This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
IU-MVS99.42 695.39 997.94 10290.40 16998.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16598.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19389.67 25197.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35491.70 5099.80 2795.66 5299.40 4599.62 13
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10897.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
test117296.93 3396.86 2297.15 6799.10 3492.34 9397.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 12998.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9697.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
agg_prior293.94 9999.38 4899.50 37
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14596.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 23096.64 5597.70 8991.18 6399.67 4992.44 12499.47 3699.48 41
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10796.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
test9_res94.81 8399.38 4899.45 45
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15798.09 10586.63 26196.00 23098.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15595.34 1398.48 1597.87 10894.65 3688.53 25498.02 6783.69 16099.71 3893.18 11698.96 8599.44 47
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12797.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19798.02 8888.58 21696.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20597.88 10686.98 26096.65 5497.89 7291.99 4399.47 9992.26 12599.46 3899.39 54
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15695.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16596.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8698.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17797.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21398.00 9388.76 21395.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29796.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet96.39 5596.02 5997.50 5097.62 12793.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20598.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9696.20 22098.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 17997.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
test1297.65 4498.46 7494.26 3797.66 12895.52 10290.89 6999.46 10099.25 6599.22 67
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19095.18 26698.48 1485.60 27993.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17293.36 6998.65 698.36 1694.12 4689.25 23998.06 6482.20 19399.77 2993.41 11299.32 5399.18 69
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15898.30 2398.57 1189.01 19993.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
IS-MVSNet94.90 9594.52 9696.05 11797.67 12490.56 15598.44 1696.22 25393.21 7593.99 12497.74 8785.55 13898.45 19089.98 16797.86 11399.14 73
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
baseline95.58 7595.42 7396.08 11496.78 16190.41 16197.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15696.04 22697.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 12997.94 5493.39 32890.57 16596.29 7098.31 4769.00 31799.16 12794.18 9495.87 15799.12 77
UA-Net95.95 6795.53 6797.20 6697.67 12492.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16497.35 12999.11 78
EPNet95.20 8694.56 9397.14 6892.80 31992.68 8497.85 6294.87 30696.64 192.46 15597.80 8486.23 12799.65 5393.72 10598.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvs95.64 7395.49 6996.08 11496.76 16490.45 15997.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22594.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17294.58 27598.49 1285.06 28693.78 12995.78 19482.86 17798.67 17391.77 14095.71 16299.07 82
mvs_anonymous93.82 12393.74 10994.06 20496.44 18085.41 27995.81 23997.05 19989.85 17990.09 21196.36 16687.44 11397.75 26793.97 9796.69 14599.02 83
abl_696.40 5496.21 5596.98 7498.89 5492.20 10197.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12198.33 2198.11 5987.79 24195.17 10698.03 6687.09 11899.61 6293.51 10899.42 4399.02 83
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16897.61 12887.92 23298.10 3995.80 26592.22 10893.02 14697.45 10984.53 15097.91 25488.24 20597.97 11199.02 83
Anonymous20240521192.07 18590.83 20495.76 12798.19 10088.75 21097.58 9195.00 29786.00 27493.64 13197.45 10966.24 33199.53 8890.68 16192.71 20199.01 87
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14091.58 11998.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DELS-MVS96.61 4896.38 5197.30 5797.79 11993.19 7295.96 23298.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15397.24 12397.73 11991.80 12292.93 15296.62 15389.13 8899.14 13089.21 19197.78 11698.97 90
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11197.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs95.87 6995.23 7897.78 3397.56 13295.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11697.46 10497.96 10077.99 33693.00 14797.57 10386.14 13299.33 11389.22 19099.15 7398.94 94
WTY-MVS94.71 10294.02 10496.79 7697.71 12392.05 10596.59 18897.35 17390.61 16294.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13389.56 17998.67 597.00 20590.69 15594.24 12097.62 9989.79 8598.81 16093.39 11396.49 14998.92 96
canonicalmvs96.02 6495.45 7197.75 3797.59 13095.15 2198.28 2597.60 13494.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14596.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
PAPR94.18 10993.42 12496.48 9097.64 12691.42 12695.55 24897.71 12688.99 20092.34 16195.82 18989.19 8699.11 13286.14 24797.38 12798.90 98
无先验95.79 24097.87 10883.87 30299.65 5387.68 21998.89 100
