This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12195.36 6799.59 1599.56 22
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13198.35 1995.16 1598.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9597.97 9995.59 496.61 5797.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12298.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16798.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1699.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9198.19 4492.82 9597.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2398.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13998.07 7093.54 6696.08 7897.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10798.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15795.34 1398.48 1597.87 10894.65 3788.53 25798.02 6783.69 16099.71 3893.18 11898.96 8599.44 47
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12997.90 2198.37 3692.61 2999.66 5295.59 6399.51 2999.43 49
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11498.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5099.17 7299.56 22
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3398.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14198.21 4088.16 23296.64 5697.70 8991.18 6399.67 4992.44 12699.47 3699.48 41
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14998.05 8089.85 18197.26 3598.22 5691.80 4799.69 4494.84 8199.28 5999.27 66
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9897.59 2498.20 5791.96 4499.86 894.21 9499.25 6599.63 11
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26497.62 13490.43 17095.55 10097.07 12691.72 4899.50 9789.62 18098.94 8698.82 106
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13198.01 1898.32 4692.33 3599.58 7194.85 8099.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15298.06 7390.67 15895.55 10098.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13798.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12498.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10296.39 6998.18 5891.61 5299.88 495.59 6399.55 2199.57 19
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14497.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7697.18 3898.29 5092.08 3999.83 2295.63 5899.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10397.18 3898.29 5092.08 3999.83 2295.12 7299.59 1599.54 29
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9996.70 5198.06 6491.35 5999.86 894.83 8299.28 5999.47 44
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5998.29 5091.70 5099.80 2795.66 5399.40 4599.62 13
X-MVStestdata91.71 19589.67 25497.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5932.69 35991.70 5099.80 2795.66 5399.40 4599.62 13
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7697.15 4098.33 4491.35 5999.86 895.63 5899.59 1599.62 13
alignmvs95.87 6995.23 7897.78 3397.56 13495.19 1897.86 5997.17 18694.39 4296.47 6596.40 16585.89 13399.20 12396.21 3795.11 17298.95 93
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10698.04 8194.81 3096.59 5998.37 3691.24 6199.64 6195.16 7099.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7997.14 4198.34 4191.59 5499.87 795.46 6699.59 1599.64 10
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20797.88 10686.98 26296.65 5597.89 7291.99 4399.47 10092.26 12799.46 3899.39 54
canonicalmvs96.02 6495.45 7197.75 3797.59 13295.15 2198.28 2597.60 13594.52 3996.27 7296.12 17687.65 10799.18 12696.20 3894.82 17698.91 97
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19998.02 8888.58 21896.03 7997.56 10592.73 2599.59 6895.04 7499.37 5299.39 54
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7195.54 10298.34 4190.59 7599.88 494.83 8299.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17997.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5898.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16498.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 11097.14 4198.44 2891.17 6499.85 1494.35 9299.46 3899.57 19
test1297.65 4498.46 7494.26 3797.66 12995.52 10390.89 6999.46 10199.25 6599.22 67
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7595.95 8598.33 4491.04 6699.88 495.20 6999.57 2099.60 16
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8596.45 6798.30 4991.90 4599.85 1495.61 6099.68 499.54 29
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21598.00 9388.76 21595.68 9497.55 10792.70 2799.57 7995.01 7599.32 5399.32 60
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16497.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1699.29 5799.55 26
CANet96.39 5596.02 5997.50 5097.62 12993.38 6797.02 14497.96 10095.42 794.86 11197.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5797.45 2898.48 2591.43 5699.59 6896.22 3399.27 6199.54 29
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17493.36 6998.65 698.36 1694.12 4789.25 24198.06 6482.20 19499.77 2993.41 11499.32 5399.18 69
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14796.40 6897.99 6990.99 6799.58 7195.61 6099.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14198.08 6488.35 22595.09 10997.65 9489.97 8399.48 9992.08 13698.59 9798.44 135
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22897.73 11981.56 32595.68 9497.85 7890.23 7899.65 5387.68 22099.12 7898.73 111
新几何197.32 5698.60 6893.59 6197.75 11781.58 32495.75 9197.85 7890.04 8299.67 4986.50 24299.13 7598.69 115
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23498.18 4695.23 1295.87 8697.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 12098.06 7393.92 5193.38 14098.66 1286.83 12099.73 3295.60 6299.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8594.56 11598.39 3588.96 8999.85 1494.57 9197.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16896.72 22594.17 4697.44 2997.66 9392.76 2399.33 11496.86 1397.76 11899.08 80
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15298.01 9195.12 1897.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20798.00 9392.80 9696.03 7997.59 10192.01 4199.41 10795.01 7599.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16796.77 4998.35 3890.21 7999.53 8994.80 8599.63 1299.38 56
