85.24 83 | 87.35 204 | 70.21 88 | 90.50 64 | 90.38 146 | 68.55 229 | 81.32 111 | 89.47 147 | 61.68 160 | 93.46 163 | 78.98 95 | 90.26 105 | 92.05 128 |
|
test_djsdf | | | 80.30 144 | 79.32 145 | 83.27 150 | 83.98 259 | 65.37 187 | 90.50 64 | 90.38 146 | 68.55 229 | 76.19 197 | 88.70 165 | 56.44 213 | 93.46 163 | 78.98 95 | 80.14 225 | 90.97 159 |
|
xxxxxxxxxxxxxcwj | | | 87.88 19 | 87.92 19 | 87.77 26 | 93.80 44 | 72.35 45 | 90.47 66 | 89.69 168 | 74.31 121 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 15 |
|
save fliter | | | | | | 93.80 44 | 72.35 45 | 90.47 66 | 91.17 129 | 74.31 121 | | | | | | | |
|
nrg030 | | | 83.88 75 | 83.53 77 | 84.96 91 | 86.77 219 | 69.28 109 | 90.46 68 | 92.67 67 | 74.79 110 | 82.95 90 | 91.33 102 | 72.70 46 | 93.09 180 | 80.79 85 | 79.28 235 | 92.50 110 |
|
canonicalmvs | | | 85.91 53 | 85.87 54 | 86.04 72 | 89.84 119 | 69.44 108 | 90.45 69 | 93.00 47 | 76.70 71 | 88.01 29 | 91.23 103 | 73.28 41 | 93.91 140 | 81.50 77 | 88.80 121 | 94.77 18 |
|
plane_prior | | | | | | | 68.71 122 | 90.38 70 | | 77.62 40 | | | | | | 86.16 157 | |
|
DeepC-MVS | | 79.81 2 | 87.08 37 | 86.88 38 | 87.69 36 | 91.16 91 | 72.32 47 | 90.31 71 | 93.94 17 | 77.12 57 | 82.82 94 | 94.23 39 | 72.13 52 | 97.09 14 | 84.83 36 | 95.37 35 | 93.65 69 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Vis-MVSNet |  | | 83.46 82 | 82.80 88 | 85.43 79 | 90.25 108 | 68.74 120 | 90.30 72 | 90.13 156 | 76.33 80 | 80.87 119 | 92.89 71 | 61.00 177 | 94.20 125 | 72.45 158 | 90.97 96 | 93.35 80 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
zzz-MVS | | | 87.53 24 | 87.41 27 | 87.90 21 | 94.18 37 | 74.25 5 | 90.23 73 | 92.02 94 | 79.45 19 | 85.88 42 | 94.80 16 | 68.07 86 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 84 |
|
PGM-MVS | | | 86.68 41 | 86.27 46 | 87.90 21 | 94.22 35 | 73.38 19 | 90.22 74 | 93.04 43 | 75.53 94 | 83.86 79 | 94.42 33 | 67.87 90 | 96.64 30 | 82.70 69 | 94.57 55 | 93.66 64 |
|
LPG-MVS_test | | | 82.08 102 | 81.27 108 | 84.50 106 | 89.23 143 | 68.76 118 | 90.22 74 | 91.94 101 | 75.37 98 | 76.64 187 | 91.51 96 | 54.29 226 | 94.91 100 | 78.44 101 | 83.78 178 | 89.83 207 |
|
Anonymous20231211 | | | 78.97 176 | 77.69 186 | 82.81 174 | 90.54 103 | 64.29 206 | 90.11 76 | 91.51 117 | 65.01 267 | 76.16 201 | 88.13 188 | 50.56 265 | 93.03 185 | 69.68 181 | 77.56 248 | 91.11 153 |
|
ETH3D cwj APD-0.16 | | | 87.31 32 | 87.27 28 | 87.44 43 | 91.60 87 | 72.45 41 | 90.02 77 | 94.37 4 | 71.76 163 | 87.28 34 | 94.27 36 | 75.18 25 | 96.08 49 | 85.16 30 | 95.77 26 | 93.80 61 |
|
ACMM | | 73.20 8 | 80.78 134 | 79.84 132 | 83.58 140 | 89.31 138 | 68.37 130 | 89.99 78 | 91.60 114 | 70.28 191 | 77.25 172 | 89.66 140 | 53.37 234 | 93.53 159 | 74.24 139 | 82.85 193 | 88.85 237 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 74.13 6 | 81.51 117 | 80.57 119 | 84.36 113 | 89.42 129 | 68.69 125 | 89.97 79 | 91.50 120 | 74.46 119 | 75.04 229 | 90.41 122 | 53.82 231 | 94.54 112 | 77.56 110 | 82.91 192 | 89.86 206 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LFMVS | | | 81.82 108 | 81.23 109 | 83.57 141 | 91.89 84 | 63.43 225 | 89.84 80 | 81.85 303 | 77.04 60 | 83.21 86 | 93.10 65 | 52.26 242 | 93.43 165 | 71.98 159 | 89.95 111 | 93.85 55 |
|
MCST-MVS | | | 87.37 30 | 87.25 30 | 87.73 30 | 94.53 19 | 72.46 40 | 89.82 81 | 93.82 19 | 73.07 147 | 84.86 61 | 92.89 71 | 76.22 17 | 96.33 39 | 84.89 35 | 95.13 41 | 94.40 30 |
|
MAR-MVS | | | 81.84 107 | 80.70 117 | 85.27 82 | 91.32 90 | 71.53 60 | 89.82 81 | 90.92 134 | 69.77 201 | 78.50 146 | 86.21 239 | 62.36 151 | 94.52 114 | 65.36 219 | 92.05 83 | 89.77 210 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MP-MVS-pluss | | | 87.67 22 | 87.72 22 | 87.54 39 | 93.64 50 | 72.04 52 | 89.80 83 | 93.50 28 | 75.17 103 | 86.34 40 | 95.29 12 | 70.86 60 | 96.00 53 | 88.78 12 | 96.04 16 | 94.58 23 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
UA-Net | | | 85.08 68 | 84.96 69 | 85.45 78 | 92.07 81 | 68.07 137 | 89.78 84 | 90.86 137 | 82.48 2 | 84.60 67 | 93.20 63 | 69.35 77 | 95.22 87 | 71.39 164 | 90.88 98 | 93.07 91 |
|
alignmvs | | | 85.48 59 | 85.32 61 | 85.96 74 | 89.51 126 | 69.47 105 | 89.74 85 | 92.47 74 | 76.17 82 | 87.73 32 | 91.46 99 | 70.32 67 | 93.78 145 | 81.51 76 | 88.95 118 | 94.63 22 |
|
VDDNet | | | 81.52 115 | 80.67 118 | 84.05 126 | 90.44 105 | 64.13 209 | 89.73 86 | 85.91 252 | 71.11 175 | 83.18 87 | 93.48 57 | 50.54 266 | 93.49 160 | 73.40 148 | 88.25 129 | 94.54 26 |
|
CANet | | | 86.45 44 | 86.10 51 | 87.51 40 | 90.09 111 | 70.94 74 | 89.70 87 | 92.59 72 | 81.78 4 | 81.32 111 | 91.43 100 | 70.34 66 | 97.23 12 | 84.26 46 | 93.36 70 | 94.37 31 |
|
114514_t | | | 80.68 135 | 79.51 139 | 84.20 119 | 94.09 41 | 67.27 152 | 89.64 88 | 91.11 131 | 58.75 325 | 74.08 239 | 90.72 117 | 58.10 197 | 95.04 96 | 69.70 180 | 89.42 116 | 90.30 182 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 56 | 92.24 78 | 69.03 110 | 89.57 89 | 93.39 35 | 77.53 46 | 89.79 18 | 94.12 43 | 78.98 12 | 96.58 36 | 85.66 27 | 95.72 29 | 94.58 23 |
|
UGNet | | | 80.83 128 | 79.59 138 | 84.54 105 | 88.04 184 | 68.09 136 | 89.42 90 | 88.16 211 | 76.95 61 | 76.22 196 | 89.46 149 | 49.30 280 | 93.94 136 | 68.48 192 | 90.31 103 | 91.60 137 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
AdaColmap |  | | 80.58 139 | 79.42 141 | 84.06 125 | 93.09 61 | 68.91 115 | 89.36 91 | 88.97 194 | 69.27 210 | 75.70 208 | 89.69 139 | 57.20 209 | 95.77 60 | 63.06 235 | 88.41 128 | 87.50 267 |
|
mvs-test1 | | | 80.88 124 | 79.40 142 | 85.29 81 | 85.13 242 | 69.75 99 | 89.28 92 | 88.10 213 | 74.99 106 | 76.44 192 | 86.72 219 | 57.27 207 | 94.26 124 | 73.53 144 | 83.18 189 | 91.87 131 |
|
PS-MVSNAJss | | | 82.07 103 | 81.31 107 | 84.34 115 | 86.51 222 | 67.27 152 | 89.27 93 | 91.51 117 | 71.75 164 | 79.37 132 | 90.22 126 | 63.15 138 | 94.27 120 | 77.69 109 | 82.36 200 | 91.49 142 |
|
jajsoiax | | | 79.29 167 | 77.96 174 | 83.27 150 | 84.68 248 | 66.57 163 | 89.25 94 | 90.16 155 | 69.20 214 | 75.46 213 | 89.49 146 | 45.75 306 | 93.13 178 | 76.84 119 | 80.80 215 | 90.11 190 |
|
mvs_tets | | | 79.13 171 | 77.77 182 | 83.22 155 | 84.70 247 | 66.37 165 | 89.17 95 | 90.19 154 | 69.38 208 | 75.40 216 | 89.46 149 | 44.17 314 | 93.15 176 | 76.78 120 | 80.70 217 | 90.14 187 |
|
HQP-NCC | | | | | | 89.33 133 | | 89.17 95 | | 76.41 74 | 77.23 174 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 133 | | 89.17 95 | | 76.41 74 | 77.23 174 | | | | | | |
|
HQP-MVS | | | 82.61 97 | 82.02 100 | 84.37 112 | 89.33 133 | 66.98 156 | 89.17 95 | 92.19 89 | 76.41 74 | 77.23 174 | 90.23 125 | 60.17 189 | 95.11 91 | 77.47 111 | 85.99 160 | 91.03 156 |
|
LS3D | | | 76.95 220 | 74.82 232 | 83.37 147 | 90.45 104 | 67.36 151 | 89.15 99 | 86.94 238 | 61.87 301 | 69.52 286 | 90.61 119 | 51.71 254 | 94.53 113 | 46.38 340 | 86.71 149 | 88.21 252 |
|
OPM-MVS | | | 83.50 81 | 82.95 85 | 85.14 85 | 88.79 160 | 70.95 73 | 89.13 100 | 91.52 116 | 77.55 45 | 80.96 118 | 91.75 89 | 60.71 180 | 94.50 115 | 79.67 93 | 86.51 152 | 89.97 202 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
TSAR-MVS + GP. | | | 85.71 57 | 85.33 60 | 86.84 53 | 91.34 89 | 72.50 37 | 89.07 101 | 87.28 232 | 76.41 74 | 85.80 44 | 90.22 126 | 74.15 37 | 95.37 83 | 81.82 75 | 91.88 84 | 92.65 107 |
|
test_prior4 | | | | | | | 72.60 35 | 89.01 102 | | | | | | | | | |
|
GeoE | | | 81.71 110 | 81.01 114 | 83.80 137 | 89.51 126 | 64.45 203 | 88.97 103 | 88.73 204 | 71.27 173 | 78.63 144 | 89.76 137 | 66.32 104 | 93.20 172 | 69.89 178 | 86.02 159 | 93.74 62 |
|
Anonymous20240529 | | | 80.19 147 | 78.89 155 | 84.10 122 | 90.60 101 | 64.75 196 | 88.95 104 | 90.90 135 | 65.97 256 | 80.59 121 | 91.17 106 | 49.97 271 | 93.73 151 | 69.16 186 | 82.70 197 | 93.81 59 |
|
VDD-MVS | | | 83.01 92 | 82.36 93 | 84.96 91 | 91.02 94 | 66.40 164 | 88.91 105 | 88.11 212 | 77.57 42 | 84.39 71 | 93.29 62 | 52.19 243 | 93.91 140 | 77.05 116 | 88.70 123 | 94.57 25 |
|
Effi-MVS+ | | | 83.62 80 | 83.08 82 | 85.24 83 | 88.38 175 | 67.45 147 | 88.89 106 | 89.15 185 | 75.50 95 | 82.27 98 | 88.28 179 | 69.61 75 | 94.45 116 | 77.81 108 | 87.84 131 | 93.84 57 |
|
ACMH+ | | 68.96 14 | 76.01 234 | 74.01 241 | 82.03 192 | 88.60 167 | 65.31 188 | 88.86 107 | 87.55 226 | 70.25 192 | 67.75 297 | 87.47 200 | 41.27 329 | 93.19 174 | 58.37 277 | 75.94 271 | 87.60 263 |
