This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3999.86 199.85 10
PC_three_145295.08 16199.60 1999.16 7797.86 298.47 28597.52 10399.72 5599.74 37
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3999.72 5599.74 37
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17997.24 11299.73 5299.70 53
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8199.85 699.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4399.81 1699.70 53
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3999.81 1699.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4399.80 2399.83 13
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1399.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7199.16 7797.05 1399.78 10198.06 6399.66 6599.69 56
segment_acmp96.85 14
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32698.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12397.04 6398.52 8998.80 12896.78 1699.83 6997.93 7099.61 7699.74 37
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2399.89 5
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1198.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 699.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9398.93 11496.65 1999.83 6997.38 10999.41 11099.71 49
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5899.85 699.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5799.04 6899.09 3193.32 24898.83 6699.10 8696.54 2199.83 6997.70 8999.76 4199.59 79
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23399.37 3199.52 1196.52 2299.89 4798.06 6399.81 1699.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6399.28 5496.47 2399.40 17598.52 3799.70 5899.47 100
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4999.90 3
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 5099.73 5299.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15699.32 3399.39 3296.22 2699.84 6797.72 8499.73 5299.67 65
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9298.11 24398.29 21797.19 5498.99 5299.02 9896.22 2699.67 12698.52 3798.56 15399.51 89
TEST999.31 6498.50 2997.92 26398.73 11192.63 27597.74 13498.68 14596.20 2899.80 88
train_agg97.97 6597.52 8399.33 2699.31 6498.50 2997.92 26398.73 11192.98 26497.74 13498.68 14596.20 2899.80 8896.59 14199.57 8499.68 61
test_899.29 7398.44 3197.89 27198.72 11392.98 26497.70 13898.66 14996.20 2899.80 88
DeepPCF-MVS96.37 297.93 7098.48 2396.30 27099.00 11489.54 34597.43 30798.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 5199.77 3599.72 45
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10798.94 5499.17 7496.06 3299.92 3197.62 9399.78 3399.75 35
9.1498.06 5899.47 4798.71 15698.82 8194.36 19499.16 4499.29 5396.05 3399.81 8197.00 11899.71 57
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1798.87 6995.96 11098.60 8599.13 8296.05 3399.94 897.77 8199.86 199.77 27
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2898.88 6297.52 2999.41 2898.78 13196.00 3599.79 9897.79 8099.59 8099.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8497.91 26599.58 397.20 5398.33 10199.00 10395.99 3699.64 13198.05 6599.76 4199.69 56
test_prior297.80 28096.12 10697.89 12898.69 14495.96 3796.89 12799.60 78
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26598.67 12892.57 27998.77 7098.85 12295.93 3899.72 11395.56 17799.69 6099.68 61
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 12998.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4598.94 179
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10498.94 5499.17 7495.91 3999.94 897.55 10099.79 2999.78 21
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 9099.20 6795.90 4199.89 4797.85 7699.74 4999.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 9043.50 40895.90 4199.89 4797.85 7699.74 4999.78 21
dcpmvs_298.08 6098.59 1496.56 24499.57 3390.34 33399.15 4998.38 19896.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 17997.17 5598.94 5499.10 8695.73 4499.13 20498.71 2499.49 10099.09 158
