This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2599.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
CANet98.05 5697.76 6198.90 7198.73 13097.27 9198.35 17798.78 9597.37 2797.72 11498.96 9391.53 13899.92 2198.79 299.65 5899.51 89
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17398.79 9297.46 2099.09 3099.31 3595.86 4299.80 8098.64 399.76 3299.79 10
VDD-MVS95.82 15795.23 16797.61 15798.84 12493.98 23198.68 13097.40 29395.02 13497.95 9999.34 3174.37 34499.78 9698.64 396.80 18299.08 148
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18898.69 11897.21 3798.84 4699.36 2695.41 5499.78 9698.62 599.65 5899.80 9
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17398.68 12197.43 2199.06 3199.31 3595.80 4399.77 10198.62 599.76 3299.78 13
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19198.68 12197.17 4098.74 5399.37 2295.25 6699.79 9298.57 799.54 8499.73 36
CHOSEN 280x42097.18 10697.18 8997.20 17498.81 12693.27 25795.78 33299.15 1895.25 12196.79 15598.11 17992.29 11599.07 18998.56 899.85 399.25 126
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
xiu_mvs_v1_base97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 13998.93 3796.74 5699.02 3498.84 10690.33 16299.83 5698.53 996.66 18699.50 91
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12399.05 2497.28 3098.84 4699.28 4096.47 1899.40 15598.52 1399.70 5199.47 98
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21698.29 20597.19 3998.99 3899.02 8096.22 2099.67 12298.52 1398.56 13599.51 89
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2899.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17598.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2099.73 4399.75 28
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 24998.89 4697.71 898.33 7998.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17598.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2299.73 4399.75 28
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9598.06 24896.74 5698.00 9797.65 21990.80 15399.48 15098.37 2396.56 19099.19 132
IU-MVS99.71 2099.23 698.64 13795.28 11999.63 498.35 2499.81 1099.83 5
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13296.84 5299.56 599.31 3596.34 1999.70 11598.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24399.00 11089.54 31397.43 26698.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2699.77 2699.72 40
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1198.39 18596.76 5597.67 11797.40 24092.26 11699.49 14698.28 2796.28 20299.08 148
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7998.85 6497.28 3099.72 399.39 1496.63 1597.60 31998.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
diffmvs97.58 8297.40 8198.13 12098.32 16595.81 16098.06 21998.37 18896.20 7698.74 5398.89 10191.31 14399.25 16598.16 2998.52 13699.34 111
casdiffmvs97.63 7797.41 8098.28 10898.33 16396.14 14098.82 9898.32 19596.38 7197.95 9999.21 4891.23 14599.23 16898.12 3098.37 14499.48 96
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6298.32 19596.33 7398.03 9099.17 5691.35 14199.16 17498.10 3198.29 14999.39 108
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16998.78 9594.10 16797.69 11699.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19799.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16398.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3399.66 5799.69 51
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23399.58 397.20 3898.33 7999.00 8595.99 3599.64 12698.05 3599.76 3299.69 51
VDDNet95.36 18094.53 19797.86 13498.10 18295.13 18598.85 9197.75 26590.46 29698.36 7799.39 1473.27 34699.64 12697.98 3696.58 18998.81 167
hse-mvs396.17 14295.62 15197.81 13999.03 10894.45 21698.64 13898.75 10297.48 1898.67 5898.72 11989.76 16999.86 4997.95 3781.59 33999.11 143
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17298.68 12197.04 4798.52 6898.80 11096.78 1299.83 5697.93 3899.61 6799.74 33
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15398.74 10497.27 3498.02 9199.39 1494.81 7799.96 197.91 3999.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7998.74 10497.27 3498.02 9199.39 1494.81 7799.96 197.91 3999.79 1999.77 20
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22999.58 397.14 4298.44 7399.01 8495.03 7399.62 13197.91 3999.75 3899.50 91
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9898.81 7695.80 9199.16 2699.47 895.37 5799.92 2197.89 4299.75 3899.79 10
PS-MVSNAJ97.73 7197.77 6097.62 15698.68 13895.58 16597.34 27598.51 16297.29 2998.66 6197.88 19894.51 8599.90 3397.87 4399.17 10997.39 218
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6599.05 3299.34 3195.34 5999.82 6497.86 4499.64 6299.73 36
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2298.46 6999.20 5295.90 4099.89 3597.85 4599.74 4199.78 13
X-MVStestdata94.06 26392.30 28399.34 2399.70 2398.35 4399.29 1498.88 4997.40 2298.46 6943.50 35995.90 4099.89 3597.85 4599.74 4199.78 13
xiu_mvs_v2_base97.66 7597.70 6397.56 16098.61 14495.46 17197.44 26498.46 17297.15 4198.65 6298.15 17694.33 9199.80 8097.84 4798.66 13197.41 216
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9598.75 10296.96 5096.89 14999.50 490.46 15999.87 4497.84 4799.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9297.79 4999.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8698.60 6599.13 6496.05 3299.94 397.77 5099.86 199.77 20
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2599.35 1499.40 1397.78 399.87 4497.77 5099.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7499.20 2299.37 2295.30 6299.80 8097.73 5299.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6699.17 2499.35 2895.34 5999.82 6497.72 5399.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6699.17 2499.35 2895.29 6397.72 5399.65 5899.71 44
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19798.52 15997.95 399.32 1599.39 1496.22 2099.84 5397.72 5399.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12899.32 1599.39 1496.22 2099.84 5397.72 5399.73 4399.67 61
LFMVS95.86 15494.98 17998.47 9698.87 12096.32 13398.84 9496.02 32993.40 20798.62 6399.20 5274.99 34099.63 12997.72 5397.20 17699.46 102
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6299.10 2999.32 3395.39 5599.82 6497.70 5899.63 6499.72 40
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 21098.83 4899.10 6996.54 1699.83 5697.70 5899.76 3299.59 80
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15298.61 6498.97 8795.13 7099.77 10197.65 6099.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17198.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6199.84 899.83 5
ETV-MVS97.96 5897.81 5998.40 10398.42 15497.27 9198.73 11898.55 15296.84 5298.38 7697.44 23795.39 5599.35 15997.62 6298.89 11898.58 185
CS-MVS97.81 6797.61 6598.41 10298.52 15097.15 9999.09 4698.55 15296.18 7797.61 12397.20 25294.59 8399.39 15697.62 6299.10 11198.70 173
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8398.94 3999.17 5696.06 3099.92 2197.62 6299.78 2399.75 28
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8398.93 4399.19 5595.70 4499.94 397.62 6299.79 1999.78 13
jason97.32 9997.08 9398.06 12597.45 22995.59 16497.87 23997.91 25994.79 14398.55 6798.83 10791.12 14699.23 16897.58 6699.60 6899.34 111
jason: jason.
