DPE-MVS |  | | 97.86 4 | 97.65 5 | 98.47 5 | 99.17 34 | 95.78 7 | 97.21 139 | 98.35 19 | 95.16 16 | 98.71 12 | 98.80 11 | 95.05 10 | 99.89 3 | 96.70 24 | 99.73 1 | 99.73 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 94.78 35 | 98.73 10 | 98.87 6 | 95.87 4 | 99.84 22 | 97.45 8 | 99.72 2 | 99.77 1 |
|
APDe-MVS | | | 97.82 5 | 97.73 4 | 98.08 18 | 99.15 35 | 94.82 29 | 98.81 5 | 98.30 24 | 94.76 37 | 98.30 17 | 98.90 3 | 93.77 17 | 99.68 50 | 97.93 1 | 99.69 3 | 99.75 5 |
|
SMA-MVS |  | | 97.35 13 | 97.03 15 | 98.30 8 | 99.06 42 | 95.42 10 | 97.94 61 | 98.18 49 | 90.57 177 | 98.85 9 | 98.94 1 | 93.33 20 | 99.83 25 | 96.72 23 | 99.68 4 | 99.63 13 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CP-MVS | | | 97.02 27 | 96.81 29 | 97.64 49 | 99.33 23 | 93.54 66 | 98.80 6 | 98.28 27 | 92.99 94 | 96.45 73 | 98.30 51 | 91.90 48 | 99.85 17 | 95.61 67 | 99.68 4 | 99.54 33 |
|
MSC_two_6792asdad | | | | | 98.86 1 | 98.67 64 | 96.94 1 | | 97.93 106 | | | | | 99.86 8 | 97.68 2 | 99.67 6 | 99.77 1 |
|
No_MVS | | | | | 98.86 1 | 98.67 64 | 96.94 1 | | 97.93 106 | | | | | 99.86 8 | 97.68 2 | 99.67 6 | 99.77 1 |
|
DVP-MVS |  | | 97.91 3 | 97.81 3 | 98.22 12 | 99.45 3 | 95.36 13 | 98.21 40 | 97.85 116 | 94.92 26 | 98.73 10 | 98.87 6 | 95.08 8 | 99.84 22 | 97.52 4 | 99.67 6 | 99.48 45 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 40 | 98.28 27 | | | | | 99.86 8 | 97.52 4 | 99.67 6 | 99.75 5 |
|
SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 18 | 98.25 33 | 98.27 30 | 95.13 17 | 99.19 1 | 98.89 4 | 95.54 5 | 99.85 17 | 97.52 4 | 99.66 10 | 99.56 26 |
|
IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 105 | 90.40 181 | 98.94 5 | | | | 97.41 11 | 99.66 10 | 99.74 7 |
|
test_241102_TWO | | | | | | | | | 98.27 30 | 95.13 17 | 98.93 6 | 98.89 4 | 94.99 11 | 99.85 17 | 97.52 4 | 99.65 12 | 99.74 7 |
|
SD-MVS | | | 97.41 10 | 97.53 7 | 97.06 74 | 98.57 77 | 94.46 34 | 97.92 63 | 98.14 56 | 94.82 32 | 99.01 3 | 98.55 21 | 94.18 14 | 97.41 309 | 96.94 14 | 99.64 13 | 99.32 64 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS_fast | | | 96.51 52 | 96.27 55 | 97.22 67 | 99.32 24 | 92.74 87 | 98.74 7 | 98.06 76 | 90.57 177 | 96.77 53 | 98.35 40 | 90.21 82 | 99.53 92 | 94.80 92 | 99.63 14 | 99.38 60 |
|
SteuartSystems-ACMMP | | | 97.62 7 | 97.53 7 | 97.87 27 | 98.39 85 | 94.25 42 | 98.43 20 | 98.27 30 | 95.34 10 | 98.11 20 | 98.56 19 | 94.53 12 | 99.71 41 | 96.57 28 | 99.62 15 | 99.65 11 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS |  | | 96.69 46 | 96.45 51 | 97.40 56 | 99.36 20 | 93.11 79 | 98.87 4 | 98.06 76 | 91.17 156 | 96.40 74 | 97.99 75 | 90.99 70 | 99.58 74 | 95.61 67 | 99.61 16 | 99.49 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
OPU-MVS | | | | | 98.55 3 | 98.82 58 | 96.86 3 | 98.25 33 | | | | 98.26 56 | 96.04 2 | 99.24 124 | 95.36 74 | 99.59 17 | 99.56 26 |
|
HFP-MVS | | | 97.14 20 | 96.92 21 | 97.83 29 | 99.42 7 | 94.12 49 | 98.52 13 | 98.32 21 | 93.21 84 | 97.18 42 | 98.29 52 | 92.08 42 | 99.83 25 | 95.63 65 | 99.59 17 | 99.54 33 |
|
region2R | | | 97.07 23 | 96.84 26 | 97.77 38 | 99.46 2 | 93.79 59 | 98.52 13 | 98.24 37 | 93.19 87 | 97.14 45 | 98.34 43 | 91.59 57 | 99.87 7 | 95.46 73 | 99.59 17 | 99.64 12 |
|
#test# | | | 97.02 27 | 96.75 34 | 97.83 29 | 99.42 7 | 94.12 49 | 98.15 45 | 98.32 21 | 92.57 112 | 97.18 42 | 98.29 52 | 92.08 42 | 99.83 25 | 95.12 79 | 99.59 17 | 99.54 33 |
|
ACMMPR | | | 97.07 23 | 96.84 26 | 97.79 35 | 99.44 6 | 93.88 56 | 98.52 13 | 98.31 23 | 93.21 84 | 97.15 44 | 98.33 46 | 91.35 62 | 99.86 8 | 95.63 65 | 99.59 17 | 99.62 15 |
|
DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 64 | 95.39 11 | 99.29 1 | 98.28 27 | 94.78 35 | 98.93 6 | 98.87 6 | 96.04 2 | 99.86 8 | 97.45 8 | 99.58 22 | 99.59 19 |
|
PC_three_1452 | | | | | | | | | | 90.77 164 | 98.89 8 | 98.28 55 | 96.24 1 | 98.35 207 | 95.76 58 | 99.58 22 | 99.59 19 |
|
mPP-MVS | | | 96.86 38 | 96.60 41 | 97.64 49 | 99.40 12 | 93.44 69 | 98.50 16 | 98.09 66 | 93.27 83 | 95.95 92 | 98.33 46 | 91.04 69 | 99.88 4 | 95.20 76 | 99.57 24 | 99.60 18 |
|
ZNCC-MVS | | | 96.96 31 | 96.67 39 | 97.85 28 | 99.37 17 | 94.12 49 | 98.49 17 | 98.18 49 | 92.64 111 | 96.39 75 | 98.18 64 | 91.61 55 | 99.88 4 | 95.59 70 | 99.55 25 | 99.57 23 |
|
MP-MVS-pluss | | | 96.70 45 | 96.27 55 | 97.98 24 | 99.23 32 | 94.71 30 | 96.96 160 | 98.06 76 | 90.67 168 | 95.55 107 | 98.78 12 | 91.07 68 | 99.86 8 | 96.58 27 | 99.55 25 | 99.38 60 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS |  | | 96.77 43 | 96.45 51 | 97.72 42 | 99.39 14 | 93.80 58 | 98.41 21 | 98.06 76 | 93.37 79 | 95.54 109 | 98.34 43 | 90.59 78 | 99.88 4 | 94.83 89 | 99.54 27 | 99.49 43 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PHI-MVS | | | 96.77 43 | 96.46 50 | 97.71 44 | 98.40 83 | 94.07 52 | 98.21 40 | 98.45 15 | 89.86 189 | 97.11 48 | 98.01 74 | 92.52 35 | 99.69 47 | 96.03 50 | 99.53 28 | 99.36 62 |
|
xxxxxxxxxxxxxcwj | | | 97.36 12 | 97.20 11 | 97.83 29 | 98.91 51 | 94.28 39 | 97.02 152 | 97.22 190 | 95.35 8 | 98.27 18 | 98.65 15 | 93.33 20 | 99.72 38 | 96.49 30 | 99.52 29 | 99.51 38 |
|
SF-MVS | | | 97.39 11 | 97.13 12 | 98.17 14 | 99.02 45 | 95.28 20 | 98.23 37 | 98.27 30 | 92.37 116 | 98.27 18 | 98.65 15 | 93.33 20 | 99.72 38 | 96.49 30 | 99.52 29 | 99.51 38 |
|
ACMMP_NAP | | | 97.20 16 | 96.86 23 | 98.23 11 | 99.09 38 | 95.16 24 | 97.60 99 | 98.19 47 | 92.82 104 | 97.93 24 | 98.74 13 | 91.60 56 | 99.86 8 | 96.26 35 | 99.52 29 | 99.67 10 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 34 | 96.64 40 | 97.78 36 | 98.64 72 | 94.30 38 | 97.41 114 | 98.04 84 | 94.81 33 | 96.59 65 | 98.37 38 | 91.24 64 | 99.64 64 | 95.16 77 | 99.52 29 | 99.42 56 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3D-3000-0.1 | | | 97.07 23 | 96.71 37 | 98.14 16 | 98.90 53 | 95.33 17 | 97.68 88 | 98.24 37 | 91.57 138 | 97.90 25 | 98.37 38 | 92.61 32 | 99.66 55 | 95.59 70 | 99.51 33 | 99.43 53 |
|
HPM-MVS++ |  | | 97.34 14 | 96.97 18 | 98.47 5 | 99.08 40 | 96.16 4 | 97.55 103 | 97.97 102 | 95.59 4 | 96.61 63 | 97.89 78 | 92.57 33 | 99.84 22 | 95.95 51 | 99.51 33 | 99.40 57 |
|
APD-MVS |  | | 96.95 32 | 96.60 41 | 98.01 22 | 99.03 44 | 94.93 28 | 97.72 84 | 98.10 64 | 91.50 140 | 98.01 22 | 98.32 48 | 92.33 38 | 99.58 74 | 94.85 87 | 99.51 33 | 99.53 37 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
zzz-MVS | | | 97.07 23 | 96.77 33 | 97.97 25 | 99.37 17 | 94.42 36 | 97.15 145 | 98.08 67 | 95.07 22 | 96.11 82 | 98.59 17 | 90.88 73 | 99.90 1 | 96.18 44 | 99.50 36 | 99.58 21 |
|
MTAPA | | | 97.08 22 | 96.78 32 | 97.97 25 | 99.37 17 | 94.42 36 | 97.24 132 | 98.08 67 | 95.07 22 | 96.11 82 | 98.59 17 | 90.88 73 | 99.90 1 | 96.18 44 | 99.50 36 | 99.58 21 |
|
CNVR-MVS | | | 97.68 6 | 97.44 9 | 98.37 7 | 98.90 53 | 95.86 6 | 97.27 130 | 98.08 67 | 95.81 3 | 97.87 27 | 98.31 49 | 94.26 13 | 99.68 50 | 97.02 13 | 99.49 38 | 99.57 23 |
|
DeepPCF-MVS | | 93.97 1 | 96.61 49 | 97.09 13 | 95.15 165 | 98.09 110 | 86.63 271 | 96.00 241 | 98.15 54 | 95.43 6 | 97.95 23 | 98.56 19 | 93.40 19 | 99.36 116 | 96.77 22 | 99.48 39 | 99.45 49 |
|
ETH3 D test6400 | | | 96.16 63 | 95.52 71 | 98.07 19 | 98.90 53 | 95.06 26 | 97.03 149 | 98.21 43 | 88.16 243 | 96.64 61 | 97.70 95 | 91.18 66 | 99.67 52 | 92.44 136 | 99.47 40 | 99.48 45 |
|
9.14 | | | | 96.75 34 | | 98.93 49 | | 97.73 81 | 98.23 41 | 91.28 152 | 97.88 26 | 98.44 30 | 93.00 24 | 99.65 56 | 95.76 58 | 99.47 40 | |
|
TSAR-MVS + MP. | | | 97.42 9 | 97.33 10 | 97.69 45 | 99.25 29 | 94.24 43 | 98.07 50 | 97.85 116 | 93.72 63 | 98.57 13 | 98.35 40 | 93.69 18 | 99.40 112 | 97.06 12 | 99.46 42 | 99.44 51 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MSLP-MVS++ | | | 96.94 33 | 97.06 14 | 96.59 86 | 98.72 61 | 91.86 117 | 97.67 89 | 98.49 12 | 94.66 40 | 97.24 40 | 98.41 36 | 92.31 40 | 98.94 156 | 96.61 26 | 99.46 42 | 98.96 99 |
|
PGM-MVS | | | 96.81 41 | 96.53 45 | 97.65 47 | 99.35 22 | 93.53 67 | 97.65 92 | 98.98 1 | 92.22 119 | 97.14 45 | 98.44 30 | 91.17 67 | 99.85 17 | 94.35 99 | 99.46 42 | 99.57 23 |
|
CDPH-MVS | | | 95.97 68 | 95.38 77 | 97.77 38 | 98.93 49 | 94.44 35 | 96.35 216 | 97.88 110 | 86.98 273 | 96.65 60 | 97.89 78 | 91.99 46 | 99.47 103 | 92.26 137 | 99.46 42 | 99.39 58 |
|
DELS-MVS | | | 96.61 49 | 96.38 53 | 97.30 60 | 97.79 126 | 93.19 77 | 95.96 243 | 98.18 49 | 95.23 12 | 95.87 93 | 97.65 101 | 91.45 58 | 99.70 46 | 95.87 52 | 99.44 46 | 99.00 97 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CPTT-MVS | | | 95.57 79 | 95.19 82 | 96.70 80 | 99.27 28 | 91.48 128 | 98.33 25 | 98.11 62 | 87.79 254 | 95.17 116 | 98.03 72 | 87.09 123 | 99.61 65 | 93.51 117 | 99.42 47 | 99.02 90 |
|
MVS_111021_HR | | | 96.68 48 | 96.58 43 | 96.99 76 | 98.46 79 | 92.31 102 | 96.20 231 | 98.90 2 | 94.30 50 | 95.86 94 | 97.74 93 | 92.33 38 | 99.38 115 | 96.04 49 | 99.42 47 | 99.28 69 |
|
XVS | | | 97.18 17 | 96.96 19 | 97.81 33 | 99.38 15 | 94.03 54 | 98.59 10 | 98.20 45 | 94.85 28 | 96.59 65 | 98.29 52 | 91.70 53 | 99.80 30 | 95.66 60 | 99.40 49 | 99.62 15 |
|
X-MVStestdata | | | 91.71 202 | 89.67 262 | 97.81 33 | 99.38 15 | 94.03 54 | 98.59 10 | 98.20 45 | 94.85 28 | 96.59 65 | 32.69 370 | 91.70 53 | 99.80 30 | 95.66 60 | 99.40 49 | 99.62 15 |
|
MCST-MVS | | | 97.18 17 | 96.84 26 | 98.20 13 | 99.30 26 | 95.35 15 | 97.12 147 | 98.07 73 | 93.54 71 | 96.08 84 | 97.69 96 | 93.86 16 | 99.71 41 | 96.50 29 | 99.39 51 | 99.55 30 |
|
test9_res | | | | | | | | | | | | | | | 94.81 91 | 99.38 52 | 99.45 49 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 108 | 99.38 52 | 99.50 41 |
|
test_prior3 | | | 96.46 54 | 96.20 58 | 97.23 65 | 98.67 64 | 92.99 81 | 96.35 216 | 98.00 96 | 92.80 105 | 96.03 86 | 97.59 108 | 92.01 44 | 99.41 110 | 95.01 82 | 99.38 52 | 99.29 66 |
