This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16598.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15495.34 1398.48 1597.87 10894.65 3688.53 25398.02 6783.69 16099.71 3893.18 11698.96 8599.44 47
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12797.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 22996.64 5597.70 8991.18 6399.67 4992.44 12499.47 3699.48 41
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 17997.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26197.62 13390.43 16895.55 9997.07 12591.72 4899.50 9689.62 17898.94 8698.82 106
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 12998.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15695.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19289.67 25097.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35291.70 5099.80 2795.66 5299.40 4599.62 13
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
alignmvs95.87 6995.23 7897.78 3397.56 13295.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20497.88 10686.98 25996.65 5497.89 7291.99 4399.47 9992.26 12599.46 3899.39 54
canonicalmvs96.02 6495.45 7197.75 3797.59 13095.15 2198.28 2597.60 13494.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19698.02 8888.58 21596.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17797.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10897.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
test1297.65 4498.46 7494.26 3797.66 12895.52 10290.89 6999.46 10099.25 6599.22 67
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21298.00 9388.76 21295.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
CANet96.39 5596.02 5997.50 5097.62 12793.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17193.36 6998.65 698.36 1694.12 4689.25 23898.06 6482.20 19399.77 2993.41 11299.32 5399.18 69
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14596.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22295.09 10897.65 9489.97 8399.48 9892.08 13498.59 9798.44 135
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22597.73 11981.56 31795.68 9397.85 7890.23 7899.65 5387.68 21899.12 7898.73 111
新几何197.32 5698.60 6893.59 6197.75 11781.58 31695.75 9097.85 7890.04 8299.67 4986.50 24099.13 7598.69 115
DELS-MVS96.61 4896.38 5197.30 5797.79 11993.19 7295.96 23198.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8698.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22594.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20498.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16596.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
UA-Net95.95 6795.53 6797.20 6697.67 12492.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16397.35 12999.11 78
test117296.93 3396.86 2297.15 6799.10 3492.34 9397.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
EPNet95.20 8694.56 9397.14 6892.80 31892.68 8497.85 6294.87 30496.64 192.46 15597.80 8486.23 12799.65 5393.72 10598.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9697.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29696.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10796.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9696.20 21998.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
abl_696.40 5496.21 5596.98 7498.89 5492.20 10197.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
QAPM93.45 13592.27 15696.98 7496.77 16192.62 8698.39 1998.12 5684.50 29288.27 25997.77 8582.39 19099.81 2685.40 25998.81 8998.51 124
WTY-MVS94.71 10294.02 10496.79 7697.71 12392.05 10596.59 18797.35 17390.61 16294.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12198.33 2198.11 5987.79 24095.17 10698.03 6687.09 11899.61 6293.51 10899.42 4399.02 83
sss94.51 10493.80 10896.64 7897.07 14691.97 10996.32 20898.06 7388.94 20294.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
ab-mvs93.57 13292.55 14696.64 7897.28 13691.96 11095.40 25397.45 15789.81 18193.22 14596.28 16979.62 23799.46 10090.74 15893.11 19798.50 125
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11697.46 10497.96 10077.99 33493.00 14797.57 10386.14 13299.33 11389.22 18999.15 7398.94 94
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14592.49 9095.64 24596.64 23489.05 19793.00 14795.79 19285.77 13699.45 10289.16 19394.35 18297.96 155
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11197.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
CANet_DTU94.37 10593.65 11396.55 8496.46 17892.13 10396.21 21896.67 23394.38 4293.53 13597.03 12779.34 24099.71 3890.76 15798.45 10097.82 166
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 12997.94 5493.39 32690.57 16596.29 7098.31 4769.00 31599.16 12794.18 9495.87 15799.12 77
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14197.38 11196.08 25582.38 31089.29 23597.87 7583.77 15999.69 4481.37 29896.69 14598.89 100
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8896.59 18796.88 21690.13 17391.91 16997.24 11785.21 14199.09 13687.64 22197.83 11497.92 158
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14091.58 11998.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10297.67 8197.47 14988.13 23193.00 14795.84 18684.86 14699.51 9387.99 20898.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 10993.42 12496.48 9097.64 12691.42 12695.55 24797.71 12688.99 19992.34 16195.82 18889.19 8699.11 13286.14 24697.38 12798.90 98
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14596.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
