This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 28795.02 13297.95 9899.34 3174.37 33699.78 9598.64 396.80 18299.08 147
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18598.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18898.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25595.78 32899.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21398.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24598.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24596.74 5598.00 9697.65 21790.80 15399.48 14998.37 2396.56 19099.19 132
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24199.00 10989.54 30997.43 26398.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23792.26 11699.49 14598.28 2796.28 20299.08 147
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31798.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
diffmvs97.58 8297.40 8198.13 12098.32 16295.81 15998.06 21698.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
casdiffmvs97.63 7797.41 8098.28 10898.33 16096.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
baseline97.64 7697.44 7998.25 11298.35 15596.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19499.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 22999.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
VDDNet95.36 17994.53 19697.86 13498.10 17995.13 18498.85 9097.75 26290.46 29298.36 7699.39 1473.27 33899.64 12597.98 3696.58 18998.81 166
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22699.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27298.51 16197.29 2898.66 6097.88 19594.51 8599.90 3397.87 4299.17 10997.39 216
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 25992.30 27999.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35295.90 4099.89 3597.85 4499.74 4199.78 13
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26198.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 214
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19498.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32393.40 20498.62 6299.20 5274.99 33299.63 12897.72 5297.20 17699.46 102
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20798.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
ETV-MVS97.96 5897.81 5998.40 10398.42 15197.27 9098.73 11798.55 15196.84 5198.38 7597.44 23495.39 5599.35 15897.62 6198.89 11898.58 184
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 24994.59 8399.39 15597.62 6199.10 11198.70 172
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
jason97.32 9997.08 9398.06 12597.45 22795.59 16397.87 23597.91 25694.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
lupinMVS97.44 9197.22 8898.12 12298.07 18095.76 16097.68 25097.76 26194.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
nrg03096.28 13995.72 14397.96 13196.90 26398.15 5699.39 598.31 19695.47 10594.42 21298.35 15592.09 12398.69 22897.50 7289.05 29897.04 226
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21797.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
mvs_anonymous96.70 12396.53 12197.18 17498.19 17193.78 23498.31 18398.19 21594.01 17094.47 20698.27 16792.08 12498.46 25197.39 7597.91 15799.31 117
EIA-MVS97.75 7097.58 6798.27 10998.38 15396.44 12699.01 6098.60 13995.88 8797.26 13097.53 22894.97 7499.33 16097.38 7699.20 10799.05 149
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23897.27 9098.94 7499.23 1295.13 12595.51 18497.32 24085.73 25298.91 20797.33 7889.55 29196.89 241
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19797.64 7699.35 1099.06 2297.02 4793.75 24499.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
mvs_tets95.41 17595.00 17696.65 20695.58 31594.42 21699.00 6298.55 15195.73 9393.21 26298.38 15283.45 28998.63 23497.09 8494.00 23096.91 238
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
EPNet97.28 10096.87 10398.51 9294.98 32596.14 13998.90 7897.02 30498.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26699.65 292.34 24397.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19598.52 2799.37 798.71 11397.09 4592.99 27099.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
jajsoiax95.45 17195.03 17596.73 20095.42 32294.63 20699.14 3698.52 15895.74 9293.22 26198.36 15483.87 28598.65 23396.95 9194.04 22896.91 238
ET-MVSNet_ETH3D94.13 25292.98 26797.58 15698.22 16796.20 13697.31 27595.37 33094.53 15279.56 34097.63 22186.51 23897.53 32096.91 9290.74 27699.02 151
MVSFormer97.57 8397.49 7597.84 13598.07 18095.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
test_djsdf96.00 14795.69 14896.93 19195.72 31195.49 17099.47 298.40 18294.98 13394.58 20297.86 19789.16 18098.41 26496.91 9294.12 22796.88 242
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24198.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior297.80 24196.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19797.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 30995.08 18699.16 3498.50 16695.87 8893.84 24098.34 15994.51 8598.61 23596.88 9893.45 24397.06 225
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19199.26 894.28 16097.94 10097.46 23192.74 10999.81 7096.88 9893.32 24696.20 309
