This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MSP-MVS81.06 381.40 480.02 186.21 3462.73 1286.09 1786.83 1265.51 1483.81 1090.51 2363.71 1289.23 2081.51 188.44 3288.09 17
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVS-pluss78.35 2278.46 1878.03 4384.96 6059.52 6182.93 6585.39 3262.15 7076.41 3691.51 1152.47 7986.78 7180.66 289.64 2387.80 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft80.28 680.39 779.95 386.60 2561.95 2286.33 1385.75 2762.49 6582.20 1592.28 156.53 3489.70 1579.85 391.48 188.19 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 6888.18 187.15 665.04 2084.26 591.86 667.01 190.84 379.48 491.38 288.42 7
test_0728_THIRD65.04 2083.82 892.00 364.69 1090.75 879.48 490.63 1088.09 17
ACMMP_NAP78.77 1578.78 1578.74 3085.44 5261.04 3683.84 5285.16 3662.88 5678.10 2891.26 1352.51 7788.39 3179.34 690.52 1386.78 65
MSC_two_6792asdad79.95 387.24 1461.04 3685.62 2990.96 179.31 790.65 887.85 25
No_MVS79.95 387.24 1461.04 3685.62 2990.96 179.31 790.65 887.85 25
IU-MVS87.77 459.15 6885.53 3153.93 22384.64 379.07 990.87 588.37 9
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6665.37 1578.78 2590.64 1958.63 2387.24 5579.00 1090.37 1485.26 122
APDe-MVS80.16 780.59 678.86 2886.64 2360.02 5388.12 386.42 1862.94 5482.40 1492.12 259.64 1889.76 1478.70 1188.32 3686.79 64
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 2084.37 3685.03 3966.96 577.58 3290.06 4059.47 2089.13 2278.67 1289.73 2087.03 56
DVP-MVScopyleft80.84 481.64 378.42 3687.75 759.07 7287.85 585.03 3964.26 3283.82 892.00 364.82 890.75 878.66 1390.61 1185.45 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1587.82 359.11 7187.85 587.15 690.84 378.66 1390.61 1187.62 36
SED-MVS81.56 282.30 279.32 1287.77 458.90 7787.82 786.78 1464.18 3585.97 191.84 866.87 390.83 578.63 1590.87 588.23 12
test_241102_TWO86.73 1664.18 3584.26 591.84 865.19 690.83 578.63 1590.70 787.65 34
SteuartSystems-ACMMP79.48 1079.31 1179.98 283.01 8262.18 1987.60 985.83 2566.69 1078.03 3190.98 1454.26 5790.06 1278.42 1789.02 2787.69 32
Skip Steuart: Steuart Systems R&D Blog.
9.1478.75 1683.10 7884.15 4388.26 259.90 11378.57 2790.36 2857.51 3186.86 6877.39 1889.52 25
zzz-MVS77.61 3277.36 3278.35 3786.08 4163.57 283.37 5880.97 13265.13 1875.77 3890.88 1548.63 11986.66 7477.23 1988.17 3884.81 134
MTAPA76.90 3976.42 4178.35 3786.08 4163.57 274.92 20580.97 13265.13 1875.77 3890.88 1548.63 11986.66 7477.23 1988.17 3884.81 134
MP-MVScopyleft78.35 2278.26 2278.64 3186.54 2763.47 586.02 2083.55 7063.89 4073.60 7090.60 2054.85 5386.72 7277.20 2188.06 4185.74 101
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETH3D-3000-0.178.58 1678.91 1477.61 4883.06 7957.86 9284.14 4588.31 160.37 10179.14 2290.35 2957.76 2887.00 6577.16 2289.90 1887.97 20
xxxxxxxxxxxxxcwj78.37 2178.25 2378.76 2986.17 3661.30 3183.98 4879.95 14759.00 12979.16 2090.75 1757.96 2587.09 6277.08 2390.18 1587.87 23
SF-MVS78.82 1379.22 1277.60 4982.88 8457.83 9384.99 3288.13 361.86 7879.16 2090.75 1757.96 2587.09 6277.08 2390.18 1587.87 23
TSAR-MVS + MP.78.44 2078.28 2178.90 2684.96 6061.41 2984.03 4683.82 6459.34 12679.37 1989.76 5159.84 1687.62 5276.69 2586.74 5887.68 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS78.82 1378.67 1779.30 1386.43 3062.05 2186.62 1186.01 2463.32 4675.08 4390.47 2753.96 6188.68 2876.48 2689.63 2487.16 53
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4885.71 2686.42 1863.28 4783.27 1391.83 1064.96 790.47 1076.41 2789.67 2286.84 61
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETH3D cwj APD-0.1678.02 2578.13 2577.71 4782.10 8958.65 8282.72 7087.55 558.33 14678.05 3090.06 4058.35 2487.65 5176.15 2889.86 1986.82 62
SD-MVS77.70 3077.62 2977.93 4584.47 6761.88 2484.55 3583.87 6260.37 10179.89 1889.38 5654.97 5085.58 10376.12 2984.94 6986.33 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVScopyleft77.28 3476.85 3678.54 3485.00 5960.81 4382.91 6685.08 3762.57 6373.09 7989.97 4650.90 10087.48 5375.30 3086.85 5687.33 50
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test9_res75.28 3188.31 3783.81 164
train_agg76.27 4576.15 4276.64 6585.58 4961.59 2781.62 8881.26 12355.86 18874.93 4688.81 6553.70 6784.68 12475.24 3288.33 3583.65 176
agg_prior175.94 4876.01 4475.72 7985.04 5759.96 5481.44 9281.04 12956.14 18474.68 5288.90 6353.91 6384.04 13675.01 3387.92 4583.16 192
GST-MVS78.14 2477.85 2778.99 2586.05 4361.82 2585.84 2185.21 3563.56 4474.29 5990.03 4352.56 7688.53 3074.79 3488.34 3486.63 68
DeepC-MVS69.38 278.56 1878.14 2479.83 683.60 7261.62 2684.17 4286.85 1063.23 4973.84 6790.25 3557.68 2989.96 1374.62 3589.03 2687.89 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640079.14 1179.32 1078.61 3286.34 3158.11 8984.65 3487.66 458.56 14178.87 2489.54 5363.67 1389.57 1674.60 3689.98 1788.14 15
PC_three_145255.09 20684.46 489.84 4966.68 589.41 1774.24 3791.38 288.42 7
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1884.92 6460.32 5183.03 6285.33 3462.86 5780.17 1790.03 4361.76 1488.95 2474.21 3888.67 3188.12 16
NCCC78.58 1678.31 2079.39 1187.51 1262.61 1685.20 3184.42 4866.73 974.67 5489.38 5655.30 4689.18 2174.19 3987.34 4886.38 71
ZD-MVS86.64 2360.38 5082.70 9257.95 15278.10 2890.06 4056.12 4088.84 2674.05 4087.00 55
HFP-MVS78.01 2777.65 2879.10 2086.71 2062.81 1086.29 1484.32 5062.82 5873.96 6290.50 2453.20 7288.35 3274.02 4187.05 5086.13 84
ACMMPR77.71 2977.23 3379.16 1686.75 1962.93 986.29 1484.24 5262.82 5873.55 7190.56 2249.80 10688.24 3574.02 4187.03 5286.32 79
region2R77.67 3177.18 3479.15 1786.76 1862.95 886.29 1484.16 5462.81 6073.30 7390.58 2149.90 10488.21 3673.78 4387.03 5286.29 82
#test#77.83 2877.41 3179.10 2086.71 2062.81 1085.69 2784.32 5061.61 8173.96 6290.50 2453.20 7288.35 3273.68 4487.05 5086.13 84
MCST-MVS77.48 3377.45 3077.54 5086.67 2258.36 8683.22 6086.93 956.91 16574.91 4888.19 6959.15 2187.68 5073.67 4587.45 4786.57 69
CP-MVS77.12 3776.68 3878.43 3586.05 4363.18 787.55 1083.45 7362.44 6772.68 8590.50 2448.18 12587.34 5473.59 4685.71 6584.76 138
testtj78.47 1978.43 1978.61 3286.82 1760.67 4686.07 1885.38 3362.12 7178.65 2690.29 3355.76 4289.31 1973.55 4787.22 4985.84 93
APD-MVScopyleft78.02 2578.04 2677.98 4486.44 2960.81 4385.52 2884.36 4960.61 9379.05 2390.30 3255.54 4588.32 3473.48 4887.03 5284.83 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OPU-MVS79.83 687.54 1160.93 4087.82 789.89 4767.01 190.33 1173.16 4991.15 488.23 12
agg_prior273.09 5087.93 4484.33 146
CANet76.46 4375.93 4578.06 4281.29 10457.53 9882.35 7683.31 7967.78 370.09 10986.34 10254.92 5188.90 2572.68 5184.55 7187.76 31
PGM-MVS76.77 4176.06 4378.88 2786.14 3962.73 1282.55 7483.74 6561.71 7972.45 9190.34 3148.48 12388.13 3772.32 5286.85 5685.78 95
test_prior376.89 4076.96 3576.69 6284.20 6957.27 10181.75 8584.88 4260.37 10175.01 4489.06 5956.22 3886.43 8472.19 5388.96 2886.38 71
test_prior281.75 8560.37 10175.01 4489.06 5956.22 3872.19 5388.96 28
ACMMPcopyleft76.02 4775.33 5178.07 4185.20 5661.91 2385.49 3084.44 4763.04 5269.80 12089.74 5245.43 16387.16 5972.01 5582.87 8985.14 123
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DROMVSNet75.84 5075.87 4775.74 7878.86 15352.65 16683.73 5386.08 2363.47 4572.77 8487.25 8453.13 7487.93 4471.97 5685.57 6786.66 67
mPP-MVS76.54 4275.93 4578.34 3986.47 2863.50 485.74 2582.28 9662.90 5571.77 9590.26 3446.61 15086.55 8071.71 5785.66 6684.97 130
