This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_0728_THIRD94.78 3298.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3398.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
IU-MVS99.42 695.39 997.94 10290.40 17198.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1698.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13198.35 1995.16 1598.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9198.19 4492.82 9597.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7997.14 4198.34 4191.59 5499.87 795.46 6699.59 1599.64 10
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9897.59 2498.20 5791.96 4499.86 894.21 9499.25 6599.63 11
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16798.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5998.29 5091.70 5099.80 2795.66 5399.40 4599.62 13
X-MVStestdata91.71 19589.67 25497.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5932.69 35991.70 5099.80 2795.66 5399.40 4599.62 13
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7697.15 4098.33 4491.35 5999.86 895.63 5899.59 1599.62 13
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7595.95 8598.33 4491.04 6699.88 495.20 6999.57 2099.60 16
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13798.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12498.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10296.39 6998.18 5891.61 5299.88 495.59 6399.55 2199.57 19
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 11097.14 4198.44 2891.17 6499.85 1494.35 9299.46 3899.57 19
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12298.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1699.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12195.36 6799.59 1599.56 22
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16498.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11498.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5099.17 7299.56 22
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5697.35 3398.53 2191.40 5799.56 8196.30 2999.30 5699.55 26
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16497.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1699.29 5799.55 26
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13998.07 7093.54 6696.08 7897.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5797.45 2898.48 2591.43 5699.59 6896.22 3399.27 6199.54 29
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7697.18 3898.29 5092.08 3999.83 2295.63 5899.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10397.18 3898.29 5092.08 3999.83 2295.12 7299.59 1599.54 29
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8596.45 6798.30 4991.90 4599.85 1495.61 6099.68 499.54 29
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13198.01 1898.32 4692.33 3599.58 7194.85 8099.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14497.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10798.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8297.44 2998.55 1990.93 6899.55 8496.06 4199.25 6599.51 34
agg_prior293.94 10199.38 4899.50 37
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15298.01 9195.12 1897.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7195.54 10298.34 4190.59 7599.88 494.83 8299.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14796.40 6897.99 6990.99 6799.58 7195.61 6099.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14198.21 4088.16 23296.64 5697.70 8991.18 6399.67 4992.44 12699.47 3699.48 41
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2398.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15297.76 11695.01 2297.08 4698.42 3191.71 4999.54 8696.80 1499.13 7599.48 41
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9996.70 5198.06 6491.35 5999.86 894.83 8299.28 5999.47 44
test9_res94.81 8499.38 4899.45 45
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15998.09 10586.63 26296.00 23298.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1799.48 3599.45 45
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5898.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15795.34 1398.48 1597.87 10894.65 3788.53 25798.02 6783.69 16099.71 3893.18 11898.96 8599.44 47
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2291.40 5799.56 8196.05 4299.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12997.90 2198.37 3692.61 2999.66 5295.59 6399.51 2999.43 49
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10698.04 8194.81 3096.59 5998.37 3691.24 6199.64 6195.16 7099.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9597.97 9995.59 496.61 5797.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19998.02 8888.58 21896.03 7997.56 10592.73 2599.59 6895.04 7499.37 5299.39 54
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20797.88 10686.98 26296.65 5597.89 7291.99 4399.47 10092.26 12799.46 3899.39 54
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15298.06 7390.67 15895.55 10098.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16796.77 4998.35 3890.21 7999.53 8994.80 8599.63 1299.38 56
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8594.56 11598.39 3588.96 8999.85 1494.57 9197.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17997.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21598.00 9388.76 21595.68 9497.55 10792.70 2799.57 7995.01 7599.32 5399.32 60
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2999.01 398.55 1994.18 1197.41 29896.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet96.39 5596.02 5997.50 5097.62 12993.38 6797.02 14497.96 10095.42 794.86 11197.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20798.00 9392.80 9696.03 7997.59 10192.01 4199.41 10795.01 7599.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22298.90 294.30 4595.86 8797.74 8792.33 3599.38 11296.04 4499.42 4399.28 65
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14998.05 8089.85 18197.26 3598.22 5691.80 4799.69 4494.84 8199.28 5999.27 66
test1297.65 4498.46 7494.26 3797.66 12995.52 10390.89 6999.46 10199.25 6599.22 67
CHOSEN 1792x268894.15 11093.51 11996.06 11698.27 8989.38 19295.18 26898.48 1485.60 28293.76 13197.11 12483.15 16999.61 6291.33 15298.72 9299.19 68
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17493.36 6998.65 698.36 1694.12 4789.25 24198.06 6482.20 19499.77 2993.41 11499.32 5399.18 69
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9898.15 5193.87 5297.52 2597.61 10085.29 14099.53 8995.81 5195.27 16899.16 70
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20193.97 12797.57 10392.62 2899.76 3094.66 8899.27 6199.15 72
IS-MVSNet94.90 9594.52 9696.05 11797.67 12690.56 15698.44 1696.22 25393.21 7693.99 12597.74 8785.55 13898.45 19189.98 16997.86 11399.14 73
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15997.73 11994.74 3496.49 6398.49 2490.88 7099.58 7196.44 2798.32 10299.13 74
baseline95.58 7595.42 7396.08 11496.78 16390.41 16297.16 13597.45 15893.69 6195.65 9897.85 7887.29 11598.68 17395.66 5397.25 13399.13 74
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22897.48 14793.47 6995.67 9798.10 6089.17 8799.25 12091.27 15498.77 9099.13 74
LFMVS93.60 13192.63 14396.52 8598.13 10491.27 13097.94 5493.39 33390.57 16796.29 7198.31 4769.00 32099.16 12894.18 9695.87 15799.12 77
UA-Net95.95 6795.53 6797.20 6697.67 12692.98 7897.65 8498.13 5494.81 3096.61 5798.35 3888.87 9099.51 9490.36 16697.35 12999.11 78
EPNet95.20 8694.56 9397.14 6892.80 32092.68 8497.85 6294.87 31096.64 192.46 15697.80 8486.23 12799.65 5393.72 10798.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvs95.64 7395.49 6996.08 11496.76 16690.45 16097.29 12197.44 16294.00 4995.46 10497.98 7087.52 11198.73 16895.64 5797.33 13099.08 80
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16896.72 22594.17 4697.44 2997.66 9392.76 2399.33 11496.86 1397.76 11899.08 80
HyFIR lowres test93.66 12992.92 13495.87 12598.24 9389.88 17594.58 27698.49 1285.06 29193.78 13095.78 19682.86 17898.67 17491.77 14195.71 16299.07 82
mvs_anonymous93.82 12493.74 10994.06 20596.44 18285.41 28095.81 24197.05 19989.85 18190.09 21396.36 16787.44 11397.75 26893.97 9996.69 14599.02 83
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7497.22 3798.42 3187.93 10399.72 3595.10 7399.07 8099.02 83
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24395.17 10798.03 6687.09 11899.61 6293.51 11099.42 4399.02 83
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17097.61 13087.92 23398.10 3995.80 26792.22 11093.02 14797.45 10984.53 15097.91 25488.24 20697.97 11199.02 83
Anonymous20240521192.07 18790.83 20695.76 12898.19 10088.75 21197.58 9295.00 30186.00 27793.64 13297.45 10966.24 33699.53 8990.68 16392.71 20199.01 87
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14291.58 12098.26 2798.12 5694.38 4394.90 11098.15 5982.28 19298.92 15291.45 15198.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23498.18 4695.23 1295.87 8697.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12497.73 11991.80 12492.93 15396.62 15489.13 8899.14 13189.21 19297.78 11698.97 90
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3697.24 3698.41 3492.31 3798.94 15196.61 2199.46 3898.96 91
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 12098.06 7393.92 5193.38 14098.66 1286.83 12099.73 3295.60 6299.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs95.87 6995.23 7897.78 3397.56 13495.19 1897.86 5997.17 18694.39 4296.47 6596.40 16585.89 13399.20 12396.21 3795.11 17298.95 93
114514_t93.95 12093.06 13196.63 8099.07 3991.61 11797.46 10597.96 10077.99 34193.00 14897.57 10386.14 13299.33 11489.22 19199.15 7398.94 94
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19097.35 17490.61 16494.64 11496.93 13086.41 12699.39 11091.20 15694.71 18098.94 94
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18298.67 597.00 20590.69 15794.24 12197.62 9989.79 8598.81 16193.39 11596.49 14998.92 96
canonicalmvs96.02 6495.45 7197.75 3797.59 13295.15 2198.28 2597.60 13594.52 3996.27 7296.12 17687.65 10799.18 12696.20 3894.82 17698.91 97
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16097.72 12294.67 3596.16 7598.46 2690.43 7699.58 7196.23 3297.96 11298.90 98
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12795.55 25097.71 12688.99 20292.34 16295.82 19189.19 8699.11 13386.14 24897.38 12798.90 98
无先验95.79 24297.87 10883.87 30799.65 5387.68 22098.89 100
DP-MVS92.76 16391.51 18296.52 8598.77 5790.99 14297.38 11296.08 25882.38 31889.29 23897.87 7583.77 15999.69 4481.37 30096.69 14598.89 100
diffmvs95.25 8395.13 8195.63 13796.43 18389.34 19495.99 23397.35 17492.83 9496.31 7097.37 11386.44 12598.67 17496.26 3097.19 13598.87 102
MVSFormer95.37 7995.16 8095.99 12196.34 18791.21 13398.22 3297.57 13991.42 13596.22 7397.32 11486.20 13097.92 25194.07 9799.05 8198.85 103
jason94.84 9894.39 10196.18 11295.52 22090.93 14696.09 22696.52 24189.28 19496.01 8397.32 11484.70 14798.77 16595.15 7198.91 8898.85 103
jason: jason.