|
test_prior2 | | | | | | | | 96.35 216 | | 92.80 105 | 96.03 86 | 97.59 108 | 92.01 44 | | 95.01 82 | 99.38 52 | |
|
train_agg | | | 96.30 59 | 95.83 67 | 97.72 42 | 98.70 62 | 94.19 44 | 96.41 208 | 98.02 91 | 88.58 229 | 96.03 86 | 97.56 112 | 92.73 28 | 99.59 71 | 95.04 81 | 99.37 56 | 99.39 58 |
|
agg_prior1 | | | 96.22 62 | 95.77 68 | 97.56 51 | 98.67 64 | 93.79 59 | 96.28 224 | 98.00 96 | 88.76 226 | 95.68 101 | 97.55 114 | 92.70 30 | 99.57 82 | 95.01 82 | 99.32 57 | 99.32 64 |
|
3Dnovator | | 91.36 5 | 95.19 90 | 94.44 103 | 97.44 55 | 96.56 185 | 93.36 73 | 98.65 9 | 98.36 16 | 94.12 52 | 89.25 252 | 98.06 70 | 82.20 201 | 99.77 32 | 93.41 121 | 99.32 57 | 99.18 76 |
|
ZD-MVS | | | | | | 99.05 43 | 94.59 32 | | 98.08 67 | 89.22 207 | 97.03 51 | 98.10 66 | 92.52 35 | 99.65 56 | 94.58 97 | 99.31 59 | |
|
test1172 | | | 96.93 34 | 96.86 23 | 97.15 70 | 99.10 36 | 92.34 99 | 97.96 60 | 98.04 84 | 93.79 61 | 97.35 37 | 98.53 23 | 91.40 60 | 99.56 84 | 96.30 34 | 99.30 60 | 99.55 30 |
|
Regformer-1 | | | 97.10 21 | 96.96 19 | 97.54 52 | 98.32 91 | 93.48 68 | 96.83 172 | 97.99 100 | 95.20 13 | 97.46 31 | 98.25 57 | 92.48 37 | 99.58 74 | 96.79 21 | 99.29 61 | 99.55 30 |
|
Regformer-2 | | | 97.16 19 | 96.99 17 | 97.67 46 | 98.32 91 | 93.84 57 | 96.83 172 | 98.10 64 | 95.24 11 | 97.49 30 | 98.25 57 | 92.57 33 | 99.61 65 | 96.80 19 | 99.29 61 | 99.56 26 |
|
ETH3D cwj APD-0.16 | | | 96.56 51 | 96.06 60 | 98.05 20 | 98.26 97 | 95.19 22 | 96.99 157 | 98.05 83 | 89.85 191 | 97.26 39 | 98.22 59 | 91.80 50 | 99.69 47 | 94.84 88 | 99.28 63 | 99.27 71 |
|
GST-MVS | | | 96.85 39 | 96.52 46 | 97.82 32 | 99.36 20 | 94.14 48 | 98.29 28 | 98.13 57 | 92.72 108 | 96.70 56 | 98.06 70 | 91.35 62 | 99.86 8 | 94.83 89 | 99.28 63 | 99.47 48 |
|
SR-MVS | | | 97.01 29 | 96.86 23 | 97.47 54 | 99.09 38 | 93.27 76 | 97.98 55 | 98.07 73 | 93.75 62 | 97.45 32 | 98.48 27 | 91.43 59 | 99.59 71 | 96.22 38 | 99.27 65 | 99.54 33 |
|
CSCG | | | 96.05 65 | 95.91 64 | 96.46 96 | 99.24 30 | 90.47 166 | 98.30 27 | 98.57 11 | 89.01 212 | 93.97 137 | 97.57 110 | 92.62 31 | 99.76 33 | 94.66 95 | 99.27 65 | 99.15 79 |
|
SR-MVS-dyc-post | | | 96.88 37 | 96.80 30 | 97.11 73 | 99.02 45 | 92.34 99 | 97.98 55 | 98.03 87 | 93.52 73 | 97.43 35 | 98.51 24 | 91.40 60 | 99.56 84 | 96.05 47 | 99.26 67 | 99.43 53 |
|
RE-MVS-def | | | | 96.72 36 | | 99.02 45 | 92.34 99 | 97.98 55 | 98.03 87 | 93.52 73 | 97.43 35 | 98.51 24 | 90.71 76 | | 96.05 47 | 99.26 67 | 99.43 53 |
|
testtj | | | 96.93 34 | 96.56 44 | 98.05 20 | 99.10 36 | 94.66 31 | 97.78 75 | 98.22 42 | 92.74 107 | 97.59 28 | 98.20 63 | 91.96 47 | 99.86 8 | 94.21 101 | 99.25 69 | 99.63 13 |
|
APD-MVS_3200maxsize | | | 96.81 41 | 96.71 37 | 97.12 72 | 99.01 48 | 92.31 102 | 97.98 55 | 98.06 76 | 93.11 90 | 97.44 33 | 98.55 21 | 90.93 71 | 99.55 87 | 96.06 46 | 99.25 69 | 99.51 38 |
|
test12 | | | | | 97.65 47 | 98.46 79 | 94.26 41 | | 97.66 135 | | 95.52 111 | | 90.89 72 | 99.46 104 | | 99.25 69 | 99.22 74 |
|
DeepC-MVS | | 93.07 3 | 96.06 64 | 95.66 69 | 97.29 61 | 97.96 114 | 93.17 78 | 97.30 128 | 98.06 76 | 93.92 56 | 93.38 150 | 98.66 14 | 86.83 125 | 99.73 35 | 95.60 69 | 99.22 72 | 98.96 99 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSP-MVS | | | 97.59 8 | 97.54 6 | 97.73 41 | 99.40 12 | 93.77 62 | 98.53 12 | 98.29 25 | 95.55 5 | 98.56 14 | 97.81 88 | 93.90 15 | 99.65 56 | 96.62 25 | 99.21 73 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CANet | | | 96.39 57 | 96.02 61 | 97.50 53 | 97.62 136 | 93.38 71 | 97.02 152 | 97.96 103 | 95.42 7 | 94.86 119 | 97.81 88 | 87.38 119 | 99.82 28 | 96.88 16 | 99.20 74 | 99.29 66 |
|
MVS_111021_LR | | | 96.24 61 | 96.19 59 | 96.39 101 | 98.23 102 | 91.35 133 | 96.24 229 | 98.79 4 | 93.99 55 | 95.80 96 | 97.65 101 | 89.92 88 | 99.24 124 | 95.87 52 | 99.20 74 | 98.58 127 |
|
NCCC | | | 97.30 15 | 97.03 15 | 98.11 17 | 98.77 59 | 95.06 26 | 97.34 122 | 98.04 84 | 95.96 2 | 97.09 49 | 97.88 80 | 93.18 23 | 99.71 41 | 95.84 56 | 99.17 76 | 99.56 26 |
|
test222 | | | | | | 98.24 98 | 92.21 105 | 95.33 268 | 97.60 142 | 79.22 348 | 95.25 113 | 97.84 87 | 88.80 97 | | | 99.15 77 | 98.72 120 |
|
114514_t | | | 93.95 123 | 93.06 135 | 96.63 83 | 99.07 41 | 91.61 122 | 97.46 113 | 97.96 103 | 77.99 352 | 93.00 158 | 97.57 110 | 86.14 137 | 99.33 117 | 89.22 201 | 99.15 77 | 98.94 102 |
|
Regformer-3 | | | 96.85 39 | 96.80 30 | 97.01 75 | 98.34 88 | 92.02 113 | 96.96 160 | 97.76 120 | 95.01 24 | 97.08 50 | 98.42 33 | 91.71 52 | 99.54 89 | 96.80 19 | 99.13 79 | 99.48 45 |
|
Regformer-4 | | | 96.97 30 | 96.87 22 | 97.25 64 | 98.34 88 | 92.66 90 | 96.96 160 | 98.01 94 | 95.12 20 | 97.14 45 | 98.42 33 | 91.82 49 | 99.61 65 | 96.90 15 | 99.13 79 | 99.50 41 |
|
新几何1 | | | | | 97.32 59 | 98.60 73 | 93.59 65 | | 97.75 121 | 81.58 335 | 95.75 98 | 97.85 84 | 90.04 85 | 99.67 52 | 86.50 253 | 99.13 79 | 98.69 123 |
|
原ACMM1 | | | | | 96.38 102 | 98.59 74 | 91.09 146 | | 97.89 108 | 87.41 265 | 95.22 115 | 97.68 97 | 90.25 80 | 99.54 89 | 87.95 221 | 99.12 82 | 98.49 136 |
|
1121 | | | 94.71 105 | 93.83 110 | 97.34 58 | 98.57 77 | 93.64 64 | 96.04 237 | 97.73 124 | 81.56 336 | 95.68 101 | 97.85 84 | 90.23 81 | 99.65 56 | 87.68 231 | 99.12 82 | 98.73 119 |
|
DROMVSNet | | | 96.42 55 | 96.47 48 | 96.26 111 | 97.01 163 | 91.52 127 | 98.89 3 | 97.75 121 | 94.42 45 | 96.64 61 | 97.68 97 | 89.32 90 | 98.60 185 | 97.45 8 | 99.11 84 | 98.67 125 |
|
CS-MVS | | | 95.88 71 | 95.98 62 | 95.58 146 | 96.44 193 | 90.56 162 | 97.78 75 | 97.73 124 | 93.01 93 | 96.07 85 | 96.77 147 | 90.13 83 | 98.57 190 | 96.83 18 | 99.10 85 | 97.60 187 |
|
abl_6 | | | 96.40 56 | 96.21 57 | 96.98 77 | 98.89 56 | 92.20 107 | 97.89 64 | 98.03 87 | 93.34 82 | 97.22 41 | 98.42 33 | 87.93 108 | 99.72 38 | 95.10 80 | 99.07 86 | 99.02 90 |
|
MVSFormer | | | 95.37 82 | 95.16 83 | 95.99 124 | 96.34 199 | 91.21 138 | 98.22 38 | 97.57 146 | 91.42 144 | 96.22 79 | 97.32 121 | 86.20 135 | 97.92 262 | 94.07 104 | 99.05 87 | 98.85 111 |
|
lupinMVS | | | 94.99 96 | 94.56 96 | 96.29 109 | 96.34 199 | 91.21 138 | 95.83 249 | 96.27 259 | 88.93 217 | 96.22 79 | 96.88 143 | 86.20 135 | 98.85 163 | 95.27 75 | 99.05 87 | 98.82 114 |
|
旧先验1 | | | | | | 98.38 86 | 93.38 71 | | 97.75 121 | | | 98.09 68 | 92.30 41 | | | 99.01 89 | 99.16 77 |
|
testdata | | | | | 95.46 158 | 98.18 107 | 88.90 217 | | 97.66 135 | 82.73 328 | 97.03 51 | 98.07 69 | 90.06 84 | 98.85 163 | 89.67 188 | 98.98 90 | 98.64 126 |
|
3Dnovator+ | | 91.43 4 | 95.40 81 | 94.48 101 | 98.16 15 | 96.90 167 | 95.34 16 | 98.48 18 | 97.87 112 | 94.65 41 | 88.53 268 | 98.02 73 | 83.69 166 | 99.71 41 | 93.18 125 | 98.96 91 | 99.44 51 |
|
DPM-MVS | | | 95.69 74 | 94.92 87 | 98.01 22 | 98.08 111 | 95.71 9 | 95.27 273 | 97.62 141 | 90.43 180 | 95.55 107 | 97.07 134 | 91.72 51 | 99.50 100 | 89.62 190 | 98.94 92 | 98.82 114 |
|
CHOSEN 280x420 | | | 93.12 152 | 92.72 148 | 94.34 205 | 96.71 178 | 87.27 253 | 90.29 348 | 97.72 128 | 86.61 280 | 91.34 191 | 95.29 229 | 84.29 160 | 98.41 201 | 93.25 124 | 98.94 92 | 97.35 195 |
|
jason | | | 94.84 101 | 94.39 104 | 96.18 115 | 95.52 232 | 90.93 151 | 96.09 235 | 96.52 249 | 89.28 205 | 96.01 90 | 97.32 121 | 84.70 152 | 98.77 170 | 95.15 78 | 98.91 94 | 98.85 111 |
jason: jason. |
QAPM | | | 93.45 140 | 92.27 164 | 96.98 77 | 96.77 174 | 92.62 92 | 98.39 23 | 98.12 59 | 84.50 310 | 88.27 274 | 97.77 91 | 82.39 198 | 99.81 29 | 85.40 272 | 98.81 95 | 98.51 133 |
|
MG-MVS | | | 95.61 77 | 95.38 77 | 96.31 106 | 98.42 82 | 90.53 164 | 96.04 237 | 97.48 154 | 93.47 76 | 95.67 104 | 98.10 66 | 89.17 92 | 99.25 123 | 91.27 164 | 98.77 96 | 99.13 81 |
|
API-MVS | | | 94.84 101 | 94.49 100 | 95.90 127 | 97.90 120 | 92.00 114 | 97.80 73 | 97.48 154 | 89.19 208 | 94.81 120 | 96.71 150 | 88.84 96 | 99.17 130 | 88.91 208 | 98.76 97 | 96.53 213 |
|
CHOSEN 1792x2688 | | | 94.15 113 | 93.51 122 | 96.06 119 | 98.27 94 | 89.38 200 | 95.18 277 | 98.48 14 | 85.60 293 | 93.76 141 | 97.11 132 | 83.15 176 | 99.61 65 | 91.33 162 | 98.72 98 | 99.19 75 |
|
CS-MVS-test | | | 95.86 73 | 95.88 66 | 95.80 131 | 96.76 176 | 90.59 161 | 98.40 22 | 97.65 137 | 93.52 73 | 95.53 110 | 96.79 145 | 89.98 86 | 98.59 189 | 95.59 70 | 98.69 99 | 98.23 155 |
|
EIA-MVS | | | 95.53 80 | 95.47 73 | 95.71 139 | 97.06 158 | 89.63 186 | 97.82 71 | 97.87 112 | 93.57 67 | 93.92 138 | 95.04 238 | 90.61 77 | 98.95 155 | 94.62 96 | 98.68 100 | 98.54 129 |
|
OpenMVS |  | 89.19 12 | 92.86 165 | 91.68 181 | 96.40 99 | 95.34 243 | 92.73 88 | 98.27 30 | 98.12 59 | 84.86 305 | 85.78 311 | 97.75 92 | 78.89 259 | 99.74 34 | 87.50 238 | 98.65 101 | 96.73 210 |
|
EPNet | | | 95.20 89 | 94.56 96 | 97.14 71 | 92.80 332 | 92.68 89 | 97.85 69 | 94.87 319 | 96.64 1 | 92.46 166 | 97.80 90 | 86.23 132 | 99.65 56 | 93.72 114 | 98.62 102 | 99.10 86 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DP-MVS Recon | | | 95.68 75 | 95.12 85 | 97.37 57 | 99.19 33 | 94.19 44 | 97.03 149 | 98.08 67 | 88.35 236 | 95.09 117 | 97.65 101 | 89.97 87 | 99.48 102 | 92.08 146 | 98.59 103 | 98.44 144 |
|
Vis-MVSNet |  | | 95.23 87 | 94.81 89 | 96.51 91 | 97.18 149 | 91.58 125 | 98.26 32 | 98.12 59 | 94.38 48 | 94.90 118 | 98.15 65 | 82.28 199 | 98.92 157 | 91.45 161 | 98.58 104 | 99.01 94 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test2506 | | | 91.60 206 | 90.78 214 | 94.04 216 | 97.66 133 | 83.81 310 | 98.27 30 | 75.53 374 | 93.43 77 | 95.23 114 | 98.21 60 | 67.21 339 | 99.07 145 | 93.01 132 | 98.49 105 | 99.25 72 |
|
ECVR-MVS |  | | 93.19 149 | 92.73 147 | 94.57 196 | 97.66 133 | 85.41 289 | 98.21 40 | 88.23 363 | 93.43 77 | 94.70 122 | 98.21 60 | 72.57 309 | 99.07 145 | 93.05 129 | 98.49 105 | 99.25 72 |
|