ZD-MVS99.46 4998.70 2398.79 9893.21 25398.67 7798.97 10595.70 4599.83 6996.07 15599.58 83
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10498.83 12595.70 4599.92 3197.53 10299.67 6399.66 68
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10798.93 5899.19 7295.70 4599.94 897.62 9399.79 2999.78 21
旧先验199.29 7397.48 7898.70 11999.09 9295.56 4899.47 10399.61 75
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8199.49 595.43 13899.03 4799.32 4995.56 4899.94 896.80 13799.77 3599.78 21
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13498.82 8194.52 18899.23 3799.25 6195.54 5099.80 8896.52 14499.77 3599.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 12098.31 10399.10 8695.46 5199.93 2597.57 9999.81 1699.74 37
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2598.81 8696.24 9998.35 10099.23 6295.46 5199.94 897.42 10799.81 1699.77 27
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12698.30 21798.69 12097.21 5298.84 6399.36 4295.41 5399.78 10198.62 2699.65 6899.80 18
ETV-MVS97.96 6797.81 6798.40 10498.42 16897.27 8798.73 14998.55 15896.84 7198.38 9797.44 26295.39 5499.35 18097.62 9398.89 13598.58 213
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5499.82 7697.70 8999.63 7399.72 45
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12598.81 8695.80 11999.16 4499.47 2095.37 5699.92 3197.89 7499.75 4599.79 19
CSCG97.85 7497.74 7198.20 12199.67 2595.16 19499.22 3799.32 1193.04 26297.02 16698.92 11695.36 5799.91 3997.43 10699.64 7299.52 86
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.34 5899.82 7697.72 8499.65 6899.71 49
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27698.05 11098.94 11395.34 5899.65 12996.04 15999.42 10999.19 143
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 9999.20 3899.37 3895.30 6099.80 8897.73 8399.67 6399.72 45
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.29 6197.72 8499.65 6899.71 49
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12698.73 7599.06 9695.27 6299.93 2597.07 11799.63 7399.72 45
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6099.28 5495.27 6299.82 7697.55 10099.77 3599.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss98.31 5697.92 6599.49 1299.72 1298.88 1898.43 20398.78 10094.10 20097.69 13999.42 2995.25 6499.92 3198.09 6299.80 2399.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17397.45 3598.88 6199.14 8195.25 6499.15 20198.83 2299.56 9099.20 139
EI-MVSNet-UG-set98.41 4598.34 3598.61 8099.45 5296.32 13898.28 22098.68 12397.17 5598.74 7399.37 3895.25 6499.79 9898.57 2899.54 9399.73 42
原ACMM198.65 7799.32 6296.62 11698.67 12893.27 25297.81 12998.97 10595.18 6799.83 6993.84 23399.46 10699.50 91
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 9298.82 12599.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 2399.93 1
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1098.82 8194.46 19198.94 5499.20 6795.16 6899.74 11197.58 9699.85 699.77 27
test1299.18 4299.16 9898.19 5098.53 16298.07 10995.13 7099.72 11399.56 9099.63 73
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6899.53 798.80 9394.63 18298.61 8498.97 10595.13 7099.77 10697.65 9199.83 1599.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS97.55 9696.99 11099.23 3899.04 10998.55 2797.17 33198.35 20394.85 17497.93 12598.58 15795.07 7299.71 11892.60 26799.34 11799.43 109
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26099.58 397.14 5898.44 9599.01 10295.03 7399.62 13797.91 7299.75 4599.50 91
EIA-MVS97.75 7797.58 7798.27 11298.38 17196.44 12899.01 7698.60 14195.88 11597.26 15597.53 25694.97 7499.33 18297.38 10999.20 12299.05 168