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9898.15 5193.87 5297.52 2597.61 10085.29 14099.53 8995.81 5195.27 16899.16 70
UA-Net95.95 6795.53 6797.20 6697.67 12692.98 7897.65 8498.13 5494.81 3096.61 5798.35 3888.87 9099.51 9490.36 16697.35 12999.11 78
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5697.35 3398.53 2191.40 5799.56 8196.30 2999.30 5699.55 26
EPNet95.20 8694.56 9397.14 6892.80 32092.68 8497.85 6294.87 31096.64 192.46 15697.80 8486.23 12799.65 5393.72 10798.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8297.44 2998.55 1990.93 6899.55 8496.06 4199.25 6599.51 34
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2291.40 5799.56 8196.05 4299.26 6399.43 49
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2999.01 398.55 1994.18 1197.41 29896.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15297.76 11695.01 2297.08 4698.42 3191.71 4999.54 8696.80 1499.13 7599.48 41
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22298.90 294.30 4595.86 8797.74 8792.33 3599.38 11296.04 4499.42 4399.28 65
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7497.22 3798.42 3187.93 10399.72 3595.10 7399.07 8099.02 83
QAPM93.45 13692.27 15796.98 7496.77 16492.62 8798.39 1998.12 5684.50 29988.27 26397.77 8582.39 19199.81 2685.40 26198.81 8998.51 124
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19097.35 17490.61 16494.64 11496.93 13086.41 12699.39 11091.20 15694.71 18098.94 94
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24395.17 10798.03 6687.09 11899.61 6293.51 11099.42 4399.02 83
sss94.51 10493.80 10896.64 7897.07 14891.97 11096.32 21198.06 7388.94 20594.50 11696.78 13784.60 14899.27 11991.90 13796.02 15398.68 116
ab-mvs93.57 13392.55 14796.64 7897.28 13891.96 11195.40 25697.45 15889.81 18393.22 14696.28 17079.62 23899.46 10190.74 16193.11 19798.50 125
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15997.73 11994.74 3496.49 6398.49 2490.88 7099.58 7196.44 2798.32 10299.13 74
114514_t93.95 12093.06 13196.63 8099.07 3991.61 11797.46 10597.96 10077.99 34193.00 14897.57 10386.14 13299.33 11489.22 19199.15 7398.94 94
HY-MVS89.66 993.87 12292.95 13396.63 8097.10 14792.49 9195.64 24896.64 23489.05 20093.00 14895.79 19585.77 13699.45 10389.16 19594.35 18297.96 156
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3697.24 3698.41 3492.31 3798.94 15196.61 2199.46 3898.96 91
CANet_DTU94.37 10593.65 11396.55 8496.46 18192.13 10496.21 22196.67 23394.38 4393.53 13697.03 12879.34 24199.71 3890.76 16098.45 10097.82 167
LFMVS93.60 13192.63 14396.52 8598.13 10491.27 13097.94 5493.39 33390.57 16796.29 7198.31 4769.00 32099.16 12894.18 9695.87 15799.12 77
DP-MVS92.76 16391.51 18296.52 8598.77 5790.99 14297.38 11296.08 25882.38 31889.29 23897.87 7583.77 15999.69 4481.37 30096.69 14598.89 100
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19096.88 21690.13 17591.91 17197.24 11885.21 14199.09 13787.64 22397.83 11497.92 159
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14291.58 12098.26 2798.12 5694.38 4394.90 11098.15 5982.28 19298.92 15291.45 15198.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8197.47 15088.13 23493.00 14895.84 18984.86 14699.51 9487.99 21098.17 10797.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12795.55 25097.71 12688.99 20292.34 16295.82 19189.19 8699.11 13386.14 24897.38 12798.90 98
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16097.72 12294.67 3596.16 7598.46 2690.43 7699.58 7196.23 3297.96 11298.90 98
LS3D93.57 13392.61 14596.47 9197.59 13291.61 11797.67 8197.72 12285.17 28990.29 20198.34 4184.60 14899.73 3283.85 28098.27 10398.06 155
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20193.97 12797.57 10392.62 2899.76 3094.66 8899.27 6199.15 72
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
ETV-MVS96.02 6495.89 6296.40 9697.16 14392.44 9297.47 10397.77 11594.55 3896.48 6494.51 25191.23 6298.92 15295.65 5698.19 10597.82 167
OpenMVScopyleft89.19 1292.86 15891.68 17496.40 9695.34 23192.73 8398.27 2698.12 5684.86 29485.78 30097.75 8678.89 25299.74 3187.50 22798.65 9596.73 199
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 22098.79 493.99 5095.80 8997.65 9489.92 8499.24 12195.87 4799.20 7098.58 118
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25495.22 10697.68 9190.25 7799.54 8687.95 21199.12 7898.49 127
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12298.25 3390.21 17294.18 12297.27 11687.48 11299.73 3293.53 10997.77 11798.55 119
Effi-MVS+94.93 9494.45 9996.36 10196.61 16891.47 12396.41 19997.41 16791.02 15294.50 11695.92 18587.53 11098.78 16393.89 10396.81 14098.84 105
PCF-MVS89.48 1191.56 20289.95 24296.36 10196.60 16992.52 9092.51 32697.26 18079.41 33688.90 24596.56 15684.04 15799.55 8477.01 32697.30 13197.01 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UGNet94.04 11893.28 12896.31 10396.85 15891.19 13697.88 5897.68 12794.40 4193.00 14896.18 17373.39 30099.61 6291.72 14298.46 9998.13 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22897.48 14793.47 6995.67 9798.10 6089.17 8799.25 12091.27 15498.77 9099.13 74
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19097.81 11489.87 17892.15 16697.06 12783.62 16299.54 8689.34 18698.07 10997.70 171
lupinMVS94.99 9394.56 9396.29 10696.34 18791.21 13395.83 24096.27 25088.93 20696.22 7396.88 13586.20 13098.85 15895.27 6899.05 8198.82 106
nrg03094.05 11793.31 12796.27 10795.22 24294.59 2898.34 2097.46 15292.93 9291.21 18996.64 14787.23 11798.22 20494.99 7885.80 28195.98 220
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12497.73 11991.80 12492.93 15396.62 15489.13 8899.14 13189.21 19297.78 11698.97 90
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19797.57 13992.04 11994.77 11397.96 7187.01 11999.09 13791.31 15396.77 14198.36 142
CS-MVS95.80 7095.65 6696.24 11097.32 13791.43 12698.10 3997.91 10393.38 7095.16 10894.57 24990.21 7998.98 14895.53 6598.67 9498.30 145
1112_ss93.37 13792.42 15396.21 11197.05 15390.99 14296.31 21296.72 22586.87 26589.83 22096.69 14486.51 12499.14 13188.12 20893.67 19198.50 125
jason94.84 9894.39 10196.18 11295.52 22090.93 14696.09 22696.52 24189.28 19496.01 8397.32 11484.70 14798.77 16595.15 7198.91 8898.85 103
jason: jason.
