This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 15096.40 6997.99 6990.99 6799.58 7195.61 6499.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8796.45 6898.30 4991.90 4599.85 1495.61 6499.68 499.54 29
HPM-MVS_fast96.51 5196.27 5497.22 6499.32 2392.74 8298.74 498.06 7390.57 17096.77 4998.35 3890.21 7999.53 8994.80 8899.63 1299.38 56
EPP-MVSNet95.22 8795.04 8595.76 12897.49 13589.56 18598.67 597.00 20790.69 16094.24 12497.62 9989.79 8698.81 16093.39 11896.49 15298.92 97
DROMVSNet96.25 5996.29 5396.13 11296.87 15991.35 12798.66 697.74 11893.91 5396.29 7297.43 11289.36 8798.59 18397.23 899.07 8198.45 133
3Dnovator91.36 595.19 8994.44 10297.44 5296.56 17693.36 6998.65 798.36 1694.12 4889.25 24598.06 6482.20 19899.77 2993.41 11799.32 5399.18 69
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5799.40 4599.62 13
X-MVStestdata91.71 19989.67 25897.81 3099.38 1494.03 5098.59 898.20 4294.85 2696.59 6032.69 36491.70 5099.80 2795.66 5799.40 4599.62 13
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 1098.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2299.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1198.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6299.59 1599.54 29
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1198.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6999.59 1599.64 10
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1198.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6299.59 1599.62 13
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1498.09 6393.27 7695.95 8898.33 4491.04 6699.88 495.20 7299.57 2099.60 16
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1598.18 4692.64 10596.39 7098.18 5891.61 5299.88 495.59 6799.55 2199.57 19
3Dnovator+91.43 495.40 8094.48 10098.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 26198.02 6783.69 16399.71 3893.18 12198.96 8799.44 47
IS-MVSNet94.90 9794.52 9896.05 11797.67 12690.56 15798.44 1796.22 25793.21 7793.99 12897.74 8785.55 14098.45 19489.98 17297.86 11599.14 73
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2599.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10598.34 4190.59 7599.88 494.83 8599.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM93.45 13992.27 16196.98 7496.77 16692.62 8798.39 2098.12 5684.50 30388.27 26797.77 8582.39 19599.81 2685.40 26598.81 9298.51 125
nrg03094.05 11993.31 12996.27 10795.22 24694.59 2898.34 2197.46 15492.93 9491.21 19396.64 15087.23 11998.22 20894.99 8185.80 28495.98 224
CPTT-MVS95.57 7895.19 8196.70 7799.27 2691.48 12298.33 2298.11 5987.79 24795.17 11198.03 6687.09 12099.61 6293.51 11399.42 4399.02 83
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
CSCG96.05 6495.91 6396.46 9399.24 2890.47 16198.30 2498.57 1189.01 20593.97 13097.57 10392.62 2899.76 3094.66 9199.27 6199.15 72
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10196.70 5298.06 6491.35 5999.86 894.83 8599.28 5999.47 44
canonicalmvs96.02 6595.45 7397.75 3797.59 13295.15 2198.28 2697.60 13794.52 4096.27 7496.12 18087.65 10999.18 12696.20 4194.82 17998.91 98
OpenMVScopyleft89.19 1292.86 16291.68 17896.40 9695.34 23592.73 8398.27 2798.12 5684.86 29885.78 30497.75 8678.89 25699.74 3187.50 23198.65 9796.73 203
Vis-MVSNetpermissive95.23 8694.81 8896.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11398.15 5982.28 19698.92 15191.45 15498.58 10099.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 7099.59 1599.56 22
ACMMPcopyleft96.27 5895.93 6297.28 5999.24 2892.62 8798.25 2998.81 392.99 8794.56 11898.39 3588.96 9199.85 1494.57 9497.63 12199.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GeoE93.89 12493.28 13095.72 13496.96 15789.75 18098.24 3296.92 21589.47 19392.12 17197.21 12184.42 15398.39 19987.71 22096.50 15199.01 87
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 11098.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
MVSFormer95.37 8195.16 8295.99 12196.34 19091.21 13398.22 3497.57 14191.42 13896.22 7597.32 11586.20 13297.92 25594.07 10099.05 8398.85 104
test_djsdf93.07 15192.76 14194.00 21293.49 31188.70 21698.22 3497.57 14191.42 13890.08 21895.55 21582.85 18397.92 25594.07 10091.58 22395.40 254
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18297.11 4498.01 6892.52 3299.69 4496.03 4899.53 2499.36 58
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10697.18 3898.29 5092.08 3999.83 2295.12 7599.59 1599.54 29
FC-MVSNet-test93.94 12393.57 11695.04 16695.48 22691.45 12598.12 4098.71 593.37 7290.23 20696.70 14587.66 10897.85 26191.49 15290.39 24395.83 230
FIs94.09 11793.70 11295.27 15895.70 21892.03 10798.10 4198.68 793.36 7490.39 20396.70 14587.63 11097.94 25292.25 13290.50 24295.84 229
Vis-MVSNet (Re-imp)94.15 11293.88 10894.95 17397.61 13087.92 23798.10 4195.80 27192.22 11393.02 15097.45 10984.53 15297.91 25888.24 20997.97 11399.02 83
VDDNet93.05 15292.07 16496.02 11996.84 16190.39 16598.08 4395.85 26986.22 27895.79 9398.46 2667.59 33199.19 12494.92 8294.85 17798.47 131
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 999.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121190.63 25189.42 26294.27 20398.24 9389.19 20698.05 4597.89 10379.95 33788.25 26894.96 23372.56 30598.13 21889.70 18085.14 29495.49 244
WR-MVS_H92.00 19291.35 18893.95 21795.09 25389.47 19098.04 4698.68 791.46 13688.34 26394.68 24985.86 13697.56 28785.77 26084.24 30894.82 289
test_part192.21 18791.10 20195.51 14897.80 12092.66 8598.02 4797.68 12889.79 18788.80 25596.02 18576.85 27998.18 21490.86 16184.11 31095.69 240
Anonymous2024052991.98 19390.73 21495.73 13398.14 10389.40 19497.99 4897.72 12379.63 33993.54 13897.41 11369.94 32299.56 8191.04 16091.11 23198.22 148
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4599.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4599.26 6399.43 49
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3699.27 6199.54 29
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4499.25 6599.51 34
tttt051792.96 15692.33 15994.87 17697.11 14587.16 25497.97 5392.09 34690.63 16593.88 13297.01 13176.50 28199.06 14290.29 17195.45 16898.38 142
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3199.30 5699.55 26
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 17098.85 798.94 193.33 1799.83 2296.72 2099.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 13492.63 14796.52 8598.13 10491.27 13097.94 5593.39 33790.57 17096.29 7298.31 4769.00 32499.16 12894.18 9995.87 16099.12 77