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28498.89 5997.71 1998.33 10198.97 10594.97 7499.88 5698.42 4599.76 4199.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft95.07 497.20 11696.78 12098.44 9999.29 7396.31 14098.14 23898.76 10492.41 28596.39 19898.31 18694.92 7699.78 10194.06 22798.77 14399.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11599.39 3294.81 7799.96 497.91 7299.79 2999.77 27
Test By Simon94.64 78
新几何199.16 4599.34 5798.01 6198.69 12090.06 34498.13 10598.95 11294.60 7999.89 4791.97 28899.47 10399.59 79
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 5199.22 3798.79 9896.13 10597.92 12699.23 6294.54 8099.94 896.74 14099.78 3399.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 810.00 4150.00 4140.00 4130.00 411
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 19999.16 4898.50 17395.87 11693.84 27898.34 18394.51 8198.61 27096.88 12993.45 28097.06 262
PS-MVSNAJ97.73 7897.77 6897.62 16998.68 14795.58 17297.34 31698.51 16897.29 4498.66 8197.88 22394.51 8199.90 4597.87 7599.17 12497.39 254
API-MVS97.41 10597.25 9797.91 14298.70 14396.80 10998.82 12598.69 12094.53 18698.11 10698.28 18894.50 8499.57 14294.12 22499.49 10097.37 256
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7399.03 7199.41 695.98 10997.60 14899.36 4294.45 8599.93 2597.14 11498.85 13999.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testdata98.26 11599.20 9295.36 18398.68 12391.89 30198.60 8599.10 8694.44 8699.82 7694.27 21999.44 10799.58 83
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10895.32 37798.86 298.53 8899.44 2794.38 8799.94 899.86 199.70 5899.90 3
xiu_mvs_v2_base97.66 8597.70 7297.56 17398.61 15595.46 17897.44 30598.46 18097.15 5798.65 8298.15 20094.33 8899.80 8897.84 7898.66 14897.41 252
mvsany_test197.69 8297.70 7297.66 16798.24 18994.18 24397.53 30197.53 30295.52 13499.66 1599.51 1394.30 8999.56 14598.38 4698.62 14999.23 135
PAPR96.84 13196.24 14598.65 7798.72 14296.92 10497.36 31498.57 15193.33 24796.67 18197.57 25394.30 8999.56 14591.05 30798.59 15199.47 100
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18196.15 14598.97 8499.15 2898.55 798.45 9399.55 694.26 9199.97 199.65 799.66 6598.57 214
PAPM_NR97.46 9897.11 10498.50 9199.50 4196.41 13298.63 17498.60 14195.18 15397.06 16498.06 20694.26 9199.57 14293.80 23598.87 13899.52 86
test22299.23 8897.17 9697.40 30898.66 13188.68 36398.05 11098.96 11094.14 9399.53 9599.61 75
EPP-MVSNet97.46 9897.28 9697.99 13898.64 15295.38 18299.33 2198.31 20993.61 23797.19 15799.07 9594.05 9499.23 19196.89 12798.43 16199.37 114
F-COLMAP97.09 12296.80 11797.97 13999.45 5294.95 20798.55 18798.62 14093.02 26396.17 20398.58 15794.01 9599.81 8193.95 22998.90 13499.14 153
TAPA-MVS93.98 795.35 20494.56 21997.74 15699.13 10194.83 21398.33 21098.64 13686.62 37196.29 20098.61 15294.00 9699.29 18580.00 38599.41 11099.09 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15497.75 28498.78 10096.89 7098.46 9099.22 6493.90 9799.68 12594.81 20099.52 9699.67 65
EC-MVSNet98.21 5898.11 5698.49 9398.34 17997.26 9199.61 598.43 18896.78 7498.87 6298.84 12393.72 9899.01 22598.91 2099.50 9899.19 143
CDS-MVSNet96.99 12496.69 12597.90 14398.05 21195.98 14998.20 22898.33 20693.67 23396.95 16798.49 16593.54 9998.42 29195.24 18997.74 18699.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS97.02 12396.79 11997.70 16098.06 21095.31 18898.52 18998.31 20993.95 20997.05 16598.61 15293.49 10098.52 28095.33 18397.81 18299.29 127
CNLPA97.45 10197.03 10898.73 7299.05 10897.44 8298.07 24898.53 16295.32 14696.80 17898.53 16193.32 10199.72 11394.31 21899.31 11999.02 170
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23697.15 9798.84 12198.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2999.89 5
OMC-MVS97.55 9697.34 9498.20 12199.33 5995.92 16198.28 22098.59 14495.52 13497.97 12099.10 8693.28 10399.49 15995.09 19198.88 13699.19 143
UA-Net97.96 6797.62 7598.98 5998.86 12997.47 8098.89 10399.08 3296.67 8298.72 7699.54 893.15 10499.81 8194.87 19698.83 14099.65 69