LS3D93.57 13292.61 14496.47 9197.59 13091.61 11697.67 8197.72 12285.17 28290.29 19998.34 4184.60 14899.73 3283.85 27898.27 10398.06 154
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15898.30 2398.57 1189.01 19893.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
test_yl94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
ETV-MVS96.02 6495.89 6296.40 9697.16 14192.44 9197.47 10297.77 11594.55 3796.48 6394.51 24891.23 6298.92 15195.65 5598.19 10597.82 166
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 22892.73 8398.27 2698.12 5684.86 28785.78 29797.75 8678.89 25199.74 3187.50 22598.65 9596.73 197
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 21798.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
原ACMM196.38 9998.59 6991.09 14097.89 10487.41 25195.22 10597.68 9190.25 7799.54 8587.95 20999.12 7898.49 127
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14797.27 12198.25 3390.21 17094.18 12197.27 11587.48 11299.73 3293.53 10797.77 11798.55 119
Effi-MVS+94.93 9494.45 9996.36 10196.61 16591.47 12296.41 19697.41 16691.02 15094.50 11595.92 18287.53 11098.78 16293.89 10196.81 14098.84 105
PCF-MVS89.48 1191.56 19989.95 23896.36 10196.60 16692.52 8992.51 32197.26 17979.41 32888.90 24296.56 15584.04 15799.55 8377.01 32097.30 13197.01 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UGNet94.04 11793.28 12796.31 10396.85 15591.19 13597.88 5897.68 12794.40 4093.00 14796.18 17273.39 29599.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15696.04 22597.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11596.59 18797.81 11489.87 17692.15 16597.06 12683.62 16199.54 8589.34 18498.07 10997.70 170
lupinMVS94.99 9394.56 9396.29 10696.34 18491.21 13295.83 23796.27 24888.93 20396.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
nrg03094.05 11693.31 12696.27 10795.22 24094.59 2898.34 2097.46 15192.93 9191.21 18796.64 14687.23 11798.22 20294.99 7785.80 28195.98 218
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15397.24 12397.73 11991.80 12292.93 15296.62 15389.13 8899.14 13089.21 19097.78 11698.97 90
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19497.57 13892.04 11794.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
CS-MVS95.80 7095.65 6696.24 11097.32 13591.43 12598.10 3997.91 10393.38 6995.16 10794.57 24690.21 7998.98 14795.53 6498.67 9498.30 145
1112_ss93.37 13692.42 15296.21 11197.05 15190.99 14196.31 20996.72 22586.87 26289.83 21796.69 14386.51 12499.14 13088.12 20693.67 19198.50 125
jason94.84 9894.39 10196.18 11295.52 21790.93 14596.09 22396.52 24189.28 19096.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 13996.69 17697.39 16787.29 25491.37 17796.71 13988.39 9899.52 9287.33 22897.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs95.64 7395.49 6996.08 11496.76 16390.45 15997.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
baseline95.58 7595.42 7396.08 11496.78 16090.41 16197.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19095.18 26598.48 1485.60 27793.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
IS-MVSNet94.90 9594.52 9696.05 11797.67 12490.56 15598.44 1696.22 25193.21 7593.99 12497.74 8785.55 13898.45 18989.98 16697.86 11399.14 73
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17197.72 7695.85 26192.43 10495.86 8698.44 2868.42 31999.39 10996.31 2894.85 17498.71 114
VDDNet93.05 14792.07 15996.02 11896.84 15690.39 16298.08 4295.85 26186.22 27095.79 8998.46 2667.59 32299.19 12394.92 7894.85 17498.47 130
MVSFormer95.37 7995.16 8095.99 12096.34 18491.21 13298.22 3297.57 13891.42 13396.22 7297.32 11386.20 13097.92 25094.07 9599.05 8198.85 103
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19191.46 12396.33 20797.04 20188.97 20193.56 13296.51 15787.55 10997.89 25489.80 17295.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_MVS93.21 14192.32 15595.91 12294.92 25594.15 4396.92 15596.86 21991.42 13391.28 18496.43 16179.66 23698.10 21693.29 11490.06 24295.46 241
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10897.80 6697.48 14689.19 19494.81 11196.71 13988.84 9199.17 12688.91 19698.76 9196.53 200
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17294.58 27398.49 1285.06 28493.78 12995.78 19382.86 17798.67 17391.77 14095.71 16299.07 82
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15289.97 17095.53 24996.64 23485.38 27889.65 22395.18 21985.86 13499.10 13387.70 21593.58 19698.49 127
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18695.47 25198.36 1688.84 20694.36 11796.09 17888.02 10099.58 7093.44 11098.18 10698.40 138
Anonymous20240521192.07 18590.83 20495.76 12798.19 10088.75 21097.58 9195.00 29586.00 27393.64 13197.45 10966.24 32999.53 8890.68 16092.71 20199.01 87
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13389.56 17998.67 597.00 20590.69 15594.24 12097.62 9989.79 8598.81 16093.39 11396.49 14998.92 96
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
Anonymous2024052991.98 18790.73 20795.73 13298.14 10389.40 18997.99 4797.72 12279.63 32793.54 13497.41 11169.94 31299.56 8091.04 15691.11 22898.22 146
EIA-MVS95.53 7795.47 7095.71 13397.06 14989.63 17597.82 6497.87 10893.57 6193.92 12795.04 22490.61 7498.95 14994.62 8898.68 9398.54 120
MVS_Test94.89 9694.62 9195.68 13496.83 15889.55 18096.70 17497.17 18591.17 14595.60 9896.11 17787.87 10498.76 16593.01 12197.17 13698.72 112
TAMVS94.01 11893.46 12095.64 13596.16 19390.45 15996.71 17396.89 21589.27 19193.46 13796.92 13287.29 11597.94 24688.70 20095.74 16098.53 121