test1111 | | | 93.19 149 | 92.82 141 | 94.30 207 | 97.58 141 | 84.56 303 | 98.21 40 | 89.02 362 | 93.53 72 | 94.58 124 | 98.21 60 | 72.69 308 | 99.05 148 | 93.06 128 | 98.48 107 | 99.28 69 |
|
UGNet | | | 94.04 121 | 93.28 131 | 96.31 106 | 96.85 168 | 91.19 141 | 97.88 65 | 97.68 133 | 94.40 46 | 93.00 158 | 96.18 183 | 73.39 307 | 99.61 65 | 91.72 152 | 98.46 108 | 98.13 159 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CANet_DTU | | | 94.37 108 | 93.65 116 | 96.55 87 | 96.46 192 | 92.13 109 | 96.21 230 | 96.67 241 | 94.38 48 | 93.53 146 | 97.03 136 | 79.34 248 | 99.71 41 | 90.76 170 | 98.45 109 | 97.82 176 |
|
TAPA-MVS | | 90.10 7 | 92.30 183 | 91.22 200 | 95.56 147 | 98.33 90 | 89.60 188 | 96.79 176 | 97.65 137 | 81.83 333 | 91.52 187 | 97.23 126 | 87.94 107 | 98.91 159 | 71.31 355 | 98.37 110 | 98.17 158 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
EI-MVSNet-Vis-set | | | 96.51 52 | 96.47 48 | 96.63 83 | 98.24 98 | 91.20 140 | 96.89 167 | 97.73 124 | 94.74 38 | 96.49 69 | 98.49 26 | 90.88 73 | 99.58 74 | 96.44 32 | 98.32 111 | 99.13 81 |
|
PS-MVSNAJ | | | 95.37 82 | 95.33 79 | 95.49 154 | 97.35 144 | 90.66 160 | 95.31 270 | 97.48 154 | 93.85 58 | 96.51 68 | 95.70 213 | 88.65 99 | 99.65 56 | 94.80 92 | 98.27 112 | 96.17 222 |
|
LS3D | | | 93.57 137 | 92.61 152 | 96.47 94 | 97.59 139 | 91.61 122 | 97.67 89 | 97.72 128 | 85.17 300 | 90.29 212 | 98.34 43 | 84.60 153 | 99.73 35 | 83.85 291 | 98.27 112 | 98.06 164 |
|
ETV-MVS | | | 96.02 66 | 95.89 65 | 96.40 99 | 97.16 150 | 92.44 97 | 97.47 111 | 97.77 119 | 94.55 42 | 96.48 70 | 94.51 261 | 91.23 65 | 98.92 157 | 95.65 63 | 98.19 114 | 97.82 176 |
|
PVSNet_Blended | | | 94.87 100 | 94.56 96 | 95.81 130 | 98.27 94 | 89.46 197 | 95.47 263 | 98.36 16 | 88.84 220 | 94.36 128 | 96.09 191 | 88.02 105 | 99.58 74 | 93.44 119 | 98.18 115 | 98.40 147 |
|
MAR-MVS | | | 94.22 111 | 93.46 124 | 96.51 91 | 98.00 113 | 92.19 108 | 97.67 89 | 97.47 157 | 88.13 245 | 93.00 158 | 95.84 200 | 84.86 151 | 99.51 97 | 87.99 220 | 98.17 116 | 97.83 175 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MS-PatchMatch | | | 90.27 262 | 89.77 258 | 91.78 297 | 94.33 295 | 84.72 301 | 95.55 259 | 96.73 232 | 86.17 286 | 86.36 307 | 95.28 231 | 71.28 316 | 97.80 273 | 84.09 286 | 98.14 117 | 92.81 338 |
|
AdaColmap |  | | 94.34 109 | 93.68 115 | 96.31 106 | 98.59 74 | 91.68 121 | 96.59 199 | 97.81 118 | 89.87 188 | 92.15 176 | 97.06 135 | 83.62 169 | 99.54 89 | 89.34 196 | 98.07 118 | 97.70 180 |
|
MVP-Stereo | | | 90.74 251 | 90.08 245 | 92.71 274 | 93.19 326 | 88.20 235 | 95.86 247 | 96.27 259 | 86.07 287 | 84.86 320 | 94.76 250 | 77.84 276 | 97.75 279 | 83.88 290 | 98.01 119 | 92.17 349 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Vis-MVSNet (Re-imp) | | | 94.15 113 | 93.88 109 | 94.95 176 | 97.61 137 | 87.92 242 | 98.10 47 | 95.80 276 | 92.22 119 | 93.02 157 | 97.45 116 | 84.53 155 | 97.91 265 | 88.24 216 | 97.97 120 | 99.02 90 |
|
EI-MVSNet-UG-set | | | 96.34 58 | 96.30 54 | 96.47 94 | 98.20 103 | 90.93 151 | 96.86 168 | 97.72 128 | 94.67 39 | 96.16 81 | 98.46 28 | 90.43 79 | 99.58 74 | 96.23 37 | 97.96 121 | 98.90 106 |
|
IS-MVSNet | | | 94.90 98 | 94.52 99 | 96.05 120 | 97.67 131 | 90.56 162 | 98.44 19 | 96.22 262 | 93.21 84 | 93.99 135 | 97.74 93 | 85.55 143 | 98.45 200 | 89.98 179 | 97.86 122 | 99.14 80 |
|
CNLPA | | | 94.28 110 | 93.53 120 | 96.52 88 | 98.38 86 | 92.55 94 | 96.59 199 | 96.88 224 | 90.13 185 | 91.91 182 | 97.24 125 | 85.21 146 | 99.09 140 | 87.64 234 | 97.83 123 | 97.92 168 |
|
xiu_mvs_v2_base | | | 95.32 84 | 95.29 80 | 95.40 159 | 97.22 146 | 90.50 165 | 95.44 264 | 97.44 169 | 93.70 65 | 96.46 72 | 96.18 183 | 88.59 102 | 99.53 92 | 94.79 94 | 97.81 124 | 96.17 222 |
|
PAPM_NR | | | 95.01 92 | 94.59 95 | 96.26 111 | 98.89 56 | 90.68 159 | 97.24 132 | 97.73 124 | 91.80 133 | 92.93 163 | 96.62 164 | 89.13 93 | 99.14 134 | 89.21 202 | 97.78 125 | 98.97 98 |
|
PVSNet_Blended_VisFu | | | 95.27 85 | 94.91 88 | 96.38 102 | 98.20 103 | 90.86 153 | 97.27 130 | 98.25 35 | 90.21 182 | 94.18 132 | 97.27 123 | 87.48 117 | 99.73 35 | 93.53 116 | 97.77 126 | 98.55 128 |
|
TSAR-MVS + GP. | | | 96.69 46 | 96.49 47 | 97.27 63 | 98.31 93 | 93.39 70 | 96.79 176 | 96.72 233 | 94.17 51 | 97.44 33 | 97.66 100 | 92.76 26 | 99.33 117 | 96.86 17 | 97.76 127 | 99.08 87 |
|
ACMMP |  | | 96.27 60 | 95.93 63 | 97.28 62 | 99.24 30 | 92.62 92 | 98.25 33 | 98.81 3 | 92.99 94 | 94.56 125 | 98.39 37 | 88.96 94 | 99.85 17 | 94.57 98 | 97.63 128 | 99.36 62 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
BH-RMVSNet | | | 92.72 171 | 91.97 172 | 94.97 174 | 97.16 150 | 87.99 241 | 96.15 233 | 95.60 284 | 90.62 173 | 91.87 183 | 97.15 131 | 78.41 266 | 98.57 190 | 83.16 293 | 97.60 129 | 98.36 151 |
|
PatchMatch-RL | | | 92.90 163 | 92.02 170 | 95.56 147 | 98.19 105 | 90.80 155 | 95.27 273 | 97.18 191 | 87.96 247 | 91.86 184 | 95.68 214 | 80.44 228 | 98.99 153 | 84.01 287 | 97.54 130 | 96.89 205 |
|
xiu_mvs_v1_base_debu | | | 95.01 92 | 94.76 90 | 95.75 134 | 96.58 182 | 91.71 118 | 96.25 226 | 97.35 181 | 92.99 94 | 96.70 56 | 96.63 161 | 82.67 189 | 99.44 107 | 96.22 38 | 97.46 131 | 96.11 227 |
|
xiu_mvs_v1_base | | | 95.01 92 | 94.76 90 | 95.75 134 | 96.58 182 | 91.71 118 | 96.25 226 | 97.35 181 | 92.99 94 | 96.70 56 | 96.63 161 | 82.67 189 | 99.44 107 | 96.22 38 | 97.46 131 | 96.11 227 |
|
xiu_mvs_v1_base_debi | | | 95.01 92 | 94.76 90 | 95.75 134 | 96.58 182 | 91.71 118 | 96.25 226 | 97.35 181 | 92.99 94 | 96.70 56 | 96.63 161 | 82.67 189 | 99.44 107 | 96.22 38 | 97.46 131 | 96.11 227 |
|
MVS | | | 91.71 202 | 90.44 228 | 95.51 151 | 95.20 256 | 91.59 124 | 96.04 237 | 97.45 165 | 73.44 359 | 87.36 293 | 95.60 217 | 85.42 144 | 99.10 137 | 85.97 264 | 97.46 131 | 95.83 237 |
|
PVSNet | | 86.66 18 | 92.24 187 | 91.74 180 | 93.73 233 | 97.77 127 | 83.69 315 | 92.88 329 | 96.72 233 | 87.91 249 | 93.00 158 | 94.86 245 | 78.51 263 | 99.05 148 | 86.53 251 | 97.45 135 | 98.47 139 |
|
PAPR | | | 94.18 112 | 93.42 128 | 96.48 93 | 97.64 135 | 91.42 132 | 95.55 259 | 97.71 132 | 88.99 213 | 92.34 172 | 95.82 202 | 89.19 91 | 99.11 136 | 86.14 259 | 97.38 136 | 98.90 106 |
|
LCM-MVSNet-Re | | | 92.50 173 | 92.52 157 | 92.44 279 | 96.82 172 | 81.89 327 | 96.92 164 | 93.71 338 | 92.41 115 | 84.30 324 | 94.60 259 | 85.08 148 | 97.03 320 | 91.51 158 | 97.36 137 | 98.40 147 |
|
UA-Net | | | 95.95 69 | 95.53 70 | 97.20 69 | 97.67 131 | 92.98 83 | 97.65 92 | 98.13 57 | 94.81 33 | 96.61 63 | 98.35 40 | 88.87 95 | 99.51 97 | 90.36 176 | 97.35 138 | 99.11 85 |
|
casdiffmvs | | | 95.64 76 | 95.49 72 | 96.08 117 | 96.76 176 | 90.45 167 | 97.29 129 | 97.44 169 | 94.00 54 | 95.46 112 | 97.98 76 | 87.52 116 | 98.73 173 | 95.64 64 | 97.33 139 | 99.08 87 |
|
PCF-MVS | | 89.48 11 | 91.56 210 | 89.95 250 | 96.36 104 | 96.60 180 | 92.52 95 | 92.51 335 | 97.26 187 | 79.41 347 | 88.90 256 | 96.56 166 | 84.04 163 | 99.55 87 | 77.01 337 | 97.30 140 | 97.01 199 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
BH-untuned | | | 92.94 161 | 92.62 151 | 93.92 227 | 97.22 146 | 86.16 280 | 96.40 211 | 96.25 261 | 90.06 186 | 89.79 232 | 96.17 185 | 83.19 174 | 98.35 207 | 87.19 244 | 97.27 141 | 97.24 197 |
|
baseline | | | 95.58 78 | 95.42 76 | 96.08 117 | 96.78 173 | 90.41 169 | 97.16 143 | 97.45 165 | 93.69 66 | 95.65 105 | 97.85 84 | 87.29 120 | 98.68 178 | 95.66 60 | 97.25 142 | 99.13 81 |
|
gg-mvs-nofinetune | | | 87.82 295 | 85.61 304 | 94.44 199 | 94.46 290 | 89.27 208 | 91.21 343 | 84.61 369 | 80.88 339 | 89.89 230 | 74.98 362 | 71.50 314 | 97.53 298 | 85.75 268 | 97.21 143 | 96.51 214 |
|
diffmvs | | | 95.25 86 | 95.13 84 | 95.63 142 | 96.43 195 | 89.34 202 | 95.99 242 | 97.35 181 | 92.83 103 | 96.31 76 | 97.37 120 | 86.44 130 | 98.67 179 | 96.26 35 | 97.19 144 | 98.87 110 |
|
MVS_Test | | | 94.89 99 | 94.62 94 | 95.68 140 | 96.83 171 | 89.55 191 | 96.70 184 | 97.17 193 | 91.17 156 | 95.60 106 | 96.11 190 | 87.87 109 | 98.76 171 | 93.01 132 | 97.17 145 | 98.72 120 |
|
PLC |  | 91.00 6 | 94.11 117 | 93.43 126 | 96.13 116 | 98.58 76 | 91.15 145 | 96.69 186 | 97.39 175 | 87.29 268 | 91.37 190 | 96.71 150 | 88.39 103 | 99.52 96 | 87.33 241 | 97.13 146 | 97.73 178 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
1314 | | | 92.81 169 | 92.03 169 | 95.14 166 | 95.33 246 | 89.52 194 | 96.04 237 | 97.44 169 | 87.72 258 | 86.25 308 | 95.33 228 | 83.84 164 | 98.79 167 | 89.26 199 | 97.05 147 | 97.11 198 |
|
EPNet_dtu | | | 91.71 202 | 91.28 196 | 92.99 265 | 93.76 311 | 83.71 313 | 96.69 186 | 95.28 297 | 93.15 88 | 87.02 300 | 95.95 195 | 83.37 173 | 97.38 311 | 79.46 323 | 96.84 148 | 97.88 171 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+ | | | 94.93 97 | 94.45 102 | 96.36 104 | 96.61 179 | 91.47 129 | 96.41 208 | 97.41 174 | 91.02 161 | 94.50 126 | 95.92 196 | 87.53 115 | 98.78 168 | 93.89 110 | 96.81 149 | 98.84 113 |
|
OMC-MVS | | | 95.09 91 | 94.70 93 | 96.25 113 | 98.46 79 | 91.28 134 | 96.43 206 | 97.57 146 | 92.04 128 | 94.77 121 | 97.96 77 | 87.01 124 | 99.09 140 | 91.31 163 | 96.77 150 | 98.36 151 |
|
test-LLR | | | 91.42 218 | 91.19 201 | 92.12 286 | 94.59 286 | 80.66 334 | 94.29 298 | 92.98 344 | 91.11 158 | 90.76 204 | 92.37 322 | 79.02 254 | 98.07 238 | 88.81 209 | 96.74 151 | 97.63 182 |
|
test-mter | | | 90.19 266 | 89.54 265 | 92.12 286 | 94.59 286 | 80.66 334 | 94.29 298 | 92.98 344 | 87.68 259 | 90.76 204 | 92.37 322 | 67.67 335 | 98.07 238 | 88.81 209 | 96.74 151 | 97.63 182 |
|
F-COLMAP | | | 93.58 136 | 92.98 137 | 95.37 160 | 98.40 83 | 88.98 215 | 97.18 141 | 97.29 186 | 87.75 257 | 90.49 207 | 97.10 133 | 85.21 146 | 99.50 100 | 86.70 250 | 96.72 153 | 97.63 182 |
|
mvs_anonymous | | | 93.82 128 | 93.74 112 | 94.06 214 | 96.44 193 | 85.41 289 | 95.81 250 | 97.05 206 | 89.85 191 | 90.09 224 | 96.36 177 | 87.44 118 | 97.75 279 | 93.97 106 | 96.69 154 | 99.02 90 |