iter_conf0596.47 14696.48 13596.43 26096.72 31093.98 24898.70 16097.88 27695.76 12195.84 21398.67 14893.01 10598.55 27597.71 8894.02 26496.76 291
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9899.12 5598.81 8692.34 28798.09 10899.08 9493.01 10599.92 3196.06 15899.77 3599.75 35
iter_conf05_1198.04 6397.94 6498.34 10798.60 15696.38 13399.24 3198.57 15195.90 11398.99 5298.79 13092.97 10799.47 16698.58 2799.85 699.17 149
bld_raw_dy_0_6497.62 8897.67 7497.46 17598.43 16794.02 24797.71 28798.53 16295.87 11698.78 6998.70 14292.93 10899.46 16898.25 5699.86 198.90 182
mamv497.97 6597.75 7098.63 7998.28 18797.36 8398.72 15498.57 15195.76 12198.76 7198.70 14292.91 10999.45 17098.24 5799.84 1399.07 166
MVSMamba_pp98.02 6497.82 6698.61 8098.25 18897.32 8498.73 14998.56 15596.18 10398.84 6398.72 14092.90 11099.45 17098.37 4799.85 699.07 166
114514_t96.93 12696.27 14398.92 6499.50 4197.63 7298.85 11798.90 5784.80 38397.77 13099.11 8492.84 11199.66 12894.85 19799.77 3599.47 100
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16298.63 17499.16 2794.48 19097.67 14098.88 11992.80 11299.91 3997.11 11599.12 12599.50 91
PVSNet_BlendedMVS96.73 13496.60 12997.12 19999.25 8195.35 18598.26 22399.26 1594.28 19597.94 12397.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
PVSNet_Blended97.38 10797.12 10398.14 12499.25 8195.35 18597.28 32199.26 1593.13 25897.94 12398.21 19692.74 11399.81 8196.88 12999.40 11399.27 129
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19098.85 11799.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9699.25 133
MVS_Test97.28 11197.00 10998.13 12798.33 18195.97 15498.74 14598.07 25894.27 19698.44 9598.07 20592.48 11699.26 18796.43 14798.19 17099.16 150
miper_enhance_ethall95.10 21894.75 21196.12 27797.53 25493.73 25996.61 36398.08 25692.20 29593.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18098.86 11599.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10899.49 96
MVSFormer97.57 9497.49 8497.84 14598.07 20795.76 16899.47 898.40 19294.98 16598.79 6798.83 12592.34 11998.41 29896.91 12399.59 8099.34 116
lupinMVS97.44 10297.22 10098.12 13098.07 20795.76 16897.68 29097.76 28294.50 18998.79 6798.61 15292.34 11999.30 18497.58 9699.59 8099.31 122
CHOSEN 280x42097.18 11797.18 10297.20 19198.81 13493.27 27895.78 37699.15 2895.25 15096.79 17998.11 20392.29 12199.07 21598.56 3099.85 699.25 133
sasdasda97.67 8397.23 9898.98 5998.70 14398.38 3599.34 1798.39 19496.76 7697.67 14097.40 26692.26 12299.49 15998.28 5296.28 23099.08 162
canonicalmvs97.67 8397.23 9898.98 5998.70 14398.38 3599.34 1798.39 19496.76 7697.67 14097.40 26692.26 12299.49 15998.28 5296.28 23099.08 162
IterMVS-LS95.46 19395.21 18996.22 27398.12 20493.72 26098.32 21498.13 24493.71 22694.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 16695.83 15996.36 26597.93 22293.70 26198.12 24198.27 21893.70 22895.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 285
WTY-MVS97.37 10996.92 11398.72 7398.86 12996.89 10798.31 21598.71 11695.26 14997.67 14098.56 16092.21 12699.78 10195.89 16396.85 20799.48 98
Effi-MVS+97.12 12096.69 12598.39 10598.19 19796.72 11497.37 31298.43 18893.71 22697.65 14498.02 20992.20 12799.25 18896.87 13297.79 18399.19 143
1112_ss96.63 13796.00 15398.50 9198.56 15896.37 13598.18 23698.10 25192.92 26794.84 23198.43 16992.14 12899.58 14194.35 21596.51 21899.56 85
LS3D97.16 11896.66 12898.68 7598.53 16297.19 9598.93 9598.90 5792.83 27195.99 20899.37 3892.12 12999.87 5893.67 23999.57 8498.97 175
MGCFI-Net97.62 8897.19 10198.92 6498.66 14998.20 4999.32 2298.38 19896.69 8197.58 14997.42 26592.10 13099.50 15898.28 5296.25 23399.08 162
nrg03096.28 15695.72 16397.96 14196.90 29998.15 5499.39 1198.31 20995.47 13694.42 24898.35 17992.09 13198.69 26397.50 10489.05 33797.04 263
mvs_anonymous96.70 13696.53 13397.18 19498.19 19793.78 25498.31 21598.19 23094.01 20594.47 24298.27 19192.08 13298.46 28697.39 10897.91 17899.31 122