ET-MVSNet_ETH3D91.49 20390.11 23295.63 13696.40 18191.57 12095.34 25593.48 32590.60 16475.58 33795.49 21080.08 22796.79 31694.25 9289.76 24698.52 122
diffmvs95.25 8395.13 8195.63 13696.43 18089.34 19295.99 23097.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22293.34 7097.39 10998.71 593.14 8090.10 20994.83 23387.71 10598.03 23191.67 14683.99 30695.46 241
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16190.03 16496.81 16697.13 18888.19 22591.30 18194.27 26486.21 12998.63 17687.66 22096.46 15198.12 150
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 14995.27 26197.18 18387.96 23391.86 17195.68 20080.44 22098.99 14684.01 27497.54 12196.89 192
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17796.79 16797.65 13081.83 31491.52 17497.23 11887.94 10298.91 15371.31 33698.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline192.82 16091.90 16695.55 14297.20 13990.77 15197.19 13194.58 30992.20 11092.36 15996.34 16784.16 15598.21 20389.20 19183.90 31097.68 171
NR-MVSNet92.34 17291.27 18995.53 14394.95 25393.05 7597.39 10998.07 7092.65 10084.46 30795.71 19785.00 14497.77 26589.71 17483.52 31395.78 227
MVS91.71 19290.44 21695.51 14495.20 24291.59 11896.04 22597.45 15773.44 34187.36 27895.60 20385.42 13999.10 13385.97 25197.46 12295.83 224
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21192.39 9297.86 5998.66 992.30 10792.09 16795.37 21380.49 21998.40 19193.95 9885.86 28095.75 231
thisisatest053093.03 14892.21 15795.49 14697.07 14689.11 20497.49 10192.19 33390.16 17294.09 12296.41 16376.43 27599.05 14290.38 16295.68 16398.31 144
PS-MVSNAJ95.37 7995.33 7695.49 14697.35 13490.66 15495.31 25897.48 14693.85 5296.51 6195.70 19988.65 9499.65 5394.80 8498.27 10396.17 209
DU-MVS92.90 15592.04 16095.49 14694.95 25392.83 8097.16 13498.24 3493.02 8390.13 20595.71 19783.47 16297.85 25691.71 14283.93 30795.78 227
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 14995.34 22892.83 8097.17 13398.58 1092.98 8990.13 20595.80 18988.37 9997.85 25691.71 14283.93 30795.73 233
testdata95.46 15098.18 10288.90 20897.66 12882.73 30997.03 4798.07 6390.06 8198.85 15789.67 17698.98 8498.64 117
xiu_mvs_v2_base95.32 8195.29 7795.40 15197.22 13790.50 15795.44 25297.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 209
F-COLMAP93.58 13192.98 13195.37 15298.40 7888.98 20697.18 13297.29 17887.75 24390.49 19497.10 12485.21 14199.50 9686.70 23796.72 14497.63 172
FIs94.09 11493.70 11095.27 15395.70 21192.03 10698.10 3998.68 793.36 7290.39 19796.70 14187.63 10897.94 24692.25 12790.50 23995.84 223
thisisatest051592.29 17691.30 18795.25 15496.60 16688.90 20894.36 28292.32 33287.92 23493.43 13894.57 24677.28 26999.00 14589.42 18295.86 15897.86 162
PAPM91.52 20290.30 22295.20 15595.30 23589.83 17393.38 30896.85 22086.26 26988.59 25195.80 18984.88 14598.15 21075.67 32495.93 15697.63 172
thres600view792.49 16791.60 17595.18 15697.91 11489.47 18497.65 8494.66 30692.18 11493.33 14094.91 22878.06 26299.10 13381.61 29294.06 18896.98 187
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15798.09 10586.63 26096.00 22998.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
131492.81 16192.03 16195.14 15895.33 23189.52 18396.04 22597.44 16187.72 24486.25 29395.33 21483.84 15898.79 16189.26 18797.05 13897.11 185
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15894.76 26492.07 10497.53 9598.11 5992.90 9289.56 22696.12 17583.16 16797.60 27989.30 18583.20 31695.75 231
thres40092.42 16991.52 17995.12 16097.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.98 187
FC-MVSNet-test93.94 12093.57 11495.04 16195.48 21991.45 12498.12 3898.71 593.37 7090.23 20096.70 14187.66 10697.85 25691.49 14890.39 24095.83 224
FMVSNet391.78 19190.69 20995.03 16296.53 17392.27 9897.02 14396.93 20989.79 18289.35 23294.65 24277.01 27097.47 29086.12 24788.82 25295.35 253
VPNet92.23 18091.31 18694.99 16395.56 21590.96 14397.22 12997.86 11192.96 9090.96 18996.62 15375.06 28398.20 20591.90 13683.65 31295.80 226
FMVSNet291.31 21490.08 23394.99 16396.51 17492.21 9997.41 10596.95 20788.82 20888.62 25094.75 23773.87 28997.42 29585.20 26288.55 25895.35 253
thres100view90092.43 16891.58 17694.98 16597.92 11389.37 19197.71 7894.66 30692.20 11093.31 14194.90 22978.06 26299.08 13881.40 29594.08 18596.48 203
BH-RMVSNet92.72 16391.97 16494.97 16697.16 14187.99 23096.15 22195.60 26990.62 16191.87 17097.15 12278.41 25698.57 18283.16 28097.60 12098.36 142
MSDG91.42 20690.24 22694.96 16797.15 14388.91 20793.69 30196.32 24685.72 27686.93 28796.47 15980.24 22498.98 14780.57 30195.05 17396.98 187
tfpn200view992.38 17191.52 17994.95 16897.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.48 203
XXY-MVS92.16 18291.23 19194.95 16894.75 26590.94 14497.47 10297.43 16489.14 19588.90 24296.43 16179.71 23498.24 20089.56 17987.68 26395.67 235
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16897.61 12887.92 23198.10 3995.80 26392.22 10893.02 14697.45 10984.53 15097.91 25388.24 20497.97 11199.02 83
tttt051792.96 15192.33 15494.87 17197.11 14487.16 24897.97 5292.09 33490.63 16093.88 12897.01 12876.50 27299.06 14190.29 16595.45 16598.38 140
OPM-MVS93.28 13992.76 13694.82 17294.63 27190.77 15196.65 17997.18 18393.72 5791.68 17297.26 11679.33 24198.63 17692.13 13192.28 20795.07 266
HQP_MVS93.78 12593.43 12294.82 17296.21 18889.99 16797.74 7197.51 14494.85 2491.34 17896.64 14681.32 20798.60 17993.02 11992.23 20895.86 220