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30296.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_696.40 5496.21 5696.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10599.72 3595.10 7699.07 8199.02 83
UGNet94.04 12093.28 13096.31 10396.85 16091.19 13697.88 5997.68 12894.40 4293.00 15196.18 17673.39 30499.61 6291.72 14598.46 10198.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MTMP97.86 6082.03 364
alignmvs95.87 7195.23 8097.78 3397.56 13495.19 1897.86 6097.17 18894.39 4396.47 6696.40 16885.89 13599.20 12396.21 4095.11 17598.95 94
VPA-MVSNet93.24 14592.48 15695.51 14895.70 21892.39 9397.86 6098.66 992.30 11192.09 17395.37 22180.49 22498.40 19693.95 10385.86 28395.75 237
EPNet95.20 8894.56 9597.14 6892.80 32492.68 8497.85 6394.87 31496.64 192.46 15997.80 8486.23 12999.65 5393.72 11098.62 9899.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-CasMVS91.55 20790.84 20993.69 23194.96 25888.28 22697.84 6498.24 3491.46 13688.04 27395.80 19779.67 24097.48 29587.02 24084.54 30595.31 260
EIA-MVS95.53 7995.47 7295.71 13597.06 15089.63 18197.82 6597.87 10793.57 6493.92 13195.04 23290.61 7498.95 14994.62 9298.68 9698.54 121
CP-MVSNet91.89 19591.24 19593.82 22495.05 25488.57 21997.82 6598.19 4491.70 12988.21 26995.76 20281.96 20297.52 29387.86 21584.65 30195.37 257
API-MVS94.84 10094.49 9995.90 12497.90 11592.00 10997.80 6797.48 14989.19 20194.81 11596.71 14388.84 9399.17 12788.91 20198.76 9496.53 206
pm-mvs190.72 24889.65 26093.96 21694.29 29089.63 18197.79 6896.82 22589.07 20386.12 30395.48 21978.61 25997.78 26986.97 24181.67 32694.46 305
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 10097.59 2498.20 5791.96 4499.86 894.21 9799.25 6599.63 11
CS-MVS95.88 7095.98 6195.58 14296.44 18490.56 15797.78 6997.73 11993.01 8696.07 8196.77 14090.13 8098.57 18496.83 1599.10 8097.60 179
PEN-MVS91.20 22790.44 22493.48 24094.49 28187.91 23997.76 7198.18 4691.29 14387.78 27895.74 20480.35 22797.33 30685.46 26482.96 32295.19 270
PS-MVSNAJss93.74 13093.51 12194.44 19593.91 29889.28 20297.75 7297.56 14492.50 10789.94 22096.54 16088.65 9698.18 21493.83 10990.90 23695.86 226
HQP_MVS93.78 12993.43 12594.82 17796.21 19589.99 17297.74 7397.51 14794.85 2691.34 18496.64 15081.32 21298.60 18093.02 12492.23 21195.86 226
plane_prior297.74 7394.85 26
9.1496.75 3398.93 4797.73 7598.23 3891.28 14697.88 2298.44 2893.00 2199.65 5395.76 5699.47 36
jajsoiax92.42 17491.89 17294.03 21193.33 31688.50 22297.73 7597.53 14592.00 12488.85 25296.50 16275.62 29098.11 22293.88 10791.56 22495.48 245
TransMVSNet (Re)88.94 27787.56 28493.08 25794.35 28688.45 22497.73 7595.23 29687.47 25684.26 31895.29 22379.86 23797.33 30679.44 31774.44 34593.45 325
VDD-MVS93.82 12793.08 13396.02 11997.88 11689.96 17697.72 7895.85 26992.43 10895.86 9098.44 2868.42 32899.39 11096.31 3094.85 17798.71 115
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7898.10 6191.50 13498.01 1898.32 4692.33 3599.58 7194.85 8399.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
thres100view90092.43 17391.58 18194.98 17097.92 11389.37 19697.71 8094.66 31692.20 11593.31 14594.90 23778.06 27099.08 13981.40 30194.08 18896.48 209
v7n90.76 24489.86 24993.45 24393.54 30887.60 24597.70 8197.37 17388.85 21287.65 28094.08 28181.08 21498.10 22384.68 27383.79 31694.66 301
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8298.24 3491.57 13297.90 2198.37 3692.61 2999.66 5295.59 6799.51 2999.43 49
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8398.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2399.46 3898.96 92
MAR-MVS94.22 11093.46 12396.51 8898.00 10892.19 10397.67 8397.47 15288.13 23893.00 15195.84 19484.86 14899.51 9487.99 21398.17 10997.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LS3D93.57 13692.61 14996.47 9197.59 13291.61 11797.67 8397.72 12385.17 29390.29 20598.34 4184.60 15099.73 3283.85 28498.27 10598.06 156
UA-Net95.95 6895.53 6997.20 6697.67 12692.98 7897.65 8698.13 5494.81 3196.61 5898.35 3888.87 9299.51 9490.36 16997.35 13199.11 78
thres600view792.49 17291.60 18095.18 16197.91 11489.47 19097.65 8694.66 31692.18 11993.33 14494.91 23678.06 27099.10 13481.61 29894.06 19196.98 193
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8698.98 192.22 11397.14 4198.44 2891.17 6499.85 1494.35 9599.46 3899.57 19
LPG-MVS_test92.94 15892.56 15094.10 20796.16 20088.26 22797.65 8697.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
CS-MVS-test95.61 7595.62 6895.58 14296.33 19291.02 14297.64 9097.68 12892.69 10295.18 11095.91 19089.95 8498.61 17996.24 3498.92 9097.12 190
DTE-MVSNet90.56 25289.75 25693.01 25893.95 29687.25 24997.64 9097.65 13390.74 15887.12 28995.68 20879.97 23597.00 31783.33 28581.66 32794.78 296
mvs_tets92.31 17991.76 17493.94 21993.41 31388.29 22597.63 9297.53 14592.04 12288.76 25696.45 16474.62 29498.09 22793.91 10591.48 22595.45 250
hse-mvs394.15 11293.52 12096.04 11897.81 11990.22 16797.62 9397.58 14095.19 1496.74 5097.45 10983.67 16499.61 6295.85 5279.73 33298.29 147
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9498.19 4492.82 9797.93 2098.74 1191.60 5399.86 896.26 3299.52 2599.67 8
Anonymous20240521192.07 19190.83 21095.76 12898.19 10088.75 21497.58 9595.00 30586.00 28193.64 13597.45 10966.24 34099.53 8990.68 16692.71 20499.01 87
ACMM89.79 892.96 15692.50 15594.35 20096.30 19388.71 21597.58 9597.36 17591.40 14190.53 19996.65 14979.77 23898.75 16691.24 15891.64 22195.59 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal89.70 27188.40 27693.60 23495.15 24990.10 16897.56 9798.16 5087.28 26286.16 30294.63 25277.57 27598.05 23474.48 33684.59 30492.65 334
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9897.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4999.51 2999.40 53
TranMVSNet+NR-MVSNet92.50 17091.63 17995.14 16394.76 27092.07 10597.53 9998.11 5992.90 9589.56 23396.12 18083.16 17297.60 28589.30 19083.20 32195.75 237
anonymousdsp92.16 18891.55 18293.97 21592.58 32889.55 18697.51 10097.42 16889.42 19588.40 26294.84 24080.66 22197.88 26091.87 14291.28 22994.48 304
VNet95.89 6995.45 7397.21 6598.07 10792.94 7997.50 10198.15 5193.87 5497.52 2597.61 10085.29 14299.53 8995.81 5595.27 17199.16 70
GBi-Net91.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
test191.35 21990.27 23294.59 18896.51 17991.18 13797.50 10196.93 21188.82 21589.35 23994.51 25573.87 29897.29 30886.12 25388.82 25595.31 260
FMVSNet189.88 26888.31 27794.59 18895.41 22891.18 13797.50 10196.93 21186.62 27287.41 28494.51 25565.94 34297.29 30883.04 28887.43 26995.31 260
thisisatest053093.03 15392.21 16295.49 15197.07 14789.11 20897.49 10592.19 34590.16 17794.09 12696.41 16776.43 28499.05 14390.38 16895.68 16698.31 146