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27799.26 893.13 21597.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
Effi-MVS+97.12 10996.69 11398.39 10498.19 17196.72 11397.37 26898.43 17893.71 18797.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21799.71 193.57 19897.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
RRT_test8_iter0594.56 22694.19 21495.67 26697.60 20991.34 28398.93 7598.42 17994.75 14293.39 25697.87 19679.00 31298.61 23596.78 10790.99 27497.07 224
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24398.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 207
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24098.72 10993.16 21497.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22798.73 10792.98 22097.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
MVSTER96.06 14495.72 14397.08 18198.23 16695.93 15398.73 11798.27 20594.86 13995.07 18998.09 17988.21 20498.54 24496.59 11193.46 24196.79 252
UGNet96.78 12196.30 12798.19 11798.24 16595.89 15798.88 8598.93 3797.39 2396.81 15297.84 20082.60 29199.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet94.99 20094.19 21497.40 16697.16 24796.57 12098.71 12298.97 3095.67 9694.84 19598.24 17080.36 30598.67 23296.46 11587.32 31796.96 230
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17798.68 12093.18 21298.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19398.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
MVS_Test97.28 10097.00 9798.13 12098.33 16095.97 14798.74 11398.07 24194.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
FIs96.51 13096.12 13397.67 15097.13 24997.54 8199.36 899.22 1495.89 8694.03 23298.35 15591.98 12698.44 25496.40 11992.76 25397.01 227
test9_res96.39 12099.57 7599.69 51
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 32996.64 15798.97 8778.73 31399.85 4996.27 12194.89 21699.12 142
PMMVS96.60 12596.33 12697.41 16497.90 19193.93 23097.35 27198.41 18092.84 22797.76 10997.45 23391.10 14899.20 17096.26 12297.91 15799.11 143
CLD-MVS95.62 16595.34 16096.46 23097.52 22093.75 23797.27 27898.46 17195.53 10294.42 21298.00 18686.21 24598.97 19796.25 12394.37 21796.66 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30190.66 28996.49 16898.80 11078.13 31699.83 5596.21 12495.36 21599.44 105
RRT_MVS96.04 14595.53 15197.56 15897.07 25397.32 8798.57 14898.09 23795.15 12495.02 19198.44 14488.20 20598.58 24296.17 12593.09 25096.79 252
ZD-MVS99.46 5198.70 1998.79 9193.21 21198.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
HQP_MVS96.14 14295.90 13996.85 19597.42 22894.60 21198.80 10498.56 14997.28 2995.34 18598.28 16487.09 22999.03 19396.07 12694.27 21996.92 233
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 233
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24398.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17798.89 4692.62 23298.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25897.27 9099.36 899.23 1295.83 8993.93 23498.37 15392.00 12598.32 27396.02 13192.72 25497.00 228
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23498.74 10293.84 17996.54 16598.18 17485.34 25999.75 10495.93 13396.35 19699.15 138
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18398.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26098.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 210
agg_prior295.87 13699.57 7599.68 57
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26696.97 10298.74 11399.24 1095.16 12393.88 23797.72 21191.68 13198.31 27595.81 13787.25 31996.92 233
DU-MVS95.42 17394.76 18697.40 16696.53 28196.97 10298.66 13598.99 2995.43 10793.88 23797.69 21388.57 19698.31 27595.81 13787.25 31996.92 233
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25797.47 8398.79 10899.18 1695.60 9993.92 23597.04 26691.68 13198.48 24895.80 13987.66 31396.79 252
cascas94.63 22193.86 23796.93 19196.91 26294.27 22296.00 32598.51 16185.55 33094.54 20396.23 30784.20 27898.87 21495.80 13996.98 18097.66 211
Effi-MVS+-dtu96.29 13796.56 11895.51 26997.89 19290.22 30298.80 10498.10 23496.57 6296.45 17196.66 29190.81 15198.91 20795.72 14297.99 15597.40 215
mvs-test196.60 12596.68 11596.37 23597.89 19291.81 27598.56 14998.10 23496.57 6296.52 16797.94 19090.81 15199.45 15295.72 14298.01 15497.86 204
LPG-MVS_test95.62 16595.34 16096.47 22797.46 22393.54 24498.99 6498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
LGP-MVS_train96.47 22797.46 22393.54 24498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
旧先验297.57 25891.30 27798.67 5899.80 7995.70 146
LCM-MVSNet-Re95.22 18795.32 16394.91 28798.18 17387.85 33098.75 11095.66 32995.11 12788.96 31996.85 28490.26 16497.65 31595.65 14798.44 14199.22 128
anonymousdsp95.42 17394.91 18196.94 19095.10 32495.90 15699.14 3698.41 18093.75 18293.16 26397.46 23187.50 22498.41 26495.63 14894.03 22996.50 295
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 22998.67 12892.57 23598.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