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17497.06 14988.53 21595.28 25997.45 15791.68 12594.08 12397.68 9182.41 18998.90 15493.84 10392.47 20596.98 187
XVG-OURS93.72 12793.35 12594.80 17597.07 14688.61 21394.79 26997.46 15191.97 12093.99 12497.86 7781.74 20298.88 15692.64 12392.67 20396.92 191
IB-MVS87.33 1789.91 25888.28 27094.79 17695.26 23987.70 23795.12 26693.95 32289.35 18987.03 28492.49 30770.74 30699.19 12389.18 19281.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.34 17291.53 17894.77 17795.13 24590.83 14896.40 19997.98 9891.88 12189.29 23595.54 20882.50 18697.80 26189.79 17385.27 28895.69 234
RPMNet88.98 26987.05 28494.77 17794.45 27787.19 24690.23 33398.03 8477.87 33692.40 15687.55 33780.17 22699.51 9368.84 34093.95 18997.60 177
thres20092.23 18091.39 18294.75 17997.61 12889.03 20596.60 18695.09 29292.08 11693.28 14294.00 27678.39 25799.04 14481.26 29994.18 18496.19 208
UniMVSNet_ETH3D91.34 21390.22 22994.68 18094.86 26087.86 23497.23 12897.46 15187.99 23289.90 21496.92 13266.35 32798.23 20190.30 16490.99 23197.96 155
GA-MVS91.38 20890.31 22194.59 18194.65 26987.62 23894.34 28396.19 25290.73 15490.35 19893.83 28071.84 29897.96 24387.22 23093.61 19498.21 147
GBi-Net91.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
test191.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
FMVSNet189.88 26088.31 26994.59 18195.41 22191.18 13697.50 9796.93 20986.62 26487.41 27694.51 24865.94 33197.29 30283.04 28287.43 26695.31 255
cascas91.20 21990.08 23394.58 18594.97 25189.16 20393.65 30397.59 13679.90 32689.40 23092.92 30175.36 28298.36 19492.14 13094.75 17896.23 206
HQP-MVS93.19 14392.74 13994.54 18695.86 20389.33 19396.65 17997.39 16793.55 6290.14 20195.87 18480.95 21098.50 18692.13 13192.10 21395.78 227
PVSNet_BlendedMVS94.06 11593.92 10594.47 18798.27 8989.46 18696.73 17198.36 1690.17 17194.36 11795.24 21888.02 10099.58 7093.44 11090.72 23594.36 302
gg-mvs-nofinetune87.82 28485.61 29394.44 18894.46 27689.27 19991.21 32784.61 35080.88 32089.89 21674.98 34471.50 30097.53 28585.75 25597.21 13496.51 201
PS-MVSNAJss93.74 12693.51 11894.44 18893.91 29289.28 19897.75 7097.56 14192.50 10389.94 21396.54 15688.65 9498.18 20893.83 10490.90 23395.86 220
PMMVS92.86 15792.34 15394.42 19094.92 25586.73 25694.53 27596.38 24484.78 28994.27 11995.12 22383.13 16998.40 19191.47 14996.49 14998.12 150
MVSTER93.20 14292.81 13594.37 19196.56 17189.59 17897.06 13997.12 18991.24 14291.30 18195.96 18082.02 19698.05 22793.48 10990.55 23795.47 240
ACMM89.79 892.96 15192.50 15094.35 19296.30 18688.71 21197.58 9197.36 17291.40 13690.53 19396.65 14579.77 23398.75 16691.24 15491.64 21895.59 236
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42093.12 14492.72 14094.34 19396.71 16487.27 24290.29 33297.72 12286.61 26591.34 17895.29 21584.29 15498.41 19093.25 11598.94 8697.35 183
CLD-MVS92.98 15092.53 14894.32 19496.12 19789.20 20095.28 25997.47 14992.66 9989.90 21495.62 20280.58 21798.40 19192.73 12292.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_part189.59 26488.03 27294.27 19595.32 23489.42 18898.03 4697.58 13778.01 33386.10 29694.59 24569.87 31398.01 23389.88 17082.85 31995.40 248
Anonymous2023121190.63 24389.42 25494.27 19598.24 9389.19 20298.05 4497.89 10479.95 32588.25 26094.96 22572.56 29698.13 21189.70 17585.14 29095.49 237
testing_287.33 28885.03 29794.22 19787.77 34489.32 19594.97 26797.11 19189.22 19271.64 34088.73 33055.16 34597.94 24691.95 13588.73 25695.41 244
LTVRE_ROB88.41 1390.99 22889.92 23994.19 19896.18 19189.55 18096.31 20997.09 19487.88 23685.67 29895.91 18378.79 25298.57 18281.50 29389.98 24394.44 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs490.93 23289.85 24294.17 19993.34 30990.79 15094.60 27296.02 25684.62 29087.45 27495.15 22081.88 20097.45 29287.70 21587.87 26294.27 307
TR-MVS91.48 20490.59 21294.16 20096.40 18187.33 24095.67 24295.34 28187.68 24591.46 17595.52 20976.77 27198.35 19582.85 28493.61 19496.79 196
LPG-MVS_test92.94 15392.56 14594.10 20196.16 19388.26 22197.65 8497.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
LGP-MVS_train94.10 20196.16 19388.26 22197.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
mvs_anonymous93.82 12393.74 10994.06 20396.44 17985.41 27895.81 23897.05 19989.85 17990.09 21096.36 16687.44 11397.75 26693.97 9796.69 14599.02 83
ACMP89.59 1092.62 16492.14 15894.05 20496.40 18188.20 22497.36 11297.25 18191.52 12888.30 25796.64 14678.46 25598.72 17091.86 13991.48 22295.23 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax92.42 16991.89 16794.03 20593.33 31088.50 21697.73 7397.53 14292.00 11988.85 24596.50 15875.62 28198.11 21593.88 10291.56 22195.48 238
test_djsdf93.07 14692.76 13694.00 20693.49 30588.70 21298.22 3297.57 13891.42 13390.08 21195.55 20782.85 17897.92 25094.07 9591.58 22095.40 248
AllTest90.23 25288.98 26193.98 20797.94 11186.64 25796.51 19195.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
TestCases93.98 20797.94 11186.64 25795.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
anonymousdsp92.16 18291.55 17793.97 20992.58 32289.55 18097.51 9697.42 16589.42 18788.40 25494.84 23280.66 21697.88 25591.87 13891.28 22694.48 298
pm-mvs190.72 24089.65 25293.96 21094.29 28489.63 17597.79 6796.82 22289.07 19686.12 29595.48 21178.61 25397.78 26386.97 23581.67 32294.46 299
WR-MVS_H92.00 18691.35 18393.95 21195.09 24789.47 18498.04 4598.68 791.46 13188.34 25594.68 24085.86 13497.56 28185.77 25484.24 30494.82 283