|
test_prior3 | | | 86.73 39 | 86.86 39 | 86.33 63 | 92.61 74 | 69.59 101 | 88.85 108 | 92.97 54 | 75.41 96 | 84.91 56 | 93.54 54 | 74.28 34 | 95.48 71 | 83.31 55 | 95.86 22 | 93.91 51 |
|
test_prior2 | | | | | | | | 88.85 108 | | 75.41 96 | 84.91 56 | 93.54 54 | 74.28 34 | | 83.31 55 | 95.86 22 | |
|
CS-MVS | | | 84.53 73 | 84.97 68 | 83.23 154 | 87.54 203 | 63.27 228 | 88.82 110 | 93.50 28 | 75.98 87 | 83.07 89 | 89.73 138 | 70.29 68 | 95.23 86 | 82.07 74 | 93.70 69 | 91.18 150 |
|
DP-MVS Recon | | | 83.11 90 | 82.09 97 | 86.15 68 | 94.44 21 | 70.92 76 | 88.79 111 | 92.20 88 | 70.53 187 | 79.17 134 | 91.03 112 | 64.12 125 | 96.03 50 | 68.39 194 | 90.14 107 | 91.50 141 |
|
Effi-MVS+-dtu | | | 80.03 149 | 78.57 160 | 84.42 110 | 85.13 242 | 68.74 120 | 88.77 112 | 88.10 213 | 74.99 106 | 74.97 230 | 83.49 283 | 57.27 207 | 93.36 166 | 73.53 144 | 80.88 213 | 91.18 150 |
|
TEST9 | | | | | | 93.26 56 | 72.96 26 | 88.75 113 | 91.89 103 | 68.44 231 | 85.00 54 | 93.10 65 | 74.36 33 | 95.41 77 | | | |
|
train_agg | | | 86.43 45 | 86.20 48 | 87.13 49 | 93.26 56 | 72.96 26 | 88.75 113 | 91.89 103 | 68.69 227 | 85.00 54 | 93.10 65 | 74.43 30 | 95.41 77 | 84.97 32 | 95.71 30 | 93.02 94 |
|
ETV-MVS | | | 84.90 72 | 84.67 73 | 85.59 77 | 89.39 131 | 68.66 126 | 88.74 115 | 92.64 71 | 79.97 17 | 84.10 76 | 85.71 247 | 69.32 78 | 95.38 80 | 80.82 83 | 91.37 92 | 92.72 102 |
|
PVSNet_Blended_VisFu | | | 82.62 96 | 81.83 104 | 84.96 91 | 90.80 99 | 69.76 98 | 88.74 115 | 91.70 112 | 69.39 207 | 78.96 136 | 88.46 174 | 65.47 114 | 94.87 105 | 74.42 136 | 88.57 124 | 90.24 184 |
|
RRT_MVS | | | 79.88 152 | 78.38 165 | 84.38 111 | 85.42 236 | 70.60 84 | 88.71 117 | 88.75 203 | 72.30 157 | 78.83 140 | 89.14 155 | 44.44 312 | 92.18 211 | 78.50 100 | 79.33 234 | 90.35 180 |
|
test_8 | | | | | | 93.13 58 | 72.57 36 | 88.68 118 | 91.84 106 | 68.69 227 | 84.87 60 | 93.10 65 | 74.43 30 | 95.16 89 | | | |
|
ACMH | | 67.68 16 | 75.89 235 | 73.93 242 | 81.77 197 | 88.71 164 | 66.61 162 | 88.62 119 | 89.01 191 | 69.81 199 | 66.78 309 | 86.70 224 | 41.95 328 | 91.51 232 | 55.64 296 | 78.14 243 | 87.17 275 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
agg_prior1 | | | 86.22 49 | 86.09 52 | 86.62 59 | 92.85 66 | 71.94 54 | 88.59 120 | 91.78 109 | 68.96 222 | 84.41 69 | 93.18 64 | 74.94 26 | 94.93 98 | 84.75 38 | 95.33 38 | 93.01 95 |
|
CDPH-MVS | | | 85.76 56 | 85.29 63 | 87.17 48 | 93.49 53 | 71.08 68 | 88.58 121 | 92.42 78 | 68.32 232 | 84.61 66 | 93.48 57 | 72.32 49 | 96.15 48 | 79.00 94 | 95.43 34 | 94.28 36 |
|
DP-MVS | | | 76.78 222 | 74.57 234 | 83.42 144 | 93.29 54 | 69.46 107 | 88.55 122 | 83.70 277 | 63.98 281 | 70.20 274 | 88.89 162 | 54.01 230 | 94.80 107 | 46.66 337 | 81.88 205 | 86.01 299 |
|
Regformer-1 | | | 86.41 47 | 86.33 44 | 86.64 58 | 89.33 133 | 70.93 75 | 88.43 123 | 91.39 122 | 82.14 3 | 86.65 38 | 90.09 128 | 74.39 32 | 95.01 97 | 83.97 51 | 90.63 100 | 93.97 49 |
|
Regformer-2 | | | 86.63 43 | 86.53 42 | 86.95 51 | 89.33 133 | 71.24 67 | 88.43 123 | 92.05 93 | 82.50 1 | 86.88 36 | 90.09 128 | 74.45 29 | 95.61 63 | 84.38 43 | 90.63 100 | 94.01 47 |
|
WR-MVS_H | | | 78.51 185 | 78.49 161 | 78.56 260 | 88.02 185 | 56.38 313 | 88.43 123 | 92.67 67 | 77.14 56 | 73.89 240 | 87.55 197 | 66.25 105 | 89.24 273 | 58.92 271 | 73.55 303 | 90.06 196 |
|
F-COLMAP | | | 76.38 230 | 74.33 239 | 82.50 184 | 89.28 140 | 66.95 160 | 88.41 126 | 89.03 189 | 64.05 279 | 66.83 308 | 88.61 169 | 46.78 296 | 92.89 187 | 57.48 284 | 78.55 237 | 87.67 261 |
|
GBi-Net | | | 78.40 186 | 77.40 191 | 81.40 205 | 87.60 198 | 63.01 234 | 88.39 127 | 89.28 177 | 71.63 166 | 75.34 218 | 87.28 203 | 54.80 219 | 91.11 240 | 62.72 236 | 79.57 228 | 90.09 192 |
|
test1 | | | 78.40 186 | 77.40 191 | 81.40 205 | 87.60 198 | 63.01 234 | 88.39 127 | 89.28 177 | 71.63 166 | 75.34 218 | 87.28 203 | 54.80 219 | 91.11 240 | 62.72 236 | 79.57 228 | 90.09 192 |
|
FMVSNet1 | | | 77.44 211 | 76.12 217 | 81.40 205 | 86.81 218 | 63.01 234 | 88.39 127 | 89.28 177 | 70.49 188 | 74.39 236 | 87.28 203 | 49.06 283 | 91.11 240 | 60.91 255 | 78.52 238 | 90.09 192 |
|
tttt0517 | | | 79.40 164 | 77.91 176 | 83.90 136 | 88.10 182 | 63.84 213 | 88.37 130 | 84.05 273 | 71.45 171 | 76.78 183 | 89.12 157 | 49.93 274 | 94.89 103 | 70.18 174 | 83.18 189 | 92.96 98 |
|
v7n | | | 78.97 176 | 77.58 189 | 83.14 158 | 83.45 267 | 65.51 182 | 88.32 131 | 91.21 127 | 73.69 135 | 72.41 254 | 86.32 238 | 57.93 198 | 93.81 144 | 69.18 185 | 75.65 274 | 90.11 190 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 264 | 70.41 275 | 80.81 221 | 87.13 213 | 65.63 180 | 88.30 132 | 84.19 272 | 62.96 289 | 63.80 332 | 87.69 193 | 38.04 341 | 92.56 195 | 46.66 337 | 74.91 290 | 84.24 318 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Regformer-3 | | | 85.23 64 | 85.07 66 | 85.70 76 | 88.95 152 | 69.01 112 | 88.29 133 | 89.91 162 | 80.95 8 | 85.01 53 | 90.01 131 | 72.45 48 | 94.19 126 | 82.50 71 | 87.57 133 | 93.90 53 |
|
Regformer-4 | | | 85.68 58 | 85.45 58 | 86.35 62 | 88.95 152 | 69.67 100 | 88.29 133 | 91.29 124 | 81.73 5 | 85.36 49 | 90.01 131 | 72.62 47 | 95.35 84 | 83.28 58 | 87.57 133 | 94.03 45 |
|
FIs | | | 82.07 103 | 82.42 90 | 81.04 217 | 88.80 159 | 58.34 282 | 88.26 135 | 93.49 30 | 76.93 62 | 78.47 148 | 91.04 110 | 69.92 72 | 92.34 204 | 69.87 179 | 84.97 166 | 92.44 114 |
|
EIA-MVS | | | 83.31 86 | 82.80 88 | 84.82 98 | 89.59 122 | 65.59 181 | 88.21 136 | 92.68 66 | 74.66 114 | 78.96 136 | 86.42 235 | 69.06 81 | 95.26 85 | 75.54 131 | 90.09 108 | 93.62 71 |
|
PLC |  | 70.83 11 | 78.05 198 | 76.37 215 | 83.08 161 | 91.88 85 | 67.80 141 | 88.19 137 | 89.46 173 | 64.33 275 | 69.87 283 | 88.38 176 | 53.66 232 | 93.58 154 | 58.86 272 | 82.73 195 | 87.86 258 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MG-MVS | | | 83.41 83 | 83.45 78 | 83.28 149 | 92.74 71 | 62.28 244 | 88.17 138 | 89.50 172 | 75.22 101 | 81.49 110 | 92.74 78 | 66.75 98 | 95.11 91 | 72.85 154 | 91.58 89 | 92.45 113 |
|
TAPA-MVS | | 73.13 9 | 79.15 170 | 77.94 175 | 82.79 177 | 89.59 122 | 62.99 237 | 88.16 139 | 91.51 117 | 65.77 257 | 77.14 178 | 91.09 108 | 60.91 178 | 93.21 170 | 50.26 320 | 87.05 143 | 92.17 124 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
h-mvs33 | | | 83.15 87 | 82.19 95 | 86.02 73 | 90.56 102 | 70.85 78 | 88.15 140 | 89.16 184 | 76.02 85 | 84.67 63 | 91.39 101 | 61.54 163 | 95.50 70 | 82.71 67 | 75.48 278 | 91.72 136 |
|
PS-CasMVS | | | 78.01 200 | 78.09 172 | 77.77 272 | 87.71 195 | 54.39 328 | 88.02 141 | 91.22 126 | 77.50 47 | 73.26 244 | 88.64 168 | 60.73 179 | 88.41 287 | 61.88 246 | 73.88 300 | 90.53 174 |
|
OMC-MVS | | | 82.69 95 | 81.97 102 | 84.85 97 | 88.75 162 | 67.42 148 | 87.98 142 | 90.87 136 | 74.92 108 | 79.72 129 | 91.65 91 | 62.19 155 | 93.96 133 | 75.26 133 | 86.42 153 | 93.16 89 |
|
v8 | | | 79.97 151 | 79.02 153 | 82.80 175 | 84.09 256 | 64.50 201 | 87.96 143 | 90.29 153 | 74.13 128 | 75.24 223 | 86.81 216 | 62.88 143 | 93.89 142 | 74.39 137 | 75.40 282 | 90.00 198 |
|
FC-MVSNet-test | | | 81.52 115 | 82.02 100 | 80.03 236 | 88.42 174 | 55.97 318 | 87.95 144 | 93.42 34 | 77.10 58 | 77.38 169 | 90.98 115 | 69.96 71 | 91.79 223 | 68.46 193 | 84.50 171 | 92.33 115 |
|
CP-MVSNet | | | 78.22 191 | 78.34 167 | 77.84 270 | 87.83 190 | 54.54 326 | 87.94 145 | 91.17 129 | 77.65 39 | 73.48 242 | 88.49 173 | 62.24 154 | 88.43 286 | 62.19 242 | 74.07 296 | 90.55 173 |
|
PAPM_NR | | | 83.02 91 | 82.41 91 | 84.82 98 | 92.47 77 | 66.37 165 | 87.93 146 | 91.80 107 | 73.82 133 | 77.32 171 | 90.66 118 | 67.90 89 | 94.90 102 | 70.37 172 | 89.48 115 | 93.19 88 |
|
PEN-MVS | | | 77.73 205 | 77.69 186 | 77.84 270 | 87.07 214 | 53.91 331 | 87.91 147 | 91.18 128 | 77.56 44 | 73.14 246 | 88.82 164 | 61.23 172 | 89.17 274 | 59.95 261 | 72.37 311 | 90.43 177 |
|
ECVR-MVS |  | | 79.61 155 | 79.26 147 | 80.67 224 | 90.08 112 | 54.69 324 | 87.89 148 | 77.44 335 | 74.88 109 | 80.27 124 | 92.79 76 | 48.96 285 | 92.45 198 | 68.55 191 | 92.50 80 | 94.86 12 |
|
v10 | | | 79.74 154 | 78.67 157 | 82.97 168 | 84.06 257 | 64.95 193 | 87.88 149 | 90.62 140 | 73.11 146 | 75.11 226 | 86.56 231 | 61.46 166 | 94.05 132 | 73.68 142 | 75.55 276 | 89.90 204 |
|