Effi-MVS+94.93 9494.45 9996.36 10196.61 16891.47 12396.41 19997.41 16791.02 15294.50 11695.92 18587.53 11098.78 16393.89 10396.81 14098.84 105
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26497.62 13490.43 17095.55 10097.07 12691.72 4899.50 9789.62 18098.94 8698.82 106
lupinMVS94.99 9394.56 9396.29 10696.34 18791.21 13395.83 24096.27 25088.93 20696.22 7396.88 13586.20 13098.85 15895.27 6899.05 8198.82 106
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
CVMVSNet91.23 22191.75 17189.67 31995.77 21174.69 34796.44 19594.88 30785.81 27992.18 16597.64 9779.07 24495.58 33588.06 20995.86 15898.74 110
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22897.73 11981.56 32595.68 9497.85 7890.23 7899.65 5387.68 22099.12 7898.73 111
test22298.24 9392.21 10095.33 25997.60 13579.22 33795.25 10597.84 8188.80 9299.15 7398.72 112
MVS_Test94.89 9694.62 9195.68 13596.83 16189.55 18396.70 17697.17 18691.17 14795.60 9996.11 17987.87 10498.76 16693.01 12397.17 13698.72 112
VDD-MVS93.82 12493.08 13096.02 11997.88 11689.96 17497.72 7695.85 26592.43 10595.86 8798.44 2868.42 32499.39 11096.31 2894.85 17498.71 114
新几何197.32 5698.60 6893.59 6197.75 11781.58 32495.75 9197.85 7890.04 8299.67 4986.50 24299.13 7598.69 115
sss94.51 10493.80 10896.64 7897.07 14891.97 11096.32 21198.06 7388.94 20594.50 11696.78 13784.60 14899.27 11991.90 13796.02 15398.68 116
testdata95.46 15298.18 10288.90 20997.66 12982.73 31797.03 4798.07 6390.06 8198.85 15889.67 17898.98 8498.64 117
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 22098.79 493.99 5095.80 8997.65 9489.92 8499.24 12195.87 4799.20 7098.58 118
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12298.25 3390.21 17294.18 12297.27 11687.48 11299.73 3293.53 10997.77 11798.55 119
EIA-MVS95.53 7795.47 7095.71 13497.06 15189.63 17897.82 6497.87 10893.57 6293.92 12895.04 22790.61 7498.95 15094.62 8998.68 9398.54 120
TAMVS94.01 11993.46 12195.64 13696.16 19690.45 16096.71 17596.89 21589.27 19593.46 13896.92 13387.29 11597.94 24888.70 20295.74 16098.53 121
ET-MVSNet_ETH3D91.49 20790.11 23695.63 13796.40 18491.57 12195.34 25893.48 33190.60 16675.58 34595.49 21380.08 22896.79 31894.25 9389.76 24698.52 122
PatchmatchNetpermissive91.91 19091.35 18493.59 23195.38 22684.11 29793.15 31695.39 28189.54 18792.10 16893.68 29182.82 18098.13 21484.81 26795.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM93.45 13692.27 15796.98 7496.77 16492.62 8798.39 1998.12 5684.50 29988.27 26397.77 8582.39 19199.81 2685.40 26198.81 8998.51 124
1112_ss93.37 13792.42 15396.21 11197.05 15390.99 14296.31 21296.72 22586.87 26589.83 22096.69 14486.51 12499.14 13188.12 20893.67 19198.50 125
ab-mvs93.57 13392.55 14796.64 7897.28 13891.96 11195.40 25697.45 15889.81 18393.22 14696.28 17079.62 23899.46 10190.74 16193.11 19798.50 125
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25495.22 10697.68 9190.25 7799.54 8687.95 21199.12 7898.49 127
Test_1112_low_res92.84 16091.84 16995.85 12697.04 15489.97 17395.53 25296.64 23485.38 28589.65 22695.18 22285.86 13499.10 13487.70 21793.58 19698.49 127
Patchmatch-test89.42 26987.99 27693.70 22695.27 23885.11 28488.98 34694.37 32081.11 32687.10 28793.69 28982.28 19297.50 29074.37 33494.76 17798.48 129
VDDNet93.05 14892.07 16096.02 11996.84 15990.39 16398.08 4295.85 26586.22 27495.79 9098.46 2667.59 32799.19 12494.92 7994.85 17498.47 130
PVSNet86.66 1892.24 18091.74 17393.73 22397.77 12283.69 30392.88 32096.72 22587.91 23893.00 14894.86 23478.51 25699.05 14386.53 24097.45 12698.47 130
GSMVS98.45 132
sam_mvs182.76 18198.45 132
SCA91.84 19291.18 19593.83 21995.59 21684.95 28894.72 27395.58 27790.82 15392.25 16493.69 28975.80 28398.10 21986.20 24695.98 15498.45 132
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19491.46 12496.33 21097.04 20188.97 20493.56 13396.51 15887.55 10997.89 25589.80 17495.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14198.08 6488.35 22595.09 10997.65 9489.97 8399.48 9992.08 13698.59 9798.44 135
Patchmatch-RL test87.38 29086.24 29190.81 30588.74 34878.40 34288.12 34893.17 33487.11 26182.17 32889.29 33781.95 19995.60 33488.64 20377.02 33598.41 137
LCM-MVSNet-Re92.50 16692.52 15092.44 26996.82 16281.89 31596.92 15693.71 32992.41 10684.30 31394.60 24885.08 14397.03 30991.51 14897.36 12898.40 138
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 18995.47 25498.36 1688.84 20994.36 11896.09 18088.02 10099.58 7193.44 11298.18 10698.40 138
tttt051792.96 15292.33 15594.87 17397.11 14687.16 25097.97 5292.09 34190.63 16293.88 12997.01 12976.50 27799.06 14290.29 16895.45 16598.38 140
MDTV_nov1_ep13_2view70.35 35293.10 31883.88 30693.55 13482.47 18986.25 24598.38 140
BH-RMVSNet92.72 16491.97 16594.97 16897.16 14387.99 23296.15 22495.60 27590.62 16391.87 17297.15 12378.41 25998.57 18383.16 28297.60 12098.36 142
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19797.57 13992.04 11994.77 11397.96 7187.01 11999.09 13791.31 15396.77 14198.36 142
thisisatest053093.03 14992.21 15895.49 14897.07 14889.11 20597.49 10292.19 34090.16 17494.09 12396.41 16476.43 28099.05 14390.38 16595.68 16398.31 144
CS-MVS95.80 7095.65 6696.24 11097.32 13791.43 12698.10 3997.91 10393.38 7095.16 10894.57 24990.21 7998.98 14895.53 6598.67 9498.30 145
hse-mvs394.15 11093.52 11896.04 11897.81 11990.22 16597.62 9097.58 13895.19 1496.74 5097.45 10983.67 16199.61 6295.85 4979.73 32998.29 146
Anonymous2024052991.98 18990.73 21095.73 13398.14 10389.40 19197.99 4797.72 12279.63 33593.54 13597.41 11269.94 31899.56 8191.04 15791.11 22898.22 147