ETV-MVS96.02 6595.89 6496.40 9697.16 14292.44 9297.47 10697.77 11494.55 3996.48 6594.51 25591.23 6298.92 15195.65 6098.19 10797.82 168
XXY-MVS92.16 18891.23 19694.95 17394.75 27190.94 14697.47 10697.43 16789.14 20288.90 24996.43 16579.71 23998.24 20689.56 18487.68 26695.67 242
114514_t93.95 12293.06 13496.63 8099.07 3991.61 11797.46 10897.96 10077.99 34593.00 15197.57 10386.14 13499.33 11489.22 19499.15 7398.94 95
tfpn200view992.38 17691.52 18494.95 17397.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.48 209
thres40092.42 17491.52 18495.12 16597.85 11789.29 20097.41 10994.88 31192.19 11793.27 14794.46 26078.17 26699.08 13981.40 30194.08 18896.98 193
FMVSNet291.31 22290.08 24194.99 16896.51 17992.21 10097.41 10996.95 20988.82 21588.62 25894.75 24573.87 29897.42 30185.20 26888.55 26095.35 258
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10998.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7399.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)93.31 14392.55 15195.61 14095.39 22993.34 7097.39 11398.71 593.14 8290.10 21694.83 24187.71 10798.03 23891.67 15083.99 31195.46 248
NR-MVSNet92.34 17791.27 19495.53 14794.95 25993.05 7597.39 11398.07 7092.65 10484.46 31595.71 20585.00 14697.77 27189.71 17983.52 31895.78 233
DP-MVS92.76 16791.51 18696.52 8598.77 5790.99 14397.38 11596.08 26282.38 32289.29 24297.87 7583.77 16299.69 4481.37 30496.69 14798.89 101
ACMP89.59 1092.62 16992.14 16394.05 21096.40 18788.20 23097.36 11697.25 18491.52 13388.30 26596.64 15078.46 26198.72 17091.86 14391.48 22595.23 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs687.81 29286.19 29692.69 26991.32 33786.30 27097.34 11796.41 24980.59 33684.05 32394.37 26467.37 33397.67 27784.75 27279.51 33494.09 317
v891.29 22490.53 22393.57 23794.15 29188.12 23497.34 11797.06 20088.99 20688.32 26494.26 27383.08 17598.01 24087.62 22883.92 31494.57 303
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11798.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5499.17 7299.56 22
v1091.04 23490.23 23593.49 23994.12 29288.16 23397.32 12097.08 19788.26 23188.29 26694.22 27682.17 19997.97 24586.45 24784.12 30994.33 309
V4291.58 20590.87 20593.73 22794.05 29588.50 22297.32 12096.97 20888.80 21889.71 22694.33 26682.54 19098.05 23489.01 19985.07 29694.64 302
RRT_test8_iter0591.19 23090.78 21192.41 27595.76 21783.14 31197.32 12097.46 15491.37 14289.07 24895.57 21270.33 31798.21 20993.56 11186.62 27895.89 225
DeepC-MVS93.07 396.06 6395.66 6797.29 5897.96 10993.17 7397.30 12398.06 7393.92 5293.38 14398.66 1286.83 12299.73 3295.60 6699.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs95.64 7495.49 7196.08 11496.76 16890.45 16297.29 12497.44 16494.00 5095.46 10797.98 7087.52 11398.73 16795.64 6197.33 13299.08 80
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12598.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
PVSNet_Blended_VisFu95.27 8494.91 8796.38 9998.20 9890.86 14997.27 12598.25 3390.21 17594.18 12597.27 11787.48 11499.73 3293.53 11297.77 11998.55 120
mvs-test193.63 13393.69 11393.46 24296.02 20784.61 29697.24 12796.72 22893.85 5592.30 16695.76 20283.08 17598.89 15591.69 14896.54 15096.87 199
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12798.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
plane_prior89.99 17297.24 12794.06 4992.16 215
PAPM_NR95.01 9194.59 9496.26 10898.89 5490.68 15597.24 12797.73 11991.80 12792.93 15696.62 15789.13 9099.14 13189.21 19597.78 11898.97 91
ACMH87.59 1690.53 25389.42 26293.87 22296.21 19587.92 23797.24 12796.94 21088.45 22683.91 32496.27 17471.92 30698.62 17884.43 27789.43 25195.05 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D91.34 22190.22 23794.68 18794.86 26687.86 24097.23 13297.46 15487.99 23989.90 22196.92 13566.35 33898.23 20790.30 17090.99 23497.96 157
VPNet92.23 18591.31 19194.99 16895.56 22290.96 14597.22 13397.86 11092.96 9390.96 19596.62 15775.06 29298.20 21191.90 14083.65 31795.80 232
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13498.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2199.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
baseline192.82 16591.90 17195.55 14697.20 14090.77 15397.19 13594.58 31992.20 11592.36 16396.34 17184.16 15898.21 20989.20 19683.90 31597.68 173
F-COLMAP93.58 13592.98 13695.37 15798.40 7888.98 21097.18 13697.29 18187.75 25090.49 20097.10 12785.21 14399.50 9786.70 24396.72 14697.63 174
UniMVSNet_NR-MVSNet93.37 14192.67 14695.47 15495.34 23592.83 8097.17 13798.58 1092.98 9290.13 21295.80 19788.37 10197.85 26191.71 14683.93 31295.73 239
DU-MVS92.90 16092.04 16595.49 15194.95 25992.83 8097.16 13898.24 3493.02 8590.13 21295.71 20583.47 16797.85 26191.71 14683.93 31295.78 233
baseline95.58 7795.42 7596.08 11496.78 16590.41 16497.16 13897.45 16093.69 6395.65 10197.85 7887.29 11798.68 17295.66 5797.25 13599.13 74
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 14098.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4299.50 3299.58 17
Effi-MVS+-dtu93.08 15093.21 13292.68 27096.02 20783.25 31097.14 14196.72 22893.85 5591.20 19493.44 30283.08 17598.30 20491.69 14895.73 16496.50 208
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14298.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2699.39 4799.55 26
MVSTER93.20 14792.81 14094.37 19996.56 17689.59 18497.06 14397.12 19291.24 14791.30 18795.96 18782.02 20198.05 23493.48 11490.55 24095.47 247
ETH3 D test640096.16 6295.52 7098.07 1698.90 5195.06 2297.03 14498.21 4088.16 23696.64 5797.70 8991.18 6399.67 4992.44 12999.47 3699.48 41
Fast-Effi-MVS+-dtu92.29 18191.99 16893.21 25395.27 24285.52 28297.03 14496.63 24092.09 12089.11 24795.14 22980.33 22898.08 22887.54 23094.74 18296.03 223
DP-MVS Recon95.68 7395.12 8497.37 5499.19 3194.19 4097.03 14498.08 6488.35 22995.09 11297.65 9489.97 8399.48 9992.08 13998.59 9998.44 137
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14797.22 18595.35 898.27 1498.65 1393.33 1799.72 3596.49 2799.52 2599.51 34
save fliter98.91 4994.28 3597.02 14798.02 8895.35 8
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14797.96 10095.42 794.86 11497.81 8287.38 11699.82 2596.88 1399.20 7099.29 62
FMVSNet391.78 19790.69 21695.03 16796.53 17892.27 9997.02 14796.93 21189.79 18789.35 23994.65 25177.01 27897.47 29686.12 25388.82 25595.35 258
Baseline_NR-MVSNet91.20 22790.62 21792.95 26193.83 30188.03 23597.01 15195.12 30188.42 22789.70 22795.13 23083.47 16797.44 29989.66 18283.24 32093.37 326
