SMA-MVS | | | 80.28 5 | 80.39 6 | 79.95 3 | 86.60 21 | 61.95 22 | 86.33 11 | 85.75 23 | 62.49 60 | 82.20 12 | 92.28 1 | 56.53 31 | 89.70 12 | 79.85 3 | 91.48 1 | 88.19 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
OPU-MVS | | | | | 79.83 4 | 87.54 10 | 60.93 38 | 87.82 5 | | | | 89.89 45 | 67.01 1 | 90.33 8 | 73.16 45 | 91.15 2 | 88.23 10 |
|
SED-MVS | | | 81.56 1 | 82.30 1 | 79.32 9 | 87.77 4 | 58.90 71 | 87.82 5 | 86.78 12 | 64.18 32 | 85.97 1 | 91.84 6 | 66.87 2 | 90.83 2 | 78.63 12 | 90.87 3 | 88.23 10 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 63 | | 85.53 25 | 53.93 211 | 84.64 3 | | | | 79.07 6 | 90.87 3 | 88.37 7 |
|
test_241102_TWO | | | | | | | | | 86.73 14 | 64.18 32 | 84.26 4 | 91.84 6 | 65.19 4 | 90.83 2 | 78.63 12 | 90.70 5 | 87.65 29 |
|
test_0728_THIRD | | | | | | | | | | 65.04 19 | 83.82 6 | 92.00 3 | 64.69 8 | 90.75 5 | 79.48 4 | 90.63 6 | 88.09 15 |
|
DVP-MVS | | | 80.84 3 | 81.64 2 | 78.42 33 | 87.75 7 | 59.07 66 | 87.85 3 | 85.03 33 | 64.26 29 | 83.82 6 | 92.00 3 | 64.82 6 | 90.75 5 | 78.66 10 | 90.61 7 | 85.45 104 |
|
test_0728_SECOND | | | | | 79.19 12 | 87.82 3 | 59.11 65 | 87.85 3 | 87.15 6 | | | | | 90.84 1 | 78.66 10 | 90.61 7 | 87.62 31 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 14 | 78.74 27 | 85.44 47 | 61.04 36 | 83.84 50 | 85.16 30 | 62.88 51 | 78.10 24 | 91.26 11 | 52.51 71 | 88.39 27 | 79.34 5 | 90.52 9 | 86.78 58 |
|
HPM-MVS++ | | | 79.88 7 | 80.14 7 | 79.10 17 | 88.17 1 | 64.80 1 | 86.59 10 | 83.70 60 | 65.37 15 | 78.78 21 | 90.64 17 | 58.63 20 | 87.24 48 | 79.00 7 | 90.37 10 | 85.26 113 |
|
xxxxxxxxxxxxxcwj | | | 78.37 20 | 78.25 22 | 78.76 26 | 86.17 32 | 61.30 31 | 83.98 47 | 79.95 141 | 59.00 121 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 46 | 82.88 79 | 57.83 87 | 84.99 31 | 88.13 3 | 61.86 73 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
ETH3 D test6400 | | | 79.14 10 | 79.32 9 | 78.61 29 | 86.34 27 | 58.11 83 | 84.65 33 | 87.66 4 | 58.56 130 | 78.87 20 | 89.54 50 | 63.67 10 | 89.57 13 | 74.60 33 | 89.98 13 | 88.14 13 |
|
ETH3D-3000-0.1 | | | 78.58 15 | 78.91 13 | 77.61 45 | 83.06 74 | 57.86 86 | 84.14 44 | 88.31 1 | 60.37 93 | 79.14 18 | 90.35 27 | 57.76 25 | 87.00 59 | 77.16 19 | 89.90 14 | 87.97 18 |
|
ETH3D cwj APD-0.16 | | | 78.02 24 | 78.13 24 | 77.71 44 | 82.10 84 | 58.65 76 | 82.72 66 | 87.55 5 | 58.33 136 | 78.05 26 | 90.06 38 | 58.35 21 | 87.65 44 | 76.15 25 | 89.86 15 | 86.82 55 |
|
CNVR-MVS | | | 79.84 8 | 79.97 8 | 79.45 7 | 87.90 2 | 62.17 20 | 84.37 35 | 85.03 33 | 66.96 5 | 77.58 28 | 90.06 38 | 59.47 17 | 89.13 18 | 78.67 9 | 89.73 16 | 87.03 50 |
|
PHI-MVS | | | 75.87 48 | 75.36 48 | 77.41 49 | 80.62 109 | 55.91 120 | 84.28 38 | 85.78 22 | 56.08 175 | 73.41 66 | 86.58 90 | 50.94 92 | 88.54 25 | 70.79 58 | 89.71 17 | 87.79 25 |
|
DPE-MVS | | | 80.56 4 | 80.98 4 | 79.29 11 | 87.27 12 | 60.56 45 | 85.71 24 | 86.42 16 | 63.28 43 | 83.27 10 | 91.83 8 | 64.96 5 | 90.47 7 | 76.41 24 | 89.67 18 | 86.84 54 |
|
MP-MVS-pluss | | | 78.35 21 | 78.46 17 | 78.03 40 | 84.96 55 | 59.52 57 | 82.93 61 | 85.39 26 | 62.15 65 | 76.41 32 | 91.51 9 | 52.47 73 | 86.78 65 | 80.66 2 | 89.64 19 | 87.80 24 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 10 | 86.43 26 | 62.05 21 | 86.62 9 | 86.01 19 | 63.32 42 | 75.08 39 | 90.47 25 | 53.96 57 | 88.68 24 | 76.48 23 | 89.63 20 | 87.16 47 |
|
9.14 | | | | 78.75 15 | | 83.10 73 | | 84.15 42 | 88.26 2 | 59.90 105 | 78.57 23 | 90.36 26 | 57.51 28 | 86.86 62 | 77.39 15 | 89.52 21 | |
|
DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 23 | 79.83 4 | 83.60 67 | 61.62 26 | 84.17 41 | 86.85 9 | 63.23 44 | 73.84 61 | 90.25 33 | 57.68 26 | 89.96 10 | 74.62 32 | 89.03 22 | 87.89 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SteuartSystems-ACMMP | | | 79.48 9 | 79.31 10 | 79.98 2 | 83.01 77 | 62.18 19 | 87.60 7 | 85.83 21 | 66.69 10 | 78.03 27 | 90.98 12 | 54.26 53 | 90.06 9 | 78.42 14 | 89.02 23 | 87.69 27 |
Skip Steuart: Steuart Systems R&D Blog. |
test_prior3 | | | 76.89 39 | 76.96 34 | 76.69 59 | 84.20 64 | 57.27 95 | 81.75 81 | 84.88 36 | 60.37 93 | 75.01 40 | 89.06 56 | 56.22 35 | 86.43 78 | 72.19 49 | 88.96 24 | 86.38 63 |
|
test_prior2 | | | | | | | | 81.75 81 | | 60.37 93 | 75.01 40 | 89.06 56 | 56.22 35 | | 72.19 49 | 88.96 24 | |
|
DPM-MVS | | | 75.47 51 | 75.00 50 | 76.88 56 | 81.38 96 | 59.16 62 | 79.94 107 | 85.71 24 | 56.59 162 | 72.46 81 | 86.76 80 | 56.89 29 | 87.86 40 | 66.36 87 | 88.91 26 | 83.64 167 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 15 | 84.92 59 | 60.32 48 | 83.03 59 | 85.33 28 | 62.86 52 | 80.17 13 | 90.03 41 | 61.76 11 | 88.95 20 | 74.21 34 | 88.67 27 | 88.12 14 |
|
MSP-MVS | | | 81.06 2 | 81.40 3 | 80.02 1 | 86.21 30 | 62.73 12 | 86.09 15 | 86.83 10 | 65.51 14 | 83.81 8 | 90.51 21 | 63.71 9 | 89.23 16 | 81.51 1 | 88.44 28 | 88.09 15 |
|
CDPH-MVS | | | 76.31 43 | 75.67 47 | 78.22 37 | 85.35 50 | 59.14 64 | 81.31 90 | 84.02 49 | 56.32 167 | 74.05 54 | 88.98 59 | 53.34 66 | 87.92 38 | 69.23 66 | 88.42 29 | 87.59 32 |
|
GST-MVS | | | 78.14 23 | 77.85 26 | 78.99 22 | 86.05 38 | 61.82 25 | 85.84 19 | 85.21 29 | 63.56 41 | 74.29 53 | 90.03 41 | 52.56 70 | 88.53 26 | 74.79 31 | 88.34 30 | 86.63 60 |
|
train_agg | | | 76.27 44 | 76.15 41 | 76.64 62 | 85.58 44 | 61.59 27 | 81.62 84 | 81.26 116 | 55.86 177 | 74.93 42 | 88.81 62 | 53.70 62 | 84.68 117 | 75.24 29 | 88.33 31 | 83.65 166 |
|
APDe-MVS | | | 80.16 6 | 80.59 5 | 78.86 25 | 86.64 19 | 60.02 50 | 88.12 1 | 86.42 16 | 62.94 49 | 82.40 11 | 92.12 2 | 59.64 15 | 89.76 11 | 78.70 8 | 88.32 32 | 86.79 57 |
|
test9_res | | | | | | | | | | | | | | | 75.28 28 | 88.31 33 | 83.81 155 |
|
zzz-MVS | | | 77.61 31 | 77.36 31 | 78.35 34 | 86.08 36 | 63.57 2 | 83.37 55 | 80.97 125 | 65.13 17 | 75.77 34 | 90.88 13 | 48.63 113 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 125 |
|
MTAPA | | | 76.90 38 | 76.42 40 | 78.35 34 | 86.08 36 | 63.57 2 | 74.92 199 | 80.97 125 | 65.13 17 | 75.77 34 | 90.88 13 | 48.63 113 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 125 |
|
test12 | | | | | 77.76 43 | 84.52 61 | 58.41 79 | | 83.36 70 | | 72.93 75 | | 54.61 50 | 88.05 35 | | 88.12 36 | 86.81 56 |
|
MP-MVS | | | 78.35 21 | 78.26 21 | 78.64 28 | 86.54 23 | 63.47 5 | 86.02 18 | 83.55 63 | 63.89 37 | 73.60 64 | 90.60 18 | 54.85 48 | 86.72 66 | 77.20 18 | 88.06 37 | 85.74 93 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS_fast | | 68.24 3 | 77.25 34 | 76.63 38 | 79.12 16 | 86.15 34 | 60.86 39 | 84.71 32 | 84.85 38 | 61.98 72 | 73.06 73 | 88.88 61 | 53.72 61 | 89.06 19 | 68.27 69 | 88.04 38 | 87.42 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
原ACMM1 | | | | | 74.69 94 | 85.39 49 | 59.40 58 | | 83.42 67 | 51.47 234 | 70.27 100 | 86.61 88 | 48.61 115 | 86.51 76 | 53.85 182 | 87.96 39 | 78.16 249 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 46 | 87.93 40 | 84.33 138 |
|
agg_prior1 | | | 75.94 47 | 76.01 43 | 75.72 76 | 85.04 52 | 59.96 51 | 81.44 88 | 81.04 122 | 56.14 173 | 74.68 46 | 88.90 60 | 53.91 58 | 84.04 129 | 75.01 30 | 87.92 41 | 83.16 181 |
|
CSCG | | | 76.92 37 | 76.75 36 | 77.41 49 | 83.96 66 | 59.60 56 | 82.95 60 | 86.50 15 | 60.78 86 | 75.27 37 | 84.83 118 | 60.76 12 | 86.56 73 | 67.86 75 | 87.87 42 | 86.06 80 |
|
MCST-MVS | | | 77.48 32 | 77.45 29 | 77.54 47 | 86.67 18 | 58.36 80 | 83.22 57 | 86.93 8 | 56.91 154 | 74.91 44 | 88.19 66 | 59.15 18 | 87.68 43 | 73.67 41 | 87.45 43 | 86.57 61 |
|
NCCC | | | 78.58 15 | 78.31 19 | 79.39 8 | 87.51 11 | 62.61 16 | 85.20 30 | 84.42 42 | 66.73 9 | 74.67 48 | 89.38 53 | 55.30 43 | 89.18 17 | 74.19 35 | 87.34 44 | 86.38 63 |
|
testtj | | | 78.47 18 | 78.43 18 | 78.61 29 | 86.82 13 | 60.67 43 | 86.07 16 | 85.38 27 | 62.12 66 | 78.65 22 | 90.29 31 | 55.76 39 | 89.31 15 | 73.55 43 | 87.22 45 | 85.84 85 |
|
HFP-MVS | | | 78.01 26 | 77.65 27 | 79.10 17 | 86.71 16 | 62.81 10 | 86.29 12 | 84.32 44 | 62.82 53 | 73.96 56 | 90.50 22 | 53.20 67 | 88.35 28 | 74.02 37 | 87.05 46 | 86.13 77 |
|
#test# | | | 77.83 27 | 77.41 30 | 79.10 17 | 86.71 16 | 62.81 10 | 85.69 25 | 84.32 44 | 61.61 76 | 73.96 56 | 90.50 22 | 53.20 67 | 88.35 28 | 73.68 40 | 87.05 46 | 86.13 77 |
|
region2R | | | 77.67 30 | 77.18 33 | 79.15 14 | 86.76 14 | 62.95 8 | 86.29 12 | 84.16 48 | 62.81 55 | 73.30 67 | 90.58 19 | 49.90 97 | 88.21 32 | 73.78 39 | 87.03 48 | 86.29 75 |
|
ACMMPR | | | 77.71 28 | 77.23 32 | 79.16 13 | 86.75 15 | 62.93 9 | 86.29 12 | 84.24 46 | 62.82 53 | 73.55 65 | 90.56 20 | 49.80 99 | 88.24 31 | 74.02 37 | 87.03 48 | 86.32 72 |
|
APD-MVS | | | 78.02 24 | 78.04 25 | 77.98 41 | 86.44 25 | 60.81 40 | 85.52 26 | 84.36 43 | 60.61 88 | 79.05 19 | 90.30 30 | 55.54 42 | 88.32 30 | 73.48 44 | 87.03 48 | 84.83 124 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ZD-MVS | | | | | | 86.64 19 | 60.38 47 | | 82.70 85 | 57.95 141 | 78.10 24 | 90.06 38 | 56.12 37 | 88.84 23 | 74.05 36 | 87.00 51 | |
|
PGM-MVS | | | 76.77 40 | 76.06 42 | 78.88 24 | 86.14 35 | 62.73 12 | 82.55 70 | 83.74 59 | 61.71 74 | 72.45 83 | 90.34 29 | 48.48 117 | 88.13 33 | 72.32 48 | 86.85 52 | 85.78 87 |
|
HPM-MVS | | | 77.28 33 | 76.85 35 | 78.54 31 | 85.00 54 | 60.81 40 | 82.91 62 | 85.08 31 | 62.57 58 | 73.09 72 | 89.97 44 | 50.90 93 | 87.48 46 | 75.30 27 | 86.85 52 | 87.33 44 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 23 | 84.96 55 | 61.41 29 | 84.03 45 | 83.82 58 | 59.34 118 | 79.37 15 | 89.76 48 | 59.84 13 | 87.62 45 | 76.69 22 | 86.74 54 | 87.68 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