SR-MVS76.13 4675.70 4877.40 5485.87 4561.20 3385.52 2882.19 9759.99 11275.10 4290.35 2947.66 13186.52 8171.64 5882.99 8484.47 144
XVS77.17 3676.56 4079.00 2386.32 3262.62 1485.83 2283.92 5864.55 2672.17 9290.01 4547.95 12788.01 4171.55 5986.74 5886.37 74
X-MVStestdata70.21 12467.28 16679.00 2386.32 3262.62 1485.83 2283.92 5864.55 2672.17 926.49 37147.95 12788.01 4171.55 5986.74 5886.37 74
Regformer-275.63 5274.99 5377.54 5080.43 11858.32 8779.50 12082.92 8767.84 175.94 3780.75 21655.73 4386.80 6971.44 6180.38 11487.50 40
Regformer-175.47 5374.93 5577.09 5780.43 11857.70 9679.50 12082.13 9867.84 175.73 4080.75 21656.50 3586.07 8871.07 6280.38 11487.50 40
PHI-MVS75.87 4975.36 5077.41 5280.62 11655.91 12784.28 3985.78 2656.08 18673.41 7286.58 9750.94 9988.54 2970.79 6389.71 2187.79 29
diffmvs70.69 11470.43 10971.46 17669.45 31348.95 22372.93 23878.46 17857.27 15971.69 9683.97 14751.48 9177.92 25670.70 6477.95 14987.53 39
test117275.36 5574.81 5877.02 5885.47 5160.79 4583.94 5181.63 10959.52 12374.66 5590.18 3644.74 17085.84 9770.63 6582.52 9384.42 145
h-mvs3372.71 8571.49 9276.40 6881.99 9259.58 6076.92 16676.74 20960.40 9874.81 4985.95 11245.54 15985.76 10070.41 6670.61 22783.86 163
hse-mvs271.04 10869.86 11774.60 10579.58 13657.12 11073.96 22175.25 22760.40 9874.81 4981.95 18845.54 15982.90 16170.41 6666.83 27783.77 169
Regformer-474.25 7073.48 7476.57 6779.75 13156.54 11578.54 13481.49 11366.93 773.90 6580.30 22453.84 6585.98 9369.76 6876.84 16187.17 52
APD-MVS_3200maxsize74.96 5674.39 6376.67 6482.20 8858.24 8883.67 5483.29 8058.41 14373.71 6890.14 3745.62 15685.99 9269.64 6982.85 9085.78 95
baseline74.61 6474.70 5974.34 11275.70 22549.99 20877.54 15084.63 4662.73 6273.98 6187.79 7857.67 3083.82 14369.49 7082.74 9289.20 3
OPM-MVS74.73 6274.25 6476.19 7180.81 11259.01 7582.60 7383.64 6763.74 4272.52 8887.49 7947.18 14185.88 9669.47 7180.78 10683.66 175
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
casdiffmvs74.80 5974.89 5674.53 10875.59 22950.37 20178.17 13985.06 3862.80 6174.40 5787.86 7657.88 2783.61 14769.46 7282.79 9189.59 2
CDPH-MVS76.31 4475.67 4978.22 4085.35 5559.14 7081.31 9484.02 5556.32 17874.05 6088.98 6253.34 7187.92 4569.23 7388.42 3387.59 37
CS-MVS74.01 7274.24 6573.32 14376.47 21448.51 22879.19 12486.17 2260.56 9571.62 9883.71 15355.16 4887.94 4369.21 7486.11 6383.51 180
Regformer-373.89 7473.28 7875.71 8079.75 13155.48 13678.54 13479.93 14866.58 1173.62 6980.30 22454.87 5284.54 12769.09 7576.84 16187.10 55
CPTT-MVS72.78 8372.08 8774.87 9784.88 6561.41 2984.15 4377.86 18955.27 20167.51 16288.08 7241.93 19681.85 18569.04 7680.01 12081.35 221
DeepC-MVS_fast68.24 377.25 3576.63 3979.12 1986.15 3860.86 4184.71 3384.85 4461.98 7773.06 8088.88 6453.72 6689.06 2368.27 7788.04 4287.42 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post74.57 6573.90 6876.58 6683.49 7459.87 5784.29 3781.36 11658.07 14973.14 7690.07 3844.74 17085.84 9768.20 7881.76 10084.03 155
RE-MVS-def73.71 7283.49 7459.87 5784.29 3781.36 11658.07 14973.14 7690.07 3843.06 18668.20 7881.76 10084.03 155
HQP_MVS74.31 6873.73 7176.06 7281.41 10156.31 11684.22 4084.01 5664.52 2869.27 12886.10 10745.26 16787.21 5768.16 8080.58 11084.65 139
plane_prior584.01 5687.21 5768.16 8080.58 11084.65 139
abl_674.34 6773.50 7376.86 6082.43 8660.16 5283.48 5781.86 10358.81 13373.95 6489.86 4841.87 19786.62 7667.98 8281.23 10583.80 168
CS-MVS-test74.96 5674.82 5775.40 8779.45 14152.03 18182.95 6386.18 2163.24 4870.07 11084.50 13755.21 4788.77 2767.89 8383.85 7885.40 117
CSCG76.92 3876.75 3777.41 5283.96 7159.60 5982.95 6386.50 1760.78 9175.27 4184.83 12760.76 1586.56 7967.86 8487.87 4686.06 87
LPG-MVS_test72.74 8471.74 8975.76 7680.22 12257.51 9982.55 7483.40 7561.32 8366.67 17687.33 8239.15 22586.59 7767.70 8577.30 15683.19 189
LGP-MVS_train75.76 7680.22 12257.51 9983.40 7561.32 8366.67 17687.33 8239.15 22586.59 7767.70 8577.30 15683.19 189
HPM-MVS_fast74.30 6973.46 7676.80 6184.45 6859.04 7483.65 5581.05 12860.15 10970.43 10489.84 4941.09 21285.59 10267.61 8782.90 8885.77 98
MVS_111021_HR74.02 7173.46 7675.69 8283.01 8260.63 4777.29 15778.40 18361.18 8670.58 10385.97 11154.18 5984.00 14067.52 8882.98 8682.45 204
ETV-MVS74.46 6673.84 7076.33 7079.27 14455.24 13979.22 12385.00 4164.97 2472.65 8679.46 24353.65 7087.87 4667.45 8982.91 8785.89 92
DELS-MVS74.76 6074.46 6175.65 8377.84 18252.25 17575.59 19084.17 5363.76 4173.15 7582.79 16659.58 1986.80 6967.24 9086.04 6487.89 21
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.74.90 5874.15 6677.17 5682.00 9158.77 8081.80 8478.57 17258.58 13974.32 5884.51 13655.94 4187.22 5667.11 9184.48 7385.52 108
BP-MVS67.04 92
HQP-MVS73.45 7772.80 8175.40 8780.66 11354.94 14082.31 7883.90 6062.10 7267.85 15285.54 12145.46 16186.93 6667.04 9280.35 11684.32 147
ACMP63.53 672.30 9171.20 10075.59 8680.28 12057.54 9782.74 6982.84 9160.58 9465.24 20586.18 10539.25 22386.03 9166.95 9476.79 16383.22 187
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EI-MVSNet-Vis-set72.42 9071.59 9074.91 9578.47 16454.02 14777.05 16279.33 15965.03 2271.68 9779.35 24652.75 7584.89 12066.46 9574.23 17985.83 94
DPM-MVS75.47 5375.00 5276.88 5981.38 10359.16 6779.94 11085.71 2856.59 17372.46 8986.76 8756.89 3287.86 4766.36 9688.91 3083.64 177
MVSFormer71.50 10470.38 11174.88 9678.76 15657.15 10882.79 6778.48 17651.26 25169.49 12383.22 16143.99 17983.24 15366.06 9779.37 12884.23 150
test_djsdf69.45 14267.74 14974.58 10674.57 24454.92 14282.79 6778.48 17651.26 25165.41 19983.49 15938.37 23283.24 15366.06 9769.25 25385.56 107
canonicalmvs74.67 6374.98 5473.71 12778.94 15250.56 19980.23 10583.87 6260.30 10777.15 3386.56 9859.65 1782.00 18366.01 9982.12 9688.58 6
MVS_Test72.45 8972.46 8472.42 16274.88 23748.50 22976.28 17883.14 8559.40 12472.46 8984.68 12955.66 4481.12 20165.98 10079.66 12487.63 35
alignmvs73.86 7573.99 6773.45 13778.20 17150.50 20078.57 13282.43 9459.40 12476.57 3486.71 9156.42 3781.23 20065.84 10181.79 9888.62 4
nrg03072.96 8273.01 7972.84 15175.41 23250.24 20280.02 10882.89 9058.36 14574.44 5686.73 8958.90 2280.83 21065.84 10174.46 17687.44 43
RRT_MVS68.77 15366.71 17774.95 9475.93 22258.55 8480.50 10375.84 21856.09 18568.17 14583.74 15228.50 31882.98 15865.67 10365.91 28383.33 183
MVS_111021_LR69.50 14068.78 13571.65 17378.38 16559.33 6474.82 20770.11 27358.08 14867.83 15684.68 12941.96 19576.34 27565.62 10477.54 15179.30 255
EI-MVSNet-UG-set71.92 9771.06 10174.52 10977.98 17953.56 15376.62 17079.16 16064.40 3071.18 10078.95 25052.19 8384.66 12665.47 10573.57 18785.32 119
test_part174.74 6174.42 6275.70 8181.69 9651.26 18683.98 4887.05 865.31 1673.10 7886.20 10453.94 6288.06 3965.32 10673.17 19787.77 30
PS-MVSNAJss72.24 9271.21 9975.31 9078.50 16255.93 12681.63 8782.12 9956.24 18170.02 11485.68 11847.05 14384.34 13165.27 10774.41 17885.67 102
bset_n11_16_dypcd65.57 21363.69 22071.19 18670.84 29451.79 18371.37 25870.48 27153.33 22865.19 20876.41 28531.46 30081.76 18865.12 10869.04 25680.01 243
MSLP-MVS++73.77 7673.47 7574.66 10183.02 8159.29 6682.30 8181.88 10259.34 12671.59 9986.83 8645.94 15483.65 14665.09 10985.22 6881.06 228
v2v48270.50 11869.45 12573.66 12972.62 26950.03 20777.58 14780.51 14059.90 11369.52 12282.14 18547.53 13484.88 12265.07 11070.17 23586.09 86
jason69.65 13668.39 14373.43 13978.27 17056.88 11277.12 16073.71 24946.53 29669.34 12783.22 16143.37 18379.18 23564.77 11179.20 13384.23 150
jason: jason.