CR-MVSNet90.82 23589.77 24693.95 21194.45 27787.19 24690.23 33395.68 26786.89 26192.40 15692.36 31280.91 21297.05 30681.09 30093.95 18997.60 177
mvs_tets92.31 17491.76 16993.94 21393.41 30788.29 21997.63 8997.53 14292.04 11788.76 24896.45 16074.62 28598.09 22093.91 10091.48 22295.45 243
baseline291.63 19590.86 20093.94 21394.33 28186.32 26395.92 23391.64 33889.37 18886.94 28694.69 23981.62 20498.69 17188.64 20194.57 18196.81 195
BH-untuned92.94 15392.62 14393.92 21597.22 13786.16 26996.40 19996.25 25090.06 17489.79 21896.17 17483.19 16698.35 19587.19 23197.27 13297.24 184
ACMH87.59 1690.53 24589.42 25493.87 21696.21 18887.92 23197.24 12396.94 20888.45 21983.91 31596.27 17071.92 29798.62 17884.43 27189.43 24895.05 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SCA91.84 19091.18 19493.83 21795.59 21384.95 28494.72 27095.58 27190.82 15192.25 16393.69 28675.80 27898.10 21686.20 24495.98 15498.45 132
CP-MVSNet91.89 18991.24 19093.82 21895.05 24888.57 21497.82 6498.19 4491.70 12488.21 26195.76 19481.96 19797.52 28787.86 21084.65 29795.37 252
v2v48291.59 19690.85 20293.80 21993.87 29488.17 22696.94 15496.88 21689.54 18389.53 22794.90 22981.70 20398.02 23289.25 18885.04 29495.20 263
COLMAP_ROBcopyleft87.81 1590.40 24889.28 25793.79 22097.95 11087.13 24996.92 15595.89 26082.83 30886.88 28997.18 11973.77 29299.29 11778.44 31493.62 19394.95 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4291.58 19890.87 19993.73 22194.05 28988.50 21697.32 11696.97 20688.80 21189.71 21994.33 25982.54 18598.05 22789.01 19485.07 29294.64 296
PVSNet86.66 1892.24 17991.74 17293.73 22197.77 12083.69 29992.88 31696.72 22587.91 23593.00 14794.86 23178.51 25499.05 14286.53 23897.45 12698.47 130
MIMVSNet88.50 27886.76 28693.72 22394.84 26187.77 23691.39 32594.05 31986.41 26787.99 26792.59 30663.27 33595.82 32677.44 31692.84 20097.57 179
Patchmatch-test89.42 26687.99 27393.70 22495.27 23685.11 28088.98 33994.37 31481.11 31887.10 28393.69 28682.28 19197.50 28874.37 32794.76 17798.48 129
PS-CasMVS91.55 20090.84 20393.69 22594.96 25288.28 22097.84 6398.24 3491.46 13188.04 26595.80 18979.67 23597.48 28987.02 23484.54 30195.31 255
v114491.37 21090.60 21193.68 22693.89 29388.23 22396.84 16297.03 20388.37 22189.69 22194.39 25582.04 19597.98 23687.80 21285.37 28694.84 280
GG-mvs-BLEND93.62 22793.69 29989.20 20092.39 32383.33 35187.98 26889.84 32771.00 30496.87 31482.08 29195.40 16694.80 286
tfpnnormal89.70 26388.40 26893.60 22895.15 24390.10 16397.56 9398.16 5087.28 25586.16 29494.63 24377.57 26798.05 22774.48 32584.59 30092.65 324
PatchmatchNetpermissive91.91 18891.35 18393.59 22995.38 22384.11 29393.15 31295.39 27589.54 18392.10 16693.68 28882.82 17998.13 21184.81 26595.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v119291.07 22490.23 22793.58 23093.70 29887.82 23596.73 17197.07 19687.77 24189.58 22494.32 26180.90 21497.97 23986.52 23985.48 28494.95 270
v891.29 21690.53 21593.57 23194.15 28588.12 22897.34 11397.06 19888.99 19988.32 25694.26 26683.08 17098.01 23387.62 22283.92 30994.57 297
ADS-MVSNet89.89 25988.68 26593.53 23295.86 20384.89 28590.93 32895.07 29383.23 30691.28 18491.81 31979.01 24897.85 25679.52 30691.39 22497.84 163
v1091.04 22690.23 22793.49 23394.12 28688.16 22797.32 11697.08 19588.26 22488.29 25894.22 26982.17 19497.97 23986.45 24184.12 30594.33 303
EI-MVSNet93.03 14892.88 13493.48 23495.77 20886.98 25196.44 19297.12 18990.66 15891.30 18197.64 9786.56 12298.05 22789.91 16890.55 23795.41 244
PEN-MVS91.20 21990.44 21693.48 23494.49 27587.91 23397.76 6998.18 4691.29 13887.78 27095.74 19680.35 22297.33 30085.46 25882.96 31795.19 264
mvs-test193.63 12993.69 11193.46 23696.02 20084.61 28897.24 12396.72 22593.85 5292.30 16295.76 19483.08 17098.89 15591.69 14496.54 14896.87 193
v7n90.76 23689.86 24193.45 23793.54 30287.60 23997.70 7997.37 17088.85 20587.65 27294.08 27481.08 20998.10 21684.68 26783.79 31194.66 295
v14419291.06 22590.28 22393.39 23893.66 30087.23 24596.83 16397.07 19687.43 25089.69 22194.28 26381.48 20598.00 23587.18 23284.92 29694.93 274
DWT-MVSNet_test90.76 23689.89 24093.38 23995.04 24983.70 29895.85 23694.30 31788.19 22590.46 19592.80 30273.61 29398.50 18688.16 20590.58 23697.95 157
EPMVS90.70 24189.81 24493.37 24094.73 26684.21 29193.67 30288.02 34589.50 18592.38 15893.49 29377.82 26697.78 26386.03 25092.68 20298.11 153
IterMVS-LS92.29 17691.94 16593.34 24196.25 18786.97 25296.57 19097.05 19990.67 15689.50 22994.80 23586.59 12197.64 27489.91 16886.11 27995.40 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-w/o92.14 18491.75 17093.31 24296.99 15385.73 27395.67 24295.69 26588.73 21389.26 23794.82 23482.97 17598.07 22485.26 26196.32 15296.13 213
v192192090.85 23490.03 23793.29 24393.55 30186.96 25396.74 17097.04 20187.36 25289.52 22894.34 25880.23 22597.97 23986.27 24285.21 28994.94 272
ACMH+87.92 1490.20 25389.18 25993.25 24496.48 17786.45 26296.99 14896.68 23188.83 20784.79 30696.22 17170.16 31198.53 18484.42 27288.04 26094.77 291
v124090.70 24189.85 24293.23 24593.51 30486.80 25496.61 18497.02 20487.16 25789.58 22494.31 26279.55 23897.98 23685.52 25785.44 28594.90 277
PatchT88.87 27387.42 27893.22 24694.08 28885.10 28189.51 33794.64 30881.92 31392.36 15988.15 33580.05 22897.01 31072.43 33293.65 19297.54 180
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24795.27 23685.52 27697.03 14096.63 23792.09 11589.11 24095.14 22180.33 22398.08 22187.54 22494.74 17996.03 217