PLCcopyleft91.00 694.11 11493.43 12396.13 11398.58 7191.15 14096.69 17897.39 16887.29 25791.37 17996.71 14088.39 9899.52 9387.33 23097.13 13797.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs95.64 7395.49 6996.08 11496.76 16690.45 16097.29 12197.44 16294.00 4995.46 10497.98 7087.52 11198.73 16895.64 5797.33 13099.08 80
baseline95.58 7595.42 7396.08 11496.78 16390.41 16297.16 13597.45 15893.69 6195.65 9897.85 7887.29 11598.68 17395.66 5397.25 13399.13 74
CHOSEN 1792x268894.15 11093.51 11996.06 11698.27 8989.38 19295.18 26898.48 1485.60 28293.76 13197.11 12483.15 16999.61 6291.33 15298.72 9299.19 68
IS-MVSNet94.90 9594.52 9696.05 11797.67 12690.56 15698.44 1696.22 25393.21 7693.99 12597.74 8785.55 13898.45 19189.98 16997.86 11399.14 73
hse-mvs394.15 11093.52 11896.04 11897.81 11990.22 16597.62 9097.58 13895.19 1496.74 5097.45 10983.67 16199.61 6295.85 4979.73 32998.29 146
VDD-MVS93.82 12493.08 13096.02 11997.88 11689.96 17497.72 7695.85 26592.43 10595.86 8798.44 2868.42 32499.39 11096.31 2894.85 17498.71 114
VDDNet93.05 14892.07 16096.02 11996.84 15990.39 16398.08 4295.85 26586.22 27495.79 9098.46 2667.59 32799.19 12494.92 7994.85 17498.47 130
MVSFormer95.37 7995.16 8095.99 12196.34 18791.21 13398.22 3297.57 13991.42 13596.22 7397.32 11486.20 13097.92 25194.07 9799.05 8198.85 103
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19491.46 12496.33 21097.04 20188.97 20493.56 13396.51 15887.55 10997.89 25589.80 17495.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_MVS93.21 14292.32 15695.91 12394.92 25794.15 4396.92 15696.86 21991.42 13591.28 18696.43 16279.66 23798.10 21993.29 11690.06 24295.46 244
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6697.48 14789.19 19794.81 11296.71 14088.84 9199.17 12788.91 19898.76 9196.53 202
HyFIR lowres test93.66 12992.92 13495.87 12598.24 9389.88 17594.58 27698.49 1285.06 29193.78 13095.78 19682.86 17898.67 17491.77 14195.71 16299.07 82
Test_1112_low_res92.84 16091.84 16995.85 12697.04 15489.97 17395.53 25296.64 23485.38 28589.65 22695.18 22285.86 13499.10 13487.70 21793.58 19698.49 127
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 18995.47 25498.36 1688.84 20994.36 11896.09 18088.02 10099.58 7193.44 11298.18 10698.40 138
Anonymous20240521192.07 18790.83 20695.76 12898.19 10088.75 21197.58 9295.00 30186.00 27793.64 13297.45 10966.24 33699.53 8990.68 16392.71 20199.01 87
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18298.67 597.00 20590.69 15794.24 12197.62 9989.79 8598.81 16193.39 11596.49 14998.92 96
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
Anonymous2024052991.98 18990.73 21095.73 13398.14 10389.40 19197.99 4797.72 12279.63 33593.54 13597.41 11269.94 31899.56 8191.04 15791.11 22898.22 147
EIA-MVS95.53 7795.47 7095.71 13497.06 15189.63 17897.82 6497.87 10893.57 6293.92 12895.04 22790.61 7498.95 15094.62 8998.68 9398.54 120
MVS_Test94.89 9694.62 9195.68 13596.83 16189.55 18396.70 17697.17 18691.17 14795.60 9996.11 17987.87 10498.76 16693.01 12397.17 13698.72 112
TAMVS94.01 11993.46 12195.64 13696.16 19690.45 16096.71 17596.89 21589.27 19593.46 13896.92 13387.29 11597.94 24888.70 20295.74 16098.53 121
ET-MVSNet_ETH3D91.49 20790.11 23695.63 13796.40 18491.57 12195.34 25893.48 33190.60 16675.58 34595.49 21380.08 22896.79 31894.25 9389.76 24698.52 122
diffmvs95.25 8395.13 8195.63 13796.43 18389.34 19495.99 23397.35 17492.83 9496.31 7097.37 11386.44 12598.67 17496.26 3097.19 13598.87 102
UniMVSNet (Re)93.31 13992.55 14795.61 13995.39 22593.34 7097.39 11098.71 593.14 8190.10 21294.83 23687.71 10598.03 23491.67 14783.99 30895.46 244
Fast-Effi-MVS+93.46 13592.75 13995.59 14096.77 16490.03 16796.81 16797.13 18988.19 22891.30 18394.27 26786.21 12998.63 17787.66 22296.46 15198.12 151
PatchMatch-RL92.90 15692.02 16395.56 14198.19 10090.80 15095.27 26497.18 18487.96 23691.86 17395.68 20380.44 22198.99 14784.01 27697.54 12196.89 194
TAPA-MVS90.10 792.30 17691.22 19395.56 14198.33 8589.60 18096.79 16897.65 13181.83 32291.52 17697.23 11987.94 10298.91 15471.31 34398.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline192.82 16191.90 16795.55 14397.20 14190.77 15297.19 13294.58 31592.20 11292.36 16096.34 16884.16 15598.21 20589.20 19383.90 31297.68 172
NR-MVSNet92.34 17391.27 19095.53 14494.95 25593.05 7597.39 11098.07 7092.65 10184.46 31195.71 20085.00 14497.77 26789.71 17683.52 31595.78 229
test_part192.21 18391.10 19795.51 14597.80 12092.66 8598.02 4697.68 12789.79 18488.80 25196.02 18176.85 27598.18 21090.86 15884.11 30795.69 236
MVS91.71 19590.44 22095.51 14595.20 24491.59 11996.04 22897.45 15873.44 34887.36 28295.60 20685.42 13999.10 13485.97 25397.46 12295.83 226
VPA-MVSNet93.24 14192.48 15295.51 14595.70 21492.39 9397.86 5998.66 992.30 10892.09 16995.37 21680.49 22098.40 19393.95 10085.86 28095.75 233
thisisatest053093.03 14992.21 15895.49 14897.07 14889.11 20597.49 10292.19 34090.16 17494.09 12396.41 16476.43 28099.05 14390.38 16595.68 16398.31 144
PS-MVSNAJ95.37 7995.33 7695.49 14897.35 13690.66 15595.31 26197.48 14793.85 5396.51 6295.70 20288.65 9499.65 5394.80 8598.27 10396.17 211
DU-MVS92.90 15692.04 16195.49 14894.95 25592.83 8097.16 13598.24 3493.02 8490.13 20895.71 20083.47 16397.85 25791.71 14383.93 30995.78 229
UniMVSNet_NR-MVSNet93.37 13792.67 14295.47 15195.34 23192.83 8097.17 13498.58 1092.98 9090.13 20895.80 19288.37 9997.85 25791.71 14383.93 30995.73 235
testdata95.46 15298.18 10288.90 20997.66 12982.73 31797.03 4798.07 6390.06 8198.85 15889.67 17898.98 8498.64 117
xiu_mvs_v2_base95.32 8195.29 7795.40 15397.22 13990.50 15895.44 25597.44 16293.70 6096.46 6696.18 17388.59 9799.53 8994.79 8797.81 11596.17 211
F-COLMAP93.58 13292.98 13295.37 15498.40 7888.98 20797.18 13397.29 17987.75 24690.49 19697.10 12585.21 14199.50 9786.70 23996.72 14497.63 173
FIs94.09 11593.70 11095.27 15595.70 21492.03 10798.10 3998.68 793.36 7390.39 19996.70 14287.63 10897.94 24892.25 12990.50 23995.84 225
thisisatest051592.29 17791.30 18895.25 15696.60 16988.90 20994.36 28592.32 33987.92 23793.43 13994.57 24977.28 27399.00 14689.42 18495.86 15897.86 163
PAPM91.52 20690.30 22695.20 15795.30 23789.83 17693.38 31296.85 22086.26 27388.59 25595.80 19284.88 14598.15 21375.67 33095.93 15697.63 173