lupinMVS97.44 9197.22 8898.12 12298.07 18395.76 16197.68 25397.76 26494.50 15798.79 4998.61 12892.34 11399.30 16297.58 6699.59 7199.31 117
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15998.94 3999.20 5295.16 6999.74 10797.58 6699.85 399.77 20
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9298.31 8199.10 6995.46 5199.93 1597.57 6999.81 1099.74 33
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7898.94 3999.17 5695.91 3999.94 397.55 7099.79 1999.78 13
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16098.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7099.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12298.66 13297.51 1698.15 8298.83 10795.70 4499.92 2197.53 7299.67 5499.66 65
nrg03096.28 13995.72 14397.96 13196.90 26598.15 5699.39 598.31 19795.47 10794.42 21598.35 15692.09 12398.69 23097.50 7389.05 29997.04 228
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 22097.02 14298.92 9995.36 5899.91 3097.43 7499.64 6299.52 85
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7498.35 7899.23 4595.46 5199.94 397.42 7599.81 1099.77 20
mvs_anonymous96.70 12396.53 12197.18 17698.19 17493.78 23698.31 18698.19 21694.01 17294.47 20998.27 16892.08 12498.46 25397.39 7697.91 15799.31 117
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6098.60 14095.88 8897.26 13197.53 23094.97 7499.33 16197.38 7799.20 10799.05 150
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16498.76 9997.82 598.45 7298.93 9796.65 1499.83 5697.38 7799.41 9799.71 44
VPA-MVSNet95.75 15995.11 17397.69 15097.24 24097.27 9198.94 7499.23 1295.13 12795.51 18697.32 24385.73 25498.91 20997.33 7989.55 29196.89 244
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15897.24 8099.73 4399.70 48
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20097.64 7799.35 1099.06 2297.02 4893.75 24799.16 6189.25 17899.92 2197.22 8199.75 3899.64 70
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9998.94 3999.17 5696.06 3099.92 2197.21 8299.78 2399.75 28
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8597.60 12599.36 2694.45 8999.93 1597.14 8398.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13999.16 1794.48 15897.67 11798.88 10292.80 10899.91 3097.11 8499.12 11099.50 91
mvs_tets95.41 17695.00 17796.65 20995.58 31794.42 21899.00 6298.55 15295.73 9493.21 26598.38 15383.45 29398.63 23797.09 8594.00 23096.91 241
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9598.73 5599.06 7895.27 6499.93 1597.07 8699.63 6499.72 40
9.1498.06 4999.47 4898.71 12398.82 7094.36 16199.16 2699.29 3996.05 3299.81 7197.00 8799.71 50
EPNet97.28 10096.87 10398.51 9294.98 32796.14 14098.90 7997.02 31098.28 195.99 18299.11 6791.36 14099.89 3596.98 8899.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26999.65 292.34 24597.61 12398.20 17389.29 17799.10 18696.97 8997.60 17099.77 20
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19898.52 2799.37 798.71 11497.09 4692.99 27399.13 6489.36 17599.89 3596.97 8999.57 7599.71 44
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7999.26 1899.37 2293.33 10299.93 1596.96 9199.67 5499.69 51
jajsoiax95.45 17295.03 17696.73 20395.42 32494.63 20799.14 3698.52 15995.74 9393.22 26498.36 15583.87 28998.65 23696.95 9294.04 22896.91 241
ET-MVSNet_ETH3D94.13 25692.98 27197.58 15898.22 17096.20 13797.31 27895.37 33794.53 15479.56 34897.63 22386.51 24097.53 32296.91 9390.74 27699.02 152
MVSFormer97.57 8397.49 7597.84 13598.07 18395.76 16199.47 298.40 18394.98 13598.79 4998.83 10792.34 11398.41 26596.91 9399.59 7199.34 111
test_djsdf96.00 14895.69 14896.93 19295.72 31395.49 17099.47 298.40 18394.98 13594.58 20597.86 20089.16 18198.41 26596.91 9394.12 22796.88 245
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24598.84 6596.12 8197.89 10698.69 12095.96 3699.70 11596.89 9699.60 6899.65 67
test_prior297.80 24596.12 8197.89 10698.69 12095.96 3696.89 9699.60 68
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14195.38 17399.33 1398.31 19793.61 20097.19 13399.07 7794.05 9599.23 16896.89 9698.43 14399.37 110
PS-MVSNAJss96.43 13296.26 12996.92 19495.84 31195.08 18799.16 3498.50 16795.87 8993.84 24398.34 16094.51 8598.61 23896.88 9993.45 24397.06 227
PVSNet_BlendedMVS96.73 12296.60 11797.12 18099.25 8695.35 17698.26 19499.26 894.28 16297.94 10197.46 23492.74 10999.81 7196.88 9993.32 24696.20 311
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 28099.26 893.13 21897.94 10198.21 17292.74 10999.81 7196.88 9999.40 9999.27 124
Effi-MVS+97.12 10996.69 11398.39 10498.19 17496.72 11497.37 27198.43 17993.71 19097.65 12098.02 18492.20 12099.25 16596.87 10297.79 16299.19 132
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 22099.71 193.57 20197.09 13698.91 10088.17 20799.89 3596.87 10299.56 8099.81 8
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16498.31 19794.70 14598.02 9198.42 14890.80 15399.70 11596.81 10496.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16498.31 19794.70 14598.02 9198.42 14890.80 15399.70 11596.81 10496.79 18399.34 111
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13398.84 6594.66 15199.11 2899.25 4395.46 5199.81 7196.80 10699.73 4399.63 73
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10999.03 3399.32 3395.56 4799.94 396.80 10699.77 2699.78 13
RRT_test8_iter0594.56 22994.19 21695.67 26897.60 21291.34 28798.93 7698.42 18094.75 14493.39 25997.87 19979.00 31898.61 23896.78 10890.99 27497.07 226
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18598.77 12893.76 23797.79 24798.50 16795.45 10896.94 14499.09 7487.87 21799.55 14296.76 10995.83 21297.74 209
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 8097.92 10499.23 4594.54 8499.94 396.74 11099.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24498.72 11093.16 21797.57 12698.66 12596.14 2699.81 7196.63 11199.56 8099.66 65
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 23198.73 10892.98 22297.74 11298.68 12296.20 2399.80 8096.59 11299.57 7599.68 57
MVSTER96.06 14595.72 14397.08 18398.23 16995.93 15498.73 11898.27 20694.86 14195.07 19198.09 18088.21 20598.54 24696.59 11293.46 24196.79 254
bset_n11_16_dypcd94.89 20994.27 21296.76 20194.41 33495.15 18395.67 33395.64 33695.53 10394.65 20397.52 23187.10 23098.29 28196.58 11491.35 26696.83 252