XVS | | | 77.17 35 | 76.56 39 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 23 | 72.17 84 | 90.01 43 | 47.95 121 | 88.01 36 | 71.55 54 | 86.74 54 | 86.37 67 |
|
X-MVStestdata | | | 70.21 118 | 67.28 159 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 23 | 72.17 84 | 6.49 353 | 47.95 121 | 88.01 36 | 71.55 54 | 86.74 54 | 86.37 67 |
|
3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 57 | 79.66 6 | 82.40 82 | 59.92 53 | 85.83 20 | 86.32 18 | 66.92 8 | 67.80 149 | 89.24 55 | 42.03 185 | 89.38 14 | 64.07 107 | 86.50 57 | 89.69 1 |
|
EPNet | | | 73.09 78 | 72.16 81 | 75.90 72 | 75.95 208 | 56.28 111 | 83.05 58 | 72.39 247 | 66.53 12 | 65.27 189 | 87.00 78 | 50.40 95 | 85.47 102 | 62.48 123 | 86.32 58 | 85.94 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 74.76 57 | 74.46 58 | 75.65 79 | 77.84 170 | 52.25 169 | 75.59 184 | 84.17 47 | 63.76 38 | 73.15 69 | 82.79 155 | 59.58 16 | 86.80 63 | 67.24 81 | 86.04 59 | 87.89 19 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CP-MVS | | | 77.12 36 | 76.68 37 | 78.43 32 | 86.05 38 | 63.18 7 | 87.55 8 | 83.45 66 | 62.44 62 | 72.68 77 | 90.50 22 | 48.18 119 | 87.34 47 | 73.59 42 | 85.71 60 | 84.76 129 |
|
mPP-MVS | | | 76.54 41 | 75.93 44 | 78.34 36 | 86.47 24 | 63.50 4 | 85.74 23 | 82.28 89 | 62.90 50 | 71.77 87 | 90.26 32 | 46.61 144 | 86.55 74 | 71.71 52 | 85.66 61 | 84.97 121 |
|
MSLP-MVS++ | | | 73.77 72 | 73.47 71 | 74.66 96 | 83.02 76 | 59.29 61 | 82.30 77 | 81.88 95 | 59.34 118 | 71.59 90 | 86.83 79 | 45.94 148 | 83.65 139 | 65.09 99 | 85.22 62 | 81.06 217 |
|
SD-MVS | | | 77.70 29 | 77.62 28 | 77.93 42 | 84.47 62 | 61.88 24 | 84.55 34 | 83.87 56 | 60.37 93 | 79.89 14 | 89.38 53 | 54.97 45 | 85.58 96 | 76.12 26 | 84.94 63 | 86.33 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
3Dnovator | | 64.47 5 | 72.49 84 | 71.39 91 | 75.79 73 | 77.70 172 | 58.99 70 | 80.66 97 | 83.15 77 | 62.24 64 | 65.46 186 | 86.59 89 | 42.38 183 | 85.52 98 | 59.59 147 | 84.72 64 | 82.85 187 |
|
CS-MVS | | | 74.18 67 | 73.60 68 | 75.92 71 | 78.99 138 | 52.53 163 | 80.61 98 | 85.93 20 | 61.17 82 | 71.15 92 | 79.34 235 | 54.52 51 | 88.86 22 | 66.07 88 | 84.67 65 | 86.38 63 |
|
CANet | | | 76.46 42 | 75.93 44 | 78.06 39 | 81.29 97 | 57.53 92 | 82.35 72 | 83.31 72 | 67.78 3 | 70.09 101 | 86.34 95 | 54.92 46 | 88.90 21 | 72.68 47 | 84.55 66 | 87.76 26 |
|
LFMVS | | | 71.78 95 | 71.59 87 | 72.32 156 | 83.40 71 | 46.38 239 | 79.75 112 | 71.08 252 | 64.18 32 | 72.80 76 | 88.64 65 | 42.58 180 | 83.72 137 | 57.41 156 | 84.49 67 | 86.86 53 |
|
TSAR-MVS + GP. | | | 74.90 55 | 74.15 61 | 77.17 53 | 82.00 86 | 58.77 74 | 81.80 80 | 78.57 166 | 58.58 128 | 74.32 52 | 84.51 127 | 55.94 38 | 87.22 49 | 67.11 82 | 84.48 68 | 85.52 100 |
|
MAR-MVS | | | 71.51 99 | 70.15 110 | 75.60 81 | 81.84 88 | 59.39 59 | 81.38 89 | 82.90 82 | 54.90 200 | 68.08 141 | 78.70 240 | 47.73 123 | 85.51 99 | 51.68 200 | 84.17 69 | 81.88 202 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 72.17 90 | 71.41 90 | 74.45 104 | 81.95 87 | 57.22 97 | 84.03 45 | 80.38 135 | 59.89 108 | 68.40 132 | 82.33 167 | 49.64 100 | 87.83 41 | 51.87 196 | 84.16 70 | 78.30 247 |
|
IS-MVSNet | | | 71.57 98 | 71.00 98 | 73.27 136 | 78.86 141 | 45.63 252 | 80.22 103 | 78.69 163 | 64.14 35 | 66.46 168 | 87.36 75 | 49.30 103 | 85.60 94 | 50.26 207 | 83.71 71 | 88.59 5 |
|
UA-Net | | | 73.13 77 | 72.93 76 | 73.76 117 | 83.58 68 | 51.66 175 | 78.75 122 | 77.66 186 | 67.75 4 | 72.61 79 | 89.42 51 | 49.82 98 | 83.29 145 | 53.61 185 | 83.14 72 | 86.32 72 |
|
MG-MVS | | | 73.96 69 | 73.89 64 | 74.16 109 | 85.65 42 | 49.69 204 | 81.59 86 | 81.29 115 | 61.45 77 | 71.05 93 | 88.11 67 | 51.77 81 | 87.73 42 | 61.05 135 | 83.09 73 | 85.05 118 |
|
OpenMVS | | 61.03 9 | 68.85 143 | 67.56 147 | 72.70 148 | 74.26 237 | 53.99 142 | 81.21 91 | 81.34 113 | 52.70 220 | 62.75 221 | 85.55 111 | 38.86 219 | 84.14 127 | 48.41 222 | 83.01 74 | 79.97 231 |
|
SR-MVS | | | 76.13 45 | 75.70 46 | 77.40 51 | 85.87 40 | 61.20 33 | 85.52 26 | 82.19 90 | 59.99 104 | 75.10 38 | 90.35 27 | 47.66 125 | 86.52 75 | 71.64 53 | 82.99 75 | 84.47 136 |
|
VDDNet | | | 71.81 94 | 71.33 93 | 73.26 137 | 82.80 80 | 47.60 230 | 78.74 123 | 75.27 218 | 59.59 114 | 72.94 74 | 89.40 52 | 41.51 197 | 83.91 134 | 58.75 151 | 82.99 75 | 88.26 8 |
|
MVS_111021_HR | | | 74.02 68 | 73.46 72 | 75.69 78 | 83.01 77 | 60.63 44 | 77.29 152 | 78.40 177 | 61.18 81 | 70.58 95 | 85.97 103 | 54.18 55 | 84.00 133 | 67.52 79 | 82.98 77 | 82.45 193 |
|
ETV-MVS | | | 74.46 62 | 73.84 65 | 76.33 67 | 79.27 132 | 55.24 132 | 79.22 120 | 85.00 35 | 64.97 21 | 72.65 78 | 79.46 231 | 53.65 65 | 87.87 39 | 67.45 80 | 82.91 78 | 85.89 84 |
|
HPM-MVS_fast | | | 74.30 65 | 73.46 72 | 76.80 58 | 84.45 63 | 59.04 68 | 83.65 52 | 81.05 121 | 60.15 101 | 70.43 96 | 89.84 47 | 41.09 203 | 85.59 95 | 67.61 78 | 82.90 79 | 85.77 90 |
|
ACMMP | | | 76.02 46 | 75.33 49 | 78.07 38 | 85.20 51 | 61.91 23 | 85.49 29 | 84.44 41 | 63.04 47 | 69.80 111 | 89.74 49 | 45.43 155 | 87.16 52 | 72.01 51 | 82.87 80 | 85.14 114 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
APD-MVS_3200maxsize | | | 74.96 54 | 74.39 59 | 76.67 61 | 82.20 83 | 58.24 82 | 83.67 51 | 83.29 73 | 58.41 132 | 73.71 62 | 90.14 35 | 45.62 150 | 85.99 86 | 69.64 62 | 82.85 81 | 85.78 87 |
|
casdiffmvs | | | 74.80 56 | 74.89 54 | 74.53 102 | 75.59 216 | 50.37 192 | 78.17 134 | 85.06 32 | 62.80 56 | 74.40 51 | 87.86 70 | 57.88 24 | 83.61 140 | 69.46 65 | 82.79 82 | 89.59 2 |
|
baseline | | | 74.61 60 | 74.70 56 | 74.34 106 | 75.70 212 | 49.99 199 | 77.54 145 | 84.63 40 | 62.73 57 | 73.98 55 | 87.79 72 | 57.67 27 | 83.82 136 | 69.49 63 | 82.74 83 | 89.20 3 |
|
test1172 | | | 75.36 53 | 74.81 55 | 77.02 55 | 85.47 46 | 60.79 42 | 83.94 49 | 81.63 102 | 59.52 115 | 74.66 49 | 90.18 34 | 44.74 161 | 85.84 91 | 70.63 60 | 82.52 84 | 84.42 137 |
|
VDD-MVS | | | 72.50 83 | 72.09 82 | 73.75 119 | 81.58 90 | 49.69 204 | 77.76 140 | 77.63 187 | 63.21 45 | 73.21 68 | 89.02 58 | 42.14 184 | 83.32 144 | 61.72 130 | 82.50 85 | 88.25 9 |
|
CLD-MVS | | | 73.33 74 | 72.68 78 | 75.29 87 | 78.82 142 | 53.33 152 | 78.23 133 | 84.79 39 | 61.30 80 | 70.41 97 | 81.04 194 | 52.41 74 | 87.12 54 | 64.61 104 | 82.49 86 | 85.41 108 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
canonicalmvs | | | 74.67 59 | 74.98 52 | 73.71 121 | 78.94 140 | 50.56 189 | 80.23 102 | 83.87 56 | 60.30 99 | 77.15 29 | 86.56 91 | 59.65 14 | 82.00 175 | 66.01 91 | 82.12 87 | 88.58 6 |
|
MVS | | | 67.37 175 | 66.33 180 | 70.51 193 | 75.46 218 | 50.94 179 | 73.95 213 | 81.85 97 | 41.57 319 | 62.54 226 | 78.57 245 | 47.98 120 | 85.47 102 | 52.97 190 | 82.05 88 | 75.14 281 |
|
alignmvs | | | 73.86 71 | 73.99 62 | 73.45 130 | 78.20 159 | 50.50 190 | 78.57 127 | 82.43 87 | 59.40 116 | 76.57 30 | 86.71 84 | 56.42 34 | 81.23 190 | 65.84 93 | 81.79 89 | 88.62 4 |
|
1121 | | | 68.53 155 | 67.16 165 | 72.63 149 | 85.64 43 | 61.14 34 | 73.95 213 | 66.46 283 | 44.61 295 | 70.28 99 | 86.68 85 | 41.42 198 | 80.78 201 | 53.62 183 | 81.79 89 | 75.97 272 |
|
SR-MVS-dyc-post | | | 74.57 61 | 73.90 63 | 76.58 63 | 83.49 69 | 59.87 54 | 84.29 36 | 81.36 109 | 58.07 139 | 73.14 70 | 90.07 36 | 44.74 161 | 85.84 91 | 68.20 70 | 81.76 91 | 84.03 147 |
|
RE-MVS-def | | | | 73.71 67 | | 83.49 69 | 59.87 54 | 84.29 36 | 81.36 109 | 58.07 139 | 73.14 70 | 90.07 36 | 43.06 177 | | 68.20 70 | 81.76 91 | 84.03 147 |
|
新几何1 | | | | | 70.76 187 | 85.66 41 | 61.13 35 | | 66.43 284 | 44.68 294 | 70.29 98 | 86.64 86 | 41.29 200 | 75.23 267 | 49.72 211 | 81.75 93 | 75.93 274 |
|
Vis-MVSNet | | | 72.18 89 | 71.37 92 | 74.61 99 | 81.29 97 | 55.41 130 | 80.90 93 | 78.28 179 | 60.73 87 | 69.23 123 | 88.09 68 | 44.36 167 | 82.65 164 | 57.68 154 | 81.75 93 | 85.77 90 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
VNet | | | 69.68 129 | 70.19 109 | 68.16 226 | 79.73 127 | 41.63 286 | 70.53 262 | 77.38 192 | 60.37 93 | 70.69 94 | 86.63 87 | 51.08 89 | 77.09 255 | 53.61 185 | 81.69 95 | 85.75 92 |
|
abl_6 | | | 74.34 63 | 73.50 69 | 76.86 57 | 82.43 81 | 60.16 49 | 83.48 54 | 81.86 96 | 58.81 125 | 73.95 58 | 89.86 46 | 41.87 188 | 86.62 70 | 67.98 74 | 81.23 96 | 83.80 159 |
|
OPM-MVS | | | 74.73 58 | 74.25 60 | 76.19 68 | 80.81 105 | 59.01 69 | 82.60 69 | 83.64 61 | 63.74 39 | 72.52 80 | 87.49 73 | 47.18 135 | 85.88 90 | 69.47 64 | 80.78 97 | 83.66 165 |
|
旧先验1 | | | | | | 83.04 75 | 53.15 154 | | 67.52 275 | | | 87.85 71 | 44.08 168 | | | 80.76 98 | 78.03 254 |
|
PAPM_NR | | | 72.63 82 | 71.80 85 | 75.13 88 | 81.72 89 | 53.42 151 | 79.91 109 | 83.28 74 | 59.14 120 | 66.31 172 | 85.90 104 | 51.86 80 | 86.06 83 | 57.45 155 | 80.62 99 | 85.91 83 |
|
Vis-MVSNet (Re-imp) | | | 63.69 223 | 63.88 207 | 63.14 272 | 74.75 227 | 31.04 340 | 71.16 254 | 63.64 299 | 56.32 167 | 59.80 251 | 84.99 116 | 44.51 164 | 75.46 266 | 39.12 285 | 80.62 99 | 82.92 184 |
|
HQP_MVS | | | 74.31 64 | 73.73 66 | 76.06 69 | 81.41 94 | 56.31 109 | 84.22 39 | 84.01 50 | 64.52 25 | 69.27 120 | 86.10 99 | 45.26 159 | 87.21 50 | 68.16 72 | 80.58 101 | 84.65 130 |
|
plane_prior5 | | | | | | | | | 84.01 50 | | | | | 87.21 50 | 68.16 72 | 80.58 101 | 84.65 130 |
|