thres600view792.49 16891.60 17695.18 15897.91 11489.47 18797.65 8494.66 31292.18 11693.33 14194.91 23178.06 26699.10 13481.61 29494.06 18896.98 189
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15998.09 10586.63 26296.00 23298.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1799.48 3599.45 45
131492.81 16292.03 16295.14 16095.33 23489.52 18696.04 22897.44 16287.72 24786.25 29795.33 21783.84 15898.79 16289.26 18997.05 13897.11 187
TranMVSNet+NR-MVSNet92.50 16691.63 17595.14 16094.76 26692.07 10597.53 9698.11 5992.90 9389.56 22996.12 17683.16 16897.60 28189.30 18783.20 31895.75 233
thres40092.42 17091.52 18095.12 16297.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.98 189
FC-MVSNet-test93.94 12193.57 11495.04 16395.48 22291.45 12598.12 3898.71 593.37 7190.23 20296.70 14287.66 10697.85 25791.49 14990.39 24095.83 226
FMVSNet391.78 19390.69 21295.03 16496.53 17692.27 9997.02 14496.93 20989.79 18489.35 23594.65 24677.01 27497.47 29286.12 24988.82 25295.35 254
VPNet92.23 18191.31 18794.99 16595.56 21890.96 14497.22 13097.86 11192.96 9190.96 19196.62 15475.06 28898.20 20791.90 13783.65 31495.80 228
FMVSNet291.31 21890.08 23794.99 16596.51 17792.21 10097.41 10696.95 20788.82 21188.62 25494.75 24073.87 29497.42 29785.20 26488.55 25795.35 254
thres100view90092.43 16991.58 17794.98 16797.92 11389.37 19397.71 7894.66 31292.20 11293.31 14294.90 23278.06 26699.08 13981.40 29794.08 18596.48 205
BH-RMVSNet92.72 16491.97 16594.97 16897.16 14387.99 23296.15 22495.60 27590.62 16391.87 17297.15 12378.41 25998.57 18383.16 28297.60 12098.36 142
MSDG91.42 21090.24 23094.96 16997.15 14588.91 20893.69 30596.32 24885.72 28186.93 29196.47 16080.24 22598.98 14880.57 30395.05 17396.98 189
tfpn200view992.38 17291.52 18094.95 17097.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.48 205
XXY-MVS92.16 18491.23 19294.95 17094.75 26790.94 14597.47 10397.43 16589.14 19888.90 24596.43 16279.71 23598.24 20289.56 18187.68 26395.67 238
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17097.61 13087.92 23398.10 3995.80 26792.22 11093.02 14797.45 10984.53 15097.91 25488.24 20697.97 11199.02 83
tttt051792.96 15292.33 15594.87 17397.11 14687.16 25097.97 5292.09 34190.63 16293.88 12997.01 12976.50 27799.06 14290.29 16895.45 16598.38 140
OPM-MVS93.28 14092.76 13794.82 17494.63 27390.77 15296.65 18197.18 18493.72 5891.68 17497.26 11779.33 24298.63 17792.13 13392.28 20795.07 268
HQP_MVS93.78 12693.43 12394.82 17496.21 19189.99 17097.74 7197.51 14594.85 2591.34 18096.64 14781.32 20898.60 18093.02 12192.23 20895.86 222
AUN-MVS91.76 19490.75 20994.81 17697.00 15588.57 21596.65 18196.49 24289.63 18692.15 16696.12 17678.66 25498.50 18790.83 15979.18 33297.36 184
XVG-OURS-SEG-HR93.86 12393.55 11594.81 17697.06 15188.53 21795.28 26297.45 15891.68 12794.08 12497.68 9182.41 19098.90 15593.84 10592.47 20596.98 189
XVG-OURS93.72 12893.35 12694.80 17897.07 14888.61 21494.79 27297.46 15291.97 12293.99 12597.86 7781.74 20398.88 15792.64 12592.67 20396.92 193
IB-MVS87.33 1789.91 26288.28 27494.79 17995.26 24187.70 23995.12 27093.95 32889.35 19387.03 28892.49 31070.74 31199.19 12489.18 19481.37 32597.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.34 17391.53 17994.77 18095.13 24790.83 14996.40 20297.98 9891.88 12389.29 23895.54 21182.50 18797.80 26289.79 17585.27 28995.69 236
RPMNet88.98 27287.05 28794.77 18094.45 27987.19 24890.23 34098.03 8477.87 34392.40 15787.55 34480.17 22799.51 9468.84 34793.95 18997.60 178
thres20092.23 18191.39 18394.75 18297.61 13089.03 20696.60 18995.09 29892.08 11893.28 14394.00 27978.39 26099.04 14581.26 30194.18 18496.19 210
UniMVSNet_ETH3D91.34 21790.22 23394.68 18394.86 26287.86 23697.23 12997.46 15287.99 23589.90 21796.92 13366.35 33498.23 20390.30 16790.99 23197.96 156
GA-MVS91.38 21290.31 22594.59 18494.65 27187.62 24094.34 28696.19 25590.73 15690.35 20093.83 28371.84 30397.96 24587.22 23293.61 19498.21 148
GBi-Net91.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
test191.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
FMVSNet189.88 26488.31 27394.59 18495.41 22491.18 13797.50 9896.93 20986.62 26887.41 28094.51 25165.94 33897.29 30483.04 28487.43 26695.31 256
cascas91.20 22390.08 23794.58 18894.97 25389.16 20493.65 30797.59 13779.90 33489.40 23392.92 30475.36 28798.36 19692.14 13294.75 17896.23 208
HQP-MVS93.19 14492.74 14094.54 18995.86 20689.33 19596.65 18197.39 16893.55 6390.14 20495.87 18780.95 21198.50 18792.13 13392.10 21395.78 229
PVSNet_BlendedMVS94.06 11693.92 10594.47 19098.27 8989.46 18996.73 17298.36 1690.17 17394.36 11895.24 22188.02 10099.58 7193.44 11290.72 23594.36 304
gg-mvs-nofinetune87.82 28785.61 29694.44 19194.46 27889.27 20091.21 33484.61 35780.88 32889.89 21974.98 35171.50 30597.53 28785.75 25797.21 13496.51 203
bset_n11_16_dypcd91.55 20390.59 21594.44 19191.51 33290.25 16492.70 32393.42 33292.27 10990.22 20394.74 24178.42 25897.80 26294.19 9587.86 26295.29 263
PS-MVSNAJss93.74 12793.51 11994.44 19193.91 29489.28 19997.75 7097.56 14292.50 10489.94 21696.54 15788.65 9498.18 21093.83 10690.90 23395.86 222
PMMVS92.86 15892.34 15494.42 19494.92 25786.73 25894.53 27896.38 24684.78 29694.27 12095.12 22683.13 17098.40 19391.47 15096.49 14998.12 151
MVSTER93.20 14392.81 13694.37 19596.56 17489.59 18197.06 14097.12 19091.24 14491.30 18395.96 18382.02 19798.05 23093.48 11190.55 23795.47 243
ACMM89.79 892.96 15292.50 15194.35 19696.30 18988.71 21297.58 9297.36 17391.40 13890.53 19596.65 14679.77 23498.75 16791.24 15591.64 21895.59 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42093.12 14592.72 14194.34 19796.71 16787.27 24490.29 33997.72 12286.61 26991.34 18095.29 21884.29 15498.41 19293.25 11798.94 8697.35 185
CLD-MVS92.98 15192.53 14994.32 19896.12 20089.20 20195.28 26297.47 15092.66 10089.90 21795.62 20580.58 21898.40 19392.73 12492.40 20695.38 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121190.63 24789.42 25894.27 19998.24 9389.19 20398.05 4497.89 10479.95 33388.25 26494.96 22872.56 30198.13 21489.70 17785.14 29195.49 240