UGNet96.78 12196.30 12798.19 11798.24 16895.89 15898.88 8698.93 3797.39 2496.81 15397.84 20382.60 29599.90 3396.53 11599.49 8898.79 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10598.82 7094.52 15699.23 2099.25 4395.54 4999.80 8096.52 11699.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet94.99 20194.19 21697.40 16897.16 24996.57 12198.71 12398.97 3095.67 9794.84 19798.24 17180.36 31098.67 23496.46 11787.32 31996.96 233
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 18098.68 12193.18 21598.68 5799.13 6494.62 8199.83 5696.45 11899.55 8399.52 85
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19698.93 3793.97 17598.01 9598.48 14291.98 12699.85 5096.45 11898.15 15199.39 108
MVS_Test97.28 10097.00 9798.13 12098.33 16395.97 14898.74 11498.07 24394.27 16398.44 7398.07 18192.48 11199.26 16496.43 12098.19 15099.16 137
FIs96.51 13096.12 13397.67 15297.13 25197.54 8299.36 899.22 1495.89 8794.03 23598.35 15691.98 12698.44 25696.40 12192.76 25397.01 229
test9_res96.39 12299.57 7599.69 51
Anonymous2024052995.10 19594.22 21497.75 14499.01 10994.26 22598.87 8898.83 6885.79 33796.64 15898.97 8778.73 31999.85 5096.27 12394.89 21699.12 142
PMMVS96.60 12596.33 12697.41 16697.90 19493.93 23297.35 27498.41 18192.84 22997.76 11097.45 23691.10 14899.20 17196.26 12497.91 15799.11 143
CLD-MVS95.62 16695.34 16196.46 23397.52 22293.75 23997.27 28198.46 17295.53 10394.42 21598.00 18786.21 24798.97 19996.25 12594.37 21796.66 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521195.28 18594.49 19997.67 15299.00 11093.75 23998.70 12797.04 30790.66 29296.49 16998.80 11078.13 32499.83 5696.21 12695.36 21599.44 105
RRT_MVS96.04 14695.53 15297.56 16097.07 25597.32 8898.57 15098.09 23995.15 12695.02 19398.44 14588.20 20698.58 24496.17 12793.09 25096.79 254
ZD-MVS99.46 5198.70 1998.79 9293.21 21498.67 5898.97 8795.70 4499.83 5696.07 12899.58 74
HQP_MVS96.14 14395.90 13996.85 19797.42 23094.60 21298.80 10598.56 15097.28 3095.34 18798.28 16587.09 23199.03 19496.07 12894.27 21996.92 236
plane_prior598.56 15099.03 19496.07 12894.27 21996.92 236
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24598.09 8599.08 7693.01 10699.92 2196.06 13199.77 2699.75 28
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 18098.89 4692.62 23498.05 8798.94 9695.34 5999.65 12496.04 13299.42 9699.19 132
FC-MVSNet-test96.42 13396.05 13497.53 16296.95 26097.27 9199.36 899.23 1295.83 9093.93 23798.37 15492.00 12598.32 27496.02 13392.72 25497.00 230
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13996.23 13699.22 2599.00 2796.63 6198.04 8999.21 4888.05 21299.35 15996.01 13499.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs96.42 13395.71 14698.55 8798.63 14296.75 11397.88 23898.74 10493.84 18196.54 16698.18 17585.34 26299.75 10595.93 13596.35 19699.15 138
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18698.71 11495.26 12097.67 11798.56 13692.21 11999.78 9695.89 13696.85 18199.48 96
XVG-OURS96.55 12996.41 12396.99 18698.75 12993.76 23797.50 26398.52 15995.67 9796.83 15099.30 3888.95 19199.53 14395.88 13796.26 20397.69 212
agg_prior295.87 13899.57 7599.68 57
UniMVSNet_NR-MVSNet95.71 16195.15 17097.40 16896.84 26896.97 10398.74 11499.24 1095.16 12593.88 24097.72 21491.68 13198.31 27695.81 13987.25 32096.92 236
DU-MVS95.42 17494.76 18797.40 16896.53 28396.97 10398.66 13698.99 2995.43 10993.88 24097.69 21588.57 19798.31 27695.81 13987.25 32096.92 236
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9598.86 6195.48 10698.91 4599.17 5695.48 5099.93 1595.80 14199.53 8599.76 26
UniMVSNet (Re)95.78 15895.19 16997.58 15896.99 25997.47 8498.79 10999.18 1695.60 10093.92 23897.04 26991.68 13198.48 25095.80 14187.66 31596.79 254
cascas94.63 22493.86 23996.93 19296.91 26494.27 22496.00 32998.51 16285.55 33894.54 20696.23 31084.20 28298.87 21695.80 14196.98 18097.66 213
Effi-MVS+-dtu96.29 13796.56 11895.51 27197.89 19590.22 30698.80 10598.10 23596.57 6396.45 17296.66 29490.81 15198.91 20995.72 14497.99 15597.40 217
mvs-test196.60 12596.68 11596.37 23897.89 19591.81 27798.56 15198.10 23596.57 6396.52 16897.94 19290.81 15199.45 15395.72 14498.01 15497.86 206
LPG-MVS_test95.62 16695.34 16196.47 23097.46 22593.54 24698.99 6498.54 15594.67 14994.36 21798.77 11485.39 25999.11 18395.71 14694.15 22596.76 258
LGP-MVS_train96.47 23097.46 22593.54 24698.54 15594.67 14994.36 21798.77 11485.39 25999.11 18395.71 14694.15 22596.76 258
旧先验297.57 26191.30 28098.67 5899.80 8095.70 148
LCM-MVSNet-Re95.22 18895.32 16494.91 28998.18 17687.85 33798.75 11195.66 33595.11 12988.96 32596.85 28790.26 16497.65 31795.65 14998.44 14199.22 128
anonymousdsp95.42 17494.91 18296.94 19195.10 32695.90 15799.14 3698.41 18193.75 18593.16 26697.46 23487.50 22598.41 26595.63 15094.03 22996.50 297
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23398.67 12992.57 23798.77 5198.85 10495.93 3899.72 10995.56 15199.69 5299.68 57
CostFormer94.95 20594.73 18995.60 27097.28 23889.06 32097.53 26296.89 31889.66 31296.82 15296.72 29286.05 25098.95 20695.53 15296.13 20898.79 168
ACMM93.85 995.69 16395.38 15996.61 21497.61 21193.84 23598.91 7898.44 17695.25 12194.28 22198.47 14386.04 25299.12 18095.50 15393.95 23296.87 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 18294.98 17996.43 23597.67 20793.48 24998.73 11898.44 17694.94 14092.53 28698.53 13784.50 27699.14 17895.48 15494.00 23096.66 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tttt051796.07 14495.51 15497.78 14198.41 15594.84 19899.28 1694.33 34894.26 16497.64 12198.64 12784.05 28499.47 15195.34 15597.60 17099.03 151
TAMVS97.02 11296.79 10697.70 14998.06 18595.31 17898.52 15598.31 19793.95 17697.05 14198.61 12893.49 10198.52 24895.33 15697.81 16199.29 122
BP-MVS95.30 157
HQP-MVS95.72 16095.40 15596.69 20797.20 24494.25 22698.05 22098.46 17296.43 6894.45 21097.73 21286.75 23798.96 20295.30 15794.18 22396.86 249
thisisatest053096.01 14795.36 16097.97 12998.38 15695.52 16998.88 8694.19 35094.04 16997.64 12198.31 16383.82 29199.46 15295.29 15997.70 16798.93 161
WR-MVS95.15 19294.46 20297.22 17396.67 27896.45 12698.21 19798.81 7694.15 16593.16 26697.69 21587.51 22398.30 27895.29 15988.62 30596.90 243
tpmrst95.63 16595.69 14895.44 27597.54 21988.54 32896.97 29797.56 27593.50 20397.52 12896.93 28289.49 17199.16 17495.25 16196.42 19598.64 181