UGNet | | | 68.81 144 | 67.39 154 | 73.06 139 | 78.33 156 | 54.47 139 | 79.77 111 | 75.40 217 | 60.45 91 | 63.22 215 | 84.40 129 | 32.71 279 | 80.91 198 | 51.71 199 | 80.56 103 | 83.81 155 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
plane_prior | | | | | | | 56.31 109 | 83.58 53 | | 63.19 46 | | | | | | 80.48 104 | |
|
Regformer-1 | | | 75.47 51 | 74.93 53 | 77.09 54 | 80.43 111 | 57.70 90 | 79.50 117 | 82.13 91 | 67.84 1 | 75.73 36 | 80.75 204 | 56.50 32 | 86.07 82 | 71.07 57 | 80.38 105 | 87.50 35 |
|
Regformer-2 | | | 75.63 50 | 74.99 51 | 77.54 47 | 80.43 111 | 58.32 81 | 79.50 117 | 82.92 80 | 67.84 1 | 75.94 33 | 80.75 204 | 55.73 40 | 86.80 63 | 71.44 56 | 80.38 105 | 87.50 35 |
|
HQP3-MVS | | | | | | | | | 83.90 54 | | | | | | | 80.35 107 | |
|
HQP-MVS | | | 73.45 73 | 72.80 77 | 75.40 83 | 80.66 106 | 54.94 134 | 82.31 74 | 83.90 54 | 62.10 67 | 67.85 144 | 85.54 112 | 45.46 153 | 86.93 60 | 67.04 83 | 80.35 107 | 84.32 139 |
|
PCF-MVS | | 61.88 8 | 70.95 104 | 69.49 117 | 75.35 84 | 77.63 175 | 55.71 122 | 76.04 179 | 81.81 98 | 50.30 246 | 69.66 113 | 85.40 115 | 52.51 71 | 84.89 113 | 51.82 197 | 80.24 109 | 85.45 104 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DP-MVS Recon | | | 72.15 92 | 70.73 101 | 76.40 66 | 86.57 22 | 57.99 85 | 81.15 92 | 82.96 79 | 57.03 151 | 66.78 161 | 85.56 110 | 44.50 165 | 88.11 34 | 51.77 198 | 80.23 110 | 83.10 182 |
|
CPTT-MVS | | | 72.78 80 | 72.08 83 | 74.87 92 | 84.88 60 | 61.41 29 | 84.15 42 | 77.86 182 | 55.27 189 | 67.51 153 | 88.08 69 | 41.93 187 | 81.85 177 | 69.04 68 | 80.01 111 | 81.35 210 |
|
114514_t | | | 70.83 105 | 69.56 115 | 74.64 98 | 86.21 30 | 54.63 138 | 82.34 73 | 81.81 98 | 48.22 265 | 63.01 218 | 85.83 106 | 40.92 204 | 87.10 55 | 57.91 153 | 79.79 112 | 82.18 196 |
|
test_yl | | | 69.69 127 | 69.13 122 | 71.36 174 | 78.37 153 | 45.74 248 | 74.71 202 | 80.20 138 | 57.91 143 | 70.01 106 | 83.83 139 | 42.44 181 | 82.87 157 | 54.97 171 | 79.72 113 | 85.48 102 |
|
DCV-MVSNet | | | 69.69 127 | 69.13 122 | 71.36 174 | 78.37 153 | 45.74 248 | 74.71 202 | 80.20 138 | 57.91 143 | 70.01 106 | 83.83 139 | 42.44 181 | 82.87 157 | 54.97 171 | 79.72 113 | 85.48 102 |
|
MVS_Test | | | 72.45 85 | 72.46 80 | 72.42 155 | 74.88 224 | 48.50 218 | 76.28 172 | 83.14 78 | 59.40 116 | 72.46 81 | 84.68 120 | 55.66 41 | 81.12 191 | 65.98 92 | 79.66 115 | 87.63 30 |
|
PS-MVSNAJ | | | 70.51 111 | 69.70 114 | 72.93 141 | 81.52 91 | 55.79 121 | 74.92 199 | 79.00 156 | 55.04 198 | 69.88 109 | 78.66 241 | 47.05 137 | 82.19 172 | 61.61 131 | 79.58 116 | 80.83 220 |
|
PVSNet_Blended | | | 68.59 150 | 67.72 144 | 71.19 179 | 77.03 190 | 50.57 187 | 72.51 236 | 81.52 103 | 51.91 227 | 64.22 210 | 77.77 257 | 49.13 107 | 82.87 157 | 55.82 163 | 79.58 116 | 80.14 229 |
|
EPP-MVSNet | | | 72.16 91 | 71.31 94 | 74.71 93 | 78.68 146 | 49.70 202 | 82.10 78 | 81.65 101 | 60.40 92 | 65.94 177 | 85.84 105 | 51.74 82 | 86.37 80 | 55.93 162 | 79.55 118 | 88.07 17 |
|
xiu_mvs_v2_base | | | 70.52 110 | 69.75 112 | 72.84 143 | 81.21 100 | 55.63 125 | 75.11 193 | 78.92 157 | 54.92 199 | 69.96 108 | 79.68 226 | 47.00 141 | 82.09 174 | 61.60 132 | 79.37 119 | 80.81 221 |
|
MVSFormer | | | 71.50 100 | 70.38 107 | 74.88 91 | 78.76 143 | 57.15 102 | 82.79 63 | 78.48 170 | 51.26 238 | 69.49 115 | 83.22 150 | 43.99 170 | 83.24 146 | 66.06 89 | 79.37 119 | 84.23 142 |
|
lupinMVS | | | 69.57 132 | 68.28 138 | 73.44 131 | 78.76 143 | 57.15 102 | 76.57 165 | 73.29 242 | 46.19 283 | 69.49 115 | 82.18 170 | 43.99 170 | 79.23 222 | 64.66 102 | 79.37 119 | 83.93 150 |
|
PAPM | | | 67.92 168 | 66.69 170 | 71.63 167 | 78.09 163 | 49.02 212 | 77.09 156 | 81.24 118 | 51.04 240 | 60.91 242 | 83.98 137 | 47.71 124 | 84.99 108 | 40.81 279 | 79.32 122 | 80.90 219 |
|
FIs | | | 70.82 106 | 71.43 89 | 68.98 217 | 78.33 156 | 38.14 307 | 76.96 159 | 83.59 62 | 61.02 83 | 67.33 155 | 86.73 82 | 55.07 44 | 81.64 180 | 54.61 177 | 79.22 123 | 87.14 48 |
|
jason | | | 69.65 130 | 68.39 137 | 73.43 132 | 78.27 158 | 56.88 105 | 77.12 155 | 73.71 239 | 46.53 280 | 69.34 119 | 83.22 150 | 43.37 174 | 79.18 223 | 64.77 101 | 79.20 124 | 84.23 142 |
jason: jason. |
PAPR | | | 71.72 97 | 70.82 100 | 74.41 105 | 81.20 101 | 51.17 177 | 79.55 116 | 83.33 71 | 55.81 180 | 66.93 160 | 84.61 123 | 50.95 91 | 86.06 83 | 55.79 165 | 79.20 124 | 86.00 81 |
|
EIA-MVS | | | 71.78 95 | 70.60 102 | 75.30 86 | 79.85 123 | 53.54 148 | 77.27 153 | 83.26 75 | 57.92 142 | 66.49 167 | 79.39 232 | 52.07 78 | 86.69 67 | 60.05 142 | 79.14 126 | 85.66 95 |
|
Effi-MVS+ | | | 73.31 75 | 72.54 79 | 75.62 80 | 77.87 169 | 53.64 145 | 79.62 115 | 79.61 147 | 61.63 75 | 72.02 86 | 82.61 160 | 56.44 33 | 85.97 88 | 63.99 110 | 79.07 127 | 87.25 45 |
|
gg-mvs-nofinetune | | | 57.86 268 | 56.43 272 | 62.18 278 | 72.62 255 | 35.35 324 | 66.57 282 | 56.33 327 | 50.65 243 | 57.64 271 | 57.10 339 | 30.65 291 | 76.36 262 | 37.38 293 | 78.88 128 | 74.82 288 |
|
CDS-MVSNet | | | 66.80 189 | 65.37 195 | 71.10 182 | 78.98 139 | 53.13 156 | 73.27 225 | 71.07 253 | 52.15 226 | 64.72 201 | 80.23 215 | 43.56 173 | 77.10 254 | 45.48 246 | 78.88 128 | 83.05 183 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
AdaColmap | | | 69.99 122 | 68.66 131 | 73.97 112 | 84.94 57 | 57.83 87 | 82.63 68 | 78.71 162 | 56.28 169 | 64.34 205 | 84.14 132 | 41.57 193 | 87.06 58 | 46.45 234 | 78.88 128 | 77.02 264 |
|
Anonymous202405211 | | | 66.84 188 | 65.99 187 | 69.40 212 | 80.19 118 | 42.21 279 | 71.11 256 | 71.31 251 | 58.80 126 | 67.90 142 | 86.39 94 | 29.83 299 | 79.65 215 | 49.60 214 | 78.78 131 | 86.33 70 |
|
CANet_DTU | | | 68.18 162 | 67.71 146 | 69.59 208 | 74.83 225 | 46.24 242 | 78.66 125 | 76.85 199 | 59.60 111 | 63.45 214 | 82.09 176 | 35.25 249 | 77.41 251 | 59.88 144 | 78.76 132 | 85.14 114 |
|
test222 | | | | | | 83.14 72 | 58.68 75 | 72.57 235 | 63.45 300 | 41.78 315 | 67.56 152 | 86.12 98 | 37.13 238 | | | 78.73 133 | 74.98 285 |
|
TAMVS | | | 66.78 190 | 65.27 198 | 71.33 177 | 79.16 136 | 53.67 144 | 73.84 219 | 69.59 263 | 52.32 225 | 65.28 188 | 81.72 181 | 44.49 166 | 77.40 252 | 42.32 270 | 78.66 134 | 82.92 184 |
|
PVSNet_Blended_VisFu | | | 71.45 101 | 70.39 106 | 74.65 97 | 82.01 85 | 58.82 73 | 79.93 108 | 80.35 137 | 55.09 194 | 65.82 182 | 82.16 173 | 49.17 106 | 82.64 165 | 60.34 140 | 78.62 135 | 82.50 192 |
|
testdata | | | | | 64.66 263 | 81.52 91 | 52.93 157 | | 65.29 290 | 46.09 284 | 73.88 60 | 87.46 74 | 38.08 228 | 66.26 303 | 53.31 188 | 78.48 136 | 74.78 289 |
|
QAPM | | | 70.05 120 | 68.81 128 | 73.78 115 | 76.54 200 | 53.43 150 | 83.23 56 | 83.48 64 | 52.89 219 | 65.90 179 | 86.29 96 | 41.55 196 | 86.49 77 | 51.01 202 | 78.40 137 | 81.42 206 |
|
FC-MVSNet-test | | | 69.80 125 | 70.58 104 | 67.46 231 | 77.61 180 | 34.73 327 | 76.05 178 | 83.19 76 | 60.84 84 | 65.88 180 | 86.46 92 | 54.52 51 | 80.76 203 | 52.52 192 | 78.12 138 | 86.91 51 |
|
LCM-MVSNet-Re | | | 61.88 244 | 61.35 237 | 63.46 269 | 74.58 230 | 31.48 339 | 61.42 310 | 58.14 320 | 58.71 127 | 53.02 309 | 79.55 229 | 43.07 176 | 76.80 258 | 45.69 241 | 77.96 139 | 82.11 199 |
|
diffmvs | | | 70.69 108 | 70.43 105 | 71.46 169 | 69.45 298 | 48.95 214 | 72.93 228 | 78.46 172 | 57.27 148 | 71.69 88 | 83.97 138 | 51.48 84 | 77.92 244 | 70.70 59 | 77.95 140 | 87.53 34 |
|
OMC-MVS | | | 71.40 102 | 70.60 102 | 73.78 115 | 76.60 198 | 53.15 154 | 79.74 113 | 79.78 143 | 58.37 134 | 68.75 127 | 86.45 93 | 45.43 155 | 80.60 204 | 62.58 121 | 77.73 141 | 87.58 33 |
|
MVS_111021_LR | | | 69.50 134 | 68.78 129 | 71.65 166 | 78.38 152 | 59.33 60 | 74.82 201 | 70.11 258 | 58.08 138 | 67.83 148 | 84.68 120 | 41.96 186 | 76.34 263 | 65.62 96 | 77.54 142 | 79.30 241 |
|
Fast-Effi-MVS+ | | | 70.28 117 | 69.12 124 | 73.73 120 | 78.50 149 | 51.50 176 | 75.01 196 | 79.46 151 | 56.16 172 | 68.59 128 | 79.55 229 | 53.97 56 | 84.05 128 | 53.34 187 | 77.53 143 | 85.65 96 |
|
xiu_mvs_v1_base_debu | | | 68.58 151 | 67.28 159 | 72.48 152 | 78.19 160 | 57.19 99 | 75.28 188 | 75.09 223 | 51.61 229 | 70.04 102 | 81.41 187 | 32.79 275 | 79.02 230 | 63.81 111 | 77.31 144 | 81.22 212 |
|
xiu_mvs_v1_base | | | 68.58 151 | 67.28 159 | 72.48 152 | 78.19 160 | 57.19 99 | 75.28 188 | 75.09 223 | 51.61 229 | 70.04 102 | 81.41 187 | 32.79 275 | 79.02 230 | 63.81 111 | 77.31 144 | 81.22 212 |
|
xiu_mvs_v1_base_debi | | | 68.58 151 | 67.28 159 | 72.48 152 | 78.19 160 | 57.19 99 | 75.28 188 | 75.09 223 | 51.61 229 | 70.04 102 | 81.41 187 | 32.79 275 | 79.02 230 | 63.81 111 | 77.31 144 | 81.22 212 |
|
LPG-MVS_test | | | 72.74 81 | 71.74 86 | 75.76 74 | 80.22 115 | 57.51 93 | 82.55 70 | 83.40 68 | 61.32 78 | 66.67 164 | 87.33 76 | 39.15 216 | 86.59 71 | 67.70 76 | 77.30 147 | 83.19 178 |
|
LGP-MVS_train | | | | | 75.76 74 | 80.22 115 | 57.51 93 | | 83.40 68 | 61.32 78 | 66.67 164 | 87.33 76 | 39.15 216 | 86.59 71 | 67.70 76 | 77.30 147 | 83.19 178 |
|
Anonymous20240529 | | | 69.91 124 | 69.02 125 | 72.56 150 | 80.19 118 | 47.65 228 | 77.56 144 | 80.99 124 | 55.45 188 | 69.88 109 | 86.76 80 | 39.24 215 | 82.18 173 | 54.04 179 | 77.10 149 | 87.85 23 |
|