CostFormer94.95 20494.73 18895.60 26897.28 23689.06 31697.53 25996.89 31289.66 30596.82 15196.72 28986.05 24898.95 20495.53 15096.13 20898.79 167
ACMM93.85 995.69 16295.38 15896.61 21197.61 20893.84 23398.91 7798.44 17595.25 11994.28 21898.47 14286.04 25099.12 17995.50 15193.95 23296.87 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 18194.98 17896.43 23297.67 20493.48 24798.73 11798.44 17594.94 13892.53 28398.53 13684.50 27299.14 17795.48 15294.00 23096.66 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testing_290.61 30088.50 30696.95 18990.08 34595.57 16597.69 24998.06 24593.02 21876.55 34192.48 33761.18 34898.44 25495.45 15391.98 26096.84 248
tttt051796.07 14395.51 15397.78 13998.41 15294.84 19799.28 1694.33 34194.26 16297.64 12098.64 12684.05 28099.47 15095.34 15497.60 17099.03 150
TAMVS97.02 11296.79 10697.70 14798.06 18295.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24695.33 15597.81 16199.29 122
BP-MVS95.30 156
HQP-MVS95.72 15995.40 15496.69 20497.20 24294.25 22498.05 21798.46 17196.43 6794.45 20797.73 20986.75 23598.96 20095.30 15694.18 22396.86 246
thisisatest053096.01 14695.36 15997.97 12998.38 15395.52 16998.88 8594.19 34394.04 16797.64 12098.31 16283.82 28799.46 15195.29 15897.70 16798.93 160
WR-MVS95.15 19194.46 20197.22 17196.67 27696.45 12598.21 19498.81 7694.15 16393.16 26397.69 21387.51 22298.30 27795.29 15888.62 30496.90 240
tpmrst95.63 16495.69 14895.44 27397.54 21788.54 32396.97 29497.56 27093.50 20097.52 12796.93 27989.49 17099.16 17395.25 16096.42 19598.64 180
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18395.98 14298.20 19798.33 19393.67 19496.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OPM-MVS95.69 16295.33 16296.76 19996.16 29894.63 20698.43 16798.39 18496.64 5995.02 19198.78 11285.15 26199.05 18995.21 16294.20 22296.60 276
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18898.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
UniMVSNet_ETH3D94.24 24593.33 26196.97 18797.19 24593.38 25298.74 11398.57 14791.21 28393.81 24198.58 13272.85 33998.77 22595.05 16493.93 23398.77 169
CANet_DTU96.96 11496.55 11998.21 11498.17 17596.07 14197.98 22498.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33297.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
Anonymous2023121194.10 25593.26 26496.61 21199.11 10494.28 22199.01 6098.88 4986.43 32392.81 27397.57 22581.66 29698.68 23194.83 16889.02 30096.88 242
XXY-MVS95.20 18994.45 20397.46 16196.75 27196.56 12198.86 8998.65 13593.30 20993.27 26098.27 16784.85 26698.87 21494.82 16991.26 27096.96 230
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24598.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
EI-MVSNet95.96 14895.83 14196.36 23697.93 18993.70 24198.12 21198.27 20593.70 18995.07 18999.02 8092.23 11898.54 24494.68 17193.46 24196.84 248
thisisatest051595.61 16794.89 18297.76 14198.15 17695.15 18396.77 31094.41 33992.95 22297.18 13397.43 23584.78 26799.45 15294.63 17297.73 16698.68 175
IterMVS-LS95.46 16995.21 16796.22 24498.12 17793.72 24098.32 18298.13 22993.71 18794.26 21997.31 24192.24 11798.10 29194.63 17290.12 28296.84 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.25 14195.73 14297.79 13897.13 24995.55 16898.19 20198.59 14193.47 20192.03 29597.82 20491.33 14299.49 14594.62 17498.44 14198.32 194
baseline195.84 15495.12 17198.01 12798.49 14995.98 14298.73 11797.03 30295.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25195.39 10997.23 13198.99 8691.11 14798.93 20594.60 17598.59 13399.47 98
NR-MVSNet94.98 20294.16 21797.44 16296.53 28197.22 9598.74 11398.95 3494.96 13589.25 31897.69 21389.32 17598.18 28594.59 17787.40 31696.92 233
IB-MVS91.98 1793.27 27291.97 28397.19 17397.47 22293.41 25097.09 28995.99 32493.32 20792.47 28695.73 31778.06 31799.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test94.82 20994.36 20896.20 24597.35 23390.79 29498.34 17696.57 32292.91 22495.33 18796.44 30182.00 29399.12 17994.52 17995.78 21398.70 172
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15097.00 10198.14 20898.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
D2MVS95.18 19095.08 17395.48 27097.10 25192.07 27198.30 18599.13 1994.02 16992.90 27196.73 28889.48 17198.73 22794.48 18193.60 24095.65 321
test_part192.87 28091.72 28696.32 24097.55 21693.50 24699.04 5398.74 10283.31 33590.81 30797.70 21276.61 32598.60 23994.43 18287.30 31896.85 247
Baseline_NR-MVSNet94.35 23893.81 23995.96 25496.20 29494.05 22898.61 14096.67 32091.44 27093.85 23997.60 22288.57 19698.14 28894.39 18386.93 32295.68 320
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22198.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20598.10 23492.92 22394.84 19598.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
CP-MVSNet94.94 20694.30 21096.83 19696.72 27395.56 16699.11 4298.95 3493.89 17692.42 28897.90 19387.19 22898.12 29094.32 18688.21 30796.82 251
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21598.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18799.31 10499.02 151
testdata98.26 11199.20 9795.36 17498.68 12091.89 25798.60 6499.10 6994.44 9099.82 6394.27 18899.44 9599.58 82