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18695.98 14398.20 20098.33 19493.67 19796.95 14398.49 14193.54 10098.42 25895.24 16297.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OPM-MVS95.69 16395.33 16396.76 20196.16 30094.63 20798.43 16998.39 18596.64 6095.02 19398.78 11285.15 26499.05 19095.21 16394.20 22296.60 278
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19198.59 14295.52 10597.97 9899.10 6993.28 10499.49 14695.09 16498.88 11999.19 132
UniMVSNet_ETH3D94.24 24993.33 26596.97 18997.19 24793.38 25498.74 11498.57 14891.21 28693.81 24498.58 13372.85 34798.77 22795.05 16593.93 23398.77 170
CANet_DTU96.96 11496.55 11998.21 11498.17 17896.07 14297.98 22798.21 21397.24 3697.13 13598.93 9786.88 23699.91 3095.00 16699.37 10198.66 179
UA-Net97.96 5897.62 6498.98 6598.86 12197.47 8498.89 8399.08 2196.67 5998.72 5699.54 193.15 10599.81 7194.87 16798.83 12399.65 67
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9198.90 4484.80 34097.77 10999.11 6792.84 10799.66 12394.85 16899.77 2699.47 98
Anonymous2023121194.10 25993.26 26896.61 21499.11 10494.28 22399.01 6098.88 4986.43 33192.81 27697.57 22781.66 30198.68 23394.83 16989.02 30196.88 245
XXY-MVS95.20 19094.45 20497.46 16396.75 27396.56 12298.86 9098.65 13693.30 21293.27 26398.27 16884.85 26998.87 21694.82 17091.26 27096.96 233
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24998.78 9596.89 5198.46 6999.22 4793.90 9999.68 12194.81 17199.52 8799.67 61
test_part194.82 21193.82 24197.82 13898.84 12497.82 7299.03 5598.81 7692.31 24992.51 28897.89 19781.96 29898.67 23494.80 17288.24 30896.98 231
EI-MVSNet95.96 14995.83 14196.36 23997.93 19293.70 24398.12 21498.27 20693.70 19295.07 19199.02 8092.23 11898.54 24694.68 17393.46 24196.84 250
thisisatest051595.61 16894.89 18397.76 14398.15 17995.15 18396.77 31394.41 34692.95 22497.18 13497.43 23884.78 27099.45 15394.63 17497.73 16698.68 176
IterMVS-LS95.46 17095.21 16896.22 24698.12 18093.72 24298.32 18598.13 23093.71 19094.26 22297.31 24492.24 11798.10 29394.63 17490.12 28296.84 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.25 14195.73 14297.79 14097.13 25195.55 16898.19 20498.59 14293.47 20492.03 29997.82 20791.33 14299.49 14694.62 17698.44 14198.32 195
baseline195.84 15595.12 17298.01 12798.49 15295.98 14398.73 11897.03 30895.37 11496.22 17698.19 17489.96 16799.16 17494.60 17787.48 31698.90 163
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3197.97 25395.39 11197.23 13298.99 8691.11 14798.93 20794.60 17798.59 13399.47 98
NR-MVSNet94.98 20394.16 21997.44 16496.53 28397.22 9698.74 11498.95 3494.96 13789.25 32497.69 21589.32 17698.18 28794.59 17987.40 31896.92 236
IB-MVS91.98 1793.27 27691.97 28797.19 17597.47 22493.41 25297.09 29295.99 33093.32 21092.47 29095.73 32078.06 32599.53 14394.59 17982.98 33498.62 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test94.82 21194.36 20996.20 24797.35 23590.79 29898.34 17896.57 32892.91 22695.33 18996.44 30482.00 29799.12 18094.52 18195.78 21398.70 173
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21198.21 21393.95 17696.72 15697.99 18891.58 13399.76 10394.51 18296.54 19198.95 160
D2MVS95.18 19195.08 17495.48 27297.10 25392.07 27398.30 18899.13 1994.02 17192.90 27496.73 29189.48 17298.73 22994.48 18393.60 24095.65 323
Baseline_NR-MVSNet94.35 24293.81 24295.96 25696.20 29694.05 23098.61 14296.67 32691.44 27393.85 24297.60 22488.57 19798.14 29094.39 18486.93 32395.68 322
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22498.89 4694.44 16096.83 15098.68 12290.69 15699.76 10394.36 18599.29 10598.98 156
AUN-MVS94.53 23293.73 25096.92 19498.50 15193.52 24898.34 17898.10 23593.83 18395.94 18497.98 18985.59 25799.03 19494.35 18680.94 34298.22 197
1112_ss96.63 12496.00 13798.50 9398.56 14696.37 13098.18 20898.10 23592.92 22594.84 19798.43 14692.14 12199.58 13494.35 18696.51 19299.56 84
CP-MVSNet94.94 20794.30 21196.83 19896.72 27595.56 16699.11 4298.95 3493.89 17892.42 29297.90 19587.19 22998.12 29294.32 18888.21 30996.82 253
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21898.53 15795.32 11796.80 15498.53 13793.32 10399.72 10994.31 18999.31 10499.02 152
testdata98.26 11199.20 9795.36 17498.68 12191.89 26098.60 6599.10 6994.44 9099.82 6494.27 19099.44 9599.58 82
PVSNet91.96 1896.35 13596.15 13296.96 19099.17 9892.05 27496.08 32598.68 12193.69 19397.75 11197.80 20988.86 19299.69 12094.26 19199.01 11399.15 138
miper_enhance_ethall95.10 19594.75 18896.12 25197.53 22193.73 24196.61 31998.08 24192.20 25493.89 23996.65 29692.44 11298.30 27894.21 19291.16 27196.34 305
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14695.94 15197.71 25198.07 24392.10 25594.79 20197.29 24591.75 13099.56 13794.17 19396.50 19399.58 82
TranMVSNet+NR-MVSNet95.14 19394.48 20097.11 18196.45 28896.36 13199.03 5599.03 2595.04 13393.58 25097.93 19388.27 20498.03 30094.13 19486.90 32596.95 235
API-MVS97.41 9497.25 8697.91 13298.70 13596.80 11098.82 9898.69 11894.53 15498.11 8498.28 16594.50 8899.57 13594.12 19599.49 8897.37 220
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20098.81 7691.63 26898.44 7398.85 10493.98 9899.82 6494.11 19699.69 5299.64 70
cl-mvsnet294.68 21994.19 21696.13 25098.11 18193.60 24496.94 29998.31 19792.43 24293.32 26296.87 28686.51 24098.28 28394.10 19791.16 27196.51 295
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21198.76 9992.41 24396.39 17398.31 16394.92 7699.78 9694.06 19898.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-ACMP-BASELINE94.54 23194.14 22195.75 26696.55 28291.65 28398.11 21698.44 17694.96 13794.22 22597.90 19579.18 31799.11 18394.05 19993.85 23496.48 299
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15398.62 13993.02 22196.17 17898.58 13394.01 9699.81 7193.95 20098.90 11799.14 140
MDTV_nov1_ep13_2view84.26 34596.89 30790.97 29097.90 10589.89 16893.91 20199.18 136
baseline295.11 19494.52 19896.87 19696.65 27993.56 24598.27 19394.10 35293.45 20592.02 30097.43 23887.45 22799.19 17293.88 20297.41 17497.87 205
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21397.81 10898.97 8795.18 6899.83 5693.84 20399.46 9399.50 91
RPSCF94.87 21095.40 15593.26 32098.89 11882.06 35198.33 18098.06 24890.30 30196.56 16299.26 4287.09 23199.49 14693.82 20496.32 19898.24 196