|
DP-MVS | | | 92.76 170 | 91.51 189 | 96.52 88 | 98.77 59 | 90.99 147 | 97.38 120 | 96.08 267 | 82.38 329 | 89.29 249 | 97.87 81 | 83.77 165 | 99.69 47 | 81.37 311 | 96.69 154 | 98.89 108 |
|
TESTMET0.1,1 | | | 90.06 268 | 89.42 266 | 91.97 289 | 94.41 293 | 80.62 336 | 94.29 298 | 91.97 353 | 87.28 269 | 90.44 209 | 92.47 321 | 68.79 330 | 97.67 284 | 88.50 215 | 96.60 156 | 97.61 186 |
|
mvs-test1 | | | 93.63 134 | 93.69 114 | 93.46 248 | 96.02 215 | 84.61 302 | 97.24 132 | 96.72 233 | 93.85 58 | 92.30 173 | 95.76 208 | 83.08 178 | 98.89 161 | 91.69 155 | 96.54 157 | 96.87 206 |
|
GeoE | | | 93.89 125 | 93.28 131 | 95.72 138 | 96.96 166 | 89.75 185 | 98.24 36 | 96.92 220 | 89.47 200 | 92.12 178 | 97.21 127 | 84.42 156 | 98.39 205 | 87.71 227 | 96.50 158 | 99.01 94 |
|
EPP-MVSNet | | | 95.22 88 | 95.04 86 | 95.76 132 | 97.49 143 | 89.56 190 | 98.67 8 | 97.00 212 | 90.69 167 | 94.24 131 | 97.62 106 | 89.79 89 | 98.81 166 | 93.39 122 | 96.49 159 | 98.92 104 |
|
PMMVS | | | 92.86 165 | 92.34 161 | 94.42 202 | 94.92 269 | 86.73 267 | 94.53 287 | 96.38 255 | 84.78 307 | 94.27 130 | 95.12 237 | 83.13 177 | 98.40 202 | 91.47 160 | 96.49 159 | 98.12 160 |
|
Fast-Effi-MVS+ | | | 93.46 139 | 92.75 145 | 95.59 145 | 96.77 174 | 90.03 174 | 96.81 175 | 97.13 196 | 88.19 239 | 91.30 194 | 94.27 277 | 86.21 134 | 98.63 182 | 87.66 233 | 96.46 161 | 98.12 160 |
|
BH-w/o | | | 92.14 193 | 91.75 178 | 93.31 254 | 96.99 165 | 85.73 284 | 95.67 254 | 95.69 280 | 88.73 227 | 89.26 251 | 94.82 248 | 82.97 183 | 98.07 238 | 85.26 274 | 96.32 162 | 96.13 226 |
|
sss | | | 94.51 107 | 93.80 111 | 96.64 81 | 97.07 155 | 91.97 115 | 96.32 220 | 98.06 76 | 88.94 216 | 94.50 126 | 96.78 146 | 84.60 153 | 99.27 122 | 91.90 147 | 96.02 163 | 98.68 124 |
|
SCA | | | 91.84 199 | 91.18 202 | 93.83 229 | 95.59 228 | 84.95 298 | 94.72 282 | 95.58 286 | 90.82 162 | 92.25 174 | 93.69 299 | 75.80 290 | 98.10 230 | 86.20 257 | 95.98 164 | 98.45 141 |
|
CDS-MVSNet | | | 94.14 116 | 93.54 119 | 95.93 125 | 96.18 206 | 91.46 130 | 96.33 219 | 97.04 208 | 88.97 215 | 93.56 143 | 96.51 168 | 87.55 114 | 97.89 266 | 89.80 184 | 95.95 165 | 98.44 144 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PAPM | | | 91.52 214 | 90.30 234 | 95.20 163 | 95.30 249 | 89.83 183 | 93.38 321 | 96.85 228 | 86.26 284 | 88.59 266 | 95.80 203 | 84.88 150 | 98.15 224 | 75.67 341 | 95.93 166 | 97.63 182 |
|
LFMVS | | | 93.60 135 | 92.63 150 | 96.52 88 | 98.13 109 | 91.27 135 | 97.94 61 | 93.39 342 | 90.57 177 | 96.29 77 | 98.31 49 | 69.00 329 | 99.16 131 | 94.18 103 | 95.87 167 | 99.12 84 |
|
thisisatest0515 | | | 92.29 184 | 91.30 195 | 95.25 162 | 96.60 180 | 88.90 217 | 94.36 294 | 92.32 349 | 87.92 248 | 93.43 149 | 94.57 260 | 77.28 280 | 99.00 152 | 89.42 194 | 95.86 168 | 97.86 172 |
|
CVMVSNet | | | 91.23 229 | 91.75 178 | 89.67 329 | 95.77 223 | 74.69 359 | 96.44 204 | 94.88 316 | 85.81 290 | 92.18 175 | 97.64 104 | 79.07 251 | 95.58 346 | 88.06 219 | 95.86 168 | 98.74 118 |
|
TAMVS | | | 94.01 122 | 93.46 124 | 95.64 141 | 96.16 208 | 90.45 167 | 96.71 183 | 96.89 223 | 89.27 206 | 93.46 148 | 96.92 141 | 87.29 120 | 97.94 259 | 88.70 212 | 95.74 170 | 98.53 130 |
|
Effi-MVS+-dtu | | | 93.08 153 | 93.21 133 | 92.68 276 | 96.02 215 | 83.25 318 | 97.14 146 | 96.72 233 | 93.85 58 | 91.20 201 | 93.44 308 | 83.08 178 | 98.30 211 | 91.69 155 | 95.73 171 | 96.50 215 |
|
HyFIR lowres test | | | 93.66 133 | 92.92 139 | 95.87 128 | 98.24 98 | 89.88 182 | 94.58 285 | 98.49 12 | 85.06 302 | 93.78 140 | 95.78 207 | 82.86 185 | 98.67 179 | 91.77 151 | 95.71 172 | 99.07 89 |
|
thisisatest0530 | | | 93.03 156 | 92.21 165 | 95.49 154 | 97.07 155 | 89.11 213 | 97.49 110 | 92.19 350 | 90.16 184 | 94.09 133 | 96.41 174 | 76.43 287 | 99.05 148 | 90.38 175 | 95.68 173 | 98.31 153 |
|
MVS-HIRNet | | | 82.47 324 | 81.21 326 | 86.26 341 | 95.38 238 | 69.21 366 | 88.96 356 | 89.49 361 | 66.28 361 | 80.79 343 | 74.08 364 | 68.48 332 | 97.39 310 | 71.93 353 | 95.47 174 | 92.18 348 |
|
tttt0517 | | | 92.96 159 | 92.33 162 | 94.87 179 | 97.11 153 | 87.16 259 | 97.97 59 | 92.09 351 | 90.63 172 | 93.88 139 | 97.01 137 | 76.50 284 | 99.06 147 | 90.29 178 | 95.45 175 | 98.38 149 |
|
GG-mvs-BLEND | | | | | 93.62 239 | 93.69 313 | 89.20 209 | 92.39 337 | 83.33 370 | | 87.98 283 | 89.84 345 | 71.00 318 | 96.87 327 | 82.08 304 | 95.40 176 | 94.80 299 |
|
PatchmatchNet |  | | 91.91 197 | 91.35 191 | 93.59 241 | 95.38 238 | 84.11 308 | 93.15 325 | 95.39 290 | 89.54 197 | 92.10 179 | 93.68 301 | 82.82 187 | 98.13 225 | 84.81 278 | 95.32 177 | 98.52 131 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
VNet | | | 95.89 70 | 95.45 74 | 97.21 68 | 98.07 112 | 92.94 84 | 97.50 106 | 98.15 54 | 93.87 57 | 97.52 29 | 97.61 107 | 85.29 145 | 99.53 92 | 95.81 57 | 95.27 178 | 99.16 77 |
|
DSMNet-mixed | | | 86.34 306 | 86.12 302 | 87.00 339 | 89.88 354 | 70.43 363 | 94.93 280 | 90.08 360 | 77.97 353 | 85.42 316 | 92.78 316 | 74.44 298 | 93.96 356 | 74.43 344 | 95.14 179 | 96.62 212 |
|
test_yl | | | 94.78 103 | 94.23 105 | 96.43 97 | 97.74 128 | 91.22 136 | 96.85 169 | 97.10 199 | 91.23 154 | 95.71 99 | 96.93 138 | 84.30 158 | 99.31 119 | 93.10 126 | 95.12 180 | 98.75 116 |
|
DCV-MVSNet | | | 94.78 103 | 94.23 105 | 96.43 97 | 97.74 128 | 91.22 136 | 96.85 169 | 97.10 199 | 91.23 154 | 95.71 99 | 96.93 138 | 84.30 158 | 99.31 119 | 93.10 126 | 95.12 180 | 98.75 116 |
|
alignmvs | | | 95.87 72 | 95.23 81 | 97.78 36 | 97.56 142 | 95.19 22 | 97.86 66 | 97.17 193 | 94.39 47 | 96.47 71 | 96.40 175 | 85.89 138 | 99.20 126 | 96.21 42 | 95.11 182 | 98.95 101 |
|
MSDG | | | 91.42 218 | 90.24 238 | 94.96 175 | 97.15 152 | 88.91 216 | 93.69 314 | 96.32 257 | 85.72 292 | 86.93 302 | 96.47 170 | 80.24 232 | 98.98 154 | 80.57 314 | 95.05 183 | 96.98 200 |
|
VDD-MVS | | | 93.82 128 | 93.08 134 | 96.02 122 | 97.88 121 | 89.96 181 | 97.72 84 | 95.85 274 | 92.43 114 | 95.86 94 | 98.44 30 | 68.42 333 | 99.39 113 | 96.31 33 | 94.85 184 | 98.71 122 |
|
VDDNet | | | 93.05 155 | 92.07 167 | 96.02 122 | 96.84 169 | 90.39 170 | 98.08 49 | 95.85 274 | 86.22 285 | 95.79 97 | 98.46 28 | 67.59 336 | 99.19 127 | 94.92 86 | 94.85 184 | 98.47 139 |
|
canonicalmvs | | | 96.02 66 | 95.45 74 | 97.75 40 | 97.59 139 | 95.15 25 | 98.28 29 | 97.60 142 | 94.52 43 | 96.27 78 | 96.12 187 | 87.65 112 | 99.18 129 | 96.20 43 | 94.82 186 | 98.91 105 |
|
Patchmatch-test | | | 89.42 277 | 87.99 284 | 93.70 236 | 95.27 250 | 85.11 294 | 88.98 355 | 94.37 329 | 81.11 337 | 87.10 298 | 93.69 299 | 82.28 199 | 97.50 301 | 74.37 345 | 94.76 187 | 98.48 138 |
|
cascas | | | 91.20 231 | 90.08 245 | 94.58 195 | 94.97 265 | 89.16 212 | 93.65 316 | 97.59 144 | 79.90 345 | 89.40 244 | 92.92 314 | 75.36 294 | 98.36 206 | 92.14 142 | 94.75 188 | 96.23 219 |
|
Fast-Effi-MVS+-dtu | | | 92.29 184 | 91.99 171 | 93.21 259 | 95.27 250 | 85.52 287 | 97.03 149 | 96.63 245 | 92.09 126 | 89.11 254 | 95.14 235 | 80.33 231 | 98.08 235 | 87.54 237 | 94.74 189 | 96.03 230 |
|
WTY-MVS | | | 94.71 105 | 94.02 107 | 96.79 79 | 97.71 130 | 92.05 111 | 96.59 199 | 97.35 181 | 90.61 174 | 94.64 123 | 96.93 138 | 86.41 131 | 99.39 113 | 91.20 166 | 94.71 190 | 98.94 102 |
|
baseline2 | | | 91.63 205 | 90.86 209 | 93.94 225 | 94.33 295 | 86.32 274 | 95.92 245 | 91.64 355 | 89.37 203 | 86.94 301 | 94.69 254 | 81.62 212 | 98.69 177 | 88.64 213 | 94.57 191 | 96.81 208 |
|
HY-MVS | | 89.66 9 | 93.87 126 | 92.95 138 | 96.63 83 | 97.10 154 | 92.49 96 | 95.64 257 | 96.64 242 | 89.05 211 | 93.00 158 | 95.79 206 | 85.77 141 | 99.45 106 | 89.16 205 | 94.35 192 | 97.96 165 |
|
MDTV_nov1_ep13 | | | | 90.76 216 | | 95.22 254 | 80.33 339 | 93.03 328 | 95.28 297 | 88.14 244 | 92.84 164 | 93.83 293 | 81.34 214 | 98.08 235 | 82.86 296 | 94.34 193 | |
|
thres200 | | | 92.23 188 | 91.39 190 | 94.75 189 | 97.61 137 | 89.03 214 | 96.60 198 | 95.09 307 | 92.08 127 | 93.28 153 | 94.00 289 | 78.39 267 | 99.04 151 | 81.26 312 | 94.18 194 | 96.19 221 |
|
thres100view900 | | | 92.43 176 | 91.58 184 | 94.98 173 | 97.92 118 | 89.37 201 | 97.71 86 | 94.66 321 | 92.20 121 | 93.31 152 | 94.90 243 | 78.06 273 | 99.08 142 | 81.40 308 | 94.08 195 | 96.48 216 |
|
tfpn200view9 | | | 92.38 179 | 91.52 187 | 94.95 176 | 97.85 122 | 89.29 205 | 97.41 114 | 94.88 316 | 92.19 123 | 93.27 154 | 94.46 266 | 78.17 269 | 99.08 142 | 81.40 308 | 94.08 195 | 96.48 216 |
|
thres400 | | | 92.42 177 | 91.52 187 | 95.12 168 | 97.85 122 | 89.29 205 | 97.41 114 | 94.88 316 | 92.19 123 | 93.27 154 | 94.46 266 | 78.17 269 | 99.08 142 | 81.40 308 | 94.08 195 | 96.98 200 |
|
thres600view7 | | | 92.49 175 | 91.60 183 | 95.18 164 | 97.91 119 | 89.47 195 | 97.65 92 | 94.66 321 | 92.18 125 | 93.33 151 | 94.91 242 | 78.06 273 | 99.10 137 | 81.61 305 | 94.06 198 | 96.98 200 |
|
CR-MVSNet | | | 90.82 247 | 89.77 258 | 93.95 223 | 94.45 291 | 87.19 257 | 90.23 349 | 95.68 282 | 86.89 275 | 92.40 167 | 92.36 325 | 80.91 220 | 97.05 319 | 81.09 313 | 93.95 199 | 97.60 187 |
|
RPMNet | | | 88.98 280 | 87.05 295 | 94.77 187 | 94.45 291 | 87.19 257 | 90.23 349 | 98.03 87 | 77.87 354 | 92.40 167 | 87.55 355 | 80.17 234 | 99.51 97 | 68.84 359 | 93.95 199 | 97.60 187 |
|
1112_ss | | | 93.37 142 | 92.42 160 | 96.21 114 | 97.05 160 | 90.99 147 | 96.31 221 | 96.72 233 | 86.87 276 | 89.83 231 | 96.69 154 | 86.51 129 | 99.14 134 | 88.12 218 | 93.67 201 | 98.50 134 |
|
PatchT | | | 88.87 284 | 87.42 289 | 93.22 258 | 94.08 302 | 85.10 295 | 89.51 353 | 94.64 323 | 81.92 332 | 92.36 170 | 88.15 352 | 80.05 236 | 97.01 323 | 72.43 351 | 93.65 202 | 97.54 191 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 260 | 89.28 269 | 93.79 232 | 97.95 115 | 87.13 260 | 96.92 164 | 95.89 273 | 82.83 327 | 86.88 304 | 97.18 128 | 73.77 304 | 99.29 121 | 78.44 328 | 93.62 203 | 94.95 283 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
