MSP-MVS | | | 81.06 2 | 81.40 3 | 80.02 1 | 86.21 30 | 62.73 12 | 86.09 15 | 86.83 10 | 65.51 14 | 83.81 8 | 90.51 21 | 63.71 9 | 89.23 16 | 81.51 1 | 88.44 28 | 88.09 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MP-MVS-pluss | | | 78.35 21 | 78.46 17 | 78.03 40 | 84.96 55 | 59.52 58 | 82.93 61 | 85.39 26 | 62.15 66 | 76.41 32 | 91.51 9 | 52.47 74 | 86.78 65 | 80.66 2 | 89.64 19 | 87.80 24 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SMA-MVS |  | | 80.28 5 | 80.39 6 | 79.95 3 | 86.60 21 | 61.95 22 | 86.33 11 | 85.75 23 | 62.49 61 | 82.20 12 | 92.28 1 | 56.53 31 | 89.70 12 | 79.85 3 | 91.48 1 | 88.19 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 6 | 92.00 3 | 64.69 8 | 90.75 5 | 79.48 4 | 90.63 6 | 88.09 15 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 14 | 78.74 27 | 85.44 47 | 61.04 36 | 83.84 50 | 85.16 30 | 62.88 52 | 78.10 24 | 91.26 11 | 52.51 72 | 88.39 27 | 79.34 5 | 90.52 9 | 86.78 58 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 64 | | 85.53 25 | 53.93 213 | 84.64 3 | | | | 79.07 6 | 90.87 3 | 88.37 7 |
|
HPM-MVS++ |  | | 79.88 7 | 80.14 7 | 79.10 17 | 88.17 1 | 64.80 1 | 86.59 10 | 83.70 60 | 65.37 15 | 78.78 21 | 90.64 17 | 58.63 20 | 87.24 49 | 79.00 7 | 90.37 10 | 85.26 113 |
|
APDe-MVS | | | 80.16 6 | 80.59 5 | 78.86 25 | 86.64 19 | 60.02 50 | 88.12 1 | 86.42 16 | 62.94 50 | 82.40 11 | 92.12 2 | 59.64 15 | 89.76 11 | 78.70 8 | 88.32 32 | 86.79 57 |
|
CNVR-MVS | | | 79.84 8 | 79.97 8 | 79.45 7 | 87.90 2 | 62.17 20 | 84.37 34 | 85.03 33 | 66.96 5 | 77.58 28 | 90.06 38 | 59.47 17 | 89.13 18 | 78.67 9 | 89.73 16 | 87.03 50 |
|
DVP-MVS | | | 80.84 3 | 81.64 2 | 78.42 33 | 87.75 7 | 59.07 67 | 87.85 3 | 85.03 33 | 64.26 30 | 83.82 6 | 92.00 3 | 64.82 6 | 90.75 5 | 78.66 10 | 90.61 7 | 85.45 104 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 79.19 12 | 87.82 3 | 59.11 66 | 87.85 3 | 87.15 6 | | | | | 90.84 1 | 78.66 10 | 90.61 7 | 87.62 32 |
|
SED-MVS | | | 81.56 1 | 82.30 1 | 79.32 9 | 87.77 4 | 58.90 72 | 87.82 5 | 86.78 12 | 64.18 33 | 85.97 1 | 91.84 6 | 66.87 2 | 90.83 2 | 78.63 12 | 90.87 3 | 88.23 10 |
|
test_241102_TWO | | | | | | | | | 86.73 14 | 64.18 33 | 84.26 4 | 91.84 6 | 65.19 4 | 90.83 2 | 78.63 12 | 90.70 5 | 87.65 30 |
|
SteuartSystems-ACMMP | | | 79.48 9 | 79.31 10 | 79.98 2 | 83.01 77 | 62.18 19 | 87.60 7 | 85.83 21 | 66.69 10 | 78.03 27 | 90.98 12 | 54.26 53 | 90.06 9 | 78.42 14 | 89.02 23 | 87.69 28 |
Skip Steuart: Steuart Systems R&D Blog. |
9.14 | | | | 78.75 15 | | 83.10 73 | | 84.15 41 | 88.26 2 | 59.90 108 | 78.57 23 | 90.36 26 | 57.51 28 | 86.86 62 | 77.39 15 | 89.52 21 | |
|
zzz-MVS | | | 77.61 31 | 77.36 31 | 78.35 34 | 86.08 36 | 63.57 2 | 83.37 55 | 80.97 125 | 65.13 18 | 75.77 34 | 90.88 13 | 48.63 113 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 125 |
|
MTAPA | | | 76.90 38 | 76.42 40 | 78.35 34 | 86.08 36 | 63.57 2 | 74.92 200 | 80.97 125 | 65.13 18 | 75.77 34 | 90.88 13 | 48.63 113 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 125 |
|
MP-MVS |  | | 78.35 21 | 78.26 21 | 78.64 28 | 86.54 23 | 63.47 5 | 86.02 18 | 83.55 63 | 63.89 38 | 73.60 66 | 90.60 18 | 54.85 48 | 86.72 66 | 77.20 18 | 88.06 37 | 85.74 93 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ETH3D-3000-0.1 | | | 78.58 15 | 78.91 13 | 77.61 45 | 83.06 74 | 57.86 87 | 84.14 43 | 88.31 1 | 60.37 96 | 79.14 18 | 90.35 27 | 57.76 25 | 87.00 59 | 77.16 19 | 89.90 14 | 87.97 18 |
|
xxxxxxxxxxxxxcwj | | | 78.37 20 | 78.25 22 | 78.76 26 | 86.17 32 | 61.30 31 | 83.98 46 | 79.95 140 | 59.00 124 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 46 | 82.88 79 | 57.83 88 | 84.99 30 | 88.13 3 | 61.86 74 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 23 | 84.96 55 | 61.41 29 | 84.03 44 | 83.82 58 | 59.34 121 | 79.37 15 | 89.76 48 | 59.84 13 | 87.62 46 | 76.69 22 | 86.74 54 | 87.68 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 10 | 86.43 26 | 62.05 21 | 86.62 9 | 86.01 19 | 63.32 43 | 75.08 39 | 90.47 25 | 53.96 57 | 88.68 24 | 76.48 23 | 89.63 20 | 87.16 47 |
|
DPE-MVS |  | | 80.56 4 | 80.98 4 | 79.29 11 | 87.27 12 | 60.56 45 | 85.71 24 | 86.42 16 | 63.28 44 | 83.27 10 | 91.83 8 | 64.96 5 | 90.47 7 | 76.41 24 | 89.67 18 | 86.84 54 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ETH3D cwj APD-0.16 | | | 78.02 24 | 78.13 24 | 77.71 44 | 82.10 84 | 58.65 77 | 82.72 66 | 87.55 5 | 58.33 138 | 78.05 26 | 90.06 38 | 58.35 21 | 87.65 45 | 76.15 25 | 89.86 15 | 86.82 55 |
|
SD-MVS | | | 77.70 29 | 77.62 28 | 77.93 42 | 84.47 62 | 61.88 24 | 84.55 33 | 83.87 56 | 60.37 96 | 79.89 14 | 89.38 53 | 54.97 45 | 85.58 97 | 76.12 26 | 84.94 63 | 86.33 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS |  | | 77.28 33 | 76.85 35 | 78.54 31 | 85.00 54 | 60.81 40 | 82.91 62 | 85.08 31 | 62.57 59 | 73.09 75 | 89.97 44 | 50.90 94 | 87.48 47 | 75.30 27 | 86.85 52 | 87.33 44 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test9_res | | | | | | | | | | | | | | | 75.28 28 | 88.31 33 | 83.81 155 |
|
train_agg | | | 76.27 44 | 76.15 41 | 76.64 62 | 85.58 44 | 61.59 27 | 81.62 84 | 81.26 116 | 55.86 179 | 74.93 42 | 88.81 62 | 53.70 63 | 84.68 118 | 75.24 29 | 88.33 31 | 83.65 167 |
|
agg_prior1 | | | 75.94 47 | 76.01 43 | 75.72 76 | 85.04 52 | 59.96 51 | 81.44 88 | 81.04 122 | 56.14 175 | 74.68 48 | 88.90 60 | 53.91 59 | 84.04 130 | 75.01 30 | 87.92 41 | 83.16 182 |
|
GST-MVS | | | 78.14 23 | 77.85 26 | 78.99 22 | 86.05 38 | 61.82 25 | 85.84 19 | 85.21 29 | 63.56 42 | 74.29 55 | 90.03 41 | 52.56 71 | 88.53 26 | 74.79 31 | 88.34 30 | 86.63 60 |
|
DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 23 | 79.83 4 | 83.60 67 | 61.62 26 | 84.17 40 | 86.85 9 | 63.23 45 | 73.84 63 | 90.25 33 | 57.68 26 | 89.96 10 | 74.62 32 | 89.03 22 | 87.89 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3 D test6400 | | | 79.14 10 | 79.32 9 | 78.61 29 | 86.34 27 | 58.11 84 | 84.65 32 | 87.66 4 | 58.56 133 | 78.87 20 | 89.54 50 | 63.67 10 | 89.57 13 | 74.60 33 | 89.98 13 | 88.14 13 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 15 | 84.92 59 | 60.32 48 | 83.03 59 | 85.33 28 | 62.86 53 | 80.17 13 | 90.03 41 | 61.76 11 | 88.95 20 | 74.21 34 | 88.67 27 | 88.12 14 |
|
NCCC | | | 78.58 15 | 78.31 19 | 79.39 8 | 87.51 11 | 62.61 16 | 85.20 29 | 84.42 42 | 66.73 9 | 74.67 50 | 89.38 53 | 55.30 43 | 89.18 17 | 74.19 35 | 87.34 44 | 86.38 63 |
|
ZD-MVS | | | | | | 86.64 19 | 60.38 47 | | 82.70 85 | 57.95 143 | 78.10 24 | 90.06 38 | 56.12 37 | 88.84 23 | 74.05 36 | 87.00 51 | |
|
HFP-MVS | | | 78.01 26 | 77.65 27 | 79.10 17 | 86.71 16 | 62.81 10 | 86.29 12 | 84.32 44 | 62.82 54 | 73.96 58 | 90.50 22 | 53.20 68 | 88.35 28 | 74.02 37 | 87.05 46 | 86.13 77 |
|
ACMMPR | | | 77.71 28 | 77.23 32 | 79.16 13 | 86.75 15 | 62.93 9 | 86.29 12 | 84.24 46 | 62.82 54 | 73.55 67 | 90.56 20 | 49.80 100 | 88.24 31 | 74.02 37 | 87.03 48 | 86.32 72 |
|
region2R | | | 77.67 30 | 77.18 33 | 79.15 14 | 86.76 14 | 62.95 8 | 86.29 12 | 84.16 48 | 62.81 56 | 73.30 69 | 90.58 19 | 49.90 98 | 88.21 32 | 73.78 39 | 87.03 48 | 86.29 75 |
|
#test# | | | 77.83 27 | 77.41 30 | 79.10 17 | 86.71 16 | 62.81 10 | 85.69 25 | 84.32 44 | 61.61 77 | 73.96 58 | 90.50 22 | 53.20 68 | 88.35 28 | 73.68 40 | 87.05 46 | 86.13 77 |
|
MCST-MVS | | | 77.48 32 | 77.45 29 | 77.54 47 | 86.67 18 | 58.36 81 | 83.22 57 | 86.93 8 | 56.91 156 | 74.91 44 | 88.19 66 | 59.15 18 | 87.68 44 | 73.67 41 | 87.45 43 | 86.57 61 |
|
CP-MVS | | | 77.12 36 | 76.68 37 | 78.43 32 | 86.05 38 | 63.18 7 | 87.55 8 | 83.45 66 | 62.44 63 | 72.68 80 | 90.50 22 | 48.18 119 | 87.34 48 | 73.59 42 | 85.71 60 | 84.76 129 |
|
testtj | | | 78.47 18 | 78.43 18 | 78.61 29 | 86.82 13 | 60.67 43 | 86.07 16 | 85.38 27 | 62.12 67 | 78.65 22 | 90.29 31 | 55.76 39 | 89.31 15 | 73.55 43 | 87.22 45 | 85.84 85 |
|
APD-MVS |  | | 78.02 24 | 78.04 25 | 77.98 41 | 86.44 25 | 60.81 40 | 85.52 26 | 84.36 43 | 60.61 89 | 79.05 19 | 90.30 30 | 55.54 42 | 88.32 30 | 73.48 44 | 87.03 48 | 84.83 124 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
OPU-MVS | | | | | 79.83 4 | 87.54 10 | 60.93 38 | 87.82 5 | | | | 89.89 45 | 67.01 1 | 90.33 8 | 73.16 45 | 91.15 2 | 88.23 10 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 46 | 87.93 40 | 84.33 137 |
|
CANet | | | 76.46 42 | 75.93 44 | 78.06 39 | 81.29 99 | 57.53 93 | 82.35 72 | 83.31 72 | 67.78 3 | 70.09 104 | 86.34 95 | 54.92 46 | 88.90 21 | 72.68 47 | 84.55 66 | 87.76 27 |
|
PGM-MVS | | | 76.77 40 | 76.06 42 | 78.88 24 | 86.14 35 | 62.73 12 | 82.55 70 | 83.74 59 | 61.71 75 | 72.45 86 | 90.34 29 | 48.48 117 | 88.13 33 | 72.32 48 | 86.85 52 | 85.78 87 |
|
test_prior3 | | | 76.89 39 | 76.96 34 | 76.69 59 | 84.20 64 | 57.27 96 | 81.75 81 | 84.88 36 | 60.37 96 | 75.01 40 | 89.06 56 | 56.22 35 | 86.43 78 | 72.19 49 | 88.96 24 | 86.38 63 |
|
test_prior2 | | | | | | | | 81.75 81 | | 60.37 96 | 75.01 40 | 89.06 56 | 56.22 35 | | 72.19 49 | 88.96 24 | |
|
ACMMP |  | | 76.02 46 | 75.33 49 | 78.07 38 | 85.20 51 | 61.91 23 | 85.49 28 | 84.44 41 | 63.04 48 | 69.80 114 | 89.74 49 | 45.43 157 | 87.16 53 | 72.01 51 | 82.87 80 | 85.14 114 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
mPP-MVS | | | 76.54 41 | 75.93 44 | 78.34 36 | 86.47 24 | 63.50 4 | 85.74 23 | 82.28 89 | 62.90 51 | 71.77 90 | 90.26 32 | 46.61 144 | 86.55 74 | 71.71 52 | 85.66 61 | 84.97 121 |
|
SR-MVS | | | 76.13 45 | 75.70 46 | 77.40 51 | 85.87 40 | 61.20 33 | 85.52 26 | 82.19 90 | 59.99 107 | 75.10 38 | 90.35 27 | 47.66 125 | 86.52 75 | 71.64 53 | 82.99 75 | 84.47 135 |