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14197.38 11196.08 25782.38 31289.29 23697.87 7583.77 15999.69 4481.37 29996.69 14598.89 100
diffmvs95.25 8395.13 8195.63 13696.43 18189.34 19295.99 23197.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
MVSFormer95.37 7995.16 8095.99 12096.34 18591.21 13298.22 3297.57 13891.42 13396.22 7297.32 11386.20 13097.92 25194.07 9599.05 8198.85 103
jason94.84 9894.39 10196.18 11295.52 21890.93 14596.09 22496.52 24189.28 19196.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
Effi-MVS+94.93 9494.45 9996.36 10196.61 16691.47 12296.41 19797.41 16691.02 15094.50 11595.92 18387.53 11098.78 16293.89 10196.81 14098.84 105
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26297.62 13390.43 16895.55 9997.07 12591.72 4899.50 9689.62 17998.94 8698.82 106
lupinMVS94.99 9394.56 9396.29 10696.34 18591.21 13295.83 23896.27 25088.93 20496.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
test_yl94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
CVMVSNet91.23 21891.75 17089.67 31595.77 20974.69 34296.44 19394.88 30385.81 27692.18 16497.64 9779.07 24395.58 33188.06 20895.86 15898.74 110
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22697.73 11981.56 31995.68 9397.85 7890.23 7899.65 5387.68 21999.12 7898.73 111
test22298.24 9392.21 9995.33 25797.60 13479.22 33195.25 10497.84 8188.80 9299.15 7398.72 112
MVS_Test94.89 9694.62 9195.68 13496.83 15989.55 18096.70 17497.17 18591.17 14595.60 9896.11 17887.87 10498.76 16593.01 12197.17 13698.72 112
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17197.72 7695.85 26392.43 10495.86 8698.44 2868.42 32199.39 10996.31 2894.85 17498.71 114
新几何197.32 5698.60 6893.59 6197.75 11781.58 31895.75 9097.85 7890.04 8299.67 4986.50 24199.13 7598.69 115
sss94.51 10493.80 10896.64 7897.07 14691.97 10996.32 20998.06 7388.94 20394.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
testdata95.46 15098.18 10288.90 20897.66 12882.73 31197.03 4798.07 6390.06 8198.85 15789.67 17798.98 8498.64 117
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 21898.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14797.27 12198.25 3390.21 17094.18 12197.27 11587.48 11299.73 3293.53 10797.77 11798.55 119
EIA-MVS95.53 7795.47 7095.71 13397.06 14989.63 17597.82 6497.87 10893.57 6193.92 12795.04 22590.61 7498.95 14994.62 8898.68 9398.54 120
TAMVS94.01 11893.46 12095.64 13596.16 19490.45 15996.71 17396.89 21589.27 19293.46 13796.92 13287.29 11597.94 24788.70 20195.74 16098.53 121
ET-MVSNet_ETH3D91.49 20490.11 23395.63 13696.40 18291.57 12095.34 25693.48 32790.60 16475.58 33995.49 21180.08 22796.79 31794.25 9289.76 24698.52 122
PatchmatchNetpermissive91.91 18891.35 18393.59 23095.38 22484.11 29493.15 31495.39 27789.54 18492.10 16793.68 28982.82 17998.13 21284.81 26695.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM93.45 13592.27 15696.98 7496.77 16292.62 8698.39 1998.12 5684.50 29488.27 26097.77 8582.39 19099.81 2685.40 26098.81 8998.51 124
1112_ss93.37 13692.42 15296.21 11197.05 15190.99 14196.31 21096.72 22586.87 26389.83 21896.69 14386.51 12499.14 13088.12 20793.67 19198.50 125
ab-mvs93.57 13292.55 14696.64 7897.28 13691.96 11095.40 25497.45 15789.81 18193.22 14596.28 16979.62 23799.46 10090.74 15993.11 19798.50 125
原ACMM196.38 9998.59 6991.09 14097.89 10487.41 25295.22 10597.68 9190.25 7799.54 8587.95 21099.12 7898.49 127
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15289.97 17095.53 25096.64 23485.38 28089.65 22495.18 22085.86 13499.10 13387.70 21693.58 19698.49 127
Patchmatch-test89.42 26787.99 27493.70 22595.27 23785.11 28188.98 34194.37 31681.11 32087.10 28493.69 28782.28 19197.50 28974.37 32994.76 17798.48 129
VDDNet93.05 14792.07 15996.02 11896.84 15790.39 16298.08 4295.85 26386.22 27195.79 8998.46 2667.59 32499.19 12394.92 7894.85 17498.47 130
PVSNet86.66 1892.24 17991.74 17293.73 22297.77 12083.69 30092.88 31896.72 22587.91 23693.00 14794.86 23278.51 25599.05 14286.53 23997.45 12698.47 130
GSMVS98.45 132
sam_mvs182.76 18098.45 132
SCA91.84 19091.18 19493.83 21895.59 21484.95 28594.72 27295.58 27390.82 15192.25 16393.69 28775.80 27998.10 21786.20 24595.98 15498.45 132
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19291.46 12396.33 20897.04 20188.97 20293.56 13296.51 15787.55 10997.89 25589.80 17395.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22395.09 10897.65 9489.97 8399.48 9892.08 13498.59 9798.44 135
Patchmatch-RL test87.38 28886.24 28990.81 30288.74 34278.40 33788.12 34393.17 32987.11 25982.17 32289.29 33181.95 19895.60 33088.64 20277.02 33398.41 137
LCM-MVSNet-Re92.50 16592.52 14992.44 26896.82 16081.89 31296.92 15593.71 32592.41 10584.30 31094.60 24585.08 14397.03 30891.51 14797.36 12898.40 138
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18695.47 25298.36 1688.84 20794.36 11796.09 17988.02 10099.58 7093.44 11098.18 10698.40 138
tttt051792.96 15192.33 15494.87 17197.11 14487.16 24997.97 5292.09 33690.63 16093.88 12897.01 12876.50 27399.06 14190.29 16695.45 16598.38 140
MDTV_nov1_ep13_2view70.35 34793.10 31683.88 30193.55 13382.47 18886.25 24498.38 140
BH-RMVSNet92.72 16391.97 16494.97 16697.16 14187.99 23196.15 22295.60 27190.62 16191.87 17197.15 12278.41 25798.57 18283.16 28197.60 12098.36 142
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19597.57 13892.04 11794.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
thisisatest053093.03 14892.21 15795.49 14697.07 14689.11 20497.49 10192.19 33590.16 17294.09 12296.41 16376.43 27699.05 14290.38 16395.68 16398.31 144