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13998.60 14095.18 12497.06 14098.06 18294.26 9399.57 13593.80 20598.87 12199.52 85
ACMH92.88 1694.55 23093.95 23396.34 24197.63 21093.26 25898.81 10498.49 17193.43 20689.74 31998.53 13781.91 29999.08 18893.69 20693.30 24796.70 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth95.01 19994.69 19195.97 25597.70 20693.31 25697.02 29598.07 24392.23 25193.51 25596.96 27891.85 12898.15 28993.68 20791.16 27196.44 302
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13698.68 12192.40 24497.07 13997.96 19091.54 13799.75 10593.68 20798.92 11698.69 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 13095.46 17199.20 2998.30 20394.96 13796.60 16198.87 10390.05 16598.59 24293.67 20998.60 13299.46 102
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7698.90 4492.83 23095.99 18299.37 2292.12 12299.87 4493.67 20999.57 7598.97 157
PS-CasMVS94.67 22293.99 23196.71 20496.68 27795.26 17999.13 3999.03 2593.68 19592.33 29397.95 19185.35 26198.10 29393.59 21188.16 31196.79 254
cl_fuxian94.79 21494.43 20695.89 26097.75 20193.12 26397.16 28998.03 25092.23 25193.46 25897.05 26891.39 13998.01 30193.58 21289.21 29796.53 289
CVMVSNet95.43 17396.04 13593.57 31497.93 19283.62 34698.12 21498.59 14295.68 9696.56 16299.02 8087.51 22397.51 32393.56 21397.44 17299.60 78
OurMVSNet-221017-094.21 25094.00 22994.85 29295.60 31689.22 31898.89 8397.43 29195.29 11892.18 29698.52 14082.86 29498.59 24293.46 21491.76 26296.74 260
eth_miper_zixun_eth94.68 21994.41 20795.47 27397.64 20991.71 28296.73 31698.07 24392.71 23293.64 24897.21 25190.54 15898.17 28893.38 21589.76 28696.54 287
OpenMVScopyleft93.04 1395.83 15695.00 17798.32 10797.18 24897.32 8899.21 2898.97 3089.96 30691.14 30799.05 7986.64 23999.92 2193.38 21599.47 9097.73 210
无先验97.58 26098.72 11091.38 27499.87 4493.36 21799.60 78
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20498.68 12190.14 30498.01 9598.97 8794.80 7999.87 4493.36 21799.46 9399.61 75
gm-plane-assit95.88 30987.47 33889.74 31196.94 28199.19 17293.32 219
WR-MVS_H95.05 19894.46 20296.81 19996.86 26795.82 15999.24 2099.24 1093.87 18092.53 28696.84 28890.37 16098.24 28593.24 22087.93 31296.38 304
tpm94.13 25693.80 24395.12 28396.50 28587.91 33697.44 26495.89 33492.62 23496.37 17496.30 30784.13 28398.30 27893.24 22091.66 26499.14 140
Fast-Effi-MVS+-dtu95.87 15395.85 14095.91 25897.74 20491.74 28198.69 12998.15 22795.56 10294.92 19597.68 21888.98 18998.79 22593.19 22297.78 16397.20 224
pmmvs593.65 27092.97 27295.68 26795.49 32092.37 26998.20 20097.28 29889.66 31292.58 28497.26 24682.14 29698.09 29593.18 22390.95 27596.58 280
TESTMET0.1,194.18 25493.69 25395.63 26996.92 26289.12 31996.91 30294.78 34393.17 21694.88 19696.45 30378.52 32098.92 20893.09 22498.50 13898.85 164
test-LLR95.10 19594.87 18495.80 26396.77 27089.70 31096.91 30295.21 33895.11 12994.83 19995.72 32287.71 21998.97 19993.06 22598.50 13898.72 171
test-mter94.08 26193.51 26095.80 26396.77 27089.70 31096.91 30295.21 33892.89 22794.83 19995.72 32277.69 32798.97 19993.06 22598.50 13898.72 171
BH-untuned95.95 15095.72 14396.65 20998.55 14892.26 27098.23 19597.79 26393.73 18894.62 20498.01 18688.97 19099.00 19893.04 22798.51 13798.68 176
EPMVS94.99 20194.48 20096.52 22697.22 24291.75 28097.23 28291.66 35694.11 16697.28 13096.81 28985.70 25598.84 21993.04 22797.28 17598.97 157
pmmvs494.69 21793.99 23196.81 19995.74 31295.94 15197.40 26797.67 26890.42 29893.37 26097.59 22589.08 18498.20 28692.97 22991.67 26396.30 309
v2v48294.69 21794.03 22596.65 20996.17 29894.79 20398.67 13398.08 24192.72 23194.00 23697.16 25487.69 22298.45 25492.91 23088.87 30396.72 263
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16795.97 14898.58 14598.25 21191.74 26395.29 19097.23 24991.03 15099.15 17792.90 23197.96 15698.97 157
V4294.78 21594.14 22196.70 20696.33 29395.22 18098.97 6898.09 23992.32 24794.31 22097.06 26688.39 20298.55 24592.90 23188.87 30396.34 305
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12798.39 18589.45 31594.52 20799.35 2891.85 12899.85 5092.89 23398.88 11999.68 57
TDRefinement91.06 29989.68 30495.21 28085.35 35591.49 28698.51 15997.07 30591.47 27188.83 32897.84 20377.31 33199.09 18792.79 23477.98 34495.04 333
ACMH+92.99 1494.30 24593.77 24695.88 26197.81 19992.04 27598.71 12398.37 18893.99 17490.60 31398.47 14380.86 30799.05 19092.75 23592.40 25696.55 286
cl-mvsnet_94.51 23494.01 22896.02 25297.58 21493.40 25397.05 29397.96 25591.73 26592.76 27897.08 26289.06 18598.13 29192.61 23690.29 28196.52 292
cl-mvsnet194.52 23394.03 22595.99 25397.57 21893.38 25497.05 29397.94 25691.74 26392.81 27697.10 25689.12 18298.07 29792.60 23790.30 28096.53 289
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28898.35 19194.85 14297.93 10398.58 13395.07 7299.71 11492.60 23799.34 10299.43 106
test_post196.68 31730.43 36387.85 21898.69 23092.59 239
SCA95.46 17095.13 17196.46 23397.67 20791.29 29197.33 27697.60 27394.68 14896.92 14797.10 25683.97 28698.89 21392.59 23998.32 14899.20 129
v14894.29 24693.76 24895.91 25896.10 30192.93 26598.58 14597.97 25392.59 23693.47 25796.95 28088.53 20098.32 27492.56 24187.06 32296.49 298
PEN-MVS94.42 23993.73 25096.49 22896.28 29494.84 19899.17 3399.00 2793.51 20292.23 29597.83 20686.10 24997.90 30992.55 24286.92 32496.74 260
Patchmatch-RL test91.49 29490.85 29593.41 31691.37 34984.40 34492.81 34995.93 33391.87 26187.25 33394.87 33188.99 18696.53 34092.54 24382.00 33699.30 120
miper_lstm_enhance94.33 24394.07 22495.11 28497.75 20190.97 29597.22 28398.03 25091.67 26792.76 27896.97 27690.03 16697.78 31592.51 24489.64 28896.56 284
IterMVS94.09 26093.85 24094.80 29597.99 18990.35 30597.18 28698.12 23193.68 19592.46 29197.34 24184.05 28497.41 32492.51 24491.33 26796.62 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 25893.87 23894.85 29297.98 19190.56 30397.18 28698.11 23393.75 18592.58 28497.48 23383.97 28697.41 32492.48 24691.30 26896.58 280
tpm294.19 25293.76 24895.46 27497.23 24189.04 32197.31 27896.85 32187.08 32896.21 17796.79 29083.75 29298.74 22892.43 24796.23 20598.59 183
PVSNet_088.72 1991.28 29690.03 30295.00 28797.99 18987.29 34094.84 34298.50 16792.06 25689.86 31895.19 32779.81 31399.39 15692.27 24869.79 35198.33 194