|
XVS | | | 77.17 35 | 76.56 39 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 24 | 72.17 87 | 90.01 43 | 47.95 121 | 88.01 37 | 71.55 54 | 86.74 54 | 86.37 67 |
|
X-MVStestdata | | | 70.21 120 | 67.28 161 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 24 | 72.17 87 | 6.49 360 | 47.95 121 | 88.01 37 | 71.55 54 | 86.74 54 | 86.37 67 |
|
Regformer-2 | | | 75.63 50 | 74.99 51 | 77.54 47 | 80.43 113 | 58.32 82 | 79.50 117 | 82.92 80 | 67.84 1 | 75.94 33 | 80.75 206 | 55.73 40 | 86.80 63 | 71.44 56 | 80.38 105 | 87.50 36 |
|
Regformer-1 | | | 75.47 51 | 74.93 53 | 77.09 54 | 80.43 113 | 57.70 91 | 79.50 117 | 82.13 91 | 67.84 1 | 75.73 36 | 80.75 206 | 56.50 32 | 86.07 82 | 71.07 57 | 80.38 105 | 87.50 36 |
|
PHI-MVS | | | 75.87 48 | 75.36 48 | 77.41 49 | 80.62 111 | 55.91 122 | 84.28 37 | 85.78 22 | 56.08 177 | 73.41 68 | 86.58 90 | 50.94 93 | 88.54 25 | 70.79 58 | 89.71 17 | 87.79 25 |
|
diffmvs | | | 70.69 110 | 70.43 106 | 71.46 170 | 69.45 301 | 48.95 216 | 72.93 230 | 78.46 171 | 57.27 150 | 71.69 91 | 83.97 139 | 51.48 85 | 77.92 246 | 70.70 59 | 77.95 140 | 87.53 35 |
|
test1172 | | | 75.36 53 | 74.81 55 | 77.02 55 | 85.47 46 | 60.79 42 | 83.94 49 | 81.63 102 | 59.52 118 | 74.66 51 | 90.18 34 | 44.74 164 | 85.84 91 | 70.63 60 | 82.52 84 | 84.42 136 |
|
hse-mvs3 | | | 72.71 82 | 71.49 89 | 76.40 65 | 81.99 87 | 59.58 57 | 76.92 161 | 76.74 201 | 60.40 93 | 74.81 45 | 85.95 105 | 45.54 153 | 85.76 94 | 70.41 61 | 70.61 217 | 83.86 154 |
|
hse-mvs2 | | | 71.04 105 | 69.86 113 | 74.60 101 | 79.58 131 | 57.12 105 | 73.96 214 | 75.25 219 | 60.40 93 | 74.81 45 | 81.95 178 | 45.54 153 | 82.90 155 | 70.41 61 | 66.83 267 | 83.77 160 |
|
Regformer-4 | | | 74.25 67 | 73.48 71 | 76.57 64 | 79.75 126 | 56.54 110 | 78.54 129 | 81.49 106 | 66.93 7 | 73.90 61 | 80.30 214 | 53.84 61 | 85.98 87 | 69.76 63 | 76.84 152 | 87.17 46 |
|
APD-MVS_3200maxsize | | | 74.96 54 | 74.39 60 | 76.67 61 | 82.20 83 | 58.24 83 | 83.67 51 | 83.29 73 | 58.41 135 | 73.71 64 | 90.14 35 | 45.62 150 | 85.99 86 | 69.64 64 | 82.85 81 | 85.78 87 |
|
baseline | | | 74.61 61 | 74.70 56 | 74.34 108 | 75.70 214 | 49.99 201 | 77.54 145 | 84.63 40 | 62.73 58 | 73.98 57 | 87.79 72 | 57.67 27 | 83.82 137 | 69.49 65 | 82.74 83 | 89.20 3 |
|
OPM-MVS | | | 74.73 59 | 74.25 61 | 76.19 68 | 80.81 107 | 59.01 70 | 82.60 69 | 83.64 61 | 63.74 40 | 72.52 83 | 87.49 73 | 47.18 135 | 85.88 90 | 69.47 66 | 80.78 97 | 83.66 166 |
|
casdiffmvs | | | 74.80 56 | 74.89 54 | 74.53 104 | 75.59 218 | 50.37 194 | 78.17 134 | 85.06 32 | 62.80 57 | 74.40 53 | 87.86 70 | 57.88 24 | 83.61 141 | 69.46 67 | 82.79 82 | 89.59 2 |
|
CDPH-MVS | | | 76.31 43 | 75.67 47 | 78.22 37 | 85.35 50 | 59.14 65 | 81.31 90 | 84.02 49 | 56.32 169 | 74.05 56 | 88.98 59 | 53.34 67 | 87.92 39 | 69.23 68 | 88.42 29 | 87.59 33 |
|
Regformer-3 | | | 73.89 71 | 73.28 75 | 75.71 77 | 79.75 126 | 55.48 131 | 78.54 129 | 79.93 141 | 66.58 11 | 73.62 65 | 80.30 214 | 54.87 47 | 84.54 121 | 69.09 69 | 76.84 152 | 87.10 49 |
|
CPTT-MVS | | | 72.78 80 | 72.08 84 | 74.87 93 | 84.88 60 | 61.41 29 | 84.15 41 | 77.86 181 | 55.27 192 | 67.51 155 | 88.08 69 | 41.93 190 | 81.85 178 | 69.04 70 | 80.01 111 | 81.35 211 |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 34 | 76.63 38 | 79.12 16 | 86.15 34 | 60.86 39 | 84.71 31 | 84.85 38 | 61.98 73 | 73.06 76 | 88.88 61 | 53.72 62 | 89.06 19 | 68.27 71 | 88.04 38 | 87.42 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS-dyc-post | | | 74.57 62 | 73.90 64 | 76.58 63 | 83.49 69 | 59.87 54 | 84.29 35 | 81.36 109 | 58.07 141 | 73.14 72 | 90.07 36 | 44.74 164 | 85.84 91 | 68.20 72 | 81.76 91 | 84.03 146 |
|
RE-MVS-def | | | | 73.71 68 | | 83.49 69 | 59.87 54 | 84.29 35 | 81.36 109 | 58.07 141 | 73.14 72 | 90.07 36 | 43.06 180 | | 68.20 72 | 81.76 91 | 84.03 146 |
|
HQP_MVS | | | 74.31 65 | 73.73 67 | 76.06 69 | 81.41 96 | 56.31 111 | 84.22 38 | 84.01 50 | 64.52 26 | 69.27 122 | 86.10 100 | 45.26 161 | 87.21 51 | 68.16 74 | 80.58 101 | 84.65 130 |
|
plane_prior5 | | | | | | | | | 84.01 50 | | | | | 87.21 51 | 68.16 74 | 80.58 101 | 84.65 130 |
|
abl_6 | | | 74.34 64 | 73.50 70 | 76.86 57 | 82.43 81 | 60.16 49 | 83.48 54 | 81.86 96 | 58.81 128 | 73.95 60 | 89.86 46 | 41.87 191 | 86.62 70 | 67.98 76 | 81.23 96 | 83.80 159 |
|
CSCG | | | 76.92 37 | 76.75 36 | 77.41 49 | 83.96 66 | 59.60 56 | 82.95 60 | 86.50 15 | 60.78 87 | 75.27 37 | 84.83 120 | 60.76 12 | 86.56 73 | 67.86 77 | 87.87 42 | 86.06 80 |
|
LPG-MVS_test | | | 72.74 81 | 71.74 86 | 75.76 74 | 80.22 117 | 57.51 94 | 82.55 70 | 83.40 68 | 61.32 79 | 66.67 166 | 87.33 76 | 39.15 219 | 86.59 71 | 67.70 78 | 77.30 147 | 83.19 179 |
|
LGP-MVS_train | | | | | 75.76 74 | 80.22 117 | 57.51 94 | | 83.40 68 | 61.32 79 | 66.67 166 | 87.33 76 | 39.15 219 | 86.59 71 | 67.70 78 | 77.30 147 | 83.19 179 |
|
HPM-MVS_fast | | | 74.30 66 | 73.46 73 | 76.80 58 | 84.45 63 | 59.04 69 | 83.65 52 | 81.05 121 | 60.15 104 | 70.43 99 | 89.84 47 | 41.09 206 | 85.59 96 | 67.61 80 | 82.90 79 | 85.77 90 |
|
MVS_111021_HR | | | 74.02 69 | 73.46 73 | 75.69 79 | 83.01 77 | 60.63 44 | 77.29 152 | 78.40 176 | 61.18 82 | 70.58 98 | 85.97 104 | 54.18 55 | 84.00 134 | 67.52 81 | 82.98 77 | 82.45 194 |
|
ETV-MVS | | | 74.46 63 | 73.84 66 | 76.33 67 | 79.27 135 | 55.24 134 | 79.22 120 | 85.00 35 | 64.97 22 | 72.65 81 | 79.46 233 | 53.65 66 | 87.87 40 | 67.45 82 | 82.91 78 | 85.89 84 |
|
DELS-MVS | | | 74.76 57 | 74.46 58 | 75.65 80 | 77.84 172 | 52.25 170 | 75.59 185 | 84.17 47 | 63.76 39 | 73.15 71 | 82.79 156 | 59.58 16 | 86.80 63 | 67.24 83 | 86.04 59 | 87.89 19 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TSAR-MVS + GP. | | | 74.90 55 | 74.15 62 | 77.17 53 | 82.00 86 | 58.77 75 | 81.80 80 | 78.57 165 | 58.58 131 | 74.32 54 | 84.51 129 | 55.94 38 | 87.22 50 | 67.11 84 | 84.48 68 | 85.52 100 |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 85 | | |
|
HQP-MVS | | | 73.45 74 | 72.80 78 | 75.40 84 | 80.66 108 | 54.94 135 | 82.31 74 | 83.90 54 | 62.10 68 | 67.85 146 | 85.54 114 | 45.46 155 | 86.93 60 | 67.04 85 | 80.35 107 | 84.32 138 |
|
ACMP | | 63.53 6 | 72.30 88 | 71.20 97 | 75.59 83 | 80.28 115 | 57.54 92 | 82.74 65 | 82.84 84 | 60.58 90 | 65.24 195 | 86.18 98 | 39.25 217 | 86.03 85 | 66.95 87 | 76.79 154 | 83.22 177 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
EI-MVSNet-Vis-set | | | 72.42 87 | 71.59 87 | 74.91 91 | 78.47 154 | 54.02 142 | 77.05 157 | 79.33 152 | 65.03 21 | 71.68 92 | 79.35 236 | 52.75 70 | 84.89 114 | 66.46 88 | 74.23 169 | 85.83 86 |
|
DPM-MVS | | | 75.47 51 | 75.00 50 | 76.88 56 | 81.38 98 | 59.16 63 | 79.94 107 | 85.71 24 | 56.59 164 | 72.46 84 | 86.76 80 | 56.89 29 | 87.86 41 | 66.36 89 | 88.91 26 | 83.64 168 |
|
CS-MVS | | | 74.18 68 | 73.60 69 | 75.92 71 | 78.99 141 | 52.53 164 | 80.61 98 | 85.93 20 | 61.17 83 | 71.15 95 | 79.34 237 | 54.52 51 | 88.86 22 | 66.07 90 | 84.67 65 | 86.38 63 |
|
MVSFormer | | | 71.50 101 | 70.38 108 | 74.88 92 | 78.76 146 | 57.15 103 | 82.79 63 | 78.48 169 | 51.26 241 | 69.49 117 | 83.22 151 | 43.99 173 | 83.24 147 | 66.06 91 | 79.37 119 | 84.23 141 |
|
test_djsdf | | | 69.45 138 | 67.74 145 | 74.58 102 | 74.57 233 | 54.92 137 | 82.79 63 | 78.48 169 | 51.26 241 | 65.41 189 | 83.49 149 | 38.37 226 | 83.24 147 | 66.06 91 | 69.25 243 | 85.56 99 |
|
canonicalmvs | | | 74.67 60 | 74.98 52 | 73.71 123 | 78.94 143 | 50.56 192 | 80.23 102 | 83.87 56 | 60.30 102 | 77.15 29 | 86.56 91 | 59.65 14 | 82.00 176 | 66.01 93 | 82.12 87 | 88.58 6 |
|
MVS_Test | | | 72.45 86 | 72.46 81 | 72.42 156 | 74.88 226 | 48.50 220 | 76.28 173 | 83.14 78 | 59.40 119 | 72.46 84 | 84.68 122 | 55.66 41 | 81.12 193 | 65.98 94 | 79.66 115 | 87.63 31 |
|
alignmvs | | | 73.86 72 | 73.99 63 | 73.45 132 | 78.20 161 | 50.50 193 | 78.57 127 | 82.43 87 | 59.40 119 | 76.57 30 | 86.71 84 | 56.42 34 | 81.23 192 | 65.84 95 | 81.79 89 | 88.62 4 |
|
nrg030 | | | 72.96 79 | 73.01 76 | 72.84 145 | 75.41 221 | 50.24 195 | 80.02 105 | 82.89 83 | 58.36 137 | 74.44 52 | 86.73 82 | 58.90 19 | 80.83 201 | 65.84 95 | 74.46 166 | 87.44 39 |
|
RRT_MVS | | | 68.77 149 | 66.71 171 | 74.95 90 | 75.93 211 | 58.55 79 | 80.50 100 | 75.84 210 | 56.09 176 | 68.17 139 | 83.74 143 | 28.50 310 | 82.98 152 | 65.67 97 | 65.91 273 | 83.33 173 |
|
MVS_111021_LR | | | 69.50 136 | 68.78 131 | 71.65 167 | 78.38 155 | 59.33 61 | 74.82 202 | 70.11 265 | 58.08 140 | 67.83 150 | 84.68 122 | 41.96 189 | 76.34 265 | 65.62 98 | 77.54 142 | 79.30 245 |
|
EI-MVSNet-UG-set | | | 71.92 94 | 71.06 98 | 74.52 105 | 77.98 169 | 53.56 148 | 76.62 165 | 79.16 153 | 64.40 28 | 71.18 94 | 78.95 241 | 52.19 77 | 84.66 120 | 65.47 99 | 73.57 177 | 85.32 110 |
|
test_part1 | | | 74.74 58 | 74.42 59 | 75.70 78 | 81.69 91 | 51.26 179 | 83.98 46 | 87.05 7 | 65.31 16 | 73.10 74 | 86.20 97 | 53.94 58 | 88.06 35 | 65.32 100 | 73.17 187 | 87.77 26 |
|
PS-MVSNAJss | | | 72.24 89 | 71.21 96 | 75.31 86 | 78.50 152 | 55.93 121 | 81.63 83 | 82.12 92 | 56.24 172 | 70.02 108 | 85.68 111 | 47.05 137 | 84.34 125 | 65.27 101 | 74.41 168 | 85.67 94 |
|
bset_n11_16_dypcd | | | 65.57 207 | 63.69 213 | 71.19 180 | 70.84 282 | 51.79 176 | 71.37 250 | 70.48 263 | 53.33 218 | 65.19 198 | 76.41 276 | 31.46 292 | 81.76 181 | 65.12 102 | 69.04 246 | 80.01 233 |
|
MSLP-MVS++ | | | 73.77 73 | 73.47 72 | 74.66 97 | 83.02 76 | 59.29 62 | 82.30 77 | 81.88 95 | 59.34 121 | 71.59 93 | 86.83 79 | 45.94 148 | 83.65 140 | 65.09 103 | 85.22 62 | 81.06 218 |
|