anonymousdsp67.00 19364.82 21073.57 13470.09 30456.13 12176.35 17677.35 20048.43 27664.99 21280.84 21433.01 28380.34 22064.66 11267.64 27284.23 150
lupinMVS69.57 13868.28 14473.44 13878.76 15657.15 10876.57 17173.29 25246.19 29969.49 12382.18 18143.99 17979.23 23464.66 11279.37 12883.93 158
CLD-MVS73.33 7872.68 8275.29 9278.82 15553.33 15878.23 13884.79 4561.30 8570.41 10581.04 20652.41 8087.12 6064.61 11482.49 9585.41 116
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4268.65 15567.35 16472.56 15768.93 31850.18 20472.90 23979.47 15656.92 16469.45 12580.26 22646.29 15282.99 15764.07 11567.82 27084.53 141
3Dnovator+66.72 475.84 5074.57 6079.66 882.40 8759.92 5685.83 2286.32 2066.92 867.80 15789.24 5842.03 19489.38 1864.07 11586.50 6189.69 1
v114470.42 12069.31 12673.76 12373.22 25750.64 19677.83 14381.43 11458.58 13969.40 12681.16 20347.53 13485.29 11464.01 11770.64 22585.34 118
Effi-MVS+73.31 7972.54 8375.62 8477.87 18153.64 15179.62 11879.61 15361.63 8072.02 9482.61 17156.44 3685.97 9463.99 11879.07 13687.25 51
xiu_mvs_v1_base_debu68.58 15767.28 16672.48 15978.19 17257.19 10575.28 19475.09 23251.61 24270.04 11181.41 19932.79 28679.02 24263.81 11977.31 15381.22 223
xiu_mvs_v1_base68.58 15767.28 16672.48 15978.19 17257.19 10575.28 19475.09 23251.61 24270.04 11181.41 19932.79 28679.02 24263.81 11977.31 15381.22 223
xiu_mvs_v1_base_debi68.58 15767.28 16672.48 15978.19 17257.19 10575.28 19475.09 23251.61 24270.04 11181.41 19932.79 28679.02 24263.81 11977.31 15381.22 223
RRT_test8_iter0568.17 17066.86 17672.07 16575.81 22346.33 25176.41 17581.81 10556.43 17666.52 17881.30 20231.90 29884.25 13263.77 12267.83 26985.64 105
v870.33 12269.28 12773.49 13573.15 25950.22 20378.62 13180.78 13660.79 9066.45 18182.11 18649.35 10984.98 11763.58 12368.71 26185.28 120
jajsoiax68.25 16666.45 18173.66 12975.62 22755.49 13580.82 9878.51 17552.33 23764.33 21984.11 14228.28 32081.81 18763.48 12470.62 22683.67 173
mvs_tets68.18 16866.36 18773.63 13275.61 22855.35 13880.77 9978.56 17352.48 23664.27 22184.10 14327.45 32681.84 18663.45 12570.56 22883.69 172
v14419269.71 13268.51 13873.33 14273.10 26050.13 20577.54 15080.64 13756.65 16768.57 13880.55 21846.87 14884.96 11962.98 12669.66 24784.89 132
v119269.97 12968.68 13673.85 11973.19 25850.94 18977.68 14681.36 11657.51 15768.95 13480.85 21345.28 16685.33 11362.97 12770.37 23185.27 121
v1070.21 12469.02 13173.81 12073.51 25650.92 19178.74 12881.39 11560.05 11166.39 18281.83 19147.58 13385.41 11262.80 12868.86 26085.09 126
OMC-MVS71.40 10670.60 10673.78 12176.60 21053.15 16079.74 11679.78 14958.37 14468.75 13586.45 10045.43 16380.60 21562.58 12977.73 15087.58 38
XVG-OURS-SEG-HR68.81 15067.47 15972.82 15374.40 24856.87 11370.59 27279.04 16154.77 21466.99 16986.01 11039.57 22078.21 25262.54 13073.33 19283.37 182
EPNet73.09 8172.16 8575.90 7475.95 22156.28 11883.05 6172.39 25866.53 1265.27 20187.00 8550.40 10285.47 10962.48 13186.32 6285.94 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v192192069.47 14168.17 14673.36 14173.06 26150.10 20677.39 15380.56 13856.58 17468.59 13680.37 22044.72 17284.98 11762.47 13269.82 24285.00 128
c3_l68.33 16467.56 15370.62 19870.87 29246.21 25474.47 21478.80 16656.22 18266.19 18578.53 25751.88 8681.40 19462.08 13369.04 25684.25 149
AUN-MVS68.45 16366.41 18574.57 10779.53 13857.08 11173.93 22575.23 22854.44 22066.69 17581.85 19037.10 24882.89 16262.07 13466.84 27683.75 170
XVG-OURS68.76 15467.37 16272.90 15074.32 25057.22 10370.09 27978.81 16555.24 20267.79 15885.81 11736.54 25378.28 25162.04 13575.74 17083.19 189
v124069.24 14567.91 14873.25 14673.02 26349.82 20977.21 15980.54 13956.43 17668.34 14280.51 21943.33 18484.99 11562.03 13669.77 24584.95 131
ET-MVSNet_ETH3D67.96 17365.72 19974.68 10076.67 20855.62 13375.11 19974.74 23652.91 23160.03 26080.12 22833.68 27682.64 17361.86 13776.34 16685.78 95
VDD-MVS72.50 8772.09 8673.75 12581.58 9749.69 21377.76 14577.63 19463.21 5073.21 7489.02 6142.14 19383.32 15161.72 13882.50 9488.25 11
PS-MVSNAJ70.51 11769.70 12072.93 14981.52 9855.79 12874.92 20579.00 16255.04 21169.88 11878.66 25247.05 14382.19 18061.61 13979.58 12580.83 231
xiu_mvs_v2_base70.52 11669.75 11872.84 15181.21 10755.63 13275.11 19978.92 16354.92 21269.96 11779.68 23847.00 14782.09 18261.60 14079.37 12880.81 232
cl2267.47 18166.45 18170.54 20069.85 30946.49 24973.85 22877.35 20055.07 20965.51 19777.92 26247.64 13281.10 20261.58 14169.32 25084.01 157
miper_ehance_all_eth68.03 17167.24 17070.40 20270.54 29646.21 25473.98 22078.68 17055.07 20966.05 18777.80 26652.16 8481.31 19761.53 14269.32 25083.67 173
MG-MVS73.96 7373.89 6974.16 11585.65 4749.69 21381.59 9081.29 12261.45 8271.05 10188.11 7051.77 8887.73 4961.05 14383.09 8285.05 127
miper_enhance_ethall67.11 19066.09 19470.17 20669.21 31545.98 25772.85 24078.41 18251.38 24865.65 19575.98 29151.17 9581.25 19860.82 14469.32 25083.29 186
ACMM61.98 770.80 11369.73 11974.02 11680.59 11758.59 8382.68 7182.02 10155.46 19967.18 16784.39 13938.51 23083.17 15560.65 14576.10 16780.30 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu69.64 13767.53 15675.95 7376.10 21862.29 1880.20 10776.06 21659.83 11765.26 20477.09 27241.56 20384.02 13960.60 14671.09 22381.53 216
mvs-test170.44 11968.19 14577.18 5576.10 21863.22 680.59 10276.06 21659.83 11766.32 18379.87 23241.56 20385.53 10460.60 14672.77 20282.80 199
PVSNet_Blended_VisFu71.45 10570.39 11074.65 10282.01 9058.82 7979.93 11180.35 14355.09 20665.82 19482.16 18449.17 11382.64 17360.34 14878.62 14482.50 203
MVSTER67.16 18965.58 20271.88 16770.37 30049.70 21170.25 27878.45 17951.52 24569.16 13280.37 22038.45 23182.50 17560.19 14971.46 21983.44 181
EIA-MVS71.78 9970.60 10675.30 9179.85 13053.54 15477.27 15883.26 8257.92 15366.49 17979.39 24452.07 8586.69 7360.05 15079.14 13585.66 103
v14868.24 16767.19 17171.40 18070.43 29847.77 23875.76 18977.03 20458.91 13167.36 16380.10 22948.60 12281.89 18460.01 15166.52 28084.53 141
CANet_DTU68.18 16867.71 15269.59 21674.83 23846.24 25378.66 13076.85 20659.60 11963.45 22782.09 18735.25 26077.41 26359.88 15278.76 14185.14 123
IterMVS-LS69.22 14668.48 13971.43 17974.44 24749.40 21776.23 17977.55 19559.60 11965.85 19381.59 19751.28 9381.58 19259.87 15369.90 24183.30 184
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet69.27 14468.44 14271.73 17074.47 24549.39 21875.20 19778.45 17959.60 11969.16 13276.51 28251.29 9282.50 17559.86 15471.45 22083.30 184
3Dnovator64.47 572.49 8871.39 9575.79 7577.70 18458.99 7680.66 10183.15 8462.24 6965.46 19886.59 9642.38 19285.52 10559.59 15584.72 7082.85 198
eth_miper_zixun_eth67.63 17866.28 19171.67 17271.60 28448.33 23173.68 23177.88 18855.80 19265.91 19078.62 25547.35 14082.88 16359.45 15666.25 28183.81 164
DIV-MVS_self_test67.18 18766.26 19269.94 20970.20 30145.74 25973.29 23476.83 20755.10 20465.27 20179.58 23947.38 13980.53 21659.43 15769.22 25483.54 178