gg-mvs-nofinetune92.21 29090.58 29797.13 17996.75 27395.09 18695.85 33089.40 35985.43 33994.50 20881.98 35380.80 30898.40 27192.16 24998.33 14797.88 204
pm-mvs193.94 26693.06 27096.59 21796.49 28695.16 18198.95 7298.03 25092.32 24791.08 30897.84 20384.54 27598.41 26592.16 24986.13 33196.19 312
K. test v392.55 28791.91 28994.48 30495.64 31589.24 31799.07 5094.88 34294.04 16986.78 33597.59 22577.64 33097.64 31892.08 25189.43 29496.57 282
GBi-Net94.49 23593.80 24396.56 22198.21 17195.00 18998.82 9898.18 21992.46 23894.09 23197.07 26381.16 30297.95 30592.08 25192.14 25796.72 263
test194.49 23593.80 24396.56 22198.21 17195.00 18998.82 9898.18 21992.46 23894.09 23197.07 26381.16 30297.95 30592.08 25192.14 25796.72 263
FMVSNet394.97 20494.26 21397.11 18198.18 17696.62 11698.56 15198.26 21093.67 19794.09 23197.10 25684.25 27998.01 30192.08 25192.14 25796.70 267
PatchmatchNetpermissive95.71 16195.52 15396.29 24497.58 21490.72 30096.84 31197.52 28294.06 16897.08 13796.96 27889.24 17998.90 21292.03 25598.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM96.29 13795.40 15598.96 6797.85 19797.60 8099.23 2198.93 3789.76 31093.11 27099.02 8089.11 18399.93 1591.99 25699.62 6699.34 111
新几何199.16 5099.34 6298.01 6298.69 11890.06 30598.13 8398.95 9594.60 8299.89 3591.97 25799.47 9099.59 80
MDTV_nov1_ep1395.40 15597.48 22388.34 33196.85 31097.29 29793.74 18797.48 12997.26 24689.18 18099.05 19091.92 25897.43 173
EU-MVSNet93.66 26894.14 22192.25 32695.96 30783.38 34798.52 15598.12 23194.69 14792.61 28398.13 17887.36 22896.39 34291.82 25990.00 28496.98 231
GA-MVS94.81 21394.03 22597.14 17897.15 25093.86 23496.76 31497.58 27494.00 17394.76 20297.04 26980.91 30598.48 25091.79 26096.25 20499.09 145
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23399.06 2293.72 18996.92 14798.06 18288.50 20199.65 12491.77 26199.00 11498.66 179
v114494.59 22793.92 23496.60 21696.21 29594.78 20498.59 14398.14 22991.86 26294.21 22697.02 27187.97 21398.41 26591.72 26289.57 28996.61 277
v894.47 23793.77 24696.57 22096.36 29194.83 20099.05 5298.19 21691.92 25993.16 26696.97 27688.82 19498.48 25091.69 26387.79 31396.39 303
testdata299.89 3591.65 264
BH-w/o95.38 17795.08 17496.26 24598.34 16291.79 27897.70 25297.43 29192.87 22894.24 22497.22 25088.66 19598.84 21991.55 26597.70 16798.16 199
LF4IMVS93.14 28192.79 27594.20 30995.88 30988.67 32697.66 25597.07 30593.81 18491.71 30297.65 21977.96 32698.81 22391.47 26691.92 26195.12 330
JIA-IIPM93.35 27392.49 28095.92 25796.48 28790.65 30195.01 33896.96 31285.93 33596.08 17987.33 35087.70 22198.78 22691.35 26795.58 21498.34 193
FMVSNet294.47 23793.61 25697.04 18498.21 17196.43 12898.79 10998.27 20692.46 23893.50 25697.09 26081.16 30298.00 30391.09 26891.93 26096.70 267
v14419294.39 24193.70 25296.48 22996.06 30394.35 22298.58 14598.16 22691.45 27294.33 21997.02 27187.50 22598.45 25491.08 26989.11 29896.63 275
tpmvs94.60 22594.36 20995.33 27897.46 22588.60 32796.88 30897.68 26791.29 28193.80 24596.42 30588.58 19699.24 16791.06 27096.04 21098.17 198
LTVRE_ROB92.95 1594.60 22593.90 23696.68 20897.41 23394.42 21898.52 15598.59 14291.69 26691.21 30698.35 15684.87 26899.04 19391.06 27093.44 24496.60 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27398.57 14893.33 20996.67 15797.57 22794.30 9299.56 13791.05 27298.59 13399.47 98
SixPastTwentyTwo93.34 27492.86 27394.75 29695.67 31489.41 31698.75 11196.67 32693.89 17890.15 31798.25 17080.87 30698.27 28490.90 27390.64 27796.57 282
MVS_030492.81 28492.01 28695.23 27997.46 22591.33 28998.17 20998.81 7691.13 28893.80 24595.68 32566.08 35398.06 29890.79 27496.13 20896.32 308
COLMAP_ROBcopyleft93.27 1295.33 18394.87 18496.71 20499.29 7893.24 25998.58 14598.11 23389.92 30793.57 25199.10 6986.37 24599.79 9290.78 27598.10 15397.09 225
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs691.77 29290.63 29695.17 28294.69 33391.24 29298.67 13397.92 25886.14 33389.62 32097.56 22975.79 33798.34 27290.75 27684.56 33395.94 318
BH-RMVSNet95.92 15295.32 16497.69 15098.32 16594.64 20698.19 20497.45 28994.56 15396.03 18098.61 12885.02 26599.12 18090.68 27799.06 11299.30 120
DTE-MVSNet93.98 26593.26 26896.14 24996.06 30394.39 22099.20 2998.86 6193.06 21991.78 30197.81 20885.87 25397.58 32090.53 27886.17 32996.46 301
v1094.29 24693.55 25896.51 22796.39 29094.80 20298.99 6498.19 21691.35 27793.02 27296.99 27488.09 21098.41 26590.50 27988.41 30796.33 307
ambc89.49 33186.66 35475.78 35492.66 35096.72 32386.55 33792.50 34446.01 35797.90 30990.32 28082.09 33594.80 337
lessismore_v094.45 30794.93 32988.44 33091.03 35786.77 33697.64 22176.23 33598.42 25890.31 28185.64 33296.51 295
v119294.32 24493.58 25796.53 22596.10 30194.45 21698.50 16098.17 22491.54 27094.19 22797.06 26686.95 23598.43 25790.14 28289.57 28996.70 267
MVS94.67 22293.54 25998.08 12396.88 26696.56 12298.19 20498.50 16778.05 34992.69 28198.02 18491.07 14999.63 12990.09 28398.36 14698.04 201
ADS-MVSNet294.58 22894.40 20895.11 28498.00 18788.74 32596.04 32697.30 29690.15 30296.47 17096.64 29787.89 21597.56 32190.08 28497.06 17799.02 152
ADS-MVSNet95.00 20094.45 20496.63 21298.00 18791.91 27696.04 32697.74 26690.15 30296.47 17096.64 29787.89 21598.96 20290.08 28497.06 17799.02 152
MSDG95.93 15195.30 16697.83 13698.90 11795.36 17496.83 31298.37 18891.32 27994.43 21498.73 11890.27 16399.60 13290.05 28698.82 12498.52 186
v192192094.20 25193.47 26296.40 23795.98 30694.08 22998.52 15598.15 22791.33 27894.25 22397.20 25286.41 24498.42 25890.04 28789.39 29596.69 272
dp94.15 25593.90 23694.90 29097.31 23786.82 34296.97 29797.19 30291.22 28596.02 18196.61 29985.51 25899.02 19790.00 28894.30 21898.85 164
CMPMVSbinary66.06 2189.70 30989.67 30589.78 33093.19 34376.56 35397.00 29698.35 19180.97 34681.57 34797.75 21174.75 34198.61 23889.85 28993.63 23894.17 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TR-MVS94.94 20794.20 21597.17 17797.75 20194.14 22897.59 25997.02 31092.28 25095.75 18597.64 22183.88 28898.96 20289.77 29096.15 20798.40 190
MS-PatchMatch93.84 26793.63 25594.46 30696.18 29789.45 31497.76 24898.27 20692.23 25192.13 29797.49 23279.50 31498.69 23089.75 29199.38 10095.25 327
ITE_SJBPF95.44 27597.42 23091.32 29097.50 28495.09 13293.59 24998.35 15681.70 30098.88 21589.71 29293.39 24596.12 313