v2v482 | | | 70.50 114 | 69.45 121 | 73.66 125 | 72.62 257 | 50.03 200 | 77.58 142 | 80.51 133 | 59.90 108 | 69.52 116 | 82.14 175 | 47.53 128 | 84.88 116 | 65.07 104 | 70.17 225 | 86.09 79 |
|
jason | | | 69.65 132 | 68.39 139 | 73.43 134 | 78.27 160 | 56.88 107 | 77.12 155 | 73.71 241 | 46.53 286 | 69.34 121 | 83.22 151 | 43.37 177 | 79.18 225 | 64.77 105 | 79.20 124 | 84.23 141 |
jason: jason. |
anonymousdsp | | | 67.00 187 | 64.82 204 | 73.57 129 | 70.09 292 | 56.13 116 | 76.35 171 | 77.35 192 | 48.43 266 | 64.99 202 | 80.84 204 | 33.01 275 | 80.34 210 | 64.66 106 | 67.64 262 | 84.23 141 |
|
lupinMVS | | | 69.57 134 | 68.28 140 | 73.44 133 | 78.76 146 | 57.15 103 | 76.57 166 | 73.29 244 | 46.19 289 | 69.49 117 | 82.18 171 | 43.99 173 | 79.23 224 | 64.66 106 | 79.37 119 | 83.93 149 |
|
CLD-MVS | | | 73.33 75 | 72.68 79 | 75.29 88 | 78.82 145 | 53.33 153 | 78.23 133 | 84.79 39 | 61.30 81 | 70.41 100 | 81.04 196 | 52.41 75 | 87.12 54 | 64.61 108 | 82.49 86 | 85.41 108 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
V42 | | | 68.65 151 | 67.35 159 | 72.56 151 | 68.93 306 | 50.18 197 | 72.90 231 | 79.47 149 | 56.92 155 | 69.45 119 | 80.26 216 | 46.29 146 | 82.99 151 | 64.07 109 | 67.82 260 | 84.53 132 |
|
3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 57 | 79.66 6 | 82.40 82 | 59.92 53 | 85.83 20 | 86.32 18 | 66.92 8 | 67.80 151 | 89.24 55 | 42.03 188 | 89.38 14 | 64.07 109 | 86.50 57 | 89.69 1 |
|
v1144 | | | 70.42 116 | 69.31 122 | 73.76 119 | 73.22 245 | 50.64 189 | 77.83 138 | 81.43 107 | 58.58 131 | 69.40 120 | 81.16 193 | 47.53 128 | 85.29 108 | 64.01 111 | 70.64 215 | 85.34 109 |
|
Effi-MVS+ | | | 73.31 76 | 72.54 80 | 75.62 81 | 77.87 171 | 53.64 146 | 79.62 115 | 79.61 146 | 61.63 76 | 72.02 89 | 82.61 161 | 56.44 33 | 85.97 88 | 63.99 112 | 79.07 127 | 87.25 45 |
|
xiu_mvs_v1_base_debu | | | 68.58 153 | 67.28 161 | 72.48 153 | 78.19 162 | 57.19 100 | 75.28 189 | 75.09 224 | 51.61 232 | 70.04 105 | 81.41 189 | 32.79 278 | 79.02 232 | 63.81 113 | 77.31 144 | 81.22 213 |
|
xiu_mvs_v1_base | | | 68.58 153 | 67.28 161 | 72.48 153 | 78.19 162 | 57.19 100 | 75.28 189 | 75.09 224 | 51.61 232 | 70.04 105 | 81.41 189 | 32.79 278 | 79.02 232 | 63.81 113 | 77.31 144 | 81.22 213 |
|
xiu_mvs_v1_base_debi | | | 68.58 153 | 67.28 161 | 72.48 153 | 78.19 162 | 57.19 100 | 75.28 189 | 75.09 224 | 51.61 232 | 70.04 105 | 81.41 189 | 32.79 278 | 79.02 232 | 63.81 113 | 77.31 144 | 81.22 213 |
|
RRT_test8_iter05 | | | 68.17 166 | 66.86 170 | 72.07 159 | 75.81 212 | 46.33 242 | 76.41 170 | 81.81 98 | 56.43 167 | 66.52 168 | 81.30 192 | 31.90 290 | 84.25 126 | 63.77 116 | 67.83 259 | 85.64 97 |
|
v8 | | | 70.33 118 | 69.28 123 | 73.49 130 | 73.15 247 | 50.22 196 | 78.62 126 | 80.78 129 | 60.79 86 | 66.45 171 | 82.11 176 | 49.35 103 | 84.98 111 | 63.58 117 | 68.71 251 | 85.28 111 |
|
jajsoiax | | | 68.25 162 | 66.45 175 | 73.66 125 | 75.62 216 | 55.49 130 | 80.82 94 | 78.51 168 | 52.33 227 | 64.33 209 | 84.11 134 | 28.28 312 | 81.81 180 | 63.48 118 | 70.62 216 | 83.67 164 |
|
mvs_tets | | | 68.18 164 | 66.36 181 | 73.63 128 | 75.61 217 | 55.35 133 | 80.77 95 | 78.56 166 | 52.48 226 | 64.27 211 | 84.10 135 | 27.45 318 | 81.84 179 | 63.45 119 | 70.56 218 | 83.69 163 |
|
v144192 | | | 69.71 128 | 68.51 134 | 73.33 137 | 73.10 248 | 50.13 198 | 77.54 145 | 80.64 130 | 56.65 158 | 68.57 132 | 80.55 208 | 46.87 142 | 84.96 113 | 62.98 120 | 69.66 237 | 84.89 123 |
|
v1192 | | | 69.97 125 | 68.68 132 | 73.85 115 | 73.19 246 | 50.94 182 | 77.68 141 | 81.36 109 | 57.51 148 | 68.95 128 | 80.85 203 | 45.28 160 | 85.33 107 | 62.97 121 | 70.37 221 | 85.27 112 |
|
v10 | | | 70.21 120 | 69.02 127 | 73.81 116 | 73.51 244 | 50.92 184 | 78.74 123 | 81.39 108 | 60.05 106 | 66.39 172 | 81.83 181 | 47.58 127 | 85.41 106 | 62.80 122 | 68.86 250 | 85.09 117 |
|
OMC-MVS | | | 71.40 103 | 70.60 103 | 73.78 117 | 76.60 200 | 53.15 155 | 79.74 113 | 79.78 142 | 58.37 136 | 68.75 129 | 86.45 93 | 45.43 157 | 80.60 206 | 62.58 123 | 77.73 141 | 87.58 34 |
|
XVG-OURS-SEG-HR | | | 68.81 146 | 67.47 154 | 72.82 147 | 74.40 237 | 56.87 108 | 70.59 264 | 79.04 154 | 54.77 204 | 66.99 161 | 86.01 103 | 39.57 214 | 78.21 242 | 62.54 124 | 73.33 182 | 83.37 172 |
|
EPNet | | | 73.09 78 | 72.16 82 | 75.90 72 | 75.95 210 | 56.28 113 | 83.05 58 | 72.39 250 | 66.53 12 | 65.27 191 | 87.00 78 | 50.40 96 | 85.47 103 | 62.48 125 | 86.32 58 | 85.94 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v1921920 | | | 69.47 137 | 68.17 142 | 73.36 136 | 73.06 249 | 50.10 199 | 77.39 148 | 80.56 131 | 56.58 165 | 68.59 130 | 80.37 210 | 44.72 166 | 84.98 111 | 62.47 126 | 69.82 232 | 85.00 119 |
|
cl_fuxian | | | 68.33 160 | 67.56 149 | 70.62 192 | 70.87 280 | 46.21 245 | 74.47 208 | 78.80 159 | 56.22 173 | 66.19 175 | 78.53 248 | 51.88 80 | 81.40 187 | 62.08 127 | 69.04 246 | 84.25 140 |
|
AUN-MVS | | | 68.45 159 | 66.41 179 | 74.57 103 | 79.53 132 | 57.08 106 | 73.93 218 | 75.23 220 | 54.44 210 | 66.69 165 | 81.85 180 | 37.10 242 | 82.89 156 | 62.07 128 | 66.84 266 | 83.75 161 |
|
XVG-OURS | | | 68.76 150 | 67.37 157 | 72.90 144 | 74.32 238 | 57.22 98 | 70.09 270 | 78.81 158 | 55.24 193 | 67.79 152 | 85.81 110 | 36.54 247 | 78.28 241 | 62.04 129 | 75.74 160 | 83.19 179 |
|
v1240 | | | 69.24 141 | 67.91 144 | 73.25 140 | 73.02 251 | 49.82 202 | 77.21 154 | 80.54 132 | 56.43 167 | 68.34 136 | 80.51 209 | 43.33 178 | 84.99 109 | 62.03 130 | 69.77 235 | 84.95 122 |
|
ET-MVSNet_ETH3D | | | 67.96 169 | 65.72 193 | 74.68 96 | 76.67 198 | 55.62 128 | 75.11 194 | 74.74 228 | 52.91 221 | 60.03 250 | 80.12 218 | 33.68 268 | 82.64 166 | 61.86 131 | 76.34 157 | 85.78 87 |
|
VDD-MVS | | | 72.50 84 | 72.09 83 | 73.75 121 | 81.58 92 | 49.69 206 | 77.76 140 | 77.63 186 | 63.21 46 | 73.21 70 | 89.02 58 | 42.14 187 | 83.32 145 | 61.72 132 | 82.50 85 | 88.25 9 |
|
PS-MVSNAJ | | | 70.51 113 | 69.70 116 | 72.93 143 | 81.52 93 | 55.79 123 | 74.92 200 | 79.00 155 | 55.04 201 | 69.88 112 | 78.66 243 | 47.05 137 | 82.19 173 | 61.61 133 | 79.58 116 | 80.83 221 |
|
xiu_mvs_v2_base | | | 70.52 112 | 69.75 114 | 72.84 145 | 81.21 102 | 55.63 127 | 75.11 194 | 78.92 156 | 54.92 202 | 69.96 111 | 79.68 228 | 47.00 141 | 82.09 175 | 61.60 134 | 79.37 119 | 80.81 222 |
|
cl-mvsnet2 | | | 67.47 176 | 66.45 175 | 70.54 194 | 69.85 297 | 46.49 240 | 73.85 220 | 77.35 192 | 55.07 199 | 65.51 187 | 77.92 253 | 47.64 126 | 81.10 194 | 61.58 135 | 69.32 240 | 84.01 148 |
|
miper_ehance_all_eth | | | 68.03 167 | 67.24 165 | 70.40 196 | 70.54 284 | 46.21 245 | 73.98 213 | 78.68 163 | 55.07 199 | 66.05 177 | 77.80 257 | 52.16 78 | 81.31 189 | 61.53 136 | 69.32 240 | 83.67 164 |
|
MG-MVS | | | 73.96 70 | 73.89 65 | 74.16 111 | 85.65 42 | 49.69 206 | 81.59 86 | 81.29 115 | 61.45 78 | 71.05 96 | 88.11 67 | 51.77 82 | 87.73 43 | 61.05 137 | 83.09 73 | 85.05 118 |
|
miper_enhance_ethall | | | 67.11 184 | 66.09 188 | 70.17 200 | 69.21 303 | 45.98 248 | 72.85 232 | 78.41 175 | 51.38 238 | 65.65 185 | 75.98 282 | 51.17 89 | 81.25 190 | 60.82 138 | 69.32 240 | 83.29 176 |
|
ACMM | | 61.98 7 | 70.80 109 | 69.73 115 | 74.02 112 | 80.59 112 | 58.59 78 | 82.68 67 | 82.02 94 | 55.46 190 | 67.18 159 | 84.39 131 | 38.51 224 | 83.17 149 | 60.65 139 | 76.10 158 | 80.30 228 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Effi-MVS+-dtu | | | 69.64 133 | 67.53 152 | 75.95 70 | 76.10 207 | 62.29 18 | 80.20 104 | 76.06 208 | 59.83 112 | 65.26 194 | 77.09 263 | 41.56 197 | 84.02 133 | 60.60 140 | 71.09 213 | 81.53 206 |
|
mvs-test1 | | | 70.44 115 | 68.19 141 | 77.18 52 | 76.10 207 | 63.22 6 | 80.59 99 | 76.06 208 | 59.83 112 | 66.32 173 | 79.87 222 | 41.56 197 | 85.53 98 | 60.60 140 | 72.77 192 | 82.80 189 |
|
PVSNet_Blended_VisFu | | | 71.45 102 | 70.39 107 | 74.65 98 | 82.01 85 | 58.82 74 | 79.93 108 | 80.35 136 | 55.09 197 | 65.82 184 | 82.16 174 | 49.17 107 | 82.64 166 | 60.34 142 | 78.62 135 | 82.50 193 |
|
MVSTER | | | 67.16 183 | 65.58 196 | 71.88 161 | 70.37 288 | 49.70 204 | 70.25 269 | 78.45 172 | 51.52 235 | 69.16 126 | 80.37 210 | 38.45 225 | 82.50 168 | 60.19 143 | 71.46 209 | 83.44 171 |
|
EIA-MVS | | | 71.78 96 | 70.60 103 | 75.30 87 | 79.85 125 | 53.54 149 | 77.27 153 | 83.26 75 | 57.92 144 | 66.49 169 | 79.39 234 | 52.07 79 | 86.69 67 | 60.05 144 | 79.14 126 | 85.66 95 |
|
v148 | | | 68.24 163 | 67.19 166 | 71.40 174 | 70.43 286 | 47.77 229 | 75.76 184 | 77.03 196 | 58.91 126 | 67.36 156 | 80.10 219 | 48.60 116 | 81.89 177 | 60.01 145 | 66.52 270 | 84.53 132 |
|
CANet_DTU | | | 68.18 164 | 67.71 148 | 69.59 210 | 74.83 227 | 46.24 244 | 78.66 125 | 76.85 198 | 59.60 114 | 63.45 217 | 82.09 177 | 35.25 252 | 77.41 253 | 59.88 146 | 78.76 132 | 85.14 114 |
|
IterMVS-LS | | | 69.22 142 | 68.48 135 | 71.43 173 | 74.44 236 | 49.40 210 | 76.23 174 | 77.55 187 | 59.60 114 | 65.85 183 | 81.59 187 | 51.28 87 | 81.58 185 | 59.87 147 | 69.90 231 | 83.30 174 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 69.27 140 | 68.44 138 | 71.73 164 | 74.47 234 | 49.39 211 | 75.20 192 | 78.45 172 | 59.60 114 | 69.16 126 | 76.51 273 | 51.29 86 | 82.50 168 | 59.86 148 | 71.45 210 | 83.30 174 |
|
3Dnovator | | 64.47 5 | 72.49 85 | 71.39 92 | 75.79 73 | 77.70 174 | 58.99 71 | 80.66 97 | 83.15 77 | 62.24 65 | 65.46 188 | 86.59 89 | 42.38 186 | 85.52 99 | 59.59 149 | 84.72 64 | 82.85 188 |
|
eth_miper_zixun_eth | | | 67.63 173 | 66.28 185 | 71.67 166 | 71.60 272 | 48.33 222 | 73.68 223 | 77.88 180 | 55.80 183 | 65.91 180 | 78.62 246 | 47.35 134 | 82.88 157 | 59.45 150 | 66.25 271 | 83.81 155 |