CS-MVS95.80 7095.65 6696.24 11097.32 13591.43 12598.10 3997.91 10393.38 6995.16 10794.57 24790.21 7998.98 14795.53 6498.67 9498.30 145
Anonymous2024052991.98 18790.73 20895.73 13298.14 10389.40 18997.99 4797.72 12279.63 32993.54 13497.41 11169.94 31499.56 8091.04 15691.11 22898.22 146
GA-MVS91.38 20990.31 22294.59 18294.65 27087.62 23994.34 28596.19 25490.73 15490.35 19993.83 28171.84 29997.96 24487.22 23193.61 19498.21 147
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17796.79 16797.65 13081.83 31691.52 17597.23 11887.94 10298.91 15371.31 33898.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UGNet94.04 11793.28 12796.31 10396.85 15691.19 13597.88 5897.68 12794.40 4093.00 14796.18 17273.39 29699.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16290.03 16496.81 16697.13 18888.19 22691.30 18294.27 26586.21 12998.63 17687.66 22196.46 15198.12 150
tpm90.25 25289.74 25091.76 28893.92 29279.73 32993.98 29593.54 32688.28 22491.99 16993.25 29977.51 26997.44 29487.30 23087.94 26198.12 150
PMMVS92.86 15792.34 15394.42 19194.92 25686.73 25794.53 27796.38 24684.78 29194.27 11995.12 22483.13 16998.40 19291.47 14996.49 14998.12 150
EPMVS90.70 24289.81 24593.37 24194.73 26784.21 29293.67 30488.02 34789.50 18692.38 15893.49 29477.82 26797.78 26486.03 25192.68 20298.11 153
LS3D93.57 13292.61 14496.47 9197.59 13091.61 11697.67 8197.72 12285.17 28490.29 20098.34 4184.60 14899.73 3283.85 27998.27 10398.06 154
UniMVSNet_ETH3D91.34 21490.22 23094.68 18194.86 26187.86 23597.23 12897.46 15187.99 23389.90 21596.92 13266.35 32998.23 20290.30 16590.99 23197.96 155
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14592.49 9095.64 24696.64 23489.05 19893.00 14795.79 19385.77 13699.45 10289.16 19494.35 18297.96 155
DWT-MVSNet_test90.76 23789.89 24193.38 24095.04 25083.70 29995.85 23794.30 31988.19 22690.46 19692.80 30373.61 29498.50 18688.16 20690.58 23697.95 157
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8896.59 18896.88 21690.13 17391.91 17097.24 11785.21 14199.09 13687.64 22297.83 11497.92 158
CostFormer91.18 22490.70 20992.62 26694.84 26281.76 31394.09 29494.43 31384.15 29792.72 15493.77 28579.43 23998.20 20690.70 16092.18 21197.90 159
tpmrst91.44 20691.32 18591.79 28595.15 24479.20 33393.42 30995.37 27988.55 21993.49 13693.67 29082.49 18798.27 20090.41 16289.34 24997.90 159
EPNet_dtu91.71 19391.28 18892.99 25493.76 29883.71 29896.69 17695.28 28493.15 7987.02 28695.95 18283.37 16597.38 29979.46 31196.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051592.29 17691.30 18795.25 15496.60 16788.90 20894.36 28492.32 33487.92 23593.43 13894.57 24777.28 27099.00 14589.42 18395.86 15897.86 162
ADS-MVSNet289.45 26688.59 26792.03 27795.86 20482.26 31190.93 33094.32 31883.23 30891.28 18591.81 32079.01 24895.99 32479.52 30891.39 22497.84 163
ADS-MVSNet89.89 26088.68 26693.53 23395.86 20484.89 28690.93 33095.07 29583.23 30891.28 18591.81 32079.01 24897.85 25779.52 30891.39 22497.84 163
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10297.67 8197.47 14988.13 23293.00 14795.84 18784.86 14699.51 9387.99 20998.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS96.02 6495.89 6296.40 9697.16 14192.44 9197.47 10297.77 11594.55 3796.48 6394.51 24991.23 6298.92 15195.65 5598.19 10597.82 166
CANet_DTU94.37 10593.65 11396.55 8496.46 17992.13 10396.21 21996.67 23394.38 4293.53 13597.03 12779.34 24099.71 3890.76 15898.45 10097.82 166
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 13996.69 17697.39 16787.29 25591.37 17896.71 13988.39 9899.52 9287.33 22997.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.90 27388.26 27290.81 30294.58 27576.62 33992.85 31994.93 30185.12 28590.07 21393.07 30075.81 27898.12 21580.53 30387.42 26797.71 169
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11596.59 18897.81 11489.87 17692.15 16597.06 12683.62 16199.54 8589.34 18598.07 10997.70 170
baseline192.82 16091.90 16695.55 14297.20 13990.77 15197.19 13194.58 31192.20 11092.36 15996.34 16784.16 15598.21 20489.20 19283.90 31097.68 171
test-LLR91.42 20791.19 19392.12 27594.59 27380.66 31894.29 28892.98 33091.11 14790.76 19292.37 31079.02 24698.07 22588.81 19896.74 14297.63 172
test-mter90.19 25589.54 25492.12 27594.59 27380.66 31894.29 28892.98 33087.68 24690.76 19292.37 31067.67 32398.07 22588.81 19896.74 14297.63 172
PAPM91.52 20390.30 22395.20 15595.30 23689.83 17393.38 31096.85 22086.26 27088.59 25295.80 19084.88 14598.15 21175.67 32695.93 15697.63 172
F-COLMAP93.58 13192.98 13195.37 15298.40 7888.98 20697.18 13297.29 17887.75 24490.49 19597.10 12485.21 14199.50 9686.70 23896.72 14497.63 172
TESTMET0.1,190.06 25789.42 25591.97 27894.41 28080.62 32094.29 28891.97 33887.28 25690.44 19792.47 30968.79 31897.67 27288.50 20496.60 14797.61 176
CR-MVSNet90.82 23689.77 24793.95 21294.45 27887.19 24790.23 33595.68 26986.89 26292.40 15692.36 31380.91 21297.05 30781.09 30193.95 18997.60 177
RPMNet88.98 27087.05 28594.77 17894.45 27887.19 24790.23 33598.03 8477.87 33892.40 15687.55 33980.17 22699.51 9368.84 34293.95 18997.60 177
MIMVSNet88.50 27986.76 28793.72 22494.84 26287.77 23791.39 32794.05 32186.41 26887.99 26892.59 30763.27 33795.82 32777.44 31892.84 20097.57 179
PatchT88.87 27487.42 27993.22 24794.08 28985.10 28289.51 33994.64 31081.92 31592.36 15988.15 33780.05 22897.01 31172.43 33493.65 19297.54 180
tpm289.96 25889.21 25992.23 27494.91 25981.25 31593.78 30094.42 31480.62 32591.56 17493.44 29676.44 27597.94 24785.60 25792.08 21597.49 181
IB-MVS87.33 1789.91 25988.28 27194.79 17795.26 24087.70 23895.12 26893.95 32489.35 19087.03 28592.49 30870.74 30799.19 12389.18 19381.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