miper_enhance_ethall91.54 20191.01 19693.15 24895.35 22787.07 25093.97 29496.90 21386.79 26389.17 23993.43 29786.55 12397.64 27489.97 16786.93 27094.74 292
cl-mvsnet291.21 21890.56 21493.14 24996.09 19986.80 25494.41 28096.58 24087.80 23988.58 25293.99 27780.85 21597.62 27789.87 17186.93 27094.99 269
XVG-ACMP-BASELINE90.93 23290.21 23093.09 25094.31 28385.89 27195.33 25697.26 17991.06 14989.38 23195.44 21268.61 31798.60 17989.46 18191.05 22994.79 288
TransMVSNet (Re)88.94 27087.56 27793.08 25194.35 28088.45 21897.73 7395.23 28687.47 24984.26 31095.29 21579.86 23297.33 30079.44 31074.44 33893.45 319
DTE-MVSNet90.56 24489.75 24893.01 25293.95 29087.25 24397.64 8897.65 13090.74 15387.12 28195.68 20079.97 23097.00 31183.33 27981.66 32394.78 290
EPNet_dtu91.71 19291.28 18892.99 25393.76 29783.71 29796.69 17695.28 28293.15 7987.02 28595.95 18183.37 16597.38 29879.46 30996.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 19691.13 19592.97 25495.55 21686.57 26194.47 27696.88 21687.77 24188.88 24494.01 27586.22 12897.54 28389.49 18086.93 27094.79 288
Baseline_NR-MVSNet91.20 21990.62 21092.95 25593.83 29588.03 22997.01 14795.12 29188.42 22089.70 22095.13 22283.47 16297.44 29389.66 17783.24 31593.37 320
cl-mvsnet_90.96 23190.32 22092.89 25695.37 22586.21 26794.46 27896.64 23487.82 23788.15 26394.18 27082.98 17497.54 28387.70 21585.59 28294.92 276
cl-mvsnet190.97 23090.33 21992.88 25795.36 22686.19 26894.46 27896.63 23787.82 23788.18 26294.23 26782.99 17397.53 28587.72 21385.57 28394.93 274
cl_fuxian91.38 20890.89 19892.88 25795.58 21486.30 26494.68 27196.84 22188.17 22788.83 24794.23 26785.65 13797.47 29089.36 18384.63 29894.89 278
pmmvs589.86 26188.87 26392.82 25992.86 31686.23 26696.26 21395.39 27584.24 29487.12 28194.51 24874.27 28797.36 29987.61 22387.57 26494.86 279
v14890.99 22890.38 21892.81 26093.83 29585.80 27296.78 16996.68 23189.45 18688.75 24993.93 27982.96 17697.82 26087.83 21183.25 31494.80 286
Patchmtry88.64 27787.25 28092.78 26194.09 28786.64 25789.82 33695.68 26780.81 32287.63 27392.36 31280.91 21297.03 30778.86 31285.12 29194.67 294
MVP-Stereo90.74 23990.08 23392.71 26293.19 31288.20 22495.86 23596.27 24886.07 27284.86 30594.76 23677.84 26597.75 26683.88 27798.01 11092.17 331
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs687.81 28586.19 28992.69 26391.32 33086.30 26497.34 11396.41 24380.59 32484.05 31494.37 25767.37 32497.67 27184.75 26679.51 32994.09 311
Effi-MVS+-dtu93.08 14593.21 12892.68 26496.02 20083.25 30297.14 13796.72 22593.85 5291.20 18893.44 29583.08 17098.30 19891.69 14495.73 16196.50 202
CostFormer91.18 22390.70 20892.62 26594.84 26181.76 31294.09 29294.43 31184.15 29592.72 15493.77 28479.43 23998.20 20590.70 15992.18 21197.90 159
MVS_030488.79 27487.57 27692.46 26694.65 26986.15 27096.40 19997.17 18586.44 26688.02 26691.71 32156.68 34397.03 30784.47 27092.58 20494.19 308
LCM-MVSNet-Re92.50 16592.52 14992.44 26796.82 15981.89 31196.92 15593.71 32392.41 10584.30 30994.60 24485.08 14397.03 30791.51 14797.36 12898.40 138
ITE_SJBPF92.43 26895.34 22885.37 27995.92 25891.47 13087.75 27196.39 16571.00 30497.96 24382.36 28989.86 24593.97 312
RRT_test8_iter0591.19 22290.78 20592.41 26995.76 21083.14 30397.32 11697.46 15191.37 13789.07 24195.57 20470.33 30898.21 20393.56 10686.62 27595.89 219
D2MVS91.30 21590.95 19792.35 27094.71 26785.52 27696.18 22098.21 4088.89 20486.60 29093.82 28279.92 23197.95 24589.29 18690.95 23293.56 316
eth_miper_zixun_eth91.02 22790.59 21292.34 27195.33 23184.35 28994.10 29196.90 21388.56 21788.84 24694.33 25984.08 15697.60 27988.77 19984.37 30395.06 267
USDC88.94 27087.83 27592.27 27294.66 26884.96 28393.86 29695.90 25987.34 25383.40 31795.56 20667.43 32398.19 20782.64 28889.67 24793.66 315
tpm289.96 25789.21 25892.23 27394.91 25881.25 31493.78 29894.42 31280.62 32391.56 17393.44 29576.44 27497.94 24685.60 25692.08 21597.49 181
test-LLR91.42 20691.19 19392.12 27494.59 27280.66 31794.29 28692.98 32891.11 14790.76 19192.37 30979.02 24698.07 22488.81 19796.74 14297.63 172
test-mter90.19 25489.54 25392.12 27494.59 27280.66 31794.29 28692.98 32887.68 24590.76 19192.37 30967.67 32198.07 22488.81 19796.74 14297.63 172
ADS-MVSNet289.45 26588.59 26692.03 27695.86 20382.26 31090.93 32894.32 31683.23 30691.28 18491.81 31979.01 24895.99 32379.52 30691.39 22497.84 163
TESTMET0.1,190.06 25689.42 25491.97 27794.41 27980.62 31994.29 28691.97 33687.28 25590.44 19692.47 30868.79 31697.67 27188.50 20396.60 14797.61 176
JIA-IIPM88.26 28187.04 28591.91 27893.52 30381.42 31389.38 33894.38 31380.84 32190.93 19080.74 34279.22 24297.92 25082.76 28591.62 21996.38 205
tpmvs89.83 26289.15 26091.89 27994.92 25580.30 32393.11 31395.46 27486.28 26888.08 26492.65 30480.44 22098.52 18581.47 29489.92 24496.84 194
TDRefinement86.53 29384.76 30091.85 28082.23 34884.25 29096.38 20295.35 27884.97 28684.09 31394.94 22665.76 33298.34 19784.60 26974.52 33792.97 321
miper_lstm_enhance90.50 24790.06 23691.83 28195.33 23183.74 29593.86 29696.70 23087.56 24887.79 26993.81 28383.45 16496.92 31387.39 22684.62 29994.82 283
IterMVS-SCA-FT90.31 24989.81 24491.82 28295.52 21784.20 29294.30 28596.15 25390.61 16287.39 27794.27 26475.80 27896.44 31987.34 22786.88 27494.82 283
tpm cat188.36 27987.21 28291.81 28395.13 24580.55 32092.58 32095.70 26474.97 33887.45 27491.96 31778.01 26498.17 20980.39 30388.74 25596.72 198
tpmrst91.44 20591.32 18591.79 28495.15 24379.20 33293.42 30795.37 27788.55 21893.49 13693.67 28982.49 18798.27 19990.41 16189.34 24997.90 159