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15298.05 8089.85 18497.26 3598.22 5691.80 4799.69 4494.84 8499.28 5999.27 66
ACMH+87.92 1490.20 26189.18 26793.25 25096.48 18286.45 26896.99 15296.68 23488.83 21484.79 31496.22 17570.16 32098.53 18784.42 27888.04 26294.77 297
OurMVSNet-221017-090.51 25490.19 23991.44 29993.41 31381.25 32396.98 15496.28 25391.68 13086.55 29996.30 17274.20 29797.98 24288.96 20087.40 27195.09 271
MP-MVS-pluss96.70 4496.27 5497.98 2199.23 3094.71 2696.96 15598.06 7390.67 16195.55 10398.78 1091.07 6599.86 896.58 2499.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15597.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1699.13 7599.48 41
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15598.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
v2v48291.59 20390.85 20893.80 22593.87 30088.17 23296.94 15896.88 21989.54 19089.53 23494.90 23781.70 20898.02 23989.25 19385.04 29895.20 269
RRT_MVS93.21 14692.32 16095.91 12394.92 26194.15 4396.92 15996.86 22291.42 13891.28 19096.43 16579.66 24198.10 22393.29 11990.06 24595.46 248
LCM-MVSNet-Re92.50 17092.52 15492.44 27396.82 16481.89 31996.92 15993.71 33392.41 10984.30 31794.60 25385.08 14597.03 31391.51 15197.36 13098.40 140
COLMAP_ROBcopyleft87.81 1590.40 25689.28 26593.79 22697.95 11087.13 25596.92 15995.89 26882.83 32086.88 29797.18 12273.77 30199.29 11878.44 32193.62 19694.95 276
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 16297.73 11994.74 3596.49 6498.49 2490.88 7099.58 7196.44 2998.32 10499.13 74
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14796.86 16397.72 12394.67 3696.16 7798.46 2690.43 7699.58 7196.23 3597.96 11498.90 99
test_yl94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
DCV-MVSNet94.78 10294.23 10496.43 9497.74 12391.22 13196.85 16497.10 19491.23 14895.71 9596.93 13284.30 15599.31 11693.10 12295.12 17398.75 109
v114491.37 21890.60 21893.68 23293.89 29988.23 22996.84 16697.03 20588.37 22889.69 22894.39 26282.04 20097.98 24287.80 21785.37 28994.84 286
v14419291.06 23390.28 23193.39 24493.66 30687.23 25196.83 16797.07 19887.43 25789.69 22894.28 27081.48 21098.00 24187.18 23884.92 30094.93 280
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16797.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1899.29 5799.55 26
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16798.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1699.29 5799.56 22
Fast-Effi-MVS+93.46 13892.75 14395.59 14196.77 16690.03 16996.81 17097.13 19188.19 23291.30 18794.27 27186.21 13198.63 17687.66 22696.46 15498.12 152
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 17196.72 22894.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 12099.08 80
TAPA-MVS90.10 792.30 18091.22 19795.56 14498.33 8589.60 18396.79 17197.65 13381.83 32691.52 18097.23 12087.94 10498.91 15371.31 34898.37 10398.17 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14890.99 23690.38 22692.81 26693.83 30185.80 27896.78 17396.68 23489.45 19488.75 25793.93 28682.96 18197.82 26587.83 21683.25 31994.80 292
v192192090.85 24290.03 24593.29 24993.55 30786.96 25996.74 17497.04 20387.36 25989.52 23594.34 26580.23 23097.97 24586.27 24885.21 29394.94 278
Anonymous2024052186.42 30185.44 30189.34 32490.33 34279.79 33796.73 17595.92 26583.71 31383.25 32791.36 33163.92 34696.01 32978.39 32285.36 29092.22 340
v119291.07 23290.23 23593.58 23693.70 30487.82 24196.73 17597.07 19887.77 24889.58 23194.32 26880.90 21997.97 24586.52 24585.48 28794.95 276
PVSNet_BlendedMVS94.06 11893.92 10794.47 19498.27 8989.46 19296.73 17598.36 1690.17 17694.36 12195.24 22688.02 10299.58 7193.44 11590.72 23894.36 308
TAMVS94.01 12193.46 12395.64 13796.16 20090.45 16296.71 17896.89 21889.27 19993.46 14196.92 13587.29 11797.94 25288.70 20595.74 16398.53 122
MVS_Test94.89 9894.62 9395.68 13696.83 16389.55 18696.70 17997.17 18891.17 15095.60 10296.11 18387.87 10698.76 16593.01 12697.17 13898.72 113
SixPastTwentyTwo89.15 27588.54 27590.98 30693.49 31180.28 33396.70 17994.70 31590.78 15784.15 32095.57 21271.78 30897.71 27584.63 27485.07 29694.94 278
hse-mvs293.45 13992.99 13594.81 17997.02 15488.59 21896.69 18196.47 24695.19 1496.74 5096.16 17983.67 16498.48 19395.85 5279.13 33697.35 187
EPNet_dtu91.71 19991.28 19392.99 25993.76 30383.71 30596.69 18195.28 29293.15 8187.02 29395.95 18883.37 17097.38 30479.46 31696.84 14197.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft91.00 694.11 11693.43 12596.13 11298.58 7191.15 14096.69 18197.39 17087.29 26191.37 18396.71 14388.39 10099.52 9387.33 23497.13 13997.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testgi87.97 28987.21 28990.24 31892.86 32280.76 32596.67 18494.97 30791.74 12885.52 30695.83 19562.66 34994.47 34776.25 33188.36 26195.48 245
AUN-MVS91.76 19890.75 21394.81 17997.00 15588.57 21996.65 18596.49 24589.63 18992.15 16996.12 18078.66 25898.50 18990.83 16279.18 33597.36 186
OPM-MVS93.28 14492.76 14194.82 17794.63 27790.77 15396.65 18597.18 18693.72 6091.68 17897.26 11879.33 24698.63 17692.13 13692.28 21095.07 272
HQP-NCC95.86 21096.65 18593.55 6590.14 208
ACMP_Plane95.86 21096.65 18593.55 6590.14 208
HQP-MVS93.19 14892.74 14494.54 19395.86 21089.33 19896.65 18597.39 17093.55 6590.14 20895.87 19280.95 21598.50 18992.13 13692.10 21695.78 233
EU-MVSNet88.72 28388.90 27088.20 32893.15 31974.21 35296.63 19094.22 32885.18 29287.32 28795.97 18676.16 28594.98 34385.27 26686.17 28095.41 251
v124090.70 24989.85 25093.23 25193.51 31086.80 26096.61 19197.02 20687.16 26489.58 23194.31 26979.55 24397.98 24285.52 26385.44 28894.90 283
K. test v387.64 29386.75 29490.32 31793.02 32179.48 34096.61 19192.08 34790.66 16380.25 34194.09 28067.21 33496.65 32485.96 25880.83 33094.83 287
thres20092.23 18591.39 18794.75 18697.61 13089.03 20996.60 19395.09 30292.08 12193.28 14694.00 28378.39 26499.04 14581.26 30594.18 18796.19 214
WTY-MVS94.71 10494.02 10696.79 7697.71 12592.05 10696.59 19497.35 17690.61 16794.64 11796.93 13286.41 12899.39 11091.20 15994.71 18398.94 95
CNLPA94.28 10993.53 11996.52 8598.38 8192.55 8996.59 19496.88 21990.13 17891.91 17597.24 11985.21 14399.09 13787.64 22797.83 11697.92 160
AdaColmapbinary94.34 10893.68 11496.31 10398.59 6991.68 11696.59 19497.81 11389.87 18192.15 16997.06 12983.62 16699.54 8689.34 18998.07 11197.70 172
IterMVS-LS92.29 18191.94 17093.34 24796.25 19486.97 25896.57 19797.05 20190.67 16189.50 23694.80 24386.59 12397.64 28089.91 17486.11 28295.40 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest90.23 26088.98 26993.98 21397.94 11186.64 26396.51 19895.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