AUN-MVS91.76 19290.75 20794.81 17497.00 15388.57 21496.65 17996.49 24289.63 18392.15 16596.12 17578.66 25398.50 18690.83 15779.18 33097.36 183
CHOSEN 280x42093.12 14492.72 14094.34 19496.71 16587.27 24390.29 33497.72 12286.61 26691.34 17995.29 21684.29 15498.41 19193.25 11598.94 8697.35 184
BH-untuned92.94 15392.62 14393.92 21697.22 13786.16 27096.40 20096.25 25290.06 17489.79 21996.17 17483.19 16698.35 19687.19 23297.27 13297.24 185
131492.81 16192.03 16195.14 15895.33 23289.52 18396.04 22697.44 16187.72 24586.25 29495.33 21583.84 15898.79 16189.26 18897.05 13897.11 186
PCF-MVS89.48 1191.56 20089.95 23996.36 10196.60 16792.52 8992.51 32397.26 17979.41 33088.90 24396.56 15584.04 15799.55 8377.01 32297.30 13197.01 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.49 16791.60 17595.18 15697.91 11489.47 18497.65 8494.66 30892.18 11493.33 14094.91 22978.06 26399.10 13381.61 29394.06 18896.98 188
thres40092.42 16991.52 17995.12 16097.85 11789.29 19697.41 10594.88 30392.19 11293.27 14394.46 25478.17 26099.08 13881.40 29694.08 18596.98 188
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17497.06 14988.53 21695.28 26097.45 15791.68 12594.08 12397.68 9182.41 18998.90 15493.84 10392.47 20596.98 188
MSDG91.42 20790.24 22794.96 16797.15 14388.91 20793.69 30396.32 24885.72 27886.93 28896.47 15980.24 22498.98 14780.57 30295.05 17396.98 188
XVG-OURS93.72 12793.35 12594.80 17697.07 14688.61 21394.79 27197.46 15191.97 12093.99 12497.86 7781.74 20298.88 15692.64 12392.67 20396.92 192
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 14995.27 26297.18 18387.96 23491.86 17295.68 20180.44 22098.99 14684.01 27597.54 12196.89 193
mvs-test193.63 12993.69 11193.46 23796.02 20184.61 28997.24 12396.72 22593.85 5292.30 16295.76 19583.08 17098.89 15591.69 14496.54 14896.87 194
tpmvs89.83 26389.15 26191.89 28094.92 25680.30 32493.11 31595.46 27686.28 26988.08 26592.65 30580.44 22098.52 18581.47 29589.92 24496.84 195
baseline291.63 19690.86 20093.94 21494.33 28286.32 26495.92 23491.64 34089.37 18986.94 28794.69 24081.62 20498.69 17188.64 20294.57 18196.81 196
TR-MVS91.48 20590.59 21394.16 20196.40 18287.33 24195.67 24395.34 28387.68 24691.46 17695.52 21076.77 27298.35 19682.85 28593.61 19496.79 197
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 22992.73 8398.27 2698.12 5684.86 28985.78 29897.75 8678.89 25199.74 3187.50 22698.65 9596.73 198
tpm cat188.36 28087.21 28391.81 28495.13 24680.55 32192.58 32295.70 26674.97 34087.45 27591.96 31878.01 26598.17 21080.39 30488.74 25596.72 199
DSMNet-mixed86.34 29686.12 29287.00 32489.88 33770.43 34694.93 27090.08 34577.97 33785.42 30392.78 30474.44 28793.96 34074.43 32895.14 16996.62 200
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10897.80 6697.48 14689.19 19594.81 11196.71 13988.84 9199.17 12688.91 19798.76 9196.53 201
gg-mvs-nofinetune87.82 28585.61 29494.44 18994.46 27789.27 19991.21 32984.61 35280.88 32289.89 21774.98 34671.50 30197.53 28685.75 25697.21 13496.51 202
Effi-MVS+-dtu93.08 14593.21 12892.68 26596.02 20183.25 30397.14 13796.72 22593.85 5291.20 18993.44 29683.08 17098.30 19991.69 14495.73 16196.50 203
thres100view90092.43 16891.58 17694.98 16597.92 11389.37 19197.71 7894.66 30892.20 11093.31 14194.90 23078.06 26399.08 13881.40 29694.08 18596.48 204
tfpn200view992.38 17191.52 17994.95 16897.85 11789.29 19697.41 10594.88 30392.19 11293.27 14394.46 25478.17 26099.08 13881.40 29694.08 18596.48 204
JIA-IIPM88.26 28287.04 28691.91 27993.52 30481.42 31489.38 34094.38 31580.84 32390.93 19180.74 34479.22 24297.92 25182.76 28691.62 21996.38 206
cascas91.20 22090.08 23494.58 18694.97 25289.16 20393.65 30597.59 13679.90 32889.40 23192.92 30275.36 28398.36 19592.14 13094.75 17896.23 207
RPSCF90.75 23990.86 20090.42 30996.84 15776.29 34095.61 24796.34 24783.89 30091.38 17797.87 7576.45 27498.78 16287.16 23492.23 20896.20 208
thres20092.23 18091.39 18294.75 18097.61 12889.03 20596.60 18795.09 29492.08 11693.28 14294.00 27778.39 25899.04 14481.26 30094.18 18496.19 209
xiu_mvs_v2_base95.32 8195.29 7795.40 15197.22 13790.50 15795.44 25397.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 210
PS-MVSNAJ95.37 7995.33 7695.49 14697.35 13490.66 15495.31 25997.48 14693.85 5296.51 6195.70 20088.65 9499.65 5394.80 8498.27 10396.17 210
AllTest90.23 25388.98 26293.98 20897.94 11186.64 25896.51 19295.54 27485.38 28085.49 30196.77 13770.28 31099.15 12880.02 30692.87 19896.15 212
TestCases93.98 20897.94 11186.64 25895.54 27485.38 28085.49 30196.77 13770.28 31099.15 12880.02 30692.87 19896.15 212
BH-w/o92.14 18491.75 17093.31 24396.99 15485.73 27495.67 24395.69 26788.73 21489.26 23894.82 23582.97 17598.07 22585.26 26296.32 15296.13 214
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 16991.71 11296.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 16991.71 11296.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 16991.71 11296.25 21597.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 215
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24895.27 23785.52 27797.03 14096.63 23792.09 11589.11 24195.14 22280.33 22398.08 22287.54 22594.74 17996.03 218
nrg03094.05 11693.31 12696.27 10795.22 24194.59 2898.34 2097.46 15192.93 9191.21 18896.64 14687.23 11798.22 20394.99 7785.80 28195.98 219
RRT_test8_iter0591.19 22390.78 20592.41 27095.76 21183.14 30497.32 11697.46 15191.37 13789.07 24295.57 20570.33 30998.21 20493.56 10686.62 27595.89 220