GA-MVS | | | 91.38 220 | 90.31 233 | 94.59 191 | 94.65 283 | 87.62 249 | 94.34 295 | 96.19 264 | 90.73 166 | 90.35 211 | 93.83 293 | 71.84 312 | 97.96 256 | 87.22 243 | 93.61 204 | 98.21 157 |
|
TR-MVS | | | 91.48 216 | 90.59 223 | 94.16 211 | 96.40 196 | 87.33 251 | 95.67 254 | 95.34 296 | 87.68 259 | 91.46 188 | 95.52 223 | 76.77 283 | 98.35 207 | 82.85 297 | 93.61 204 | 96.79 209 |
|
Test_1112_low_res | | | 92.84 167 | 91.84 176 | 95.85 129 | 97.04 161 | 89.97 180 | 95.53 261 | 96.64 242 | 85.38 296 | 89.65 237 | 95.18 233 | 85.86 139 | 99.10 137 | 87.70 228 | 93.58 206 | 98.49 136 |
|
ab-mvs | | | 93.57 137 | 92.55 154 | 96.64 81 | 97.28 145 | 91.96 116 | 95.40 265 | 97.45 165 | 89.81 193 | 93.22 156 | 96.28 180 | 79.62 245 | 99.46 104 | 90.74 171 | 93.11 207 | 98.50 134 |
|
AllTest | | | 90.23 264 | 88.98 273 | 93.98 219 | 97.94 116 | 86.64 268 | 96.51 203 | 95.54 287 | 85.38 296 | 85.49 314 | 96.77 147 | 70.28 323 | 99.15 132 | 80.02 318 | 92.87 208 | 96.15 224 |
|
TestCases | | | | | 93.98 219 | 97.94 116 | 86.64 268 | | 95.54 287 | 85.38 296 | 85.49 314 | 96.77 147 | 70.28 323 | 99.15 132 | 80.02 318 | 92.87 208 | 96.15 224 |
|
MIMVSNet | | | 88.50 289 | 86.76 297 | 93.72 235 | 94.84 275 | 87.77 247 | 91.39 339 | 94.05 334 | 86.41 282 | 87.99 282 | 92.59 319 | 63.27 353 | 95.82 342 | 77.44 331 | 92.84 210 | 97.57 190 |
|
Anonymous202405211 | | | 92.07 194 | 90.83 213 | 95.76 132 | 98.19 105 | 88.75 219 | 97.58 100 | 95.00 310 | 86.00 288 | 93.64 142 | 97.45 116 | 66.24 346 | 99.53 92 | 90.68 173 | 92.71 211 | 99.01 94 |
|
EPMVS | | | 90.70 253 | 89.81 256 | 93.37 252 | 94.73 280 | 84.21 306 | 93.67 315 | 88.02 364 | 89.50 199 | 92.38 169 | 93.49 306 | 77.82 277 | 97.78 276 | 86.03 263 | 92.68 212 | 98.11 163 |
|
XVG-OURS | | | 93.72 132 | 93.35 129 | 94.80 185 | 97.07 155 | 88.61 222 | 94.79 281 | 97.46 159 | 91.97 131 | 93.99 135 | 97.86 83 | 81.74 210 | 98.88 162 | 92.64 135 | 92.67 213 | 96.92 204 |
|
MVS_0304 | | | 88.79 285 | 87.57 287 | 92.46 278 | 94.65 283 | 86.15 281 | 96.40 211 | 97.17 193 | 86.44 281 | 88.02 281 | 91.71 334 | 56.68 361 | 97.03 320 | 84.47 283 | 92.58 214 | 94.19 321 |
|
XVG-OURS-SEG-HR | | | 93.86 127 | 93.55 118 | 94.81 182 | 97.06 158 | 88.53 226 | 95.28 271 | 97.45 165 | 91.68 136 | 94.08 134 | 97.68 97 | 82.41 197 | 98.90 160 | 93.84 112 | 92.47 215 | 96.98 200 |
|
CLD-MVS | | | 92.98 158 | 92.53 156 | 94.32 206 | 96.12 212 | 89.20 209 | 95.28 271 | 97.47 157 | 92.66 109 | 89.90 228 | 95.62 216 | 80.58 225 | 98.40 202 | 92.73 134 | 92.40 216 | 95.38 263 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OPM-MVS | | | 93.28 145 | 92.76 143 | 94.82 180 | 94.63 285 | 90.77 157 | 96.65 190 | 97.18 191 | 93.72 63 | 91.68 185 | 97.26 124 | 79.33 249 | 98.63 182 | 92.13 143 | 92.28 217 | 95.07 279 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
HQP_MVS | | | 93.78 130 | 93.43 126 | 94.82 180 | 96.21 203 | 89.99 177 | 97.74 79 | 97.51 152 | 94.85 28 | 91.34 191 | 96.64 157 | 81.32 215 | 98.60 185 | 93.02 130 | 92.23 218 | 95.86 233 |
|
plane_prior5 | | | | | | | | | 97.51 152 | | | | | 98.60 185 | 93.02 130 | 92.23 218 | 95.86 233 |
|
RPSCF | | | 90.75 250 | 90.86 209 | 90.42 322 | 96.84 169 | 76.29 357 | 95.61 258 | 96.34 256 | 83.89 316 | 91.38 189 | 97.87 81 | 76.45 285 | 98.78 168 | 87.16 246 | 92.23 218 | 96.20 220 |
|
CostFormer | | | 91.18 235 | 90.70 219 | 92.62 277 | 94.84 275 | 81.76 328 | 94.09 304 | 94.43 326 | 84.15 313 | 92.72 165 | 93.77 297 | 79.43 247 | 98.20 218 | 90.70 172 | 92.18 221 | 97.90 169 |
|
plane_prior | | | | | | | 89.99 177 | 97.24 132 | | 94.06 53 | | | | | | 92.16 222 | |
|
HQP3-MVS | | | | | | | | | 97.39 175 | | | | | | | 92.10 223 | |
|
HQP-MVS | | | 93.19 149 | 92.74 146 | 94.54 197 | 95.86 218 | 89.33 203 | 96.65 190 | 97.39 175 | 93.55 68 | 90.14 215 | 95.87 198 | 80.95 218 | 98.50 195 | 92.13 143 | 92.10 223 | 95.78 240 |
|
tpm2 | | | 89.96 269 | 89.21 270 | 92.23 285 | 94.91 272 | 81.25 331 | 93.78 311 | 94.42 327 | 80.62 342 | 91.56 186 | 93.44 308 | 76.44 286 | 97.94 259 | 85.60 269 | 92.08 225 | 97.49 192 |
|
LPG-MVS_test | | | 92.94 161 | 92.56 153 | 94.10 212 | 96.16 208 | 88.26 232 | 97.65 92 | 97.46 159 | 91.29 149 | 90.12 221 | 97.16 129 | 79.05 252 | 98.73 173 | 92.25 139 | 91.89 226 | 95.31 267 |
|
LGP-MVS_train | | | | | 94.10 212 | 96.16 208 | 88.26 232 | | 97.46 159 | 91.29 149 | 90.12 221 | 97.16 129 | 79.05 252 | 98.73 173 | 92.25 139 | 91.89 226 | 95.31 267 |
|
ACMM | | 89.79 8 | 92.96 159 | 92.50 158 | 94.35 204 | 96.30 201 | 88.71 220 | 97.58 100 | 97.36 180 | 91.40 147 | 90.53 206 | 96.65 156 | 79.77 241 | 98.75 172 | 91.24 165 | 91.64 228 | 95.59 250 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
JIA-IIPM | | | 88.26 292 | 87.04 296 | 91.91 290 | 93.52 317 | 81.42 330 | 89.38 354 | 94.38 328 | 80.84 340 | 90.93 203 | 80.74 360 | 79.22 250 | 97.92 262 | 82.76 298 | 91.62 229 | 96.38 218 |
|
test_djsdf | | | 93.07 154 | 92.76 143 | 94.00 218 | 93.49 319 | 88.70 221 | 98.22 38 | 97.57 146 | 91.42 144 | 90.08 225 | 95.55 221 | 82.85 186 | 97.92 262 | 94.07 104 | 91.58 230 | 95.40 261 |
|
jajsoiax | | | 92.42 177 | 91.89 175 | 94.03 217 | 93.33 324 | 88.50 227 | 97.73 81 | 97.53 150 | 92.00 130 | 88.85 259 | 96.50 169 | 75.62 293 | 98.11 229 | 93.88 111 | 91.56 231 | 95.48 252 |
|
mvs_tets | | | 92.31 182 | 91.76 177 | 93.94 225 | 93.41 321 | 88.29 230 | 97.63 97 | 97.53 150 | 92.04 128 | 88.76 263 | 96.45 171 | 74.62 297 | 98.09 234 | 93.91 109 | 91.48 232 | 95.45 257 |
|
ACMP | | 89.59 10 | 92.62 172 | 92.14 166 | 94.05 215 | 96.40 196 | 88.20 235 | 97.36 121 | 97.25 189 | 91.52 139 | 88.30 272 | 96.64 157 | 78.46 264 | 98.72 176 | 91.86 150 | 91.48 232 | 95.23 275 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ADS-MVSNet2 | | | 89.45 276 | 88.59 278 | 92.03 288 | 95.86 218 | 82.26 326 | 90.93 344 | 94.32 331 | 83.23 325 | 91.28 197 | 91.81 332 | 79.01 256 | 95.99 337 | 79.52 320 | 91.39 234 | 97.84 173 |
|
ADS-MVSNet | | | 89.89 271 | 88.68 277 | 93.53 244 | 95.86 218 | 84.89 299 | 90.93 344 | 95.07 308 | 83.23 325 | 91.28 197 | 91.81 332 | 79.01 256 | 97.85 268 | 79.52 320 | 91.39 234 | 97.84 173 |
|
anonymousdsp | | | 92.16 191 | 91.55 185 | 93.97 221 | 92.58 336 | 89.55 191 | 97.51 105 | 97.42 173 | 89.42 202 | 88.40 269 | 94.84 246 | 80.66 224 | 97.88 267 | 91.87 149 | 91.28 236 | 94.48 311 |
|
CMPMVS |  | 62.92 21 | 85.62 314 | 84.92 311 | 87.74 336 | 89.14 358 | 73.12 362 | 94.17 301 | 96.80 231 | 73.98 357 | 73.65 358 | 94.93 241 | 66.36 343 | 97.61 291 | 83.95 289 | 91.28 236 | 92.48 344 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20240529 | | | 91.98 196 | 90.73 218 | 95.73 137 | 98.14 108 | 89.40 199 | 97.99 54 | 97.72 128 | 79.63 346 | 93.54 145 | 97.41 119 | 69.94 327 | 99.56 84 | 91.04 167 | 91.11 238 | 98.22 156 |
|
XVG-ACMP-BASELINE | | | 90.93 244 | 90.21 242 | 93.09 262 | 94.31 297 | 85.89 282 | 95.33 268 | 97.26 187 | 91.06 160 | 89.38 245 | 95.44 226 | 68.61 331 | 98.60 185 | 89.46 193 | 91.05 239 | 94.79 301 |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 240 | |
|
UniMVSNet_ETH3D | | | 91.34 225 | 90.22 241 | 94.68 190 | 94.86 274 | 87.86 245 | 97.23 137 | 97.46 159 | 87.99 246 | 89.90 228 | 96.92 141 | 66.35 344 | 98.23 214 | 90.30 177 | 90.99 241 | 97.96 165 |
|
D2MVS | | | 91.30 227 | 90.95 206 | 92.35 282 | 94.71 281 | 85.52 287 | 96.18 232 | 98.21 43 | 88.89 218 | 86.60 305 | 93.82 295 | 79.92 239 | 97.95 258 | 89.29 198 | 90.95 242 | 93.56 329 |
|
PS-MVSNAJss | | | 93.74 131 | 93.51 122 | 94.44 199 | 93.91 306 | 89.28 207 | 97.75 78 | 97.56 149 | 92.50 113 | 89.94 227 | 96.54 167 | 88.65 99 | 98.18 221 | 93.83 113 | 90.90 243 | 95.86 233 |
|
EG-PatchMatch MVS | | | 87.02 301 | 85.44 305 | 91.76 299 | 92.67 334 | 85.00 296 | 96.08 236 | 96.45 252 | 83.41 324 | 79.52 350 | 93.49 306 | 57.10 360 | 97.72 281 | 79.34 325 | 90.87 244 | 92.56 342 |
|
PVSNet_BlendedMVS | | | 94.06 119 | 93.92 108 | 94.47 198 | 98.27 94 | 89.46 197 | 96.73 180 | 98.36 16 | 90.17 183 | 94.36 128 | 95.24 232 | 88.02 105 | 99.58 74 | 93.44 119 | 90.72 245 | 94.36 315 |
|
DWT-MVSNet_test | | | 90.76 248 | 89.89 252 | 93.38 251 | 95.04 263 | 83.70 314 | 95.85 248 | 94.30 332 | 88.19 239 | 90.46 208 | 92.80 315 | 73.61 305 | 98.50 195 | 88.16 217 | 90.58 246 | 97.95 167 |
|
EI-MVSNet | | | 93.03 156 | 92.88 140 | 93.48 246 | 95.77 223 | 86.98 262 | 96.44 204 | 97.12 197 | 90.66 170 | 91.30 194 | 97.64 104 | 86.56 127 | 98.05 241 | 89.91 181 | 90.55 247 | 95.41 258 |
|
MVSTER | | | 93.20 148 | 92.81 142 | 94.37 203 | 96.56 185 | 89.59 189 | 97.06 148 | 97.12 197 | 91.24 153 | 91.30 194 | 95.96 194 | 82.02 204 | 98.05 241 | 93.48 118 | 90.55 247 | 95.47 254 |
|
FIs | | | 94.09 118 | 93.70 113 | 95.27 161 | 95.70 226 | 92.03 112 | 98.10 47 | 98.68 7 | 93.36 81 | 90.39 210 | 96.70 152 | 87.63 113 | 97.94 259 | 92.25 139 | 90.50 249 | 95.84 236 |
|
FC-MVSNet-test | | | 93.94 124 | 93.57 117 | 95.04 169 | 95.48 234 | 91.45 131 | 98.12 46 | 98.71 5 | 93.37 79 | 90.23 213 | 96.70 152 | 87.66 111 | 97.85 268 | 91.49 159 | 90.39 250 | 95.83 237 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 251 | |
|
RRT_MVS | | | 93.21 147 | 92.32 163 | 95.91 126 | 94.92 269 | 94.15 47 | 96.92 164 | 96.86 227 | 91.42 144 | 91.28 197 | 96.43 172 | 79.66 244 | 98.10 230 | 93.29 123 | 90.06 252 | 95.46 255 |
|
LTVRE_ROB | | 88.41 13 | 90.99 240 | 89.92 251 | 94.19 209 | 96.18 206 | 89.55 191 | 96.31 221 | 97.09 201 | 87.88 250 | 85.67 312 | 95.91 197 | 78.79 260 | 98.57 190 | 81.50 306 | 89.98 253 | 94.44 313 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