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27296.08 32198.68 12093.69 19097.75 11097.80 20688.86 19199.69 11994.26 18999.01 11399.15 138
miper_enhance_ethall95.10 19494.75 18796.12 24997.53 21993.73 23996.61 31698.08 23992.20 25193.89 23696.65 29392.44 11298.30 27794.21 19091.16 27196.34 303
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24798.07 24192.10 25294.79 19997.29 24291.75 13099.56 13694.17 19196.50 19399.58 82
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28696.36 13099.03 5699.03 2595.04 13193.58 24797.93 19188.27 20398.03 29894.13 19286.90 32496.95 232
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19399.49 8897.37 218
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19798.81 7691.63 26598.44 7298.85 10493.98 9899.82 6394.11 19499.69 5299.64 70
cl-mvsnet294.68 21694.19 21496.13 24898.11 17893.60 24296.94 29698.31 19692.43 24093.32 25996.87 28386.51 23898.28 28194.10 19591.16 27196.51 293
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20898.76 9892.41 24196.39 17298.31 16294.92 7699.78 9594.06 19698.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26496.55 28091.65 28198.11 21398.44 17594.96 13594.22 22297.90 19379.18 31199.11 18294.05 19793.85 23496.48 297
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21896.17 17798.58 13294.01 9699.81 7093.95 19898.90 11799.14 140
MDTV_nov1_ep13_2view84.26 33896.89 30490.97 28797.90 10489.89 16893.91 19999.18 136
baseline295.11 19394.52 19796.87 19496.65 27793.56 24398.27 19094.10 34593.45 20292.02 29697.43 23587.45 22699.19 17193.88 20097.41 17497.87 203
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21097.81 10798.97 8795.18 6899.83 5593.84 20199.46 9399.50 91
RPSCF94.87 20895.40 15493.26 31498.89 11782.06 34498.33 17798.06 24590.30 29696.56 16199.26 4287.09 22999.49 14593.82 20296.32 19898.24 195
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20398.87 12199.52 85
ACMH92.88 1694.55 22793.95 23196.34 23897.63 20793.26 25698.81 10398.49 17093.43 20389.74 31498.53 13681.91 29499.08 18793.69 20493.30 24796.70 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth95.01 19894.69 19095.97 25397.70 20393.31 25497.02 29298.07 24192.23 24893.51 25296.96 27591.85 12898.15 28793.68 20591.16 27196.44 300
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24297.07 13897.96 18891.54 13799.75 10493.68 20598.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24093.67 20798.60 13299.46 102
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22895.99 18199.37 2292.12 12299.87 4493.67 20799.57 7598.97 156
PS-CasMVS94.67 21993.99 22996.71 20196.68 27595.26 17999.13 3999.03 2593.68 19292.33 28997.95 18985.35 25898.10 29193.59 20988.16 30996.79 252
cl_fuxian94.79 21194.43 20595.89 25897.75 19893.12 26197.16 28698.03 24892.23 24893.46 25597.05 26591.39 13998.01 29993.58 21089.21 29696.53 287
CVMVSNet95.43 17296.04 13593.57 31097.93 18983.62 33998.12 21198.59 14195.68 9596.56 16199.02 8087.51 22297.51 32193.56 21197.44 17299.60 78
OurMVSNet-221017-094.21 24694.00 22794.85 29095.60 31489.22 31498.89 8297.43 28595.29 11692.18 29298.52 13982.86 29098.59 24093.46 21291.76 26396.74 258
eth_miper_zixun_eth94.68 21694.41 20695.47 27197.64 20691.71 28096.73 31398.07 24192.71 23093.64 24597.21 24890.54 15898.17 28693.38 21389.76 28696.54 285
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24697.32 8799.21 2898.97 3089.96 30191.14 30399.05 7986.64 23799.92 2193.38 21399.47 9097.73 208
无先验97.58 25798.72 10991.38 27199.87 4493.36 21599.60 78
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20198.68 12090.14 29998.01 9498.97 8794.80 7999.87 4493.36 21599.46 9399.61 75
gm-plane-assit95.88 30787.47 33189.74 30496.94 27899.19 17193.32 217
WR-MVS_H95.05 19794.46 20196.81 19796.86 26595.82 15899.24 2099.24 1093.87 17892.53 28396.84 28590.37 16098.24 28393.24 21887.93 31096.38 302
tpm94.13 25293.80 24095.12 28196.50 28387.91 32997.44 26195.89 32892.62 23296.37 17396.30 30484.13 27998.30 27793.24 21891.66 26599.14 140
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25697.74 20191.74 27998.69 12898.15 22695.56 10194.92 19397.68 21688.98 18898.79 22393.19 22097.78 16397.20 222
pmmvs593.65 26692.97 26895.68 26595.49 31892.37 26798.20 19797.28 29289.66 30592.58 28197.26 24382.14 29298.09 29393.18 22190.95 27596.58 278
TESTMET0.1,194.18 25093.69 24995.63 26796.92 26089.12 31596.91 29994.78 33693.17 21394.88 19496.45 30078.52 31498.92 20693.09 22298.50 13898.85 163
test-LLR95.10 19494.87 18395.80 26196.77 26889.70 30696.91 29995.21 33195.11 12794.83 19795.72 31987.71 21898.97 19793.06 22398.50 13898.72 170
test-mter94.08 25793.51 25695.80 26196.77 26889.70 30696.91 29995.21 33192.89 22594.83 19795.72 31977.69 31998.97 19793.06 22398.50 13898.72 170
BH-untuned95.95 14995.72 14396.65 20698.55 14692.26 26898.23 19297.79 26093.73 18594.62 20198.01 18588.97 18999.00 19693.04 22598.51 13798.68 175
EPMVS94.99 20094.48 19996.52 22397.22 24091.75 27897.23 27991.66 34994.11 16497.28 12996.81 28685.70 25398.84 21793.04 22597.28 17598.97 156