PS-MVSNAJss93.74 12693.51 11894.44 18993.91 29389.28 19897.75 7097.56 14192.50 10389.94 21496.54 15688.65 9498.18 20993.83 10490.90 23395.86 221
HQP_MVS93.78 12593.43 12294.82 17296.21 18989.99 16797.74 7197.51 14494.85 2491.34 17996.64 14681.32 20798.60 17993.02 11992.23 20895.86 221
plane_prior597.51 14498.60 17993.02 11992.23 20895.86 221
FIs94.09 11493.70 11095.27 15395.70 21292.03 10698.10 3998.68 793.36 7290.39 19896.70 14187.63 10897.94 24792.25 12790.50 23995.84 224
FC-MVSNet-test93.94 12093.57 11495.04 16195.48 22091.45 12498.12 3898.71 593.37 7090.23 20196.70 14187.66 10697.85 25791.49 14890.39 24095.83 225
MVS91.71 19390.44 21795.51 14495.20 24391.59 11896.04 22697.45 15773.44 34387.36 27995.60 20485.42 13999.10 13385.97 25297.46 12295.83 225
VPNet92.23 18091.31 18694.99 16395.56 21690.96 14397.22 12997.86 11192.96 9090.96 19096.62 15375.06 28498.20 20691.90 13683.65 31295.80 227
DU-MVS92.90 15592.04 16095.49 14694.95 25492.83 8097.16 13498.24 3493.02 8390.13 20695.71 19883.47 16297.85 25791.71 14283.93 30795.78 228
NR-MVSNet92.34 17291.27 18995.53 14394.95 25493.05 7597.39 10998.07 7092.65 10084.46 30895.71 19885.00 14497.77 26689.71 17583.52 31395.78 228
HQP4-MVS90.14 20298.50 18695.78 228
HQP-MVS93.19 14392.74 13994.54 18795.86 20489.33 19396.65 17997.39 16793.55 6290.14 20295.87 18580.95 21098.50 18692.13 13192.10 21395.78 228
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21292.39 9297.86 5998.66 992.30 10792.09 16895.37 21480.49 21998.40 19293.95 9885.86 28095.75 232
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15894.76 26592.07 10497.53 9598.11 5992.90 9289.56 22796.12 17583.16 16797.60 28089.30 18683.20 31695.75 232
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 14995.34 22992.83 8097.17 13398.58 1092.98 8990.13 20695.80 19088.37 9997.85 25791.71 14283.93 30795.73 234
WR-MVS92.34 17291.53 17894.77 17895.13 24690.83 14896.40 20097.98 9891.88 12189.29 23695.54 20982.50 18697.80 26289.79 17485.27 28895.69 235
XXY-MVS92.16 18291.23 19194.95 16894.75 26690.94 14497.47 10297.43 16489.14 19688.90 24396.43 16179.71 23498.24 20189.56 18087.68 26395.67 236
ACMM89.79 892.96 15192.50 15094.35 19396.30 18788.71 21197.58 9197.36 17291.40 13690.53 19496.65 14579.77 23398.75 16691.24 15491.64 21895.59 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121190.63 24489.42 25594.27 19698.24 9389.19 20298.05 4497.89 10479.95 32788.25 26194.96 22672.56 29798.13 21289.70 17685.14 29095.49 238
jajsoiax92.42 16991.89 16794.03 20693.33 31188.50 21797.73 7397.53 14292.00 11988.85 24696.50 15875.62 28298.11 21693.88 10291.56 22195.48 239
testgi87.97 28387.21 28390.24 31192.86 31780.76 31796.67 17894.97 29991.74 12385.52 30095.83 18862.66 33994.47 33876.25 32388.36 25995.48 239
MVSTER93.20 14292.81 13594.37 19296.56 17289.59 17897.06 13997.12 18991.24 14291.30 18295.96 18182.02 19698.05 22893.48 10990.55 23795.47 241
RRT_MVS93.21 14192.32 15595.91 12294.92 25694.15 4396.92 15596.86 21991.42 13391.28 18596.43 16179.66 23698.10 21793.29 11490.06 24295.46 242
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22393.34 7097.39 10998.71 593.14 8090.10 21094.83 23487.71 10598.03 23291.67 14683.99 30695.46 242
mvs_tets92.31 17491.76 16993.94 21493.41 30888.29 22097.63 8997.53 14292.04 11788.76 24996.45 16074.62 28698.09 22193.91 10091.48 22295.45 244
testing_287.33 28985.03 29894.22 19887.77 34689.32 19594.97 26997.11 19189.22 19371.64 34288.73 33255.16 34797.94 24791.95 13588.73 25695.41 245
EI-MVSNet93.03 14892.88 13493.48 23595.77 20986.98 25296.44 19397.12 18990.66 15891.30 18297.64 9786.56 12298.05 22889.91 16990.55 23795.41 245
EU-MVSNet88.72 27788.90 26388.20 31993.15 31474.21 34396.63 18494.22 32085.18 28387.32 28095.97 18076.16 27794.98 33585.27 26186.17 27795.41 245
test0.0.03 189.37 26888.70 26591.41 29592.47 32485.63 27595.22 26592.70 33291.11 14786.91 28993.65 29179.02 24693.19 34478.00 31789.18 25095.41 245
test_part189.59 26588.03 27394.27 19695.32 23589.42 18898.03 4697.58 13778.01 33586.10 29794.59 24669.87 31598.01 23489.88 17182.85 31995.40 249
test_djsdf93.07 14692.76 13694.00 20793.49 30688.70 21298.22 3297.57 13891.42 13390.08 21295.55 20882.85 17897.92 25194.07 9591.58 22095.40 249
IterMVS-LS92.29 17691.94 16593.34 24296.25 18886.97 25396.57 19197.05 19990.67 15689.50 23094.80 23686.59 12197.64 27589.91 16986.11 27995.40 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS92.98 15092.53 14894.32 19596.12 19889.20 20095.28 26097.47 14992.66 9989.90 21595.62 20380.58 21798.40 19292.73 12292.40 20695.38 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet91.89 18991.24 19093.82 21995.05 24988.57 21497.82 6498.19 4491.70 12488.21 26295.76 19581.96 19797.52 28887.86 21184.65 29795.37 253
FMVSNet391.78 19190.69 21095.03 16296.53 17492.27 9897.02 14396.93 20989.79 18289.35 23394.65 24377.01 27197.47 29186.12 24888.82 25295.35 254
FMVSNet291.31 21590.08 23494.99 16396.51 17592.21 9997.41 10596.95 20788.82 20988.62 25194.75 23873.87 29097.42 29685.20 26388.55 25895.35 254
PS-CasMVS91.55 20190.84 20393.69 22694.96 25388.28 22197.84 6398.24 3491.46 13188.04 26695.80 19079.67 23597.48 29087.02 23584.54 30195.31 256
LPG-MVS_test92.94 15392.56 14594.10 20296.16 19488.26 22297.65 8497.46 15191.29 13890.12 20897.16 12079.05 24498.73 16792.25 12791.89 21695.31 256
LGP-MVS_train94.10 20296.16 19488.26 22297.46 15191.29 13890.12 20897.16 12079.05 24498.73 16792.25 12791.89 21695.31 256
GBi-Net91.35 21290.27 22594.59 18296.51 17591.18 13697.50 9796.93 20988.82 20989.35 23394.51 24973.87 29097.29 30386.12 24888.82 25295.31 256