tpmvs | | | 89.83 274 | 89.15 272 | 91.89 291 | 94.92 269 | 80.30 340 | 93.11 326 | 95.46 289 | 86.28 283 | 88.08 279 | 92.65 317 | 80.44 228 | 98.52 194 | 81.47 307 | 89.92 254 | 96.84 207 |
|
ITE_SJBPF | | | | | 92.43 280 | 95.34 243 | 85.37 291 | | 95.92 270 | 91.47 141 | 87.75 286 | 96.39 176 | 71.00 318 | 97.96 256 | 82.36 302 | 89.86 255 | 93.97 325 |
|
ET-MVSNet_ETH3D | | | 91.49 215 | 90.11 244 | 95.63 142 | 96.40 196 | 91.57 126 | 95.34 267 | 93.48 340 | 90.60 176 | 75.58 356 | 95.49 224 | 80.08 235 | 96.79 329 | 94.25 100 | 89.76 256 | 98.52 131 |
|
USDC | | | 88.94 281 | 87.83 286 | 92.27 284 | 94.66 282 | 84.96 297 | 93.86 309 | 95.90 272 | 87.34 267 | 83.40 333 | 95.56 220 | 67.43 337 | 98.19 220 | 82.64 301 | 89.67 257 | 93.66 328 |
|
ACMH | | 87.59 16 | 90.53 257 | 89.42 266 | 93.87 228 | 96.21 203 | 87.92 242 | 97.24 132 | 96.94 215 | 88.45 233 | 83.91 331 | 96.27 181 | 71.92 311 | 98.62 184 | 84.43 284 | 89.43 258 | 95.05 281 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tpmrst | | | 91.44 217 | 91.32 193 | 91.79 296 | 95.15 257 | 79.20 350 | 93.42 320 | 95.37 292 | 88.55 232 | 93.49 147 | 93.67 302 | 82.49 195 | 98.27 212 | 90.41 174 | 89.34 259 | 97.90 169 |
|
test0.0.03 1 | | | 89.37 278 | 88.70 276 | 91.41 306 | 92.47 337 | 85.63 285 | 95.22 276 | 92.70 347 | 91.11 158 | 86.91 303 | 93.65 303 | 79.02 254 | 93.19 360 | 78.00 330 | 89.18 260 | 95.41 258 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 320 | 82.28 323 | 90.83 314 | 90.06 352 | 84.05 309 | 95.73 253 | 94.04 335 | 73.89 358 | 80.17 349 | 91.53 336 | 59.15 358 | 97.64 287 | 66.92 361 | 89.05 261 | 90.80 356 |
|
GBi-Net | | | 91.35 223 | 90.27 236 | 94.59 191 | 96.51 188 | 91.18 142 | 97.50 106 | 96.93 216 | 88.82 222 | 89.35 246 | 94.51 261 | 73.87 301 | 97.29 315 | 86.12 260 | 88.82 262 | 95.31 267 |
|
test1 | | | 91.35 223 | 90.27 236 | 94.59 191 | 96.51 188 | 91.18 142 | 97.50 106 | 96.93 216 | 88.82 222 | 89.35 246 | 94.51 261 | 73.87 301 | 97.29 315 | 86.12 260 | 88.82 262 | 95.31 267 |
|
FMVSNet3 | | | 91.78 200 | 90.69 220 | 95.03 170 | 96.53 187 | 92.27 104 | 97.02 152 | 96.93 216 | 89.79 194 | 89.35 246 | 94.65 257 | 77.01 281 | 97.47 303 | 86.12 260 | 88.82 262 | 95.35 265 |
|
tpm cat1 | | | 88.36 290 | 87.21 293 | 91.81 295 | 95.13 259 | 80.55 337 | 92.58 334 | 95.70 279 | 74.97 356 | 87.45 289 | 91.96 330 | 78.01 275 | 98.17 223 | 80.39 316 | 88.74 265 | 96.72 211 |
|
test_0402 | | | 86.46 304 | 84.79 312 | 91.45 304 | 95.02 264 | 85.55 286 | 96.29 223 | 94.89 315 | 80.90 338 | 82.21 338 | 93.97 291 | 68.21 334 | 97.29 315 | 62.98 363 | 88.68 266 | 91.51 352 |
|
FMVSNet2 | | | 91.31 226 | 90.08 245 | 94.99 171 | 96.51 188 | 92.21 105 | 97.41 114 | 96.95 214 | 88.82 222 | 88.62 265 | 94.75 251 | 73.87 301 | 97.42 308 | 85.20 275 | 88.55 267 | 95.35 265 |
|
testgi | | | 87.97 293 | 87.21 293 | 90.24 324 | 92.86 330 | 80.76 333 | 96.67 189 | 94.97 312 | 91.74 134 | 85.52 313 | 95.83 201 | 62.66 355 | 94.47 354 | 76.25 338 | 88.36 268 | 95.48 252 |
|
ACMH+ | | 87.92 14 | 90.20 265 | 89.18 271 | 93.25 256 | 96.48 191 | 86.45 273 | 96.99 157 | 96.68 239 | 88.83 221 | 84.79 321 | 96.22 182 | 70.16 325 | 98.53 193 | 84.42 285 | 88.04 269 | 94.77 304 |
|
tpm | | | 90.25 263 | 89.74 261 | 91.76 299 | 93.92 305 | 79.73 346 | 93.98 305 | 93.54 339 | 88.28 237 | 91.99 181 | 93.25 311 | 77.51 279 | 97.44 306 | 87.30 242 | 87.94 270 | 98.12 160 |
|
pmmvs4 | | | 90.93 244 | 89.85 254 | 94.17 210 | 93.34 323 | 90.79 156 | 94.60 284 | 96.02 268 | 84.62 308 | 87.45 289 | 95.15 234 | 81.88 208 | 97.45 305 | 87.70 228 | 87.87 271 | 94.27 320 |
|
bset_n11_16_dypcd | | | 91.55 211 | 90.59 223 | 94.44 199 | 91.51 344 | 90.25 171 | 92.70 332 | 93.42 341 | 92.27 118 | 90.22 214 | 94.74 252 | 78.42 265 | 97.80 273 | 94.19 102 | 87.86 272 | 95.29 274 |
|
XXY-MVS | | | 92.16 191 | 91.23 199 | 94.95 176 | 94.75 279 | 90.94 150 | 97.47 111 | 97.43 172 | 89.14 209 | 88.90 256 | 96.43 172 | 79.71 242 | 98.24 213 | 89.56 191 | 87.68 273 | 95.67 249 |
|
pmmvs5 | | | 89.86 273 | 88.87 275 | 92.82 271 | 92.86 330 | 86.23 277 | 96.26 225 | 95.39 290 | 84.24 312 | 87.12 296 | 94.51 261 | 74.27 299 | 97.36 312 | 87.61 236 | 87.57 274 | 94.86 292 |
|
LF4IMVS | | | 87.94 294 | 87.25 291 | 89.98 326 | 92.38 340 | 80.05 344 | 94.38 293 | 95.25 300 | 87.59 261 | 84.34 323 | 94.74 252 | 64.31 351 | 97.66 286 | 84.83 277 | 87.45 275 | 92.23 346 |
|
FMVSNet1 | | | 89.88 272 | 88.31 281 | 94.59 191 | 95.41 236 | 91.18 142 | 97.50 106 | 96.93 216 | 86.62 279 | 87.41 291 | 94.51 261 | 65.94 348 | 97.29 315 | 83.04 295 | 87.43 276 | 95.31 267 |
|
dp | | | 88.90 283 | 88.26 283 | 90.81 315 | 94.58 288 | 76.62 356 | 92.85 330 | 94.93 314 | 85.12 301 | 90.07 226 | 93.07 312 | 75.81 289 | 98.12 228 | 80.53 315 | 87.42 277 | 97.71 179 |
|
OurMVSNet-221017-0 | | | 90.51 258 | 90.19 243 | 91.44 305 | 93.41 321 | 81.25 331 | 96.98 159 | 96.28 258 | 91.68 136 | 86.55 306 | 96.30 179 | 74.20 300 | 97.98 249 | 88.96 207 | 87.40 278 | 95.09 278 |
|
TinyColmap | | | 86.82 302 | 85.35 308 | 91.21 309 | 94.91 272 | 82.99 320 | 93.94 307 | 94.02 336 | 83.58 321 | 81.56 340 | 94.68 255 | 62.34 356 | 98.13 225 | 75.78 339 | 87.35 279 | 92.52 343 |
|
cl22 | | | 91.21 230 | 90.56 226 | 93.14 261 | 96.09 214 | 86.80 265 | 94.41 292 | 96.58 248 | 87.80 253 | 88.58 267 | 93.99 290 | 80.85 223 | 97.62 290 | 89.87 183 | 86.93 280 | 94.99 282 |
|
miper_ehance_all_eth | | | 91.59 207 | 91.13 203 | 92.97 266 | 95.55 231 | 86.57 272 | 94.47 288 | 96.88 224 | 87.77 255 | 88.88 258 | 94.01 288 | 86.22 133 | 97.54 296 | 89.49 192 | 86.93 280 | 94.79 301 |
|
miper_enhance_ethall | | | 91.54 213 | 91.01 205 | 93.15 260 | 95.35 242 | 87.07 261 | 93.97 306 | 96.90 221 | 86.79 277 | 89.17 253 | 93.43 310 | 86.55 128 | 97.64 287 | 89.97 180 | 86.93 280 | 94.74 305 |
|
IterMVS | | | 90.15 267 | 89.67 262 | 91.61 301 | 95.48 234 | 83.72 312 | 94.33 296 | 96.12 266 | 89.99 187 | 87.31 295 | 94.15 285 | 75.78 292 | 96.27 335 | 86.97 248 | 86.89 283 | 94.83 294 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 90.31 261 | 89.81 256 | 91.82 294 | 95.52 232 | 84.20 307 | 94.30 297 | 96.15 265 | 90.61 174 | 87.39 292 | 94.27 277 | 75.80 290 | 96.44 332 | 87.34 240 | 86.88 284 | 94.82 296 |
|
RRT_test8_iter05 | | | 91.19 234 | 90.78 214 | 92.41 281 | 95.76 225 | 83.14 319 | 97.32 125 | 97.46 159 | 91.37 148 | 89.07 255 | 95.57 218 | 70.33 322 | 98.21 216 | 93.56 115 | 86.62 285 | 95.89 232 |
|
our_test_3 | | | 88.78 286 | 87.98 285 | 91.20 310 | 92.45 338 | 82.53 322 | 93.61 318 | 95.69 280 | 85.77 291 | 84.88 319 | 93.71 298 | 79.99 237 | 96.78 330 | 79.47 322 | 86.24 286 | 94.28 319 |
|
EU-MVSNet | | | 88.72 287 | 88.90 274 | 88.20 334 | 93.15 327 | 74.21 360 | 96.63 195 | 94.22 333 | 85.18 299 | 87.32 294 | 95.97 193 | 76.16 288 | 94.98 350 | 85.27 273 | 86.17 287 | 95.41 258 |
|
Anonymous20231206 | | | 87.09 300 | 86.14 301 | 89.93 327 | 91.22 346 | 80.35 338 | 96.11 234 | 95.35 293 | 83.57 322 | 84.16 326 | 93.02 313 | 73.54 306 | 95.61 344 | 72.16 352 | 86.14 288 | 93.84 327 |
|
IterMVS-LS | | | 92.29 184 | 91.94 173 | 93.34 253 | 96.25 202 | 86.97 263 | 96.57 202 | 97.05 206 | 90.67 168 | 89.50 243 | 94.80 249 | 86.59 126 | 97.64 287 | 89.91 181 | 86.11 289 | 95.40 261 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VPA-MVSNet | | | 93.24 146 | 92.48 159 | 95.51 151 | 95.70 226 | 92.39 98 | 97.86 66 | 98.66 9 | 92.30 117 | 92.09 180 | 95.37 227 | 80.49 227 | 98.40 202 | 93.95 107 | 85.86 290 | 95.75 244 |
|
nrg030 | | | 94.05 120 | 93.31 130 | 96.27 110 | 95.22 254 | 94.59 32 | 98.34 24 | 97.46 159 | 92.93 101 | 91.21 200 | 96.64 157 | 87.23 122 | 98.22 215 | 94.99 85 | 85.80 291 | 95.98 231 |
|
cl____ | | | 90.96 243 | 90.32 232 | 92.89 268 | 95.37 240 | 86.21 278 | 94.46 290 | 96.64 242 | 87.82 251 | 88.15 278 | 94.18 283 | 82.98 182 | 97.54 296 | 87.70 228 | 85.59 292 | 94.92 289 |
|
DIV-MVS_self_test | | | 90.97 242 | 90.33 231 | 92.88 269 | 95.36 241 | 86.19 279 | 94.46 290 | 96.63 245 | 87.82 251 | 88.18 277 | 94.23 280 | 82.99 181 | 97.53 298 | 87.72 225 | 85.57 293 | 94.93 287 |
|
v1192 | | | 91.07 236 | 90.23 239 | 93.58 242 | 93.70 312 | 87.82 246 | 96.73 180 | 97.07 203 | 87.77 255 | 89.58 238 | 94.32 274 | 80.90 222 | 97.97 252 | 86.52 252 | 85.48 294 | 94.95 283 |
|
v1240 | | | 90.70 253 | 89.85 254 | 93.23 257 | 93.51 318 | 86.80 265 | 96.61 196 | 97.02 211 | 87.16 271 | 89.58 238 | 94.31 275 | 79.55 246 | 97.98 249 | 85.52 270 | 85.44 295 | 94.90 290 |
|
v1144 | | | 91.37 222 | 90.60 222 | 93.68 238 | 93.89 307 | 88.23 234 | 96.84 171 | 97.03 210 | 88.37 235 | 89.69 235 | 94.39 268 | 82.04 203 | 97.98 249 | 87.80 224 | 85.37 296 | 94.84 293 |
|
Anonymous20240521 | | | 86.42 305 | 85.44 305 | 89.34 330 | 90.33 350 | 79.79 345 | 96.73 180 | 95.92 270 | 83.71 320 | 83.25 334 | 91.36 337 | 63.92 352 | 96.01 336 | 78.39 329 | 85.36 297 | 92.22 347 |
|
FMVSNet5 | | | 87.29 299 | 85.79 303 | 91.78 297 | 94.80 277 | 87.28 252 | 95.49 262 | 95.28 297 | 84.09 314 | 83.85 332 | 91.82 331 | 62.95 354 | 94.17 355 | 78.48 327 | 85.34 298 | 93.91 326 |
|
WR-MVS | | | 92.34 180 | 91.53 186 | 94.77 187 | 95.13 259 | 90.83 154 | 96.40 211 | 97.98 101 | 91.88 132 | 89.29 249 | 95.54 222 | 82.50 194 | 97.80 273 | 89.79 185 | 85.27 299 | 95.69 247 |
|
v1921920 | | | 90.85 246 | 90.03 249 | 93.29 255 | 93.55 315 | 86.96 264 | 96.74 179 | 97.04 208 | 87.36 266 | 89.52 242 | 94.34 271 | 80.23 233 | 97.97 252 | 86.27 255 | 85.21 300 | 94.94 285 |
|
Anonymous20231211 | | | 90.63 255 | 89.42 266 | 94.27 208 | 98.24 98 | 89.19 211 | 98.05 51 | 97.89 108 | 79.95 344 | 88.25 275 | 94.96 239 | 72.56 310 | 98.13 225 | 89.70 187 | 85.14 301 | 95.49 251 |