cl____67.18 18766.26 19269.94 20970.20 30145.74 25973.30 23376.83 20755.10 20465.27 20179.57 24047.39 13880.53 21659.41 15869.22 25483.53 179
旧先验276.08 18245.32 30676.55 3565.56 32358.75 159
VDDNet71.81 9871.33 9773.26 14582.80 8547.60 24178.74 12875.27 22659.59 12272.94 8189.40 5541.51 20683.91 14158.75 15982.99 8488.26 10
114514_t70.83 11169.56 12174.64 10386.21 3454.63 14482.34 7781.81 10548.22 27863.01 23185.83 11540.92 21387.10 6157.91 16179.79 12182.18 207
Vis-MVSNetpermissive72.18 9371.37 9674.61 10481.29 10455.41 13780.90 9778.28 18560.73 9269.23 13188.09 7144.36 17682.65 17257.68 16281.75 10285.77 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR72.63 8671.80 8875.13 9381.72 9553.42 15779.91 11283.28 8159.14 12866.31 18485.90 11351.86 8786.06 8957.45 16380.62 10885.91 91
LFMVS71.78 9971.59 9072.32 16383.40 7646.38 25079.75 11571.08 26564.18 3572.80 8388.64 6842.58 18983.72 14457.41 16484.49 7286.86 60
v7n69.01 14867.36 16373.98 11772.51 27252.65 16678.54 13481.30 12160.26 10862.67 23581.62 19443.61 18184.49 12857.01 16568.70 26284.79 136
GeoE71.01 10970.15 11473.60 13379.57 13752.17 17678.93 12678.12 18658.02 15167.76 16083.87 14852.36 8182.72 17056.90 16675.79 16985.92 90
mvs_anonymous68.03 17167.51 15769.59 21672.08 27744.57 27271.99 25275.23 22851.67 24167.06 16882.57 17254.68 5477.94 25556.56 16775.71 17186.26 83
Patchmatch-RL test58.16 27555.49 28766.15 25767.92 32448.89 22460.66 32851.07 35647.86 28359.36 26862.71 35334.02 27372.27 29156.41 16859.40 32477.30 273
miper_lstm_enhance62.03 25060.88 25365.49 26866.71 33146.25 25256.29 34175.70 22050.68 25561.27 25375.48 29640.21 21568.03 31056.31 16965.25 28982.18 207
thisisatest053067.92 17465.78 19874.33 11376.29 21551.03 18876.89 16774.25 24353.67 22565.59 19681.76 19235.15 26185.50 10755.94 17072.47 20786.47 70
EPP-MVSNet72.16 9571.31 9874.71 9878.68 15949.70 21182.10 8281.65 10860.40 9865.94 18985.84 11451.74 8986.37 8655.93 17179.55 12788.07 19
PVSNet_BlendedMVS68.56 16067.72 15071.07 19177.03 20250.57 19774.50 21381.52 11053.66 22664.22 22379.72 23749.13 11482.87 16455.82 17273.92 18279.77 250
PVSNet_Blended68.59 15667.72 15071.19 18677.03 20250.57 19772.51 24581.52 11051.91 24064.22 22377.77 26849.13 11482.87 16455.82 17279.58 12580.14 241
PAPR71.72 10170.82 10474.41 11181.20 10851.17 18779.55 11983.33 7855.81 19166.93 17184.61 13250.95 9886.06 8955.79 17479.20 13386.00 88
tttt051767.83 17665.66 20074.33 11376.69 20750.82 19377.86 14273.99 24654.54 21864.64 21682.53 17435.06 26285.50 10755.71 17569.91 24086.67 66
IterMVS-SCA-FT62.49 24361.52 24465.40 26971.99 27950.80 19471.15 26569.63 27745.71 30560.61 25677.93 26137.45 24165.99 32155.67 17663.50 30179.42 253
XVG-ACMP-BASELINE64.36 22862.23 23770.74 19672.35 27452.45 17370.80 27178.45 17953.84 22459.87 26381.10 20516.24 35779.32 23355.64 17771.76 21580.47 235
Anonymous2023121169.28 14368.47 14071.73 17080.28 12047.18 24579.98 10982.37 9554.61 21567.24 16584.01 14539.43 22182.41 17855.45 17872.83 20185.62 106
GA-MVS65.53 21463.70 21971.02 19270.87 29248.10 23370.48 27474.40 24056.69 16664.70 21576.77 27733.66 27781.10 20255.42 17970.32 23383.87 162
test_yl69.69 13369.13 12871.36 18178.37 16645.74 25974.71 20980.20 14457.91 15470.01 11583.83 14942.44 19082.87 16454.97 18079.72 12285.48 110
DCV-MVSNet69.69 13369.13 12871.36 18178.37 16645.74 25974.71 20980.20 14457.91 15470.01 11583.83 14942.44 19082.87 16454.97 18079.72 12285.48 110
131464.61 22663.21 22668.80 22771.87 28247.46 24273.95 22278.39 18442.88 32859.97 26176.60 28138.11 23679.39 23254.84 18272.32 21079.55 251
Fast-Effi-MVS+-dtu67.37 18265.33 20573.48 13672.94 26457.78 9577.47 15276.88 20557.60 15661.97 24676.85 27639.31 22280.49 21954.72 18370.28 23482.17 209
UniMVSNet_NR-MVSNet71.11 10771.00 10271.44 17779.20 14644.13 27476.02 18682.60 9366.48 1368.20 14384.60 13356.82 3382.82 16854.62 18470.43 22987.36 49
DU-MVS70.01 12769.53 12271.44 17778.05 17744.13 27475.01 20281.51 11264.37 3168.20 14384.52 13449.12 11682.82 16854.62 18470.43 22987.37 47
FIs70.82 11271.43 9368.98 22578.33 16838.14 31976.96 16483.59 6961.02 8767.33 16486.73 8955.07 4981.64 18954.61 18679.22 13287.14 54
VPA-MVSNet69.02 14769.47 12467.69 23977.42 19541.00 30274.04 21979.68 15160.06 11069.26 13084.81 12851.06 9777.58 26154.44 18774.43 17784.48 143
Anonymous2024052969.91 13069.02 13172.56 15780.19 12547.65 23977.56 14980.99 13155.45 20069.88 11886.76 8739.24 22482.18 18154.04 18877.10 15887.85 25
UniMVSNet (Re)70.63 11570.20 11271.89 16678.55 16145.29 26575.94 18782.92 8763.68 4368.16 14683.59 15653.89 6483.49 15053.97 18971.12 22286.89 59
D2MVS62.30 24760.29 25668.34 23466.46 33348.42 23065.70 30173.42 25047.71 28458.16 28275.02 29930.51 30377.71 25953.96 19071.68 21778.90 259
原ACMM174.69 9985.39 5459.40 6283.42 7451.47 24770.27 10886.61 9548.61 12186.51 8253.85 19187.96 4378.16 263
无先验79.66 11774.30 24248.40 27780.78 21253.62 19279.03 257
112168.53 16167.16 17272.63 15685.64 4861.14 3473.95 22266.46 29944.61 31170.28 10786.68 9241.42 20780.78 21253.62 19281.79 9875.97 286
UA-Net73.13 8072.93 8073.76 12383.58 7351.66 18478.75 12777.66 19367.75 472.61 8789.42 5449.82 10583.29 15253.61 19483.14 8186.32 79
VNet69.68 13570.19 11368.16 23579.73 13441.63 29870.53 27377.38 19960.37 10170.69 10286.63 9451.08 9677.09 26753.61 19481.69 10485.75 100
Fast-Effi-MVS+70.28 12369.12 13073.73 12678.50 16251.50 18575.01 20279.46 15756.16 18368.59 13679.55 24153.97 6084.05 13553.34 19677.53 15285.65 104
testdata64.66 27481.52 9852.93 16365.29 30746.09 30073.88 6687.46 8038.08 23766.26 32053.31 19778.48 14574.78 303
thisisatest051565.83 20963.50 22372.82 15373.75 25449.50 21671.32 26073.12 25449.39 26663.82 22576.50 28434.95 26484.84 12353.20 19875.49 17384.13 154
MVS67.37 18266.33 18870.51 20175.46 23150.94 18973.95 22281.85 10441.57 33562.54 23978.57 25647.98 12685.47 10952.97 19982.05 9775.14 295
IterMVS62.79 24261.27 24767.35 24469.37 31452.04 18071.17 26368.24 28952.63 23559.82 26476.91 27537.32 24372.36 28952.80 20063.19 30477.66 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test69.80 13170.58 10867.46 24177.61 19234.73 34476.05 18483.19 8360.84 8965.88 19286.46 9954.52 5680.76 21452.52 20178.12 14786.91 58
TranMVSNet+NR-MVSNet70.36 12170.10 11671.17 18878.64 16042.97 28576.53 17281.16 12766.95 668.53 13985.42 12351.61 9083.07 15652.32 20269.70 24687.46 42
Baseline_NR-MVSNet67.05 19167.56 15365.50 26775.65 22637.70 32375.42 19274.65 23859.90 11368.14 14783.15 16449.12 11677.20 26552.23 20369.78 24381.60 215
UniMVSNet_ETH3D67.60 17967.07 17469.18 22477.39 19642.29 28974.18 21875.59 22260.37 10166.77 17386.06 10937.64 23978.93 24752.16 20473.49 18986.32 79
ECVR-MVScopyleft67.72 17767.51 15768.35 23379.46 13936.29 33874.79 20866.93 29658.72 13567.19 16688.05 7336.10 25481.38 19552.07 20584.25 7487.39 45