test191.35 21290.27 22594.59 18296.51 17591.18 13697.50 9796.93 20988.82 20989.35 23394.51 24973.87 29097.29 30386.12 24888.82 25295.31 256
FMVSNet189.88 26188.31 27094.59 18295.41 22291.18 13697.50 9796.93 20986.62 26587.41 27794.51 24965.94 33397.29 30383.04 28387.43 26695.31 256
PVSNet_082.17 1985.46 30483.64 30790.92 30095.27 23779.49 33090.55 33395.60 27183.76 30383.00 32089.95 32771.09 30497.97 24082.75 28760.79 34895.31 256
ACMP89.59 1092.62 16492.14 15894.05 20596.40 18288.20 22597.36 11297.25 18191.52 12888.30 25896.64 14678.46 25698.72 17091.86 13991.48 22295.23 263
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48291.59 19790.85 20293.80 22093.87 29588.17 22796.94 15496.88 21689.54 18489.53 22894.90 23081.70 20398.02 23389.25 18985.04 29495.20 264
PEN-MVS91.20 22090.44 21793.48 23594.49 27687.91 23497.76 6998.18 4691.29 13887.78 27195.74 19780.35 22297.33 30185.46 25982.96 31795.19 265
OurMVSNet-221017-090.51 24790.19 23291.44 29493.41 30881.25 31596.98 15096.28 24991.68 12586.55 29296.30 16874.20 28997.98 23788.96 19687.40 26895.09 266
OPM-MVS93.28 13992.76 13694.82 17294.63 27290.77 15196.65 17997.18 18393.72 5791.68 17397.26 11679.33 24198.63 17692.13 13192.28 20795.07 267
eth_miper_zixun_eth91.02 22890.59 21392.34 27295.33 23284.35 29094.10 29396.90 21388.56 21888.84 24794.33 26084.08 15697.60 28088.77 20084.37 30395.06 268
ACMH87.59 1690.53 24689.42 25593.87 21796.21 18987.92 23297.24 12396.94 20888.45 22083.91 31796.27 17071.92 29898.62 17884.43 27289.43 24895.05 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl-mvsnet291.21 21990.56 21593.14 25096.09 20086.80 25594.41 28296.58 24087.80 24088.58 25393.99 27880.85 21597.62 27889.87 17286.93 27094.99 270
v119291.07 22590.23 22893.58 23193.70 29987.82 23696.73 17197.07 19687.77 24289.58 22594.32 26280.90 21497.97 24086.52 24085.48 28494.95 271
COLMAP_ROBcopyleft87.81 1590.40 24989.28 25893.79 22197.95 11087.13 25096.92 15595.89 26282.83 31086.88 29097.18 11973.77 29399.29 11778.44 31693.62 19394.95 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192090.85 23590.03 23893.29 24493.55 30286.96 25496.74 17097.04 20187.36 25389.52 22994.34 25980.23 22597.97 24086.27 24385.21 28994.94 273
SixPastTwentyTwo89.15 26988.54 26890.98 29993.49 30680.28 32596.70 17494.70 30790.78 15284.15 31395.57 20571.78 30097.71 27084.63 26985.07 29294.94 273
cl-mvsnet190.97 23190.33 22092.88 25895.36 22786.19 26994.46 28096.63 23787.82 23888.18 26394.23 26882.99 17397.53 28687.72 21485.57 28394.93 275
v14419291.06 22690.28 22493.39 23993.66 30187.23 24696.83 16397.07 19687.43 25189.69 22294.28 26481.48 20598.00 23687.18 23384.92 29694.93 275
cl-mvsnet_90.96 23290.32 22192.89 25795.37 22686.21 26894.46 28096.64 23487.82 23888.15 26494.18 27182.98 17497.54 28487.70 21685.59 28294.92 277
v124090.70 24289.85 24393.23 24693.51 30586.80 25596.61 18597.02 20487.16 25889.58 22594.31 26379.55 23897.98 23785.52 25885.44 28594.90 278
cl_fuxian91.38 20990.89 19892.88 25895.58 21586.30 26594.68 27396.84 22188.17 22888.83 24894.23 26885.65 13797.47 29189.36 18484.63 29894.89 279
pmmvs589.86 26288.87 26492.82 26092.86 31786.23 26796.26 21495.39 27784.24 29687.12 28294.51 24974.27 28897.36 30087.61 22487.57 26494.86 280
v114491.37 21190.60 21293.68 22793.89 29488.23 22496.84 16297.03 20388.37 22289.69 22294.39 25682.04 19597.98 23787.80 21385.37 28694.84 281
K. test v387.64 28786.75 28890.32 31093.02 31679.48 33196.61 18592.08 33790.66 15880.25 33194.09 27467.21 32796.65 31985.96 25380.83 32694.83 282
IterMVS90.15 25689.67 25191.61 29095.48 22083.72 29794.33 28696.12 25689.99 17587.31 28194.15 27375.78 28196.27 32386.97 23686.89 27394.83 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_lstm_enhance90.50 24890.06 23791.83 28295.33 23283.74 29693.86 29896.70 23087.56 24987.79 27093.81 28483.45 16496.92 31487.39 22784.62 29994.82 284
IterMVS-SCA-FT90.31 25089.81 24591.82 28395.52 21884.20 29394.30 28796.15 25590.61 16287.39 27894.27 26575.80 27996.44 32087.34 22886.88 27494.82 284
WR-MVS_H92.00 18691.35 18393.95 21295.09 24889.47 18498.04 4598.68 791.46 13188.34 25694.68 24185.86 13497.56 28285.77 25584.24 30494.82 284
GG-mvs-BLEND93.62 22893.69 30089.20 20092.39 32583.33 35387.98 26989.84 32971.00 30596.87 31582.08 29295.40 16694.80 287
v14890.99 22990.38 21992.81 26193.83 29685.80 27396.78 16996.68 23189.45 18788.75 25093.93 28082.96 17697.82 26187.83 21283.25 31494.80 287
miper_ehance_all_eth91.59 19791.13 19592.97 25595.55 21786.57 26294.47 27896.88 21687.77 24288.88 24594.01 27686.22 12897.54 28489.49 18186.93 27094.79 289
XVG-ACMP-BASELINE90.93 23390.21 23193.09 25194.31 28485.89 27295.33 25797.26 17991.06 14989.38 23295.44 21368.61 31998.60 17989.46 18291.05 22994.79 289
DTE-MVSNet90.56 24589.75 24993.01 25393.95 29187.25 24497.64 8897.65 13090.74 15387.12 28295.68 20179.97 23097.00 31283.33 28081.66 32394.78 291
ACMH+87.92 1490.20 25489.18 26093.25 24596.48 17886.45 26396.99 14896.68 23188.83 20884.79 30796.22 17170.16 31298.53 18484.42 27388.04 26094.77 292
miper_enhance_ethall91.54 20291.01 19693.15 24995.35 22887.07 25193.97 29696.90 21386.79 26489.17 24093.43 29886.55 12397.64 27589.97 16886.93 27094.74 293
lessismore_v090.45 30891.96 33079.09 33587.19 35080.32 33094.39 25666.31 33097.55 28384.00 27676.84 33494.70 294
Patchmtry88.64 27887.25 28192.78 26294.09 28886.64 25889.82 33895.68 26980.81 32487.63 27492.36 31380.91 21297.03 30878.86 31485.12 29194.67 295
v7n90.76 23789.86 24293.45 23893.54 30387.60 24097.70 7997.37 17088.85 20687.65 27394.08 27581.08 20998.10 21784.68 26883.79 31194.66 296