pmmvs494.69 21493.99 22996.81 19795.74 31095.94 15097.40 26497.67 26590.42 29493.37 25797.59 22389.08 18398.20 28492.97 22791.67 26496.30 307
v2v48294.69 21494.03 22396.65 20696.17 29694.79 20298.67 13298.08 23992.72 22994.00 23397.16 25187.69 22198.45 25292.91 22888.87 30296.72 261
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16495.97 14798.58 14398.25 21091.74 26095.29 18897.23 24691.03 15099.15 17692.90 22997.96 15698.97 156
V4294.78 21294.14 21996.70 20396.33 29195.22 18098.97 6898.09 23792.32 24594.31 21797.06 26388.39 20198.55 24392.90 22988.87 30296.34 303
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 30894.52 20499.35 2891.85 12899.85 4992.89 23198.88 11999.68 57
TDRefinement91.06 29589.68 30095.21 27885.35 34891.49 28298.51 15797.07 29991.47 26888.83 32097.84 20077.31 32399.09 18692.79 23277.98 34195.04 327
ACMH+92.99 1494.30 24193.77 24395.88 25997.81 19692.04 27398.71 12298.37 18793.99 17290.60 31098.47 14280.86 30299.05 18992.75 23392.40 25696.55 284
cl-mvsnet_94.51 23094.01 22696.02 25097.58 21193.40 25197.05 29097.96 25391.73 26292.76 27597.08 25989.06 18498.13 28992.61 23490.29 28196.52 290
cl-mvsnet194.52 22994.03 22395.99 25197.57 21593.38 25297.05 29097.94 25491.74 26092.81 27397.10 25389.12 18198.07 29592.60 23590.30 28096.53 287
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28598.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23599.34 10299.43 106
test_post196.68 31430.43 35687.85 21798.69 22892.59 237
SCA95.46 16995.13 17096.46 23097.67 20491.29 28797.33 27397.60 26894.68 14696.92 14697.10 25383.97 28298.89 21192.59 23798.32 14899.20 129
v14894.29 24293.76 24595.91 25696.10 29992.93 26398.58 14397.97 25192.59 23493.47 25496.95 27788.53 19998.32 27392.56 23987.06 32196.49 296
PEN-MVS94.42 23593.73 24796.49 22596.28 29294.84 19799.17 3399.00 2793.51 19992.23 29197.83 20386.10 24797.90 30792.55 24086.92 32396.74 258
Patchmatch-RL test91.49 29190.85 29293.41 31191.37 34184.40 33792.81 34295.93 32791.87 25887.25 32594.87 32788.99 18596.53 33592.54 24182.00 33599.30 120
miper_lstm_enhance94.33 23994.07 22295.11 28297.75 19890.97 29197.22 28098.03 24891.67 26492.76 27596.97 27390.03 16697.78 31392.51 24289.64 28896.56 282
IterMVS94.09 25693.85 23894.80 29397.99 18690.35 30197.18 28398.12 23093.68 19292.46 28797.34 23884.05 28097.41 32292.51 24291.33 26796.62 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 25493.87 23694.85 29097.98 18890.56 29997.18 28398.11 23293.75 18292.58 28197.48 23083.97 28297.41 32292.48 24491.30 26896.58 278
tpm294.19 24893.76 24595.46 27297.23 23989.04 31797.31 27596.85 31587.08 32096.21 17696.79 28783.75 28898.74 22692.43 24596.23 20598.59 182
PVSNet_088.72 1991.28 29390.03 29895.00 28597.99 18687.29 33394.84 33598.50 16692.06 25389.86 31395.19 32479.81 30799.39 15592.27 24669.79 34698.33 193
gg-mvs-nofinetune92.21 28790.58 29497.13 17796.75 27195.09 18595.85 32689.40 35285.43 33194.50 20581.98 34680.80 30398.40 27092.16 24798.33 14797.88 202
pm-mvs193.94 26293.06 26696.59 21496.49 28495.16 18198.95 7298.03 24892.32 24591.08 30497.84 20084.54 27198.41 26492.16 24786.13 33096.19 310
K. test v392.55 28491.91 28594.48 30095.64 31389.24 31399.07 5094.88 33594.04 16786.78 32797.59 22377.64 32297.64 31692.08 24989.43 29396.57 280
GBi-Net94.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
test194.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
FMVSNet394.97 20394.26 21197.11 17998.18 17396.62 11598.56 14998.26 20993.67 19494.09 22897.10 25384.25 27598.01 29992.08 24992.14 25796.70 265
PatchmatchNetpermissive95.71 16095.52 15296.29 24297.58 21190.72 29696.84 30897.52 27694.06 16697.08 13696.96 27589.24 17898.90 21092.03 25398.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM96.29 13795.40 15498.96 6797.85 19497.60 7999.23 2198.93 3789.76 30393.11 26799.02 8089.11 18299.93 1591.99 25499.62 6699.34 111
新几何199.16 5099.34 6298.01 6298.69 11790.06 30098.13 8298.95 9594.60 8299.89 3591.97 25599.47 9099.59 80
MDTV_nov1_ep1395.40 15497.48 22188.34 32596.85 30797.29 29193.74 18497.48 12897.26 24389.18 17999.05 18991.92 25697.43 173
EU-MVSNet93.66 26494.14 21992.25 31995.96 30583.38 34098.52 15398.12 23094.69 14592.61 28098.13 17787.36 22796.39 33791.82 25790.00 28496.98 229
GA-MVS94.81 21094.03 22397.14 17697.15 24893.86 23296.76 31197.58 26994.00 17194.76 20097.04 26680.91 30098.48 24891.79 25896.25 20499.09 144
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 22999.06 2293.72 18696.92 14698.06 18188.50 20099.65 12391.77 25999.00 11498.66 178
v114494.59 22493.92 23296.60 21396.21 29394.78 20398.59 14198.14 22891.86 25994.21 22397.02 26887.97 21298.41 26491.72 26089.57 28996.61 275
v894.47 23393.77 24396.57 21796.36 28994.83 19999.05 5298.19 21591.92 25693.16 26396.97 27388.82 19398.48 24891.69 26187.79 31196.39 301
testdata299.89 3591.65 262
BH-w/o95.38 17695.08 17396.26 24398.34 15991.79 27697.70 24897.43 28592.87 22694.24 22197.22 24788.66 19498.84 21791.55 26397.70 16798.16 197
LF4IMVS93.14 27792.79 27194.20 30595.88 30788.67 32197.66 25297.07 29993.81 18191.71 29897.65 21777.96 31898.81 22191.47 26491.92 26295.12 324