FC-MVSNet-test96.42 14896.05 15097.53 17496.95 29497.27 8799.36 1499.23 2095.83 11893.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 265
FIs96.51 14496.12 14897.67 16497.13 28597.54 7699.36 1499.22 2395.89 11494.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 264
sss97.39 10696.98 11198.61 8098.60 15696.61 11898.22 22598.93 5093.97 20898.01 11898.48 16691.98 13499.85 6396.45 14698.15 17199.39 112
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9597.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6099.91 2
miper_ehance_all_eth95.01 22294.69 21495.97 28297.70 23893.31 27797.02 33998.07 25892.23 29293.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
DP-MVS96.59 13995.93 15698.57 8399.34 5796.19 14498.70 16098.39 19489.45 35594.52 24099.35 4491.85 13799.85 6392.89 26398.88 13699.68 61
Test_1112_low_res96.34 15395.66 17198.36 10698.56 15895.94 15797.71 28798.07 25892.10 29694.79 23597.29 27291.75 13999.56 14594.17 22296.50 21999.58 83
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18396.84 30296.97 10198.74 14599.24 1795.16 15493.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 271
UniMVSNet (Re)95.78 17895.19 19097.58 17196.99 29297.47 8098.79 13999.18 2595.60 13093.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 288
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 16896.59 12198.92 9798.44 18496.20 10197.76 13199.20 6791.66 14299.23 19198.27 5598.41 16299.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS93.96 896.82 13296.23 14698.57 8398.46 16697.00 10098.14 23898.21 22693.95 20996.72 18097.99 21391.58 14399.76 10794.51 21196.54 21798.95 178
xiu_mvs_v1_base_debu97.60 9097.56 7997.72 15798.35 17495.98 14997.86 27498.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3198.68 14497.37 256
xiu_mvs_v1_base97.60 9097.56 7997.72 15798.35 17495.98 14997.86 27498.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3198.68 14497.37 256
xiu_mvs_v1_base_debi97.60 9097.56 7997.72 15798.35 17495.98 14997.86 27498.51 16897.13 5999.01 4998.40 17391.56 14499.80 8898.53 3198.68 14497.37 256
MAR-MVS96.91 12796.40 13898.45 9798.69 14696.90 10598.66 16998.68 12392.40 28697.07 16397.96 21691.54 14799.75 10993.68 23798.92 13398.69 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet98.05 6297.76 6998.90 6798.73 13897.27 8798.35 20898.78 10097.37 4197.72 13798.96 11091.53 14899.92 3198.79 2399.65 6899.51 89
c3_l94.79 23794.43 22995.89 28797.75 23293.12 28697.16 33398.03 26592.23 29293.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
EPNet97.28 11196.87 11598.51 9094.98 36896.14 14698.90 9997.02 34098.28 1095.99 20899.11 8491.36 15099.89 4796.98 11999.19 12399.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.64 8697.44 8998.25 11698.35 17496.20 14299.00 7898.32 20796.33 9898.03 11399.17 7491.35 15199.16 19898.10 6198.29 16999.39 112
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 13198.54 16195.24 19198.87 11299.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9399.21 138
131496.25 15895.73 16297.79 15097.13 28595.55 17598.19 23198.59 14493.47 24292.03 33497.82 23191.33 15299.49 15994.62 20698.44 15998.32 226
diffmvspermissive97.58 9397.40 9198.13 12798.32 18495.81 16798.06 24998.37 20096.20 10198.74 7398.89 11891.31 15499.25 18898.16 5998.52 15499.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM94.95 23094.00 25497.78 15197.04 28995.65 17096.03 37298.25 22391.23 32494.19 26197.80 23391.27 15598.86 24982.61 37997.61 19098.84 187
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18196.14 14698.82 12598.32 20796.38 9697.95 12199.21 6591.23 15699.23 19198.12 6098.37 16399.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11997.66 24295.39 18198.89 10399.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11099.35 115
jason97.32 11097.08 10698.06 13597.45 26195.59 17197.87 27397.91 27594.79 17598.55 8798.83 12591.12 15899.23 19197.58 9699.60 7899.34 116
jason: jason.