EPNet_dtu | | | 61.90 242 | 61.97 231 | 61.68 281 | 72.89 251 | 39.78 294 | 75.85 182 | 65.62 287 | 55.09 194 | 54.56 294 | 79.36 233 | 37.59 231 | 67.02 299 | 39.80 284 | 76.95 150 | 78.25 248 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TAPA-MVS | | 59.36 10 | 66.60 193 | 65.20 199 | 70.81 186 | 76.63 197 | 48.75 216 | 76.52 167 | 80.04 140 | 50.64 244 | 65.24 193 | 84.93 117 | 39.15 216 | 78.54 236 | 36.77 296 | 76.88 151 | 85.14 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Regformer-3 | | | 73.89 70 | 73.28 74 | 75.71 77 | 79.75 124 | 55.48 129 | 78.54 129 | 79.93 142 | 66.58 11 | 73.62 63 | 80.30 212 | 54.87 47 | 84.54 120 | 69.09 67 | 76.84 152 | 87.10 49 |
|
Regformer-4 | | | 74.25 66 | 73.48 70 | 76.57 64 | 79.75 124 | 56.54 108 | 78.54 129 | 81.49 106 | 66.93 7 | 73.90 59 | 80.30 212 | 53.84 60 | 85.98 87 | 69.76 61 | 76.84 152 | 87.17 46 |
|
ACMP | | 63.53 6 | 72.30 87 | 71.20 96 | 75.59 82 | 80.28 113 | 57.54 91 | 82.74 65 | 82.84 84 | 60.58 89 | 65.24 193 | 86.18 97 | 39.25 214 | 86.03 85 | 66.95 85 | 76.79 154 | 83.22 176 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
cascas | | | 65.98 201 | 63.42 215 | 73.64 125 | 77.26 186 | 52.58 162 | 72.26 240 | 77.21 195 | 48.56 260 | 61.21 241 | 74.60 291 | 32.57 283 | 85.82 93 | 50.38 206 | 76.75 155 | 82.52 191 |
|
BH-untuned | | | 68.27 159 | 67.29 158 | 71.21 178 | 79.74 126 | 53.22 153 | 76.06 177 | 77.46 191 | 57.19 149 | 66.10 174 | 81.61 183 | 45.37 157 | 83.50 142 | 45.42 248 | 76.68 156 | 76.91 268 |
|
ET-MVSNet_ETH3D | | | 67.96 167 | 65.72 191 | 74.68 95 | 76.67 196 | 55.62 126 | 75.11 193 | 74.74 227 | 52.91 218 | 60.03 247 | 80.12 216 | 33.68 265 | 82.64 165 | 61.86 129 | 76.34 157 | 85.78 87 |
|
ACMM | | 61.98 7 | 70.80 107 | 69.73 113 | 74.02 110 | 80.59 110 | 58.59 77 | 82.68 67 | 82.02 94 | 55.46 187 | 67.18 157 | 84.39 130 | 38.51 221 | 83.17 148 | 60.65 137 | 76.10 158 | 80.30 226 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
BH-RMVSNet | | | 68.81 144 | 67.42 153 | 72.97 140 | 80.11 120 | 52.53 163 | 74.26 208 | 76.29 204 | 58.48 131 | 68.38 133 | 84.20 131 | 42.59 179 | 83.83 135 | 46.53 233 | 75.91 159 | 82.56 189 |
|
XVG-OURS | | | 68.76 148 | 67.37 155 | 72.90 142 | 74.32 236 | 57.22 97 | 70.09 267 | 78.81 159 | 55.24 190 | 67.79 150 | 85.81 108 | 36.54 244 | 78.28 239 | 62.04 127 | 75.74 160 | 83.19 178 |
|
mvs_anonymous | | | 68.03 165 | 67.51 151 | 69.59 208 | 72.08 263 | 44.57 261 | 71.99 243 | 75.23 219 | 51.67 228 | 67.06 158 | 82.57 161 | 54.68 49 | 77.94 243 | 56.56 158 | 75.71 161 | 86.26 76 |
|
BH-w/o | | | 66.85 187 | 65.83 189 | 69.90 204 | 79.29 130 | 52.46 166 | 74.66 204 | 76.65 202 | 54.51 206 | 64.85 200 | 78.12 247 | 45.59 152 | 82.95 154 | 43.26 263 | 75.54 162 | 74.27 294 |
|
thisisatest0515 | | | 65.83 202 | 63.50 214 | 72.82 145 | 73.75 240 | 49.50 207 | 71.32 250 | 73.12 244 | 49.39 253 | 63.82 212 | 76.50 273 | 34.95 253 | 84.84 116 | 53.20 189 | 75.49 163 | 84.13 146 |
|
LS3D | | | 64.71 215 | 62.50 225 | 71.34 176 | 79.72 128 | 55.71 122 | 79.82 110 | 74.72 228 | 48.50 262 | 56.62 276 | 84.62 122 | 33.59 267 | 82.34 171 | 29.65 332 | 75.23 164 | 75.97 272 |
|
GG-mvs-BLEND | | | | | 62.34 277 | 71.36 276 | 37.04 314 | 69.20 274 | 57.33 324 | | 54.73 292 | 65.48 331 | 30.37 293 | 77.82 245 | 34.82 307 | 74.93 165 | 72.17 314 |
|
nrg030 | | | 72.96 79 | 73.01 75 | 72.84 143 | 75.41 219 | 50.24 193 | 80.02 105 | 82.89 83 | 58.36 135 | 74.44 50 | 86.73 82 | 58.90 19 | 80.83 199 | 65.84 93 | 74.46 166 | 87.44 39 |
|
VPA-MVSNet | | | 69.02 141 | 69.47 118 | 67.69 230 | 77.42 183 | 41.00 290 | 74.04 211 | 79.68 145 | 60.06 102 | 69.26 122 | 84.81 119 | 51.06 90 | 77.58 249 | 54.44 178 | 74.43 167 | 84.48 135 |
|
PS-MVSNAJss | | | 72.24 88 | 71.21 95 | 75.31 85 | 78.50 149 | 55.93 119 | 81.63 83 | 82.12 92 | 56.24 170 | 70.02 105 | 85.68 109 | 47.05 137 | 84.34 124 | 65.27 98 | 74.41 168 | 85.67 94 |
|
EI-MVSNet-Vis-set | | | 72.42 86 | 71.59 87 | 74.91 90 | 78.47 151 | 54.02 141 | 77.05 157 | 79.33 153 | 65.03 20 | 71.68 89 | 79.35 234 | 52.75 69 | 84.89 113 | 66.46 86 | 74.23 169 | 85.83 86 |
|
CHOSEN 1792x2688 | | | 65.08 213 | 62.84 221 | 71.82 161 | 81.49 93 | 56.26 112 | 66.32 285 | 74.20 234 | 40.53 323 | 63.16 217 | 78.65 242 | 41.30 199 | 77.80 246 | 45.80 240 | 74.09 170 | 81.40 207 |
|
testing_2 | | | 66.02 200 | 63.77 210 | 72.76 147 | 66.03 321 | 50.48 191 | 72.93 228 | 80.36 136 | 54.41 208 | 54.25 298 | 76.76 267 | 30.89 290 | 83.16 149 | 64.19 106 | 74.08 171 | 84.65 130 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 172 | |
|
PVSNet_BlendedMVS | | | 68.56 154 | 67.72 144 | 71.07 183 | 77.03 190 | 50.57 187 | 74.50 206 | 81.52 103 | 53.66 214 | 64.22 210 | 79.72 225 | 49.13 107 | 82.87 157 | 55.82 163 | 73.92 173 | 79.77 236 |
|
CMPMVS | | 42.80 21 | 57.81 269 | 55.97 274 | 63.32 270 | 60.98 340 | 47.38 232 | 64.66 298 | 69.50 264 | 32.06 337 | 46.83 328 | 77.80 255 | 29.50 301 | 71.36 281 | 48.68 219 | 73.75 174 | 71.21 319 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MS-PatchMatch | | | 62.42 236 | 61.46 236 | 65.31 260 | 75.21 222 | 52.10 170 | 72.05 242 | 74.05 235 | 46.41 281 | 57.42 273 | 74.36 292 | 34.35 259 | 77.57 250 | 45.62 243 | 73.67 175 | 66.26 331 |
|
test-LLR | | | 58.15 266 | 58.13 261 | 58.22 294 | 68.57 303 | 44.80 257 | 65.46 291 | 57.92 321 | 50.08 249 | 55.44 284 | 69.82 317 | 32.62 280 | 57.44 328 | 49.66 212 | 73.62 176 | 72.41 310 |
|
test-mter | | | 56.42 276 | 55.82 275 | 58.22 294 | 68.57 303 | 44.80 257 | 65.46 291 | 57.92 321 | 39.94 327 | 55.44 284 | 69.82 317 | 21.92 336 | 57.44 328 | 49.66 212 | 73.62 176 | 72.41 310 |
|
EI-MVSNet-UG-set | | | 71.92 93 | 71.06 97 | 74.52 103 | 77.98 167 | 53.56 147 | 76.62 164 | 79.16 154 | 64.40 27 | 71.18 91 | 78.95 239 | 52.19 76 | 84.66 119 | 65.47 97 | 73.57 178 | 85.32 110 |
|
TR-MVS | | | 66.59 195 | 65.07 200 | 71.17 180 | 79.18 134 | 49.63 206 | 73.48 222 | 75.20 221 | 52.95 217 | 67.90 142 | 80.33 211 | 39.81 209 | 83.68 138 | 43.20 264 | 73.56 179 | 80.20 227 |
|
UniMVSNet_ETH3D | | | 67.60 172 | 67.07 166 | 69.18 216 | 77.39 184 | 42.29 278 | 74.18 210 | 75.59 214 | 60.37 93 | 66.77 162 | 86.06 101 | 37.64 230 | 78.93 235 | 52.16 195 | 73.49 180 | 86.32 72 |
|
ab-mvs | | | 66.65 192 | 66.42 176 | 67.37 232 | 76.17 204 | 41.73 284 | 70.41 265 | 76.14 206 | 53.99 210 | 65.98 176 | 83.51 147 | 49.48 101 | 76.24 264 | 48.60 220 | 73.46 181 | 84.14 145 |
|
EG-PatchMatch MVS | | | 64.71 215 | 62.87 220 | 70.22 195 | 77.68 173 | 53.48 149 | 77.99 136 | 78.82 158 | 53.37 215 | 56.03 280 | 77.41 260 | 24.75 330 | 84.04 129 | 46.37 235 | 73.42 182 | 73.14 301 |
|
XVG-OURS-SEG-HR | | | 68.81 144 | 67.47 152 | 72.82 145 | 74.40 235 | 56.87 106 | 70.59 261 | 79.04 155 | 54.77 201 | 66.99 159 | 86.01 102 | 39.57 211 | 78.21 240 | 62.54 122 | 73.33 183 | 83.37 171 |
|
thres200 | | | 62.20 239 | 61.16 241 | 65.34 259 | 75.38 220 | 39.99 292 | 69.60 270 | 69.29 267 | 55.64 185 | 61.87 235 | 76.99 262 | 37.07 240 | 78.96 234 | 31.28 326 | 73.28 184 | 77.06 263 |
|
thres100view900 | | | 63.28 228 | 62.41 226 | 65.89 252 | 77.31 185 | 38.66 303 | 72.65 232 | 69.11 269 | 57.07 150 | 62.45 229 | 81.03 195 | 37.01 241 | 79.17 224 | 31.84 318 | 73.25 185 | 79.83 233 |
|
tfpn200view9 | | | 63.18 230 | 62.18 229 | 66.21 245 | 76.85 193 | 39.62 295 | 71.96 244 | 69.44 265 | 56.63 157 | 62.61 224 | 79.83 221 | 37.18 235 | 79.17 224 | 31.84 318 | 73.25 185 | 79.83 233 |
|
thres400 | | | 63.31 226 | 62.18 229 | 66.72 237 | 76.85 193 | 39.62 295 | 71.96 244 | 69.44 265 | 56.63 157 | 62.61 224 | 79.83 221 | 37.18 235 | 79.17 224 | 31.84 318 | 73.25 185 | 81.36 208 |
|
TESTMET0.1,1 | | | 55.28 283 | 54.90 281 | 56.42 301 | 66.56 316 | 43.67 268 | 65.46 291 | 56.27 328 | 39.18 329 | 53.83 301 | 67.44 325 | 24.21 331 | 55.46 338 | 48.04 224 | 73.11 188 | 70.13 323 |
|
thres600view7 | | | 63.30 227 | 62.27 227 | 66.41 241 | 77.18 187 | 38.87 301 | 72.35 238 | 69.11 269 | 56.98 152 | 62.37 231 | 80.96 197 | 37.01 241 | 79.00 233 | 31.43 325 | 73.05 189 | 81.36 208 |
|
VPNet | | | 67.52 173 | 68.11 141 | 65.74 254 | 79.18 134 | 36.80 315 | 72.17 241 | 72.83 245 | 62.04 70 | 67.79 150 | 85.83 106 | 48.88 111 | 76.60 260 | 51.30 201 | 72.97 190 | 83.81 155 |
|
Anonymous20231211 | | | 69.28 137 | 68.47 134 | 71.73 163 | 80.28 113 | 47.18 234 | 79.98 106 | 82.37 88 | 54.61 202 | 67.24 156 | 84.01 136 | 39.43 212 | 82.41 170 | 55.45 169 | 72.83 191 | 85.62 98 |
|
mvs-test1 | | | 70.44 113 | 68.19 139 | 77.18 52 | 76.10 205 | 63.22 6 | 80.59 99 | 76.06 208 | 59.83 109 | 66.32 171 | 79.87 220 | 41.56 194 | 85.53 97 | 60.60 138 | 72.77 192 | 82.80 188 |
|
GBi-Net | | | 67.21 177 | 66.55 171 | 69.19 213 | 77.63 175 | 43.33 270 | 77.31 149 | 77.83 183 | 56.62 159 | 65.04 196 | 82.70 156 | 41.85 189 | 80.33 209 | 47.18 228 | 72.76 193 | 83.92 151 |
|
test1 | | | 67.21 177 | 66.55 171 | 69.19 213 | 77.63 175 | 43.33 270 | 77.31 149 | 77.83 183 | 56.62 159 | 65.04 196 | 82.70 156 | 41.85 189 | 80.33 209 | 47.18 228 | 72.76 193 | 83.92 151 |
|
FMVSNet3 | | | 66.32 198 | 65.61 193 | 68.46 223 | 76.48 201 | 42.34 277 | 74.98 198 | 77.15 196 | 55.83 179 | 65.04 196 | 81.16 191 | 39.91 207 | 80.14 213 | 47.18 228 | 72.76 193 | 82.90 186 |
|
FMVSNet2 | | | 66.93 186 | 66.31 182 | 68.79 220 | 77.63 175 | 42.98 273 | 76.11 175 | 77.47 189 | 56.62 159 | 65.22 195 | 82.17 172 | 41.85 189 | 80.18 212 | 47.05 231 | 72.72 196 | 83.20 177 |
|
thisisatest0530 | | | 67.92 168 | 65.78 190 | 74.33 107 | 76.29 202 | 51.03 178 | 76.89 161 | 74.25 233 | 53.67 213 | 65.59 184 | 81.76 180 | 35.15 250 | 85.50 100 | 55.94 161 | 72.47 197 | 86.47 62 |