EI-MVSNet93.03 15392.88 13993.48 24095.77 21586.98 25796.44 19997.12 19290.66 16391.30 18797.64 9786.56 12498.05 23489.91 17490.55 24095.41 251
CVMVSNet91.23 22591.75 17589.67 32395.77 21574.69 35196.44 19994.88 31185.81 28392.18 16897.64 9779.07 24895.58 33988.06 21295.86 16198.74 111
OMC-MVS95.09 9094.70 9296.25 10998.46 7491.28 12996.43 20197.57 14192.04 12294.77 11697.96 7187.01 12199.09 13791.31 15696.77 14398.36 144
test_prior493.66 5996.42 202
Effi-MVS+94.93 9694.45 10196.36 10196.61 17091.47 12396.41 20397.41 16991.02 15594.50 11995.92 18987.53 11298.78 16293.89 10696.81 14298.84 106
TEST998.70 6094.19 4096.41 20398.02 8888.17 23496.03 8297.56 10592.74 2499.59 68
train_agg96.30 5795.83 6597.72 3998.70 6094.19 4096.41 20398.02 8888.58 22296.03 8297.56 10592.73 2599.59 6895.04 7799.37 5299.39 54
MVS_030488.79 28187.57 28392.46 27294.65 27586.15 27696.40 20697.17 18886.44 27488.02 27491.71 32856.68 35597.03 31384.47 27692.58 20794.19 314
WR-MVS92.34 17791.53 18394.77 18495.13 25190.83 15096.40 20697.98 9891.88 12689.29 24295.54 21682.50 19197.80 26689.79 17885.27 29295.69 240
BH-untuned92.94 15892.62 14893.92 22197.22 13886.16 27596.40 20696.25 25690.06 17989.79 22596.17 17883.19 17198.35 20187.19 23797.27 13497.24 189
TDRefinement86.53 29984.76 30991.85 28682.23 35984.25 29896.38 20995.35 28884.97 29784.09 32194.94 23465.76 34398.34 20384.60 27574.52 34492.97 328
test_898.67 6294.06 4996.37 21098.01 9188.58 22295.98 8797.55 10792.73 2599.58 71
test_prior396.46 5396.20 5797.23 6298.67 6292.99 7696.35 21198.00 9392.80 9896.03 8297.59 10192.01 4199.41 10795.01 7899.38 4899.29 62
test_prior296.35 21192.80 9896.03 8297.59 10192.01 4195.01 7899.38 48
CDPH-MVS95.97 6795.38 7697.77 3598.93 4794.44 3196.35 21197.88 10586.98 26696.65 5697.89 7291.99 4399.47 10092.26 13099.46 3899.39 54
CDS-MVSNet94.14 11593.54 11895.93 12296.18 19891.46 12496.33 21497.04 20388.97 20893.56 13696.51 16187.55 11197.89 25989.80 17795.95 15898.44 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 10693.80 11096.64 7897.07 14791.97 11096.32 21598.06 7388.94 20994.50 11996.78 13984.60 15099.27 11991.90 14096.02 15698.68 117
1112_ss93.37 14192.42 15796.21 11097.05 15290.99 14396.31 21696.72 22886.87 26989.83 22496.69 14786.51 12699.14 13188.12 21193.67 19498.50 126
LTVRE_ROB88.41 1390.99 23689.92 24794.19 20496.18 19889.55 18696.31 21697.09 19687.88 24385.67 30595.91 19078.79 25798.57 18481.50 29989.98 24694.44 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_040286.46 30084.79 30891.45 29895.02 25685.55 28196.29 21894.89 31080.90 33182.21 33193.97 28568.21 32997.29 30862.98 35688.68 25991.51 345
agg_prior196.22 6195.77 6697.56 4898.67 6293.79 5596.28 21998.00 9388.76 21995.68 9797.55 10792.70 2799.57 7995.01 7899.32 5399.32 60
pmmvs589.86 26988.87 27192.82 26592.86 32286.23 27296.26 22095.39 28584.24 30587.12 28994.51 25574.27 29697.36 30587.61 22987.57 26794.86 285
xiu_mvs_v1_base_debu95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
xiu_mvs_v1_base_debi95.01 9194.76 8995.75 13096.58 17391.71 11396.25 22197.35 17692.99 8796.70 5296.63 15482.67 18699.44 10496.22 3697.46 12496.11 220
MVS_111021_LR96.24 6096.19 5896.39 9898.23 9791.35 12796.24 22498.79 493.99 5195.80 9297.65 9489.92 8599.24 12195.87 5099.20 7098.58 119
CANet_DTU94.37 10793.65 11596.55 8496.46 18392.13 10496.21 22596.67 23694.38 4493.53 13997.03 13079.34 24599.71 3890.76 16398.45 10297.82 168
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22698.90 294.30 4695.86 9097.74 8792.33 3599.38 11296.04 4799.42 4399.28 65
D2MVS91.30 22390.95 20392.35 27694.71 27385.52 28296.18 22798.21 4088.89 21186.60 29893.82 28979.92 23697.95 25189.29 19190.95 23593.56 322
BH-RMVSNet92.72 16891.97 16994.97 17197.16 14287.99 23696.15 22895.60 27990.62 16691.87 17697.15 12578.41 26398.57 18483.16 28697.60 12298.36 144
Anonymous2023120687.09 29686.14 29789.93 32191.22 33880.35 33096.11 22995.35 28883.57 31584.16 31993.02 30773.54 30395.61 33772.16 34586.14 28193.84 320
jason94.84 10094.39 10396.18 11195.52 22490.93 14796.09 23096.52 24489.28 19896.01 8697.32 11584.70 14998.77 16495.15 7498.91 9198.85 104
jason: jason.
EG-PatchMatch MVS87.02 29785.44 30191.76 29392.67 32685.00 29096.08 23196.45 24783.41 31779.52 34393.49 30057.10 35497.72 27479.34 31890.87 23792.56 335
131492.81 16692.03 16695.14 16395.33 23889.52 18996.04 23297.44 16487.72 25186.25 30195.33 22283.84 16198.79 16189.26 19297.05 14097.11 191
112194.71 10493.83 10997.34 5598.57 7293.64 6096.04 23297.73 11981.56 32995.68 9797.85 7890.23 7899.65 5387.68 22499.12 7898.73 112
MVS91.71 19990.44 22495.51 14895.20 24891.59 11996.04 23297.45 16073.44 35287.36 28695.60 21185.42 14199.10 13485.97 25797.46 12495.83 230
MG-MVS95.61 7595.38 7696.31 10398.42 7790.53 15996.04 23297.48 14993.47 7195.67 10098.10 6089.17 8999.25 12091.27 15798.77 9399.13 74
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16298.09 10586.63 26696.00 23698.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1999.48 3599.45 45
diffmvs95.25 8595.13 8395.63 13896.43 18689.34 19795.99 23797.35 17692.83 9696.31 7197.37 11486.44 12798.67 17396.26 3297.19 13798.87 103
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23898.18 4695.23 1295.87 8997.65 9491.45 5599.70 4395.87 5099.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
旧先验295.94 23981.66 32797.34 3498.82 15992.26 130
baseline291.63 20290.86 20693.94 21994.33 28786.32 26995.92 24091.64 35089.37 19686.94 29494.69 24881.62 20998.69 17188.64 20694.57 18496.81 201
test20.0386.14 30585.40 30388.35 32690.12 34380.06 33595.90 24195.20 29788.59 22181.29 33493.62 29871.43 31092.65 35471.26 34981.17 32992.34 338
MVP-Stereo90.74 24790.08 24192.71 26893.19 31888.20 23095.86 24296.27 25486.07 28084.86 31394.76 24477.84 27397.75 27283.88 28398.01 11292.17 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DWT-MVSNet_test90.76 24489.89 24893.38 24595.04 25583.70 30695.85 24394.30 32788.19 23290.46 20192.80 30973.61 30298.50 18988.16 21090.58 23997.95 159
lupinMVS94.99 9594.56 9596.29 10696.34 19091.21 13395.83 24496.27 25488.93 21096.22 7596.88 13786.20 13298.85 15795.27 7199.05 8398.82 107
mvs_anonymous93.82 12793.74 11194.06 20996.44 18485.41 28495.81 24597.05 20189.85 18490.09 21796.36 17087.44 11597.75 27293.97 10296.69 14799.02 83
新几何295.79 246
无先验95.79 24697.87 10783.87 31199.65 5387.68 22498.89 101