V4291.58 19990.87 19993.73 22294.05 29088.50 21797.32 11696.97 20688.80 21289.71 22094.33 26082.54 18598.05 22889.01 19585.07 29294.64 297
v891.29 21790.53 21693.57 23294.15 28688.12 22997.34 11397.06 19888.99 20088.32 25794.26 26783.08 17098.01 23487.62 22383.92 30994.57 298
anonymousdsp92.16 18291.55 17793.97 21092.58 32389.55 18097.51 9697.42 16589.42 18888.40 25594.84 23380.66 21697.88 25691.87 13891.28 22694.48 299
pm-mvs190.72 24189.65 25393.96 21194.29 28589.63 17597.79 6796.82 22289.07 19786.12 29695.48 21278.61 25497.78 26486.97 23681.67 32294.46 300
LTVRE_ROB88.41 1390.99 22989.92 24094.19 19996.18 19289.55 18096.31 21097.09 19487.88 23785.67 29995.91 18478.79 25298.57 18281.50 29489.98 24394.44 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
YYNet185.87 30184.23 30590.78 30592.38 32782.46 30993.17 31295.14 29282.12 31467.69 34392.36 31378.16 26295.50 33377.31 32079.73 32894.39 302
PVSNet_BlendedMVS94.06 11593.92 10594.47 18898.27 8989.46 18696.73 17198.36 1690.17 17194.36 11795.24 21988.02 10099.58 7093.44 11090.72 23594.36 303
v1091.04 22790.23 22893.49 23494.12 28788.16 22897.32 11697.08 19588.26 22588.29 25994.22 27082.17 19497.97 24086.45 24284.12 30594.33 304
MDA-MVSNet-bldmvs85.00 30582.95 30991.17 29893.13 31583.33 30294.56 27695.00 29784.57 29365.13 34792.65 30570.45 30895.85 32573.57 33277.49 33294.33 304
MDA-MVSNet_test_wron85.87 30184.23 30590.80 30492.38 32782.57 30693.17 31295.15 29182.15 31367.65 34492.33 31678.20 25995.51 33277.33 31979.74 32794.31 306
our_test_388.78 27687.98 27591.20 29792.45 32582.53 30793.61 30795.69 26785.77 27784.88 30593.71 28679.99 22996.78 31879.47 31086.24 27694.28 307
pmmvs490.93 23389.85 24394.17 20093.34 31090.79 15094.60 27496.02 25884.62 29287.45 27595.15 22181.88 20097.45 29387.70 21687.87 26294.27 308
MVS_030488.79 27587.57 27792.46 26794.65 27086.15 27196.40 20097.17 18586.44 26788.02 26791.71 32256.68 34597.03 30884.47 27192.58 20494.19 309
ppachtmachnet_test88.35 28187.29 28091.53 29192.45 32583.57 30193.75 30195.97 25984.28 29585.32 30494.18 27179.00 25096.93 31375.71 32584.99 29594.10 310
UnsupCasMVSNet_eth85.99 29984.45 30390.62 30689.97 33682.40 31093.62 30697.37 17089.86 17778.59 33692.37 31065.25 33595.35 33482.27 29170.75 34394.10 310
pmmvs687.81 28686.19 29092.69 26491.32 33186.30 26597.34 11396.41 24580.59 32684.05 31694.37 25867.37 32697.67 27284.75 26779.51 32994.09 312
ITE_SJBPF92.43 26995.34 22985.37 28095.92 26091.47 13087.75 27296.39 16571.00 30597.96 24482.36 29089.86 24593.97 313
FMVSNet587.29 29085.79 29391.78 28694.80 26487.28 24295.49 25195.28 28484.09 29883.85 31891.82 31962.95 33894.17 33978.48 31585.34 28793.91 314
Anonymous2023120687.09 29186.14 29189.93 31491.22 33280.35 32296.11 22395.35 28083.57 30584.16 31293.02 30173.54 29595.61 32972.16 33586.14 27893.84 315
USDC88.94 27187.83 27692.27 27394.66 26984.96 28493.86 29895.90 26187.34 25483.40 31995.56 20767.43 32598.19 20882.64 28989.67 24793.66 316
D2MVS91.30 21690.95 19792.35 27194.71 26885.52 27796.18 22198.21 4088.89 20586.60 29193.82 28379.92 23197.95 24689.29 18790.95 23293.56 317
N_pmnet78.73 31478.71 31678.79 32992.80 31946.50 35894.14 29243.71 36078.61 33380.83 32591.66 32374.94 28596.36 32167.24 34384.45 30293.50 318
MIMVSNet184.93 30683.05 30890.56 30789.56 33984.84 28795.40 25495.35 28083.91 29980.38 32992.21 31757.23 34393.34 34370.69 34182.75 32193.50 318
TransMVSNet (Re)88.94 27187.56 27893.08 25294.35 28188.45 21997.73 7395.23 28887.47 25084.26 31195.29 21679.86 23297.33 30179.44 31274.44 33993.45 320
Baseline_NR-MVSNet91.20 22090.62 21192.95 25693.83 29688.03 23097.01 14795.12 29388.42 22189.70 22195.13 22383.47 16297.44 29489.66 17883.24 31593.37 321
TDRefinement86.53 29484.76 30291.85 28182.23 35084.25 29196.38 20395.35 28084.97 28884.09 31494.94 22765.76 33498.34 19884.60 27074.52 33892.97 322
CL-MVSNet_2432*160085.95 30084.95 29988.96 31689.55 34079.11 33495.13 26796.42 24485.91 27584.07 31590.48 32570.03 31394.82 33680.04 30572.94 34292.94 323
ambc86.56 32583.60 34870.00 34885.69 34594.97 29980.60 32888.45 33337.42 35296.84 31682.69 28875.44 33792.86 324
MS-PatchMatch90.27 25189.77 24791.78 28694.33 28284.72 28895.55 24896.73 22486.17 27286.36 29395.28 21871.28 30397.80 26284.09 27498.14 10892.81 325
tfpnnormal89.70 26488.40 26993.60 22995.15 24490.10 16397.56 9398.16 5087.28 25686.16 29594.63 24477.57 26898.05 22874.48 32784.59 30092.65 326
EG-PatchMatch MVS87.02 29285.44 29591.76 28892.67 32185.00 28396.08 22596.45 24383.41 30779.52 33393.49 29457.10 34497.72 26979.34 31390.87 23492.56 327
TinyColmap86.82 29385.35 29791.21 29694.91 25982.99 30593.94 29794.02 32383.58 30481.56 32394.68 24162.34 34098.13 21275.78 32487.35 26992.52 328
CMPMVSbinary62.92 2185.62 30384.92 30087.74 32189.14 34173.12 34594.17 29196.80 22373.98 34173.65 34194.93 22866.36 32897.61 27983.95 27791.28 22692.48 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0386.14 29885.40 29688.35 31790.12 33480.06 32795.90 23595.20 28988.59 21581.29 32493.62 29271.43 30292.65 34571.26 33981.17 32592.34 330
LF4IMVS87.94 28487.25 28189.98 31392.38 32780.05 32894.38 28395.25 28787.59 24884.34 30994.74 23964.31 33697.66 27484.83 26587.45 26592.23 331
MVS-HIRNet82.47 31181.21 31386.26 32695.38 22469.21 34988.96 34289.49 34666.28 34580.79 32674.08 34868.48 32097.39 29871.93 33695.47 16492.18 332
MVP-Stereo90.74 24090.08 23492.71 26393.19 31388.20 22595.86 23696.27 25086.07 27384.86 30694.76 23777.84 26697.75 26783.88 27898.01 11092.17 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d86.22 29784.45 30391.53 29188.34 34387.25 24494.47 27895.01 29683.47 30679.51 33489.61 33069.75 31695.71 32883.13 28276.73 33591.64 334