JIA-IIPM93.35 26992.49 27695.92 25596.48 28590.65 29795.01 33196.96 30685.93 32796.08 17887.33 34387.70 22098.78 22491.35 26595.58 21498.34 192
FMVSNet294.47 23393.61 25297.04 18298.21 16896.43 12798.79 10898.27 20592.46 23693.50 25397.09 25781.16 29798.00 30191.09 26691.93 26196.70 265
v14419294.39 23793.70 24896.48 22696.06 30194.35 22098.58 14398.16 22591.45 26994.33 21697.02 26887.50 22498.45 25291.08 26789.11 29796.63 273
tpmvs94.60 22294.36 20895.33 27697.46 22388.60 32296.88 30597.68 26491.29 27893.80 24296.42 30288.58 19599.24 16691.06 26896.04 21098.17 196
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20597.41 23194.42 21698.52 15398.59 14191.69 26391.21 30298.35 15584.87 26599.04 19291.06 26893.44 24496.60 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27098.57 14793.33 20696.67 15697.57 22594.30 9299.56 13691.05 27098.59 13399.47 98
SixPastTwentyTwo93.34 27092.86 26994.75 29495.67 31289.41 31298.75 11096.67 32093.89 17690.15 31298.25 16980.87 30198.27 28290.90 27190.64 27796.57 280
MVS_030492.81 28192.01 28295.23 27797.46 22391.33 28598.17 20698.81 7691.13 28593.80 24295.68 32266.08 34598.06 29690.79 27296.13 20896.32 306
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20199.29 7893.24 25798.58 14398.11 23289.92 30293.57 24899.10 6986.37 24399.79 9190.78 27398.10 15397.09 223
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs691.77 28990.63 29395.17 28094.69 33191.24 28898.67 13297.92 25586.14 32589.62 31597.56 22775.79 32998.34 27190.75 27484.56 33295.94 316
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16294.64 20598.19 20197.45 28394.56 15196.03 17998.61 12785.02 26299.12 17990.68 27599.06 11299.30 120
DTE-MVSNet93.98 26193.26 26496.14 24796.06 30194.39 21899.20 2998.86 6193.06 21691.78 29797.81 20585.87 25197.58 31890.53 27686.17 32896.46 299
v1094.29 24293.55 25496.51 22496.39 28894.80 20198.99 6498.19 21591.35 27493.02 26996.99 27188.09 20998.41 26490.50 27788.41 30696.33 305
ambc89.49 32486.66 34775.78 34792.66 34396.72 31786.55 32992.50 33646.01 35097.90 30790.32 27882.09 33494.80 330
lessismore_v094.45 30394.93 32788.44 32491.03 35086.77 32897.64 21976.23 32798.42 25790.31 27985.64 33196.51 293
v119294.32 24093.58 25396.53 22296.10 29994.45 21598.50 15898.17 22391.54 26794.19 22497.06 26386.95 23398.43 25690.14 28089.57 28996.70 265
MVS94.67 21993.54 25598.08 12396.88 26496.56 12198.19 20198.50 16678.05 34292.69 27898.02 18391.07 14999.63 12890.09 28198.36 14698.04 199
ADS-MVSNet294.58 22594.40 20795.11 28298.00 18488.74 32096.04 32297.30 29090.15 29796.47 16996.64 29487.89 21497.56 31990.08 28297.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 20998.00 18491.91 27496.04 32297.74 26390.15 29796.47 16996.64 29487.89 21498.96 20090.08 28297.06 17799.02 151
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 30998.37 18791.32 27694.43 21198.73 11890.27 16399.60 13190.05 28498.82 12498.52 185
v192192094.20 24793.47 25896.40 23495.98 30494.08 22798.52 15398.15 22691.33 27594.25 22097.20 24986.41 24298.42 25790.04 28589.39 29496.69 270
dp94.15 25193.90 23494.90 28897.31 23586.82 33596.97 29497.19 29691.22 28296.02 18096.61 29685.51 25599.02 19590.00 28694.30 21898.85 163
CMPMVSbinary66.06 2189.70 30489.67 30189.78 32393.19 33776.56 34697.00 29398.35 19080.97 33981.57 33997.75 20874.75 33398.61 23589.85 28793.63 23894.17 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TR-MVS94.94 20694.20 21397.17 17597.75 19894.14 22697.59 25697.02 30492.28 24795.75 18397.64 21983.88 28498.96 20089.77 28896.15 20798.40 189
MS-PatchMatch93.84 26393.63 25194.46 30296.18 29589.45 31097.76 24498.27 20592.23 24892.13 29397.49 22979.50 30898.69 22889.75 28999.38 10095.25 323
ITE_SJBPF95.44 27397.42 22891.32 28697.50 27895.09 13093.59 24698.35 15581.70 29598.88 21389.71 29093.39 24596.12 311
MVP-Stereo94.28 24493.92 23295.35 27594.95 32692.60 26697.97 22597.65 26691.61 26690.68 30997.09 25786.32 24498.42 25789.70 29199.34 10295.02 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25898.59 14198.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
TestCases96.99 18499.25 8693.21 25898.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
GG-mvs-BLEND96.59 21496.34 29094.98 19196.51 31988.58 35393.10 26894.34 33080.34 30698.05 29789.53 29496.99 17996.74 258
USDC93.33 27192.71 27295.21 27896.83 26790.83 29396.91 29997.50 27893.84 17990.72 30898.14 17677.69 31998.82 22089.51 29593.21 24995.97 315
v7n94.19 24893.43 25996.47 22795.90 30694.38 21999.26 1898.34 19291.99 25492.76 27597.13 25288.31 20298.52 24689.48 29687.70 31296.52 290
PM-MVS87.77 30986.55 31391.40 32291.03 34383.36 34196.92 29795.18 33391.28 27986.48 33093.42 33253.27 34996.74 32989.43 29781.97 33694.11 334
FMVSNet193.19 27692.07 28196.56 21897.54 21795.00 18898.82 9798.18 21890.38 29592.27 29097.07 26073.68 33797.95 30389.36 29891.30 26896.72 261
tpm cat193.36 26892.80 27095.07 28497.58 21187.97 32896.76 31197.86 25882.17 33893.53 24996.04 31386.13 24699.13 17889.24 29995.87 21198.10 198