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 31990.83 30890.06 34484.05 30295.73 24894.04 33073.89 35180.17 34291.53 33059.15 35297.64 28066.92 35489.05 25490.80 349
原ACMM295.67 249
BH-w/o92.14 19091.75 17593.31 24896.99 15685.73 27995.67 24995.69 27588.73 22089.26 24494.82 24282.97 18098.07 23185.26 26796.32 15596.13 219
TR-MVS91.48 21290.59 21994.16 20696.40 18787.33 24695.67 24995.34 29187.68 25291.46 18195.52 21776.77 28098.35 20182.85 29093.61 19796.79 202
HY-MVS89.66 993.87 12592.95 13796.63 8097.10 14692.49 9195.64 25296.64 23789.05 20493.00 15195.79 20085.77 13899.45 10389.16 19894.35 18597.96 157
RPSCF90.75 24690.86 20690.42 31696.84 16176.29 34995.61 25396.34 25183.89 30991.38 18297.87 7576.45 28298.78 16287.16 23992.23 21196.20 213
MS-PatchMatch90.27 25889.77 25491.78 29194.33 28784.72 29595.55 25496.73 22786.17 27986.36 30095.28 22571.28 31197.80 26684.09 27998.14 11092.81 331
PAPR94.18 11193.42 12796.48 9097.64 12891.42 12695.55 25497.71 12788.99 20692.34 16595.82 19689.19 8899.11 13386.14 25297.38 12998.90 99
Test_1112_low_res92.84 16491.84 17395.85 12697.04 15389.97 17595.53 25696.64 23785.38 28989.65 23095.18 22785.86 13699.10 13487.70 22193.58 19998.49 128
FMVSNet587.29 29585.79 29991.78 29194.80 26987.28 24795.49 25795.28 29284.09 30783.85 32591.82 32562.95 34894.17 34878.48 32085.34 29193.91 319
PVSNet_Blended94.87 9994.56 9595.81 12798.27 8989.46 19295.47 25898.36 1688.84 21394.36 12196.09 18488.02 10299.58 7193.44 11598.18 10898.40 140
xiu_mvs_v2_base95.32 8395.29 7995.40 15697.22 13890.50 16095.44 25997.44 16493.70 6296.46 6796.18 17688.59 9999.53 8994.79 9097.81 11796.17 215
ab-mvs93.57 13692.55 15196.64 7897.28 13791.96 11195.40 26097.45 16089.81 18693.22 14996.28 17379.62 24299.46 10190.74 16493.11 20098.50 126
MIMVSNet184.93 31383.05 31590.56 31489.56 34884.84 29495.40 26095.35 28883.91 30880.38 33992.21 32357.23 35393.34 35270.69 35182.75 32593.50 323
ET-MVSNet_ETH3D91.49 21190.11 24095.63 13896.40 18791.57 12195.34 26293.48 33590.60 16975.58 34995.49 21880.08 23296.79 32294.25 9689.76 24998.52 123
test22298.24 9392.21 10095.33 26397.60 13779.22 34195.25 10897.84 8188.80 9499.15 7398.72 113
XVG-ACMP-BASELINE90.93 24090.21 23893.09 25694.31 28985.89 27795.33 26397.26 18291.06 15489.38 23895.44 22068.61 32698.60 18089.46 18691.05 23294.79 294
PS-MVSNAJ95.37 8195.33 7895.49 15197.35 13690.66 15695.31 26597.48 14993.85 5596.51 6395.70 20788.65 9699.65 5394.80 8898.27 10596.17 215
XVG-OURS-SEG-HR93.86 12693.55 11794.81 17997.06 15088.53 22195.28 26697.45 16091.68 13094.08 12797.68 9182.41 19498.90 15493.84 10892.47 20896.98 193
CLD-MVS92.98 15592.53 15394.32 20296.12 20489.20 20495.28 26697.47 15292.66 10389.90 22195.62 21080.58 22298.40 19692.73 12792.40 20995.38 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS95.69 7294.92 8698.01 1998.08 10695.71 795.27 26897.62 13690.43 17395.55 10397.07 12891.72 4899.50 9789.62 18398.94 8898.82 107
PatchMatch-RL92.90 16092.02 16795.56 14498.19 10090.80 15195.27 26897.18 18687.96 24091.86 17795.68 20880.44 22598.99 14784.01 28097.54 12396.89 198
testdata195.26 27093.10 84
test0.0.03 189.37 27488.70 27291.41 30092.47 32985.63 28095.22 27192.70 34291.11 15286.91 29693.65 29779.02 25193.19 35378.00 32389.18 25395.41 251
CHOSEN 1792x268894.15 11293.51 12196.06 11698.27 8989.38 19595.18 27298.48 1485.60 28693.76 13497.11 12683.15 17399.61 6291.33 15598.72 9599.19 68
DIV-MVS_2432*160085.95 30784.95 30688.96 32589.55 34979.11 34395.13 27396.42 24885.91 28284.07 32290.48 33370.03 32194.82 34480.04 31072.94 34892.94 329
IB-MVS87.33 1789.91 26688.28 27894.79 18395.26 24587.70 24395.12 27493.95 33289.35 19787.03 29292.49 31470.74 31599.19 12489.18 19781.37 32897.49 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed86.34 30286.12 29887.00 33389.88 34670.43 35594.93 27590.08 35577.97 34685.42 30992.78 31074.44 29593.96 34974.43 33795.14 17296.62 205
XVG-OURS93.72 13193.35 12894.80 18297.07 14788.61 21794.79 27697.46 15491.97 12593.99 12897.86 7781.74 20798.88 15692.64 12892.67 20696.92 197
SCA91.84 19691.18 19993.83 22395.59 22084.95 29294.72 27795.58 28190.82 15692.25 16793.69 29375.80 28798.10 22386.20 25095.98 15798.45 133
cl_fuxian91.38 21690.89 20492.88 26395.58 22186.30 27094.68 27896.84 22488.17 23488.83 25494.23 27485.65 13997.47 29689.36 18884.63 30294.89 284
pmmvs490.93 24089.85 25094.17 20593.34 31590.79 15294.60 27996.02 26384.62 30187.45 28295.15 22881.88 20597.45 29887.70 22187.87 26494.27 313
HyFIR lowres test93.66 13292.92 13895.87 12598.24 9389.88 17794.58 28098.49 1285.06 29593.78 13395.78 20182.86 18298.67 17391.77 14495.71 16599.07 82
MDA-MVSNet-bldmvs85.00 31282.95 31691.17 30593.13 32083.33 30994.56 28195.00 30584.57 30265.13 35792.65 31170.45 31695.85 33373.57 34177.49 33894.33 309
PMMVS92.86 16292.34 15894.42 19894.92 26186.73 26294.53 28296.38 25084.78 30094.27 12395.12 23183.13 17498.40 19691.47 15396.49 15298.12 152
miper_ehance_all_eth91.59 20391.13 20092.97 26095.55 22386.57 26794.47 28396.88 21987.77 24888.88 25194.01 28286.22 13097.54 28989.49 18586.93 27394.79 294
pmmvs-eth3d86.22 30484.45 31091.53 29688.34 35387.25 24994.47 28395.01 30483.47 31679.51 34489.61 34069.75 32395.71 33683.13 28776.73 34191.64 343
cl-mvsnet____90.96 23990.32 22892.89 26295.37 23286.21 27394.46 28596.64 23787.82 24488.15 27194.18 27782.98 17997.54 28987.70 22185.59 28594.92 282
cl-mvsnet190.97 23890.33 22792.88 26395.36 23386.19 27494.46 28596.63 24087.82 24488.18 27094.23 27482.99 17897.53 29187.72 21885.57 28694.93 280
cl-mvsnet291.21 22690.56 22293.14 25596.09 20686.80 26094.41 28796.58 24387.80 24688.58 26093.99 28480.85 22097.62 28389.87 17686.93 27394.99 275
LF4IMVS87.94 29087.25 28789.98 32092.38 33280.05 33694.38 28895.25 29587.59 25484.34 31694.74 24664.31 34597.66 27984.83 27087.45 26892.23 339
thisisatest051592.29 18191.30 19295.25 15996.60 17188.90 21294.36 28992.32 34487.92 24193.43 14294.57 25477.28 27799.00 14689.42 18795.86 16197.86 164
GA-MVS91.38 21690.31 22994.59 18894.65 27587.62 24494.34 29096.19 25990.73 15990.35 20493.83 28771.84 30797.96 24987.22 23693.61 19798.21 149
IterMVS90.15 26389.67 25891.61 29595.48 22683.72 30494.33 29196.12 26189.99 18087.31 28894.15 27975.78 28996.27 32886.97 24186.89 27694.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.31 25789.81 25291.82 28895.52 22484.20 30094.30 29296.15 26090.61 16787.39 28594.27 27175.80 28796.44 32587.34 23386.88 27794.82 289
test-LLR91.42 21491.19 19892.12 28094.59 27880.66 32694.29 29392.98 33991.11 15290.76 19792.37 31679.02 25198.07 23188.81 20296.74 14497.63 174