casdiffmvs | | | 85.11 67 | 85.14 65 | 85.01 89 | 87.20 211 | 65.77 178 | 87.75 150 | 92.83 61 | 77.84 37 | 84.36 72 | 92.38 79 | 72.15 51 | 93.93 139 | 81.27 79 | 90.48 102 | 95.33 1 |
|
TranMVSNet+NR-MVSNet | | | 80.84 126 | 80.31 125 | 82.42 185 | 87.85 189 | 62.33 242 | 87.74 151 | 91.33 123 | 80.55 11 | 77.99 159 | 89.86 134 | 65.23 116 | 92.62 192 | 67.05 207 | 75.24 288 | 92.30 118 |
|
EI-MVSNet-Vis-set | | | 84.19 74 | 83.81 76 | 85.31 80 | 88.18 179 | 67.85 140 | 87.66 152 | 89.73 167 | 80.05 16 | 82.95 90 | 89.59 144 | 70.74 63 | 94.82 106 | 80.66 86 | 84.72 169 | 93.28 83 |
|
UniMVSNet (Re) | | | 81.60 114 | 81.11 111 | 83.09 160 | 88.38 175 | 64.41 204 | 87.60 153 | 93.02 46 | 78.42 32 | 78.56 145 | 88.16 183 | 69.78 73 | 93.26 169 | 69.58 182 | 76.49 262 | 91.60 137 |
|
CNLPA | | | 78.08 196 | 76.79 205 | 81.97 194 | 90.40 106 | 71.07 69 | 87.59 154 | 84.55 265 | 66.03 255 | 72.38 255 | 89.64 141 | 57.56 203 | 86.04 305 | 59.61 264 | 83.35 186 | 88.79 240 |
|
DTE-MVSNet | | | 76.99 218 | 76.80 204 | 77.54 277 | 86.24 224 | 53.06 339 | 87.52 155 | 90.66 139 | 77.08 59 | 72.50 252 | 88.67 167 | 60.48 185 | 89.52 268 | 57.33 287 | 70.74 322 | 90.05 197 |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 156 | 88.98 192 | 60.00 313 | | | | 94.12 129 | 67.28 202 | | 88.97 232 |
|
FMVSNet2 | | | 78.20 193 | 77.21 195 | 81.20 212 | 87.60 198 | 62.89 238 | 87.47 157 | 89.02 190 | 71.63 166 | 75.29 222 | 87.28 203 | 54.80 219 | 91.10 243 | 62.38 240 | 79.38 232 | 89.61 214 |
|
EI-MVSNet-UG-set | | | 83.81 76 | 83.38 79 | 85.09 87 | 87.87 188 | 67.53 146 | 87.44 158 | 89.66 169 | 79.74 18 | 82.23 99 | 89.41 153 | 70.24 69 | 94.74 109 | 79.95 91 | 83.92 177 | 92.99 97 |
|
thisisatest0530 | | | 79.40 164 | 77.76 183 | 84.31 116 | 87.69 197 | 65.10 192 | 87.36 159 | 84.26 271 | 70.04 194 | 77.42 168 | 88.26 181 | 49.94 272 | 94.79 108 | 70.20 173 | 84.70 170 | 93.03 93 |
|
CANet_DTU | | | 80.61 136 | 79.87 131 | 82.83 172 | 85.60 233 | 63.17 233 | 87.36 159 | 88.65 205 | 76.37 78 | 75.88 205 | 88.44 175 | 53.51 233 | 93.07 181 | 73.30 149 | 89.74 113 | 92.25 120 |
|
ECVR-MVS11 | | | 79.43 162 | 79.18 150 | 80.15 234 | 89.99 115 | 53.31 337 | 87.33 161 | 77.05 338 | 75.04 105 | 80.23 126 | 92.77 77 | 48.97 284 | 92.33 205 | 68.87 189 | 92.40 81 | 94.81 14 |
|
baseline | | | 84.93 70 | 84.98 67 | 84.80 100 | 87.30 209 | 65.39 186 | 87.30 162 | 92.88 58 | 77.62 40 | 84.04 78 | 92.26 80 | 71.81 53 | 93.96 133 | 81.31 78 | 90.30 104 | 95.03 4 |
|
UniMVSNet_ETH3D | | | 79.10 172 | 78.24 170 | 81.70 198 | 86.85 216 | 60.24 268 | 87.28 163 | 88.79 198 | 74.25 124 | 76.84 180 | 90.53 121 | 49.48 277 | 91.56 229 | 67.98 195 | 82.15 201 | 93.29 82 |
|
anonymousdsp | | | 78.60 183 | 77.15 196 | 82.98 167 | 80.51 321 | 67.08 154 | 87.24 164 | 89.53 171 | 65.66 259 | 75.16 224 | 87.19 209 | 52.52 237 | 92.25 208 | 77.17 115 | 79.34 233 | 89.61 214 |
|
UniMVSNet_NR-MVSNet | | | 81.88 106 | 81.54 106 | 82.92 169 | 88.46 172 | 63.46 223 | 87.13 165 | 92.37 79 | 80.19 14 | 78.38 149 | 89.14 155 | 71.66 56 | 93.05 182 | 70.05 175 | 76.46 263 | 92.25 120 |
|
DPM-MVS | | | 84.93 70 | 84.29 75 | 86.84 53 | 90.20 109 | 73.04 24 | 87.12 166 | 93.04 43 | 69.80 200 | 82.85 93 | 91.22 104 | 73.06 44 | 96.02 51 | 76.72 121 | 94.63 53 | 91.46 144 |
|
v1144 | | | 80.03 149 | 79.03 152 | 83.01 165 | 83.78 262 | 64.51 199 | 87.11 167 | 90.57 142 | 71.96 162 | 78.08 158 | 86.20 240 | 61.41 167 | 93.94 136 | 74.93 134 | 77.23 250 | 90.60 171 |
|
v2v482 | | | 80.23 145 | 79.29 146 | 83.05 163 | 83.62 264 | 64.14 208 | 87.04 168 | 89.97 159 | 73.61 136 | 78.18 155 | 87.22 207 | 61.10 175 | 93.82 143 | 76.11 123 | 76.78 260 | 91.18 150 |
|
DU-MVS | | | 81.12 122 | 80.52 121 | 82.90 170 | 87.80 191 | 63.46 223 | 87.02 169 | 91.87 105 | 79.01 27 | 78.38 149 | 89.07 158 | 65.02 118 | 93.05 182 | 70.05 175 | 76.46 263 | 92.20 122 |
|
v144192 | | | 79.47 160 | 78.37 166 | 82.78 178 | 83.35 268 | 63.96 211 | 86.96 170 | 90.36 149 | 69.99 195 | 77.50 166 | 85.67 249 | 60.66 182 | 93.77 147 | 74.27 138 | 76.58 261 | 90.62 169 |
|
Fast-Effi-MVS+-dtu | | | 78.02 199 | 76.49 212 | 82.62 182 | 83.16 276 | 66.96 159 | 86.94 171 | 87.45 230 | 72.45 152 | 71.49 264 | 84.17 272 | 54.79 222 | 91.58 228 | 67.61 198 | 80.31 222 | 89.30 220 |
|
v1192 | | | 79.59 157 | 78.43 164 | 83.07 162 | 83.55 266 | 64.52 198 | 86.93 172 | 90.58 141 | 70.83 179 | 77.78 162 | 85.90 243 | 59.15 192 | 93.94 136 | 73.96 141 | 77.19 252 | 90.76 164 |
|
EPNet_dtu | | | 75.46 240 | 74.86 231 | 77.23 282 | 82.57 291 | 54.60 325 | 86.89 173 | 83.09 291 | 71.64 165 | 66.25 316 | 85.86 245 | 55.99 214 | 88.04 291 | 54.92 298 | 86.55 151 | 89.05 227 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
原ACMM2 | | | | | | | | 86.86 174 | | | | | | | | | |
|
VPA-MVSNet | | | 80.60 137 | 80.55 120 | 80.76 222 | 88.07 183 | 60.80 261 | 86.86 174 | 91.58 115 | 75.67 93 | 80.24 125 | 89.45 151 | 63.34 132 | 90.25 257 | 70.51 171 | 79.22 236 | 91.23 149 |
|
v1921920 | | | 79.22 168 | 78.03 173 | 82.80 175 | 83.30 270 | 63.94 212 | 86.80 176 | 90.33 150 | 69.91 198 | 77.48 167 | 85.53 252 | 58.44 196 | 93.75 149 | 73.60 143 | 76.85 258 | 90.71 167 |
|
IterMVS-LS | | | 80.06 148 | 79.38 143 | 82.11 189 | 85.89 228 | 63.20 231 | 86.79 177 | 89.34 175 | 74.19 125 | 75.45 214 | 86.72 219 | 66.62 99 | 92.39 201 | 72.58 156 | 76.86 257 | 90.75 165 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TransMVSNet (Re) | | | 75.39 243 | 74.56 235 | 77.86 269 | 85.50 235 | 57.10 301 | 86.78 178 | 86.09 251 | 72.17 159 | 71.53 263 | 87.34 202 | 63.01 142 | 89.31 272 | 56.84 291 | 61.83 344 | 87.17 275 |
|
Baseline_NR-MVSNet | | | 78.15 195 | 78.33 168 | 77.61 275 | 85.79 229 | 56.21 316 | 86.78 178 | 85.76 253 | 73.60 137 | 77.93 160 | 87.57 196 | 65.02 118 | 88.99 277 | 67.14 206 | 75.33 284 | 87.63 262 |
|
PAPR | | | 81.66 113 | 80.89 116 | 83.99 132 | 90.27 107 | 64.00 210 | 86.76 180 | 91.77 111 | 68.84 225 | 77.13 179 | 89.50 145 | 67.63 91 | 94.88 104 | 67.55 199 | 88.52 126 | 93.09 90 |
|
Vis-MVSNet (Re-imp) | | | 78.36 189 | 78.45 162 | 78.07 268 | 88.64 166 | 51.78 342 | 86.70 181 | 79.63 324 | 74.14 127 | 75.11 226 | 90.83 116 | 61.29 171 | 89.75 264 | 58.10 280 | 91.60 88 | 92.69 105 |
|
pmmvs6 | | | 74.69 246 | 73.39 247 | 78.61 259 | 81.38 309 | 57.48 297 | 86.64 182 | 87.95 218 | 64.99 268 | 70.18 275 | 86.61 227 | 50.43 267 | 89.52 268 | 62.12 244 | 70.18 324 | 88.83 238 |
|
v1240 | | | 78.99 175 | 77.78 181 | 82.64 181 | 83.21 272 | 63.54 220 | 86.62 183 | 90.30 152 | 69.74 204 | 77.33 170 | 85.68 248 | 57.04 210 | 93.76 148 | 73.13 152 | 76.92 254 | 90.62 169 |
|
MTAPA | | | 87.23 33 | 87.00 34 | 87.90 21 | 94.18 37 | 74.25 5 | 86.58 184 | 92.02 94 | 79.45 19 | 85.88 42 | 94.80 16 | 68.07 86 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 84 |
|
旧先验2 | | | | | | | | 86.56 185 | | 58.10 328 | 87.04 35 | | | 88.98 278 | 74.07 140 | | |
|
RRT_test8_iter05 | | | 78.38 188 | 77.40 191 | 81.34 208 | 86.00 227 | 58.86 277 | 86.55 186 | 91.26 125 | 72.13 161 | 75.91 203 | 87.42 201 | 44.97 309 | 93.73 151 | 77.02 117 | 75.30 285 | 91.45 145 |
|
FMVSNet3 | | | 77.88 203 | 76.85 203 | 80.97 218 | 86.84 217 | 62.36 241 | 86.52 187 | 88.77 199 | 71.13 174 | 75.34 218 | 86.66 226 | 54.07 229 | 91.10 243 | 62.72 236 | 79.57 228 | 89.45 217 |
|
pm-mvs1 | | | 77.25 215 | 76.68 210 | 78.93 255 | 84.22 254 | 58.62 280 | 86.41 188 | 88.36 210 | 71.37 172 | 73.31 243 | 88.01 189 | 61.22 173 | 89.15 275 | 64.24 227 | 73.01 308 | 89.03 228 |
|
EI-MVSNet | | | 80.52 140 | 79.98 129 | 82.12 188 | 84.28 252 | 63.19 232 | 86.41 188 | 88.95 195 | 74.18 126 | 78.69 141 | 87.54 198 | 66.62 99 | 92.43 199 | 72.57 157 | 80.57 219 | 90.74 166 |
|
CVMVSNet | | | 72.99 265 | 72.58 254 | 74.25 307 | 84.28 252 | 50.85 348 | 86.41 188 | 83.45 284 | 44.56 355 | 73.23 245 | 87.54 198 | 49.38 278 | 85.70 307 | 65.90 215 | 78.44 240 | 86.19 294 |
|
NR-MVSNet | | | 80.23 145 | 79.38 143 | 82.78 178 | 87.80 191 | 63.34 226 | 86.31 191 | 91.09 132 | 79.01 27 | 72.17 257 | 89.07 158 | 67.20 96 | 92.81 191 | 66.08 214 | 75.65 274 | 92.20 122 |
|