test111167.21 18467.14 17367.42 24279.24 14534.76 34373.89 22765.65 30358.71 13766.96 17087.95 7536.09 25580.53 21652.03 20683.79 7986.97 57
test250665.33 21864.61 21167.50 24079.46 13934.19 34774.43 21551.92 35458.72 13566.75 17488.05 7325.99 33680.92 20851.94 20784.25 7487.39 45
API-MVS72.17 9471.41 9474.45 11081.95 9357.22 10384.03 4680.38 14259.89 11668.40 14082.33 17849.64 10787.83 4851.87 20884.16 7778.30 261
PCF-MVS61.88 870.95 11069.49 12375.35 8977.63 18755.71 12976.04 18581.81 10550.30 25969.66 12185.40 12452.51 7784.89 12051.82 20980.24 11885.45 112
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DP-MVS Recon72.15 9670.73 10576.40 6886.57 2657.99 9181.15 9682.96 8657.03 16266.78 17285.56 11944.50 17488.11 3851.77 21080.23 11983.10 193
UGNet68.81 15067.39 16173.06 14778.33 16854.47 14579.77 11475.40 22560.45 9763.22 22884.40 13832.71 29080.91 20951.71 21180.56 11283.81 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS71.51 10370.15 11475.60 8581.84 9459.39 6381.38 9382.90 8954.90 21368.08 14978.70 25147.73 12985.51 10651.68 21284.17 7681.88 213
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VPNet67.52 18068.11 14765.74 26579.18 14736.80 33072.17 25072.83 25562.04 7567.79 15885.83 11548.88 11876.60 27251.30 21372.97 20083.81 164
QAPM70.05 12668.81 13473.78 12176.54 21253.43 15683.23 5983.48 7152.89 23265.90 19186.29 10341.55 20586.49 8351.01 21478.40 14681.42 217
NR-MVSNet69.54 13968.85 13371.59 17578.05 17743.81 27874.20 21780.86 13565.18 1762.76 23384.52 13452.35 8283.59 14850.96 21570.78 22487.37 47
IB-MVS56.42 1265.40 21762.73 23273.40 14074.89 23652.78 16573.09 23775.13 23155.69 19458.48 28073.73 30932.86 28586.32 8750.63 21670.11 23681.10 227
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PM-MVS52.33 30950.19 31458.75 30762.10 35145.14 26665.75 30040.38 36943.60 32153.52 32072.65 3139.16 36965.87 32250.41 21754.18 34065.24 350
cascas65.98 20863.42 22473.64 13177.26 19852.58 16972.26 24977.21 20248.56 27361.21 25474.60 30332.57 29485.82 9950.38 21876.75 16482.52 202
IS-MVSNet71.57 10271.00 10273.27 14478.86 15345.63 26380.22 10678.69 16964.14 3866.46 18087.36 8149.30 11085.60 10150.26 21983.71 8088.59 5
WR-MVS68.47 16268.47 14068.44 23280.20 12439.84 30573.75 23076.07 21564.68 2568.11 14883.63 15550.39 10379.14 24049.78 22069.66 24786.34 76
CVMVSNet59.63 26859.14 26161.08 29874.47 24538.84 31475.20 19768.74 28631.15 35558.24 28176.51 28232.39 29568.58 30849.77 22165.84 28575.81 289
CostFormer64.04 22962.51 23368.61 23071.88 28145.77 25871.30 26170.60 27047.55 28664.31 22076.61 28041.63 20179.62 22949.74 22269.00 25880.42 236
新几何170.76 19585.66 4661.13 3566.43 30044.68 31070.29 10686.64 9341.29 20975.23 27949.72 22381.75 10275.93 288
test-LLR58.15 27658.13 27158.22 30968.57 31944.80 26865.46 30457.92 33850.08 26255.44 29869.82 33332.62 29157.44 34649.66 22473.62 18572.41 325
test-mter56.42 28655.82 28558.22 30968.57 31944.80 26865.46 30457.92 33839.94 34455.44 29869.82 33321.92 34957.44 34649.66 22473.62 18572.41 325
Anonymous20240521166.84 19665.99 19569.40 22080.19 12542.21 29071.11 26671.31 26458.80 13467.90 15086.39 10129.83 31079.65 22749.60 22678.78 14086.33 77
DWT-MVSNet_test61.90 25159.93 25867.83 23771.98 28046.09 25671.03 26969.71 27450.09 26158.51 27970.62 32530.21 30777.63 26049.28 22767.91 26779.78 249
tpmrst58.24 27458.70 26456.84 31666.97 32834.32 34669.57 28361.14 32947.17 29358.58 27871.60 31941.28 21060.41 33749.20 22862.84 30675.78 290
pm-mvs165.24 21964.97 20966.04 26072.38 27339.40 31072.62 24375.63 22155.53 19862.35 24583.18 16347.45 13676.47 27349.06 22966.54 27982.24 206
gm-plane-assit71.40 28941.72 29748.85 27273.31 31182.48 17748.90 230
CMPMVSbinary42.80 2157.81 27955.97 28463.32 28160.98 35747.38 24364.66 31169.50 27932.06 35446.83 34577.80 26629.50 31271.36 29448.68 23173.75 18371.21 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ab-mvs66.65 20066.42 18467.37 24376.17 21741.73 29570.41 27676.14 21453.99 22265.98 18883.51 15849.48 10876.24 27648.60 23273.46 19084.14 153
OurMVSNet-221017-061.37 25958.63 26569.61 21572.05 27848.06 23473.93 22572.51 25747.23 29254.74 30780.92 21021.49 35281.24 19948.57 23356.22 33479.53 252
OpenMVScopyleft61.03 968.85 14967.56 15372.70 15574.26 25153.99 14881.21 9581.34 12052.70 23362.75 23485.55 12038.86 22884.14 13448.41 23483.01 8379.97 244
baseline263.42 23461.26 24869.89 21372.55 27147.62 24071.54 25668.38 28850.11 26054.82 30675.55 29543.06 18680.96 20548.13 23567.16 27581.11 226
TESTMET0.1,155.28 29454.90 29156.42 31766.56 33243.67 27965.46 30456.27 34539.18 34653.83 31667.44 34224.21 34455.46 35648.04 23673.11 19870.13 340
K. test v360.47 26357.11 27570.56 19973.74 25548.22 23275.10 20162.55 32358.27 14753.62 31976.31 28627.81 32381.59 19147.42 23739.18 36181.88 213
pmmvs663.69 23262.82 23166.27 25570.63 29539.27 31173.13 23675.47 22452.69 23459.75 26682.30 17939.71 21977.03 26847.40 23864.35 29582.53 201
baseline163.81 23163.87 21763.62 27976.29 21536.36 33371.78 25567.29 29356.05 18764.23 22282.95 16547.11 14274.41 28347.30 23961.85 31380.10 242
GBi-Net67.21 18466.55 17969.19 22177.63 18743.33 28177.31 15477.83 19056.62 17065.04 20982.70 16741.85 19880.33 22147.18 24072.76 20383.92 159
test167.21 18466.55 17969.19 22177.63 18743.33 28177.31 15477.83 19056.62 17065.04 20982.70 16741.85 19880.33 22147.18 24072.76 20383.92 159
FMVSNet366.32 20665.61 20168.46 23176.48 21342.34 28874.98 20477.15 20355.83 19065.04 20981.16 20339.91 21680.14 22547.18 24072.76 20382.90 197
FMVSNet266.93 19466.31 19068.79 22877.63 18742.98 28476.11 18177.47 19656.62 17065.22 20782.17 18341.85 19880.18 22447.05 24372.72 20683.20 188
testdata272.18 29346.95 244
BH-RMVSNet68.81 15067.42 16072.97 14880.11 12752.53 17074.26 21676.29 21258.48 14268.38 14184.20 14042.59 18883.83 14246.53 24575.91 16882.56 200
AdaColmapbinary69.99 12868.66 13773.97 11884.94 6257.83 9382.63 7278.71 16856.28 18064.34 21884.14 14141.57 20287.06 6446.45 24678.88 13777.02 278
EG-PatchMatch MVS64.71 22462.87 22970.22 20377.68 18553.48 15577.99 14178.82 16453.37 22756.03 29477.41 27124.75 34384.04 13646.37 24773.42 19173.14 315
1112_ss64.00 23063.36 22565.93 26279.28 14342.58 28771.35 25972.36 25946.41 29760.55 25777.89 26446.27 15373.28 28646.18 24869.97 23881.92 212
FMVSNet166.70 19965.87 19669.19 22177.49 19443.33 28177.31 15477.83 19056.45 17564.60 21782.70 16738.08 23780.33 22146.08 24972.31 21183.92 159
HyFIR lowres test65.67 21163.01 22873.67 12879.97 12955.65 13169.07 28775.52 22342.68 32963.53 22677.95 26040.43 21481.64 18946.01 25071.91 21483.73 171
lessismore_v069.91 21171.42 28847.80 23650.90 35750.39 33675.56 29427.43 32781.33 19645.91 25134.10 36380.59 234
CHOSEN 1792x268865.08 22262.84 23071.82 16881.49 10056.26 11966.32 29874.20 24440.53 34063.16 23078.65 25341.30 20877.80 25845.80 25274.09 18081.40 218
LCM-MVSNet-Re61.88 25361.35 24663.46 28074.58 24331.48 35761.42 32358.14 33758.71 13753.02 32479.55 24143.07 18576.80 27045.69 25377.96 14882.11 210