TESTMET0.1,190.06 26489.42 26291.97 28394.41 28580.62 32894.29 29391.97 34887.28 26290.44 20292.47 31568.79 32597.67 27788.50 20896.60 14997.61 178
test-mter90.19 26289.54 26192.12 28094.59 27880.66 32694.29 29392.98 33987.68 25290.76 19792.37 31667.67 33098.07 23188.81 20296.74 14497.63 174
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33089.14 35073.12 35494.17 29696.80 22673.98 35073.65 35194.93 23566.36 33797.61 28483.95 28291.28 22992.48 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet78.73 32378.71 32578.79 33892.80 32446.50 36794.14 29743.71 37078.61 34380.83 33591.66 32974.94 29396.36 32667.24 35384.45 30693.50 323
eth_miper_zixun_eth91.02 23590.59 21992.34 27795.33 23884.35 29794.10 29896.90 21688.56 22488.84 25394.33 26684.08 15997.60 28588.77 20484.37 30795.06 273
CostFormer91.18 23190.70 21592.62 27194.84 26781.76 32094.09 29994.43 32184.15 30692.72 15893.77 29179.43 24498.20 21190.70 16592.18 21497.90 161
tpm90.25 25989.74 25791.76 29393.92 29779.73 33893.98 30093.54 33488.28 23091.99 17493.25 30577.51 27697.44 29987.30 23587.94 26398.12 152
miper_enhance_ethall91.54 20991.01 20293.15 25495.35 23487.07 25693.97 30196.90 21686.79 27089.17 24693.43 30486.55 12597.64 28089.97 17386.93 27394.74 298
TinyColmap86.82 29885.35 30491.21 30394.91 26482.99 31293.94 30294.02 33183.58 31481.56 33394.68 24962.34 35098.13 21875.78 33287.35 27292.52 336
CL-MVSNet_2432*160086.31 30385.15 30589.80 32288.83 35181.74 32193.93 30396.22 25786.67 27185.03 31190.80 33278.09 26994.50 34574.92 33571.86 34993.15 327
miper_lstm_enhance90.50 25590.06 24491.83 28795.33 23883.74 30393.86 30496.70 23387.56 25587.79 27793.81 29083.45 16996.92 31987.39 23284.62 30394.82 289
USDC88.94 27787.83 28292.27 27894.66 27484.96 29193.86 30495.90 26787.34 26083.40 32695.56 21467.43 33298.19 21382.64 29489.67 25093.66 321
tpm289.96 26589.21 26692.23 27994.91 26481.25 32393.78 30694.42 32280.62 33591.56 17993.44 30276.44 28397.94 25285.60 26292.08 21897.49 184
ppachtmachnet_test88.35 28787.29 28691.53 29692.45 33083.57 30893.75 30795.97 26484.28 30485.32 31094.18 27779.00 25596.93 31875.71 33384.99 29994.10 315
new-patchmatchnet83.18 31881.87 32087.11 33286.88 35675.99 35093.70 30895.18 29885.02 29677.30 34788.40 34365.99 34193.88 35074.19 34070.18 35191.47 347
MSDG91.42 21490.24 23494.96 17297.15 14488.91 21193.69 30996.32 25285.72 28586.93 29596.47 16380.24 22998.98 14880.57 30795.05 17696.98 193
EPMVS90.70 24989.81 25293.37 24694.73 27284.21 29993.67 31088.02 35789.50 19292.38 16293.49 30077.82 27497.78 26986.03 25692.68 20598.11 155
cascas91.20 22790.08 24194.58 19294.97 25789.16 20793.65 31197.59 13979.90 33889.40 23792.92 30875.36 29198.36 20092.14 13594.75 18196.23 212
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 34582.40 31793.62 31297.37 17389.86 18278.59 34692.37 31665.25 34495.35 34282.27 29670.75 35094.10 315
our_test_388.78 28287.98 28191.20 30492.45 33082.53 31493.61 31395.69 27585.77 28484.88 31293.71 29279.99 23496.78 32379.47 31586.24 27994.28 312
PM-MVS83.48 31781.86 32188.31 32787.83 35577.59 34793.43 31491.75 34986.91 26780.63 33789.91 33844.42 36095.84 33485.17 26976.73 34191.50 346
tpmrst91.44 21391.32 19091.79 29095.15 24979.20 34293.42 31595.37 28788.55 22593.49 14093.67 29682.49 19298.27 20590.41 16789.34 25297.90 161
PAPM91.52 21090.30 23095.20 16095.30 24189.83 17893.38 31696.85 22386.26 27788.59 25995.80 19784.88 14798.15 21775.67 33495.93 15997.63 174
testmvs13.36 33716.33 3404.48 3515.04 3712.26 37393.18 3173.28 3722.70 3678.24 36821.66 3652.29 3742.19 3687.58 3662.96 3669.00 364
YYNet185.87 30884.23 31290.78 31292.38 33282.46 31693.17 31895.14 30082.12 32467.69 35292.36 31978.16 26895.50 34177.31 32679.73 33294.39 307
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33282.57 31393.17 31895.15 29982.15 32367.65 35392.33 32278.20 26595.51 34077.33 32579.74 33194.31 311
PatchmatchNetpermissive91.91 19491.35 18893.59 23595.38 23084.11 30193.15 32095.39 28589.54 19092.10 17293.68 29582.82 18498.13 21884.81 27195.32 17098.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmvs89.83 27089.15 26891.89 28594.92 26180.30 33293.11 32195.46 28486.28 27688.08 27292.65 31180.44 22598.52 18881.47 30089.92 24796.84 200
MDTV_nov1_ep13_2view70.35 35693.10 32283.88 31093.55 13782.47 19386.25 24998.38 142
MDTV_nov1_ep1390.76 21295.22 24680.33 33193.03 32395.28 29288.14 23792.84 15793.83 28781.34 21198.08 22882.86 28994.34 186
PVSNet86.66 1892.24 18491.74 17793.73 22797.77 12283.69 30792.88 32496.72 22887.91 24293.00 15194.86 23978.51 26099.05 14386.53 24497.45 12898.47 131
dp88.90 27988.26 27990.81 30994.58 28076.62 34892.85 32594.93 30985.12 29490.07 21993.07 30675.81 28698.12 22180.53 30887.42 27097.71 171
test_post192.81 32616.58 36880.53 22397.68 27686.20 250
bset_n11_16_dypcd91.55 20790.59 21994.44 19591.51 33690.25 16692.70 32793.42 33692.27 11290.22 20794.74 24678.42 26297.80 26694.19 9887.86 26595.29 267
pmmvs379.97 32277.50 32687.39 33182.80 35879.38 34192.70 32790.75 35470.69 35378.66 34587.47 35051.34 35893.40 35173.39 34269.65 35289.38 352
tpm cat188.36 28687.21 28991.81 28995.13 25180.55 32992.58 32995.70 27474.97 34987.45 28291.96 32478.01 27298.17 21680.39 30988.74 25896.72 204
PCF-MVS89.48 1191.56 20689.95 24696.36 10196.60 17192.52 9092.51 33097.26 18279.41 34088.90 24996.56 15984.04 16099.55 8477.01 33097.30 13397.01 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test12313.04 33815.66 3415.18 3504.51 3723.45 37292.50 3311.81 3732.50 3687.58 36920.15 3663.67 3732.18 3697.13 3671.07 3679.90 363
GG-mvs-BLEND93.62 23393.69 30589.20 20492.39 33283.33 36387.98 27689.84 33971.00 31396.87 32082.08 29795.40 16994.80 292
new_pmnet82.89 31981.12 32388.18 32989.63 34780.18 33491.77 33392.57 34376.79 34875.56 35088.23 34561.22 35194.48 34671.43 34782.92 32389.87 351
MIMVSNet88.50 28586.76 29393.72 22994.84 26787.77 24291.39 33494.05 32986.41 27587.99 27592.59 31363.27 34795.82 33577.44 32492.84 20397.57 182
FPMVS71.27 32569.85 32775.50 34074.64 36159.03 36391.30 33591.50 35158.80 35757.92 35988.28 34429.98 36585.53 35953.43 35882.84 32481.95 355
KD-MVS_2432*160084.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
miper_refine_blended84.81 31482.64 31791.31 30191.07 33985.34 28691.22 33695.75 27285.56 28783.09 32890.21 33567.21 33495.89 33177.18 32862.48 35692.69 332
gg-mvs-nofinetune87.82 29185.61 30094.44 19594.46 28289.27 20391.21 33884.61 36280.88 33289.89 22374.98 35671.50 30997.53 29185.75 26197.21 13696.51 207