GA-MVS91.38 21290.31 22594.59 18494.65 27187.62 24094.34 28696.19 25590.73 15690.35 20093.83 28371.84 30397.96 24587.22 23293.61 19498.21 148
TAPA-MVS90.10 792.30 17691.22 19395.56 14198.33 8589.60 18096.79 16897.65 13181.83 32291.52 17697.23 11987.94 10298.91 15471.31 34398.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UGNet94.04 11893.28 12896.31 10396.85 15891.19 13697.88 5897.68 12794.40 4193.00 14896.18 17373.39 30099.61 6291.72 14298.46 9998.13 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+93.46 13592.75 13995.59 14096.77 16490.03 16796.81 16797.13 18988.19 22891.30 18394.27 26786.21 12998.63 17787.66 22296.46 15198.12 151
tpm90.25 25589.74 25391.76 28993.92 29379.73 33493.98 29693.54 33088.28 22691.99 17093.25 30177.51 27297.44 29587.30 23187.94 26098.12 151
PMMVS92.86 15892.34 15494.42 19494.92 25786.73 25894.53 27896.38 24684.78 29694.27 12095.12 22683.13 17098.40 19391.47 15096.49 14998.12 151
EPMVS90.70 24589.81 24893.37 24294.73 26884.21 29593.67 30688.02 35289.50 18992.38 15993.49 29677.82 27097.78 26586.03 25292.68 20298.11 154
LS3D93.57 13392.61 14596.47 9197.59 13291.61 11797.67 8197.72 12285.17 28990.29 20198.34 4184.60 14899.73 3283.85 28098.27 10398.06 155
UniMVSNet_ETH3D91.34 21790.22 23394.68 18394.86 26287.86 23697.23 12997.46 15287.99 23589.90 21796.92 13366.35 33498.23 20390.30 16790.99 23197.96 156
HY-MVS89.66 993.87 12292.95 13396.63 8097.10 14792.49 9195.64 24896.64 23489.05 20093.00 14895.79 19585.77 13699.45 10389.16 19594.35 18297.96 156
DWT-MVSNet_test90.76 24089.89 24493.38 24195.04 25183.70 30295.85 23994.30 32388.19 22890.46 19792.80 30573.61 29898.50 18788.16 20790.58 23697.95 158
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19096.88 21690.13 17591.91 17197.24 11885.21 14199.09 13787.64 22397.83 11497.92 159
CostFormer91.18 22790.70 21192.62 26794.84 26381.76 31694.09 29594.43 31784.15 30292.72 15593.77 28779.43 24098.20 20790.70 16292.18 21197.90 160
tpmrst91.44 20991.32 18691.79 28695.15 24579.20 33893.42 31195.37 28388.55 22193.49 13793.67 29282.49 18898.27 20190.41 16489.34 24997.90 160
EPNet_dtu91.71 19591.28 18992.99 25593.76 29983.71 30196.69 17895.28 28893.15 8087.02 28995.95 18483.37 16697.38 30079.46 31296.84 13997.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051592.29 17791.30 18895.25 15696.60 16988.90 20994.36 28592.32 33987.92 23793.43 13994.57 24977.28 27399.00 14689.42 18495.86 15897.86 163
ADS-MVSNet289.45 26888.59 27092.03 27895.86 20682.26 31490.93 33594.32 32283.23 31491.28 18691.81 32279.01 24995.99 32679.52 30991.39 22497.84 164
ADS-MVSNet89.89 26388.68 26993.53 23495.86 20684.89 28990.93 33595.07 29983.23 31491.28 18691.81 32279.01 24997.85 25779.52 30991.39 22497.84 164
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8197.47 15088.13 23493.00 14895.84 18984.86 14699.51 9487.99 21098.17 10797.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS96.02 6495.89 6296.40 9697.16 14392.44 9297.47 10397.77 11594.55 3896.48 6494.51 25191.23 6298.92 15295.65 5698.19 10597.82 167
CANet_DTU94.37 10593.65 11396.55 8496.46 18192.13 10496.21 22196.67 23394.38 4393.53 13697.03 12879.34 24199.71 3890.76 16098.45 10097.82 167
PLCcopyleft91.00 694.11 11493.43 12396.13 11398.58 7191.15 14096.69 17897.39 16887.29 25791.37 17996.71 14088.39 9899.52 9387.33 23097.13 13797.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.90 27588.26 27590.81 30594.58 27676.62 34492.85 32194.93 30585.12 29090.07 21593.07 30275.81 28298.12 21780.53 30487.42 26797.71 170
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19097.81 11489.87 17892.15 16697.06 12783.62 16299.54 8689.34 18698.07 10997.70 171
baseline192.82 16191.90 16795.55 14397.20 14190.77 15297.19 13294.58 31592.20 11292.36 16096.34 16884.16 15598.21 20589.20 19383.90 31297.68 172
test-LLR91.42 21091.19 19492.12 27694.59 27480.66 32294.29 28992.98 33591.11 14990.76 19392.37 31279.02 24798.07 22788.81 19996.74 14297.63 173
test-mter90.19 25889.54 25792.12 27694.59 27480.66 32294.29 28992.98 33587.68 24890.76 19392.37 31267.67 32698.07 22788.81 19996.74 14297.63 173
PAPM91.52 20690.30 22695.20 15795.30 23789.83 17693.38 31296.85 22086.26 27388.59 25595.80 19284.88 14598.15 21375.67 33095.93 15697.63 173
F-COLMAP93.58 13292.98 13295.37 15498.40 7888.98 20797.18 13397.29 17987.75 24690.49 19697.10 12585.21 14199.50 9786.70 23996.72 14497.63 173
TESTMET0.1,190.06 26089.42 25891.97 27994.41 28180.62 32494.29 28991.97 34387.28 25890.44 19892.47 31168.79 32197.67 27388.50 20596.60 14797.61 177
CR-MVSNet90.82 23989.77 25093.95 21394.45 27987.19 24890.23 34095.68 27386.89 26492.40 15792.36 31580.91 21397.05 30881.09 30293.95 18997.60 178
RPMNet88.98 27287.05 28794.77 18094.45 27987.19 24890.23 34098.03 8477.87 34392.40 15787.55 34480.17 22799.51 9468.84 34793.95 18997.60 178
MIMVSNet88.50 28186.76 28993.72 22594.84 26387.77 23891.39 33094.05 32586.41 27187.99 27192.59 30963.27 34395.82 33177.44 32092.84 20097.57 180
PatchT88.87 27687.42 28193.22 24894.08 29085.10 28589.51 34494.64 31481.92 32192.36 16088.15 34280.05 22997.01 31272.43 33993.65 19297.54 181
tpm289.96 26189.21 26292.23 27594.91 26081.25 31993.78 30294.42 31880.62 33191.56 17593.44 29876.44 27997.94 24885.60 25892.08 21597.49 182
IB-MVS87.33 1789.91 26288.28 27494.79 17995.26 24187.70 23995.12 27093.95 32889.35 19387.03 28892.49 31070.74 31199.19 12489.18 19481.37 32597.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