|
cl-mvsnet1 | | | 67.18 181 | 66.26 186 | 69.94 203 | 70.20 289 | 45.74 250 | 73.29 226 | 76.83 199 | 55.10 195 | 65.27 191 | 79.58 229 | 47.38 133 | 80.53 207 | 59.43 151 | 69.22 244 | 83.54 169 |
|
cl-mvsnet_ | | | 67.18 181 | 66.26 186 | 69.94 203 | 70.20 289 | 45.74 250 | 73.30 225 | 76.83 199 | 55.10 195 | 65.27 191 | 79.57 230 | 47.39 132 | 80.53 207 | 59.41 152 | 69.22 244 | 83.53 170 |
|
旧先验2 | | | | | | | | 76.08 177 | | 45.32 296 | 76.55 31 | | | 65.56 312 | 58.75 153 | | |
|
VDDNet | | | 71.81 95 | 71.33 94 | 73.26 139 | 82.80 80 | 47.60 232 | 78.74 123 | 75.27 218 | 59.59 117 | 72.94 77 | 89.40 52 | 41.51 200 | 83.91 135 | 58.75 153 | 82.99 75 | 88.26 8 |
|
114514_t | | | 70.83 107 | 69.56 117 | 74.64 99 | 86.21 30 | 54.63 139 | 82.34 73 | 81.81 98 | 48.22 268 | 63.01 221 | 85.83 108 | 40.92 207 | 87.10 55 | 57.91 155 | 79.79 112 | 82.18 197 |
|
Vis-MVSNet |  | | 72.18 90 | 71.37 93 | 74.61 100 | 81.29 99 | 55.41 132 | 80.90 93 | 78.28 178 | 60.73 88 | 69.23 125 | 88.09 68 | 44.36 170 | 82.65 165 | 57.68 156 | 81.75 93 | 85.77 90 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PAPM_NR | | | 72.63 83 | 71.80 85 | 75.13 89 | 81.72 90 | 53.42 152 | 79.91 109 | 83.28 74 | 59.14 123 | 66.31 174 | 85.90 106 | 51.86 81 | 86.06 83 | 57.45 157 | 80.62 99 | 85.91 83 |
|
LFMVS | | | 71.78 96 | 71.59 87 | 72.32 157 | 83.40 71 | 46.38 241 | 79.75 112 | 71.08 257 | 64.18 33 | 72.80 79 | 88.64 65 | 42.58 183 | 83.72 138 | 57.41 158 | 84.49 67 | 86.86 53 |
|
v7n | | | 69.01 144 | 67.36 158 | 73.98 113 | 72.51 260 | 52.65 161 | 78.54 129 | 81.30 114 | 60.26 103 | 62.67 225 | 81.62 184 | 43.61 175 | 84.49 122 | 57.01 159 | 68.70 252 | 84.79 127 |
|
mvs_anonymous | | | 68.03 167 | 67.51 153 | 69.59 210 | 72.08 265 | 44.57 263 | 71.99 244 | 75.23 220 | 51.67 231 | 67.06 160 | 82.57 162 | 54.68 49 | 77.94 245 | 56.56 160 | 75.71 161 | 86.26 76 |
|
Patchmatch-RL test | | | 58.16 268 | 55.49 280 | 66.15 248 | 67.92 312 | 48.89 217 | 60.66 319 | 51.07 344 | 47.86 273 | 59.36 258 | 62.71 343 | 34.02 265 | 72.27 281 | 56.41 161 | 59.40 314 | 77.30 263 |
|
miper_lstm_enhance | | | 62.03 243 | 60.88 246 | 65.49 259 | 66.71 319 | 46.25 243 | 56.29 332 | 75.70 212 | 50.68 245 | 61.27 243 | 75.48 287 | 40.21 209 | 68.03 300 | 56.31 162 | 65.25 279 | 82.18 197 |
|
thisisatest0530 | | | 67.92 170 | 65.78 192 | 74.33 109 | 76.29 204 | 51.03 181 | 76.89 162 | 74.25 235 | 53.67 215 | 65.59 186 | 81.76 182 | 35.15 253 | 85.50 101 | 55.94 163 | 72.47 197 | 86.47 62 |
|
EPP-MVSNet | | | 72.16 92 | 71.31 95 | 74.71 94 | 78.68 149 | 49.70 204 | 82.10 78 | 81.65 101 | 60.40 93 | 65.94 179 | 85.84 107 | 51.74 83 | 86.37 80 | 55.93 164 | 79.55 118 | 88.07 17 |
|
PVSNet_BlendedMVS | | | 68.56 156 | 67.72 146 | 71.07 185 | 77.03 192 | 50.57 190 | 74.50 207 | 81.52 103 | 53.66 216 | 64.22 213 | 79.72 227 | 49.13 108 | 82.87 158 | 55.82 165 | 73.92 172 | 79.77 240 |
|
PVSNet_Blended | | | 68.59 152 | 67.72 146 | 71.19 180 | 77.03 192 | 50.57 190 | 72.51 237 | 81.52 103 | 51.91 230 | 64.22 213 | 77.77 259 | 49.13 108 | 82.87 158 | 55.82 165 | 79.58 116 | 80.14 231 |
|
PAPR | | | 71.72 98 | 70.82 101 | 74.41 107 | 81.20 103 | 51.17 180 | 79.55 116 | 83.33 71 | 55.81 182 | 66.93 162 | 84.61 125 | 50.95 92 | 86.06 83 | 55.79 167 | 79.20 124 | 86.00 81 |
|
tttt0517 | | | 67.83 172 | 65.66 194 | 74.33 109 | 76.69 197 | 50.82 186 | 77.86 137 | 73.99 238 | 54.54 208 | 64.64 206 | 82.53 164 | 35.06 254 | 85.50 101 | 55.71 168 | 69.91 230 | 86.67 59 |
|
IterMVS-SCA-FT | | | 62.49 236 | 61.52 237 | 65.40 260 | 71.99 267 | 50.80 187 | 71.15 257 | 69.63 269 | 45.71 295 | 60.61 246 | 77.93 252 | 37.45 235 | 65.99 310 | 55.67 169 | 63.50 291 | 79.42 243 |
|
XVG-ACMP-BASELINE | | | 64.36 221 | 62.23 230 | 70.74 190 | 72.35 262 | 52.45 168 | 70.80 263 | 78.45 172 | 53.84 214 | 59.87 253 | 81.10 195 | 16.24 348 | 79.32 223 | 55.64 170 | 71.76 205 | 80.47 225 |
|
Anonymous20231211 | | | 69.28 139 | 68.47 136 | 71.73 164 | 80.28 115 | 47.18 236 | 79.98 106 | 82.37 88 | 54.61 205 | 67.24 158 | 84.01 137 | 39.43 215 | 82.41 171 | 55.45 171 | 72.83 191 | 85.62 98 |
|
GA-MVS | | | 65.53 208 | 63.70 212 | 71.02 186 | 70.87 280 | 48.10 224 | 70.48 266 | 74.40 232 | 56.69 157 | 64.70 205 | 76.77 268 | 33.66 269 | 81.10 194 | 55.42 172 | 70.32 223 | 83.87 153 |
|
test_yl | | | 69.69 129 | 69.13 124 | 71.36 175 | 78.37 156 | 45.74 250 | 74.71 203 | 80.20 137 | 57.91 145 | 70.01 109 | 83.83 140 | 42.44 184 | 82.87 158 | 54.97 173 | 79.72 113 | 85.48 102 |
|
DCV-MVSNet | | | 69.69 129 | 69.13 124 | 71.36 175 | 78.37 156 | 45.74 250 | 74.71 203 | 80.20 137 | 57.91 145 | 70.01 109 | 83.83 140 | 42.44 184 | 82.87 158 | 54.97 173 | 79.72 113 | 85.48 102 |
|
1314 | | | 64.61 219 | 63.21 219 | 68.80 221 | 71.87 270 | 47.46 233 | 73.95 215 | 78.39 177 | 42.88 318 | 59.97 251 | 76.60 272 | 38.11 230 | 79.39 222 | 54.84 175 | 72.32 200 | 79.55 241 |
|
Fast-Effi-MVS+-dtu | | | 67.37 177 | 65.33 199 | 73.48 131 | 72.94 252 | 57.78 90 | 77.47 147 | 76.88 197 | 57.60 147 | 61.97 236 | 76.85 267 | 39.31 216 | 80.49 209 | 54.72 176 | 70.28 224 | 82.17 199 |
|
UniMVSNet_NR-MVSNet | | | 71.11 104 | 71.00 99 | 71.44 171 | 79.20 136 | 44.13 265 | 76.02 181 | 82.60 86 | 66.48 13 | 68.20 137 | 84.60 126 | 56.82 30 | 82.82 162 | 54.62 177 | 70.43 219 | 87.36 43 |
|
DU-MVS | | | 70.01 123 | 69.53 118 | 71.44 171 | 78.05 167 | 44.13 265 | 75.01 197 | 81.51 105 | 64.37 29 | 68.20 137 | 84.52 127 | 49.12 110 | 82.82 162 | 54.62 177 | 70.43 219 | 87.37 41 |
|
FIs | | | 70.82 108 | 71.43 90 | 68.98 219 | 78.33 158 | 38.14 310 | 76.96 159 | 83.59 62 | 61.02 84 | 67.33 157 | 86.73 82 | 55.07 44 | 81.64 182 | 54.61 179 | 79.22 123 | 87.14 48 |
|
VPA-MVSNet | | | 69.02 143 | 69.47 120 | 67.69 232 | 77.42 185 | 41.00 293 | 74.04 212 | 79.68 144 | 60.06 105 | 69.26 124 | 84.81 121 | 51.06 91 | 77.58 251 | 54.44 180 | 74.43 167 | 84.48 134 |
|
Anonymous20240529 | | | 69.91 126 | 69.02 127 | 72.56 151 | 80.19 120 | 47.65 230 | 77.56 144 | 80.99 124 | 55.45 191 | 69.88 112 | 86.76 80 | 39.24 218 | 82.18 174 | 54.04 181 | 77.10 149 | 87.85 23 |
|
UniMVSNet (Re) | | | 70.63 111 | 70.20 109 | 71.89 160 | 78.55 151 | 45.29 256 | 75.94 182 | 82.92 80 | 63.68 41 | 68.16 140 | 83.59 146 | 53.89 60 | 83.49 144 | 53.97 182 | 71.12 212 | 86.89 52 |
|
D2MVS | | | 62.30 240 | 60.29 249 | 68.34 227 | 66.46 321 | 48.42 221 | 65.70 292 | 73.42 242 | 47.71 274 | 58.16 272 | 75.02 290 | 30.51 295 | 77.71 249 | 53.96 183 | 71.68 207 | 78.90 249 |
|
原ACMM1 | | | | | 74.69 95 | 85.39 49 | 59.40 59 | | 83.42 67 | 51.47 237 | 70.27 103 | 86.61 88 | 48.61 115 | 86.51 76 | 53.85 184 | 87.96 39 | 78.16 253 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 114 | 74.30 234 | 48.40 267 | | | | 80.78 203 | 53.62 185 | | 79.03 247 |
|
1121 | | | 68.53 157 | 67.16 167 | 72.63 150 | 85.64 43 | 61.14 34 | 73.95 215 | 66.46 290 | 44.61 301 | 70.28 102 | 86.68 85 | 41.42 201 | 80.78 203 | 53.62 185 | 81.79 89 | 75.97 276 |
|
UA-Net | | | 73.13 77 | 72.93 77 | 73.76 119 | 83.58 68 | 51.66 177 | 78.75 122 | 77.66 185 | 67.75 4 | 72.61 82 | 89.42 51 | 49.82 99 | 83.29 146 | 53.61 187 | 83.14 72 | 86.32 72 |
|
VNet | | | 69.68 131 | 70.19 110 | 68.16 228 | 79.73 129 | 41.63 289 | 70.53 265 | 77.38 191 | 60.37 96 | 70.69 97 | 86.63 87 | 51.08 90 | 77.09 257 | 53.61 187 | 81.69 95 | 85.75 92 |
|
Fast-Effi-MVS+ | | | 70.28 119 | 69.12 126 | 73.73 122 | 78.50 152 | 51.50 178 | 75.01 197 | 79.46 150 | 56.16 174 | 68.59 130 | 79.55 231 | 53.97 56 | 84.05 129 | 53.34 189 | 77.53 143 | 85.65 96 |
|
testdata | | | | | 64.66 265 | 81.52 93 | 52.93 158 | | 65.29 297 | 46.09 290 | 73.88 62 | 87.46 74 | 38.08 231 | 66.26 309 | 53.31 190 | 78.48 136 | 74.78 293 |
|
thisisatest0515 | | | 65.83 203 | 63.50 216 | 72.82 147 | 73.75 242 | 49.50 209 | 71.32 252 | 73.12 246 | 49.39 256 | 63.82 215 | 76.50 275 | 34.95 256 | 84.84 117 | 53.20 191 | 75.49 163 | 84.13 145 |
|
MVS | | | 67.37 177 | 66.33 182 | 70.51 195 | 75.46 220 | 50.94 182 | 73.95 215 | 81.85 97 | 41.57 325 | 62.54 229 | 78.57 247 | 47.98 120 | 85.47 103 | 52.97 192 | 82.05 88 | 75.14 285 |
|
IterMVS | | | 62.79 235 | 61.27 240 | 67.35 235 | 69.37 302 | 52.04 174 | 71.17 255 | 68.24 281 | 52.63 225 | 59.82 254 | 76.91 266 | 37.32 237 | 72.36 279 | 52.80 193 | 63.19 294 | 77.66 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FC-MVSNet-test | | | 69.80 127 | 70.58 105 | 67.46 233 | 77.61 182 | 34.73 333 | 76.05 179 | 83.19 76 | 60.84 85 | 65.88 182 | 86.46 92 | 54.52 51 | 80.76 205 | 52.52 194 | 78.12 138 | 86.91 51 |
|
TranMVSNet+NR-MVSNet | | | 70.36 117 | 70.10 112 | 71.17 182 | 78.64 150 | 42.97 276 | 76.53 167 | 81.16 120 | 66.95 6 | 68.53 133 | 85.42 116 | 51.61 84 | 83.07 150 | 52.32 195 | 69.70 236 | 87.46 38 |
|
Baseline_NR-MVSNet | | | 67.05 185 | 67.56 149 | 65.50 258 | 75.65 215 | 37.70 314 | 75.42 187 | 74.65 230 | 59.90 108 | 68.14 141 | 83.15 154 | 49.12 110 | 77.20 255 | 52.23 196 | 69.78 233 | 81.60 205 |
|
UniMVSNet_ETH3D | | | 67.60 174 | 67.07 168 | 69.18 218 | 77.39 186 | 42.29 280 | 74.18 211 | 75.59 214 | 60.37 96 | 66.77 164 | 86.06 102 | 37.64 233 | 78.93 237 | 52.16 197 | 73.49 179 | 86.32 72 |
|
API-MVS | | | 72.17 91 | 71.41 91 | 74.45 106 | 81.95 88 | 57.22 98 | 84.03 44 | 80.38 135 | 59.89 111 | 68.40 134 | 82.33 168 | 49.64 101 | 87.83 42 | 51.87 198 | 84.16 70 | 78.30 251 |
|