v148 | | | 78.72 180 | 77.80 180 | 81.47 203 | 82.73 287 | 61.96 248 | 86.30 192 | 88.08 215 | 73.26 145 | 76.18 198 | 85.47 254 | 62.46 149 | 92.36 203 | 71.92 160 | 73.82 301 | 90.09 192 |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 193 | | | | | | | | | |
|
test_yl | | | 81.17 120 | 80.47 122 | 83.24 152 | 89.13 147 | 63.62 216 | 86.21 194 | 89.95 160 | 72.43 155 | 81.78 107 | 89.61 142 | 57.50 204 | 93.58 154 | 70.75 167 | 86.90 145 | 92.52 108 |
|
DCV-MVSNet | | | 81.17 120 | 80.47 122 | 83.24 152 | 89.13 147 | 63.62 216 | 86.21 194 | 89.95 160 | 72.43 155 | 81.78 107 | 89.61 142 | 57.50 204 | 93.58 154 | 70.75 167 | 86.90 145 | 92.52 108 |
|
PVSNet_BlendedMVS | | | 80.60 137 | 80.02 128 | 82.36 187 | 88.85 154 | 65.40 184 | 86.16 196 | 92.00 97 | 69.34 209 | 78.11 156 | 86.09 242 | 66.02 109 | 94.27 120 | 71.52 161 | 82.06 202 | 87.39 268 |
|
MVS_Test | | | 83.15 87 | 83.06 83 | 83.41 146 | 86.86 215 | 63.21 230 | 86.11 197 | 92.00 97 | 74.31 121 | 82.87 92 | 89.44 152 | 70.03 70 | 93.21 170 | 77.39 113 | 88.50 127 | 93.81 59 |
|
BH-untuned | | | 79.47 160 | 78.60 159 | 82.05 191 | 89.19 145 | 65.91 174 | 86.07 198 | 88.52 208 | 72.18 158 | 75.42 215 | 87.69 193 | 61.15 174 | 93.54 158 | 60.38 258 | 86.83 147 | 86.70 287 |
|
MVS_111021_HR | | | 85.14 66 | 84.75 72 | 86.32 65 | 91.65 86 | 72.70 31 | 85.98 199 | 90.33 150 | 76.11 83 | 82.08 100 | 91.61 94 | 71.36 58 | 94.17 128 | 81.02 80 | 92.58 78 | 92.08 126 |
|
jason | | | 81.39 118 | 80.29 126 | 84.70 102 | 86.63 221 | 69.90 95 | 85.95 200 | 86.77 240 | 63.24 284 | 81.07 117 | 89.47 147 | 61.08 176 | 92.15 212 | 78.33 104 | 90.07 110 | 92.05 128 |
jason: jason. |
test_0402 | | | 72.79 267 | 70.44 274 | 79.84 240 | 88.13 180 | 65.99 171 | 85.93 201 | 84.29 269 | 65.57 260 | 67.40 302 | 85.49 253 | 46.92 295 | 92.61 193 | 35.88 358 | 74.38 295 | 80.94 342 |
|
OurMVSNet-221017-0 | | | 74.26 249 | 72.42 256 | 79.80 241 | 83.76 263 | 59.59 273 | 85.92 202 | 86.64 241 | 66.39 250 | 66.96 305 | 87.58 195 | 39.46 335 | 91.60 227 | 65.76 217 | 69.27 326 | 88.22 251 |
|
hse-mvs2 | | | 81.72 109 | 80.94 115 | 84.07 124 | 88.72 163 | 67.68 144 | 85.87 203 | 87.26 233 | 76.02 85 | 84.67 63 | 88.22 182 | 61.54 163 | 93.48 161 | 82.71 67 | 73.44 305 | 91.06 154 |
|
EG-PatchMatch MVS | | | 74.04 252 | 71.82 261 | 80.71 223 | 84.92 245 | 67.42 148 | 85.86 204 | 88.08 215 | 66.04 254 | 64.22 328 | 83.85 276 | 35.10 349 | 92.56 195 | 57.44 285 | 80.83 214 | 82.16 336 |
|
AUN-MVS | | | 79.21 169 | 77.60 188 | 84.05 126 | 88.71 164 | 67.61 145 | 85.84 205 | 87.26 233 | 69.08 217 | 77.23 174 | 88.14 187 | 53.20 236 | 93.47 162 | 75.50 132 | 73.45 304 | 91.06 154 |
|
thres100view900 | | | 76.50 225 | 75.55 221 | 79.33 249 | 89.52 125 | 56.99 302 | 85.83 206 | 83.23 287 | 73.94 130 | 76.32 194 | 87.12 211 | 51.89 251 | 91.95 218 | 48.33 328 | 83.75 180 | 89.07 222 |
|
CLD-MVS | | | 82.31 99 | 81.65 105 | 84.29 117 | 88.47 171 | 67.73 143 | 85.81 207 | 92.35 80 | 75.78 89 | 78.33 151 | 86.58 230 | 64.01 126 | 94.35 117 | 76.05 124 | 87.48 138 | 90.79 163 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
SixPastTwentyTwo | | | 73.37 258 | 71.26 268 | 79.70 242 | 85.08 244 | 57.89 290 | 85.57 208 | 83.56 280 | 71.03 177 | 65.66 318 | 85.88 244 | 42.10 326 | 92.57 194 | 59.11 269 | 63.34 343 | 88.65 244 |
|
xiu_mvs_v1_base_debu | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 204 | 70.19 90 | 85.56 209 | 88.77 199 | 69.06 218 | 81.83 102 | 88.16 183 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 135 | 89.06 224 |
|
xiu_mvs_v1_base | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 204 | 70.19 90 | 85.56 209 | 88.77 199 | 69.06 218 | 81.83 102 | 88.16 183 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 135 | 89.06 224 |
|
xiu_mvs_v1_base_debi | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 204 | 70.19 90 | 85.56 209 | 88.77 199 | 69.06 218 | 81.83 102 | 88.16 183 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 135 | 89.06 224 |
|
V42 | | | 79.38 166 | 78.24 170 | 82.83 172 | 81.10 315 | 65.50 183 | 85.55 212 | 89.82 163 | 71.57 169 | 78.21 153 | 86.12 241 | 60.66 182 | 93.18 175 | 75.64 128 | 75.46 280 | 89.81 209 |
|
lupinMVS | | | 81.39 118 | 80.27 127 | 84.76 101 | 87.35 204 | 70.21 88 | 85.55 212 | 86.41 244 | 62.85 291 | 81.32 111 | 88.61 169 | 61.68 160 | 92.24 209 | 78.41 103 | 90.26 105 | 91.83 132 |
|
Fast-Effi-MVS+ | | | 80.81 129 | 79.92 130 | 83.47 142 | 88.85 154 | 64.51 199 | 85.53 214 | 89.39 174 | 70.79 181 | 78.49 147 | 85.06 263 | 67.54 92 | 93.58 154 | 67.03 208 | 86.58 150 | 92.32 116 |
|
thres600view7 | | | 76.50 225 | 75.44 223 | 79.68 243 | 89.40 130 | 57.16 299 | 85.53 214 | 83.23 287 | 73.79 134 | 76.26 195 | 87.09 212 | 51.89 251 | 91.89 221 | 48.05 333 | 83.72 183 | 90.00 198 |
|
DELS-MVS | | | 85.41 62 | 85.30 62 | 85.77 75 | 88.49 170 | 67.93 139 | 85.52 216 | 93.44 32 | 78.70 29 | 83.63 85 | 89.03 160 | 74.57 28 | 95.71 62 | 80.26 90 | 94.04 65 | 93.66 64 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
tfpn200view9 | | | 76.42 228 | 75.37 227 | 79.55 248 | 89.13 147 | 57.65 294 | 85.17 217 | 83.60 278 | 73.41 143 | 76.45 189 | 86.39 236 | 52.12 244 | 91.95 218 | 48.33 328 | 83.75 180 | 89.07 222 |
|
thres400 | | | 76.50 225 | 75.37 227 | 79.86 239 | 89.13 147 | 57.65 294 | 85.17 217 | 83.60 278 | 73.41 143 | 76.45 189 | 86.39 236 | 52.12 244 | 91.95 218 | 48.33 328 | 83.75 180 | 90.00 198 |
|
MVS_111021_LR | | | 82.61 97 | 82.11 96 | 84.11 121 | 88.82 157 | 71.58 59 | 85.15 219 | 86.16 249 | 74.69 113 | 80.47 123 | 91.04 110 | 62.29 152 | 90.55 254 | 80.33 89 | 90.08 109 | 90.20 185 |
|
baseline1 | | | 76.98 219 | 76.75 208 | 77.66 273 | 88.13 180 | 55.66 321 | 85.12 220 | 81.89 301 | 73.04 148 | 76.79 182 | 88.90 161 | 62.43 150 | 87.78 294 | 63.30 233 | 71.18 320 | 89.55 216 |
|
WR-MVS | | | 79.49 159 | 79.22 149 | 80.27 232 | 88.79 160 | 58.35 281 | 85.06 221 | 88.61 207 | 78.56 30 | 77.65 164 | 88.34 177 | 63.81 129 | 90.66 253 | 64.98 223 | 77.22 251 | 91.80 135 |
|
ET-MVSNet_ETH3D | | | 78.63 182 | 76.63 211 | 84.64 103 | 86.73 220 | 69.47 105 | 85.01 222 | 84.61 264 | 69.54 205 | 66.51 314 | 86.59 228 | 50.16 269 | 91.75 224 | 76.26 122 | 84.24 175 | 92.69 105 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 282 | 68.19 287 | 77.65 274 | 80.26 322 | 59.41 275 | 85.01 222 | 82.96 293 | 58.76 324 | 65.43 320 | 82.33 296 | 37.63 343 | 91.23 239 | 45.34 345 | 76.03 270 | 82.32 334 |
|
BH-RMVSNet | | | 79.61 155 | 78.44 163 | 83.14 158 | 89.38 132 | 65.93 173 | 84.95 224 | 87.15 235 | 73.56 138 | 78.19 154 | 89.79 136 | 56.67 212 | 93.36 166 | 59.53 265 | 86.74 148 | 90.13 188 |
|
BH-w/o | | | 78.21 192 | 77.33 194 | 80.84 220 | 88.81 158 | 65.13 191 | 84.87 225 | 87.85 222 | 69.75 202 | 74.52 235 | 84.74 267 | 61.34 169 | 93.11 179 | 58.24 279 | 85.84 162 | 84.27 317 |
|
TDRefinement | | | 67.49 301 | 64.34 310 | 76.92 284 | 73.47 358 | 61.07 257 | 84.86 226 | 82.98 292 | 59.77 315 | 58.30 348 | 85.13 261 | 26.06 359 | 87.89 292 | 47.92 334 | 60.59 348 | 81.81 338 |
|
Anonymous202405211 | | | 78.25 190 | 77.01 198 | 81.99 193 | 91.03 93 | 60.67 262 | 84.77 227 | 83.90 275 | 70.65 186 | 80.00 127 | 91.20 105 | 41.08 331 | 91.43 233 | 65.21 220 | 85.26 164 | 93.85 55 |
|
TAMVS | | | 78.89 178 | 77.51 190 | 83.03 164 | 87.80 191 | 67.79 142 | 84.72 228 | 85.05 260 | 67.63 235 | 76.75 184 | 87.70 192 | 62.25 153 | 90.82 249 | 58.53 276 | 87.13 142 | 90.49 175 |
|
1314 | | | 76.53 224 | 75.30 229 | 80.21 233 | 83.93 260 | 62.32 243 | 84.66 229 | 88.81 197 | 60.23 311 | 70.16 277 | 84.07 274 | 55.30 217 | 90.73 252 | 67.37 201 | 83.21 188 | 87.59 265 |
|
1121 | | | 80.84 126 | 79.77 133 | 84.05 126 | 93.11 60 | 70.78 79 | 84.66 229 | 85.42 256 | 57.37 334 | 81.76 109 | 92.02 83 | 63.41 131 | 94.12 129 | 67.28 202 | 92.93 72 | 87.26 273 |
|
MVS | | | 78.19 194 | 76.99 200 | 81.78 196 | 85.66 231 | 66.99 155 | 84.66 229 | 90.47 144 | 55.08 344 | 72.02 259 | 85.27 257 | 63.83 128 | 94.11 131 | 66.10 213 | 89.80 112 | 84.24 318 |
|
tfpnnormal | | | 74.39 247 | 73.16 250 | 78.08 267 | 86.10 226 | 58.05 285 | 84.65 232 | 87.53 227 | 70.32 190 | 71.22 266 | 85.63 250 | 54.97 218 | 89.86 262 | 43.03 349 | 75.02 289 | 86.32 291 |
|
TR-MVS | | | 77.44 211 | 76.18 216 | 81.20 212 | 88.24 178 | 63.24 229 | 84.61 233 | 86.40 245 | 67.55 237 | 77.81 161 | 86.48 234 | 54.10 228 | 93.15 176 | 57.75 283 | 82.72 196 | 87.20 274 |