AUN-MVS91.76 19490.75 20994.81 17697.00 15588.57 21596.65 18196.49 24289.63 18692.15 16696.12 17678.66 25498.50 18790.83 15979.18 33297.36 184
CHOSEN 280x42093.12 14592.72 14194.34 19796.71 16787.27 24490.29 33997.72 12286.61 26991.34 18095.29 21884.29 15498.41 19293.25 11798.94 8697.35 185
BH-untuned92.94 15492.62 14493.92 21797.22 13986.16 27196.40 20296.25 25290.06 17689.79 22196.17 17583.19 16798.35 19787.19 23397.27 13297.24 186
131492.81 16292.03 16295.14 16095.33 23489.52 18696.04 22897.44 16287.72 24786.25 29795.33 21783.84 15898.79 16289.26 18997.05 13897.11 187
PCF-MVS89.48 1191.56 20289.95 24296.36 10196.60 16992.52 9092.51 32697.26 18079.41 33688.90 24596.56 15684.04 15799.55 8477.01 32697.30 13197.01 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.49 16891.60 17695.18 15897.91 11489.47 18797.65 8494.66 31292.18 11693.33 14194.91 23178.06 26699.10 13481.61 29494.06 18896.98 189
thres40092.42 17091.52 18095.12 16297.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.98 189
XVG-OURS-SEG-HR93.86 12393.55 11594.81 17697.06 15188.53 21795.28 26297.45 15891.68 12794.08 12497.68 9182.41 19098.90 15593.84 10592.47 20596.98 189
MSDG91.42 21090.24 23094.96 16997.15 14588.91 20893.69 30596.32 24885.72 28186.93 29196.47 16080.24 22598.98 14880.57 30395.05 17396.98 189
XVG-OURS93.72 12893.35 12694.80 17897.07 14888.61 21494.79 27297.46 15291.97 12293.99 12597.86 7781.74 20398.88 15792.64 12592.67 20396.92 193
PatchMatch-RL92.90 15692.02 16395.56 14198.19 10090.80 15095.27 26497.18 18487.96 23691.86 17395.68 20380.44 22198.99 14784.01 27697.54 12196.89 194
mvs-test193.63 13093.69 11193.46 23896.02 20384.61 29297.24 12496.72 22593.85 5392.30 16395.76 19783.08 17198.89 15691.69 14596.54 14896.87 195
tpmvs89.83 26689.15 26491.89 28194.92 25780.30 32893.11 31795.46 28086.28 27288.08 26892.65 30780.44 22198.52 18681.47 29689.92 24496.84 196
baseline291.63 19890.86 20293.94 21594.33 28386.32 26595.92 23691.64 34589.37 19286.94 29094.69 24381.62 20598.69 17288.64 20394.57 18196.81 197
TR-MVS91.48 20890.59 21594.16 20296.40 18487.33 24295.67 24595.34 28787.68 24891.46 17795.52 21276.77 27698.35 19782.85 28693.61 19496.79 198
OpenMVScopyleft89.19 1292.86 15891.68 17496.40 9695.34 23192.73 8398.27 2698.12 5684.86 29485.78 30097.75 8678.89 25299.74 3187.50 22798.65 9596.73 199
tpm cat188.36 28287.21 28591.81 28595.13 24780.55 32592.58 32595.70 27074.97 34587.45 27891.96 32078.01 26898.17 21280.39 30588.74 25596.72 200
DSMNet-mixed86.34 29886.12 29487.00 32989.88 34270.43 35194.93 27190.08 35077.97 34285.42 30592.78 30674.44 29193.96 34574.43 33395.14 16996.62 201
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6697.48 14789.19 19794.81 11296.71 14088.84 9199.17 12788.91 19898.76 9196.53 202
gg-mvs-nofinetune87.82 28785.61 29694.44 19194.46 27889.27 20091.21 33484.61 35780.88 32889.89 21974.98 35171.50 30597.53 28785.75 25797.21 13496.51 203
Effi-MVS+-dtu93.08 14693.21 12992.68 26696.02 20383.25 30697.14 13896.72 22593.85 5391.20 19093.44 29883.08 17198.30 20091.69 14595.73 16196.50 204
thres100view90092.43 16991.58 17794.98 16797.92 11389.37 19397.71 7894.66 31292.20 11293.31 14294.90 23278.06 26699.08 13981.40 29794.08 18596.48 205
tfpn200view992.38 17291.52 18094.95 17097.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.48 205
JIA-IIPM88.26 28487.04 28891.91 28093.52 30581.42 31889.38 34594.38 31980.84 32990.93 19280.74 34979.22 24397.92 25182.76 28791.62 21996.38 207
cascas91.20 22390.08 23794.58 18894.97 25389.16 20493.65 30797.59 13779.90 33489.40 23392.92 30475.36 28798.36 19692.14 13294.75 17896.23 208
RPSCF90.75 24290.86 20290.42 31296.84 15976.29 34595.61 24996.34 24783.89 30591.38 17897.87 7576.45 27898.78 16387.16 23592.23 20896.20 209
thres20092.23 18191.39 18394.75 18297.61 13089.03 20696.60 18995.09 29892.08 11893.28 14394.00 27978.39 26099.04 14581.26 30194.18 18496.19 210
xiu_mvs_v2_base95.32 8195.29 7795.40 15397.22 13990.50 15895.44 25597.44 16293.70 6096.46 6696.18 17388.59 9799.53 8994.79 8797.81 11596.17 211
PS-MVSNAJ95.37 7995.33 7695.49 14897.35 13690.66 15595.31 26197.48 14793.85 5396.51 6295.70 20288.65 9499.65 5394.80 8598.27 10396.17 211
AllTest90.23 25688.98 26593.98 20997.94 11186.64 25996.51 19495.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
TestCases93.98 20997.94 11186.64 25995.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
BH-w/o92.14 18691.75 17193.31 24496.99 15685.73 27595.67 24595.69 27188.73 21689.26 24094.82 23782.97 17698.07 22785.26 26396.32 15296.13 215
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
Fast-Effi-MVS+-dtu92.29 17791.99 16493.21 24995.27 23885.52 27897.03 14196.63 23792.09 11789.11 24395.14 22480.33 22498.08 22487.54 22694.74 17996.03 219
nrg03094.05 11793.31 12796.27 10795.22 24294.59 2898.34 2097.46 15292.93 9291.21 18996.64 14787.23 11798.22 20494.99 7885.80 28195.98 220
RRT_test8_iter0591.19 22690.78 20792.41 27195.76 21383.14 30797.32 11797.46 15291.37 13989.07 24495.57 20770.33 31398.21 20593.56 10886.62 27595.89 221
PS-MVSNAJss93.74 12793.51 11994.44 19193.91 29489.28 19997.75 7097.56 14292.50 10489.94 21696.54 15788.65 9498.18 21093.83 10690.90 23395.86 222
HQP_MVS93.78 12693.43 12394.82 17496.21 19189.99 17097.74 7197.51 14594.85 2591.34 18096.64 14781.32 20898.60 18093.02 12192.23 20895.86 222
plane_prior597.51 14598.60 18093.02 12192.23 20895.86 222
FIs94.09 11593.70 11095.27 15595.70 21492.03 10798.10 3998.68 793.36 7390.39 19996.70 14287.63 10897.94 24892.25 12990.50 23995.84 225