LTVRE_ROB88.41 1390.99 23289.92 24394.19 20096.18 19489.55 18396.31 21297.09 19487.88 23985.67 30195.91 18678.79 25398.57 18381.50 29589.98 24394.44 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs490.93 23689.85 24694.17 20193.34 31190.79 15194.60 27596.02 25984.62 29787.45 27895.15 22381.88 20197.45 29487.70 21787.87 26194.27 309
TR-MVS91.48 20890.59 21594.16 20296.40 18487.33 24295.67 24595.34 28787.68 24891.46 17795.52 21276.77 27698.35 19782.85 28693.61 19496.79 198
LPG-MVS_test92.94 15492.56 14694.10 20396.16 19688.26 22397.65 8497.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
LGP-MVS_train94.10 20396.16 19688.26 22397.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
mvs_anonymous93.82 12493.74 10994.06 20596.44 18285.41 28095.81 24197.05 19989.85 18190.09 21396.36 16787.44 11397.75 26893.97 9996.69 14599.02 83
ACMP89.59 1092.62 16592.14 15994.05 20696.40 18488.20 22697.36 11397.25 18291.52 13088.30 26196.64 14778.46 25798.72 17191.86 14091.48 22295.23 264
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax92.42 17091.89 16894.03 20793.33 31288.50 21897.73 7397.53 14392.00 12188.85 24896.50 15975.62 28698.11 21893.88 10491.56 22195.48 241
test_djsdf93.07 14792.76 13794.00 20893.49 30788.70 21398.22 3297.57 13991.42 13590.08 21495.55 21082.85 17997.92 25194.07 9791.58 22095.40 250
AllTest90.23 25688.98 26593.98 20997.94 11186.64 25996.51 19495.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
TestCases93.98 20997.94 11186.64 25995.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
anonymousdsp92.16 18491.55 17893.97 21192.58 32489.55 18397.51 9797.42 16689.42 19188.40 25894.84 23580.66 21797.88 25691.87 13991.28 22694.48 300
pm-mvs190.72 24489.65 25693.96 21294.29 28689.63 17897.79 6796.82 22289.07 19986.12 29995.48 21478.61 25597.78 26586.97 23781.67 32394.46 301
WR-MVS_H92.00 18891.35 18493.95 21395.09 24989.47 18798.04 4598.68 791.46 13388.34 25994.68 24485.86 13497.56 28385.77 25684.24 30594.82 285
CR-MVSNet90.82 23989.77 25093.95 21394.45 27987.19 24890.23 34095.68 27386.89 26492.40 15792.36 31580.91 21397.05 30881.09 30293.95 18997.60 178
mvs_tets92.31 17591.76 17093.94 21593.41 30988.29 22197.63 8997.53 14392.04 11988.76 25296.45 16174.62 29098.09 22393.91 10291.48 22295.45 246
baseline291.63 19890.86 20293.94 21594.33 28386.32 26595.92 23691.64 34589.37 19286.94 29094.69 24381.62 20598.69 17288.64 20394.57 18196.81 197
BH-untuned92.94 15492.62 14493.92 21797.22 13986.16 27196.40 20296.25 25290.06 17689.79 22196.17 17583.19 16798.35 19787.19 23397.27 13297.24 186
ACMH87.59 1690.53 24989.42 25893.87 21896.21 19187.92 23397.24 12496.94 20888.45 22283.91 32096.27 17171.92 30298.62 17984.43 27389.43 24895.05 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SCA91.84 19291.18 19593.83 21995.59 21684.95 28894.72 27395.58 27790.82 15392.25 16493.69 28975.80 28398.10 21986.20 24695.98 15498.45 132
CP-MVSNet91.89 19191.24 19193.82 22095.05 25088.57 21597.82 6498.19 4491.70 12688.21 26595.76 19781.96 19897.52 28987.86 21284.65 29895.37 253
v2v48291.59 19990.85 20493.80 22193.87 29688.17 22896.94 15596.88 21689.54 18789.53 23094.90 23281.70 20498.02 23589.25 19085.04 29595.20 265
COLMAP_ROBcopyleft87.81 1590.40 25289.28 26193.79 22297.95 11087.13 25196.92 15695.89 26482.83 31686.88 29397.18 12073.77 29799.29 11878.44 31793.62 19394.95 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4291.58 20190.87 20193.73 22394.05 29188.50 21897.32 11796.97 20688.80 21489.71 22294.33 26282.54 18698.05 23089.01 19685.07 29394.64 298
PVSNet86.66 1892.24 18091.74 17393.73 22397.77 12283.69 30392.88 32096.72 22587.91 23893.00 14894.86 23478.51 25699.05 14386.53 24097.45 12698.47 130
MIMVSNet88.50 28186.76 28993.72 22594.84 26387.77 23891.39 33094.05 32586.41 27187.99 27192.59 30963.27 34395.82 33177.44 32092.84 20097.57 180
Patchmatch-test89.42 26987.99 27693.70 22695.27 23885.11 28488.98 34694.37 32081.11 32687.10 28793.69 28982.28 19297.50 29074.37 33494.76 17798.48 129
PS-CasMVS91.55 20390.84 20593.69 22794.96 25488.28 22297.84 6398.24 3491.46 13388.04 26995.80 19279.67 23697.48 29187.02 23684.54 30295.31 256
v114491.37 21490.60 21493.68 22893.89 29588.23 22596.84 16397.03 20388.37 22489.69 22494.39 25882.04 19697.98 23887.80 21485.37 28694.84 282
GG-mvs-BLEND93.62 22993.69 30189.20 20192.39 32883.33 35887.98 27289.84 33571.00 30996.87 31682.08 29395.40 16694.80 288
tfpnnormal89.70 26788.40 27293.60 23095.15 24590.10 16697.56 9498.16 5087.28 25886.16 29894.63 24777.57 27198.05 23074.48 33284.59 30192.65 330
PatchmatchNetpermissive91.91 19091.35 18493.59 23195.38 22684.11 29793.15 31695.39 28189.54 18792.10 16893.68 29182.82 18098.13 21484.81 26795.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v119291.07 22890.23 23193.58 23293.70 30087.82 23796.73 17297.07 19687.77 24489.58 22794.32 26480.90 21597.97 24186.52 24185.48 28494.95 272
v891.29 22090.53 21993.57 23394.15 28788.12 23097.34 11497.06 19888.99 20288.32 26094.26 26983.08 17198.01 23687.62 22483.92 31194.57 299
ADS-MVSNet89.89 26388.68 26993.53 23495.86 20684.89 28990.93 33595.07 29983.23 31491.28 18691.81 32279.01 24997.85 25779.52 30991.39 22497.84 164
v1091.04 23090.23 23193.49 23594.12 28888.16 22997.32 11797.08 19588.26 22788.29 26294.22 27282.17 19597.97 24186.45 24384.12 30694.33 305
EI-MVSNet93.03 14992.88 13593.48 23695.77 21186.98 25396.44 19597.12 19090.66 16091.30 18397.64 9786.56 12298.05 23089.91 17190.55 23795.41 247
PEN-MVS91.20 22390.44 22093.48 23694.49 27787.91 23597.76 6998.18 4691.29 14087.78 27495.74 19980.35 22397.33 30285.46 26082.96 31995.19 266
mvs-test193.63 13093.69 11193.46 23896.02 20384.61 29297.24 12496.72 22593.85 5392.30 16395.76 19783.08 17198.89 15691.69 14596.54 14896.87 195
v7n90.76 24089.86 24593.45 23993.54 30487.60 24197.70 7997.37 17188.85 20887.65 27694.08 27781.08 21098.10 21984.68 26983.79 31394.66 297
v14419291.06 22990.28 22793.39 24093.66 30287.23 24796.83 16497.07 19687.43 25389.69 22494.28 26681.48 20698.00 23787.18 23484.92 29794.93 276
DWT-MVSNet_test90.76 24089.89 24493.38 24195.04 25183.70 30295.85 23994.30 32388.19 22890.46 19792.80 30573.61 29898.50 18788.16 20790.58 23697.95 158
EPMVS90.70 24589.81 24893.37 24294.73 26884.21 29593.67 30688.02 35289.50 18992.38 15993.49 29677.82 27097.78 26586.03 25292.68 20298.11 154