|
AllTest | | | 70.96 278 | 68.09 290 | 79.58 246 | 85.15 240 | 63.62 216 | 84.58 234 | 79.83 322 | 62.31 297 | 60.32 342 | 86.73 217 | 32.02 354 | 88.96 280 | 50.28 318 | 71.57 318 | 86.15 295 |
|
EU-MVSNet | | | 68.53 298 | 67.61 298 | 71.31 324 | 78.51 339 | 47.01 357 | 84.47 235 | 84.27 270 | 42.27 356 | 66.44 315 | 84.79 266 | 40.44 333 | 83.76 320 | 58.76 274 | 68.54 331 | 83.17 327 |
|
VNet | | | 82.21 100 | 82.41 91 | 81.62 199 | 90.82 98 | 60.93 258 | 84.47 235 | 89.78 164 | 76.36 79 | 84.07 77 | 91.88 87 | 64.71 122 | 90.26 256 | 70.68 169 | 88.89 119 | 93.66 64 |
|
xiu_mvs_v2_base | | | 81.69 111 | 81.05 112 | 83.60 139 | 89.15 146 | 68.03 138 | 84.46 237 | 90.02 158 | 70.67 184 | 81.30 114 | 86.53 233 | 63.17 137 | 94.19 126 | 75.60 130 | 88.54 125 | 88.57 246 |
|
VPNet | | | 78.69 181 | 78.66 158 | 78.76 257 | 88.31 177 | 55.72 320 | 84.45 238 | 86.63 242 | 76.79 66 | 78.26 152 | 90.55 120 | 59.30 191 | 89.70 266 | 66.63 209 | 77.05 253 | 90.88 161 |
|
PVSNet_Blended | | | 80.98 123 | 80.34 124 | 82.90 170 | 88.85 154 | 65.40 184 | 84.43 239 | 92.00 97 | 67.62 236 | 78.11 156 | 85.05 264 | 66.02 109 | 94.27 120 | 71.52 161 | 89.50 114 | 89.01 229 |
|
MVP-Stereo | | | 76.12 232 | 74.46 238 | 81.13 215 | 85.37 237 | 69.79 97 | 84.42 240 | 87.95 218 | 65.03 266 | 67.46 300 | 85.33 256 | 53.28 235 | 91.73 226 | 58.01 281 | 83.27 187 | 81.85 337 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CDS-MVSNet | | | 79.07 173 | 77.70 185 | 83.17 157 | 87.60 198 | 68.23 134 | 84.40 241 | 86.20 248 | 67.49 238 | 76.36 193 | 86.54 232 | 61.54 163 | 90.79 250 | 61.86 247 | 87.33 139 | 90.49 175 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
K. test v3 | | | 71.19 276 | 68.51 284 | 79.21 252 | 83.04 279 | 57.78 293 | 84.35 242 | 76.91 339 | 72.90 151 | 62.99 335 | 82.86 290 | 39.27 336 | 91.09 245 | 61.65 249 | 52.66 356 | 88.75 241 |
|
PS-MVSNAJ | | | 81.69 111 | 81.02 113 | 83.70 138 | 89.51 126 | 68.21 135 | 84.28 243 | 90.09 157 | 70.79 181 | 81.26 115 | 85.62 251 | 63.15 138 | 94.29 118 | 75.62 129 | 88.87 120 | 88.59 245 |
|
test222 | | | | | | 91.50 88 | 68.26 133 | 84.16 244 | 83.20 289 | 54.63 345 | 79.74 128 | 91.63 93 | 58.97 193 | | | 91.42 91 | 86.77 285 |
|
testdata1 | | | | | | | | 84.14 245 | | 75.71 90 | | | | | | | |
|
MVS_0304 | | | 72.48 268 | 70.89 271 | 77.24 281 | 82.20 297 | 59.68 271 | 84.11 246 | 83.49 282 | 67.10 240 | 66.87 307 | 80.59 313 | 35.00 350 | 87.40 296 | 59.07 270 | 79.58 227 | 84.63 315 |
|
c3_l | | | 78.75 179 | 77.91 176 | 81.26 210 | 82.89 284 | 61.56 253 | 84.09 247 | 89.13 187 | 69.97 196 | 75.56 209 | 84.29 271 | 66.36 103 | 92.09 214 | 73.47 147 | 75.48 278 | 90.12 189 |
|
MVSTER | | | 79.01 174 | 77.88 178 | 82.38 186 | 83.07 277 | 64.80 195 | 84.08 248 | 88.95 195 | 69.01 221 | 78.69 141 | 87.17 210 | 54.70 223 | 92.43 199 | 74.69 135 | 80.57 219 | 89.89 205 |
|
ab-mvs | | | 79.51 158 | 78.97 154 | 81.14 214 | 88.46 172 | 60.91 259 | 83.84 249 | 89.24 181 | 70.36 189 | 79.03 135 | 88.87 163 | 63.23 136 | 90.21 258 | 65.12 221 | 82.57 198 | 92.28 119 |
|
PAPM | | | 77.68 208 | 76.40 214 | 81.51 202 | 87.29 210 | 61.85 249 | 83.78 250 | 89.59 170 | 64.74 269 | 71.23 265 | 88.70 165 | 62.59 146 | 93.66 153 | 52.66 307 | 87.03 144 | 89.01 229 |
|
diffmvs | | | 82.10 101 | 81.88 103 | 82.76 180 | 83.00 280 | 63.78 215 | 83.68 251 | 89.76 165 | 72.94 150 | 82.02 101 | 89.85 135 | 65.96 111 | 90.79 250 | 82.38 73 | 87.30 140 | 93.71 63 |
|
miper_ehance_all_eth | | | 78.59 184 | 77.76 183 | 81.08 216 | 82.66 289 | 61.56 253 | 83.65 252 | 89.15 185 | 68.87 224 | 75.55 210 | 83.79 279 | 66.49 101 | 92.03 215 | 73.25 150 | 76.39 265 | 89.64 213 |
|
1112_ss | | | 77.40 213 | 76.43 213 | 80.32 231 | 89.11 151 | 60.41 267 | 83.65 252 | 87.72 224 | 62.13 299 | 73.05 247 | 86.72 219 | 62.58 147 | 89.97 261 | 62.11 245 | 80.80 215 | 90.59 172 |
|
PCF-MVS | | 73.52 7 | 80.38 142 | 78.84 156 | 85.01 89 | 87.71 195 | 68.99 113 | 83.65 252 | 91.46 121 | 63.00 288 | 77.77 163 | 90.28 123 | 66.10 106 | 95.09 95 | 61.40 251 | 88.22 130 | 90.94 160 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
XVG-ACMP-BASELINE | | | 76.11 233 | 74.27 240 | 81.62 199 | 83.20 273 | 64.67 197 | 83.60 255 | 89.75 166 | 69.75 202 | 71.85 260 | 87.09 212 | 32.78 353 | 92.11 213 | 69.99 177 | 80.43 221 | 88.09 253 |
|
cl22 | | | 78.07 197 | 77.01 198 | 81.23 211 | 82.37 296 | 61.83 250 | 83.55 256 | 87.98 217 | 68.96 222 | 75.06 228 | 83.87 275 | 61.40 168 | 91.88 222 | 73.53 144 | 76.39 265 | 89.98 201 |
|
XVG-OURS-SEG-HR | | | 80.81 129 | 79.76 134 | 83.96 134 | 85.60 233 | 68.78 117 | 83.54 257 | 90.50 143 | 70.66 185 | 76.71 185 | 91.66 90 | 60.69 181 | 91.26 237 | 76.94 118 | 81.58 207 | 91.83 132 |
|
IB-MVS | | 68.01 15 | 75.85 236 | 73.36 248 | 83.31 148 | 84.76 246 | 66.03 169 | 83.38 258 | 85.06 259 | 70.21 193 | 69.40 287 | 81.05 307 | 45.76 305 | 94.66 111 | 65.10 222 | 75.49 277 | 89.25 221 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HY-MVS | | 69.67 12 | 77.95 201 | 77.15 196 | 80.36 229 | 87.57 202 | 60.21 269 | 83.37 259 | 87.78 223 | 66.11 252 | 75.37 217 | 87.06 214 | 63.27 134 | 90.48 255 | 61.38 252 | 82.43 199 | 90.40 179 |
|
Anonymous20240521 | | | 68.80 295 | 67.22 301 | 73.55 310 | 74.33 353 | 54.11 329 | 83.18 260 | 85.61 254 | 58.15 327 | 61.68 338 | 80.94 310 | 30.71 357 | 81.27 332 | 57.00 290 | 73.34 307 | 85.28 306 |
|
eth_miper_zixun_eth | | | 77.92 202 | 76.69 209 | 81.61 201 | 83.00 280 | 61.98 247 | 83.15 261 | 89.20 183 | 69.52 206 | 74.86 232 | 84.35 270 | 61.76 159 | 92.56 195 | 71.50 163 | 72.89 309 | 90.28 183 |
|
cl____ | | | 77.72 206 | 76.76 206 | 80.58 225 | 82.49 293 | 60.48 265 | 83.09 262 | 87.87 220 | 69.22 212 | 74.38 237 | 85.22 259 | 62.10 156 | 91.53 230 | 71.09 165 | 75.41 281 | 89.73 212 |
|
DIV-MVS_self_test | | | 77.72 206 | 76.76 206 | 80.58 225 | 82.48 294 | 60.48 265 | 83.09 262 | 87.86 221 | 69.22 212 | 74.38 237 | 85.24 258 | 62.10 156 | 91.53 230 | 71.09 165 | 75.40 282 | 89.74 211 |
|
thres200 | | | 75.55 239 | 74.47 237 | 78.82 256 | 87.78 194 | 57.85 291 | 83.07 264 | 83.51 281 | 72.44 154 | 75.84 206 | 84.42 269 | 52.08 246 | 91.75 224 | 47.41 335 | 83.64 184 | 86.86 283 |
|
XVG-OURS | | | 80.41 141 | 79.23 148 | 83.97 133 | 85.64 232 | 69.02 111 | 83.03 265 | 90.39 145 | 71.09 176 | 77.63 165 | 91.49 98 | 54.62 225 | 91.35 235 | 75.71 127 | 83.47 185 | 91.54 139 |
|
miper_enhance_ethall | | | 77.87 204 | 76.86 202 | 80.92 219 | 81.65 303 | 61.38 255 | 82.68 266 | 88.98 192 | 65.52 261 | 75.47 211 | 82.30 297 | 65.76 113 | 92.00 217 | 72.95 153 | 76.39 265 | 89.39 218 |
|
mvs_anonymous | | | 79.42 163 | 79.11 151 | 80.34 230 | 84.45 251 | 57.97 288 | 82.59 267 | 87.62 225 | 67.40 239 | 76.17 200 | 88.56 172 | 68.47 85 | 89.59 267 | 70.65 170 | 86.05 158 | 93.47 77 |
|
baseline2 | | | 75.70 237 | 73.83 245 | 81.30 209 | 83.26 271 | 61.79 251 | 82.57 268 | 80.65 312 | 66.81 241 | 66.88 306 | 83.42 284 | 57.86 200 | 92.19 210 | 63.47 230 | 79.57 228 | 89.91 203 |
|
DWT-MVSNet_test | | | 73.70 255 | 71.86 260 | 79.21 252 | 82.91 283 | 58.94 276 | 82.34 269 | 82.17 298 | 65.21 262 | 71.05 268 | 78.31 331 | 44.21 313 | 90.17 259 | 63.29 234 | 77.28 249 | 88.53 247 |
|
cascas | | | 76.72 223 | 74.64 233 | 82.99 166 | 85.78 230 | 65.88 175 | 82.33 270 | 89.21 182 | 60.85 307 | 72.74 249 | 81.02 308 | 47.28 293 | 93.75 149 | 67.48 200 | 85.02 165 | 89.34 219 |
|
RPSCF | | | 73.23 262 | 71.46 263 | 78.54 261 | 82.50 292 | 59.85 270 | 82.18 271 | 82.84 294 | 58.96 322 | 71.15 267 | 89.41 153 | 45.48 308 | 84.77 315 | 58.82 273 | 71.83 316 | 91.02 158 |
|
thisisatest0515 | | | 77.33 214 | 75.38 226 | 83.18 156 | 85.27 238 | 63.80 214 | 82.11 272 | 83.27 286 | 65.06 265 | 75.91 203 | 83.84 277 | 49.54 276 | 94.27 120 | 67.24 204 | 86.19 156 | 91.48 143 |
|
pmmvs-eth3d | | | 70.50 283 | 67.83 294 | 78.52 262 | 77.37 343 | 66.18 168 | 81.82 273 | 81.51 305 | 58.90 323 | 63.90 331 | 80.42 315 | 42.69 321 | 86.28 304 | 58.56 275 | 65.30 339 | 83.11 329 |
|
MS-PatchMatch | | | 73.83 254 | 72.67 253 | 77.30 280 | 83.87 261 | 66.02 170 | 81.82 273 | 84.66 263 | 61.37 305 | 68.61 293 | 82.82 291 | 47.29 292 | 88.21 288 | 59.27 266 | 84.32 174 | 77.68 351 |