ambc65.13 27263.72 34637.07 32747.66 35678.78 16754.37 31371.42 32011.24 36580.94 20645.64 25453.85 34277.38 272
MS-PatchMatch62.42 24561.46 24565.31 27175.21 23552.10 17772.05 25174.05 24546.41 29757.42 28774.36 30434.35 27077.57 26245.62 25573.67 18466.26 348
ACMH+57.40 1166.12 20764.06 21372.30 16477.79 18352.83 16480.39 10478.03 18757.30 15857.47 28682.55 17327.68 32484.17 13345.54 25669.78 24379.90 245
CR-MVSNet59.91 26557.90 27265.96 26169.96 30752.07 17865.31 30763.15 32042.48 33059.36 26874.84 30035.83 25770.75 29745.50 25764.65 29375.06 296
CDS-MVSNet66.80 19765.37 20371.10 19078.98 15153.13 16273.27 23571.07 26652.15 23964.72 21480.23 22743.56 18277.10 26645.48 25878.88 13783.05 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CP-MVSNet66.49 20466.41 18566.72 24877.67 18636.33 33576.83 16979.52 15562.45 6662.54 23983.47 16046.32 15178.37 24945.47 25963.43 30285.45 112
BH-untuned68.27 16567.29 16571.21 18579.74 13353.22 15976.06 18377.46 19857.19 16066.10 18681.61 19545.37 16583.50 14945.42 26076.68 16576.91 282
PS-CasMVS66.42 20566.32 18966.70 25077.60 19336.30 33776.94 16579.61 15362.36 6862.43 24383.66 15445.69 15578.37 24945.35 26163.26 30385.42 115
XXY-MVS60.68 26161.67 24257.70 31570.43 29838.45 31764.19 31366.47 29848.05 28163.22 22880.86 21249.28 11160.47 33645.25 26267.28 27474.19 309
HY-MVS56.14 1364.55 22763.89 21566.55 25174.73 24141.02 30069.96 28074.43 23949.29 26761.66 25080.92 21047.43 13776.68 27144.91 26371.69 21681.94 211
PEN-MVS66.60 20166.45 18167.04 24677.11 20036.56 33277.03 16380.42 14162.95 5362.51 24184.03 14446.69 14979.07 24144.22 26463.08 30585.51 109
test_post168.67 2883.64 37232.39 29569.49 30444.17 265
SCA60.49 26258.38 26766.80 24774.14 25348.06 23463.35 31563.23 31949.13 26959.33 27172.10 31637.45 24174.27 28444.17 26562.57 30878.05 265
PMMVS53.96 29953.26 30556.04 31862.60 35050.92 19161.17 32656.09 34632.81 35353.51 32166.84 34434.04 27259.93 33944.14 26768.18 26557.27 356
MVP-Stereo65.41 21663.80 21870.22 20377.62 19155.53 13476.30 17778.53 17450.59 25856.47 29278.65 25339.84 21782.68 17144.10 26872.12 21372.44 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA65.43 21564.02 21469.68 21478.73 15858.07 9077.82 14470.71 26951.49 24661.57 25283.58 15738.23 23570.82 29643.90 26970.10 23780.16 240
pmmvs461.48 25859.39 25967.76 23871.57 28553.86 14971.42 25765.34 30644.20 31659.46 26777.92 26235.90 25674.71 28143.87 27064.87 29174.71 304
Test_1112_low_res62.32 24661.77 24164.00 27879.08 15039.53 30968.17 28970.17 27243.25 32459.03 27379.90 23144.08 17771.24 29543.79 27168.42 26481.25 222
TransMVSNet (Re)64.72 22364.33 21265.87 26475.22 23438.56 31674.66 21175.08 23558.90 13261.79 24982.63 17051.18 9478.07 25443.63 27255.87 33580.99 229
pmmvs-eth3d58.81 27056.31 28366.30 25467.61 32552.42 17472.30 24864.76 31043.55 32254.94 30574.19 30628.95 31572.60 28843.31 27357.21 33073.88 312
SixPastTwentyTwo61.65 25558.80 26370.20 20575.80 22447.22 24475.59 19069.68 27654.61 21554.11 31479.26 24727.07 32982.96 15943.27 27449.79 35080.41 237
BH-w/o66.85 19565.83 19769.90 21279.29 14252.46 17274.66 21176.65 21054.51 21964.85 21378.12 25845.59 15882.95 16043.26 27575.54 17274.27 308
TR-MVS66.59 20365.07 20871.17 18879.18 14749.63 21573.48 23275.20 23052.95 23067.90 15080.33 22339.81 21883.68 14543.20 27673.56 18880.20 239
EU-MVSNet55.61 29254.41 29559.19 30465.41 33933.42 35172.44 24671.91 26128.81 35751.27 32873.87 30824.76 34269.08 30643.04 27758.20 32875.06 296
PatchmatchNetpermissive59.84 26658.24 26864.65 27573.05 26246.70 24869.42 28462.18 32547.55 28658.88 27471.96 31834.49 26869.16 30542.99 27863.60 30078.07 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WR-MVS_H67.02 19266.92 17567.33 24577.95 18037.75 32277.57 14882.11 10062.03 7662.65 23682.48 17550.57 10179.46 23042.91 27964.01 29684.79 136
ACMH55.70 1565.20 22063.57 22270.07 20778.07 17652.01 18279.48 12279.69 15055.75 19356.59 29180.98 20827.12 32880.94 20642.90 28071.58 21877.25 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052155.30 29354.41 29557.96 31260.92 35941.73 29571.09 26771.06 26741.18 33648.65 33973.31 31116.93 35659.25 34142.54 28164.01 29672.90 317
WTY-MVS59.75 26760.39 25557.85 31372.32 27537.83 32161.05 32764.18 31445.95 30461.91 24779.11 24947.01 14660.88 33542.50 28269.49 24974.83 301
TAMVS66.78 19865.27 20671.33 18479.16 14953.67 15073.84 22969.59 27852.32 23865.28 20081.72 19344.49 17577.40 26442.32 28378.66 14382.92 195
MVS_030458.51 27157.36 27461.96 29270.04 30541.83 29369.40 28565.46 30550.73 25453.30 32374.06 30722.65 34670.18 30342.16 28468.44 26373.86 313
LTVRE_ROB55.42 1663.15 24061.23 24968.92 22676.57 21147.80 23659.92 32976.39 21154.35 22158.67 27682.46 17629.44 31381.49 19342.12 28571.14 22177.46 271
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
sss56.17 28956.57 28054.96 32266.93 32936.32 33657.94 33561.69 32741.67 33358.64 27775.32 29838.72 22956.25 35242.04 28666.19 28272.31 328
UnsupCasMVSNet_eth53.16 30852.47 30655.23 32159.45 36133.39 35259.43 33169.13 28345.98 30150.35 33772.32 31529.30 31458.26 34442.02 28744.30 35674.05 310
tpm262.07 24960.10 25767.99 23672.79 26643.86 27771.05 26866.85 29743.14 32662.77 23275.39 29738.32 23380.80 21141.69 28868.88 25979.32 254
PLCcopyleft56.13 1465.09 22163.21 22670.72 19781.04 11054.87 14378.57 13277.47 19648.51 27455.71 29581.89 18933.71 27579.71 22641.66 28970.37 23177.58 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPMVS53.96 29953.69 30254.79 32466.12 33631.96 35662.34 32049.05 35944.42 31555.54 29671.33 32130.22 30656.70 34941.65 29062.54 30975.71 291
DTE-MVSNet65.58 21265.34 20466.31 25376.06 22034.79 34176.43 17479.38 15862.55 6461.66 25083.83 14945.60 15779.15 23941.64 29160.88 31985.00 128
PAPM67.92 17466.69 17871.63 17478.09 17549.02 22177.09 16181.24 12551.04 25360.91 25583.98 14647.71 13084.99 11540.81 29279.32 13180.90 230
tpm57.34 28158.16 26954.86 32371.80 28334.77 34267.47 29456.04 34748.20 27960.10 25976.92 27437.17 24653.41 35940.76 29365.01 29076.40 285
KD-MVS_self_test55.22 29553.89 30159.21 30357.80 36427.47 36457.75 33674.32 24147.38 28850.90 33170.00 33228.45 31970.30 30140.44 29457.92 32979.87 246
F-COLMAP63.05 24160.87 25469.58 21876.99 20453.63 15278.12 14076.16 21347.97 28252.41 32581.61 19527.87 32278.11 25340.07 29566.66 27877.00 279
Patchmtry57.16 28256.47 28159.23 30269.17 31634.58 34562.98 31663.15 32044.53 31256.83 28974.84 30035.83 25768.71 30740.03 29660.91 31874.39 307
pmmvs556.47 28555.68 28658.86 30661.41 35436.71 33166.37 29762.75 32240.38 34153.70 31776.62 27934.56 26667.05 31440.02 29765.27 28872.83 318
EPNet_dtu61.90 25161.97 24061.68 29372.89 26539.78 30675.85 18865.62 30455.09 20654.56 31079.36 24537.59 24067.02 31539.80 29876.95 15978.25 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CL-MVSNet_self_test61.53 25660.94 25263.30 28268.95 31736.93 32967.60 29372.80 25655.67 19559.95 26276.63 27845.01 16972.22 29239.74 29962.09 31280.74 233