PCF-MVS | | 61.88 8 | 70.95 106 | 69.49 119 | 75.35 85 | 77.63 177 | 55.71 124 | 76.04 180 | 81.81 98 | 50.30 249 | 69.66 115 | 85.40 117 | 52.51 72 | 84.89 114 | 51.82 199 | 80.24 109 | 85.45 104 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DP-MVS Recon | | | 72.15 93 | 70.73 102 | 76.40 65 | 86.57 22 | 57.99 86 | 81.15 92 | 82.96 79 | 57.03 153 | 66.78 163 | 85.56 112 | 44.50 168 | 88.11 34 | 51.77 200 | 80.23 110 | 83.10 183 |
|
UGNet | | | 68.81 146 | 67.39 156 | 73.06 141 | 78.33 158 | 54.47 140 | 79.77 111 | 75.40 217 | 60.45 92 | 63.22 218 | 84.40 130 | 32.71 282 | 80.91 200 | 51.71 201 | 80.56 103 | 83.81 155 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MAR-MVS | | | 71.51 100 | 70.15 111 | 75.60 82 | 81.84 89 | 59.39 60 | 81.38 89 | 82.90 82 | 54.90 203 | 68.08 143 | 78.70 242 | 47.73 123 | 85.51 100 | 51.68 202 | 84.17 69 | 81.88 203 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
VPNet | | | 67.52 175 | 68.11 143 | 65.74 256 | 79.18 137 | 36.80 321 | 72.17 242 | 72.83 247 | 62.04 71 | 67.79 152 | 85.83 108 | 48.88 112 | 76.60 262 | 51.30 203 | 72.97 190 | 83.81 155 |
|
QAPM | | | 70.05 122 | 68.81 130 | 73.78 117 | 76.54 202 | 53.43 151 | 83.23 56 | 83.48 64 | 52.89 222 | 65.90 181 | 86.29 96 | 41.55 199 | 86.49 77 | 51.01 204 | 78.40 137 | 81.42 207 |
|
NR-MVSNet | | | 69.54 135 | 68.85 129 | 71.59 169 | 78.05 167 | 43.81 269 | 74.20 210 | 80.86 128 | 65.18 17 | 62.76 223 | 84.52 127 | 52.35 76 | 83.59 142 | 50.96 205 | 70.78 214 | 87.37 41 |
|
IB-MVS | | 56.42 12 | 65.40 211 | 62.73 225 | 73.40 135 | 74.89 225 | 52.78 160 | 73.09 229 | 75.13 223 | 55.69 185 | 58.48 270 | 73.73 300 | 32.86 277 | 86.32 81 | 50.63 206 | 70.11 226 | 81.10 217 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PM-MVS | | | 52.33 302 | 50.19 307 | 58.75 298 | 62.10 339 | 45.14 257 | 65.75 291 | 40.38 356 | 43.60 311 | 53.52 310 | 72.65 304 | 9.16 359 | 65.87 311 | 50.41 207 | 54.18 330 | 65.24 340 |
|
cascas | | | 65.98 202 | 63.42 217 | 73.64 127 | 77.26 188 | 52.58 163 | 72.26 241 | 77.21 194 | 48.56 263 | 61.21 244 | 74.60 294 | 32.57 286 | 85.82 93 | 50.38 208 | 76.75 155 | 82.52 192 |
|
IS-MVSNet | | | 71.57 99 | 71.00 99 | 73.27 138 | 78.86 144 | 45.63 254 | 80.22 103 | 78.69 162 | 64.14 36 | 66.46 170 | 87.36 75 | 49.30 104 | 85.60 95 | 50.26 209 | 83.71 71 | 88.59 5 |
|
WR-MVS | | | 68.47 158 | 68.47 136 | 68.44 226 | 80.20 119 | 39.84 296 | 73.75 222 | 76.07 207 | 64.68 23 | 68.11 142 | 83.63 145 | 50.39 97 | 79.14 230 | 49.78 210 | 69.66 237 | 86.34 69 |
|
CVMVSNet | | | 59.63 261 | 59.14 254 | 61.08 289 | 74.47 234 | 38.84 305 | 75.20 192 | 68.74 278 | 31.15 345 | 58.24 271 | 76.51 273 | 32.39 287 | 68.58 298 | 49.77 211 | 65.84 275 | 75.81 279 |
|
CostFormer | | | 64.04 222 | 62.51 226 | 68.61 224 | 71.88 269 | 45.77 249 | 71.30 253 | 70.60 262 | 47.55 276 | 64.31 210 | 76.61 271 | 41.63 195 | 79.62 219 | 49.74 212 | 69.00 248 | 80.42 226 |
|
æ–°å‡ ä½•1 | | | | | 70.76 189 | 85.66 41 | 61.13 35 | | 66.43 291 | 44.68 300 | 70.29 101 | 86.64 86 | 41.29 203 | 75.23 269 | 49.72 213 | 81.75 93 | 75.93 278 |
|
test-LLR | | | 58.15 269 | 58.13 264 | 58.22 300 | 68.57 307 | 44.80 259 | 65.46 295 | 57.92 328 | 50.08 252 | 55.44 288 | 69.82 324 | 32.62 283 | 57.44 335 | 49.66 214 | 73.62 175 | 72.41 315 |
|
test-mter | | | 56.42 279 | 55.82 278 | 58.22 300 | 68.57 307 | 44.80 259 | 65.46 295 | 57.92 328 | 39.94 334 | 55.44 288 | 69.82 324 | 21.92 340 | 57.44 335 | 49.66 214 | 73.62 175 | 72.41 315 |
|
Anonymous202405211 | | | 66.84 190 | 65.99 189 | 69.40 214 | 80.19 120 | 42.21 281 | 71.11 258 | 71.31 256 | 58.80 129 | 67.90 144 | 86.39 94 | 29.83 302 | 79.65 217 | 49.60 216 | 78.78 131 | 86.33 70 |
|
DWT-MVSNet_test | | | 61.90 244 | 59.93 251 | 67.83 230 | 71.98 268 | 46.09 247 | 71.03 261 | 69.71 266 | 50.09 251 | 58.51 269 | 70.62 316 | 30.21 299 | 77.63 250 | 49.28 217 | 67.91 257 | 79.78 239 |
|
tpmrst | | | 58.24 267 | 58.70 257 | 56.84 307 | 66.97 316 | 34.32 335 | 69.57 274 | 61.14 319 | 47.17 283 | 58.58 268 | 71.60 310 | 41.28 204 | 60.41 326 | 49.20 218 | 62.84 296 | 75.78 280 |
|
pm-mvs1 | | | 65.24 212 | 64.97 203 | 66.04 251 | 72.38 261 | 39.40 301 | 72.62 235 | 75.63 213 | 55.53 189 | 62.35 235 | 83.18 153 | 47.45 130 | 76.47 263 | 49.06 219 | 66.54 269 | 82.24 196 |
|
gm-plane-assit | | | | | | 71.40 277 | 41.72 288 | | | 48.85 262 | | 73.31 302 | | 82.48 170 | 48.90 220 | | |
|
CMPMVS |  | 42.80 21 | 57.81 272 | 55.97 277 | 63.32 272 | 60.98 345 | 47.38 234 | 64.66 302 | 69.50 271 | 32.06 344 | 46.83 335 | 77.80 257 | 29.50 304 | 71.36 284 | 48.68 221 | 73.75 173 | 71.21 324 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ab-mvs | | | 66.65 194 | 66.42 178 | 67.37 234 | 76.17 206 | 41.73 286 | 70.41 268 | 76.14 206 | 53.99 212 | 65.98 178 | 83.51 148 | 49.48 102 | 76.24 266 | 48.60 222 | 73.46 180 | 84.14 144 |
|
OurMVSNet-221017-0 | | | 61.37 252 | 58.63 258 | 69.61 209 | 72.05 266 | 48.06 225 | 73.93 218 | 72.51 249 | 47.23 282 | 54.74 297 | 80.92 200 | 21.49 343 | 81.24 191 | 48.57 223 | 56.22 324 | 79.53 242 |
|
OpenMVS |  | 61.03 9 | 68.85 145 | 67.56 149 | 72.70 149 | 74.26 239 | 53.99 143 | 81.21 91 | 81.34 113 | 52.70 223 | 62.75 224 | 85.55 113 | 38.86 222 | 84.14 128 | 48.41 224 | 83.01 74 | 79.97 234 |
|
baseline2 | | | 63.42 227 | 61.26 241 | 69.89 207 | 72.55 259 | 47.62 231 | 71.54 248 | 68.38 280 | 50.11 250 | 54.82 296 | 75.55 286 | 43.06 180 | 80.96 197 | 48.13 225 | 67.16 265 | 81.11 216 |
|
TESTMET0.1,1 | | | 55.28 287 | 54.90 284 | 56.42 308 | 66.56 320 | 43.67 270 | 65.46 295 | 56.27 335 | 39.18 336 | 53.83 306 | 67.44 332 | 24.21 335 | 55.46 345 | 48.04 226 | 73.11 188 | 70.13 330 |
|
K. test v3 | | | 60.47 256 | 57.11 268 | 70.56 193 | 73.74 243 | 48.22 223 | 75.10 196 | 62.55 313 | 58.27 139 | 53.62 309 | 76.31 277 | 27.81 315 | 81.59 184 | 47.42 227 | 39.18 350 | 81.88 203 |
|
pmmvs6 | | | 63.69 225 | 62.82 224 | 66.27 246 | 70.63 283 | 39.27 302 | 73.13 228 | 75.47 216 | 52.69 224 | 59.75 256 | 82.30 169 | 39.71 213 | 77.03 258 | 47.40 228 | 64.35 285 | 82.53 191 |
|
baseline1 | | | 63.81 224 | 63.87 210 | 63.62 270 | 76.29 204 | 36.36 324 | 71.78 247 | 67.29 285 | 56.05 178 | 64.23 212 | 82.95 155 | 47.11 136 | 74.41 273 | 47.30 229 | 61.85 303 | 80.10 232 |
|
GBi-Net | | | 67.21 179 | 66.55 173 | 69.19 215 | 77.63 177 | 43.33 272 | 77.31 149 | 77.83 182 | 56.62 161 | 65.04 199 | 82.70 157 | 41.85 192 | 80.33 211 | 47.18 230 | 72.76 193 | 83.92 150 |
|
test1 | | | 67.21 179 | 66.55 173 | 69.19 215 | 77.63 177 | 43.33 272 | 77.31 149 | 77.83 182 | 56.62 161 | 65.04 199 | 82.70 157 | 41.85 192 | 80.33 211 | 47.18 230 | 72.76 193 | 83.92 150 |
|
FMVSNet3 | | | 66.32 200 | 65.61 195 | 68.46 225 | 76.48 203 | 42.34 279 | 74.98 199 | 77.15 195 | 55.83 181 | 65.04 199 | 81.16 193 | 39.91 210 | 80.14 215 | 47.18 230 | 72.76 193 | 82.90 187 |
|
FMVSNet2 | | | 66.93 188 | 66.31 184 | 68.79 222 | 77.63 177 | 42.98 275 | 76.11 176 | 77.47 188 | 56.62 161 | 65.22 197 | 82.17 173 | 41.85 192 | 80.18 214 | 47.05 233 | 72.72 196 | 83.20 178 |
|
testdata2 | | | | | | | | | | | | | | 72.18 283 | 46.95 234 | | |
|
BH-RMVSNet | | | 68.81 146 | 67.42 155 | 72.97 142 | 80.11 122 | 52.53 164 | 74.26 209 | 76.29 204 | 58.48 134 | 68.38 135 | 84.20 132 | 42.59 182 | 83.83 136 | 46.53 235 | 75.91 159 | 82.56 190 |
|
AdaColmap |  | | 69.99 124 | 68.66 133 | 73.97 114 | 84.94 57 | 57.83 88 | 82.63 68 | 78.71 161 | 56.28 171 | 64.34 208 | 84.14 133 | 41.57 196 | 87.06 58 | 46.45 236 | 78.88 128 | 77.02 268 |
|
EG-PatchMatch MVS | | | 64.71 217 | 62.87 222 | 70.22 197 | 77.68 175 | 53.48 150 | 77.99 136 | 78.82 157 | 53.37 217 | 56.03 284 | 77.41 262 | 24.75 334 | 84.04 130 | 46.37 237 | 73.42 181 | 73.14 305 |
|
1112_ss | | | 64.00 223 | 63.36 218 | 65.93 253 | 79.28 134 | 42.58 278 | 71.35 251 | 72.36 251 | 46.41 287 | 60.55 247 | 77.89 255 | 46.27 147 | 73.28 276 | 46.18 238 | 69.97 228 | 81.92 202 |
|
FMVSNet1 | | | 66.70 193 | 65.87 190 | 69.19 215 | 77.49 184 | 43.33 272 | 77.31 149 | 77.83 182 | 56.45 166 | 64.60 207 | 82.70 157 | 38.08 231 | 80.33 211 | 46.08 239 | 72.31 201 | 83.92 150 |
|
HyFIR lowres test | | | 65.67 205 | 63.01 221 | 73.67 124 | 79.97 124 | 55.65 126 | 69.07 278 | 75.52 215 | 42.68 319 | 63.53 216 | 77.95 251 | 40.43 208 | 81.64 182 | 46.01 240 | 71.91 204 | 83.73 162 |
|
lessismore_v0 | | | | | 69.91 205 | 71.42 276 | 47.80 227 | | 50.90 345 | | 50.39 326 | 75.56 285 | 27.43 319 | 81.33 188 | 45.91 241 | 34.10 352 | 80.59 224 |
|
CHOSEN 1792x2688 | | | 65.08 215 | 62.84 223 | 71.82 162 | 81.49 95 | 56.26 114 | 66.32 289 | 74.20 236 | 40.53 330 | 63.16 220 | 78.65 244 | 41.30 202 | 77.80 248 | 45.80 242 | 74.09 170 | 81.40 208 |
|
LCM-MVSNet-Re | | | 61.88 246 | 61.35 239 | 63.46 271 | 74.58 232 | 31.48 345 | 61.42 314 | 58.14 327 | 58.71 130 | 53.02 314 | 79.55 231 | 43.07 179 | 76.80 260 | 45.69 243 | 77.96 139 | 82.11 200 |
|
ambc | | | | | 65.13 263 | 63.72 334 | 37.07 318 | 47.66 347 | 78.78 160 | | 54.37 303 | 71.42 311 | 11.24 355 | 80.94 198 | 45.64 244 | 53.85 332 | 77.38 262 |
|
MS-PatchMatch | | | 62.42 238 | 61.46 238 | 65.31 262 | 75.21 224 | 52.10 171 | 72.05 243 | 74.05 237 | 46.41 287 | 57.42 277 | 74.36 295 | 34.35 262 | 77.57 252 | 45.62 245 | 73.67 174 | 66.26 338 |
|
ACMH+ | | 57.40 11 | 66.12 201 | 64.06 206 | 72.30 158 | 77.79 173 | 52.83 159 | 80.39 101 | 78.03 179 | 57.30 149 | 57.47 276 | 82.55 163 | 27.68 316 | 84.17 127 | 45.54 246 | 69.78 233 | 79.90 235 |
|