|
PVSNet | | 50.76 19 | 58.40 263 | 57.39 263 | 61.42 283 | 75.53 217 | 44.04 265 | 61.43 309 | 63.45 300 | 47.04 278 | 56.91 274 | 73.61 298 | 27.00 318 | 64.76 307 | 39.12 285 | 72.40 198 | 75.47 279 |
|
MIMVSNet | | | 57.35 270 | 57.07 266 | 58.22 294 | 74.21 238 | 37.18 312 | 62.46 305 | 60.88 313 | 48.88 258 | 55.29 287 | 75.99 278 | 31.68 288 | 62.04 315 | 31.87 317 | 72.35 199 | 75.43 280 |
|
1314 | | | 64.61 217 | 63.21 217 | 68.80 219 | 71.87 268 | 47.46 231 | 73.95 213 | 78.39 178 | 42.88 312 | 59.97 248 | 76.60 270 | 38.11 227 | 79.39 220 | 54.84 173 | 72.32 200 | 79.55 237 |
|
FMVSNet1 | | | 66.70 191 | 65.87 188 | 69.19 213 | 77.49 182 | 43.33 270 | 77.31 149 | 77.83 183 | 56.45 164 | 64.60 204 | 82.70 156 | 38.08 228 | 80.33 209 | 46.08 237 | 72.31 201 | 83.92 151 |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 202 | |
|
MVP-Stereo | | | 65.41 208 | 63.80 209 | 70.22 195 | 77.62 179 | 55.53 127 | 76.30 171 | 78.53 168 | 50.59 245 | 56.47 278 | 78.65 242 | 39.84 208 | 82.68 163 | 44.10 256 | 72.12 203 | 72.44 309 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HyFIR lowres test | | | 65.67 204 | 63.01 219 | 73.67 122 | 79.97 122 | 55.65 124 | 69.07 275 | 75.52 215 | 42.68 313 | 63.53 213 | 77.95 249 | 40.43 205 | 81.64 180 | 46.01 238 | 71.91 204 | 83.73 161 |
|
XVG-ACMP-BASELINE | | | 64.36 219 | 62.23 228 | 70.74 188 | 72.35 260 | 52.45 167 | 70.80 260 | 78.45 173 | 53.84 212 | 59.87 249 | 81.10 193 | 16.24 341 | 79.32 221 | 55.64 168 | 71.76 205 | 80.47 223 |
|
HY-MVS | | 56.14 13 | 64.55 218 | 63.89 206 | 66.55 240 | 74.73 228 | 41.02 288 | 69.96 268 | 74.43 230 | 49.29 254 | 61.66 237 | 80.92 198 | 47.43 131 | 76.68 259 | 44.91 251 | 71.69 206 | 81.94 200 |
|
D2MVS | | | 62.30 238 | 60.29 246 | 68.34 225 | 66.46 317 | 48.42 219 | 65.70 288 | 73.42 240 | 47.71 271 | 58.16 268 | 75.02 287 | 30.51 292 | 77.71 247 | 53.96 181 | 71.68 207 | 78.90 245 |
|
ACMH | | 55.70 15 | 65.20 211 | 63.57 213 | 70.07 199 | 78.07 164 | 52.01 174 | 79.48 119 | 79.69 144 | 55.75 182 | 56.59 277 | 80.98 196 | 27.12 316 | 80.94 196 | 42.90 268 | 71.58 208 | 77.25 262 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_part1 | | | 73.17 76 | 72.05 84 | 76.54 65 | 78.34 155 | 54.99 133 | 85.51 28 | 86.99 7 | 58.40 133 | 69.77 112 | 84.50 128 | 48.78 112 | 87.16 52 | 64.60 105 | 71.53 209 | 87.48 37 |
|
MVSTER | | | 67.16 181 | 65.58 194 | 71.88 160 | 70.37 285 | 49.70 202 | 70.25 266 | 78.45 173 | 51.52 232 | 69.16 124 | 80.37 208 | 38.45 222 | 82.50 167 | 60.19 141 | 71.46 210 | 83.44 170 |
|
EI-MVSNet | | | 69.27 138 | 68.44 136 | 71.73 163 | 74.47 232 | 49.39 209 | 75.20 191 | 78.45 173 | 59.60 111 | 69.16 124 | 76.51 271 | 51.29 85 | 82.50 167 | 59.86 146 | 71.45 211 | 83.30 173 |
|
LTVRE_ROB | | 55.42 16 | 63.15 231 | 61.23 240 | 68.92 218 | 76.57 199 | 47.80 225 | 59.92 316 | 76.39 203 | 54.35 209 | 58.67 262 | 82.46 165 | 29.44 302 | 81.49 184 | 42.12 272 | 71.14 212 | 77.46 257 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UniMVSNet (Re) | | | 70.63 109 | 70.20 108 | 71.89 159 | 78.55 148 | 45.29 254 | 75.94 181 | 82.92 80 | 63.68 40 | 68.16 138 | 83.59 145 | 53.89 59 | 83.49 143 | 53.97 180 | 71.12 213 | 86.89 52 |
|
Effi-MVS+-dtu | | | 69.64 131 | 67.53 150 | 75.95 70 | 76.10 205 | 62.29 18 | 80.20 104 | 76.06 208 | 59.83 109 | 65.26 192 | 77.09 261 | 41.56 194 | 84.02 132 | 60.60 138 | 71.09 214 | 81.53 205 |
|
NR-MVSNet | | | 69.54 133 | 68.85 127 | 71.59 168 | 78.05 165 | 43.81 267 | 74.20 209 | 80.86 128 | 65.18 16 | 62.76 220 | 84.52 125 | 52.35 75 | 83.59 141 | 50.96 203 | 70.78 215 | 87.37 41 |
|
v1144 | | | 70.42 114 | 69.31 120 | 73.76 117 | 73.22 243 | 50.64 186 | 77.83 138 | 81.43 107 | 58.58 128 | 69.40 118 | 81.16 191 | 47.53 128 | 85.29 107 | 64.01 109 | 70.64 216 | 85.34 109 |
|
jajsoiax | | | 68.25 160 | 66.45 173 | 73.66 123 | 75.62 214 | 55.49 128 | 80.82 94 | 78.51 169 | 52.33 224 | 64.33 206 | 84.11 133 | 28.28 308 | 81.81 179 | 63.48 116 | 70.62 217 | 83.67 163 |
|
mvs_tets | | | 68.18 162 | 66.36 179 | 73.63 126 | 75.61 215 | 55.35 131 | 80.77 95 | 78.56 167 | 52.48 223 | 64.27 208 | 84.10 134 | 27.45 314 | 81.84 178 | 63.45 117 | 70.56 218 | 83.69 162 |
|
UniMVSNet_NR-MVSNet | | | 71.11 103 | 71.00 98 | 71.44 170 | 79.20 133 | 44.13 263 | 76.02 180 | 82.60 86 | 66.48 13 | 68.20 135 | 84.60 124 | 56.82 30 | 82.82 161 | 54.62 175 | 70.43 219 | 87.36 43 |
|
DU-MVS | | | 70.01 121 | 69.53 116 | 71.44 170 | 78.05 165 | 44.13 263 | 75.01 196 | 81.51 105 | 64.37 28 | 68.20 135 | 84.52 125 | 49.12 109 | 82.82 161 | 54.62 175 | 70.43 219 | 87.37 41 |
|
v1192 | | | 69.97 123 | 68.68 130 | 73.85 113 | 73.19 244 | 50.94 179 | 77.68 141 | 81.36 109 | 57.51 146 | 68.95 126 | 80.85 201 | 45.28 158 | 85.33 106 | 62.97 119 | 70.37 221 | 85.27 112 |
|
PLC | | 56.13 14 | 65.09 212 | 63.21 217 | 70.72 189 | 81.04 103 | 54.87 137 | 78.57 127 | 77.47 189 | 48.51 261 | 55.71 281 | 81.89 177 | 33.71 264 | 79.71 214 | 41.66 276 | 70.37 221 | 77.58 256 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
GA-MVS | | | 65.53 206 | 63.70 211 | 71.02 184 | 70.87 278 | 48.10 222 | 70.48 263 | 74.40 231 | 56.69 155 | 64.70 202 | 76.77 266 | 33.66 266 | 81.10 192 | 55.42 170 | 70.32 223 | 83.87 154 |
|
Fast-Effi-MVS+-dtu | | | 67.37 175 | 65.33 197 | 73.48 129 | 72.94 250 | 57.78 89 | 77.47 147 | 76.88 198 | 57.60 145 | 61.97 233 | 76.85 265 | 39.31 213 | 80.49 207 | 54.72 174 | 70.28 224 | 82.17 198 |
|
v2v482 | | | 70.50 112 | 69.45 119 | 73.66 123 | 72.62 255 | 50.03 198 | 77.58 142 | 80.51 133 | 59.90 105 | 69.52 114 | 82.14 174 | 47.53 128 | 84.88 115 | 65.07 100 | 70.17 225 | 86.09 79 |
|
IB-MVS | | 56.42 12 | 65.40 209 | 62.73 223 | 73.40 133 | 74.89 223 | 52.78 159 | 73.09 227 | 75.13 222 | 55.69 183 | 58.48 266 | 73.73 297 | 32.86 274 | 86.32 81 | 50.63 204 | 70.11 226 | 81.10 216 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CNLPA | | | 65.43 207 | 64.02 205 | 69.68 206 | 78.73 145 | 58.07 84 | 77.82 139 | 70.71 255 | 51.49 233 | 61.57 239 | 83.58 146 | 38.23 226 | 70.82 283 | 43.90 257 | 70.10 227 | 80.16 228 |
|
1112_ss | | | 64.00 221 | 63.36 216 | 65.93 251 | 79.28 131 | 42.58 276 | 71.35 249 | 72.36 248 | 46.41 281 | 60.55 244 | 77.89 253 | 46.27 147 | 73.28 274 | 46.18 236 | 69.97 228 | 81.92 201 |
|
DP-MVS | | | 65.68 203 | 63.66 212 | 71.75 162 | 84.93 58 | 56.87 106 | 80.74 96 | 73.16 243 | 53.06 216 | 59.09 258 | 82.35 166 | 36.79 243 | 85.94 89 | 32.82 314 | 69.96 229 | 72.45 308 |
|
tttt0517 | | | 67.83 170 | 65.66 192 | 74.33 107 | 76.69 195 | 50.82 183 | 77.86 137 | 73.99 236 | 54.54 205 | 64.64 203 | 82.53 163 | 35.06 251 | 85.50 100 | 55.71 166 | 69.91 230 | 86.67 59 |
|
IterMVS-LS | | | 69.22 140 | 68.48 133 | 71.43 172 | 74.44 234 | 49.40 208 | 76.23 173 | 77.55 188 | 59.60 111 | 65.85 181 | 81.59 185 | 51.28 86 | 81.58 183 | 59.87 145 | 69.90 231 | 83.30 173 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 69.47 135 | 68.17 140 | 73.36 134 | 73.06 247 | 50.10 197 | 77.39 148 | 80.56 131 | 56.58 163 | 68.59 128 | 80.37 208 | 44.72 163 | 84.98 110 | 62.47 124 | 69.82 232 | 85.00 119 |
|
Baseline_NR-MVSNet | | | 67.05 183 | 67.56 147 | 65.50 256 | 75.65 213 | 37.70 311 | 75.42 186 | 74.65 229 | 59.90 105 | 68.14 139 | 83.15 153 | 49.12 109 | 77.20 253 | 52.23 194 | 69.78 233 | 81.60 204 |
|
ACMH+ | | 57.40 11 | 66.12 199 | 64.06 204 | 72.30 157 | 77.79 171 | 52.83 158 | 80.39 101 | 78.03 180 | 57.30 147 | 57.47 272 | 82.55 162 | 27.68 312 | 84.17 126 | 45.54 244 | 69.78 233 | 79.90 232 |
|
v1240 | | | 69.24 139 | 67.91 142 | 73.25 138 | 73.02 249 | 49.82 200 | 77.21 154 | 80.54 132 | 56.43 165 | 68.34 134 | 80.51 207 | 43.33 175 | 84.99 108 | 62.03 128 | 69.77 235 | 84.95 122 |
|
TranMVSNet+NR-MVSNet | | | 70.36 115 | 70.10 111 | 71.17 180 | 78.64 147 | 42.97 274 | 76.53 166 | 81.16 120 | 66.95 6 | 68.53 131 | 85.42 114 | 51.61 83 | 83.07 150 | 52.32 193 | 69.70 236 | 87.46 38 |
|
v144192 | | | 69.71 126 | 68.51 132 | 73.33 135 | 73.10 246 | 50.13 196 | 77.54 145 | 80.64 130 | 56.65 156 | 68.57 130 | 80.55 206 | 46.87 142 | 84.96 112 | 62.98 118 | 69.66 237 | 84.89 123 |
|
WR-MVS | | | 68.47 156 | 68.47 134 | 68.44 224 | 80.20 117 | 39.84 293 | 73.75 220 | 76.07 207 | 64.68 22 | 68.11 140 | 83.63 144 | 50.39 96 | 79.14 228 | 49.78 208 | 69.66 237 | 86.34 69 |
|
WTY-MVS | | | 59.75 257 | 60.39 245 | 57.85 297 | 72.32 261 | 37.83 309 | 61.05 314 | 64.18 297 | 45.95 288 | 61.91 234 | 79.11 238 | 47.01 140 | 60.88 318 | 42.50 269 | 69.49 239 | 74.83 287 |
|
cl-mvsnet2 | | | 67.47 174 | 66.45 173 | 70.54 192 | 69.85 294 | 46.49 238 | 73.85 218 | 77.35 193 | 55.07 196 | 65.51 185 | 77.92 251 | 47.64 126 | 81.10 192 | 61.58 133 | 69.32 240 | 84.01 149 |
|
miper_ehance_all_eth | | | 68.03 165 | 67.24 163 | 70.40 194 | 70.54 281 | 46.21 243 | 73.98 212 | 78.68 164 | 55.07 196 | 66.05 175 | 77.80 255 | 52.16 77 | 81.31 187 | 61.53 134 | 69.32 240 | 83.67 163 |
|
miper_enhance_ethall | | | 67.11 182 | 66.09 186 | 70.17 198 | 69.21 300 | 45.98 246 | 72.85 231 | 78.41 176 | 51.38 235 | 65.65 183 | 75.98 279 | 51.17 88 | 81.25 188 | 60.82 136 | 69.32 240 | 83.29 175 |
|