FC-MVSNet-test93.94 12193.57 11495.04 16395.48 22291.45 12598.12 3898.71 593.37 7190.23 20296.70 14287.66 10697.85 25791.49 14990.39 24095.83 226
MVS91.71 19590.44 22095.51 14595.20 24491.59 11996.04 22897.45 15873.44 34887.36 28295.60 20685.42 13999.10 13485.97 25397.46 12295.83 226
VPNet92.23 18191.31 18794.99 16595.56 21890.96 14497.22 13097.86 11192.96 9190.96 19196.62 15475.06 28898.20 20791.90 13783.65 31495.80 228
DU-MVS92.90 15692.04 16195.49 14894.95 25592.83 8097.16 13598.24 3493.02 8490.13 20895.71 20083.47 16397.85 25791.71 14383.93 30995.78 229
NR-MVSNet92.34 17391.27 19095.53 14494.95 25593.05 7597.39 11098.07 7092.65 10184.46 31195.71 20085.00 14497.77 26789.71 17683.52 31595.78 229
HQP4-MVS90.14 20498.50 18795.78 229
HQP-MVS93.19 14492.74 14094.54 18995.86 20689.33 19596.65 18197.39 16893.55 6390.14 20495.87 18780.95 21198.50 18792.13 13392.10 21395.78 229
VPA-MVSNet93.24 14192.48 15295.51 14595.70 21492.39 9397.86 5998.66 992.30 10892.09 16995.37 21680.49 22098.40 19393.95 10085.86 28095.75 233
TranMVSNet+NR-MVSNet92.50 16691.63 17595.14 16094.76 26692.07 10597.53 9698.11 5992.90 9389.56 22996.12 17683.16 16897.60 28189.30 18783.20 31895.75 233
UniMVSNet_NR-MVSNet93.37 13792.67 14295.47 15195.34 23192.83 8097.17 13498.58 1092.98 9090.13 20895.80 19288.37 9997.85 25791.71 14383.93 30995.73 235
test_part192.21 18391.10 19795.51 14597.80 12092.66 8598.02 4697.68 12789.79 18488.80 25196.02 18176.85 27598.18 21090.86 15884.11 30795.69 236
WR-MVS92.34 17391.53 17994.77 18095.13 24790.83 14996.40 20297.98 9891.88 12389.29 23895.54 21182.50 18797.80 26289.79 17585.27 28995.69 236
XXY-MVS92.16 18491.23 19294.95 17094.75 26790.94 14597.47 10397.43 16589.14 19888.90 24596.43 16279.71 23598.24 20289.56 18187.68 26395.67 238
ACMM89.79 892.96 15292.50 15194.35 19696.30 18988.71 21297.58 9297.36 17391.40 13890.53 19596.65 14679.77 23498.75 16791.24 15591.64 21895.59 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121190.63 24789.42 25894.27 19998.24 9389.19 20398.05 4497.89 10479.95 33388.25 26494.96 22872.56 30198.13 21489.70 17785.14 29195.49 240
jajsoiax92.42 17091.89 16894.03 20793.33 31288.50 21897.73 7397.53 14392.00 12188.85 24896.50 15975.62 28698.11 21893.88 10491.56 22195.48 241
testgi87.97 28587.21 28590.24 31492.86 31880.76 32196.67 18094.97 30391.74 12585.52 30295.83 19062.66 34594.47 34376.25 32788.36 25895.48 241
MVSTER93.20 14392.81 13694.37 19596.56 17489.59 18197.06 14097.12 19091.24 14491.30 18395.96 18382.02 19798.05 23093.48 11190.55 23795.47 243
RRT_MVS93.21 14292.32 15695.91 12394.92 25794.15 4396.92 15696.86 21991.42 13591.28 18696.43 16279.66 23798.10 21993.29 11690.06 24295.46 244
UniMVSNet (Re)93.31 13992.55 14795.61 13995.39 22593.34 7097.39 11098.71 593.14 8190.10 21294.83 23687.71 10598.03 23491.67 14783.99 30895.46 244
mvs_tets92.31 17591.76 17093.94 21593.41 30988.29 22197.63 8997.53 14392.04 11988.76 25296.45 16174.62 29098.09 22393.91 10291.48 22295.45 246
EI-MVSNet93.03 14992.88 13593.48 23695.77 21186.98 25396.44 19597.12 19090.66 16091.30 18397.64 9786.56 12298.05 23089.91 17190.55 23795.41 247
EU-MVSNet88.72 27988.90 26688.20 32493.15 31574.21 34896.63 18694.22 32485.18 28887.32 28395.97 18276.16 28194.98 33985.27 26286.17 27795.41 247
test0.0.03 189.37 27088.70 26891.41 29692.47 32585.63 27695.22 26792.70 33791.11 14986.91 29293.65 29379.02 24793.19 34978.00 31989.18 25095.41 247
test_djsdf93.07 14792.76 13794.00 20893.49 30788.70 21398.22 3297.57 13991.42 13590.08 21495.55 21082.85 17997.92 25194.07 9791.58 22095.40 250
IterMVS-LS92.29 17791.94 16693.34 24396.25 19086.97 25496.57 19397.05 19990.67 15889.50 23294.80 23886.59 12197.64 27689.91 17186.11 27995.40 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS92.98 15192.53 14994.32 19896.12 20089.20 20195.28 26297.47 15092.66 10089.90 21795.62 20580.58 21898.40 19392.73 12492.40 20695.38 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet91.89 19191.24 19193.82 22095.05 25088.57 21597.82 6498.19 4491.70 12688.21 26595.76 19781.96 19897.52 28987.86 21284.65 29895.37 253
FMVSNet391.78 19390.69 21295.03 16496.53 17692.27 9997.02 14496.93 20989.79 18489.35 23594.65 24677.01 27497.47 29286.12 24988.82 25295.35 254
FMVSNet291.31 21890.08 23794.99 16596.51 17792.21 10097.41 10696.95 20788.82 21188.62 25494.75 24073.87 29497.42 29785.20 26488.55 25795.35 254
PS-CasMVS91.55 20390.84 20593.69 22794.96 25488.28 22297.84 6398.24 3491.46 13388.04 26995.80 19279.67 23697.48 29187.02 23684.54 30295.31 256
LPG-MVS_test92.94 15492.56 14694.10 20396.16 19688.26 22397.65 8497.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
LGP-MVS_train94.10 20396.16 19688.26 22397.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
GBi-Net91.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
test191.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
FMVSNet189.88 26488.31 27394.59 18495.41 22491.18 13797.50 9896.93 20986.62 26887.41 28094.51 25165.94 33897.29 30483.04 28487.43 26695.31 256
PVSNet_082.17 1985.46 30783.64 31090.92 30395.27 23879.49 33590.55 33895.60 27583.76 30883.00 32689.95 33371.09 30897.97 24182.75 28860.79 35395.31 256
bset_n11_16_dypcd91.55 20390.59 21594.44 19191.51 33290.25 16492.70 32393.42 33292.27 10990.22 20394.74 24178.42 25897.80 26294.19 9587.86 26295.29 263
ACMP89.59 1092.62 16592.14 15994.05 20696.40 18488.20 22697.36 11397.25 18291.52 13088.30 26196.64 14778.46 25798.72 17191.86 14091.48 22295.23 264