|
pmmvs5 | | | 71.55 274 | 70.20 277 | 75.61 293 | 77.83 340 | 56.39 312 | 81.74 275 | 80.89 308 | 57.76 330 | 67.46 300 | 84.49 268 | 49.26 281 | 85.32 311 | 57.08 289 | 75.29 286 | 85.11 310 |
|
Test_1112_low_res | | | 76.40 229 | 75.44 223 | 79.27 250 | 89.28 140 | 58.09 284 | 81.69 276 | 87.07 236 | 59.53 318 | 72.48 253 | 86.67 225 | 61.30 170 | 89.33 271 | 60.81 257 | 80.15 224 | 90.41 178 |
|
IterMVS | | | 74.29 248 | 72.94 252 | 78.35 264 | 81.53 306 | 63.49 222 | 81.58 277 | 82.49 296 | 68.06 234 | 69.99 280 | 83.69 281 | 51.66 255 | 85.54 308 | 65.85 216 | 71.64 317 | 86.01 299 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 75.43 241 | 73.87 244 | 80.11 235 | 82.69 288 | 64.85 194 | 81.57 278 | 83.47 283 | 69.16 215 | 70.49 271 | 84.15 273 | 51.95 249 | 88.15 289 | 69.23 184 | 72.14 314 | 87.34 270 |
|
pmmvs4 | | | 74.03 253 | 71.91 259 | 80.39 228 | 81.96 300 | 68.32 131 | 81.45 279 | 82.14 299 | 59.32 319 | 69.87 283 | 85.13 261 | 52.40 240 | 88.13 290 | 60.21 260 | 74.74 292 | 84.73 314 |
|
GA-MVS | | | 76.87 221 | 75.17 230 | 81.97 194 | 82.75 286 | 62.58 239 | 81.44 280 | 86.35 247 | 72.16 160 | 74.74 233 | 82.89 289 | 46.20 301 | 92.02 216 | 68.85 190 | 81.09 211 | 91.30 148 |
|
bset_n11_16_dypcd | | | 77.12 216 | 75.47 222 | 82.06 190 | 81.12 314 | 65.99 171 | 81.37 281 | 83.20 289 | 69.94 197 | 76.09 202 | 83.38 285 | 47.75 290 | 92.26 207 | 78.51 99 | 77.91 244 | 87.95 254 |
|
CostFormer | | | 75.24 244 | 73.90 243 | 79.27 250 | 82.65 290 | 58.27 283 | 80.80 282 | 82.73 295 | 61.57 302 | 75.33 221 | 83.13 287 | 55.52 215 | 91.07 246 | 64.98 223 | 78.34 242 | 88.45 248 |
|
MIMVSNet1 | | | 68.58 297 | 66.78 304 | 73.98 309 | 80.07 325 | 51.82 341 | 80.77 283 | 84.37 266 | 64.40 273 | 59.75 345 | 82.16 300 | 36.47 345 | 83.63 322 | 42.73 350 | 70.33 323 | 86.48 290 |
|
CL-MVSNet_self_test | | | 72.37 271 | 71.46 263 | 75.09 299 | 79.49 334 | 53.53 333 | 80.76 284 | 85.01 261 | 69.12 216 | 70.51 270 | 82.05 301 | 57.92 199 | 84.13 318 | 52.27 308 | 66.00 337 | 87.60 263 |
|
MSDG | | | 73.36 260 | 70.99 269 | 80.49 227 | 84.51 250 | 65.80 176 | 80.71 285 | 86.13 250 | 65.70 258 | 65.46 319 | 83.74 280 | 44.60 310 | 90.91 248 | 51.13 313 | 76.89 256 | 84.74 313 |
|
tpm2 | | | 73.26 261 | 71.46 263 | 78.63 258 | 83.34 269 | 56.71 307 | 80.65 286 | 80.40 317 | 56.63 338 | 73.55 241 | 82.02 302 | 51.80 253 | 91.24 238 | 56.35 294 | 78.42 241 | 87.95 254 |
|
XXY-MVS | | | 75.41 242 | 75.56 220 | 74.96 300 | 83.59 265 | 57.82 292 | 80.59 287 | 83.87 276 | 66.54 249 | 74.93 231 | 88.31 178 | 63.24 135 | 80.09 336 | 62.16 243 | 76.85 258 | 86.97 281 |
|
HyFIR lowres test | | | 77.53 210 | 75.40 225 | 83.94 135 | 89.59 122 | 66.62 161 | 80.36 288 | 88.64 206 | 56.29 340 | 76.45 189 | 85.17 260 | 57.64 202 | 93.28 168 | 61.34 253 | 83.10 191 | 91.91 130 |
|
D2MVS | | | 74.82 245 | 73.21 249 | 79.64 245 | 79.81 328 | 62.56 240 | 80.34 289 | 87.35 231 | 64.37 274 | 68.86 290 | 82.66 293 | 46.37 298 | 90.10 260 | 67.91 196 | 81.24 210 | 86.25 292 |
|
TinyColmap | | | 67.30 304 | 64.81 308 | 74.76 303 | 81.92 301 | 56.68 308 | 80.29 290 | 81.49 306 | 60.33 309 | 56.27 354 | 83.22 286 | 24.77 360 | 87.66 295 | 45.52 343 | 69.47 325 | 79.95 346 |
|
LCM-MVSNet-Re | | | 77.05 217 | 76.94 201 | 77.36 278 | 87.20 211 | 51.60 343 | 80.06 291 | 80.46 316 | 75.20 102 | 67.69 298 | 86.72 219 | 62.48 148 | 88.98 278 | 63.44 231 | 89.25 117 | 91.51 140 |
|
FMVSNet5 | | | 69.50 290 | 67.96 291 | 74.15 308 | 82.97 282 | 55.35 322 | 80.01 292 | 82.12 300 | 62.56 295 | 63.02 333 | 81.53 304 | 36.92 344 | 81.92 329 | 48.42 327 | 74.06 297 | 85.17 309 |
|
SCA | | | 74.22 250 | 72.33 257 | 79.91 238 | 84.05 258 | 62.17 245 | 79.96 293 | 79.29 326 | 66.30 251 | 72.38 255 | 80.13 317 | 51.95 249 | 88.60 284 | 59.25 267 | 77.67 247 | 88.96 233 |
|
tpmrst | | | 72.39 269 | 72.13 258 | 73.18 315 | 80.54 320 | 49.91 351 | 79.91 294 | 79.08 327 | 63.11 286 | 71.69 262 | 79.95 319 | 55.32 216 | 82.77 327 | 65.66 218 | 73.89 299 | 86.87 282 |
|
PatchmatchNet |  | | 73.12 263 | 71.33 266 | 78.49 263 | 83.18 274 | 60.85 260 | 79.63 295 | 78.57 328 | 64.13 276 | 71.73 261 | 79.81 322 | 51.20 258 | 85.97 306 | 57.40 286 | 76.36 268 | 88.66 243 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 72.38 270 | 70.90 270 | 76.80 286 | 88.60 167 | 67.38 150 | 79.53 296 | 76.17 341 | 62.75 293 | 69.36 288 | 82.00 303 | 45.51 307 | 84.89 314 | 53.62 303 | 80.58 218 | 78.12 350 |
|
CMPMVS |  | 51.72 21 | 70.19 286 | 68.16 288 | 76.28 288 | 73.15 360 | 57.55 296 | 79.47 297 | 83.92 274 | 48.02 354 | 56.48 353 | 84.81 265 | 43.13 318 | 86.42 303 | 62.67 239 | 81.81 206 | 84.89 311 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
GG-mvs-BLEND | | | | | 75.38 297 | 81.59 305 | 55.80 319 | 79.32 298 | 69.63 356 | | 67.19 303 | 73.67 348 | 43.24 317 | 88.90 282 | 50.41 315 | 84.50 171 | 81.45 339 |
|
LTVRE_ROB | | 69.57 13 | 76.25 231 | 74.54 236 | 81.41 204 | 88.60 167 | 64.38 205 | 79.24 299 | 89.12 188 | 70.76 183 | 69.79 285 | 87.86 190 | 49.09 282 | 93.20 172 | 56.21 295 | 80.16 223 | 86.65 288 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
tpm | | | 72.37 271 | 71.71 262 | 74.35 306 | 82.19 298 | 52.00 340 | 79.22 300 | 77.29 336 | 64.56 271 | 72.95 248 | 83.68 282 | 51.35 256 | 83.26 325 | 58.33 278 | 75.80 272 | 87.81 259 |
|
ppachtmachnet_test | | | 70.04 287 | 67.34 300 | 78.14 266 | 79.80 329 | 61.13 256 | 79.19 301 | 80.59 313 | 59.16 321 | 65.27 321 | 79.29 323 | 46.75 297 | 87.29 297 | 49.33 324 | 66.72 333 | 86.00 301 |
|
USDC | | | 70.33 284 | 68.37 285 | 76.21 289 | 80.60 319 | 56.23 315 | 79.19 301 | 86.49 243 | 60.89 306 | 61.29 339 | 85.47 254 | 31.78 356 | 89.47 270 | 53.37 304 | 76.21 269 | 82.94 333 |
|
PM-MVS | | | 66.41 309 | 64.14 311 | 73.20 314 | 73.92 355 | 56.45 310 | 78.97 303 | 64.96 365 | 63.88 283 | 64.72 325 | 80.24 316 | 19.84 364 | 83.44 323 | 66.24 210 | 64.52 341 | 79.71 347 |
|
tpmvs | | | 71.09 277 | 69.29 280 | 76.49 287 | 82.04 299 | 56.04 317 | 78.92 304 | 81.37 307 | 64.05 279 | 67.18 304 | 78.28 332 | 49.74 275 | 89.77 263 | 49.67 323 | 72.37 311 | 83.67 323 |
|
test_post1 | | | | | | | | 78.90 305 | | | | 5.43 371 | 48.81 287 | 85.44 310 | 59.25 267 | | |
|
CHOSEN 1792x2688 | | | 77.63 209 | 75.69 218 | 83.44 143 | 89.98 116 | 68.58 128 | 78.70 306 | 87.50 228 | 56.38 339 | 75.80 207 | 86.84 215 | 58.67 194 | 91.40 234 | 61.58 250 | 85.75 163 | 90.34 181 |
|
test-LLR | | | 72.94 266 | 72.43 255 | 74.48 304 | 81.35 310 | 58.04 286 | 78.38 307 | 77.46 333 | 66.66 245 | 69.95 281 | 79.00 326 | 48.06 288 | 79.24 337 | 66.13 211 | 84.83 167 | 86.15 295 |
|
TESTMET0.1,1 | | | 69.89 289 | 69.00 282 | 72.55 316 | 79.27 337 | 56.85 303 | 78.38 307 | 74.71 347 | 57.64 331 | 68.09 295 | 77.19 339 | 37.75 342 | 76.70 348 | 63.92 228 | 84.09 176 | 84.10 321 |
|
test-mter | | | 71.41 275 | 70.39 276 | 74.48 304 | 81.35 310 | 58.04 286 | 78.38 307 | 77.46 333 | 60.32 310 | 69.95 281 | 79.00 326 | 36.08 347 | 79.24 337 | 66.13 211 | 84.83 167 | 86.15 295 |
|
Anonymous20231206 | | | 68.60 296 | 67.80 295 | 71.02 325 | 80.23 323 | 50.75 349 | 78.30 310 | 80.47 315 | 56.79 337 | 66.11 317 | 82.63 294 | 46.35 299 | 78.95 339 | 43.62 348 | 75.70 273 | 83.36 326 |
|
tpm cat1 | | | 70.57 281 | 68.31 286 | 77.35 279 | 82.41 295 | 57.95 289 | 78.08 311 | 80.22 320 | 52.04 350 | 68.54 294 | 77.66 337 | 52.00 248 | 87.84 293 | 51.77 309 | 72.07 315 | 86.25 292 |
|
our_test_3 | | | 69.14 292 | 67.00 302 | 75.57 294 | 79.80 329 | 58.80 278 | 77.96 312 | 77.81 331 | 59.55 317 | 62.90 336 | 78.25 333 | 47.43 291 | 83.97 319 | 51.71 310 | 67.58 332 | 83.93 322 |
|
KD-MVS_self_test | | | 68.81 294 | 67.59 299 | 72.46 317 | 74.29 354 | 45.45 358 | 77.93 313 | 87.00 237 | 63.12 285 | 63.99 330 | 78.99 328 | 42.32 323 | 84.77 315 | 56.55 293 | 64.09 342 | 87.16 277 |
|
WTY-MVS | | | 75.65 238 | 75.68 219 | 75.57 294 | 86.40 223 | 56.82 304 | 77.92 314 | 82.40 297 | 65.10 264 | 76.18 198 | 87.72 191 | 63.13 141 | 80.90 333 | 60.31 259 | 81.96 203 | 89.00 231 |
|
test20.03 | | | 67.45 302 | 66.95 303 | 68.94 331 | 75.48 350 | 44.84 360 | 77.50 315 | 77.67 332 | 66.66 245 | 63.01 334 | 83.80 278 | 47.02 294 | 78.40 341 | 42.53 351 | 68.86 330 | 83.58 324 |