IterMVS-LS92.29 17791.94 16693.34 24396.25 19086.97 25496.57 19397.05 19990.67 15889.50 23294.80 23886.59 12197.64 27689.91 17186.11 27995.40 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-w/o92.14 18691.75 17193.31 24496.99 15685.73 27595.67 24595.69 27188.73 21689.26 24094.82 23782.97 17698.07 22785.26 26396.32 15296.13 215
v192192090.85 23890.03 24193.29 24593.55 30386.96 25596.74 17197.04 20187.36 25589.52 23194.34 26180.23 22697.97 24186.27 24485.21 29094.94 274
ACMH+87.92 1490.20 25789.18 26393.25 24696.48 18086.45 26496.99 14996.68 23188.83 21084.79 31096.22 17270.16 31698.53 18584.42 27488.04 25994.77 293
v124090.70 24589.85 24693.23 24793.51 30686.80 25696.61 18797.02 20487.16 26089.58 22794.31 26579.55 23997.98 23885.52 25985.44 28594.90 279
PatchT88.87 27687.42 28193.22 24894.08 29085.10 28589.51 34494.64 31481.92 32192.36 16088.15 34280.05 22997.01 31272.43 33993.65 19297.54 181
Fast-Effi-MVS+-dtu92.29 17791.99 16493.21 24995.27 23885.52 27897.03 14196.63 23792.09 11789.11 24395.14 22480.33 22498.08 22487.54 22694.74 17996.03 219
miper_enhance_ethall91.54 20591.01 19893.15 25095.35 23087.07 25293.97 29796.90 21386.79 26689.17 24293.43 30086.55 12397.64 27689.97 17086.93 27094.74 294
cl-mvsnet291.21 22290.56 21893.14 25196.09 20286.80 25694.41 28396.58 24087.80 24288.58 25693.99 28080.85 21697.62 27989.87 17386.93 27094.99 271
XVG-ACMP-BASELINE90.93 23690.21 23493.09 25294.31 28585.89 27395.33 25997.26 18091.06 15189.38 23495.44 21568.61 32298.60 18089.46 18391.05 22994.79 290
TransMVSNet (Re)88.94 27387.56 28093.08 25394.35 28288.45 22097.73 7395.23 29287.47 25284.26 31495.29 21879.86 23397.33 30279.44 31374.44 34193.45 321
DTE-MVSNet90.56 24889.75 25293.01 25493.95 29287.25 24597.64 8897.65 13190.74 15587.12 28595.68 20379.97 23197.00 31383.33 28181.66 32494.78 292
EPNet_dtu91.71 19591.28 18992.99 25593.76 29983.71 30196.69 17895.28 28893.15 8087.02 28995.95 18483.37 16697.38 30079.46 31296.84 13997.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 19991.13 19692.97 25695.55 21986.57 26394.47 27996.88 21687.77 24488.88 24794.01 27886.22 12897.54 28589.49 18286.93 27094.79 290
Baseline_NR-MVSNet91.20 22390.62 21392.95 25793.83 29788.03 23197.01 14895.12 29788.42 22389.70 22395.13 22583.47 16397.44 29589.66 17983.24 31793.37 322
cl-mvsnet_90.96 23590.32 22492.89 25895.37 22886.21 26994.46 28196.64 23487.82 24088.15 26794.18 27382.98 17597.54 28587.70 21785.59 28294.92 278
cl-mvsnet190.97 23490.33 22392.88 25995.36 22986.19 27094.46 28196.63 23787.82 24088.18 26694.23 27082.99 17497.53 28787.72 21585.57 28394.93 276
cl_fuxian91.38 21290.89 20092.88 25995.58 21786.30 26694.68 27496.84 22188.17 23088.83 25094.23 27085.65 13797.47 29289.36 18584.63 29994.89 280
pmmvs589.86 26588.87 26792.82 26192.86 31886.23 26896.26 21695.39 28184.24 30187.12 28594.51 25174.27 29297.36 30187.61 22587.57 26494.86 281
v14890.99 23290.38 22292.81 26293.83 29785.80 27496.78 17096.68 23189.45 19088.75 25393.93 28282.96 17797.82 26187.83 21383.25 31694.80 288
Patchmtry88.64 28087.25 28392.78 26394.09 28986.64 25989.82 34395.68 27380.81 33087.63 27792.36 31580.91 21397.03 30978.86 31585.12 29294.67 296
MVP-Stereo90.74 24390.08 23792.71 26493.19 31488.20 22695.86 23896.27 25086.07 27684.86 30994.76 23977.84 26997.75 26883.88 27998.01 11092.17 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs687.81 28886.19 29292.69 26591.32 33386.30 26697.34 11496.41 24580.59 33284.05 31994.37 26067.37 32997.67 27384.75 26879.51 33194.09 313
Effi-MVS+-dtu93.08 14693.21 12992.68 26696.02 20383.25 30697.14 13896.72 22593.85 5391.20 19093.44 29883.08 17198.30 20091.69 14595.73 16196.50 204
CostFormer91.18 22790.70 21192.62 26794.84 26381.76 31694.09 29594.43 31784.15 30292.72 15593.77 28779.43 24098.20 20790.70 16292.18 21197.90 160
MVS_030488.79 27787.57 27992.46 26894.65 27186.15 27296.40 20297.17 18686.44 27088.02 27091.71 32456.68 35197.03 30984.47 27292.58 20494.19 310
LCM-MVSNet-Re92.50 16692.52 15092.44 26996.82 16281.89 31596.92 15693.71 32992.41 10684.30 31394.60 24885.08 14397.03 30991.51 14897.36 12898.40 138
ITE_SJBPF92.43 27095.34 23185.37 28195.92 26191.47 13287.75 27596.39 16671.00 30997.96 24582.36 29189.86 24593.97 314
RRT_test8_iter0591.19 22690.78 20792.41 27195.76 21383.14 30797.32 11797.46 15291.37 13989.07 24495.57 20770.33 31398.21 20593.56 10886.62 27595.89 221
D2MVS91.30 21990.95 19992.35 27294.71 26985.52 27896.18 22398.21 4088.89 20786.60 29493.82 28579.92 23297.95 24789.29 18890.95 23293.56 318
eth_miper_zixun_eth91.02 23190.59 21592.34 27395.33 23484.35 29394.10 29496.90 21388.56 22088.84 24994.33 26284.08 15697.60 28188.77 20184.37 30495.06 269
USDC88.94 27387.83 27892.27 27494.66 27084.96 28793.86 30095.90 26387.34 25683.40 32295.56 20967.43 32898.19 20982.64 29089.67 24793.66 317
tpm289.96 26189.21 26292.23 27594.91 26081.25 31993.78 30294.42 31880.62 33191.56 17593.44 29876.44 27997.94 24885.60 25892.08 21597.49 182
test-LLR91.42 21091.19 19492.12 27694.59 27480.66 32294.29 28992.98 33591.11 14990.76 19392.37 31279.02 24798.07 22788.81 19996.74 14297.63 173
test-mter90.19 25889.54 25792.12 27694.59 27480.66 32294.29 28992.98 33587.68 24890.76 19392.37 31267.67 32698.07 22788.81 19996.74 14297.63 173
ADS-MVSNet289.45 26888.59 27092.03 27895.86 20682.26 31490.93 33594.32 32283.23 31491.28 18691.81 32279.01 24995.99 32679.52 30991.39 22497.84 164
TESTMET0.1,190.06 26089.42 25891.97 27994.41 28180.62 32494.29 28991.97 34387.28 25890.44 19892.47 31168.79 32197.67 27388.50 20596.60 14797.61 177
JIA-IIPM88.26 28487.04 28891.91 28093.52 30581.42 31889.38 34594.38 31980.84 32990.93 19280.74 34979.22 24397.92 25182.76 28791.62 21996.38 207
tpmvs89.83 26689.15 26491.89 28194.92 25780.30 32893.11 31795.46 28086.28 27288.08 26892.65 30780.44 22198.52 18681.47 29689.92 24496.84 196
TDRefinement86.53 29584.76 30591.85 28282.23 35584.25 29496.38 20595.35 28484.97 29384.09 31794.94 22965.76 33998.34 19984.60 27174.52 34092.97 324
miper_lstm_enhance90.50 25190.06 24091.83 28395.33 23483.74 29993.86 30096.70 23087.56 25187.79 27393.81 28683.45 16596.92 31587.39 22884.62 30094.82 285