MS-PatchMatch90.27 25089.77 24691.78 28594.33 28184.72 28795.55 24796.73 22486.17 27186.36 29295.28 21771.28 30297.80 26184.09 27398.14 10892.81 323
FMVSNet587.29 28985.79 29291.78 28594.80 26387.28 24195.49 25095.28 28284.09 29683.85 31691.82 31862.95 33694.17 33778.48 31385.34 28793.91 313
EG-PatchMatch MVS87.02 29185.44 29491.76 28792.67 32085.00 28296.08 22496.45 24283.41 30579.52 33193.49 29357.10 34297.72 26879.34 31190.87 23492.56 325
tpm90.25 25189.74 24991.76 28793.92 29179.73 32893.98 29393.54 32488.28 22391.99 16893.25 29877.51 26897.44 29387.30 22987.94 26198.12 150
IterMVS90.15 25589.67 25091.61 28995.48 21983.72 29694.33 28496.12 25489.99 17587.31 28094.15 27275.78 28096.27 32286.97 23586.89 27394.83 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test88.35 28087.29 27991.53 29092.45 32483.57 30093.75 29995.97 25784.28 29385.32 30394.18 27079.00 25096.93 31275.71 32384.99 29594.10 309
pmmvs-eth3d86.22 29684.45 30191.53 29088.34 34187.25 24394.47 27695.01 29483.47 30479.51 33289.61 32869.75 31495.71 32783.13 28176.73 33491.64 332
test_040286.46 29484.79 29991.45 29295.02 25085.55 27596.29 21194.89 30080.90 31982.21 31993.97 27868.21 32097.29 30262.98 34488.68 25791.51 334
OurMVSNet-221017-090.51 24690.19 23191.44 29393.41 30781.25 31496.98 15096.28 24791.68 12586.55 29196.30 16874.20 28897.98 23688.96 19587.40 26895.09 265
test0.0.03 189.37 26788.70 26491.41 29492.47 32385.63 27495.22 26492.70 33091.11 14786.91 28893.65 29079.02 24693.19 34278.00 31589.18 25095.41 244
TinyColmap86.82 29285.35 29691.21 29594.91 25882.99 30493.94 29594.02 32183.58 30281.56 32194.68 24062.34 33898.13 21175.78 32287.35 26992.52 326
our_test_388.78 27587.98 27491.20 29692.45 32482.53 30693.61 30595.69 26585.77 27584.88 30493.71 28579.99 22996.78 31779.47 30886.24 27694.28 306
MDA-MVSNet-bldmvs85.00 30382.95 30791.17 29793.13 31483.33 30194.56 27495.00 29584.57 29165.13 34592.65 30470.45 30795.85 32473.57 33077.49 33194.33 303
SixPastTwentyTwo89.15 26888.54 26790.98 29893.49 30580.28 32496.70 17494.70 30590.78 15284.15 31295.57 20471.78 29997.71 26984.63 26885.07 29294.94 272
PVSNet_082.17 1985.46 30283.64 30590.92 29995.27 23679.49 32990.55 33195.60 26983.76 30183.00 31889.95 32571.09 30397.97 23982.75 28660.79 34695.31 255
OpenMVS_ROBcopyleft81.14 2084.42 30582.28 30890.83 30090.06 33484.05 29495.73 24194.04 32073.89 34080.17 33091.53 32359.15 34097.64 27466.92 34289.05 25190.80 337
Patchmatch-RL test87.38 28786.24 28890.81 30188.74 34078.40 33588.12 34193.17 32787.11 25882.17 32089.29 32981.95 19895.60 32988.64 20177.02 33298.41 137
dp88.90 27288.26 27190.81 30194.58 27476.62 33792.85 31794.93 29985.12 28390.07 21293.07 29975.81 27798.12 21480.53 30287.42 26797.71 169
MDA-MVSNet_test_wron85.87 29984.23 30390.80 30392.38 32682.57 30593.17 31095.15 28982.15 31167.65 34292.33 31578.20 25895.51 33177.33 31779.74 32794.31 305
YYNet185.87 29984.23 30390.78 30492.38 32682.46 30893.17 31095.14 29082.12 31267.69 34192.36 31278.16 26195.50 33277.31 31879.73 32894.39 301
UnsupCasMVSNet_eth85.99 29884.45 30190.62 30589.97 33582.40 30993.62 30497.37 17089.86 17778.59 33492.37 30965.25 33395.35 33382.27 29070.75 34194.10 309
MIMVSNet184.93 30483.05 30690.56 30689.56 33884.84 28695.40 25395.35 27883.91 29780.38 32792.21 31657.23 34193.34 34170.69 33982.75 32193.50 317
lessismore_v090.45 30791.96 32979.09 33387.19 34880.32 32894.39 25566.31 32897.55 28284.00 27576.84 33394.70 293
RPSCF90.75 23890.86 20090.42 30896.84 15676.29 33895.61 24696.34 24583.89 29891.38 17697.87 7576.45 27398.78 16287.16 23392.23 20896.20 207
K. test v387.64 28686.75 28790.32 30993.02 31579.48 33096.61 18492.08 33590.66 15880.25 32994.09 27367.21 32596.65 31885.96 25280.83 32694.83 281
testgi87.97 28287.21 28290.24 31092.86 31680.76 31696.67 17894.97 29791.74 12385.52 29995.83 18762.66 33794.47 33676.25 32188.36 25995.48 238
UnsupCasMVSNet_bld82.13 31079.46 31390.14 31188.00 34282.47 30790.89 33096.62 23978.94 33075.61 33684.40 34056.63 34496.31 32177.30 31966.77 34591.63 333
LF4IMVS87.94 28387.25 28089.98 31292.38 32680.05 32794.38 28195.25 28587.59 24784.34 30894.74 23864.31 33497.66 27384.83 26487.45 26592.23 329
Anonymous2023120687.09 29086.14 29089.93 31391.22 33180.35 32196.11 22295.35 27883.57 30384.16 31193.02 30073.54 29495.61 32872.16 33386.14 27893.84 314
CVMVSNet91.23 21791.75 17089.67 31495.77 20874.69 34096.44 19294.88 30185.81 27492.18 16497.64 9779.07 24395.58 33088.06 20795.86 15898.74 110
test20.0386.14 29785.40 29588.35 31590.12 33380.06 32695.90 23495.20 28788.59 21481.29 32293.62 29171.43 30192.65 34371.26 33781.17 32592.34 328
PM-MVS83.48 30681.86 31088.31 31687.83 34377.59 33693.43 30691.75 33786.91 26080.63 32589.91 32644.42 34995.84 32585.17 26376.73 33491.50 335
EU-MVSNet88.72 27688.90 26288.20 31793.15 31374.21 34196.63 18394.22 31885.18 28187.32 27995.97 17976.16 27694.98 33485.27 26086.17 27795.41 244
new_pmnet82.89 30881.12 31288.18 31889.63 33780.18 32591.77 32492.57 33176.79 33775.56 33888.23 33461.22 33994.48 33571.43 33582.92 31889.87 339
CMPMVSbinary62.92 2185.62 30184.92 29887.74 31989.14 33973.12 34394.17 28996.80 22373.98 33973.65 33994.93 22766.36 32697.61 27883.95 27691.28 22692.48 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs379.97 31177.50 31587.39 32082.80 34779.38 33192.70 31990.75 34270.69 34278.66 33387.47 33851.34 34793.40 34073.39 33169.65 34389.38 340