Vis-MVSNet (Re-imp)63.69 23263.88 21663.14 28474.75 24031.04 35871.16 26463.64 31656.32 17859.80 26584.99 12544.51 17375.46 27839.12 30080.62 10882.92 195
PVSNet50.76 1958.40 27357.39 27361.42 29575.53 23044.04 27661.43 32263.45 31747.04 29456.91 28873.61 31027.00 33064.76 32439.12 30072.40 20875.47 293
MDTV_nov1_ep13_2view25.89 36661.22 32540.10 34251.10 32932.97 28438.49 30278.61 260
our_test_356.49 28454.42 29462.68 28869.51 31145.48 26466.08 29961.49 32844.11 31950.73 33469.60 33533.05 28268.15 30938.38 30356.86 33174.40 306
tpm cat159.25 26956.95 27866.15 25772.19 27646.96 24668.09 29065.76 30240.03 34357.81 28470.56 32638.32 23374.51 28238.26 30461.50 31677.00 279
USDC56.35 28754.24 29862.69 28764.74 34140.31 30365.05 30973.83 24743.93 32047.58 34177.71 26915.36 35975.05 28038.19 30561.81 31472.70 319
MSDG61.81 25459.23 26069.55 21972.64 26852.63 16870.45 27575.81 21951.38 24853.70 31776.11 28729.52 31181.08 20437.70 30665.79 28674.93 300
MDTV_nov1_ep1357.00 27772.73 26738.26 31865.02 31064.73 31144.74 30955.46 29772.48 31432.61 29370.47 29837.47 30767.75 271
gg-mvs-nofinetune57.86 27856.43 28262.18 29072.62 26935.35 34066.57 29556.33 34450.65 25657.64 28557.10 35630.65 30276.36 27437.38 30878.88 13774.82 302
RPSCF55.80 29154.22 29960.53 29965.13 34042.91 28664.30 31257.62 34036.84 34958.05 28382.28 18028.01 32156.24 35337.14 30958.61 32782.44 205
PatchT53.17 30753.44 30452.33 33568.29 32325.34 36858.21 33454.41 35044.46 31454.56 31069.05 33633.32 28060.94 33436.93 31061.76 31570.73 337
YYNet150.73 31448.96 31556.03 31961.10 35641.78 29451.94 34856.44 34340.94 33944.84 34967.80 34030.08 30855.08 35736.77 31150.71 34771.22 333
TAPA-MVS59.36 1066.60 20165.20 20770.81 19476.63 20948.75 22576.52 17380.04 14650.64 25765.24 20584.93 12639.15 22578.54 24836.77 31176.88 16085.14 123
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet_test_wron50.71 31548.95 31656.00 32061.17 35541.84 29251.90 34956.45 34240.96 33844.79 35067.84 33930.04 30955.07 35836.71 31350.69 34871.11 336
ppachtmachnet_test58.06 27755.38 28866.10 25969.51 31148.99 22268.01 29166.13 30144.50 31354.05 31570.74 32432.09 29772.34 29036.68 31456.71 33376.99 281
tpmvs58.47 27256.95 27863.03 28670.20 30141.21 29967.90 29267.23 29449.62 26554.73 30870.84 32334.14 27176.24 27636.64 31561.29 31771.64 331
CHOSEN 280x42047.83 31946.36 32352.24 33667.37 32749.78 21038.91 36343.11 36735.00 35143.27 35463.30 35228.95 31549.19 36236.53 31660.80 32057.76 355
PatchMatch-RL56.25 28854.55 29361.32 29777.06 20156.07 12365.57 30354.10 35244.13 31853.49 32271.27 32225.20 34066.78 31636.52 31763.66 29961.12 351
RPMNet61.53 25658.42 26670.86 19369.96 30752.07 17865.31 30781.36 11643.20 32559.36 26870.15 33135.37 25985.47 10936.42 31864.65 29375.06 296
ITE_SJBPF62.09 29166.16 33544.55 27364.32 31347.36 28955.31 30080.34 22219.27 35362.68 33036.29 31962.39 31079.04 256
JIA-IIPM51.56 31247.68 32263.21 28364.61 34250.73 19547.71 35558.77 33542.90 32748.46 34051.72 35924.97 34170.24 30236.06 32053.89 34168.64 346
KD-MVS_2432*160053.45 30351.50 31059.30 30062.82 34737.14 32555.33 34271.79 26247.34 29055.09 30370.52 32721.91 35070.45 29935.72 32142.97 35870.31 338
miper_refine_blended53.45 30351.50 31059.30 30062.82 34737.14 32555.33 34271.79 26247.34 29055.09 30370.52 32721.91 35070.45 29935.72 32142.97 35870.31 338
OpenMVS_ROBcopyleft52.78 1860.03 26458.14 27065.69 26670.47 29744.82 26775.33 19370.86 26845.04 30756.06 29376.00 28826.89 33179.65 22735.36 32367.29 27372.60 320
GG-mvs-BLEND62.34 28971.36 29037.04 32869.20 28657.33 34154.73 30865.48 34830.37 30477.82 25734.82 32474.93 17572.17 329
UnsupCasMVSNet_bld50.07 31648.87 31753.66 32860.97 35833.67 35057.62 33764.56 31239.47 34547.38 34264.02 35127.47 32559.32 34034.69 32543.68 35767.98 347
MDA-MVSNet-bldmvs53.87 30150.81 31263.05 28566.25 33448.58 22756.93 33963.82 31548.09 28041.22 35670.48 32930.34 30568.00 31134.24 32645.92 35572.57 321
dp51.89 31151.60 30952.77 33368.44 32232.45 35462.36 31954.57 34944.16 31749.31 33867.91 33828.87 31756.61 35033.89 32754.89 33769.24 345
AllTest57.08 28354.65 29264.39 27671.44 28649.03 21969.92 28167.30 29145.97 30247.16 34379.77 23517.47 35467.56 31233.65 32859.16 32576.57 283
TestCases64.39 27671.44 28649.03 21967.30 29145.97 30247.16 34379.77 23517.47 35467.56 31233.65 32859.16 32576.57 283
FMVSNet555.86 29054.93 29058.66 30871.05 29136.35 33464.18 31462.48 32446.76 29550.66 33574.73 30225.80 33764.04 32633.11 33065.57 28775.59 292
DP-MVS65.68 21063.66 22171.75 16984.93 6356.87 11380.74 10073.16 25353.06 22959.09 27282.35 17736.79 25285.94 9532.82 33169.96 23972.45 323
PVSNet_043.31 2047.46 32145.64 32452.92 33267.60 32644.65 27054.06 34654.64 34841.59 33446.15 34758.75 35530.99 30158.66 34232.18 33224.81 36455.46 357
TinyColmap54.14 29851.72 30861.40 29666.84 33041.97 29166.52 29668.51 28744.81 30842.69 35575.77 29211.66 36372.94 28731.96 33356.77 33269.27 344
MIMVSNet57.35 28057.07 27658.22 30974.21 25237.18 32462.46 31860.88 33048.88 27155.29 30175.99 29031.68 29962.04 33231.87 33472.35 20975.43 294
thres100view90063.28 23762.41 23565.89 26377.31 19738.66 31572.65 24169.11 28457.07 16162.45 24281.03 20737.01 25079.17 23631.84 33573.25 19479.83 247
tfpn200view963.18 23962.18 23866.21 25676.85 20539.62 30771.96 25369.44 28056.63 16862.61 23779.83 23337.18 24479.17 23631.84 33573.25 19479.83 247
thres40063.31 23562.18 23866.72 24876.85 20539.62 30771.96 25369.44 28056.63 16862.61 23779.83 23337.18 24479.17 23631.84 33573.25 19481.36 219
pmmvs344.92 32341.95 32753.86 32752.58 36643.55 28062.11 32146.90 36526.05 36140.63 35760.19 35411.08 36657.91 34531.83 33846.15 35460.11 352
LF4IMVS42.95 32442.26 32645.04 34348.30 36832.50 35354.80 34448.49 36128.03 35840.51 35870.16 3309.24 36843.89 36531.63 33949.18 35258.72 353
COLMAP_ROBcopyleft52.97 1761.27 26058.81 26268.64 22974.63 24252.51 17178.42 13773.30 25149.92 26450.96 33081.51 19823.06 34579.40 23131.63 33965.85 28474.01 311
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet47.56 32047.73 32147.06 34158.81 3629.37 37648.78 35459.21 33343.28 32344.22 35268.66 33725.67 33857.20 34831.57 34149.35 35174.62 305
thres600view763.30 23662.27 23666.41 25277.18 19938.87 31372.35 24769.11 28456.98 16362.37 24480.96 20937.01 25079.00 24531.43 34273.05 19981.36 219
thres20062.20 24861.16 25065.34 27075.38 23339.99 30469.60 28269.29 28255.64 19761.87 24876.99 27337.07 24978.96 24631.28 34373.28 19377.06 277
LCM-MVSNet40.30 32835.88 33353.57 32942.24 37029.15 36245.21 35960.53 33122.23 36528.02 36350.98 3613.72 37561.78 33331.22 34438.76 36269.78 341
test0.0.03 153.32 30653.59 30352.50 33462.81 34929.45 36159.51 33054.11 35150.08 26254.40 31274.31 30532.62 29155.92 35430.50 34563.95 29872.15 330