|
Patchmtry | | | 88.64 288 | 87.25 291 | 92.78 273 | 94.09 301 | 86.64 268 | 89.82 352 | 95.68 282 | 80.81 341 | 87.63 288 | 92.36 325 | 80.91 220 | 97.03 320 | 78.86 326 | 85.12 302 | 94.67 307 |
|
V42 | | | 91.58 209 | 90.87 208 | 93.73 233 | 94.05 303 | 88.50 227 | 97.32 125 | 96.97 213 | 88.80 225 | 89.71 233 | 94.33 272 | 82.54 193 | 98.05 241 | 89.01 206 | 85.07 303 | 94.64 309 |
|
SixPastTwentyTwo | | | 89.15 279 | 88.54 279 | 90.98 312 | 93.49 319 | 80.28 341 | 96.70 184 | 94.70 320 | 90.78 163 | 84.15 327 | 95.57 218 | 71.78 313 | 97.71 282 | 84.63 281 | 85.07 303 | 94.94 285 |
|
v2v482 | | | 91.59 207 | 90.85 211 | 93.80 231 | 93.87 308 | 88.17 237 | 96.94 163 | 96.88 224 | 89.54 197 | 89.53 241 | 94.90 243 | 81.70 211 | 98.02 246 | 89.25 200 | 85.04 305 | 95.20 276 |
|
ppachtmachnet_test | | | 88.35 291 | 87.29 290 | 91.53 302 | 92.45 338 | 83.57 316 | 93.75 312 | 95.97 269 | 84.28 311 | 85.32 317 | 94.18 283 | 79.00 258 | 96.93 325 | 75.71 340 | 84.99 306 | 94.10 322 |
|
v144192 | | | 91.06 237 | 90.28 235 | 93.39 250 | 93.66 314 | 87.23 256 | 96.83 172 | 97.07 203 | 87.43 264 | 89.69 235 | 94.28 276 | 81.48 213 | 98.00 248 | 87.18 245 | 84.92 307 | 94.93 287 |
|
CP-MVSNet | | | 91.89 198 | 91.24 198 | 93.82 230 | 95.05 262 | 88.57 224 | 97.82 71 | 98.19 47 | 91.70 135 | 88.21 276 | 95.76 208 | 81.96 205 | 97.52 300 | 87.86 222 | 84.65 308 | 95.37 264 |
|
c3_l | | | 91.38 220 | 90.89 207 | 92.88 269 | 95.58 229 | 86.30 275 | 94.68 283 | 96.84 229 | 88.17 241 | 88.83 261 | 94.23 280 | 85.65 142 | 97.47 303 | 89.36 195 | 84.63 309 | 94.89 291 |
|
miper_lstm_enhance | | | 90.50 259 | 90.06 248 | 91.83 293 | 95.33 246 | 83.74 311 | 93.86 309 | 96.70 238 | 87.56 262 | 87.79 284 | 93.81 296 | 83.45 172 | 96.92 326 | 87.39 239 | 84.62 310 | 94.82 296 |
|
tfpnnormal | | | 89.70 275 | 88.40 280 | 93.60 240 | 95.15 257 | 90.10 173 | 97.56 102 | 98.16 53 | 87.28 269 | 86.16 309 | 94.63 258 | 77.57 278 | 98.05 241 | 74.48 343 | 84.59 311 | 92.65 341 |
|
PS-CasMVS | | | 91.55 211 | 90.84 212 | 93.69 237 | 94.96 266 | 88.28 231 | 97.84 70 | 98.24 37 | 91.46 142 | 88.04 280 | 95.80 203 | 79.67 243 | 97.48 302 | 87.02 247 | 84.54 312 | 95.31 267 |
|
N_pmnet | | | 78.73 327 | 78.71 329 | 78.79 344 | 92.80 332 | 46.50 375 | 94.14 302 | 43.71 378 | 78.61 350 | 80.83 342 | 91.66 335 | 74.94 296 | 96.36 333 | 67.24 360 | 84.45 313 | 93.50 330 |
|
eth_miper_zixun_eth | | | 91.02 239 | 90.59 223 | 92.34 283 | 95.33 246 | 84.35 304 | 94.10 303 | 96.90 221 | 88.56 231 | 88.84 260 | 94.33 272 | 84.08 162 | 97.60 292 | 88.77 211 | 84.37 314 | 95.06 280 |
|
WR-MVS_H | | | 92.00 195 | 91.35 191 | 93.95 223 | 95.09 261 | 89.47 195 | 98.04 52 | 98.68 7 | 91.46 142 | 88.34 270 | 94.68 255 | 85.86 139 | 97.56 294 | 85.77 267 | 84.24 315 | 94.82 296 |
|
v10 | | | 91.04 238 | 90.23 239 | 93.49 245 | 94.12 300 | 88.16 238 | 97.32 125 | 97.08 202 | 88.26 238 | 88.29 273 | 94.22 282 | 82.17 202 | 97.97 252 | 86.45 254 | 84.12 316 | 94.33 316 |
|
test_part1 | | | 92.21 190 | 91.10 204 | 95.51 151 | 97.80 125 | 92.66 90 | 98.02 53 | 97.68 133 | 89.79 194 | 88.80 262 | 96.02 192 | 76.85 282 | 98.18 221 | 90.86 168 | 84.11 317 | 95.69 247 |
|
UniMVSNet (Re) | | | 93.31 144 | 92.55 154 | 95.61 144 | 95.39 237 | 93.34 74 | 97.39 118 | 98.71 5 | 93.14 89 | 90.10 223 | 94.83 247 | 87.71 110 | 98.03 245 | 91.67 157 | 83.99 318 | 95.46 255 |
|
UniMVSNet_NR-MVSNet | | | 93.37 142 | 92.67 149 | 95.47 157 | 95.34 243 | 92.83 85 | 97.17 142 | 98.58 10 | 92.98 99 | 90.13 219 | 95.80 203 | 88.37 104 | 97.85 268 | 91.71 153 | 83.93 319 | 95.73 246 |
|
DU-MVS | | | 92.90 163 | 92.04 168 | 95.49 154 | 94.95 267 | 92.83 85 | 97.16 143 | 98.24 37 | 93.02 92 | 90.13 219 | 95.71 211 | 83.47 170 | 97.85 268 | 91.71 153 | 83.93 319 | 95.78 240 |
|
v8 | | | 91.29 228 | 90.53 227 | 93.57 243 | 94.15 299 | 88.12 239 | 97.34 122 | 97.06 205 | 88.99 213 | 88.32 271 | 94.26 279 | 83.08 178 | 98.01 247 | 87.62 235 | 83.92 321 | 94.57 310 |
|
baseline1 | | | 92.82 168 | 91.90 174 | 95.55 149 | 97.20 148 | 90.77 157 | 97.19 140 | 94.58 324 | 92.20 121 | 92.36 170 | 96.34 178 | 84.16 161 | 98.21 216 | 89.20 203 | 83.90 322 | 97.68 181 |
|
v7n | | | 90.76 248 | 89.86 253 | 93.45 249 | 93.54 316 | 87.60 250 | 97.70 87 | 97.37 178 | 88.85 219 | 87.65 287 | 94.08 287 | 81.08 217 | 98.10 230 | 84.68 280 | 83.79 323 | 94.66 308 |
|
VPNet | | | 92.23 188 | 91.31 194 | 94.99 171 | 95.56 230 | 90.96 149 | 97.22 138 | 97.86 115 | 92.96 100 | 90.96 202 | 96.62 164 | 75.06 295 | 98.20 218 | 91.90 147 | 83.65 324 | 95.80 239 |
|
NR-MVSNet | | | 92.34 180 | 91.27 197 | 95.53 150 | 94.95 267 | 93.05 80 | 97.39 118 | 98.07 73 | 92.65 110 | 84.46 322 | 95.71 211 | 85.00 149 | 97.77 278 | 89.71 186 | 83.52 325 | 95.78 240 |
|
v148 | | | 90.99 240 | 90.38 230 | 92.81 272 | 93.83 309 | 85.80 283 | 96.78 178 | 96.68 239 | 89.45 201 | 88.75 264 | 93.93 292 | 82.96 184 | 97.82 272 | 87.83 223 | 83.25 326 | 94.80 299 |
|
Baseline_NR-MVSNet | | | 91.20 231 | 90.62 221 | 92.95 267 | 93.83 309 | 88.03 240 | 97.01 156 | 95.12 306 | 88.42 234 | 89.70 234 | 95.13 236 | 83.47 170 | 97.44 306 | 89.66 189 | 83.24 327 | 93.37 333 |
|
TranMVSNet+NR-MVSNet | | | 92.50 173 | 91.63 182 | 95.14 166 | 94.76 278 | 92.07 110 | 97.53 104 | 98.11 62 | 92.90 102 | 89.56 240 | 96.12 187 | 83.16 175 | 97.60 292 | 89.30 197 | 83.20 328 | 95.75 244 |
|
PEN-MVS | | | 91.20 231 | 90.44 228 | 93.48 246 | 94.49 289 | 87.91 244 | 97.76 77 | 98.18 49 | 91.29 149 | 87.78 285 | 95.74 210 | 80.35 230 | 97.33 313 | 85.46 271 | 82.96 329 | 95.19 277 |
|
new_pmnet | | | 82.89 323 | 81.12 327 | 88.18 335 | 89.63 355 | 80.18 342 | 91.77 338 | 92.57 348 | 76.79 355 | 75.56 357 | 88.23 351 | 61.22 357 | 94.48 353 | 71.43 354 | 82.92 330 | 89.87 358 |
|
FPMVS | | | 71.27 329 | 69.85 331 | 75.50 346 | 74.64 369 | 59.03 371 | 91.30 340 | 91.50 356 | 58.80 364 | 57.92 366 | 88.28 350 | 29.98 371 | 85.53 366 | 53.43 365 | 82.84 331 | 81.95 362 |
|
MIMVSNet1 | | | 84.93 317 | 83.05 319 | 90.56 320 | 89.56 356 | 84.84 300 | 95.40 265 | 95.35 293 | 83.91 315 | 80.38 346 | 92.21 329 | 57.23 359 | 93.34 359 | 70.69 358 | 82.75 332 | 93.50 330 |
|
pm-mvs1 | | | 90.72 252 | 89.65 264 | 93.96 222 | 94.29 298 | 89.63 186 | 97.79 74 | 96.82 230 | 89.07 210 | 86.12 310 | 95.48 225 | 78.61 262 | 97.78 276 | 86.97 248 | 81.67 333 | 94.46 312 |
|
DTE-MVSNet | | | 90.56 256 | 89.75 260 | 93.01 264 | 93.95 304 | 87.25 254 | 97.64 96 | 97.65 137 | 90.74 165 | 87.12 296 | 95.68 214 | 79.97 238 | 97.00 324 | 83.33 292 | 81.66 334 | 94.78 303 |
|
IB-MVS | | 87.33 17 | 89.91 270 | 88.28 282 | 94.79 186 | 95.26 253 | 87.70 248 | 95.12 279 | 93.95 337 | 89.35 204 | 87.03 299 | 92.49 320 | 70.74 320 | 99.19 127 | 89.18 204 | 81.37 335 | 97.49 192 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test20.03 | | | 86.14 309 | 85.40 307 | 88.35 332 | 90.12 351 | 80.06 343 | 95.90 246 | 95.20 302 | 88.59 228 | 81.29 341 | 93.62 304 | 71.43 315 | 92.65 361 | 71.26 356 | 81.17 336 | 92.34 345 |
|
K. test v3 | | | 87.64 297 | 86.75 298 | 90.32 323 | 93.02 329 | 79.48 348 | 96.61 196 | 92.08 352 | 90.66 170 | 80.25 348 | 94.09 286 | 67.21 339 | 96.65 331 | 85.96 265 | 80.83 337 | 94.83 294 |
|
MDA-MVSNet_test_wron | | | 85.87 312 | 84.23 316 | 90.80 317 | 92.38 340 | 82.57 321 | 93.17 323 | 95.15 304 | 82.15 330 | 67.65 360 | 92.33 328 | 78.20 268 | 95.51 347 | 77.33 332 | 79.74 338 | 94.31 318 |
|
h-mvs33 | | | 94.15 113 | 93.52 121 | 96.04 121 | 97.81 124 | 90.22 172 | 97.62 98 | 97.58 145 | 95.19 14 | 96.74 54 | 97.45 116 | 83.67 167 | 99.61 65 | 95.85 54 | 79.73 339 | 98.29 154 |
|
YYNet1 | | | 85.87 312 | 84.23 316 | 90.78 318 | 92.38 340 | 82.46 324 | 93.17 323 | 95.14 305 | 82.12 331 | 67.69 359 | 92.36 325 | 78.16 271 | 95.50 348 | 77.31 333 | 79.73 339 | 94.39 314 |
|
pmmvs6 | | | 87.81 296 | 86.19 300 | 92.69 275 | 91.32 345 | 86.30 275 | 97.34 122 | 96.41 254 | 80.59 343 | 84.05 330 | 94.37 270 | 67.37 338 | 97.67 284 | 84.75 279 | 79.51 341 | 94.09 324 |
|
AUN-MVS | | | 91.76 201 | 90.75 217 | 94.81 182 | 97.00 164 | 88.57 224 | 96.65 190 | 96.49 250 | 89.63 196 | 92.15 176 | 96.12 187 | 78.66 261 | 98.50 195 | 90.83 169 | 79.18 342 | 97.36 194 |
|
hse-mvs2 | | | 93.45 140 | 92.99 136 | 94.81 182 | 97.02 162 | 88.59 223 | 96.69 186 | 96.47 251 | 95.19 14 | 96.74 54 | 96.16 186 | 83.67 167 | 98.48 199 | 95.85 54 | 79.13 343 | 97.35 195 |
|
Gipuma |  | | 67.86 331 | 65.41 334 | 75.18 347 | 92.66 335 | 73.45 361 | 66.50 366 | 94.52 325 | 53.33 366 | 57.80 367 | 66.07 366 | 30.81 369 | 89.20 363 | 48.15 367 | 78.88 344 | 62.90 366 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 85.00 316 | 82.95 320 | 91.17 311 | 93.13 328 | 83.33 317 | 94.56 286 | 95.00 310 | 84.57 309 | 65.13 364 | 92.65 317 | 70.45 321 | 95.85 340 | 73.57 348 | 77.49 345 | 94.33 316 |
|
Patchmatch-RL test | | | 87.38 298 | 86.24 299 | 90.81 315 | 88.74 360 | 78.40 354 | 88.12 357 | 93.17 343 | 87.11 272 | 82.17 339 | 89.29 347 | 81.95 206 | 95.60 345 | 88.64 213 | 77.02 346 | 98.41 146 |
|
lessismore_v0 | | | | | 90.45 321 | 91.96 343 | 79.09 352 | | 87.19 367 | | 80.32 347 | 94.39 268 | 66.31 345 | 97.55 295 | 84.00 288 | 76.84 347 | 94.70 306 |
|
pmmvs-eth3d | | | 86.22 308 | 84.45 314 | 91.53 302 | 88.34 361 | 87.25 254 | 94.47 288 | 95.01 309 | 83.47 323 | 79.51 351 | 89.61 346 | 69.75 328 | 95.71 343 | 83.13 294 | 76.73 348 | 91.64 350 |
|
PM-MVS | | | 83.48 321 | 81.86 325 | 88.31 333 | 87.83 363 | 77.59 355 | 93.43 319 | 91.75 354 | 86.91 274 | 80.63 344 | 89.91 344 | 44.42 366 | 95.84 341 | 85.17 276 | 76.73 348 | 91.50 353 |
|