IS-MVSNet97.22 11396.88 11498.25 11698.85 13196.36 13699.19 4497.97 26995.39 14097.23 15698.99 10491.11 15998.93 23794.60 20798.59 15199.47 100
PMMVS96.60 13896.33 14097.41 18197.90 22493.93 25097.35 31598.41 19092.84 27097.76 13197.45 26191.10 16099.20 19596.26 15197.91 17899.11 156
MVS94.67 24593.54 28798.08 13396.88 30096.56 12398.19 23198.50 17378.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16598.04 234
Fast-Effi-MVS+96.28 15695.70 16898.03 13698.29 18695.97 15498.58 18098.25 22391.74 30495.29 22397.23 27791.03 16299.15 20192.90 26197.96 17798.97 175
mvsmamba96.57 14296.32 14197.32 18796.60 31696.43 12999.54 697.98 26896.49 8895.20 22498.64 15090.82 16398.55 27597.97 6793.65 27496.98 266
Effi-MVS+-dtu96.29 15496.56 13095.51 30097.89 22590.22 33498.80 13498.10 25196.57 8796.45 19696.66 32490.81 16498.91 24095.72 17197.99 17597.40 253
test_yl97.22 11396.78 12098.54 8798.73 13896.60 11998.45 19898.31 20994.70 17698.02 11598.42 17190.80 16599.70 11996.81 13596.79 20999.34 116
DCV-MVSNet97.22 11396.78 12098.54 8798.73 13896.60 11998.45 19898.31 20994.70 17698.02 11598.42 17190.80 16599.70 11996.81 13596.79 20999.34 116
alignmvs97.56 9597.07 10799.01 5698.66 14998.37 4098.83 12398.06 26396.74 7898.00 11997.65 24590.80 16599.48 16498.37 4796.56 21699.19 143
AdaColmapbinary97.15 11996.70 12498.48 9499.16 9896.69 11598.01 25498.89 5994.44 19296.83 17498.68 14590.69 16899.76 10794.36 21499.29 12098.98 174
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1440.00 4140.00 41598.61 15290.60 1690.00 4150.00 4140.00 4130.00 411
eth_miper_zixun_eth94.68 24294.41 23095.47 30297.64 24391.71 30796.73 36098.07 25892.71 27493.64 28397.21 27990.54 17098.17 32093.38 24589.76 32496.54 321
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12398.75 10696.96 6796.89 17399.50 1590.46 17199.87 5897.84 7899.76 4199.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H95.05 22194.46 22596.81 22196.86 30195.82 16699.24 3199.24 1793.87 21492.53 32296.84 31790.37 17298.24 31793.24 24987.93 34996.38 339
EPNet_dtu95.21 21294.95 20395.99 28096.17 33590.45 33098.16 23797.27 32396.77 7593.14 30598.33 18490.34 17398.42 29185.57 36398.81 14299.09 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VNet97.79 7697.40 9198.96 6298.88 12697.55 7598.63 17498.93 5096.74 7899.02 4898.84 12390.33 17499.83 6998.53 3196.66 21299.50 91
MSDG95.93 17095.30 18697.83 14698.90 12495.36 18396.83 35698.37 20091.32 31994.43 24798.73 13990.27 17599.60 13990.05 32198.82 14198.52 215
LCM-MVSNet-Re95.22 21195.32 18494.91 31998.18 19987.85 37398.75 14295.66 37495.11 15788.96 36096.85 31690.26 17697.65 35195.65 17598.44 15999.22 137
Vis-MVSNet (Re-imp)96.87 12996.55 13197.83 14698.73 13895.46 17899.20 4298.30 21594.96 16796.60 18698.87 12090.05 17798.59 27393.67 23998.60 15099.46 104
miper_lstm_enhance94.33 26994.07 24895.11 31497.75 23290.97 31897.22 32498.03 26591.67 30892.76 31496.97 30590.03 17897.78 34892.51 27489.64 32696.56 318
baseline195.84 17595.12 19498.01 13798.49 16595.98 14998.73 14997.03 33895.37 14396.22 20198.19 19889.96 17999.16 19894.60 20787.48 35398.90 182
MDTV_nov1_ep13_2view84.26 38296.89 35190.97 32997.90 12789.89 18093.91 23199.18 148
h-mvs3396.17 15995.62 17297.81 14999.03 11094.45 23098.64 17198.75 10697.48 3298.67 7798.72 14089.76 18199.86 6297.95 6881.59 38199.11 156
hse-mvs295.71 18195.30 18696.93 21298.50 16393.53 26698.36 20798.10 25197.48 3298.67 7797.99 21389.76 18199.02 22397.95 6880.91 38698.22 229
GeoE96.58 14196.07 14998.10 13298.35 17495.89 16499.34 1798.12 24593.12 25996.09 20498.87 12089.71 18398.97 22792.95 25998.08 17499.43 109
our_test_393.65 29993.30 29594.69 32895.45 36189.68 34396.91 34697.65 28791.97 29991.66 33896.88 31389.67 18497.93 34088.02 34991.49 30496.48 334
tpmrst95.63 18695.69 16995.44 30497.54 25288.54 36296.97 34197.56 29593.50 24097.52 15196.93 31189.49 18599.16 19895.25 18896.42 22198.64 207
D2MVS95.18 21495.08 19695.48 30197.10 28792.07 29998.30 21799.13 3094.02 20492.90 31096.73 32189.48 18698.73 26194.48 21293.60 27795.65 359