CR-MVSNet | | | 59.91 258 | 57.90 265 | 65.96 252 | 69.96 295 | 52.07 172 | 65.31 298 | 63.15 310 | 42.48 320 | 59.36 258 | 74.84 291 | 35.83 249 | 70.75 287 | 45.50 247 | 64.65 283 | 75.06 286 |
|
CDS-MVSNet | | | 66.80 191 | 65.37 197 | 71.10 184 | 78.98 142 | 53.13 157 | 73.27 227 | 71.07 258 | 52.15 229 | 64.72 204 | 80.23 217 | 43.56 176 | 77.10 256 | 45.48 248 | 78.88 128 | 83.05 184 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CP-MVSNet | | | 66.49 198 | 66.41 179 | 66.72 239 | 77.67 176 | 36.33 326 | 76.83 164 | 79.52 148 | 62.45 62 | 62.54 229 | 83.47 150 | 46.32 145 | 78.37 239 | 45.47 249 | 63.43 292 | 85.45 104 |
|
BH-untuned | | | 68.27 161 | 67.29 160 | 71.21 179 | 79.74 128 | 53.22 154 | 76.06 178 | 77.46 190 | 57.19 151 | 66.10 176 | 81.61 185 | 45.37 159 | 83.50 143 | 45.42 250 | 76.68 156 | 76.91 272 |
|
PS-CasMVS | | | 66.42 199 | 66.32 183 | 66.70 241 | 77.60 183 | 36.30 328 | 76.94 160 | 79.61 146 | 62.36 64 | 62.43 233 | 83.66 144 | 45.69 149 | 78.37 239 | 45.35 251 | 63.26 293 | 85.42 107 |
|
XXY-MVS | | | 60.68 254 | 61.67 235 | 57.70 306 | 70.43 286 | 38.45 308 | 64.19 304 | 66.47 289 | 48.05 271 | 63.22 218 | 80.86 202 | 49.28 105 | 60.47 325 | 45.25 252 | 67.28 264 | 74.19 299 |
|
HY-MVS | | 56.14 13 | 64.55 220 | 63.89 208 | 66.55 242 | 74.73 230 | 41.02 291 | 69.96 271 | 74.43 231 | 49.29 257 | 61.66 240 | 80.92 200 | 47.43 131 | 76.68 261 | 44.91 253 | 71.69 206 | 81.94 201 |
|
PEN-MVS | | | 66.60 195 | 66.45 175 | 67.04 237 | 77.11 190 | 36.56 323 | 77.03 158 | 80.42 134 | 62.95 49 | 62.51 231 | 84.03 136 | 46.69 143 | 79.07 231 | 44.22 254 | 63.08 295 | 85.51 101 |
|
test_post1 | | | | | | | | 68.67 279 | | | | 3.64 361 | 32.39 287 | 69.49 294 | 44.17 255 | | |
|
SCA | | | 60.49 255 | 58.38 260 | 66.80 238 | 74.14 241 | 48.06 225 | 63.35 306 | 63.23 309 | 49.13 259 | 59.33 261 | 72.10 307 | 37.45 235 | 74.27 274 | 44.17 255 | 62.57 298 | 78.05 255 |
|
PMMVS | | | 53.96 292 | 53.26 298 | 56.04 309 | 62.60 338 | 50.92 184 | 61.17 317 | 56.09 336 | 32.81 343 | 53.51 311 | 66.84 334 | 34.04 264 | 59.93 328 | 44.14 257 | 68.18 255 | 57.27 346 |
|
MVP-Stereo | | | 65.41 210 | 63.80 211 | 70.22 197 | 77.62 181 | 55.53 129 | 76.30 172 | 78.53 167 | 50.59 248 | 56.47 282 | 78.65 244 | 39.84 211 | 82.68 164 | 44.10 258 | 72.12 203 | 72.44 314 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CNLPA | | | 65.43 209 | 64.02 207 | 69.68 208 | 78.73 148 | 58.07 85 | 77.82 139 | 70.71 261 | 51.49 236 | 61.57 242 | 83.58 147 | 38.23 229 | 70.82 286 | 43.90 259 | 70.10 227 | 80.16 230 |
|
pmmvs4 | | | 61.48 251 | 59.39 252 | 67.76 231 | 71.57 273 | 53.86 144 | 71.42 249 | 65.34 296 | 44.20 306 | 59.46 257 | 77.92 253 | 35.90 248 | 74.71 271 | 43.87 260 | 64.87 281 | 74.71 294 |
|
Test_1112_low_res | | | 62.32 239 | 61.77 234 | 64.00 269 | 79.08 140 | 39.53 300 | 68.17 280 | 70.17 264 | 43.25 314 | 59.03 263 | 79.90 221 | 44.08 171 | 71.24 285 | 43.79 261 | 68.42 254 | 81.25 212 |
|
TransMVSNet (Re) | | | 64.72 216 | 64.33 205 | 65.87 255 | 75.22 223 | 38.56 307 | 74.66 205 | 75.08 227 | 58.90 127 | 61.79 239 | 82.63 160 | 51.18 88 | 78.07 244 | 43.63 262 | 55.87 325 | 80.99 219 |
|
pmmvs-eth3d | | | 58.81 263 | 56.31 276 | 66.30 245 | 67.61 313 | 52.42 169 | 72.30 240 | 64.76 300 | 43.55 312 | 54.94 295 | 74.19 297 | 28.95 307 | 72.60 278 | 43.31 263 | 57.21 320 | 73.88 302 |
|
SixPastTwentyTwo | | | 61.65 248 | 58.80 256 | 70.20 199 | 75.80 213 | 47.22 235 | 75.59 185 | 69.68 268 | 54.61 205 | 54.11 304 | 79.26 238 | 27.07 321 | 82.96 153 | 43.27 264 | 49.79 339 | 80.41 227 |
|
BH-w/o | | | 66.85 189 | 65.83 191 | 69.90 206 | 79.29 133 | 52.46 167 | 74.66 205 | 76.65 202 | 54.51 209 | 64.85 203 | 78.12 249 | 45.59 152 | 82.95 154 | 43.26 265 | 75.54 162 | 74.27 298 |
|
TR-MVS | | | 66.59 197 | 65.07 202 | 71.17 182 | 79.18 137 | 49.63 208 | 73.48 224 | 75.20 222 | 52.95 220 | 67.90 144 | 80.33 213 | 39.81 212 | 83.68 139 | 43.20 266 | 73.56 178 | 80.20 229 |
|
EU-MVSNet | | | 55.61 285 | 54.41 288 | 59.19 295 | 65.41 327 | 33.42 339 | 72.44 238 | 71.91 253 | 28.81 347 | 51.27 318 | 73.87 299 | 24.76 333 | 69.08 296 | 43.04 267 | 58.20 318 | 75.06 286 |
|
PatchmatchNet |  | | 59.84 259 | 58.24 261 | 64.65 266 | 73.05 250 | 46.70 239 | 69.42 275 | 62.18 315 | 47.55 276 | 58.88 264 | 71.96 309 | 34.49 260 | 69.16 295 | 42.99 268 | 63.60 290 | 78.07 254 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WR-MVS_H | | | 67.02 186 | 66.92 169 | 67.33 236 | 77.95 170 | 37.75 313 | 77.57 143 | 82.11 93 | 62.03 72 | 62.65 226 | 82.48 165 | 50.57 95 | 79.46 220 | 42.91 269 | 64.01 286 | 84.79 127 |
|
ACMH | | 55.70 15 | 65.20 213 | 63.57 215 | 70.07 201 | 78.07 166 | 52.01 175 | 79.48 119 | 79.69 143 | 55.75 184 | 56.59 281 | 80.98 198 | 27.12 320 | 80.94 198 | 42.90 270 | 71.58 208 | 77.25 266 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20240521 | | | 55.30 286 | 54.41 288 | 57.96 303 | 60.92 347 | 41.73 286 | 71.09 259 | 71.06 259 | 41.18 326 | 48.65 329 | 73.31 302 | 16.93 347 | 59.25 330 | 42.54 271 | 64.01 286 | 72.90 307 |
|
WTY-MVS | | | 59.75 260 | 60.39 248 | 57.85 304 | 72.32 263 | 37.83 312 | 61.05 318 | 64.18 304 | 45.95 294 | 61.91 237 | 79.11 240 | 47.01 140 | 60.88 324 | 42.50 272 | 69.49 239 | 74.83 291 |
|
TAMVS | | | 66.78 192 | 65.27 200 | 71.33 178 | 79.16 139 | 53.67 145 | 73.84 221 | 69.59 270 | 52.32 228 | 65.28 190 | 81.72 183 | 44.49 169 | 77.40 254 | 42.32 273 | 78.66 134 | 82.92 185 |
|
MVS_0304 | | | 58.51 264 | 57.36 267 | 61.96 283 | 70.04 293 | 41.83 284 | 69.40 276 | 65.46 295 | 50.73 244 | 53.30 313 | 74.06 298 | 22.65 337 | 70.18 293 | 42.16 274 | 68.44 253 | 73.86 303 |
|
LTVRE_ROB | | 55.42 16 | 63.15 233 | 61.23 242 | 68.92 220 | 76.57 201 | 47.80 227 | 59.92 320 | 76.39 203 | 54.35 211 | 58.67 266 | 82.46 166 | 29.44 305 | 81.49 186 | 42.12 275 | 71.14 211 | 77.46 261 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
sss | | | 56.17 282 | 56.57 273 | 54.96 313 | 66.93 317 | 36.32 327 | 57.94 326 | 61.69 317 | 41.67 323 | 58.64 267 | 75.32 289 | 38.72 223 | 56.25 341 | 42.04 276 | 66.19 272 | 72.31 318 |
|
UnsupCasMVSNet_eth | | | 53.16 301 | 52.47 299 | 55.23 312 | 59.45 349 | 33.39 340 | 59.43 322 | 69.13 275 | 45.98 291 | 50.35 327 | 72.32 306 | 29.30 306 | 58.26 333 | 42.02 277 | 44.30 345 | 74.05 300 |
|
tpm2 | | | 62.07 242 | 60.10 250 | 67.99 229 | 72.79 254 | 43.86 268 | 71.05 260 | 66.85 288 | 43.14 316 | 62.77 222 | 75.39 288 | 38.32 227 | 80.80 202 | 41.69 278 | 68.88 249 | 79.32 244 |
|
PLC |  | 56.13 14 | 65.09 214 | 63.21 219 | 70.72 191 | 81.04 105 | 54.87 138 | 78.57 127 | 77.47 188 | 48.51 264 | 55.71 285 | 81.89 179 | 33.71 267 | 79.71 216 | 41.66 279 | 70.37 221 | 77.58 260 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EPMVS | | | 53.96 292 | 53.69 295 | 54.79 315 | 66.12 324 | 31.96 344 | 62.34 311 | 49.05 347 | 44.42 305 | 55.54 286 | 71.33 312 | 30.22 298 | 56.70 338 | 41.65 280 | 62.54 299 | 75.71 281 |
|
DTE-MVSNet | | | 65.58 206 | 65.34 198 | 66.31 244 | 76.06 209 | 34.79 331 | 76.43 169 | 79.38 151 | 62.55 60 | 61.66 240 | 83.83 140 | 45.60 151 | 79.15 229 | 41.64 281 | 60.88 309 | 85.00 119 |
|
PAPM | | | 67.92 170 | 66.69 172 | 71.63 168 | 78.09 165 | 49.02 214 | 77.09 156 | 81.24 118 | 51.04 243 | 60.91 245 | 83.98 138 | 47.71 124 | 84.99 109 | 40.81 282 | 79.32 122 | 80.90 220 |
|
tpm | | | 57.34 274 | 58.16 262 | 54.86 314 | 71.80 271 | 34.77 332 | 67.47 285 | 56.04 337 | 48.20 269 | 60.10 249 | 76.92 265 | 37.17 240 | 53.41 348 | 40.76 283 | 65.01 280 | 76.40 275 |
|
DIV-MVS_2432*1600 | | | 55.22 288 | 53.89 294 | 59.21 294 | 57.80 352 | 27.47 352 | 57.75 327 | 74.32 233 | 47.38 278 | 50.90 321 | 70.00 323 | 28.45 311 | 70.30 291 | 40.44 284 | 57.92 319 | 79.87 236 |
|
F-COLMAP | | | 63.05 234 | 60.87 247 | 69.58 212 | 76.99 194 | 53.63 147 | 78.12 135 | 76.16 205 | 47.97 272 | 52.41 315 | 81.61 185 | 27.87 314 | 78.11 243 | 40.07 285 | 66.66 268 | 77.00 269 |
|
Patchmtry | | | 57.16 275 | 56.47 274 | 59.23 293 | 69.17 304 | 34.58 334 | 62.98 307 | 63.15 310 | 44.53 302 | 56.83 279 | 74.84 291 | 35.83 249 | 68.71 297 | 40.03 286 | 60.91 308 | 74.39 297 |
|
pmmvs5 | | | 56.47 278 | 55.68 279 | 58.86 297 | 61.41 342 | 36.71 322 | 66.37 288 | 62.75 312 | 40.38 331 | 53.70 307 | 76.62 270 | 34.56 258 | 67.05 304 | 40.02 287 | 65.27 278 | 72.83 308 |
|
EPNet_dtu | | | 61.90 244 | 61.97 233 | 61.68 284 | 72.89 253 | 39.78 297 | 75.85 183 | 65.62 294 | 55.09 197 | 54.56 300 | 79.36 235 | 37.59 234 | 67.02 305 | 39.80 288 | 76.95 150 | 78.25 252 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CL-MVSNet_2432*1600 | | | 61.53 249 | 60.94 245 | 63.30 273 | 68.95 305 | 36.93 320 | 67.60 284 | 72.80 248 | 55.67 186 | 59.95 252 | 76.63 269 | 45.01 163 | 72.22 282 | 39.74 289 | 62.09 302 | 80.74 223 |
|
Vis-MVSNet (Re-imp) | | | 63.69 225 | 63.88 209 | 63.14 275 | 74.75 229 | 31.04 346 | 71.16 256 | 63.64 306 | 56.32 169 | 59.80 255 | 84.99 118 | 44.51 167 | 75.46 268 | 39.12 290 | 80.62 99 | 82.92 185 |
|
PVSNet | | 50.76 19 | 58.40 266 | 57.39 266 | 61.42 286 | 75.53 219 | 44.04 267 | 61.43 313 | 63.45 307 | 47.04 284 | 56.91 278 | 73.61 301 | 27.00 322 | 64.76 313 | 39.12 290 | 72.40 198 | 75.47 283 |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 354 | 61.22 316 | | 40.10 332 | 51.10 319 | | 32.97 276 | | 38.49 292 | | 78.61 250 |
|