Anonymous2023120655.10 29755.30 28954.48 32569.81 31033.94 34962.91 31762.13 32641.08 33755.18 30275.65 29332.75 28956.59 35130.32 34667.86 26872.91 316
tfpnnormal62.47 24461.63 24364.99 27374.81 23939.01 31271.22 26273.72 24855.22 20360.21 25880.09 23041.26 21176.98 26930.02 34768.09 26678.97 258
test20.0353.87 30154.02 30053.41 33061.47 35328.11 36361.30 32459.21 33351.34 25052.09 32677.43 27033.29 28158.55 34329.76 34860.27 32273.58 314
LS3D64.71 22462.50 23471.34 18379.72 13555.71 12979.82 11374.72 23748.50 27556.62 29084.62 13133.59 27882.34 17929.65 34975.23 17475.97 286
testgi51.90 31052.37 30750.51 33960.39 36023.55 37058.42 33358.15 33649.03 27051.83 32779.21 24822.39 34755.59 35529.24 35062.64 30772.40 327
MIMVSNet155.17 29654.31 29757.77 31470.03 30632.01 35565.68 30264.81 30949.19 26846.75 34676.00 28825.53 33964.04 32628.65 35162.13 31177.26 275
TDRefinement53.44 30550.72 31361.60 29464.31 34446.96 24670.89 27065.27 30841.78 33144.61 35177.98 25911.52 36466.36 31928.57 35251.59 34571.49 332
ADS-MVSNet251.33 31348.76 31859.07 30566.02 33744.60 27150.90 35059.76 33236.90 34750.74 33266.18 34626.38 33263.11 32827.17 35354.76 33869.50 342
ADS-MVSNet48.48 31847.77 32050.63 33866.02 33729.92 36050.90 35050.87 35836.90 34750.74 33266.18 34626.38 33252.47 36027.17 35354.76 33869.50 342
Patchmatch-test49.08 31748.28 31951.50 33764.40 34330.85 35945.68 35748.46 36235.60 35046.10 34872.10 31634.47 26946.37 36327.08 35560.65 32177.27 274
MVS-HIRNet45.52 32244.48 32548.65 34068.49 32134.05 34859.41 33244.50 36627.03 35937.96 36050.47 36226.16 33564.10 32526.74 35659.52 32347.82 360
test_040263.25 23861.01 25169.96 20880.00 12854.37 14676.86 16872.02 26054.58 21758.71 27580.79 21535.00 26384.36 13026.41 35764.71 29271.15 335
N_pmnet39.35 32940.28 32936.54 34763.76 3451.62 38049.37 3530.76 38034.62 35243.61 35366.38 34526.25 33442.57 36626.02 35851.77 34465.44 349
DSMNet-mixed39.30 33038.72 33041.03 34651.22 36719.66 37245.53 35831.35 37315.83 36839.80 35967.42 34322.19 34845.13 36422.43 35952.69 34358.31 354
ANet_high41.38 32737.47 33253.11 33139.73 37324.45 36956.94 33869.69 27547.65 28526.04 36452.32 35812.44 36162.38 33121.80 36010.61 37172.49 322
new_pmnet34.13 33334.29 33433.64 34852.63 36518.23 37444.43 36033.90 37222.81 36430.89 36253.18 35710.48 36735.72 37020.77 36139.51 36046.98 361
EGC-MVSNET42.47 32538.48 33154.46 32674.33 24948.73 22670.33 27751.10 3550.03 3740.18 37567.78 34113.28 36066.49 31818.91 36250.36 34948.15 359
PMMVS227.40 33425.91 33731.87 35039.46 3746.57 37731.17 36428.52 37423.96 36220.45 36648.94 3634.20 37437.94 36916.51 36319.97 36651.09 358
test_method19.68 33818.10 34124.41 35313.68 3783.11 37912.06 36942.37 3682.00 37211.97 37036.38 3645.77 37229.35 37215.06 36423.65 36540.76 363
Gipumacopyleft34.77 33231.91 33643.33 34562.05 35237.87 32020.39 36667.03 29523.23 36318.41 36725.84 3674.24 37362.73 32914.71 36551.32 34629.38 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS42.18 32641.11 32845.39 34258.03 36341.01 30149.50 35253.81 35330.07 35633.71 36164.03 34911.69 36252.08 36114.01 36655.11 33643.09 362
tmp_tt9.43 34111.14 3444.30 3562.38 3794.40 37813.62 36816.08 3770.39 37315.89 36813.06 37015.80 3585.54 37512.63 36710.46 3722.95 370
MVEpermissive17.77 2321.41 33717.77 34232.34 34934.34 37625.44 36716.11 36724.11 37511.19 36913.22 36931.92 3651.58 37830.95 37110.47 36817.03 36740.62 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN23.77 33522.73 33926.90 35142.02 37120.67 37142.66 36135.70 37017.43 36610.28 37225.05 3686.42 37142.39 36710.28 36914.71 36817.63 367
PMVScopyleft28.69 2236.22 33133.29 33545.02 34436.82 37535.98 33954.68 34548.74 36026.31 36021.02 36551.61 3602.88 37760.10 3389.99 37047.58 35338.99 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS22.97 33621.84 34026.36 35240.20 37219.53 37341.95 36234.64 37117.09 3679.73 37322.83 3697.29 37042.22 3689.18 37113.66 36917.32 368
DeepMVS_CXcopyleft12.03 35517.97 37710.91 37510.60 3787.46 37011.07 37128.36 3663.28 37611.29 3748.01 3729.74 37313.89 369
wuyk23d13.32 34012.52 34315.71 35447.54 36926.27 36531.06 3651.98 3794.93 3715.18 3741.94 3740.45 37918.54 3736.81 37312.83 3702.33 371
testmvs4.52 3446.03 3470.01 3580.01 3800.00 38253.86 3470.00 3810.01 3750.04 3760.27 3750.00 3810.00 3760.04 3740.00 3740.03 373
test1234.73 3436.30 3460.02 3570.01 3800.01 38156.36 3400.00 3810.01 3750.04 3760.21 3760.01 3800.00 3760.03 3750.00 3740.04 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
cdsmvs_eth3d_5k17.50 33923.34 3380.00 3590.00 3820.00 3820.00 37078.63 1710.00 3770.00 37882.18 18149.25 1120.00 3760.00 3760.00 3740.00 374
pcd_1.5k_mvsjas3.92 3455.23 3480.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 37747.05 1430.00 3760.00 3760.00 3740.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
ab-mvs-re6.49 3428.65 3450.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 37877.89 2640.00 3810.00 3760.00 3760.00 3740.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3820.00 3700.00 3810.00 3770.00 3780.00 3770.00 3810.00 3760.00 3760.00 3740.00 374
FOURS186.12 4060.82 4288.18 183.61 6860.87 8881.50 16
test_one_060187.58 959.30 6586.84 1165.01 2383.80 1191.86 664.03 11
eth-test20.00 382
eth-test0.00 382
test_241102_ONE87.77 458.90 7786.78 1464.20 3485.97 191.34 1266.87 390.78 7
save fliter86.17 3661.30 3183.98 4879.66 15259.00 129
test072687.75 759.07 7287.86 486.83 1264.26 3284.19 791.92 564.82 8
GSMVS78.05 265
test_part287.58 960.47 4983.42 12
sam_mvs134.74 26578.05 265
sam_mvs33.43 279
MTGPAbinary80.97 132
test_post3.55 37333.90 27466.52 317
patchmatchnet-post64.03 34934.50 26774.27 284
MTMP86.03 1917.08 376
TEST985.58 4961.59 2781.62 8881.26 12355.65 19674.93 4688.81 6553.70 6784.68 124
test_885.40 5360.96 3981.54 9181.18 12655.86 18874.81 4988.80 6753.70 6784.45 129
agg_prior85.04 5759.96 5481.04 12974.68 5284.04 136
test_prior462.51 1782.08 83
test_prior76.69 6284.20 6957.27 10184.88 4286.43 8486.38 71
新几何276.12 180
旧先验183.04 8053.15 16067.52 29087.85 7744.08 17780.76 10778.03 268
原ACMM279.02 125
test22283.14 7758.68 8172.57 24463.45 31741.78 33167.56 16186.12 10637.13 24778.73 14274.98 299
segment_acmp54.23 58
testdata172.65 24160.50 96
test1277.76 4684.52 6658.41 8583.36 7772.93 8254.61 5588.05 4088.12 4086.81 63
plane_prior781.41 10155.96 125
plane_prior681.20 10856.24 12045.26 167
plane_prior486.10 107
plane_prior356.09 12263.92 3969.27 128
plane_prior284.22 4064.52 28
plane_prior181.27 106
plane_prior56.31 11683.58 5663.19 5180.48 113
n20.00 381
nn0.00 381
door-mid47.19 364
test1183.47 72
door47.60 363
HQP5-MVS54.94 140
HQP-NCC80.66 11382.31 7862.10 7267.85 152
ACMP_Plane80.66 11382.31 7862.10 7267.85 152
HQP4-MVS67.85 15286.93 6684.32 147
HQP3-MVS83.90 6080.35 116
HQP2-MVS45.46 161
NP-MVS80.98 11156.05 12485.54 121
ACMMP++_ref74.07 181
ACMMP++72.16 212
Test By Simon48.33 124