ambc | | | | | 86.56 340 | 83.60 365 | 70.00 365 | 85.69 359 | 94.97 312 | | 80.60 345 | 88.45 348 | 37.42 368 | 96.84 328 | 82.69 300 | 75.44 350 | 92.86 337 |
|
TDRefinement | | | 86.53 303 | 84.76 313 | 91.85 292 | 82.23 367 | 84.25 305 | 96.38 214 | 95.35 293 | 84.97 304 | 84.09 328 | 94.94 240 | 65.76 349 | 98.34 210 | 84.60 282 | 74.52 351 | 92.97 335 |
|
TransMVSNet (Re) | | | 88.94 281 | 87.56 288 | 93.08 263 | 94.35 294 | 88.45 229 | 97.73 81 | 95.23 301 | 87.47 263 | 84.26 325 | 95.29 229 | 79.86 240 | 97.33 313 | 79.44 324 | 74.44 352 | 93.45 332 |
|
PMVS |  | 53.92 22 | 58.58 334 | 55.40 337 | 68.12 350 | 51.00 377 | 48.64 373 | 78.86 363 | 87.10 368 | 46.77 367 | 35.84 373 | 74.28 363 | 8.76 376 | 86.34 365 | 42.07 368 | 73.91 353 | 69.38 364 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepMVS_CX |  | | | | 74.68 348 | 90.84 349 | 64.34 370 | | 81.61 372 | 65.34 362 | 67.47 361 | 88.01 354 | 48.60 365 | 80.13 369 | 62.33 364 | 73.68 354 | 79.58 363 |
|
KD-MVS_self_test | | | 85.95 311 | 84.95 310 | 88.96 331 | 89.55 357 | 79.11 351 | 95.13 278 | 96.42 253 | 85.91 289 | 84.07 329 | 90.48 339 | 70.03 326 | 94.82 351 | 80.04 317 | 72.94 355 | 92.94 336 |
|
CL-MVSNet_self_test | | | 86.31 307 | 85.15 309 | 89.80 328 | 88.83 359 | 81.74 329 | 93.93 308 | 96.22 262 | 86.67 278 | 85.03 318 | 90.80 338 | 78.09 272 | 94.50 352 | 74.92 342 | 71.86 356 | 93.15 334 |
|
UnsupCasMVSNet_eth | | | 85.99 310 | 84.45 314 | 90.62 319 | 89.97 353 | 82.40 325 | 93.62 317 | 97.37 178 | 89.86 189 | 78.59 353 | 92.37 322 | 65.25 350 | 95.35 349 | 82.27 303 | 70.75 357 | 94.10 322 |
|
new-patchmatchnet | | | 83.18 322 | 81.87 324 | 87.11 338 | 86.88 364 | 75.99 358 | 93.70 313 | 95.18 303 | 85.02 303 | 77.30 354 | 88.40 349 | 65.99 347 | 93.88 357 | 74.19 347 | 70.18 358 | 91.47 354 |
|
pmmvs3 | | | 79.97 326 | 77.50 330 | 87.39 337 | 82.80 366 | 79.38 349 | 92.70 332 | 90.75 359 | 70.69 360 | 78.66 352 | 87.47 356 | 51.34 364 | 93.40 358 | 73.39 349 | 69.65 359 | 89.38 359 |
|
LCM-MVSNet | | | 72.55 328 | 69.39 332 | 82.03 342 | 70.81 374 | 65.42 369 | 90.12 351 | 94.36 330 | 55.02 365 | 65.88 362 | 81.72 359 | 24.16 375 | 89.96 362 | 74.32 346 | 68.10 360 | 90.71 357 |
|
UnsupCasMVSNet_bld | | | 82.13 325 | 79.46 328 | 90.14 325 | 88.00 362 | 82.47 323 | 90.89 346 | 96.62 247 | 78.94 349 | 75.61 355 | 84.40 358 | 56.63 362 | 96.31 334 | 77.30 334 | 66.77 361 | 91.63 351 |
|
test_method | | | 66.11 332 | 64.89 335 | 69.79 349 | 72.62 372 | 35.23 379 | 65.19 367 | 92.83 346 | 20.35 371 | 65.20 363 | 88.08 353 | 43.14 367 | 82.70 367 | 73.12 350 | 63.46 362 | 91.45 355 |
|
KD-MVS_2432*1600 | | | 84.81 318 | 82.64 321 | 91.31 307 | 91.07 347 | 85.34 292 | 91.22 341 | 95.75 277 | 85.56 294 | 83.09 335 | 90.21 341 | 67.21 339 | 95.89 338 | 77.18 335 | 62.48 363 | 92.69 339 |
|
miper_refine_blended | | | 84.81 318 | 82.64 321 | 91.31 307 | 91.07 347 | 85.34 292 | 91.22 341 | 95.75 277 | 85.56 294 | 83.09 335 | 90.21 341 | 67.21 339 | 95.89 338 | 77.18 335 | 62.48 363 | 92.69 339 |
|
PVSNet_0 | | 82.17 19 | 85.46 315 | 83.64 318 | 90.92 313 | 95.27 250 | 79.49 347 | 90.55 347 | 95.60 284 | 83.76 319 | 83.00 337 | 89.95 343 | 71.09 317 | 97.97 252 | 82.75 299 | 60.79 365 | 95.31 267 |
|
PMMVS2 | | | 70.19 330 | 66.92 333 | 80.01 343 | 76.35 368 | 65.67 368 | 86.22 358 | 87.58 366 | 64.83 363 | 62.38 365 | 80.29 361 | 26.78 373 | 88.49 364 | 63.79 362 | 54.07 366 | 85.88 360 |
|
MVE |  | 50.73 23 | 53.25 336 | 48.81 341 | 66.58 351 | 65.34 375 | 57.50 372 | 72.49 365 | 70.94 376 | 40.15 370 | 39.28 372 | 63.51 367 | 6.89 378 | 73.48 372 | 38.29 369 | 42.38 367 | 68.76 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 53.28 335 | 52.56 339 | 55.43 352 | 74.43 370 | 47.13 374 | 83.63 362 | 76.30 373 | 42.23 368 | 42.59 370 | 62.22 368 | 28.57 372 | 74.40 370 | 31.53 370 | 31.51 368 | 44.78 367 |
|
ANet_high | | | 63.94 333 | 59.58 336 | 77.02 345 | 61.24 376 | 66.06 367 | 85.66 360 | 87.93 365 | 78.53 351 | 42.94 369 | 71.04 365 | 25.42 374 | 80.71 368 | 52.60 366 | 30.83 369 | 84.28 361 |
|
EMVS | | | 52.08 337 | 51.31 340 | 54.39 353 | 72.62 372 | 45.39 376 | 83.84 361 | 75.51 375 | 41.13 369 | 40.77 371 | 59.65 369 | 30.08 370 | 73.60 371 | 28.31 371 | 29.90 370 | 44.18 368 |
|
tmp_tt | | | 51.94 338 | 53.82 338 | 46.29 354 | 33.73 378 | 45.30 377 | 78.32 364 | 67.24 377 | 18.02 372 | 50.93 368 | 87.05 357 | 52.99 363 | 53.11 373 | 70.76 357 | 25.29 371 | 40.46 369 |
|
wuyk23d | | | 25.11 339 | 24.57 343 | 26.74 355 | 73.98 371 | 39.89 378 | 57.88 368 | 9.80 379 | 12.27 373 | 10.39 374 | 6.97 375 | 7.03 377 | 36.44 374 | 25.43 372 | 17.39 372 | 3.89 372 |
|
testmvs | | | 13.36 341 | 16.33 344 | 4.48 357 | 5.04 379 | 2.26 381 | 93.18 322 | 3.28 380 | 2.70 374 | 8.24 375 | 21.66 371 | 2.29 380 | 2.19 375 | 7.58 373 | 2.96 373 | 9.00 371 |
|
test123 | | | 13.04 342 | 15.66 345 | 5.18 356 | 4.51 380 | 3.45 380 | 92.50 336 | 1.81 381 | 2.50 375 | 7.58 376 | 20.15 372 | 3.67 379 | 2.18 376 | 7.13 374 | 1.07 374 | 9.90 370 |
|
test_blank | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet_test | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
cdsmvs_eth3d_5k | | | 23.24 340 | 30.99 342 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 97.63 140 | 0.00 376 | 0.00 377 | 96.88 143 | 84.38 157 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
pcd_1.5k_mvsjas | | | 7.39 344 | 9.85 347 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 88.65 99 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet-low-res | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uncertanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
Regformer | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
ab-mvs-re | | | 8.06 343 | 10.74 346 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 96.69 154 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
FOURS1 | | | | | | 99.55 1 | 93.34 74 | 99.29 1 | 98.35 19 | 94.98 25 | 98.49 15 | | | | | | |
|
test_one_0601 | | | | | | 99.32 24 | 95.20 21 | | 98.25 35 | 95.13 17 | 98.48 16 | 98.87 6 | 95.16 7 | | | | |
|
eth-test2 | | | | | | 0.00 381 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 381 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 99.42 7 | 95.30 18 | | 98.27 30 | 95.09 21 | 99.19 1 | 98.81 10 | 95.54 5 | 99.65 56 | | | |
|
save fliter | | | | | | 98.91 51 | 94.28 39 | 97.02 152 | 98.02 91 | 95.35 8 | | | | | | | |
|
test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 26 | 98.29 25 | 94.92 26 | 98.99 4 | 98.92 2 | 95.08 8 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 141 |
|
test_part2 | | | | | | 99.28 27 | 95.74 8 | | | | 98.10 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 188 | | | | 98.45 141 |
|
sam_mvs | | | | | | | | | | | | | 81.94 207 | | | | |
|
MTGPA |  | | | | | | | | 98.08 67 | | | | | | | | |
|
test_post1 | | | | | | | | 92.81 331 | | | | 16.58 374 | 80.53 226 | 97.68 283 | 86.20 257 | | |
|
test_post | | | | | | | | | | | | 17.58 373 | 81.76 209 | 98.08 235 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 340 | 82.65 192 | 98.10 230 | | | |
|
MTMP | | | | | | | | 97.86 66 | 82.03 371 | | | | | | | | |
|
gm-plane-assit | | | | | | 93.22 325 | 78.89 353 | | | 84.82 306 | | 93.52 305 | | 98.64 181 | 87.72 225 | | |
|
TEST9 | | | | | | 98.70 62 | 94.19 44 | 96.41 208 | 98.02 91 | 88.17 241 | 96.03 86 | 97.56 112 | 92.74 27 | 99.59 71 | | | |
|
test_8 | | | | | | 98.67 64 | 94.06 53 | 96.37 215 | 98.01 94 | 88.58 229 | 95.98 91 | 97.55 114 | 92.73 28 | 99.58 74 | | | |
|
agg_prior | | | | | | 98.67 64 | 93.79 59 | | 98.00 96 | | 95.68 101 | | | 99.57 82 | | | |
|
test_prior4 | | | | | | | 93.66 63 | 96.42 207 | | | | | | | | | |
|
test_prior | | | | | 97.23 65 | 98.67 64 | 92.99 81 | | 98.00 96 | | | | | 99.41 110 | | | 99.29 66 |
|
旧先验2 | | | | | | | | 95.94 244 | | 81.66 334 | 97.34 38 | | | 98.82 165 | 92.26 137 | | |
|
新几何2 | | | | | | | | 95.79 251 | | | | | | | | | |
|
无先验 | | | | | | | | 95.79 251 | 97.87 112 | 83.87 318 | | | | 99.65 56 | 87.68 231 | | 98.89 108 |
|
原ACMM2 | | | | | | | | 95.67 254 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 52 | 85.96 265 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 25 | | | | |
|
testdata1 | | | | | | | | 95.26 275 | | 93.10 91 | | | | | | | |
|
plane_prior7 | | | | | | 96.21 203 | 89.98 179 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 213 | 90.00 175 | | | | | | 81.32 215 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.64 157 | | | | | |
|
plane_prior3 | | | | | | | 90.00 175 | | | 94.46 44 | 91.34 191 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 79 | | 94.85 28 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 211 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 382 | | | | | | | | |
|
nn | | | | | | | | | 0.00 382 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 358 | | | | | | | | |
|
test11 | | | | | | | | | 97.88 110 | | | | | | | | |
|
door | | | | | | | | | 91.13 357 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 203 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 218 | | 96.65 190 | | 93.55 68 | 90.14 215 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 218 | | 96.65 190 | | 93.55 68 | 90.14 215 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 143 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 215 | | | 98.50 195 | | | 95.78 240 |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 218 | | | | |
|
NP-MVS | | | | | | 95.99 217 | 89.81 184 | | | | | 95.87 198 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 364 | 93.10 327 | | 83.88 317 | 93.55 144 | | 82.47 196 | | 86.25 256 | | 98.38 149 |
|
Test By Simon | | | | | | | | | | | | | 88.73 98 | | | | |
|