our_test_3 | | | 56.49 277 | 54.42 287 | 62.68 279 | 69.51 299 | 45.48 255 | 66.08 290 | 61.49 318 | 44.11 309 | 50.73 324 | 69.60 326 | 33.05 274 | 68.15 299 | 38.38 293 | 56.86 321 | 74.40 296 |
|
tpm cat1 | | | 59.25 262 | 56.95 271 | 66.15 248 | 72.19 264 | 46.96 237 | 68.09 281 | 65.76 293 | 40.03 333 | 57.81 274 | 70.56 317 | 38.32 227 | 74.51 272 | 38.26 294 | 61.50 306 | 77.00 269 |
|
USDC | | | 56.35 280 | 54.24 291 | 62.69 278 | 64.74 329 | 40.31 294 | 65.05 300 | 73.83 239 | 43.93 310 | 47.58 331 | 77.71 260 | 15.36 350 | 75.05 270 | 38.19 295 | 61.81 304 | 72.70 309 |
|
MSDG | | | 61.81 247 | 59.23 253 | 69.55 213 | 72.64 256 | 52.63 162 | 70.45 267 | 75.81 211 | 51.38 238 | 53.70 307 | 76.11 278 | 29.52 303 | 81.08 196 | 37.70 296 | 65.79 276 | 74.93 290 |
|
MDTV_nov1_ep13 | | | | 57.00 270 | | 72.73 255 | 38.26 309 | 65.02 301 | 64.73 301 | 44.74 299 | 55.46 287 | 72.48 305 | 32.61 285 | 70.47 288 | 37.47 297 | 67.75 261 | |
|
gg-mvs-nofinetune | | | 57.86 271 | 56.43 275 | 62.18 281 | 72.62 257 | 35.35 330 | 66.57 286 | 56.33 334 | 50.65 246 | 57.64 275 | 57.10 346 | 30.65 294 | 76.36 264 | 37.38 298 | 78.88 128 | 74.82 292 |
|
RPSCF | | | 55.80 284 | 54.22 292 | 60.53 290 | 65.13 328 | 42.91 277 | 64.30 303 | 57.62 330 | 36.84 339 | 58.05 273 | 82.28 170 | 28.01 313 | 56.24 342 | 37.14 299 | 58.61 317 | 82.44 195 |
|
PatchT | | | 53.17 300 | 53.44 297 | 52.33 325 | 68.29 311 | 25.34 356 | 58.21 325 | 54.41 340 | 44.46 304 | 54.56 300 | 69.05 327 | 33.32 272 | 60.94 323 | 36.93 300 | 61.76 305 | 70.73 327 |
|
YYNet1 | | | 50.73 307 | 48.96 308 | 56.03 310 | 61.10 344 | 41.78 285 | 51.94 339 | 56.44 333 | 40.94 329 | 44.84 339 | 67.80 331 | 30.08 300 | 55.08 346 | 36.77 301 | 50.71 337 | 71.22 323 |
|
TAPA-MVS | | 59.36 10 | 66.60 195 | 65.20 201 | 70.81 188 | 76.63 199 | 48.75 218 | 76.52 168 | 80.04 139 | 50.64 247 | 65.24 195 | 84.93 119 | 39.15 219 | 78.54 238 | 36.77 301 | 76.88 151 | 85.14 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MDA-MVSNet_test_wron | | | 50.71 308 | 48.95 309 | 56.00 311 | 61.17 343 | 41.84 283 | 51.90 340 | 56.45 332 | 40.96 328 | 44.79 340 | 67.84 330 | 30.04 301 | 55.07 347 | 36.71 303 | 50.69 338 | 71.11 326 |
|
ppachtmachnet_test | | | 58.06 270 | 55.38 281 | 66.10 250 | 69.51 299 | 48.99 215 | 68.01 282 | 66.13 292 | 44.50 303 | 54.05 305 | 70.74 315 | 32.09 289 | 72.34 280 | 36.68 304 | 56.71 323 | 76.99 271 |
|
tpmvs | | | 58.47 265 | 56.95 271 | 63.03 277 | 70.20 289 | 41.21 290 | 67.90 283 | 67.23 286 | 49.62 255 | 54.73 298 | 70.84 314 | 34.14 263 | 76.24 266 | 36.64 305 | 61.29 307 | 71.64 321 |
|
CHOSEN 280x420 | | | 47.83 312 | 46.36 316 | 52.24 326 | 67.37 315 | 49.78 203 | 38.91 354 | 43.11 355 | 35.00 341 | 43.27 344 | 63.30 342 | 28.95 307 | 49.19 351 | 36.53 306 | 60.80 310 | 57.76 345 |
|
PatchMatch-RL | | | 56.25 281 | 54.55 286 | 61.32 288 | 77.06 191 | 56.07 118 | 65.57 294 | 54.10 342 | 44.13 308 | 53.49 312 | 71.27 313 | 25.20 331 | 66.78 306 | 36.52 307 | 63.66 289 | 61.12 341 |
|
RPMNet | | | 61.53 249 | 58.42 259 | 70.86 187 | 69.96 295 | 52.07 172 | 65.31 298 | 81.36 109 | 43.20 315 | 59.36 258 | 70.15 322 | 35.37 251 | 85.47 103 | 36.42 308 | 64.65 283 | 75.06 286 |
|
ITE_SJBPF | | | | | 62.09 282 | 66.16 323 | 44.55 264 | | 64.32 303 | 47.36 279 | 55.31 290 | 80.34 212 | 19.27 344 | 62.68 319 | 36.29 309 | 62.39 300 | 79.04 246 |
|
JIA-IIPM | | | 51.56 305 | 47.68 315 | 63.21 274 | 64.61 330 | 50.73 188 | 47.71 346 | 58.77 325 | 42.90 317 | 48.46 330 | 51.72 349 | 24.97 332 | 70.24 292 | 36.06 310 | 53.89 331 | 68.64 336 |
|
KD-MVS_2432*1600 | | | 53.45 296 | 51.50 303 | 59.30 291 | 62.82 335 | 37.14 316 | 55.33 333 | 71.79 254 | 47.34 280 | 55.09 293 | 70.52 318 | 21.91 341 | 70.45 289 | 35.72 311 | 42.97 347 | 70.31 328 |
|
miper_refine_blended | | | 53.45 296 | 51.50 303 | 59.30 291 | 62.82 335 | 37.14 316 | 55.33 333 | 71.79 254 | 47.34 280 | 55.09 293 | 70.52 318 | 21.91 341 | 70.45 289 | 35.72 311 | 42.97 347 | 70.31 328 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 257 | 58.14 263 | 65.69 257 | 70.47 285 | 44.82 258 | 75.33 188 | 70.86 260 | 45.04 297 | 56.06 283 | 76.00 279 | 26.89 323 | 79.65 217 | 35.36 313 | 67.29 263 | 72.60 310 |
|
GG-mvs-BLEND | | | | | 62.34 280 | 71.36 278 | 37.04 319 | 69.20 277 | 57.33 331 | | 54.73 298 | 65.48 338 | 30.37 296 | 77.82 247 | 34.82 314 | 74.93 165 | 72.17 319 |
|
UnsupCasMVSNet_bld | | | 50.07 309 | 48.87 310 | 53.66 318 | 60.97 346 | 33.67 338 | 57.62 328 | 64.56 302 | 39.47 335 | 47.38 332 | 64.02 341 | 27.47 317 | 59.32 329 | 34.69 315 | 43.68 346 | 67.98 337 |
|
MDA-MVSNet-bldmvs | | | 53.87 294 | 50.81 305 | 63.05 276 | 66.25 322 | 48.58 219 | 56.93 330 | 63.82 305 | 48.09 270 | 41.22 346 | 70.48 320 | 30.34 297 | 68.00 301 | 34.24 316 | 45.92 344 | 72.57 311 |
|
dp | | | 51.89 304 | 51.60 302 | 52.77 323 | 68.44 310 | 32.45 342 | 62.36 310 | 54.57 339 | 44.16 307 | 49.31 328 | 67.91 329 | 28.87 309 | 56.61 339 | 33.89 317 | 54.89 327 | 69.24 335 |
|
AllTest | | | 57.08 276 | 54.65 285 | 64.39 267 | 71.44 274 | 49.03 212 | 69.92 272 | 67.30 283 | 45.97 292 | 47.16 333 | 79.77 225 | 17.47 345 | 67.56 302 | 33.65 318 | 59.16 315 | 76.57 273 |
|
TestCases | | | | | 64.39 267 | 71.44 274 | 49.03 212 | | 67.30 283 | 45.97 292 | 47.16 333 | 79.77 225 | 17.47 345 | 67.56 302 | 33.65 318 | 59.16 315 | 76.57 273 |
|
FMVSNet5 | | | 55.86 283 | 54.93 283 | 58.66 299 | 71.05 279 | 36.35 325 | 64.18 305 | 62.48 314 | 46.76 285 | 50.66 325 | 74.73 293 | 25.80 328 | 64.04 315 | 33.11 320 | 65.57 277 | 75.59 282 |
|
DP-MVS | | | 65.68 204 | 63.66 214 | 71.75 163 | 84.93 58 | 56.87 108 | 80.74 96 | 73.16 245 | 53.06 219 | 59.09 262 | 82.35 167 | 36.79 246 | 85.94 89 | 32.82 321 | 69.96 229 | 72.45 313 |
|
PVSNet_0 | | 43.31 20 | 47.46 314 | 45.64 317 | 52.92 322 | 67.60 314 | 44.65 261 | 54.06 337 | 54.64 338 | 41.59 324 | 46.15 337 | 58.75 345 | 30.99 293 | 58.66 331 | 32.18 322 | 24.81 353 | 55.46 347 |
|
TinyColmap | | | 54.14 291 | 51.72 301 | 61.40 287 | 66.84 318 | 41.97 282 | 66.52 287 | 68.51 279 | 44.81 298 | 42.69 345 | 75.77 283 | 11.66 353 | 72.94 277 | 31.96 323 | 56.77 322 | 69.27 334 |
|
MIMVSNet | | | 57.35 273 | 57.07 269 | 58.22 300 | 74.21 240 | 37.18 315 | 62.46 309 | 60.88 320 | 48.88 261 | 55.29 291 | 75.99 281 | 31.68 291 | 62.04 321 | 31.87 324 | 72.35 199 | 75.43 284 |
|
thres100view900 | | | 63.28 230 | 62.41 228 | 65.89 254 | 77.31 187 | 38.66 306 | 72.65 233 | 69.11 276 | 57.07 152 | 62.45 232 | 81.03 197 | 37.01 244 | 79.17 226 | 31.84 325 | 73.25 184 | 79.83 237 |
|
tfpn200view9 | | | 63.18 232 | 62.18 231 | 66.21 247 | 76.85 195 | 39.62 298 | 71.96 245 | 69.44 272 | 56.63 159 | 62.61 227 | 79.83 223 | 37.18 238 | 79.17 226 | 31.84 325 | 73.25 184 | 79.83 237 |
|
thres400 | | | 63.31 228 | 62.18 231 | 66.72 239 | 76.85 195 | 39.62 298 | 71.96 245 | 69.44 272 | 56.63 159 | 62.61 227 | 79.83 223 | 37.18 238 | 79.17 226 | 31.84 325 | 73.25 184 | 81.36 209 |
|
pmmvs3 | | | 44.92 316 | 41.95 320 | 53.86 317 | 52.58 354 | 43.55 271 | 62.11 312 | 46.90 353 | 26.05 351 | 40.63 347 | 60.19 344 | 11.08 356 | 57.91 334 | 31.83 328 | 46.15 343 | 60.11 342 |
|
LF4IMVS | | | 42.95 317 | 42.26 319 | 45.04 333 | 48.30 356 | 32.50 341 | 54.80 335 | 48.49 349 | 28.03 348 | 40.51 348 | 70.16 321 | 9.24 358 | 43.89 354 | 31.63 329 | 49.18 341 | 58.72 343 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 253 | 58.81 255 | 68.64 223 | 74.63 231 | 52.51 166 | 78.42 132 | 73.30 243 | 49.92 254 | 50.96 320 | 81.51 188 | 23.06 336 | 79.40 221 | 31.63 329 | 65.85 274 | 74.01 301 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
new-patchmatchnet | | | 47.56 313 | 47.73 314 | 47.06 331 | 58.81 350 | 9.37 364 | 48.78 345 | 59.21 323 | 43.28 313 | 44.22 342 | 68.66 328 | 25.67 329 | 57.20 337 | 31.57 331 | 49.35 340 | 74.62 295 |
|
thres600view7 | | | 63.30 229 | 62.27 229 | 66.41 243 | 77.18 189 | 38.87 304 | 72.35 239 | 69.11 276 | 56.98 154 | 62.37 234 | 80.96 199 | 37.01 244 | 79.00 235 | 31.43 332 | 73.05 189 | 81.36 209 |
|
thres200 | | | 62.20 241 | 61.16 243 | 65.34 261 | 75.38 222 | 39.99 295 | 69.60 273 | 69.29 274 | 55.64 188 | 61.87 238 | 76.99 264 | 37.07 243 | 78.96 236 | 31.28 333 | 73.28 183 | 77.06 267 |
|
LCM-MVSNet | | | 40.30 320 | 35.88 325 | 53.57 319 | 42.24 358 | 29.15 350 | 45.21 350 | 60.53 321 | 22.23 355 | 28.02 353 | 50.98 351 | 3.72 364 | 61.78 322 | 31.22 334 | 38.76 351 | 69.78 331 |
|
test0.0.03 1 | | | 53.32 299 | 53.59 296 | 52.50 324 | 62.81 337 | 29.45 349 | 59.51 321 | 54.11 341 | 50.08 252 | 54.40 302 | 74.31 296 | 32.62 283 | 55.92 343 | 30.50 335 | 63.95 288 | 72.15 320 |
|
Anonymous20231206 | | | 55.10 290 | 55.30 282 | 54.48 316 | 69.81 298 | 33.94 337 | 62.91 308 | 62.13 316 | 41.08 327 | 55.18 292 | 75.65 284 | 32.75 281 | 56.59 340 | 30.32 336 | 67.86 258 | 72.91 306 |
|
tfpnnormal | | | 62.47 237 | 61.63 236 | 64.99 264 | 74.81 228 | 39.01 303 | 71.22 254 | 73.72 240 | 55.22 194 | 60.21 248 | 80.09 220 | 41.26 205 | 76.98 259 | 30.02 337 | 68.09 256 | 78.97 248 |
|
test20.03 | | | 53.87 294 | 54.02 293 | 53.41 320 | 61.47 341 | 28.11 351 | 61.30 315 | 59.21 323 | 51.34 240 | 52.09 316 | 77.43 261 | 33.29 273 | 58.55 332 | 29.76 338 | 60.27 312 | 73.58 304 |
|
LS3D | | | 64.71 217 | 62.50 227 | 71.34 177 | 79.72 130 | 55.71 124 | 79.82 110 | 74.72 229 | 48.50 265 | 56.62 280 | 84.62 124 | 33.59 270 | 82.34 172 | 29.65 339 | 75.23 164 | 75.97 276 |
|