ADS-MVSNet289.45 27288.59 27492.03 28295.86 21082.26 31890.93 33994.32 32683.23 31891.28 19091.81 32679.01 25395.99 33079.52 31391.39 22797.84 165
ADS-MVSNet89.89 26788.68 27393.53 23895.86 21084.89 29390.93 33995.07 30383.23 31891.28 19091.81 32679.01 25397.85 26179.52 31391.39 22797.84 165
UnsupCasMVSNet_bld82.13 32179.46 32490.14 31988.00 35482.47 31590.89 34196.62 24278.94 34275.61 34884.40 35256.63 35696.31 32777.30 32766.77 35491.63 344
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 33990.55 34295.60 27983.76 31283.00 33089.95 33771.09 31297.97 24582.75 29260.79 35895.31 260
CHOSEN 280x42093.12 14992.72 14594.34 20196.71 16987.27 24890.29 34397.72 12386.61 27391.34 18495.29 22384.29 15798.41 19593.25 12098.94 8897.35 187
CR-MVSNet90.82 24389.77 25493.95 21794.45 28387.19 25290.23 34495.68 27786.89 26892.40 16092.36 31980.91 21797.05 31281.09 30693.95 19297.60 179
RPMNet88.98 27687.05 29194.77 18494.45 28387.19 25290.23 34498.03 8477.87 34792.40 16087.55 34980.17 23199.51 9468.84 35293.95 19297.60 179
LCM-MVSNet72.55 32469.39 32882.03 33670.81 36665.42 36190.12 34694.36 32555.02 35865.88 35581.72 35324.16 36989.96 35574.32 33968.10 35390.71 350
Patchmtry88.64 28487.25 28792.78 26794.09 29386.64 26389.82 34795.68 27780.81 33487.63 28192.36 31980.91 21797.03 31378.86 31985.12 29594.67 300
PatchT88.87 28087.42 28593.22 25294.08 29485.10 28989.51 34894.64 31881.92 32592.36 16388.15 34680.05 23397.01 31672.43 34493.65 19597.54 183
JIA-IIPM88.26 28887.04 29291.91 28493.52 30981.42 32289.38 34994.38 32380.84 33390.93 19680.74 35479.22 24797.92 25582.76 29191.62 22296.38 211
Patchmatch-test89.42 27387.99 28093.70 23095.27 24285.11 28888.98 35094.37 32481.11 33087.10 29193.69 29382.28 19697.50 29474.37 33894.76 18098.48 130
MVS-HIRNet82.47 32081.21 32286.26 33595.38 23069.21 35888.96 35189.49 35666.28 35480.79 33674.08 35868.48 32797.39 30371.93 34695.47 16792.18 341
Patchmatch-RL test87.38 29486.24 29590.81 30988.74 35278.40 34688.12 35293.17 33887.11 26582.17 33289.29 34181.95 20395.60 33888.64 20677.02 33998.41 139
PMMVS270.19 32666.92 32980.01 33776.35 36065.67 36086.22 35387.58 35964.83 35662.38 35880.29 35526.78 36788.49 35763.79 35554.07 35985.88 353
ambc86.56 33483.60 35770.00 35785.69 35494.97 30780.60 33888.45 34237.42 36296.84 32182.69 29375.44 34392.86 330
ANet_high63.94 32959.58 33277.02 33961.24 36866.06 35985.66 35587.93 35878.53 34442.94 36271.04 35925.42 36880.71 36152.60 35930.83 36284.28 354
EMVS52.08 33351.31 33654.39 34772.62 36445.39 36883.84 35675.51 36741.13 36240.77 36459.65 36330.08 36473.60 36428.31 36429.90 36344.18 361
E-PMN53.28 33152.56 33555.43 34674.43 36247.13 36683.63 35776.30 36642.23 36142.59 36362.22 36228.57 36674.40 36331.53 36331.51 36144.78 360
PMVScopyleft53.92 2258.58 33055.40 33368.12 34451.00 36948.64 36578.86 35887.10 36146.77 36035.84 36674.28 3578.76 37086.34 35842.07 36173.91 34669.38 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 33453.82 33446.29 34833.73 37045.30 36978.32 35967.24 36918.02 36550.93 36187.05 35152.99 35753.11 36670.76 35025.29 36440.46 362
MVEpermissive50.73 2353.25 33248.81 33766.58 34565.34 36757.50 36472.49 36070.94 36840.15 36339.28 36563.51 3616.89 37273.48 36538.29 36242.38 36068.76 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 32765.41 33075.18 34192.66 32773.45 35366.50 36194.52 32053.33 35957.80 36066.07 36030.81 36389.20 35648.15 36078.88 33762.90 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 32864.89 33169.79 34372.62 36435.23 37165.19 36292.83 34120.35 36465.20 35688.08 34743.14 36182.70 36073.12 34363.46 35591.45 348
wuyk23d25.11 33524.57 33926.74 34973.98 36339.89 37057.88 3639.80 37112.27 36610.39 3676.97 3697.03 37136.44 36725.43 36517.39 3653.89 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.24 33630.99 3380.00 3520.00 3730.00 3740.00 36497.63 1350.00 3690.00 37096.88 13784.38 1540.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.39 3409.85 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37088.65 960.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.06 33910.74 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37096.69 1470.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.05 4194.59 2898.08 6489.22 20097.03 4798.10 6092.52 3299.65 5394.58 9399.31 55
IU-MVS99.42 695.39 997.94 10290.40 17498.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
GSMVS98.45 133
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18598.45 133
sam_mvs81.94 204
MTGPAbinary98.08 64
test_post17.58 36781.76 20698.08 228
patchmatchnet-post90.45 33482.65 18998.10 223
gm-plane-assit93.22 31778.89 34584.82 29993.52 29998.64 17587.72 218
test9_res94.81 8799.38 4899.45 45
agg_prior293.94 10499.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9799.57 79
TestCases93.98 21397.94 11186.64 26395.54 28285.38 28985.49 30796.77 14070.28 31899.15 12980.02 31192.87 20196.15 217
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
新几何197.32 5698.60 6893.59 6197.75 11681.58 32895.75 9497.85 7890.04 8299.67 4986.50 24699.13 7598.69 116
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8599.16 70
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25895.22 10997.68 9190.25 7799.54 8687.95 21499.12 7898.49 128
testdata299.67 4985.96 258
segment_acmp92.89 22
testdata95.46 15598.18 10288.90 21297.66 13182.73 32197.03 4798.07 6390.06 8198.85 15789.67 18198.98 8698.64 118
test1297.65 4498.46 7494.26 3797.66 13195.52 10690.89 6999.46 10199.25 6599.22 67
plane_prior796.21 19589.98 174
plane_prior696.10 20590.00 17081.32 212
plane_prior597.51 14798.60 18093.02 12492.23 21195.86 226
plane_prior496.64 150
plane_prior390.00 17094.46 4191.34 184
plane_prior196.14 203
n20.00 374
nn0.00 374
door-mid91.06 353
lessismore_v090.45 31591.96 33579.09 34487.19 36080.32 34094.39 26266.31 33997.55 28884.00 28176.84 34094.70 299
LGP-MVS_train94.10 20796.16 20088.26 22797.46 15491.29 14390.12 21497.16 12379.05 24998.73 16792.25 13291.89 21995.31 260
test1197.88 105
door91.13 352
HQP5-MVS89.33 198
BP-MVS92.13 136
HQP4-MVS90.14 20898.50 18995.78 233
HQP3-MVS97.39 17092.10 216
HQP2-MVS80.95 215
NP-MVS95.99 20989.81 17995.87 192
ACMMP++_ref90.30 244
ACMMP++91.02 233
Test By Simon88.73 95
ITE_SJBPF92.43 27495.34 23585.37 28595.92 26591.47 13587.75 27996.39 16971.00 31397.96 24982.36 29589.86 24893.97 318
DeepMVS_CXcopyleft74.68 34290.84 34164.34 36281.61 36565.34 35567.47 35488.01 34848.60 35980.13 36262.33 35773.68 34779.58 356