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48291.59 19990.85 20493.80 22193.87 29688.17 22896.94 15596.88 21689.54 18789.53 23094.90 23281.70 20498.02 23589.25 19085.04 29595.20 265
PEN-MVS91.20 22390.44 22093.48 23694.49 27787.91 23597.76 6998.18 4691.29 14087.78 27495.74 19980.35 22397.33 30285.46 26082.96 31995.19 266
OurMVSNet-221017-090.51 25090.19 23591.44 29593.41 30981.25 31996.98 15196.28 24991.68 12786.55 29596.30 16974.20 29397.98 23888.96 19787.40 26895.09 267
OPM-MVS93.28 14092.76 13794.82 17494.63 27390.77 15296.65 18197.18 18493.72 5891.68 17497.26 11779.33 24298.63 17792.13 13392.28 20795.07 268
eth_miper_zixun_eth91.02 23190.59 21592.34 27395.33 23484.35 29394.10 29496.90 21388.56 22088.84 24994.33 26284.08 15697.60 28188.77 20184.37 30495.06 269
ACMH87.59 1690.53 24989.42 25893.87 21896.21 19187.92 23397.24 12496.94 20888.45 22283.91 32096.27 17171.92 30298.62 17984.43 27389.43 24895.05 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl-mvsnet291.21 22290.56 21893.14 25196.09 20286.80 25694.41 28396.58 24087.80 24288.58 25693.99 28080.85 21697.62 27989.87 17386.93 27094.99 271
v119291.07 22890.23 23193.58 23293.70 30087.82 23796.73 17297.07 19687.77 24489.58 22794.32 26480.90 21597.97 24186.52 24185.48 28494.95 272
COLMAP_ROBcopyleft87.81 1590.40 25289.28 26193.79 22297.95 11087.13 25196.92 15695.89 26482.83 31686.88 29397.18 12073.77 29799.29 11878.44 31793.62 19394.95 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192090.85 23890.03 24193.29 24593.55 30386.96 25596.74 17197.04 20187.36 25589.52 23194.34 26180.23 22697.97 24186.27 24485.21 29094.94 274
SixPastTwentyTwo89.15 27188.54 27190.98 30293.49 30780.28 32996.70 17694.70 31190.78 15484.15 31695.57 20771.78 30497.71 27184.63 27085.07 29394.94 274
cl-mvsnet190.97 23490.33 22392.88 25995.36 22986.19 27094.46 28196.63 23787.82 24088.18 26694.23 27082.99 17497.53 28787.72 21585.57 28394.93 276
v14419291.06 22990.28 22793.39 24093.66 30287.23 24796.83 16497.07 19687.43 25389.69 22494.28 26681.48 20698.00 23787.18 23484.92 29794.93 276
cl-mvsnet_90.96 23590.32 22492.89 25895.37 22886.21 26994.46 28196.64 23487.82 24088.15 26794.18 27382.98 17597.54 28587.70 21785.59 28294.92 278
v124090.70 24589.85 24693.23 24793.51 30686.80 25696.61 18797.02 20487.16 26089.58 22794.31 26579.55 23997.98 23885.52 25985.44 28594.90 279
cl_fuxian91.38 21290.89 20092.88 25995.58 21786.30 26694.68 27496.84 22188.17 23088.83 25094.23 27085.65 13797.47 29289.36 18584.63 29994.89 280
pmmvs589.86 26588.87 26792.82 26192.86 31886.23 26896.26 21695.39 28184.24 30187.12 28594.51 25174.27 29297.36 30187.61 22587.57 26494.86 281
v114491.37 21490.60 21493.68 22893.89 29588.23 22596.84 16397.03 20388.37 22489.69 22494.39 25882.04 19697.98 23887.80 21485.37 28694.84 282
K. test v387.64 28986.75 29090.32 31393.02 31779.48 33696.61 18792.08 34290.66 16080.25 33794.09 27667.21 33096.65 32085.96 25480.83 32794.83 283
IterMVS90.15 25989.67 25491.61 29195.48 22283.72 30094.33 28796.12 25789.99 17787.31 28494.15 27575.78 28596.27 32486.97 23786.89 27394.83 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_lstm_enhance90.50 25190.06 24091.83 28395.33 23483.74 29993.86 30096.70 23087.56 25187.79 27393.81 28683.45 16596.92 31587.39 22884.62 30094.82 285
IterMVS-SCA-FT90.31 25389.81 24891.82 28495.52 22084.20 29694.30 28896.15 25690.61 16487.39 28194.27 26775.80 28396.44 32187.34 22986.88 27494.82 285
WR-MVS_H92.00 18891.35 18493.95 21395.09 24989.47 18798.04 4598.68 791.46 13388.34 25994.68 24485.86 13497.56 28385.77 25684.24 30594.82 285
GG-mvs-BLEND93.62 22993.69 30189.20 20192.39 32883.33 35887.98 27289.84 33571.00 30996.87 31682.08 29395.40 16694.80 288
v14890.99 23290.38 22292.81 26293.83 29785.80 27496.78 17096.68 23189.45 19088.75 25393.93 28282.96 17797.82 26187.83 21383.25 31694.80 288
miper_ehance_all_eth91.59 19991.13 19692.97 25695.55 21986.57 26394.47 27996.88 21687.77 24488.88 24794.01 27886.22 12897.54 28589.49 18286.93 27094.79 290
XVG-ACMP-BASELINE90.93 23690.21 23493.09 25294.31 28585.89 27395.33 25997.26 18091.06 15189.38 23495.44 21568.61 32298.60 18089.46 18391.05 22994.79 290
DTE-MVSNet90.56 24889.75 25293.01 25493.95 29287.25 24597.64 8897.65 13190.74 15587.12 28595.68 20379.97 23197.00 31383.33 28181.66 32494.78 292
ACMH+87.92 1490.20 25789.18 26393.25 24696.48 18086.45 26496.99 14996.68 23188.83 21084.79 31096.22 17270.16 31698.53 18584.42 27488.04 25994.77 293
miper_enhance_ethall91.54 20591.01 19893.15 25095.35 23087.07 25293.97 29796.90 21386.79 26689.17 24293.43 30086.55 12397.64 27689.97 17086.93 27094.74 294
lessismore_v090.45 31191.96 33179.09 34087.19 35580.32 33694.39 25866.31 33597.55 28484.00 27776.84 33694.70 295
Patchmtry88.64 28087.25 28392.78 26394.09 28986.64 25989.82 34395.68 27380.81 33087.63 27792.36 31580.91 21397.03 30978.86 31585.12 29294.67 296
v7n90.76 24089.86 24593.45 23993.54 30487.60 24197.70 7997.37 17188.85 20887.65 27694.08 27781.08 21098.10 21984.68 26983.79 31394.66 297
V4291.58 20190.87 20193.73 22394.05 29188.50 21897.32 11796.97 20688.80 21489.71 22294.33 26282.54 18698.05 23089.01 19685.07 29394.64 298
v891.29 22090.53 21993.57 23394.15 28788.12 23097.34 11497.06 19888.99 20288.32 26094.26 26983.08 17198.01 23687.62 22483.92 31194.57 299
anonymousdsp92.16 18491.55 17893.97 21192.58 32489.55 18397.51 9797.42 16689.42 19188.40 25894.84 23580.66 21797.88 25691.87 13991.28 22694.48 300
pm-mvs190.72 24489.65 25693.96 21294.29 28689.63 17897.79 6796.82 22289.07 19986.12 29995.48 21478.61 25597.78 26586.97 23781.67 32394.46 301