testgi | | | 51.90 303 | 52.37 300 | 50.51 329 | 60.39 348 | 23.55 358 | 58.42 324 | 58.15 326 | 49.03 260 | 51.83 317 | 79.21 239 | 22.39 338 | 55.59 344 | 29.24 340 | 62.64 297 | 72.40 317 |
|
MIMVSNet1 | | | 55.17 289 | 54.31 290 | 57.77 305 | 70.03 294 | 32.01 343 | 65.68 293 | 64.81 299 | 49.19 258 | 46.75 336 | 76.00 279 | 25.53 330 | 64.04 315 | 28.65 341 | 62.13 301 | 77.26 265 |
|
TDRefinement | | | 53.44 298 | 50.72 306 | 61.60 285 | 64.31 332 | 46.96 237 | 70.89 262 | 65.27 298 | 41.78 321 | 44.61 341 | 77.98 250 | 11.52 354 | 66.36 308 | 28.57 342 | 51.59 335 | 71.49 322 |
|
ADS-MVSNet2 | | | 51.33 306 | 48.76 311 | 59.07 296 | 66.02 325 | 44.60 262 | 50.90 341 | 59.76 322 | 36.90 337 | 50.74 322 | 66.18 336 | 26.38 324 | 63.11 317 | 27.17 343 | 54.76 328 | 69.50 332 |
|
ADS-MVSNet | | | 48.48 311 | 47.77 313 | 50.63 328 | 66.02 325 | 29.92 348 | 50.90 341 | 50.87 346 | 36.90 337 | 50.74 322 | 66.18 336 | 26.38 324 | 52.47 349 | 27.17 343 | 54.76 328 | 69.50 332 |
|
Patchmatch-test | | | 49.08 310 | 48.28 312 | 51.50 327 | 64.40 331 | 30.85 347 | 45.68 348 | 48.46 350 | 35.60 340 | 46.10 338 | 72.10 307 | 34.47 261 | 46.37 352 | 27.08 345 | 60.65 311 | 77.27 264 |
|
MVS-HIRNet | | | 45.52 315 | 44.48 318 | 48.65 330 | 68.49 309 | 34.05 336 | 59.41 323 | 44.50 354 | 27.03 349 | 37.96 350 | 50.47 352 | 26.16 327 | 64.10 314 | 26.74 346 | 59.52 313 | 47.82 349 |
|
test_0402 | | | 63.25 231 | 61.01 244 | 69.96 202 | 80.00 123 | 54.37 141 | 76.86 163 | 72.02 252 | 54.58 207 | 58.71 265 | 80.79 205 | 35.00 255 | 84.36 124 | 26.41 347 | 64.71 282 | 71.15 325 |
|
N_pmnet | | | 39.35 321 | 40.28 322 | 36.54 337 | 63.76 333 | 1.62 367 | 49.37 344 | 0.76 367 | 34.62 342 | 43.61 343 | 66.38 335 | 26.25 326 | 42.57 355 | 26.02 348 | 51.77 334 | 65.44 339 |
|
DSMNet-mixed | | | 39.30 322 | 38.72 323 | 41.03 336 | 51.22 355 | 19.66 360 | 45.53 349 | 31.35 360 | 15.83 358 | 39.80 349 | 67.42 333 | 22.19 339 | 45.13 353 | 22.43 349 | 52.69 333 | 58.31 344 |
|
ANet_high | | | 41.38 319 | 37.47 324 | 53.11 321 | 39.73 361 | 24.45 357 | 56.94 329 | 69.69 267 | 47.65 275 | 26.04 354 | 52.32 348 | 12.44 351 | 62.38 320 | 21.80 350 | 10.61 359 | 72.49 312 |
|
new_pmnet | | | 34.13 325 | 34.29 326 | 33.64 338 | 52.63 353 | 18.23 362 | 44.43 351 | 33.90 359 | 22.81 354 | 30.89 352 | 53.18 347 | 10.48 357 | 35.72 359 | 20.77 351 | 39.51 349 | 46.98 350 |
|
PMMVS2 | | | 27.40 326 | 25.91 329 | 31.87 340 | 39.46 362 | 6.57 365 | 31.17 355 | 28.52 361 | 23.96 352 | 20.45 356 | 48.94 353 | 4.20 363 | 37.94 358 | 16.51 352 | 19.97 354 | 51.09 348 |
|
Gipuma |  | | 34.77 324 | 31.91 328 | 43.33 335 | 62.05 340 | 37.87 311 | 20.39 357 | 67.03 287 | 23.23 353 | 18.41 357 | 25.84 356 | 4.24 362 | 62.73 318 | 14.71 353 | 51.32 336 | 29.38 354 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
FPMVS | | | 42.18 318 | 41.11 321 | 45.39 332 | 58.03 351 | 41.01 292 | 49.50 343 | 53.81 343 | 30.07 346 | 33.71 351 | 64.03 339 | 11.69 352 | 52.08 350 | 14.01 354 | 55.11 326 | 43.09 351 |
|
tmp_tt | | | 9.43 332 | 11.14 335 | 4.30 345 | 2.38 366 | 4.40 366 | 13.62 359 | 16.08 364 | 0.39 362 | 15.89 358 | 13.06 359 | 15.80 349 | 5.54 363 | 12.63 355 | 10.46 360 | 2.95 358 |
|
MVE |  | 17.77 23 | 21.41 329 | 17.77 333 | 32.34 339 | 34.34 364 | 25.44 355 | 16.11 358 | 24.11 362 | 11.19 359 | 13.22 359 | 31.92 354 | 1.58 367 | 30.95 360 | 10.47 356 | 17.03 355 | 40.62 352 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 23.77 327 | 22.73 331 | 26.90 341 | 42.02 359 | 20.67 359 | 42.66 352 | 35.70 357 | 17.43 356 | 10.28 361 | 25.05 357 | 6.42 361 | 42.39 356 | 10.28 357 | 14.71 356 | 17.63 355 |
|
PMVS |  | 28.69 22 | 36.22 323 | 33.29 327 | 45.02 334 | 36.82 363 | 35.98 329 | 54.68 336 | 48.74 348 | 26.31 350 | 21.02 355 | 51.61 350 | 2.88 366 | 60.10 327 | 9.99 358 | 47.58 342 | 38.99 353 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 22.97 328 | 21.84 332 | 26.36 342 | 40.20 360 | 19.53 361 | 41.95 353 | 34.64 358 | 17.09 357 | 9.73 362 | 22.83 358 | 7.29 360 | 42.22 357 | 9.18 359 | 13.66 357 | 17.32 356 |
|
DeepMVS_CX |  | | | | 12.03 344 | 17.97 365 | 10.91 363 | | 10.60 365 | 7.46 360 | 11.07 360 | 28.36 355 | 3.28 365 | 11.29 362 | 8.01 360 | 9.74 361 | 13.89 357 |
|
wuyk23d | | | 13.32 331 | 12.52 334 | 15.71 343 | 47.54 357 | 26.27 353 | 31.06 356 | 1.98 366 | 4.93 361 | 5.18 363 | 1.94 363 | 0.45 368 | 18.54 361 | 6.81 361 | 12.83 358 | 2.33 359 |
|
testmvs | | | 4.52 335 | 6.03 338 | 0.01 347 | 0.01 367 | 0.00 369 | 53.86 338 | 0.00 368 | 0.01 363 | 0.04 364 | 0.27 364 | 0.00 370 | 0.00 364 | 0.04 362 | 0.00 362 | 0.03 361 |
|
test123 | | | 4.73 334 | 6.30 337 | 0.02 346 | 0.01 367 | 0.01 368 | 56.36 331 | 0.00 368 | 0.01 363 | 0.04 364 | 0.21 365 | 0.01 369 | 0.00 364 | 0.03 363 | 0.00 362 | 0.04 360 |
|
uanet_test | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 370 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
cdsmvs_eth3d_5k | | | 17.50 330 | 23.34 330 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 78.63 164 | 0.00 365 | 0.00 366 | 82.18 171 | 49.25 106 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
pcd_1.5k_mvsjas | | | 3.92 336 | 5.23 339 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 365 | 0.00 366 | 0.00 366 | 47.05 137 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
sosnet-low-res | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 370 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
sosnet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 370 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
uncertanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 370 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
Regformer | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 370 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
ab-mvs-re | | | 6.49 333 | 8.65 336 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 365 | 0.00 366 | 77.89 255 | 0.00 370 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
uanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 370 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 12 | 64.20 32 | 85.97 1 | 91.34 10 | 66.87 2 | 90.78 4 | | | |
|
save fliter | | | | | | 86.17 32 | 61.30 31 | 83.98 46 | 79.66 145 | 59.00 124 | | | | | | | |
|
test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 2 | 86.83 10 | 64.26 30 | 84.19 5 | 91.92 5 | 64.82 6 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 255 |
|
test_part2 | | | | | | 87.58 9 | 60.47 46 | | | | 83.42 9 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 257 | | | | 78.05 255 |
|
sam_mvs | | | | | | | | | | | | | 33.43 271 | | | | |
|
MTGPA |  | | | | | | | | 80.97 125 | | | | | | | | |
|
test_post | | | | | | | | | | | | 3.55 362 | 33.90 266 | 66.52 307 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 339 | 34.50 259 | 74.27 274 | | | |
|
MTMP | | | | | | | | 86.03 17 | 17.08 363 | | | | | | | | |
|
TEST9 | | | | | | 85.58 44 | 61.59 27 | 81.62 84 | 81.26 116 | 55.65 187 | 74.93 42 | 88.81 62 | 53.70 63 | 84.68 118 | | | |
|
test_8 | | | | | | 85.40 48 | 60.96 37 | 81.54 87 | 81.18 119 | 55.86 179 | 74.81 45 | 88.80 64 | 53.70 63 | 84.45 123 | | | |
|
agg_prior | | | | | | 85.04 52 | 59.96 51 | | 81.04 122 | | 74.68 48 | | | 84.04 130 | | | |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 79 | | | | | | | | | |
|
test_prior | | | | | 76.69 59 | 84.20 64 | 57.27 96 | | 84.88 36 | | | | | 86.43 78 | | | 86.38 63 |
|
æ–°å‡ ä½•2 | | | | | | | | 76.12 175 | | | | | | | | | |
|
旧先验1 | | | | | | 83.04 75 | 53.15 155 | | 67.52 282 | | | 87.85 71 | 44.08 171 | | | 80.76 98 | 78.03 258 |
|
原ACMM2 | | | | | | | | 79.02 121 | | | | | | | | | |
|
test222 | | | | | | 83.14 72 | 58.68 76 | 72.57 236 | 63.45 307 | 41.78 321 | 67.56 154 | 86.12 99 | 37.13 241 | | | 78.73 133 | 74.98 289 |
|
segment_acmp | | | | | | | | | | | | | 54.23 54 | | | | |
|
testdata1 | | | | | | | | 72.65 233 | | 60.50 91 | | | | | | | |
|
test12 | | | | | 77.76 43 | 84.52 61 | 58.41 80 | | 83.36 70 | | 72.93 78 | | 54.61 50 | 88.05 36 | | 88.12 36 | 86.81 56 |
|
plane_prior7 | | | | | | 81.41 96 | 55.96 120 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 103 | 56.24 115 | | | | | | 45.26 161 | | | | |
|
plane_prior4 | | | | | | | | | | | | 86.10 100 | | | | | |
|
plane_prior3 | | | | | | | 56.09 117 | | | 63.92 37 | 69.27 122 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 38 | | 64.52 26 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 101 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 111 | 83.58 53 | | 63.19 47 | | | | | | 80.48 104 | |
|
n2 | | | | | | | | | 0.00 368 | | | | | | | | |
|
nn | | | | | | | | | 0.00 368 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 352 | | | | | | | | |
|
test11 | | | | | | | | | 83.47 65 | | | | | | | | |
|
door | | | | | | | | | 47.60 351 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 135 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 146 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 146 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 146 | | | 86.93 60 | | | 84.32 138 |
|
HQP3-MVS | | | | | | | | | 83.90 54 | | | | | | | 80.35 107 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 155 | | | | |
|
NP-MVS | | | | | | 80.98 106 | 56.05 119 | | | | | 85.54 114 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 171 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 202 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 118 | | | | |
|