|
EPMVS | | | 69.02 293 | 68.16 288 | 71.59 319 | 79.61 332 | 49.80 353 | 77.40 316 | 66.93 361 | 62.82 292 | 70.01 278 | 79.05 324 | 45.79 304 | 77.86 345 | 56.58 292 | 75.26 287 | 87.13 278 |
|
gg-mvs-nofinetune | | | 69.95 288 | 67.96 291 | 75.94 290 | 83.07 277 | 54.51 327 | 77.23 317 | 70.29 354 | 63.11 286 | 70.32 273 | 62.33 355 | 43.62 316 | 88.69 283 | 53.88 302 | 87.76 132 | 84.62 316 |
|
MDTV_nov1_ep13 | | | | 69.97 278 | | 83.18 274 | 53.48 334 | 77.10 318 | 80.18 321 | 60.45 308 | 69.33 289 | 80.44 314 | 48.89 286 | 86.90 299 | 51.60 311 | 78.51 239 | |
|
LF4IMVS | | | 64.02 318 | 62.19 321 | 69.50 330 | 70.90 362 | 53.29 338 | 76.13 319 | 77.18 337 | 52.65 349 | 58.59 346 | 80.98 309 | 23.55 361 | 76.52 349 | 53.06 306 | 66.66 334 | 78.68 349 |
|
sss | | | 73.60 256 | 73.64 246 | 73.51 311 | 82.80 285 | 55.01 323 | 76.12 320 | 81.69 304 | 62.47 296 | 74.68 234 | 85.85 246 | 57.32 206 | 78.11 343 | 60.86 256 | 80.93 212 | 87.39 268 |
|
testgi | | | 66.67 307 | 66.53 305 | 67.08 337 | 75.62 349 | 41.69 364 | 75.93 321 | 76.50 340 | 66.11 252 | 65.20 324 | 86.59 228 | 35.72 348 | 74.71 356 | 43.71 347 | 73.38 306 | 84.84 312 |
|
CR-MVSNet | | | 73.37 258 | 71.27 267 | 79.67 244 | 81.32 312 | 65.19 189 | 75.92 322 | 80.30 318 | 59.92 314 | 72.73 250 | 81.19 305 | 52.50 238 | 86.69 300 | 59.84 262 | 77.71 245 | 87.11 279 |
|
RPMNet | | | 73.51 257 | 70.49 273 | 82.58 183 | 81.32 312 | 65.19 189 | 75.92 322 | 92.27 83 | 57.60 332 | 72.73 250 | 76.45 342 | 52.30 241 | 95.43 75 | 48.14 332 | 77.71 245 | 87.11 279 |
|
MIMVSNet | | | 70.69 280 | 69.30 279 | 74.88 301 | 84.52 249 | 56.35 314 | 75.87 324 | 79.42 325 | 64.59 270 | 67.76 296 | 82.41 295 | 41.10 330 | 81.54 331 | 46.64 339 | 81.34 208 | 86.75 286 |
|
test0.0.03 1 | | | 68.00 300 | 67.69 297 | 68.90 332 | 77.55 341 | 47.43 355 | 75.70 325 | 72.95 351 | 66.66 245 | 66.56 310 | 82.29 298 | 48.06 288 | 75.87 352 | 44.97 346 | 74.51 294 | 83.41 325 |
|
PMMVS | | | 69.34 291 | 68.67 283 | 71.35 323 | 75.67 348 | 62.03 246 | 75.17 326 | 73.46 349 | 50.00 353 | 68.68 291 | 79.05 324 | 52.07 247 | 78.13 342 | 61.16 254 | 82.77 194 | 73.90 354 |
|
UnsupCasMVSNet_eth | | | 67.33 303 | 65.99 306 | 71.37 321 | 73.48 357 | 51.47 345 | 75.16 327 | 85.19 258 | 65.20 263 | 60.78 341 | 80.93 312 | 42.35 322 | 77.20 347 | 57.12 288 | 53.69 355 | 85.44 304 |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 366 | 75.16 327 | | 55.10 343 | 66.53 311 | | 49.34 279 | | 53.98 301 | | 87.94 256 |
|
pmmvs3 | | | 57.79 323 | 54.26 327 | 68.37 335 | 64.02 366 | 56.72 306 | 75.12 329 | 65.17 363 | 40.20 358 | 52.93 357 | 69.86 353 | 20.36 363 | 75.48 354 | 45.45 344 | 55.25 354 | 72.90 355 |
|
dp | | | 66.80 305 | 65.43 307 | 70.90 326 | 79.74 331 | 48.82 354 | 75.12 329 | 74.77 345 | 59.61 316 | 64.08 329 | 77.23 338 | 42.89 319 | 80.72 334 | 48.86 326 | 66.58 335 | 83.16 328 |
|
Patchmtry | | | 70.74 279 | 69.16 281 | 75.49 296 | 80.72 317 | 54.07 330 | 74.94 331 | 80.30 318 | 58.34 326 | 70.01 278 | 81.19 305 | 52.50 238 | 86.54 301 | 53.37 304 | 71.09 321 | 85.87 302 |
|
PVSNet | | 64.34 18 | 72.08 273 | 70.87 272 | 75.69 292 | 86.21 225 | 56.44 311 | 74.37 332 | 80.73 311 | 62.06 300 | 70.17 276 | 82.23 299 | 42.86 320 | 83.31 324 | 54.77 299 | 84.45 173 | 87.32 271 |
|
MDA-MVSNet-bldmvs | | | 66.68 306 | 63.66 314 | 75.75 291 | 79.28 336 | 60.56 264 | 73.92 333 | 78.35 329 | 64.43 272 | 50.13 359 | 79.87 321 | 44.02 315 | 83.67 321 | 46.10 341 | 56.86 351 | 83.03 331 |
|
UnsupCasMVSNet_bld | | | 63.70 319 | 61.53 323 | 70.21 328 | 73.69 356 | 51.39 346 | 72.82 334 | 81.89 301 | 55.63 342 | 57.81 349 | 71.80 351 | 38.67 338 | 78.61 340 | 49.26 325 | 52.21 357 | 80.63 343 |
|
PatchT | | | 68.46 299 | 67.85 293 | 70.29 327 | 80.70 318 | 43.93 361 | 72.47 335 | 74.88 344 | 60.15 312 | 70.55 269 | 76.57 341 | 49.94 272 | 81.59 330 | 50.58 314 | 74.83 291 | 85.34 305 |
|
miper_lstm_enhance | | | 74.11 251 | 73.11 251 | 77.13 283 | 80.11 324 | 59.62 272 | 72.23 336 | 86.92 239 | 66.76 243 | 70.40 272 | 82.92 288 | 56.93 211 | 82.92 326 | 69.06 187 | 72.63 310 | 88.87 236 |
|
MVS-HIRNet | | | 59.14 322 | 57.67 325 | 63.57 339 | 81.65 303 | 43.50 362 | 71.73 337 | 65.06 364 | 39.59 360 | 51.43 358 | 57.73 359 | 38.34 340 | 82.58 328 | 39.53 355 | 73.95 298 | 64.62 359 |
|
Patchmatch-RL test | | | 70.24 285 | 67.78 296 | 77.61 275 | 77.43 342 | 59.57 274 | 71.16 338 | 70.33 353 | 62.94 290 | 68.65 292 | 72.77 349 | 50.62 264 | 85.49 309 | 69.58 182 | 66.58 335 | 87.77 260 |
|
test123 | | | 6.12 341 | 8.11 344 | 0.14 355 | 0.06 379 | 0.09 379 | 71.05 339 | 0.03 380 | 0.04 374 | 0.25 375 | 1.30 374 | 0.05 378 | 0.03 375 | 0.21 373 | 0.01 373 | 0.29 370 |
|
ANet_high | | | 50.57 329 | 46.10 332 | 63.99 338 | 48.67 372 | 39.13 365 | 70.99 340 | 80.85 309 | 61.39 304 | 31.18 364 | 57.70 360 | 17.02 366 | 73.65 360 | 31.22 360 | 15.89 369 | 79.18 348 |
|
KD-MVS_2432*1600 | | | 66.22 311 | 63.89 312 | 73.21 312 | 75.47 351 | 53.42 335 | 70.76 341 | 84.35 267 | 64.10 277 | 66.52 312 | 78.52 329 | 34.55 351 | 84.98 312 | 50.40 316 | 50.33 359 | 81.23 340 |
|
miper_refine_blended | | | 66.22 311 | 63.89 312 | 73.21 312 | 75.47 351 | 53.42 335 | 70.76 341 | 84.35 267 | 64.10 277 | 66.52 312 | 78.52 329 | 34.55 351 | 84.98 312 | 50.40 316 | 50.33 359 | 81.23 340 |
|
testmvs | | | 6.04 342 | 8.02 345 | 0.10 356 | 0.08 378 | 0.03 380 | 69.74 343 | 0.04 379 | 0.05 373 | 0.31 374 | 1.68 373 | 0.02 379 | 0.04 374 | 0.24 372 | 0.02 372 | 0.25 371 |
|
N_pmnet | | | 52.79 327 | 53.26 328 | 51.40 346 | 78.99 338 | 7.68 377 | 69.52 344 | 3.89 377 | 51.63 352 | 57.01 351 | 74.98 346 | 40.83 332 | 65.96 364 | 37.78 357 | 64.67 340 | 80.56 345 |
|
FPMVS | | | 53.68 326 | 51.64 329 | 59.81 342 | 65.08 365 | 51.03 347 | 69.48 345 | 69.58 357 | 41.46 357 | 40.67 361 | 72.32 350 | 16.46 367 | 70.00 362 | 24.24 364 | 65.42 338 | 58.40 361 |
|
DSMNet-mixed | | | 57.77 324 | 56.90 326 | 60.38 341 | 67.70 364 | 35.61 367 | 69.18 346 | 53.97 369 | 32.30 365 | 57.49 350 | 79.88 320 | 40.39 334 | 68.57 363 | 38.78 356 | 72.37 311 | 76.97 352 |
|
new-patchmatchnet | | | 61.73 320 | 61.73 322 | 61.70 340 | 72.74 361 | 24.50 374 | 69.16 347 | 78.03 330 | 61.40 303 | 56.72 352 | 75.53 345 | 38.42 339 | 76.48 350 | 45.95 342 | 57.67 350 | 84.13 320 |
|
YYNet1 | | | 65.03 314 | 62.91 318 | 71.38 320 | 75.85 347 | 56.60 309 | 69.12 348 | 74.66 348 | 57.28 335 | 54.12 355 | 77.87 335 | 45.85 303 | 74.48 357 | 49.95 321 | 61.52 346 | 83.05 330 |
|
MDA-MVSNet_test_wron | | | 65.03 314 | 62.92 317 | 71.37 321 | 75.93 346 | 56.73 305 | 69.09 349 | 74.73 346 | 57.28 335 | 54.03 356 | 77.89 334 | 45.88 302 | 74.39 358 | 49.89 322 | 61.55 345 | 82.99 332 |
|
PVSNet_0 | | 57.27 20 | 61.67 321 | 59.27 324 | 68.85 333 | 79.61 332 | 57.44 298 | 68.01 350 | 73.44 350 | 55.93 341 | 58.54 347 | 70.41 352 | 44.58 311 | 77.55 346 | 47.01 336 | 35.91 362 | 71.55 356 |
|
ADS-MVSNet2 | | | 66.20 313 | 63.33 315 | 74.82 302 | 79.92 326 | 58.75 279 | 67.55 351 | 75.19 343 | 53.37 347 | 65.25 322 | 75.86 343 | 42.32 323 | 80.53 335 | 41.57 352 | 68.91 328 | 85.18 307 |
|
ADS-MVSNet | | | 64.36 317 | 62.88 319 | 68.78 334 | 79.92 326 | 47.17 356 | 67.55 351 | 71.18 352 | 53.37 347 | 65.25 322 | 75.86 343 | 42.32 323 | 73.99 359 | 41.57 352 | 68.91 328 | 85.18 307 |
|
LCM-MVSNet | | | 54.25 325 | 49.68 331 | 67.97 336 | 53.73 369 | 45.28 359 | 66.85 353 | 80.78 310 | 35.96 362 | 39.45 362 | 62.23 357 | 8.70 373 | 78.06 344 | 48.24 331 | 51.20 358 | 80.57 344 |
|
JIA-IIPM | | | 66.32 310 | 62.82 320 | 76.82 285 | 77.09 344 | 61.72 252 | 65.34 354 | 75.38 342 | 58.04 329 | 64.51 326 | 62.32 356 | 42.05 327 | 86.51 302 | 51.45 312 | 69.22 327 | 82.21 335 |
|
PMVS |  | 37.38 22 | 44.16 331 | 40.28 334 | 55.82 343 | 40.82 374 | 42.54 363 | 65.12 355 | 63.99 366 | 34.43 363 | 24.48 366 | 57.12 361 | 3.92 375 | 76.17 351 | 17.10 367 | 55.52 353 | 48.75 362 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 50.91 328 | 50.29 330 | 52.78 345 | 68.58 363 | 34.94 369 | 63.71 356 | 56.63 368 | 39.73 359 | 44.95 360 | 65.47 354 | 21.93 362 | 58.48 365 | 34.98 359 | 56.62 352 | 64.92 358 |
|