UnsupCasMVSNet_eth90.99 29689.92 29994.19 30694.08 33489.83 30497.13 28898.67 12893.69 19085.83 33296.19 31075.15 33196.74 32989.14 30079.41 34096.00 314
v124094.06 25993.29 26396.34 23896.03 30393.90 23198.44 16598.17 22391.18 28494.13 22797.01 27086.05 24898.42 25789.13 30189.50 29296.70 265
tmp_tt68.90 31866.97 32074.68 33350.78 35859.95 35587.13 34783.47 35638.80 35362.21 34996.23 30764.70 34676.91 35488.91 30230.49 35287.19 344
pmmvs-eth3d90.36 30189.05 30494.32 30491.10 34292.12 26997.63 25596.95 30788.86 31384.91 33593.13 33378.32 31596.74 32988.70 30381.81 33794.09 335
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31095.38 11096.63 15896.90 28084.29 27399.59 13288.65 30496.33 19798.40 189
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31095.38 11096.61 15996.88 28184.29 27399.56 13688.11 30596.29 19997.76 205
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19997.76 205
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19998.40 189
our_test_393.65 26693.30 26294.69 29595.45 32089.68 30896.91 29997.65 26691.97 25591.66 29996.88 28189.67 16997.93 30688.02 30891.49 26696.48 297
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19797.11 29795.24 12196.54 16596.22 30984.58 27099.53 14287.93 30996.50 19397.39 216
EG-PatchMatch MVS91.13 29490.12 29794.17 30794.73 33089.00 31898.13 21097.81 25989.22 31185.32 33496.46 29967.71 34298.42 25787.89 31093.82 23595.08 326
CR-MVSNet94.76 21394.15 21896.59 21497.00 25593.43 24894.96 33297.56 27092.46 23696.93 14496.24 30588.15 20797.88 31187.38 31196.65 18798.46 187
Patchmtry93.22 27492.35 27895.84 26096.77 26893.09 26294.66 33797.56 27087.37 31992.90 27196.24 30588.15 20797.90 30787.37 31290.10 28396.53 287
test0.0.03 194.08 25793.51 25695.80 26195.53 31792.89 26497.38 26695.97 32595.11 12792.51 28596.66 29187.71 21896.94 32887.03 31393.67 23697.57 212
TinyColmap92.31 28691.53 28794.65 29796.92 26089.75 30596.92 29796.68 31990.45 29389.62 31597.85 19976.06 32898.81 22186.74 31492.51 25595.41 322
MIMVSNet93.26 27392.21 28096.41 23397.73 20293.13 26095.65 32997.03 30291.27 28094.04 23196.06 31275.33 33097.19 32586.56 31596.23 20598.92 161
TransMVSNet (Re)92.67 28391.51 28896.15 24696.58 27994.65 20498.90 7896.73 31690.86 28889.46 31797.86 19785.62 25498.09 29386.45 31681.12 33895.71 319
DSMNet-mixed92.52 28592.58 27592.33 31894.15 33382.65 34298.30 18594.26 34289.08 31292.65 27995.73 31785.01 26395.76 33886.24 31797.76 16498.59 182
testgi93.06 27892.45 27794.88 28996.43 28789.90 30398.75 11097.54 27595.60 9991.63 30097.91 19274.46 33597.02 32786.10 31893.67 23697.72 209
YYNet190.70 29989.39 30294.62 29894.79 32990.65 29797.20 28197.46 28187.54 31872.54 34595.74 31686.51 23896.66 33386.00 31986.76 32696.54 285
MDA-MVSNet_test_wron90.71 29889.38 30394.68 29694.83 32890.78 29597.19 28297.46 28187.60 31772.41 34695.72 31986.51 23896.71 33285.92 32086.80 32596.56 282
UnsupCasMVSNet_bld87.17 31085.12 31493.31 31391.94 34088.77 31994.92 33498.30 20284.30 33482.30 33890.04 34063.96 34797.25 32485.85 32174.47 34593.93 338
EPNet_dtu95.21 18894.95 18095.99 25196.17 29690.45 30098.16 20797.27 29396.77 5393.14 26698.33 16090.34 16198.42 25785.57 32298.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet591.81 28890.92 29194.49 29997.21 24192.09 27098.00 22397.55 27489.31 31090.86 30695.61 32374.48 33495.32 34085.57 32289.70 28796.07 313
tfpnnormal93.66 26492.70 27396.55 22196.94 25995.94 15098.97 6899.19 1591.04 28691.38 30197.34 23884.94 26498.61 23585.45 32489.02 30095.11 325
Patchmatch-test94.42 23593.68 25096.63 20997.60 20991.76 27794.83 33697.49 28089.45 30894.14 22697.10 25388.99 18598.83 21985.37 32598.13 15299.29 122
ppachtmachnet_test93.22 27492.63 27494.97 28695.45 32090.84 29296.88 30597.88 25790.60 29092.08 29497.26 24388.08 21097.86 31285.12 32690.33 27996.22 308
PCF-MVS93.45 1194.68 21693.43 25998.42 10198.62 14196.77 11195.48 33098.20 21484.63 33393.34 25898.32 16188.55 19899.81 7084.80 32798.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet-bldmvs89.97 30388.35 30894.83 29295.21 32391.34 28397.64 25397.51 27788.36 31571.17 34796.13 31179.22 31096.63 33483.65 32886.27 32796.52 290
MVS-HIRNet89.46 30688.40 30792.64 31697.58 21182.15 34394.16 34193.05 34875.73 34490.90 30582.52 34579.42 30998.33 27283.53 32998.68 12797.43 213
new-patchmatchnet88.50 30887.45 31191.67 32190.31 34485.89 33697.16 28697.33 28989.47 30783.63 33792.77 33476.38 32695.06 34282.70 33077.29 34294.06 336
PAPM94.95 20494.00 22797.78 13997.04 25495.65 16296.03 32498.25 21091.23 28194.19 22497.80 20691.27 14498.86 21682.61 33197.61 16998.84 165
LCM-MVSNet78.70 31376.24 31886.08 32677.26 35471.99 35094.34 33996.72 31761.62 34876.53 34289.33 34133.91 35692.78 34681.85 33274.60 34493.46 339
new_pmnet90.06 30289.00 30593.22 31594.18 33288.32 32696.42 32096.89 31286.19 32485.67 33393.62 33177.18 32497.10 32681.61 33389.29 29594.23 332
pmmvs386.67 31284.86 31592.11 32088.16 34687.19 33496.63 31594.75 33779.88 34087.22 32692.75 33566.56 34495.20 34181.24 33476.56 34393.96 337