UnsupCasMVSNet_bld82.13 31279.46 31590.14 31288.00 34482.47 30890.89 33296.62 23978.94 33275.61 33884.40 34256.63 34696.31 32277.30 32166.77 34791.63 335
test_040286.46 29584.79 30191.45 29395.02 25185.55 27696.29 21294.89 30280.90 32182.21 32193.97 27968.21 32297.29 30362.98 34688.68 25791.51 336
PM-MVS83.48 30881.86 31288.31 31887.83 34577.59 33893.43 30891.75 33986.91 26180.63 32789.91 32844.42 35195.84 32685.17 26476.73 33591.50 337
new-patchmatchnet83.18 30981.87 31187.11 32386.88 34775.99 34193.70 30295.18 29085.02 28777.30 33788.40 33465.99 33293.88 34174.19 33170.18 34491.47 338
OpenMVS_ROBcopyleft81.14 2084.42 30782.28 31090.83 30190.06 33584.05 29595.73 24294.04 32273.89 34280.17 33291.53 32459.15 34297.64 27566.92 34489.05 25190.80 339
LCM-MVSNet72.55 31569.39 31982.03 32770.81 35665.42 35290.12 33794.36 31755.02 34965.88 34681.72 34324.16 35989.96 34674.32 33068.10 34690.71 340
new_pmnet82.89 31081.12 31488.18 32089.63 33880.18 32691.77 32692.57 33376.79 33975.56 34088.23 33661.22 34194.48 33771.43 33782.92 31889.87 341
pmmvs379.97 31377.50 31787.39 32282.80 34979.38 33292.70 32190.75 34470.69 34478.66 33587.47 34051.34 34993.40 34273.39 33369.65 34589.38 342
PMMVS270.19 31766.92 32080.01 32876.35 35165.67 35186.22 34487.58 34964.83 34762.38 34880.29 34526.78 35788.49 34863.79 34554.07 34985.88 343
ANet_high63.94 31959.58 32277.02 33061.24 35866.06 35085.66 34687.93 34878.53 33442.94 35271.04 34925.42 35880.71 35152.60 34930.83 35284.28 344
FPMVS71.27 31669.85 31875.50 33174.64 35259.03 35491.30 32891.50 34158.80 34857.92 34988.28 33529.98 35585.53 35053.43 34882.84 32081.95 345
DeepMVS_CXcopyleft74.68 33390.84 33364.34 35381.61 35565.34 34667.47 34588.01 33848.60 35080.13 35262.33 34773.68 34179.58 346
PMVScopyleft53.92 2258.58 32055.40 32368.12 33451.00 35948.64 35678.86 34987.10 35146.77 35135.84 35674.28 3478.76 36086.34 34942.07 35173.91 34069.38 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 32248.81 32766.58 33565.34 35757.50 35572.49 35170.94 35840.15 35439.28 35563.51 3516.89 36273.48 35538.29 35242.38 35068.76 348
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 31865.41 32175.18 33292.66 32273.45 34466.50 35294.52 31253.33 35057.80 35066.07 35030.81 35389.20 34748.15 35078.88 33162.90 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN53.28 32152.56 32555.43 33674.43 35347.13 35783.63 34876.30 35642.23 35242.59 35362.22 35228.57 35674.40 35331.53 35331.51 35144.78 350
EMVS52.08 32351.31 32654.39 33772.62 35545.39 35983.84 34775.51 35741.13 35340.77 35459.65 35330.08 35473.60 35428.31 35429.90 35344.18 351
tmp_tt51.94 32453.82 32446.29 33833.73 36045.30 36078.32 35067.24 35918.02 35550.93 35187.05 34152.99 34853.11 35670.76 34025.29 35440.46 352
test12313.04 32815.66 3315.18 3404.51 3623.45 36292.50 3241.81 3632.50 3587.58 35920.15 3563.67 3632.18 3597.13 3571.07 3579.90 353
testmvs13.36 32716.33 3304.48 3415.04 3612.26 36393.18 3113.28 3622.70 3578.24 35821.66 3552.29 3642.19 3587.58 3562.96 3569.00 354
wuyk23d25.11 32524.57 32926.74 33973.98 35439.89 36157.88 3539.80 36112.27 35610.39 3576.97 3597.03 36136.44 35725.43 35517.39 3553.89 355
uanet_test0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
cdsmvs_eth3d_5k23.24 32630.99 3280.00 3420.00 3630.00 3640.00 35497.63 1320.00 3590.00 36096.88 13484.38 1510.00 3600.00 3580.00 3580.00 356
pcd_1.5k_mvsjas7.39 3309.85 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 36088.65 940.00 3600.00 3580.00 3580.00 356
sosnet-low-res0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
Regformer0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.06 32910.74 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36096.69 1430.00 3650.00 3600.00 3580.00 3580.00 356
uanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
ZD-MVS99.05 4194.59 2898.08 6489.22 19397.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7398.23 3891.28 14197.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
test_part299.28 2595.74 698.10 17
sam_mvs81.94 199
MTGPAbinary98.08 64
test_post192.81 32016.58 35880.53 21897.68 27186.20 245
test_post17.58 35781.76 20198.08 222
patchmatchnet-post90.45 32682.65 18498.10 217
MTMP97.86 5982.03 354
gm-plane-assit93.22 31278.89 33684.82 29093.52 29398.64 17587.72 214
TEST998.70 6094.19 4096.41 19798.02 8888.17 22896.03 7897.56 10592.74 2499.59 67
test_898.67 6294.06 4996.37 20498.01 9188.58 21695.98 8397.55 10792.73 2599.58 70
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
test_prior493.66 5996.42 196
test_prior296.35 20592.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
旧先验295.94 23381.66 31797.34 3498.82 15992.26 125
新几何295.79 240
原ACMM295.67 243
testdata299.67 4985.96 253
segment_acmp92.89 22
testdata195.26 26493.10 82
plane_prior796.21 18989.98 169
plane_prior696.10 19990.00 16581.32 207
plane_prior496.64 146
plane_prior390.00 16594.46 3991.34 179
plane_prior297.74 7194.85 24
plane_prior196.14 197
plane_prior89.99 16797.24 12394.06 4792.16 212
n20.00 364
nn0.00 364
door-mid91.06 343
test1197.88 106
door91.13 342
HQP5-MVS89.33 193
HQP-NCC95.86 20496.65 17993.55 6290.14 202
ACMP_Plane95.86 20496.65 17993.55 6290.14 202
BP-MVS92.13 131
HQP3-MVS97.39 16792.10 213
HQP2-MVS80.95 210
NP-MVS95.99 20389.81 17495.87 185
MDTV_nov1_ep1390.76 20695.22 24180.33 32393.03 31795.28 28488.14 23192.84 15393.83 28181.34 20698.08 22282.86 28494.34 183
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93