LTVRE_ROB88.41 1390.99 23289.92 24394.19 20096.18 19489.55 18396.31 21297.09 19487.88 23985.67 30195.91 18678.79 25398.57 18381.50 29589.98 24394.44 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
YYNet185.87 30484.23 30890.78 30892.38 32882.46 31293.17 31495.14 29682.12 32067.69 34892.36 31578.16 26495.50 33777.31 32279.73 32994.39 303
PVSNet_BlendedMVS94.06 11693.92 10594.47 19098.27 8989.46 18996.73 17298.36 1690.17 17394.36 11895.24 22188.02 10099.58 7193.44 11290.72 23594.36 304
v1091.04 23090.23 23193.49 23594.12 28888.16 22997.32 11797.08 19588.26 22788.29 26294.22 27282.17 19597.97 24186.45 24384.12 30694.33 305
MDA-MVSNet-bldmvs85.00 30882.95 31291.17 30193.13 31683.33 30594.56 27795.00 30184.57 29865.13 35292.65 30770.45 31295.85 32973.57 33777.49 33494.33 305
MDA-MVSNet_test_wron85.87 30484.23 30890.80 30792.38 32882.57 30993.17 31495.15 29582.15 31967.65 34992.33 31878.20 26195.51 33677.33 32179.74 32894.31 307
our_test_388.78 27887.98 27791.20 30092.45 32682.53 31093.61 30995.69 27185.77 28084.88 30893.71 28879.99 23096.78 31979.47 31186.24 27694.28 308
pmmvs490.93 23689.85 24694.17 20193.34 31190.79 15194.60 27596.02 25984.62 29787.45 27895.15 22381.88 20197.45 29487.70 21787.87 26194.27 309
MVS_030488.79 27787.57 27992.46 26894.65 27186.15 27296.40 20297.17 18686.44 27088.02 27091.71 32456.68 35197.03 30984.47 27292.58 20494.19 310
ppachtmachnet_test88.35 28387.29 28291.53 29292.45 32683.57 30493.75 30395.97 26084.28 30085.32 30694.18 27379.00 25196.93 31475.71 32984.99 29694.10 311
UnsupCasMVSNet_eth85.99 30284.45 30690.62 30989.97 34182.40 31393.62 30897.37 17189.86 17978.59 34292.37 31265.25 34095.35 33882.27 29270.75 34694.10 311
pmmvs687.81 28886.19 29292.69 26591.32 33386.30 26697.34 11496.41 24580.59 33284.05 31994.37 26067.37 32997.67 27384.75 26879.51 33194.09 313
ITE_SJBPF92.43 27095.34 23185.37 28195.92 26191.47 13287.75 27596.39 16671.00 30997.96 24582.36 29189.86 24593.97 314
FMVSNet587.29 29185.79 29591.78 28794.80 26587.28 24395.49 25395.28 28884.09 30383.85 32191.82 32162.95 34494.17 34478.48 31685.34 28893.91 315
Anonymous2023120687.09 29286.14 29389.93 31791.22 33480.35 32696.11 22595.35 28483.57 31184.16 31593.02 30373.54 29995.61 33372.16 34086.14 27893.84 316
USDC88.94 27387.83 27892.27 27494.66 27084.96 28793.86 30095.90 26387.34 25683.40 32295.56 20967.43 32898.19 20982.64 29089.67 24793.66 317
D2MVS91.30 21990.95 19992.35 27294.71 26985.52 27896.18 22398.21 4088.89 20786.60 29493.82 28579.92 23297.95 24789.29 18890.95 23293.56 318
N_pmnet78.73 31978.71 32178.79 33492.80 32046.50 36394.14 29343.71 36578.61 33980.83 33191.66 32574.94 28996.36 32267.24 34884.45 30393.50 319
MIMVSNet184.93 30983.05 31190.56 31089.56 34484.84 29095.40 25695.35 28483.91 30480.38 33592.21 31957.23 34993.34 34870.69 34682.75 32293.50 319
TransMVSNet (Re)88.94 27387.56 28093.08 25394.35 28288.45 22097.73 7395.23 29287.47 25284.26 31495.29 21879.86 23397.33 30279.44 31374.44 34193.45 321
Baseline_NR-MVSNet91.20 22390.62 21392.95 25793.83 29788.03 23197.01 14895.12 29788.42 22389.70 22395.13 22583.47 16397.44 29589.66 17983.24 31793.37 322
CL-MVSNet_2432*160086.31 29985.15 30189.80 31888.83 34781.74 31793.93 29996.22 25386.67 26785.03 30790.80 32878.09 26594.50 34174.92 33171.86 34593.15 323
TDRefinement86.53 29584.76 30591.85 28282.23 35584.25 29496.38 20595.35 28484.97 29384.09 31794.94 22965.76 33998.34 19984.60 27174.52 34092.97 324
DIV-MVS_2432*160085.95 30384.95 30288.96 32189.55 34579.11 33995.13 26996.42 24485.91 27884.07 31890.48 32970.03 31794.82 34080.04 30672.94 34492.94 325
ambc86.56 33083.60 35370.00 35385.69 35094.97 30380.60 33488.45 33837.42 35796.84 31782.69 28975.44 33992.86 326
MS-PatchMatch90.27 25489.77 25091.78 28794.33 28384.72 29195.55 25096.73 22486.17 27586.36 29695.28 22071.28 30797.80 26284.09 27598.14 10892.81 327
KD-MVS_2432*160084.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
miper_refine_blended84.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
tfpnnormal89.70 26788.40 27293.60 23095.15 24590.10 16697.56 9498.16 5087.28 25886.16 29894.63 24777.57 27198.05 23074.48 33284.59 30192.65 330
EG-PatchMatch MVS87.02 29385.44 29791.76 28992.67 32285.00 28696.08 22796.45 24383.41 31379.52 33993.49 29657.10 35097.72 27079.34 31490.87 23492.56 331
TinyColmap86.82 29485.35 30091.21 29994.91 26082.99 30893.94 29894.02 32783.58 31081.56 32994.68 24462.34 34698.13 21475.78 32887.35 26992.52 332
CMPMVSbinary62.92 2185.62 30684.92 30387.74 32689.14 34673.12 35094.17 29296.80 22373.98 34673.65 34794.93 23066.36 33397.61 28083.95 27891.28 22692.48 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0386.14 30185.40 29988.35 32290.12 33980.06 33195.90 23795.20 29388.59 21781.29 33093.62 29471.43 30692.65 35071.26 34481.17 32692.34 334
LF4IMVS87.94 28687.25 28389.98 31692.38 32880.05 33294.38 28495.25 29187.59 25084.34 31294.74 24164.31 34197.66 27584.83 26687.45 26592.23 335
Anonymous2024052186.42 29785.44 29789.34 32090.33 33879.79 33396.73 17295.92 26183.71 30983.25 32391.36 32763.92 34296.01 32578.39 31885.36 28792.22 336
MVS-HIRNet82.47 31681.21 31886.26 33195.38 22669.21 35488.96 34789.49 35166.28 35080.79 33274.08 35368.48 32397.39 29971.93 34195.47 16492.18 337
MVP-Stereo90.74 24390.08 23792.71 26493.19 31488.20 22695.86 23896.27 25086.07 27684.86 30994.76 23977.84 26997.75 26883.88 27998.01 11092.17 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d86.22 30084.45 30691.53 29288.34 34987.25 24594.47 27995.01 30083.47 31279.51 34089.61 33669.75 31995.71 33283.13 28376.73 33791.64 339