MVP-Stereo94.28 24893.92 23495.35 27794.95 32892.60 26897.97 22897.65 26991.61 26990.68 31297.09 26086.32 24698.42 25889.70 29399.34 10295.02 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest95.24 18794.65 19296.99 18699.25 8693.21 26098.59 14398.18 21991.36 27593.52 25398.77 11484.67 27299.72 10989.70 29397.87 15998.02 202
TestCases96.99 18699.25 8693.21 26098.18 21991.36 27593.52 25398.77 11484.67 27299.72 10989.70 29397.87 15998.02 202
GG-mvs-BLEND96.59 21796.34 29294.98 19296.51 32288.58 36093.10 27194.34 33780.34 31198.05 29989.53 29696.99 17996.74 260
USDC93.33 27592.71 27695.21 28096.83 26990.83 29796.91 30297.50 28493.84 18190.72 31198.14 17777.69 32798.82 22289.51 29793.21 24995.97 317
v7n94.19 25293.43 26396.47 23095.90 30894.38 22199.26 1898.34 19391.99 25792.76 27897.13 25588.31 20398.52 24889.48 29887.70 31496.52 292
PM-MVS87.77 31686.55 32091.40 32991.03 35183.36 34896.92 30095.18 34091.28 28286.48 33893.42 34053.27 35696.74 33489.43 29981.97 33794.11 341
FMVSNet193.19 28092.07 28596.56 22197.54 21995.00 18998.82 9898.18 21990.38 29992.27 29497.07 26373.68 34597.95 30589.36 30091.30 26896.72 263
tpm cat193.36 27292.80 27495.07 28697.58 21487.97 33596.76 31497.86 26182.17 34593.53 25296.04 31686.13 24899.13 17989.24 30195.87 21198.10 200
UnsupCasMVSNet_eth90.99 30089.92 30394.19 31094.08 33789.83 30897.13 29198.67 12993.69 19385.83 34096.19 31375.15 33996.74 33489.14 30279.41 34396.00 316
v124094.06 26393.29 26796.34 24196.03 30593.90 23398.44 16798.17 22491.18 28794.13 23097.01 27386.05 25098.42 25889.13 30389.50 29396.70 267
tmp_tt68.90 32566.97 32774.68 34050.78 36559.95 36287.13 35483.47 36338.80 36062.21 35696.23 31064.70 35476.91 36188.91 30430.49 35987.19 351
pmmvs-eth3d90.36 30589.05 31094.32 30891.10 35092.12 27197.63 25896.95 31388.86 32084.91 34393.13 34178.32 32196.74 33488.70 30581.81 33894.09 342
thres600view795.49 16994.77 18697.67 15298.98 11395.02 18898.85 9196.90 31695.38 11296.63 15996.90 28384.29 27799.59 13388.65 30696.33 19798.40 190
thres100view90095.38 17794.70 19097.41 16698.98 11394.92 19698.87 8896.90 31695.38 11296.61 16096.88 28484.29 27799.56 13788.11 30796.29 19997.76 207
tfpn200view995.32 18494.62 19397.43 16598.94 11594.98 19298.68 13096.93 31495.33 11596.55 16496.53 30084.23 28099.56 13788.11 30796.29 19997.76 207
thres40095.38 17794.62 19397.65 15598.94 11594.98 19298.68 13096.93 31495.33 11596.55 16496.53 30084.23 28099.56 13788.11 30796.29 19998.40 190
our_test_393.65 27093.30 26694.69 29795.45 32289.68 31296.91 30297.65 26991.97 25891.66 30396.88 28489.67 17097.93 30888.02 31091.49 26596.48 299
thres20095.25 18694.57 19597.28 17198.81 12694.92 19698.20 20097.11 30395.24 12396.54 16696.22 31284.58 27499.53 14387.93 31196.50 19397.39 218
EG-PatchMatch MVS91.13 29890.12 30194.17 31194.73 33289.00 32298.13 21397.81 26289.22 31885.32 34296.46 30267.71 35098.42 25887.89 31293.82 23595.08 332
CR-MVSNet94.76 21694.15 22096.59 21797.00 25793.43 25094.96 33997.56 27592.46 23896.93 14596.24 30888.15 20897.88 31387.38 31396.65 18798.46 188
Patchmtry93.22 27892.35 28295.84 26296.77 27093.09 26494.66 34497.56 27587.37 32792.90 27496.24 30888.15 20897.90 30987.37 31490.10 28396.53 289
test0.0.03 194.08 26193.51 26095.80 26395.53 31992.89 26697.38 26995.97 33195.11 12992.51 28896.66 29487.71 21996.94 33187.03 31593.67 23697.57 214
TinyColmap92.31 28991.53 29094.65 29996.92 26289.75 30996.92 30096.68 32590.45 29789.62 32097.85 20276.06 33698.81 22386.74 31692.51 25595.41 325
MIMVSNet93.26 27792.21 28496.41 23697.73 20593.13 26295.65 33497.03 30891.27 28394.04 23496.06 31575.33 33897.19 32786.56 31796.23 20598.92 162
TransMVSNet (Re)92.67 28691.51 29196.15 24896.58 28194.65 20598.90 7996.73 32290.86 29189.46 32397.86 20085.62 25698.09 29586.45 31881.12 34095.71 321
DSMNet-mixed92.52 28892.58 27992.33 32594.15 33682.65 34998.30 18894.26 34989.08 31992.65 28295.73 32085.01 26695.76 34486.24 31997.76 16498.59 183
testgi93.06 28292.45 28194.88 29196.43 28989.90 30798.75 11197.54 28195.60 10091.63 30497.91 19474.46 34397.02 32986.10 32093.67 23697.72 211
YYNet190.70 30389.39 30694.62 30094.79 33190.65 30197.20 28497.46 28787.54 32672.54 35295.74 31986.51 24096.66 33886.00 32186.76 32796.54 287
MDA-MVSNet_test_wron90.71 30289.38 30794.68 29894.83 33090.78 29997.19 28597.46 28787.60 32572.41 35395.72 32286.51 24096.71 33785.92 32286.80 32696.56 284
UnsupCasMVSNet_bld87.17 31785.12 32193.31 31991.94 34788.77 32494.92 34198.30 20384.30 34282.30 34690.04 34763.96 35597.25 32685.85 32374.47 35093.93 345
EPNet_dtu95.21 18994.95 18195.99 25396.17 29890.45 30498.16 21097.27 29996.77 5493.14 26998.33 16190.34 16198.42 25885.57 32498.81 12599.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet591.81 29190.92 29494.49 30397.21 24392.09 27298.00 22697.55 28089.31 31790.86 31095.61 32674.48 34295.32 34785.57 32489.70 28796.07 315
tfpnnormal93.66 26892.70 27796.55 22496.94 26195.94 15198.97 6899.19 1591.04 28991.38 30597.34 24184.94 26798.61 23885.45 32689.02 30195.11 331
Patchmatch-test94.42 23993.68 25496.63 21297.60 21291.76 27994.83 34397.49 28689.45 31594.14 22997.10 25688.99 18698.83 22185.37 32798.13 15299.29 122
ppachtmachnet_test93.22 27892.63 27894.97 28895.45 32290.84 29696.88 30897.88 26090.60 29392.08 29897.26 24688.08 21197.86 31485.12 32890.33 27996.22 310
KD-MVS_2432*160089.61 31187.96 31594.54 30194.06 33891.59 28495.59 33597.63 27189.87 30888.95 32694.38 33578.28 32296.82 33284.83 32968.05 35295.21 328
miper_refine_blended89.61 31187.96 31594.54 30194.06 33891.59 28495.59 33597.63 27189.87 30888.95 32694.38 33578.28 32296.82 33284.83 32968.05 35295.21 328
PCF-MVS93.45 1194.68 21993.43 26398.42 10198.62 14396.77 11295.48 33798.20 21584.63 34193.34 26198.32 16288.55 19999.81 7184.80 33198.96 11598.68 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DIV-MVS_2432*160090.38 30489.38 30793.40 31792.85 34588.94 32397.95 22997.94 25690.35 30090.25 31593.96 33879.82 31295.94 34384.62 33276.69 34695.33 326
Anonymous2024052191.18 29790.44 29893.42 31593.70 34188.47 32998.94 7497.56 27588.46 32289.56 32295.08 33077.15 33396.97 33083.92 33389.55 29194.82 336
MDA-MVSNet-bldmvs89.97 30888.35 31394.83 29495.21 32591.34 28797.64 25697.51 28388.36 32371.17 35496.13 31479.22 31696.63 33983.65 33486.27 32896.52 292