test_djsdf | | | 69.45 136 | 67.74 143 | 74.58 100 | 74.57 231 | 54.92 136 | 82.79 63 | 78.48 170 | 51.26 238 | 65.41 187 | 83.49 148 | 38.37 223 | 83.24 146 | 66.06 89 | 69.25 243 | 85.56 99 |
|
cl-mvsnet_ | | | 67.18 179 | 66.26 184 | 69.94 201 | 70.20 286 | 45.74 248 | 73.30 223 | 76.83 200 | 55.10 192 | 65.27 189 | 79.57 228 | 47.39 132 | 80.53 205 | 59.41 150 | 69.22 244 | 83.53 169 |
|
cl-mvsnet1 | | | 67.18 179 | 66.26 184 | 69.94 201 | 70.20 286 | 45.74 248 | 73.29 224 | 76.83 200 | 55.10 192 | 65.27 189 | 79.58 227 | 47.38 133 | 80.53 205 | 59.43 149 | 69.22 244 | 83.54 168 |
|
cl_fuxian | | | 68.33 158 | 67.56 147 | 70.62 190 | 70.87 278 | 46.21 243 | 74.47 207 | 78.80 160 | 56.22 171 | 66.19 173 | 78.53 246 | 51.88 79 | 81.40 185 | 62.08 125 | 69.04 246 | 84.25 141 |
|
CostFormer | | | 64.04 220 | 62.51 224 | 68.61 222 | 71.88 267 | 45.77 247 | 71.30 251 | 70.60 256 | 47.55 273 | 64.31 207 | 76.61 269 | 41.63 192 | 79.62 217 | 49.74 210 | 69.00 247 | 80.42 224 |
|
tpm2 | | | 62.07 240 | 60.10 247 | 67.99 227 | 72.79 252 | 43.86 266 | 71.05 257 | 66.85 281 | 43.14 310 | 62.77 219 | 75.39 285 | 38.32 224 | 80.80 200 | 41.69 275 | 68.88 248 | 79.32 240 |
|
v10 | | | 70.21 118 | 69.02 125 | 73.81 114 | 73.51 242 | 50.92 181 | 78.74 123 | 81.39 108 | 60.05 103 | 66.39 170 | 81.83 179 | 47.58 127 | 85.41 105 | 62.80 120 | 68.86 249 | 85.09 117 |
|
v8 | | | 70.33 116 | 69.28 121 | 73.49 128 | 73.15 245 | 50.22 194 | 78.62 126 | 80.78 129 | 60.79 85 | 66.45 169 | 82.11 175 | 49.35 102 | 84.98 110 | 63.58 115 | 68.71 250 | 85.28 111 |
|
v7n | | | 69.01 142 | 67.36 156 | 73.98 111 | 72.51 258 | 52.65 160 | 78.54 129 | 81.30 114 | 60.26 100 | 62.67 222 | 81.62 182 | 43.61 172 | 84.49 121 | 57.01 157 | 68.70 251 | 84.79 127 |
|
MVS_0304 | | | 58.51 261 | 57.36 264 | 61.96 280 | 70.04 290 | 41.83 282 | 69.40 273 | 65.46 288 | 50.73 241 | 53.30 308 | 74.06 295 | 22.65 333 | 70.18 287 | 42.16 271 | 68.44 252 | 73.86 299 |
|
Test_1112_low_res | | | 62.32 237 | 61.77 232 | 64.00 267 | 79.08 137 | 39.53 297 | 68.17 277 | 70.17 257 | 43.25 308 | 59.03 259 | 79.90 219 | 44.08 168 | 71.24 282 | 43.79 259 | 68.42 253 | 81.25 211 |
|
PMMVS | | | 53.96 287 | 53.26 293 | 56.04 302 | 62.60 333 | 50.92 181 | 61.17 313 | 56.09 329 | 32.81 336 | 53.51 306 | 66.84 327 | 34.04 261 | 59.93 322 | 44.14 255 | 68.18 254 | 57.27 339 |
|
tfpnnormal | | | 62.47 235 | 61.63 234 | 64.99 262 | 74.81 226 | 39.01 300 | 71.22 252 | 73.72 238 | 55.22 191 | 60.21 245 | 80.09 218 | 41.26 202 | 76.98 257 | 30.02 330 | 68.09 255 | 78.97 244 |
|
DWT-MVSNet_test | | | 61.90 242 | 59.93 248 | 67.83 228 | 71.98 266 | 46.09 245 | 71.03 258 | 69.71 259 | 50.09 248 | 58.51 265 | 70.62 312 | 30.21 296 | 77.63 248 | 49.28 215 | 67.91 256 | 79.78 235 |
|
Anonymous20231206 | | | 55.10 285 | 55.30 279 | 54.48 309 | 69.81 295 | 33.94 331 | 62.91 304 | 62.13 309 | 41.08 320 | 55.18 288 | 75.65 281 | 32.75 278 | 56.59 333 | 30.32 329 | 67.86 257 | 72.91 302 |
|
RRT_test8_iter05 | | | 68.17 164 | 66.86 168 | 72.07 158 | 75.81 210 | 46.33 240 | 76.41 169 | 81.81 98 | 56.43 165 | 66.52 166 | 81.30 190 | 31.90 287 | 84.25 125 | 63.77 114 | 67.83 258 | 85.64 97 |
|
V42 | | | 68.65 149 | 67.35 157 | 72.56 150 | 68.93 302 | 50.18 195 | 72.90 230 | 79.47 150 | 56.92 153 | 69.45 117 | 80.26 214 | 46.29 146 | 82.99 151 | 64.07 107 | 67.82 259 | 84.53 133 |
|
MDTV_nov1_ep13 | | | | 57.00 267 | | 72.73 253 | 38.26 306 | 65.02 297 | 64.73 294 | 44.74 293 | 55.46 283 | 72.48 301 | 32.61 282 | 70.47 285 | 37.47 292 | 67.75 260 | |
|
anonymousdsp | | | 67.00 185 | 64.82 202 | 73.57 127 | 70.09 289 | 56.13 114 | 76.35 170 | 77.35 193 | 48.43 263 | 64.99 199 | 80.84 202 | 33.01 272 | 80.34 208 | 64.66 102 | 67.64 261 | 84.23 142 |
|
OpenMVS_ROB | | 52.78 18 | 60.03 254 | 58.14 260 | 65.69 255 | 70.47 282 | 44.82 256 | 75.33 187 | 70.86 254 | 45.04 291 | 56.06 279 | 76.00 276 | 26.89 319 | 79.65 215 | 35.36 306 | 67.29 262 | 72.60 305 |
|
XXY-MVS | | | 60.68 251 | 61.67 233 | 57.70 299 | 70.43 283 | 38.45 305 | 64.19 300 | 66.47 282 | 48.05 268 | 63.22 215 | 80.86 200 | 49.28 104 | 60.47 319 | 45.25 250 | 67.28 263 | 74.19 295 |
|
baseline2 | | | 63.42 225 | 61.26 239 | 69.89 205 | 72.55 257 | 47.62 229 | 71.54 247 | 68.38 273 | 50.11 247 | 54.82 290 | 75.55 283 | 43.06 177 | 80.96 195 | 48.13 223 | 67.16 264 | 81.11 215 |
|
AUN-MVS | | | 68.45 157 | 66.41 177 | 74.57 101 | 79.53 129 | 57.08 104 | 73.93 216 | 75.23 219 | 54.44 207 | 66.69 163 | 81.85 178 | 37.10 239 | 82.89 155 | 62.07 126 | 66.84 265 | 83.75 160 |
|
F-COLMAP | | | 63.05 232 | 60.87 244 | 69.58 210 | 76.99 192 | 53.63 146 | 78.12 135 | 76.16 205 | 47.97 269 | 52.41 310 | 81.61 183 | 27.87 310 | 78.11 241 | 40.07 281 | 66.66 266 | 77.00 265 |
|
pm-mvs1 | | | 65.24 210 | 64.97 201 | 66.04 249 | 72.38 259 | 39.40 298 | 72.62 234 | 75.63 213 | 55.53 186 | 62.35 232 | 83.18 152 | 47.45 130 | 76.47 261 | 49.06 217 | 66.54 267 | 82.24 195 |
|
v148 | | | 68.24 161 | 67.19 164 | 71.40 173 | 70.43 283 | 47.77 227 | 75.76 183 | 77.03 197 | 58.91 123 | 67.36 154 | 80.10 217 | 48.60 116 | 81.89 176 | 60.01 143 | 66.52 268 | 84.53 133 |
|
eth_miper_zixun_eth | | | 67.63 171 | 66.28 183 | 71.67 165 | 71.60 270 | 48.33 220 | 73.68 221 | 77.88 181 | 55.80 181 | 65.91 178 | 78.62 244 | 47.35 134 | 82.88 156 | 59.45 148 | 66.25 269 | 83.81 155 |
|
sss | | | 56.17 279 | 56.57 270 | 54.96 306 | 66.93 313 | 36.32 321 | 57.94 322 | 61.69 310 | 41.67 317 | 58.64 263 | 75.32 286 | 38.72 220 | 56.25 334 | 42.04 273 | 66.19 270 | 72.31 313 |
|
RRT_MVS | | | 68.77 147 | 66.71 169 | 74.95 89 | 75.93 209 | 58.55 78 | 80.50 100 | 75.84 210 | 56.09 174 | 68.17 137 | 83.74 142 | 28.50 307 | 82.98 152 | 65.67 95 | 65.91 271 | 83.33 172 |
|
COLMAP_ROB | | 52.97 17 | 61.27 250 | 58.81 252 | 68.64 221 | 74.63 229 | 52.51 165 | 78.42 132 | 73.30 241 | 49.92 251 | 50.96 315 | 81.51 186 | 23.06 332 | 79.40 219 | 31.63 322 | 65.85 272 | 74.01 297 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CVMVSNet | | | 59.63 258 | 59.14 251 | 61.08 286 | 74.47 232 | 38.84 302 | 75.20 191 | 68.74 271 | 31.15 338 | 58.24 267 | 76.51 271 | 32.39 284 | 68.58 292 | 49.77 209 | 65.84 273 | 75.81 275 |
|
MSDG | | | 61.81 245 | 59.23 250 | 69.55 211 | 72.64 254 | 52.63 161 | 70.45 264 | 75.81 211 | 51.38 235 | 53.70 302 | 76.11 275 | 29.52 300 | 81.08 194 | 37.70 291 | 65.79 274 | 74.93 286 |
|
FMVSNet5 | | | 55.86 280 | 54.93 280 | 58.66 293 | 71.05 277 | 36.35 319 | 64.18 301 | 62.48 307 | 46.76 279 | 50.66 319 | 74.73 290 | 25.80 324 | 64.04 309 | 33.11 313 | 65.57 275 | 75.59 278 |
|
pmmvs5 | | | 56.47 275 | 55.68 276 | 58.86 291 | 61.41 337 | 36.71 316 | 66.37 284 | 62.75 305 | 40.38 324 | 53.70 302 | 76.62 268 | 34.56 255 | 67.05 298 | 40.02 283 | 65.27 276 | 72.83 303 |
|
miper_lstm_enhance | | | 62.03 241 | 60.88 243 | 65.49 257 | 66.71 315 | 46.25 241 | 56.29 327 | 75.70 212 | 50.68 242 | 61.27 240 | 75.48 284 | 40.21 206 | 68.03 294 | 56.31 160 | 65.25 277 | 82.18 196 |
|
tpm | | | 57.34 271 | 58.16 259 | 54.86 307 | 71.80 269 | 34.77 326 | 67.47 281 | 56.04 330 | 48.20 266 | 60.10 246 | 76.92 263 | 37.17 237 | 53.41 341 | 40.76 280 | 65.01 278 | 76.40 271 |
|
pmmvs4 | | | 61.48 248 | 59.39 249 | 67.76 229 | 71.57 271 | 53.86 143 | 71.42 248 | 65.34 289 | 44.20 300 | 59.46 253 | 77.92 251 | 35.90 245 | 74.71 269 | 43.87 258 | 64.87 279 | 74.71 290 |
|
test_0402 | | | 63.25 229 | 61.01 242 | 69.96 200 | 80.00 121 | 54.37 140 | 76.86 162 | 72.02 249 | 54.58 204 | 58.71 261 | 80.79 203 | 35.00 252 | 84.36 123 | 26.41 340 | 64.71 280 | 71.15 320 |
|
CR-MVSNet | | | 59.91 255 | 57.90 262 | 65.96 250 | 69.96 292 | 52.07 171 | 65.31 294 | 63.15 303 | 42.48 314 | 59.36 254 | 74.84 288 | 35.83 246 | 70.75 284 | 45.50 245 | 64.65 281 | 75.06 282 |
|
RPMNet | | | 61.53 247 | 58.42 256 | 70.86 185 | 69.96 292 | 52.07 171 | 65.31 294 | 81.36 109 | 43.20 309 | 59.36 254 | 70.15 316 | 35.37 248 | 85.47 102 | 36.42 303 | 64.65 281 | 75.06 282 |
|
pmmvs6 | | | 63.69 223 | 62.82 222 | 66.27 244 | 70.63 280 | 39.27 299 | 73.13 226 | 75.47 216 | 52.69 221 | 59.75 252 | 82.30 168 | 39.71 210 | 77.03 256 | 47.40 226 | 64.35 283 | 82.53 190 |
|
WR-MVS_H | | | 67.02 184 | 66.92 167 | 67.33 234 | 77.95 168 | 37.75 310 | 77.57 143 | 82.11 93 | 62.03 71 | 62.65 223 | 82.48 164 | 50.57 94 | 79.46 218 | 42.91 267 | 64.01 284 | 84.79 127 |
|
test0.0.03 1 | | | 53.32 292 | 53.59 291 | 52.50 317 | 62.81 332 | 29.45 343 | 59.51 317 | 54.11 334 | 50.08 249 | 54.40 296 | 74.31 293 | 32.62 280 | 55.92 336 | 30.50 328 | 63.95 285 | 72.15 315 |
|
PatchMatch-RL | | | 56.25 278 | 54.55 283 | 61.32 285 | 77.06 189 | 56.07 116 | 65.57 290 | 54.10 335 | 44.13 302 | 53.49 307 | 71.27 309 | 25.20 327 | 66.78 300 | 36.52 302 | 63.66 286 | 61.12 334 |
|
PatchmatchNet | | | 59.84 256 | 58.24 258 | 64.65 264 | 73.05 248 | 46.70 237 | 69.42 272 | 62.18 308 | 47.55 273 | 58.88 260 | 71.96 305 | 34.49 257 | 69.16 289 | 42.99 266 | 63.60 287 | 78.07 250 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-SCA-FT | | | 62.49 234 | 61.52 235 | 65.40 258 | 71.99 265 | 50.80 184 | 71.15 255 | 69.63 262 | 45.71 289 | 60.61 243 | 77.93 250 | 37.45 232 | 65.99 304 | 55.67 167 | 63.50 288 | 79.42 239 |
|
CP-MVSNet | | | 66.49 196 | 66.41 177 | 66.72 237 | 77.67 174 | 36.33 320 | 76.83 163 | 79.52 149 | 62.45 61 | 62.54 226 | 83.47 149 | 46.32 145 | 78.37 237 | 45.47 247 | 63.43 289 | 85.45 104 |