new-patchmatchnet83.18 30781.87 30987.11 32186.88 34575.99 33993.70 30095.18 28885.02 28577.30 33588.40 33265.99 33093.88 33974.19 32970.18 34291.47 336
DSMNet-mixed86.34 29586.12 29187.00 32289.88 33670.43 34494.93 26890.08 34377.97 33585.42 30292.78 30374.44 28693.96 33874.43 32695.14 16996.62 199
ambc86.56 32383.60 34670.00 34685.69 34394.97 29780.60 32688.45 33137.42 35096.84 31582.69 28775.44 33692.86 322
MVS-HIRNet82.47 30981.21 31186.26 32495.38 22369.21 34788.96 34089.49 34466.28 34380.79 32474.08 34668.48 31897.39 29771.93 33495.47 16492.18 330
LCM-MVSNet72.55 31369.39 31782.03 32570.81 35465.42 35090.12 33594.36 31555.02 34765.88 34481.72 34124.16 35789.96 34474.32 32868.10 34490.71 338
PMMVS270.19 31566.92 31880.01 32676.35 34965.67 34986.22 34287.58 34764.83 34562.38 34680.29 34326.78 35588.49 34663.79 34354.07 34785.88 341
N_pmnet78.73 31278.71 31478.79 32792.80 31846.50 35694.14 29043.71 35878.61 33180.83 32391.66 32274.94 28496.36 32067.24 34184.45 30293.50 317
ANet_high63.94 31759.58 32077.02 32861.24 35666.06 34885.66 34487.93 34678.53 33242.94 35071.04 34725.42 35680.71 34952.60 34730.83 35084.28 342
FPMVS71.27 31469.85 31675.50 32974.64 35059.03 35291.30 32691.50 33958.80 34657.92 34788.28 33329.98 35385.53 34853.43 34682.84 32081.95 343
Gipumacopyleft67.86 31665.41 31975.18 33092.66 32173.45 34266.50 35094.52 31053.33 34857.80 34866.07 34830.81 35189.20 34548.15 34878.88 33062.90 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft74.68 33190.84 33264.34 35181.61 35365.34 34467.47 34388.01 33648.60 34880.13 35062.33 34573.68 34079.58 344
PMVScopyleft53.92 2258.58 31855.40 32168.12 33251.00 35748.64 35478.86 34787.10 34946.77 34935.84 35474.28 3458.76 35886.34 34742.07 34973.91 33969.38 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 32048.81 32566.58 33365.34 35557.50 35372.49 34970.94 35640.15 35239.28 35363.51 3496.89 36073.48 35338.29 35042.38 34868.76 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 31952.56 32355.43 33474.43 35147.13 35583.63 34676.30 35442.23 35042.59 35162.22 35028.57 35474.40 35131.53 35131.51 34944.78 348
EMVS52.08 32151.31 32454.39 33572.62 35345.39 35783.84 34575.51 35541.13 35140.77 35259.65 35130.08 35273.60 35228.31 35229.90 35144.18 349
tmp_tt51.94 32253.82 32246.29 33633.73 35845.30 35878.32 34867.24 35718.02 35350.93 34987.05 33952.99 34653.11 35470.76 33825.29 35240.46 350
wuyk23d25.11 32324.57 32726.74 33773.98 35239.89 35957.88 3519.80 35912.27 35410.39 3556.97 3577.03 35936.44 35525.43 35317.39 3533.89 353
test12313.04 32615.66 3295.18 3384.51 3603.45 36092.50 3221.81 3612.50 3567.58 35720.15 3543.67 3612.18 3577.13 3551.07 3559.90 351
testmvs13.36 32516.33 3284.48 3395.04 3592.26 36193.18 3093.28 3602.70 3558.24 35621.66 3532.29 3622.19 3567.58 3542.96 3549.00 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k23.24 32430.99 3260.00 3400.00 3610.00 3620.00 35297.63 1320.00 3570.00 35896.88 13484.38 1510.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.39 3289.85 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35888.65 940.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.06 32710.74 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35896.69 1430.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS99.05 4194.59 2898.08 6489.22 19297.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
RE-MVS-def96.72 3599.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
IU-MVS99.42 695.39 997.94 10290.40 16998.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7398.23 3891.28 14197.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18098.45 132
sam_mvs81.94 199
MTGPAbinary98.08 64
test_post192.81 31816.58 35680.53 21897.68 27086.20 244
test_post17.58 35581.76 20198.08 221
patchmatchnet-post90.45 32482.65 18498.10 216
MTMP97.86 5982.03 352
gm-plane-assit93.22 31178.89 33484.82 28893.52 29298.64 17587.72 213
test9_res94.81 8399.38 4899.45 45
TEST998.70 6094.19 4096.41 19698.02 8888.17 22796.03 7897.56 10592.74 2499.59 67
test_898.67 6294.06 4996.37 20398.01 9188.58 21595.98 8397.55 10792.73 2599.58 70
agg_prior293.94 9999.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
test_prior493.66 5996.42 195
test_prior296.35 20492.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
旧先验295.94 23281.66 31597.34 3498.82 15992.26 125
新几何295.79 239
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
无先验95.79 23997.87 10883.87 30099.65 5387.68 21898.89 100
原ACMM295.67 242
test22298.24 9392.21 9995.33 25697.60 13479.22 32995.25 10497.84 8188.80 9299.15 7398.72 112
testdata299.67 4985.96 252
segment_acmp92.89 22
testdata195.26 26393.10 82
plane_prior796.21 18889.98 169
plane_prior696.10 19890.00 16581.32 207
plane_prior597.51 14498.60 17993.02 11992.23 20895.86 220
plane_prior496.64 146
plane_prior390.00 16594.46 3991.34 178
plane_prior297.74 7194.85 24
plane_prior196.14 196
plane_prior89.99 16797.24 12394.06 4792.16 212
n20.00 362
nn0.00 362
door-mid91.06 341
test1197.88 106
door91.13 340
HQP5-MVS89.33 193
HQP-NCC95.86 20396.65 17993.55 6290.14 201
ACMP_Plane95.86 20396.65 17993.55 6290.14 201
BP-MVS92.13 131
HQP4-MVS90.14 20198.50 18695.78 227
HQP3-MVS97.39 16792.10 213
HQP2-MVS80.95 210
NP-MVS95.99 20289.81 17495.87 184
MDTV_nov1_ep13_2view70.35 34593.10 31483.88 29993.55 13382.47 18886.25 24398.38 140
MDTV_nov1_ep1390.76 20695.22 24080.33 32293.03 31595.28 28288.14 23092.84 15393.83 28081.34 20698.08 22182.86 28394.34 183
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93