MVS-HIRNet89.46 31388.40 31292.64 32397.58 21482.15 35094.16 34893.05 35575.73 35190.90 30982.52 35279.42 31598.33 27383.53 33598.68 12797.43 215
new-patchmatchnet88.50 31587.45 31891.67 32890.31 35285.89 34397.16 28997.33 29589.47 31483.63 34592.77 34276.38 33495.06 34982.70 33677.29 34594.06 343
PAPM94.95 20594.00 22997.78 14197.04 25695.65 16396.03 32898.25 21191.23 28494.19 22797.80 20991.27 14498.86 21882.61 33797.61 16998.84 166
LCM-MVSNet78.70 32076.24 32586.08 33377.26 36171.99 35794.34 34696.72 32361.62 35576.53 34989.33 34833.91 36392.78 35381.85 33874.60 34993.46 346
new_pmnet90.06 30789.00 31193.22 32194.18 33588.32 33296.42 32496.89 31886.19 33285.67 34193.62 33977.18 33297.10 32881.61 33989.29 29694.23 339
pmmvs386.67 31984.86 32292.11 32788.16 35387.19 34196.63 31894.75 34479.88 34787.22 33492.75 34366.56 35295.20 34881.24 34076.56 34793.96 344
CL-MVSNet_2432*160090.11 30689.14 30993.02 32291.86 34888.23 33396.51 32298.07 24390.49 29490.49 31494.41 33384.75 27195.34 34680.79 34174.95 34895.50 324
N_pmnet87.12 31887.77 31785.17 33595.46 32161.92 36097.37 27170.66 36585.83 33688.73 32996.04 31685.33 26397.76 31680.02 34290.48 27895.84 319
TAPA-MVS93.98 795.35 18194.56 19697.74 14599.13 10294.83 20098.33 18098.64 13786.62 32996.29 17598.61 12894.00 9799.29 16380.00 34399.41 9799.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepMVS_CXcopyleft86.78 33297.09 25472.30 35695.17 34175.92 35084.34 34495.19 32770.58 34895.35 34579.98 34489.04 30092.68 348
Anonymous2023120691.66 29391.10 29393.33 31894.02 34087.35 33998.58 14597.26 30090.48 29590.16 31696.31 30683.83 29096.53 34079.36 34589.90 28596.12 313
test20.0390.89 30190.38 29992.43 32493.48 34288.14 33498.33 18097.56 27593.40 20787.96 33196.71 29380.69 30994.13 35179.15 34686.17 32995.01 335
PatchT93.06 28291.97 28796.35 24096.69 27692.67 26794.48 34597.08 30486.62 32997.08 13792.23 34587.94 21497.90 30978.89 34796.69 18598.49 187
MIMVSNet189.67 31088.28 31493.82 31292.81 34691.08 29498.01 22497.45 28987.95 32487.90 33295.87 31867.63 35194.56 35078.73 34888.18 31095.83 320
test_040291.32 29590.27 30094.48 30496.60 28091.12 29398.50 16097.22 30186.10 33488.30 33096.98 27577.65 32997.99 30478.13 34992.94 25294.34 338
OpenMVS_ROBcopyleft86.42 2089.00 31487.43 31993.69 31393.08 34489.42 31597.91 23396.89 31878.58 34885.86 33994.69 33269.48 34998.29 28177.13 35093.29 24893.36 347
RPMNet92.81 28491.34 29297.24 17297.00 25793.43 25094.96 33998.80 8782.27 34496.93 14592.12 34686.98 23499.82 6476.32 35196.65 18798.46 188
PMMVS277.95 32275.44 32685.46 33482.54 35674.95 35594.23 34793.08 35472.80 35274.68 35087.38 34936.36 36291.56 35473.95 35263.94 35489.87 349
FPMVS77.62 32377.14 32379.05 33879.25 35960.97 36195.79 33195.94 33265.96 35367.93 35594.40 33437.73 36188.88 35668.83 35388.46 30687.29 350
Gipumacopyleft78.40 32176.75 32483.38 33695.54 31880.43 35279.42 35797.40 29364.67 35473.46 35180.82 35445.65 35893.14 35266.32 35487.43 31776.56 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 32465.37 32880.22 33765.99 36371.96 35890.91 35390.09 35882.62 34349.93 36078.39 35529.36 36481.75 35762.49 35538.52 35886.95 352
PMVScopyleft61.03 2365.95 32663.57 33073.09 34157.90 36451.22 36585.05 35693.93 35354.45 35644.32 36183.57 35113.22 36589.15 35558.68 35681.00 34178.91 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive62.14 2263.28 32959.38 33274.99 33974.33 36265.47 35985.55 35580.50 36452.02 35851.10 35975.00 35810.91 36880.50 35851.60 35753.40 35578.99 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 32764.25 32967.02 34282.28 35759.36 36391.83 35285.63 36152.69 35760.22 35777.28 35641.06 36080.12 35946.15 35841.14 35661.57 357
EMVS64.07 32863.26 33166.53 34381.73 35858.81 36491.85 35184.75 36251.93 35959.09 35875.13 35743.32 35979.09 36042.03 35939.47 35761.69 356
wuyk23d30.17 33030.18 33430.16 34478.61 36043.29 36666.79 35814.21 36617.31 36114.82 36411.93 36411.55 36741.43 36237.08 36019.30 3605.76 360
test12320.95 33323.72 33612.64 34513.54 3678.19 36796.55 3216.13 3687.48 36316.74 36337.98 36112.97 3666.05 36316.69 3615.43 36223.68 358
testmvs21.48 33224.95 33511.09 34614.89 3666.47 36896.56 3209.87 3677.55 36217.93 36239.02 3609.43 3695.90 36416.56 36212.72 36120.91 359
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k23.98 33131.98 3330.00 3470.00 3680.00 3690.00 35998.59 1420.00 3640.00 36598.61 12890.60 1570.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.88 33510.50 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36594.51 850.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.20 33410.94 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36598.43 1460.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
save fliter99.46 5198.38 3598.21 19798.71 11497.95 3
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17399.20 129
sam_mvs88.99 186
MTGPAbinary98.74 104
test_post31.83 36288.83 19398.91 209
patchmatchnet-post95.10 32989.42 17498.89 213
MTMP98.89 8394.14 351
TEST999.31 7098.50 2997.92 23198.73 10892.63 23397.74 11298.68 12296.20 2399.80 80
test_899.29 7898.44 3197.89 23798.72 11092.98 22297.70 11598.66 12596.20 2399.80 80
agg_prior99.30 7598.38 3598.72 11097.57 12699.81 71
test_prior498.01 6297.86 240
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
新几何297.64 256
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
原ACMM297.67 254
test22299.23 9397.17 9897.40 26798.66 13288.68 32198.05 8798.96 9394.14 9499.53 8599.61 75
segment_acmp96.85 11
testdata197.32 27796.34 72
test1299.18 4799.16 9998.19 5298.53 15798.07 8695.13 7099.72 10999.56 8099.63 73
plane_prior797.42 23094.63 207
plane_prior697.35 23594.61 21087.09 231
plane_prior498.28 165
plane_prior394.61 21097.02 4895.34 187
plane_prior298.80 10597.28 30
plane_prior197.37 234
plane_prior94.60 21298.44 16796.74 5694.22 221
n20.00 369
nn0.00 369
door-mid94.37 347
test1198.66 132
door94.64 345
HQP5-MVS94.25 226
HQP-NCC97.20 24498.05 22096.43 6894.45 210
ACMP_Plane97.20 24498.05 22096.43 6894.45 210
HQP4-MVS94.45 21098.96 20296.87 247
HQP3-MVS98.46 17294.18 223
HQP2-MVS86.75 237
NP-MVS97.28 23894.51 21597.73 212
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80