IterMVS-SCA-FT90.31 25389.81 24891.82 28495.52 22084.20 29694.30 28896.15 25690.61 16487.39 28194.27 26775.80 28396.44 32187.34 22986.88 27494.82 285
tpm cat188.36 28287.21 28591.81 28595.13 24780.55 32592.58 32595.70 27074.97 34587.45 27891.96 32078.01 26898.17 21280.39 30588.74 25596.72 200
tpmrst91.44 20991.32 18691.79 28695.15 24579.20 33893.42 31195.37 28388.55 22193.49 13793.67 29282.49 18898.27 20190.41 16489.34 24997.90 160
MS-PatchMatch90.27 25489.77 25091.78 28794.33 28384.72 29195.55 25096.73 22486.17 27586.36 29695.28 22071.28 30797.80 26284.09 27598.14 10892.81 327
FMVSNet587.29 29185.79 29591.78 28794.80 26587.28 24395.49 25395.28 28884.09 30383.85 32191.82 32162.95 34494.17 34478.48 31685.34 28893.91 315
EG-PatchMatch MVS87.02 29385.44 29791.76 28992.67 32285.00 28696.08 22796.45 24383.41 31379.52 33993.49 29657.10 35097.72 27079.34 31490.87 23492.56 331
tpm90.25 25589.74 25391.76 28993.92 29379.73 33493.98 29693.54 33088.28 22691.99 17093.25 30177.51 27297.44 29587.30 23187.94 26098.12 151
IterMVS90.15 25989.67 25491.61 29195.48 22283.72 30094.33 28796.12 25789.99 17787.31 28494.15 27575.78 28596.27 32486.97 23786.89 27394.83 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test88.35 28387.29 28291.53 29292.45 32683.57 30493.75 30395.97 26084.28 30085.32 30694.18 27379.00 25196.93 31475.71 32984.99 29694.10 311
pmmvs-eth3d86.22 30084.45 30691.53 29288.34 34987.25 24594.47 27995.01 30083.47 31279.51 34089.61 33669.75 31995.71 33283.13 28376.73 33791.64 339
test_040286.46 29684.79 30491.45 29495.02 25285.55 27796.29 21494.89 30680.90 32782.21 32793.97 28168.21 32597.29 30462.98 35188.68 25691.51 341
OurMVSNet-221017-090.51 25090.19 23591.44 29593.41 30981.25 31996.98 15196.28 24991.68 12786.55 29596.30 16974.20 29397.98 23888.96 19787.40 26895.09 267
test0.0.03 189.37 27088.70 26891.41 29692.47 32585.63 27695.22 26792.70 33791.11 14986.91 29293.65 29379.02 24793.19 34978.00 31989.18 25095.41 247
KD-MVS_2432*160084.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
miper_refine_blended84.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
TinyColmap86.82 29485.35 30091.21 29994.91 26082.99 30893.94 29894.02 32783.58 31081.56 32994.68 24462.34 34698.13 21475.78 32887.35 26992.52 332
our_test_388.78 27887.98 27791.20 30092.45 32682.53 31093.61 30995.69 27185.77 28084.88 30893.71 28879.99 23096.78 31979.47 31186.24 27694.28 308
MDA-MVSNet-bldmvs85.00 30882.95 31291.17 30193.13 31683.33 30594.56 27795.00 30184.57 29865.13 35292.65 30770.45 31295.85 32973.57 33777.49 33494.33 305
SixPastTwentyTwo89.15 27188.54 27190.98 30293.49 30780.28 32996.70 17694.70 31190.78 15484.15 31695.57 20771.78 30497.71 27184.63 27085.07 29394.94 274
PVSNet_082.17 1985.46 30783.64 31090.92 30395.27 23879.49 33590.55 33895.60 27583.76 30883.00 32689.95 33371.09 30897.97 24182.75 28860.79 35395.31 256
OpenMVS_ROBcopyleft81.14 2084.42 31282.28 31590.83 30490.06 34084.05 29895.73 24494.04 32673.89 34780.17 33891.53 32659.15 34897.64 27666.92 34989.05 25190.80 344
Patchmatch-RL test87.38 29086.24 29190.81 30588.74 34878.40 34288.12 34893.17 33487.11 26182.17 32889.29 33781.95 19995.60 33488.64 20377.02 33598.41 137
dp88.90 27588.26 27590.81 30594.58 27676.62 34492.85 32194.93 30585.12 29090.07 21593.07 30275.81 28298.12 21780.53 30487.42 26797.71 170
MDA-MVSNet_test_wron85.87 30484.23 30890.80 30792.38 32882.57 30993.17 31495.15 29582.15 31967.65 34992.33 31878.20 26195.51 33677.33 32179.74 32894.31 307
YYNet185.87 30484.23 30890.78 30892.38 32882.46 31293.17 31495.14 29682.12 32067.69 34892.36 31578.16 26495.50 33777.31 32279.73 32994.39 303
UnsupCasMVSNet_eth85.99 30284.45 30690.62 30989.97 34182.40 31393.62 30897.37 17189.86 17978.59 34292.37 31265.25 34095.35 33882.27 29270.75 34694.10 311
MIMVSNet184.93 30983.05 31190.56 31089.56 34484.84 29095.40 25695.35 28483.91 30480.38 33592.21 31957.23 34993.34 34870.69 34682.75 32293.50 319
lessismore_v090.45 31191.96 33179.09 34087.19 35580.32 33694.39 25866.31 33597.55 28484.00 27776.84 33694.70 295
RPSCF90.75 24290.86 20290.42 31296.84 15976.29 34595.61 24996.34 24783.89 30591.38 17897.87 7576.45 27898.78 16387.16 23592.23 20896.20 209
K. test v387.64 28986.75 29090.32 31393.02 31779.48 33696.61 18792.08 34290.66 16080.25 33794.09 27667.21 33096.65 32085.96 25480.83 32794.83 283
testgi87.97 28587.21 28590.24 31492.86 31880.76 32196.67 18094.97 30391.74 12585.52 30295.83 19062.66 34594.47 34376.25 32788.36 25895.48 241
UnsupCasMVSNet_bld82.13 31779.46 32090.14 31588.00 35082.47 31190.89 33796.62 23978.94 33875.61 34484.40 34756.63 35296.31 32377.30 32366.77 35091.63 340
LF4IMVS87.94 28687.25 28389.98 31692.38 32880.05 33294.38 28495.25 29187.59 25084.34 31294.74 24164.31 34197.66 27584.83 26687.45 26592.23 335
Anonymous2023120687.09 29286.14 29389.93 31791.22 33480.35 32696.11 22595.35 28483.57 31184.16 31593.02 30373.54 29995.61 33372.16 34086.14 27893.84 316
CL-MVSNet_2432*160086.31 29985.15 30189.80 31888.83 34781.74 31793.93 29996.22 25386.67 26785.03 30790.80 32878.09 26594.50 34174.92 33171.86 34593.15 323
CVMVSNet91.23 22191.75 17189.67 31995.77 21174.69 34796.44 19594.88 30785.81 27992.18 16597.64 9779.07 24495.58 33588.06 20995.86 15898.74 110
Anonymous2024052186.42 29785.44 29789.34 32090.33 33879.79 33396.73 17295.92 26183.71 30983.25 32391.36 32763.92 34296.01 32578.39 31885.36 28792.22 336
DIV-MVS_2432*160085.95 30384.95 30288.96 32189.55 34579.11 33995.13 26996.42 24485.91 27884.07 31890.48 32970.03 31794.82 34080.04 30672.94 34492.94 325
test20.0386.14 30185.40 29988.35 32290.12 33980.06 33195.90 23795.20 29388.59 21781.29 33093.62 29471.43 30692.65 35071.26 34481.17 32692.34 334
PM-MVS83.48 31381.86 31788.31 32387.83 35177.59 34393.43 31091.75 34486.91 26380.63 33389.91 33444.42 35695.84 33085.17 26576.73 33791.50 342
EU-MVSNet88.72 27988.90 26688.20 32493.15 31574.21 34896.63 18694.22 32485.18 28887.32 28395.97 18276.16 28194.98 33985.27 26286.17 27795.41 247
new_pmnet82.89 31581.12 31988.18 32589.63 34380.18 33091.77 32992.57 33876.79 34475.56 34688.23 34161.22 34794.48 34271.43 34282.92 32089.87 346