|
PS-CasMVS | | | 66.42 197 | 66.32 181 | 66.70 239 | 77.60 181 | 36.30 322 | 76.94 160 | 79.61 147 | 62.36 63 | 62.43 230 | 83.66 143 | 45.69 149 | 78.37 237 | 45.35 249 | 63.26 290 | 85.42 107 |
|
IterMVS | | | 62.79 233 | 61.27 238 | 67.35 233 | 69.37 299 | 52.04 173 | 71.17 253 | 68.24 274 | 52.63 222 | 59.82 250 | 76.91 264 | 37.32 234 | 72.36 277 | 52.80 191 | 63.19 291 | 77.66 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PEN-MVS | | | 66.60 193 | 66.45 173 | 67.04 235 | 77.11 188 | 36.56 317 | 77.03 158 | 80.42 134 | 62.95 48 | 62.51 228 | 84.03 135 | 46.69 143 | 79.07 229 | 44.22 252 | 63.08 292 | 85.51 101 |
|
tpmrst | | | 58.24 264 | 58.70 254 | 56.84 300 | 66.97 312 | 34.32 329 | 69.57 271 | 61.14 312 | 47.17 277 | 58.58 264 | 71.60 306 | 41.28 201 | 60.41 320 | 49.20 216 | 62.84 293 | 75.78 276 |
|
testgi | | | 51.90 296 | 52.37 295 | 50.51 322 | 60.39 342 | 23.55 351 | 58.42 320 | 58.15 319 | 49.03 257 | 51.83 312 | 79.21 237 | 22.39 334 | 55.59 337 | 29.24 333 | 62.64 294 | 72.40 312 |
|
SCA | | | 60.49 252 | 58.38 257 | 66.80 236 | 74.14 239 | 48.06 223 | 63.35 302 | 63.23 302 | 49.13 256 | 59.33 257 | 72.10 303 | 37.45 232 | 74.27 272 | 44.17 253 | 62.57 295 | 78.05 251 |
|
EPMVS | | | 53.96 287 | 53.69 290 | 54.79 308 | 66.12 320 | 31.96 338 | 62.34 307 | 49.05 340 | 44.42 299 | 55.54 282 | 71.33 308 | 30.22 295 | 56.70 331 | 41.65 277 | 62.54 296 | 75.71 277 |
|
ITE_SJBPF | | | | | 62.09 279 | 66.16 319 | 44.55 262 | | 64.32 296 | 47.36 275 | 55.31 286 | 80.34 210 | 19.27 338 | 62.68 313 | 36.29 304 | 62.39 297 | 79.04 242 |
|
MIMVSNet1 | | | 55.17 284 | 54.31 286 | 57.77 298 | 70.03 291 | 32.01 337 | 65.68 289 | 64.81 292 | 49.19 255 | 46.75 329 | 76.00 276 | 25.53 326 | 64.04 309 | 28.65 334 | 62.13 298 | 77.26 261 |
|
baseline1 | | | 63.81 222 | 63.87 208 | 63.62 268 | 76.29 202 | 36.36 318 | 71.78 246 | 67.29 278 | 56.05 176 | 64.23 209 | 82.95 154 | 47.11 136 | 74.41 271 | 47.30 227 | 61.85 299 | 80.10 230 |
|
USDC | | | 56.35 277 | 54.24 287 | 62.69 275 | 64.74 326 | 40.31 291 | 65.05 296 | 73.83 237 | 43.93 304 | 47.58 324 | 77.71 258 | 15.36 343 | 75.05 268 | 38.19 290 | 61.81 300 | 72.70 304 |
|
PatchT | | | 53.17 293 | 53.44 292 | 52.33 318 | 68.29 307 | 25.34 349 | 58.21 321 | 54.41 333 | 44.46 298 | 54.56 294 | 69.05 320 | 33.32 269 | 60.94 317 | 36.93 295 | 61.76 301 | 70.73 322 |
|
tpm cat1 | | | 59.25 259 | 56.95 268 | 66.15 246 | 72.19 262 | 46.96 235 | 68.09 278 | 65.76 286 | 40.03 326 | 57.81 270 | 70.56 313 | 38.32 224 | 74.51 270 | 38.26 289 | 61.50 302 | 77.00 265 |
|
tpmvs | | | 58.47 262 | 56.95 268 | 63.03 274 | 70.20 286 | 41.21 287 | 67.90 280 | 67.23 279 | 49.62 252 | 54.73 292 | 70.84 310 | 34.14 260 | 76.24 264 | 36.64 300 | 61.29 303 | 71.64 316 |
|
Patchmtry | | | 57.16 272 | 56.47 271 | 59.23 288 | 69.17 301 | 34.58 328 | 62.98 303 | 63.15 303 | 44.53 296 | 56.83 275 | 74.84 288 | 35.83 246 | 68.71 291 | 40.03 282 | 60.91 304 | 74.39 293 |
|
DTE-MVSNet | | | 65.58 205 | 65.34 196 | 66.31 242 | 76.06 207 | 34.79 325 | 76.43 168 | 79.38 152 | 62.55 59 | 61.66 237 | 83.83 139 | 45.60 151 | 79.15 227 | 41.64 278 | 60.88 305 | 85.00 119 |
|
CHOSEN 280x420 | | | 47.83 305 | 46.36 309 | 52.24 319 | 67.37 311 | 49.78 201 | 38.91 347 | 43.11 348 | 35.00 334 | 43.27 337 | 63.30 335 | 28.95 304 | 49.19 344 | 36.53 301 | 60.80 306 | 57.76 338 |
|
Patchmatch-test | | | 49.08 303 | 48.28 305 | 51.50 320 | 64.40 328 | 30.85 341 | 45.68 341 | 48.46 343 | 35.60 333 | 46.10 331 | 72.10 303 | 34.47 258 | 46.37 345 | 27.08 338 | 60.65 307 | 77.27 260 |
|
test20.03 | | | 53.87 289 | 54.02 289 | 53.41 313 | 61.47 336 | 28.11 345 | 61.30 311 | 59.21 316 | 51.34 237 | 52.09 311 | 77.43 259 | 33.29 270 | 58.55 325 | 29.76 331 | 60.27 308 | 73.58 300 |
|
MVS-HIRNet | | | 45.52 308 | 44.48 311 | 48.65 323 | 68.49 305 | 34.05 330 | 59.41 319 | 44.50 347 | 27.03 342 | 37.96 343 | 50.47 345 | 26.16 323 | 64.10 308 | 26.74 339 | 59.52 309 | 47.82 342 |
|
Patchmatch-RL test | | | 58.16 265 | 55.49 277 | 66.15 246 | 67.92 308 | 48.89 215 | 60.66 315 | 51.07 337 | 47.86 270 | 59.36 254 | 62.71 336 | 34.02 262 | 72.27 279 | 56.41 159 | 59.40 310 | 77.30 259 |
|
AllTest | | | 57.08 273 | 54.65 282 | 64.39 265 | 71.44 272 | 49.03 210 | 69.92 269 | 67.30 276 | 45.97 286 | 47.16 326 | 79.77 223 | 17.47 339 | 67.56 296 | 33.65 311 | 59.16 311 | 76.57 269 |
|
TestCases | | | | | 64.39 265 | 71.44 272 | 49.03 210 | | 67.30 276 | 45.97 286 | 47.16 326 | 79.77 223 | 17.47 339 | 67.56 296 | 33.65 311 | 59.16 311 | 76.57 269 |
|
RPSCF | | | 55.80 281 | 54.22 288 | 60.53 287 | 65.13 325 | 42.91 275 | 64.30 299 | 57.62 323 | 36.84 332 | 58.05 269 | 82.28 169 | 28.01 309 | 56.24 335 | 37.14 294 | 58.61 313 | 82.44 194 |
|
EU-MVSNet | | | 55.61 282 | 54.41 285 | 59.19 289 | 65.41 324 | 33.42 333 | 72.44 237 | 71.91 250 | 28.81 340 | 51.27 313 | 73.87 296 | 24.76 329 | 69.08 290 | 43.04 265 | 58.20 314 | 75.06 282 |
|
pmmvs-eth3d | | | 58.81 260 | 56.31 273 | 66.30 243 | 67.61 309 | 52.42 168 | 72.30 239 | 64.76 293 | 43.55 306 | 54.94 289 | 74.19 294 | 28.95 304 | 72.60 276 | 43.31 261 | 57.21 315 | 73.88 298 |
|
our_test_3 | | | 56.49 274 | 54.42 284 | 62.68 276 | 69.51 296 | 45.48 253 | 66.08 286 | 61.49 311 | 44.11 303 | 50.73 318 | 69.60 319 | 33.05 271 | 68.15 293 | 38.38 288 | 56.86 316 | 74.40 292 |
|
TinyColmap | | | 54.14 286 | 51.72 296 | 61.40 284 | 66.84 314 | 41.97 280 | 66.52 283 | 68.51 272 | 44.81 292 | 42.69 338 | 75.77 280 | 11.66 346 | 72.94 275 | 31.96 316 | 56.77 317 | 69.27 327 |
|
ppachtmachnet_test | | | 58.06 267 | 55.38 278 | 66.10 248 | 69.51 296 | 48.99 213 | 68.01 279 | 66.13 285 | 44.50 297 | 54.05 300 | 70.74 311 | 32.09 286 | 72.34 278 | 36.68 299 | 56.71 318 | 76.99 267 |
|
OurMVSNet-221017-0 | | | 61.37 249 | 58.63 255 | 69.61 207 | 72.05 264 | 48.06 223 | 73.93 216 | 72.51 246 | 47.23 276 | 54.74 291 | 80.92 198 | 21.49 337 | 81.24 189 | 48.57 221 | 56.22 319 | 79.53 238 |
|
TransMVSNet (Re) | | | 64.72 214 | 64.33 203 | 65.87 253 | 75.22 221 | 38.56 304 | 74.66 204 | 75.08 226 | 58.90 124 | 61.79 236 | 82.63 159 | 51.18 87 | 78.07 242 | 43.63 260 | 55.87 320 | 80.99 218 |
|
FPMVS | | | 42.18 311 | 41.11 314 | 45.39 325 | 58.03 345 | 41.01 289 | 49.50 336 | 53.81 336 | 30.07 339 | 33.71 344 | 64.03 332 | 11.69 345 | 52.08 343 | 14.01 347 | 55.11 321 | 43.09 344 |
|
dp | | | 51.89 297 | 51.60 297 | 52.77 316 | 68.44 306 | 32.45 336 | 62.36 306 | 54.57 332 | 44.16 301 | 49.31 322 | 67.91 322 | 28.87 306 | 56.61 332 | 33.89 310 | 54.89 322 | 69.24 328 |
|
ADS-MVSNet2 | | | 51.33 299 | 48.76 304 | 59.07 290 | 66.02 322 | 44.60 260 | 50.90 334 | 59.76 315 | 36.90 330 | 50.74 316 | 66.18 329 | 26.38 320 | 63.11 311 | 27.17 336 | 54.76 323 | 69.50 325 |
|
ADS-MVSNet | | | 48.48 304 | 47.77 306 | 50.63 321 | 66.02 322 | 29.92 342 | 50.90 334 | 50.87 339 | 36.90 330 | 50.74 316 | 66.18 329 | 26.38 320 | 52.47 342 | 27.17 336 | 54.76 323 | 69.50 325 |
|
PM-MVS | | | 52.33 295 | 50.19 300 | 58.75 292 | 62.10 334 | 45.14 255 | 65.75 287 | 40.38 349 | 43.60 305 | 53.52 305 | 72.65 300 | 9.16 352 | 65.87 305 | 50.41 205 | 54.18 325 | 65.24 333 |
|
JIA-IIPM | | | 51.56 298 | 47.68 308 | 63.21 271 | 64.61 327 | 50.73 185 | 47.71 339 | 58.77 318 | 42.90 311 | 48.46 323 | 51.72 342 | 24.97 328 | 70.24 286 | 36.06 305 | 53.89 326 | 68.64 329 |
|
ambc | | | | | 65.13 261 | 63.72 331 | 37.07 313 | 47.66 340 | 78.78 161 | | 54.37 297 | 71.42 307 | 11.24 348 | 80.94 196 | 45.64 242 | 53.85 327 | 77.38 258 |
|
DSMNet-mixed | | | 39.30 315 | 38.72 316 | 41.03 329 | 51.22 348 | 19.66 353 | 45.53 342 | 31.35 353 | 15.83 351 | 39.80 342 | 67.42 326 | 22.19 335 | 45.13 346 | 22.43 342 | 52.69 328 | 58.31 337 |
|
N_pmnet | | | 39.35 314 | 40.28 315 | 36.54 330 | 63.76 330 | 1.62 360 | 49.37 337 | 0.76 360 | 34.62 335 | 43.61 336 | 66.38 328 | 26.25 322 | 42.57 348 | 26.02 341 | 51.77 329 | 65.44 332 |
|
TDRefinement | | | 53.44 291 | 50.72 299 | 61.60 282 | 64.31 329 | 46.96 235 | 70.89 259 | 65.27 291 | 41.78 315 | 44.61 334 | 77.98 248 | 11.52 347 | 66.36 302 | 28.57 335 | 51.59 330 | 71.49 317 |
|
Gipuma | | | 34.77 317 | 31.91 321 | 43.33 328 | 62.05 335 | 37.87 308 | 20.39 350 | 67.03 280 | 23.23 346 | 18.41 350 | 25.84 349 | 4.24 355 | 62.73 312 | 14.71 346 | 51.32 331 | 29.38 347 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
YYNet1 | | | 50.73 300 | 48.96 301 | 56.03 303 | 61.10 339 | 41.78 283 | 51.94 332 | 56.44 326 | 40.94 322 | 44.84 332 | 67.80 324 | 30.08 297 | 55.08 339 | 36.77 296 | 50.71 332 | 71.22 318 |
|
MDA-MVSNet_test_wron | | | 50.71 301 | 48.95 302 | 56.00 304 | 61.17 338 | 41.84 281 | 51.90 333 | 56.45 325 | 40.96 321 | 44.79 333 | 67.84 323 | 30.04 298 | 55.07 340 | 36.71 298 | 50.69 333 | 71.11 321 |
|
SixPastTwentyTwo | | | 61.65 246 | 58.80 253 | 70.20 197 | 75.80 211 | 47.22 233 | 75.59 184 | 69.68 261 | 54.61 202 | 54.11 299 | 79.26 236 | 27.07 317 | 82.96 153 | 43.27 262 | 49.79 334 | 80.41 225 |
|
new-patchmatchnet | | | 47.56 306 | 47.73 307 | 47.06 324 | 58.81 344 | 9.37 357 | 48.78 338 | 59.21 316 | 43.28 307 | 44.22 335 | 68.66 321 | 25.67 325 | 57.20 330 | 31.57 324 | 49.35 335 | 74.62 291 |
|
LF4IMVS | | | 42.95 310 | 42.26 312 | 45.04 326 | 48.30 349 | 32.50 335 | 54.80 328 | 48.49 342 | 28.03 341 | 40.51 341 | 70.16 315 | 9.24 351 | 43.89 347 | 31.63 322 | 49.18 336 | 58.72 336 |