Patchmatch-test | | | 64.82 316 | 63.24 316 | 69.57 329 | 79.42 335 | 49.82 352 | 63.49 357 | 69.05 359 | 51.98 351 | 59.95 344 | 80.13 317 | 50.91 260 | 70.98 361 | 40.66 354 | 73.57 302 | 87.90 257 |
|
ambc | | | | | 75.24 298 | 73.16 359 | 50.51 350 | 63.05 358 | 87.47 229 | | 64.28 327 | 77.81 336 | 17.80 365 | 89.73 265 | 57.88 282 | 60.64 347 | 85.49 303 |
|
CHOSEN 280x420 | | | 66.51 308 | 64.71 309 | 71.90 318 | 81.45 307 | 63.52 221 | 57.98 359 | 68.95 360 | 53.57 346 | 62.59 337 | 76.70 340 | 46.22 300 | 75.29 355 | 55.25 297 | 79.68 226 | 76.88 353 |
|
E-PMN | | | 31.77 333 | 30.64 336 | 35.15 350 | 52.87 370 | 27.67 371 | 57.09 360 | 47.86 371 | 24.64 366 | 16.40 371 | 33.05 366 | 11.23 370 | 54.90 367 | 14.46 369 | 18.15 367 | 22.87 366 |
|
EMVS | | | 30.81 335 | 29.65 337 | 34.27 351 | 50.96 371 | 25.95 373 | 56.58 361 | 46.80 372 | 24.01 367 | 15.53 372 | 30.68 367 | 12.47 369 | 54.43 368 | 12.81 370 | 17.05 368 | 22.43 367 |
|
PMMVS2 | | | 40.82 332 | 38.86 335 | 46.69 347 | 53.84 368 | 16.45 375 | 48.61 362 | 49.92 370 | 37.49 361 | 31.67 363 | 60.97 358 | 8.14 374 | 56.42 366 | 28.42 361 | 30.72 364 | 67.19 357 |
|
wuyk23d | | | 16.82 339 | 15.94 342 | 19.46 353 | 58.74 367 | 31.45 370 | 39.22 363 | 3.74 378 | 6.84 370 | 6.04 373 | 2.70 372 | 1.27 377 | 24.29 372 | 10.54 371 | 14.40 371 | 2.63 369 |
|
tmp_tt | | | 18.61 338 | 21.40 341 | 10.23 354 | 4.82 377 | 10.11 376 | 34.70 364 | 30.74 375 | 1.48 372 | 23.91 368 | 26.07 368 | 28.42 358 | 13.41 373 | 27.12 362 | 15.35 370 | 7.17 368 |
|
Gipuma |  | | 45.18 330 | 41.86 333 | 55.16 344 | 77.03 345 | 51.52 344 | 32.50 365 | 80.52 314 | 32.46 364 | 27.12 365 | 35.02 365 | 9.52 372 | 75.50 353 | 22.31 365 | 60.21 349 | 38.45 364 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE |  | 26.22 23 | 30.37 336 | 25.89 340 | 43.81 348 | 44.55 373 | 35.46 368 | 28.87 366 | 39.07 373 | 18.20 368 | 18.58 370 | 40.18 364 | 2.68 376 | 47.37 370 | 17.07 368 | 23.78 366 | 48.60 363 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 31.52 334 | 29.28 338 | 38.23 349 | 27.03 376 | 6.50 378 | 20.94 367 | 62.21 367 | 4.05 371 | 22.35 369 | 52.50 362 | 13.33 368 | 47.58 369 | 27.04 363 | 34.04 363 | 60.62 360 |
|
test_blank | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
uanet_test | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
cdsmvs_eth3d_5k | | | 19.96 337 | 26.61 339 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 89.26 180 | 0.00 375 | 0.00 376 | 88.61 169 | 61.62 162 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
pcd_1.5k_mvsjas | | | 5.26 343 | 7.02 346 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 63.15 138 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
sosnet-low-res | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
sosnet | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
uncertanet | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
Regformer | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
ab-mvs-re | | | 7.23 340 | 9.64 343 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 86.72 219 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
uanet | | | 0.00 344 | 0.00 347 | 0.00 357 | 0.00 380 | 0.00 381 | 0.00 368 | 0.00 381 | 0.00 375 | 0.00 376 | 0.00 375 | 0.00 380 | 0.00 376 | 0.00 374 | 0.00 374 | 0.00 372 |
|
MSC_two_6792asdad | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 28 |
|
PC_three_1452 | | | | | | | | | | 68.21 233 | 92.02 12 | 94.00 48 | 82.09 5 | 95.98 55 | 84.58 40 | 96.68 2 | 94.95 5 |
|
No_MVS | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 28 |
|
test_one_0601 | | | | | | 95.07 7 | 71.46 61 | | 94.14 7 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
eth-test2 | | | | | | 0.00 380 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 380 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 94.38 27 | 72.22 48 | | 92.67 67 | 70.98 178 | 87.75 31 | 94.07 45 | 74.01 38 | 96.70 26 | 84.66 39 | 94.84 48 | |
|
IU-MVS | | | | | | 95.30 2 | 71.25 63 | | 92.95 56 | 66.81 241 | 92.39 6 | | | | 88.94 11 | 96.63 4 | 94.85 13 |
|
test_241102_TWO | | | | | | | | | 94.06 12 | 77.24 51 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 9 | 96.58 6 | 94.26 37 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 70 | | 94.06 12 | 77.17 55 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 4 | 96.57 7 | 94.67 20 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 233 |
|
test_part2 | | | | | | 95.06 8 | 72.65 33 | | | | 91.80 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 257 | | | | 88.96 233 |
|
sam_mvs | | | | | | | | | | | | | 50.01 270 | | | | |
|
MTGPA |  | | | | | | | | 92.02 94 | | | | | | | | |
|
test_post | | | | | | | | | | | | 5.46 370 | 50.36 268 | 84.24 317 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 347 | 51.12 259 | 88.60 284 | | | |
|
gm-plane-assit | | | | | | 81.40 308 | 53.83 332 | | | 62.72 294 | | 80.94 310 | | 92.39 201 | 63.40 232 | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 33 | 95.70 31 | 92.87 100 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 63 | 95.45 33 | 92.70 103 |
|
agg_prior | | | | | | 92.85 66 | 71.94 54 | | 91.78 109 | | 84.41 69 | | | 94.93 98 | | | |
|
TestCases | | | | | 79.58 246 | 85.15 240 | 63.62 216 | | 79.83 322 | 62.31 297 | 60.32 342 | 86.73 217 | 32.02 354 | 88.96 280 | 50.28 318 | 71.57 318 | 86.15 295 |
|
test_prior | | | | | 86.33 63 | 92.61 74 | 69.59 101 | | 92.97 54 | | | | | 95.48 71 | | | 93.91 51 |
|
æ–°å‡ ä½•1 | | | | | 83.42 144 | 93.13 58 | 70.71 80 | | 85.48 255 | 57.43 333 | 81.80 105 | 91.98 84 | 63.28 133 | 92.27 206 | 64.60 226 | 92.99 71 | 87.27 272 |
|
旧先验1 | | | | | | 91.96 82 | 65.79 177 | | 86.37 246 | | | 93.08 69 | 69.31 79 | | | 92.74 75 | 88.74 242 |
|
原ACMM1 | | | | | 84.35 114 | 93.01 64 | 68.79 116 | | 92.44 75 | 63.96 282 | 81.09 116 | 91.57 95 | 66.06 108 | 95.45 73 | 67.19 205 | 94.82 51 | 88.81 239 |
|
testdata2 | | | | | | | | | | | | | | 91.01 247 | 62.37 241 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 43 | | | | |
|
testdata | | | | | 79.97 237 | 90.90 96 | 64.21 207 | | 84.71 262 | 59.27 320 | 85.40 48 | 92.91 70 | 62.02 158 | 89.08 276 | 68.95 188 | 91.37 92 | 86.63 289 |
|
test12 | | | | | 86.80 55 | 92.63 73 | 70.70 81 | | 91.79 108 | | 82.71 96 | | 71.67 55 | 96.16 47 | | 94.50 56 | 93.54 75 |
|
plane_prior7 | | | | | | 90.08 112 | 68.51 129 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 119 | 68.70 124 | | | | | | 60.42 186 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 75 | | | | | 95.38 80 | 78.71 97 | 86.32 154 | 91.33 146 |
|
plane_prior4 | | | | | | | | | | | | 91.00 113 | | | | | |
|
plane_prior3 | | | | | | | 68.60 127 | | | 78.44 31 | 78.92 138 | | | | | | |
|
plane_prior1 | | | | | | 89.90 118 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 381 | | | | | | | | |
|
nn | | | | | | | | | 0.00 381 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 355 | | | | | | | | |
|
lessismore_v0 | | | | | 78.97 254 | 81.01 316 | 57.15 300 | | 65.99 362 | | 61.16 340 | 82.82 291 | 39.12 337 | 91.34 236 | 59.67 263 | 46.92 361 | 88.43 249 |
|
LGP-MVS_train | | | | | 84.50 106 | 89.23 143 | 68.76 118 | | 91.94 101 | 75.37 98 | 76.64 187 | 91.51 96 | 54.29 226 | 94.91 100 | 78.44 101 | 83.78 178 | 89.83 207 |
|
test11 | | | | | | | | | 92.23 86 | | | | | | | | |
|
door | | | | | | | | | 69.44 358 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 156 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 111 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 173 | | | 95.11 91 | | | 91.03 156 |
|
HQP3-MVS | | | | | | | | | 92.19 89 | | | | | | | 85.99 160 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 189 | | | | |
|
NP-MVS | | | | | | 89.62 121 | 68.32 131 | | | | | 90.24 124 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 204 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 209 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 123 | | | | |
|
ITE_SJBPF | | | | | 78.22 265 | 81.77 302 | 60.57 263 | | 83.30 285 | 69.25 211 | 67.54 299 | 87.20 208 | 36.33 346 | 87.28 298 | 54.34 300 | 74.62 293 | 86.80 284 |
|
DeepMVS_CX |  | | | | 27.40 352 | 40.17 375 | 26.90 372 | | 24.59 376 | 17.44 369 | 23.95 367 | 48.61 363 | 9.77 371 | 26.48 371 | 18.06 366 | 24.47 365 | 28.83 365 |
|