UnsupCasMVSNet_bld82.13 31779.46 32090.14 31588.00 35082.47 31190.89 33796.62 23978.94 33875.61 34484.40 34756.63 35296.31 32377.30 32366.77 35091.63 340
test_040286.46 29684.79 30491.45 29495.02 25285.55 27796.29 21494.89 30680.90 32782.21 32793.97 28168.21 32597.29 30462.98 35188.68 25691.51 341
PM-MVS83.48 31381.86 31788.31 32387.83 35177.59 34393.43 31091.75 34486.91 26380.63 33389.91 33444.42 35695.84 33085.17 26576.73 33791.50 342
new-patchmatchnet83.18 31481.87 31687.11 32886.88 35275.99 34693.70 30495.18 29485.02 29277.30 34388.40 33965.99 33793.88 34674.19 33670.18 34791.47 343
OpenMVS_ROBcopyleft81.14 2084.42 31282.28 31590.83 30490.06 34084.05 29895.73 24494.04 32673.89 34780.17 33891.53 32659.15 34897.64 27666.92 34989.05 25190.80 344
LCM-MVSNet72.55 32069.39 32482.03 33270.81 36165.42 35790.12 34294.36 32155.02 35465.88 35181.72 34824.16 36489.96 35174.32 33568.10 34990.71 345
new_pmnet82.89 31581.12 31988.18 32589.63 34380.18 33091.77 32992.57 33876.79 34475.56 34688.23 34161.22 34794.48 34271.43 34282.92 32089.87 346
pmmvs379.97 31877.50 32287.39 32782.80 35479.38 33792.70 32390.75 34970.69 34978.66 34187.47 34551.34 35493.40 34773.39 33869.65 34889.38 347
PMMVS270.19 32266.92 32580.01 33376.35 35665.67 35686.22 34987.58 35464.83 35262.38 35380.29 35026.78 36288.49 35363.79 35054.07 35485.88 348
ANet_high63.94 32459.58 32777.02 33561.24 36366.06 35585.66 35187.93 35378.53 34042.94 35771.04 35425.42 36380.71 35652.60 35430.83 35784.28 349
FPMVS71.27 32169.85 32375.50 33674.64 35759.03 35991.30 33191.50 34658.80 35357.92 35488.28 34029.98 36085.53 35553.43 35382.84 32181.95 350
DeepMVS_CXcopyleft74.68 33890.84 33764.34 35881.61 36065.34 35167.47 35088.01 34348.60 35580.13 35762.33 35273.68 34379.58 351
PMVScopyleft53.92 2258.58 32555.40 32868.12 33951.00 36448.64 36178.86 35487.10 35646.77 35635.84 36174.28 3528.76 36586.34 35442.07 35673.91 34269.38 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 32748.81 33266.58 34065.34 36257.50 36072.49 35670.94 36340.15 35939.28 36063.51 3566.89 36773.48 36038.29 35742.38 35568.76 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 32365.41 32675.18 33792.66 32373.45 34966.50 35794.52 31653.33 35557.80 35566.07 35530.81 35889.20 35248.15 35578.88 33362.90 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN53.28 32652.56 33055.43 34174.43 35847.13 36283.63 35376.30 36142.23 35742.59 35862.22 35728.57 36174.40 35831.53 35831.51 35644.78 355
EMVS52.08 32851.31 33154.39 34272.62 36045.39 36483.84 35275.51 36241.13 35840.77 35959.65 35830.08 35973.60 35928.31 35929.90 35844.18 356
tmp_tt51.94 32953.82 32946.29 34333.73 36545.30 36578.32 35567.24 36418.02 36050.93 35687.05 34652.99 35353.11 36170.76 34525.29 35940.46 357
test12313.04 33315.66 3365.18 3454.51 3673.45 36792.50 3271.81 3682.50 3637.58 36420.15 3613.67 3682.18 3647.13 3621.07 3629.90 358
testmvs13.36 33216.33 3354.48 3465.04 3662.26 36893.18 3133.28 3672.70 3628.24 36321.66 3602.29 3692.19 3637.58 3612.96 3619.00 359
wuyk23d25.11 33024.57 33426.74 34473.98 35939.89 36657.88 3589.80 36612.27 36110.39 3626.97 3647.03 36636.44 36225.43 36017.39 3603.89 360
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k23.24 33130.99 3330.00 3470.00 3680.00 3690.00 35997.63 1330.00 3640.00 36596.88 13584.38 1510.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.39 3359.85 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36588.65 940.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.06 33410.74 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36596.69 1440.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS99.05 4194.59 2898.08 6489.22 19697.03 4798.10 6092.52 3299.65 5394.58 9099.31 55
test_241102_ONE99.42 695.30 1598.27 2895.09 1999.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7398.23 3891.28 14397.88 2298.44 2893.00 2199.65 5395.76 5299.47 36
save fliter98.91 4994.28 3597.02 14498.02 8895.35 8
test072699.45 295.36 1098.31 2298.29 2494.92 2398.99 498.92 295.08 5
test_part299.28 2595.74 698.10 17
sam_mvs81.94 200
MTGPAbinary98.08 64
test_post192.81 32216.58 36380.53 21997.68 27286.20 246
test_post17.58 36281.76 20298.08 224
patchmatchnet-post90.45 33082.65 18598.10 219
MTMP97.86 5982.03 359
gm-plane-assit93.22 31378.89 34184.82 29593.52 29598.64 17687.72 215
TEST998.70 6094.19 4096.41 19998.02 8888.17 23096.03 7997.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 20698.01 9188.58 21895.98 8497.55 10792.73 2599.58 71
agg_prior98.67 6293.79 5598.00 9395.68 9499.57 79
test_prior493.66 5996.42 198
test_prior296.35 20792.80 9696.03 7997.59 10192.01 4195.01 7599.38 48
旧先验295.94 23581.66 32397.34 3498.82 16092.26 127
新几何295.79 242
原ACMM295.67 245
testdata299.67 4985.96 254
segment_acmp92.89 22
testdata195.26 26693.10 83
plane_prior796.21 19189.98 172
plane_prior696.10 20190.00 16881.32 208
plane_prior496.64 147
plane_prior390.00 16894.46 4091.34 180
plane_prior297.74 7194.85 25
plane_prior196.14 199
plane_prior89.99 17097.24 12494.06 4892.16 212
n20.00 369
nn0.00 369
door-mid91.06 348
test1197.88 106
door91.13 347
HQP5-MVS89.33 195
HQP-NCC95.86 20696.65 18193.55 6390.14 204
ACMP_Plane95.86 20696.65 18193.55 6390.14 204
BP-MVS92.13 133
HQP3-MVS97.39 16892.10 213
HQP2-MVS80.95 211
NP-MVS95.99 20589.81 17795.87 187
MDTV_nov1_ep1390.76 20895.22 24280.33 32793.03 31995.28 28888.14 23392.84 15493.83 28381.34 20798.08 22482.86 28594.34 183
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93