|
PMVS | | 28.69 22 | 36.22 316 | 33.29 320 | 45.02 327 | 36.82 356 | 35.98 323 | 54.68 329 | 48.74 341 | 26.31 343 | 21.02 348 | 51.61 343 | 2.88 359 | 60.10 321 | 9.99 351 | 47.58 337 | 38.99 346 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
pmmvs3 | | | 44.92 309 | 41.95 313 | 53.86 310 | 52.58 347 | 43.55 269 | 62.11 308 | 46.90 346 | 26.05 344 | 40.63 340 | 60.19 337 | 11.08 349 | 57.91 327 | 31.83 321 | 46.15 338 | 60.11 335 |
|
MDA-MVSNet-bldmvs | | | 53.87 289 | 50.81 298 | 63.05 273 | 66.25 318 | 48.58 217 | 56.93 325 | 63.82 298 | 48.09 267 | 41.22 339 | 70.48 314 | 30.34 294 | 68.00 295 | 34.24 309 | 45.92 339 | 72.57 306 |
|
UnsupCasMVSNet_eth | | | 53.16 294 | 52.47 294 | 55.23 305 | 59.45 343 | 33.39 334 | 59.43 318 | 69.13 268 | 45.98 285 | 50.35 321 | 72.32 302 | 29.30 303 | 58.26 326 | 42.02 274 | 44.30 340 | 74.05 296 |
|
UnsupCasMVSNet_bld | | | 50.07 302 | 48.87 303 | 53.66 311 | 60.97 341 | 33.67 332 | 57.62 323 | 64.56 295 | 39.47 328 | 47.38 325 | 64.02 334 | 27.47 313 | 59.32 323 | 34.69 308 | 43.68 341 | 67.98 330 |
|
new_pmnet | | | 34.13 318 | 34.29 319 | 33.64 331 | 52.63 346 | 18.23 355 | 44.43 344 | 33.90 352 | 22.81 347 | 30.89 345 | 53.18 340 | 10.48 350 | 35.72 352 | 20.77 344 | 39.51 342 | 46.98 343 |
|
K. test v3 | | | 60.47 253 | 57.11 265 | 70.56 191 | 73.74 241 | 48.22 221 | 75.10 195 | 62.55 306 | 58.27 137 | 53.62 304 | 76.31 274 | 27.81 311 | 81.59 182 | 47.42 225 | 39.18 343 | 81.88 202 |
|
LCM-MVSNet | | | 40.30 313 | 35.88 318 | 53.57 312 | 42.24 351 | 29.15 344 | 45.21 343 | 60.53 314 | 22.23 348 | 28.02 346 | 50.98 344 | 3.72 357 | 61.78 316 | 31.22 327 | 38.76 344 | 69.78 324 |
|
lessismore_v0 | | | | | 69.91 203 | 71.42 274 | 47.80 225 | | 50.90 338 | | 50.39 320 | 75.56 282 | 27.43 315 | 81.33 186 | 45.91 239 | 34.10 345 | 80.59 222 |
|
PVSNet_0 | | 43.31 20 | 47.46 307 | 45.64 310 | 52.92 315 | 67.60 310 | 44.65 259 | 54.06 330 | 54.64 331 | 41.59 318 | 46.15 330 | 58.75 338 | 30.99 289 | 58.66 324 | 32.18 315 | 24.81 346 | 55.46 340 |
|
PMMVS2 | | | 27.40 319 | 25.91 322 | 31.87 333 | 39.46 355 | 6.57 358 | 31.17 348 | 28.52 354 | 23.96 345 | 20.45 349 | 48.94 346 | 4.20 356 | 37.94 351 | 16.51 345 | 19.97 347 | 51.09 341 |
|
MVE | | 17.77 23 | 21.41 322 | 17.77 326 | 32.34 332 | 34.34 357 | 25.44 348 | 16.11 351 | 24.11 355 | 11.19 352 | 13.22 352 | 31.92 347 | 1.58 360 | 30.95 353 | 10.47 349 | 17.03 348 | 40.62 345 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 23.77 320 | 22.73 324 | 26.90 334 | 42.02 352 | 20.67 352 | 42.66 345 | 35.70 350 | 17.43 349 | 10.28 354 | 25.05 350 | 6.42 354 | 42.39 349 | 10.28 350 | 14.71 349 | 17.63 348 |
|
EMVS | | | 22.97 321 | 21.84 325 | 26.36 335 | 40.20 353 | 19.53 354 | 41.95 346 | 34.64 351 | 17.09 350 | 9.73 355 | 22.83 351 | 7.29 353 | 42.22 350 | 9.18 352 | 13.66 350 | 17.32 349 |
|
wuyk23d | | | 13.32 324 | 12.52 327 | 15.71 336 | 47.54 350 | 26.27 346 | 31.06 349 | 1.98 359 | 4.93 354 | 5.18 356 | 1.94 356 | 0.45 361 | 18.54 354 | 6.81 354 | 12.83 351 | 2.33 352 |
|
ANet_high | | | 41.38 312 | 37.47 317 | 53.11 314 | 39.73 354 | 24.45 350 | 56.94 324 | 69.69 260 | 47.65 272 | 26.04 347 | 52.32 341 | 12.44 344 | 62.38 314 | 21.80 343 | 10.61 352 | 72.49 307 |
|
tmp_tt | | | 9.43 325 | 11.14 328 | 4.30 338 | 2.38 359 | 4.40 359 | 13.62 352 | 16.08 357 | 0.39 355 | 15.89 351 | 13.06 352 | 15.80 342 | 5.54 356 | 12.63 348 | 10.46 353 | 2.95 351 |
|
DeepMVS_CX | | | | | 12.03 337 | 17.97 358 | 10.91 356 | | 10.60 358 | 7.46 353 | 11.07 353 | 28.36 348 | 3.28 358 | 11.29 355 | 8.01 353 | 9.74 354 | 13.89 350 |
|
uanet_test | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 0.00 361 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 363 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
cdsmvs_eth3d_5k | | | 17.50 323 | 23.34 323 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 78.63 165 | 0.00 358 | 0.00 359 | 82.18 170 | 49.25 105 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
pcd_1.5k_mvsjas | | | 3.92 329 | 5.23 332 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 0.00 361 | 0.00 358 | 0.00 359 | 0.00 359 | 47.05 137 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
sosnet-low-res | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 0.00 361 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 363 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
sosnet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 0.00 361 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 363 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
uncertanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 0.00 361 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 363 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
Regformer | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 0.00 361 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 363 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
testmvs | | | 4.52 328 | 6.03 331 | 0.01 340 | 0.01 360 | 0.00 362 | 53.86 331 | 0.00 361 | 0.01 356 | 0.04 357 | 0.27 357 | 0.00 363 | 0.00 357 | 0.04 355 | 0.00 355 | 0.03 354 |
|
test123 | | | 4.73 327 | 6.30 330 | 0.02 339 | 0.01 360 | 0.01 361 | 56.36 326 | 0.00 361 | 0.01 356 | 0.04 357 | 0.21 358 | 0.01 362 | 0.00 357 | 0.03 356 | 0.00 355 | 0.04 353 |
|
ab-mvs-re | | | 6.49 326 | 8.65 329 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 0.00 361 | 0.00 358 | 0.00 359 | 77.89 253 | 0.00 363 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
uanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 362 | 0.00 353 | 0.00 361 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 363 | 0.00 357 | 0.00 357 | 0.00 355 | 0.00 355 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 71 | | 86.78 12 | 64.20 31 | 85.97 1 | 91.34 10 | 66.87 2 | 90.78 4 | | | |
|
save fliter | | | | | | 86.17 32 | 61.30 31 | 83.98 47 | 79.66 146 | 59.00 121 | | | | | | | |
|
test0726 | | | | | | 87.75 7 | 59.07 66 | 87.86 2 | 86.83 10 | 64.26 29 | 84.19 5 | 91.92 5 | 64.82 6 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 251 |
|
test_part2 | | | | | | 87.58 9 | 60.47 46 | | | | 83.42 9 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 254 | | | | 78.05 251 |
|
sam_mvs | | | | | | | | | | | | | 33.43 268 | | | | |
|
MTGPA | | | | | | | | | 80.97 125 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 276 | | | | 3.64 354 | 32.39 284 | 69.49 288 | 44.17 253 | | |
|
test_post | | | | | | | | | | | | 3.55 355 | 33.90 263 | 66.52 301 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 332 | 34.50 256 | 74.27 272 | | | |
|
MTMP | | | | | | | | 86.03 17 | 17.08 356 | | | | | | | | |
|
gm-plane-assit | | | | | | 71.40 275 | 41.72 285 | | | 48.85 259 | | 73.31 299 | | 82.48 169 | 48.90 218 | | |
|
TEST9 | | | | | | 85.58 44 | 61.59 27 | 81.62 84 | 81.26 116 | 55.65 184 | 74.93 42 | 88.81 62 | 53.70 62 | 84.68 117 | | | |
|
test_8 | | | | | | 85.40 48 | 60.96 37 | 81.54 87 | 81.18 119 | 55.86 177 | 74.81 45 | 88.80 64 | 53.70 62 | 84.45 122 | | | |
|
agg_prior | | | | | | 85.04 52 | 59.96 51 | | 81.04 122 | | 74.68 46 | | | 84.04 129 | | | |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 79 | | | | | | | | | |
|
test_prior | | | | | 76.69 59 | 84.20 64 | 57.27 95 | | 84.88 36 | | | | | 86.43 78 | | | 86.38 63 |
|
旧先验2 | | | | | | | | 76.08 176 | | 45.32 290 | 76.55 31 | | | 65.56 306 | 58.75 151 | | |
|
新几何2 | | | | | | | | 76.12 174 | | | | | | | | | |
|
无先验 | | | | | | | | 79.66 114 | 74.30 232 | 48.40 264 | | | | 80.78 201 | 53.62 183 | | 79.03 243 |
|
原ACMM2 | | | | | | | | 79.02 121 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 72.18 280 | 46.95 232 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 54 | | | | |
|
testdata1 | | | | | | | | 72.65 232 | | 60.50 90 | | | | | | | |
|
plane_prior7 | | | | | | 81.41 94 | 55.96 118 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 101 | 56.24 113 | | | | | | 45.26 159 | | | | |
|
plane_prior4 | | | | | | | | | | | | 86.10 99 | | | | | |
|
plane_prior3 | | | | | | | 56.09 115 | | | 63.92 36 | 69.27 120 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 39 | | 64.52 25 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 99 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 361 | | | | | | | | |
|
nn | | | | | | | | | 0.00 361 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 345 | | | | | | | | |
|
test11 | | | | | | | | | 83.47 65 | | | | | | | | |
|
door | | | | | | | | | 47.60 344 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 134 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 106 | | 82.31 74 | | 62.10 67 | 67.85 144 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 106 | | 82.31 74 | | 62.10 67 | 67.85 144 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 83 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 144 | | | 86.93 60 | | | 84.32 139 |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 153 | | | | |
|
NP-MVS | | | | | | 80.98 104 | 56.05 117 | | | | | 85.54 112 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 347 | 61.22 312 | | 40.10 325 | 51.10 314 | | 32.97 273 | | 38.49 287 | | 78.61 246 |
|
Test By Simon | | | | | | | | | | | | | 48.33 118 | | | | |
|