N_pmnet87.12 31187.77 31085.17 32895.46 31961.92 35397.37 26870.66 35885.83 32888.73 32196.04 31385.33 26097.76 31480.02 33590.48 27895.84 317
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17798.64 13686.62 32196.29 17498.61 12794.00 9799.29 16280.00 33699.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepMVS_CXcopyleft86.78 32597.09 25272.30 34995.17 33475.92 34384.34 33695.19 32470.58 34095.35 33979.98 33789.04 29992.68 341
Anonymous2023120691.66 29091.10 29093.33 31294.02 33587.35 33298.58 14397.26 29490.48 29190.16 31196.31 30383.83 28696.53 33579.36 33889.90 28596.12 311
test20.0390.89 29790.38 29592.43 31793.48 33688.14 32798.33 17797.56 27093.40 20487.96 32396.71 29080.69 30494.13 34479.15 33986.17 32895.01 329
PatchT93.06 27891.97 28396.35 23796.69 27492.67 26594.48 33897.08 29886.62 32197.08 13692.23 33887.94 21397.90 30778.89 34096.69 18598.49 186
MIMVSNet189.67 30588.28 30993.82 30892.81 33991.08 29098.01 22197.45 28387.95 31687.90 32495.87 31567.63 34394.56 34378.73 34188.18 30895.83 318
test_040291.32 29290.27 29694.48 30096.60 27891.12 28998.50 15897.22 29586.10 32688.30 32296.98 27277.65 32197.99 30278.13 34292.94 25294.34 331
OpenMVS_ROBcopyleft86.42 2089.00 30787.43 31293.69 30993.08 33889.42 31197.91 22996.89 31278.58 34185.86 33194.69 32869.48 34198.29 28077.13 34393.29 24893.36 340
RPMNet92.81 28191.34 28997.24 17097.00 25593.43 24894.96 33298.80 8682.27 33796.93 14492.12 33986.98 23299.82 6376.32 34496.65 18798.46 187
PMMVS277.95 31575.44 31985.46 32782.54 34974.95 34894.23 34093.08 34772.80 34574.68 34387.38 34236.36 35591.56 34773.95 34563.94 34789.87 342
FPMVS77.62 31677.14 31679.05 33179.25 35260.97 35495.79 32795.94 32665.96 34667.93 34894.40 32937.73 35488.88 34968.83 34688.46 30587.29 343
Gipumacopyleft78.40 31476.75 31783.38 32995.54 31680.43 34579.42 35097.40 28764.67 34773.46 34480.82 34745.65 35193.14 34566.32 34787.43 31576.56 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 31765.37 32180.22 33065.99 35671.96 35190.91 34690.09 35182.62 33649.93 35378.39 34829.36 35781.75 35062.49 34838.52 35186.95 345
PMVScopyleft61.03 2365.95 31963.57 32373.09 33457.90 35751.22 35885.05 34993.93 34654.45 34944.32 35483.57 34413.22 35889.15 34858.68 34981.00 33978.91 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive62.14 2263.28 32259.38 32574.99 33274.33 35565.47 35285.55 34880.50 35752.02 35151.10 35275.00 35110.91 36180.50 35151.60 35053.40 34878.99 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 32064.25 32267.02 33582.28 35059.36 35691.83 34585.63 35452.69 35060.22 35077.28 34941.06 35380.12 35246.15 35141.14 34961.57 350
EMVS64.07 32163.26 32466.53 33681.73 35158.81 35791.85 34484.75 35551.93 35259.09 35175.13 35043.32 35279.09 35342.03 35239.47 35061.69 349
wuyk23d30.17 32330.18 32730.16 33778.61 35343.29 35966.79 35114.21 35917.31 35414.82 35711.93 35711.55 36041.43 35537.08 35319.30 3535.76 353
test12320.95 32623.72 32912.64 33813.54 3608.19 36096.55 3186.13 3617.48 35616.74 35637.98 35412.97 3596.05 35616.69 3545.43 35523.68 351
testmvs21.48 32524.95 32811.09 33914.89 3596.47 36196.56 3179.87 3607.55 35517.93 35539.02 3539.43 3625.90 35716.56 35512.72 35420.91 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k23.98 32431.98 3260.00 3400.00 3610.00 3620.00 35298.59 1410.00 3570.00 35898.61 12790.60 1570.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.88 32810.50 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35894.51 850.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.20 32710.94 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35898.43 1450.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
save fliter99.46 5198.38 3598.21 19498.71 11397.95 3
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 102
test_post31.83 35588.83 19298.91 207
patchmatchnet-post95.10 32689.42 17398.89 211
MTMP98.89 8294.14 344
TEST999.31 7098.50 2997.92 22798.73 10792.63 23197.74 11198.68 12196.20 2399.80 79
test_899.29 7898.44 3197.89 23398.72 10992.98 22097.70 11498.66 12496.20 2399.80 79
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
test_prior498.01 6297.86 236
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
新几何297.64 253
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
原ACMM297.67 251
test22299.23 9397.17 9797.40 26498.66 13188.68 31498.05 8698.96 9394.14 9499.53 8599.61 75
segment_acmp96.85 11
testdata197.32 27496.34 71
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
plane_prior797.42 22894.63 206
plane_prior697.35 23394.61 20987.09 229
plane_prior498.28 164
plane_prior394.61 20997.02 4795.34 185
plane_prior298.80 10497.28 29
plane_prior197.37 232
plane_prior94.60 21198.44 16596.74 5594.22 221
n20.00 362
nn0.00 362
door-mid94.37 340
test1198.66 131
door94.64 338
HQP5-MVS94.25 224
HQP-NCC97.20 24298.05 21796.43 6794.45 207
ACMP_Plane97.20 24298.05 21796.43 6794.45 207
HQP4-MVS94.45 20798.96 20096.87 244
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 235
NP-MVS97.28 23694.51 21497.73 209
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80