CMPMVSbinary62.92 2185.62 30684.92 30387.74 32689.14 34673.12 35094.17 29296.80 22373.98 34673.65 34794.93 23066.36 33397.61 28083.95 27891.28 22692.48 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs379.97 31877.50 32287.39 32782.80 35479.38 33792.70 32390.75 34970.69 34978.66 34187.47 34551.34 35493.40 34773.39 33869.65 34889.38 347
new-patchmatchnet83.18 31481.87 31687.11 32886.88 35275.99 34693.70 30495.18 29485.02 29277.30 34388.40 33965.99 33793.88 34674.19 33670.18 34791.47 343
DSMNet-mixed86.34 29886.12 29487.00 32989.88 34270.43 35194.93 27190.08 35077.97 34285.42 30592.78 30674.44 29193.96 34574.43 33395.14 16996.62 201
ambc86.56 33083.60 35370.00 35385.69 35094.97 30380.60 33488.45 33837.42 35796.84 31782.69 28975.44 33992.86 326
MVS-HIRNet82.47 31681.21 31886.26 33195.38 22669.21 35488.96 34789.49 35166.28 35080.79 33274.08 35368.48 32397.39 29971.93 34195.47 16492.18 337
LCM-MVSNet72.55 32069.39 32482.03 33270.81 36165.42 35790.12 34294.36 32155.02 35465.88 35181.72 34824.16 36489.96 35174.32 33568.10 34990.71 345
PMMVS270.19 32266.92 32580.01 33376.35 35665.67 35686.22 34987.58 35464.83 35262.38 35380.29 35026.78 36288.49 35363.79 35054.07 35485.88 348
N_pmnet78.73 31978.71 32178.79 33492.80 32046.50 36394.14 29343.71 36578.61 33980.83 33191.66 32574.94 28996.36 32267.24 34884.45 30393.50 319
ANet_high63.94 32459.58 32777.02 33561.24 36366.06 35585.66 35187.93 35378.53 34042.94 35771.04 35425.42 36380.71 35652.60 35430.83 35784.28 349
FPMVS71.27 32169.85 32375.50 33674.64 35759.03 35991.30 33191.50 34658.80 35357.92 35488.28 34029.98 36085.53 35553.43 35382.84 32181.95 350
Gipumacopyleft67.86 32365.41 32675.18 33792.66 32373.45 34966.50 35794.52 31653.33 35557.80 35566.07 35530.81 35889.20 35248.15 35578.88 33362.90 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft74.68 33890.84 33764.34 35881.61 36065.34 35167.47 35088.01 34348.60 35580.13 35762.33 35273.68 34379.58 351
PMVScopyleft53.92 2258.58 32555.40 32868.12 33951.00 36448.64 36178.86 35487.10 35646.77 35635.84 36174.28 3528.76 36586.34 35442.07 35673.91 34269.38 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 32748.81 33266.58 34065.34 36257.50 36072.49 35670.94 36340.15 35939.28 36063.51 3566.89 36773.48 36038.29 35742.38 35568.76 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 32652.56 33055.43 34174.43 35847.13 36283.63 35376.30 36142.23 35742.59 35862.22 35728.57 36174.40 35831.53 35831.51 35644.78 355
EMVS52.08 32851.31 33154.39 34272.62 36045.39 36483.84 35275.51 36241.13 35840.77 35959.65 35830.08 35973.60 35928.31 35929.90 35844.18 356
tmp_tt51.94 32953.82 32946.29 34333.73 36545.30 36578.32 35567.24 36418.02 36050.93 35687.05 34652.99 35353.11 36170.76 34525.29 35940.46 357
wuyk23d25.11 33024.57 33426.74 34473.98 35939.89 36657.88 3589.80 36612.27 36110.39 3626.97 3647.03 36636.44 36225.43 36017.39 3603.89 360
test12313.04 33315.66 3365.18 3454.51 3673.45 36792.50 3271.81 3682.50 3637.58 36420.15 3613.67 3682.18 3647.13 3621.07 3629.90 358
testmvs13.36 33216.33 3354.48 3465.04 3662.26 36893.18 3133.28 3672.70 3628.24 36321.66 3602.29 3692.19 3637.58 3612.96 3619.00 359
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k23.24 33130.99 3330.00 3470.00 3680.00 3690.00 35997.63 1330.00 3640.00 36596.88 13584.38 1510.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.39 3359.85 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36588.65 940.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.06 33410.74 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36596.69 1440.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS99.05 4194.59 2898.08 6489.22 19697.03 4798.10 6092.52 3299.65 5394.58 9099.31 55
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
IU-MVS99.42 695.39 997.94 10290.40 17198.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1698.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1999.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7398.23 3891.28 14397.88 2298.44 2893.00 2199.65 5395.76 5299.47 36
save fliter98.91 4994.28 3597.02 14498.02 8895.35 8
test_0728_THIRD94.78 3298.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test072699.45 295.36 1098.31 2298.29 2494.92 2398.99 498.92 295.08 5
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18198.45 132
sam_mvs81.94 200
MTGPAbinary98.08 64
test_post192.81 32216.58 36380.53 21997.68 27286.20 246
test_post17.58 36281.76 20298.08 224
patchmatchnet-post90.45 33082.65 18598.10 219
MTMP97.86 5982.03 359
gm-plane-assit93.22 31378.89 34184.82 29593.52 29598.64 17687.72 215
test9_res94.81 8499.38 4899.45 45
TEST998.70 6094.19 4096.41 19998.02 8888.17 23096.03 7997.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 20698.01 9188.58 21895.98 8497.55 10792.73 2599.58 71
agg_prior293.94 10199.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9499.57 79
test_prior493.66 5996.42 198
test_prior296.35 20792.80 9696.03 7997.59 10192.01 4195.01 7599.38 48
旧先验295.94 23581.66 32397.34 3498.82 16092.26 127
新几何295.79 242
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
无先验95.79 24297.87 10883.87 30799.65 5387.68 22098.89 100
原ACMM295.67 245
test22298.24 9392.21 10095.33 25997.60 13579.22 33795.25 10597.84 8188.80 9299.15 7398.72 112
testdata299.67 4985.96 254
segment_acmp92.89 22
testdata195.26 26693.10 83
plane_prior796.21 19189.98 172
plane_prior696.10 20190.00 16881.32 208
plane_prior597.51 14598.60 18093.02 12192.23 20895.86 222
plane_prior496.64 147
plane_prior390.00 16894.46 4091.34 180
plane_prior297.74 7194.85 25
plane_prior196.14 199
plane_prior89.99 17097.24 12494.06 4892.16 212
n20.00 369
nn0.00 369
door-mid91.06 348
test1197.88 106
door91.13 347
HQP5-MVS89.33 195
HQP-NCC95.86 20696.65 18193.55 6390.14 204
ACMP_Plane95.86 20696.65 18193.55 6390.14 204
BP-MVS92.13 133
HQP4-MVS90.14 20498.50 18795.78 229
HQP3-MVS97.39 16892.10 213
HQP2-MVS80.95 211
NP-MVS95.99 20589.81 17795.87 187
MDTV_nov1_ep13_2view70.35 35293.10 31883.88 30693.55 13482.47 18986.25 24598.38 140
MDTV_nov1_ep1390.76 20895.22 24280.33 32793.03 31995.28 28888.14 23392.84 15493.83 28381.34 20798.08 22482.86 28594.34 183
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93