FA-MVS(test-final)96.41 15195.94 15597.82 14898.21 19395.20 19397.80 28097.58 29293.21 25397.36 15397.70 23989.47 18799.56 14594.12 22497.99 17598.71 199
sam_mvs189.45 18899.20 139
patchmatchnet-post95.10 36889.42 18998.89 244
3Dnovator+94.38 697.43 10396.78 12099.38 1897.83 22798.52 2899.37 1398.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8499.71 49
NR-MVSNet94.98 22794.16 24297.44 17896.53 32097.22 9498.74 14598.95 4694.96 16789.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 271
HyFIR lowres test96.90 12896.49 13498.14 12499.33 5995.56 17397.38 31099.65 292.34 28797.61 14798.20 19789.29 19299.10 21296.97 12097.60 19199.77 27
3Dnovator94.51 597.46 9896.93 11299.07 5397.78 23097.64 7199.35 1699.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
PatchmatchNetpermissive95.71 18195.52 17396.29 27197.58 24790.72 32596.84 35597.52 30394.06 20197.08 16196.96 30789.24 19498.90 24392.03 28598.37 16399.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.40 17597.48 25688.34 36696.85 35497.29 32193.74 22297.48 15297.26 27389.18 19599.05 21691.92 28997.43 195
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17799.47 898.40 19294.98 16594.58 23897.86 22489.16 19698.41 29896.91 12394.12 26196.88 280
DIV-MVS_self_test94.52 25694.03 25095.99 28097.57 25193.38 27497.05 33797.94 27291.74 30492.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
QAPM96.29 15495.40 17598.96 6297.85 22697.60 7499.23 3398.93 5089.76 34993.11 30699.02 9889.11 19899.93 2591.99 28699.62 7599.34 116
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15797.40 30897.67 28690.42 33893.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
cl____94.51 25794.01 25396.02 27997.58 24793.40 27397.05 33797.96 27191.73 30692.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
sam_mvs88.99 201
Patchmatch-test94.42 26593.68 28196.63 23497.60 24691.76 30494.83 38697.49 30789.45 35594.14 26397.10 28388.99 20198.83 25385.37 36698.13 17299.29 127
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38192.81 39695.93 37291.87 30287.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28597.74 23591.74 30698.69 16398.15 24195.56 13294.92 22997.68 24488.98 20498.79 25793.19 25197.78 18497.20 260
BH-untuned95.95 16795.72 16396.65 23098.55 16092.26 29598.23 22497.79 28193.73 22394.62 23798.01 21188.97 20599.00 22693.04 25698.51 15598.68 201
XVG-OURS96.55 14396.41 13796.99 20698.75 13793.76 25597.50 30498.52 16695.67 12896.83 17499.30 5288.95 20699.53 15395.88 16496.26 23297.69 245
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 30096.08 36998.68 12393.69 22997.75 13397.80 23388.86 20799.69 12494.26 22099.01 13099.15 151
test_post31.83 41188.83 20898.91 240
v894.47 26293.77 27396.57 24396.36 32894.83 21399.05 6598.19 23091.92 30093.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
BH-w/o95.38 20095.08 19696.26 27298.34 17991.79 30397.70 28997.43 31492.87 26994.24 25897.22 27888.66 21098.84 25091.55 29697.70 18898.16 232
tpmvs94.60 24894.36 23295.33 30897.46 25888.60 36196.88 35297.68 28591.29 32193.80 28096.42 33488.58 21199.24 19091.06 30596.04 23998.17 231
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9098.60 14198.58 698.93 5899.55 688.57 21299.91 3999.54 1199.61 7699.77 27
DU-MVS95.42 19794.76 21097.40 18396.53 32096.97 10198.66 16998.99 4195.43 13893.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 271
Baseline_NR-MVSNet94.35 26893.81 26995.96 28396.20 33394.05 24698.61 17796.67 35891.44 31393.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15496.77 11195.48 38098.20 22884.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13298.68 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14894.29 27393.76 27595.91 28596.10 33892.93 28998.58 18097.97 26992.59 27893.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
PatchMatch-RL96.59 13996.03 15298.27 11299.31 6496.51 12597.91 26599.06 3493.72 22596.92 17198.06 20688.50 21799.65 12991.77 29299.00 13198.66 205
V4294.78 23894.14 24496.70 22796.33 33095.22 19298.97 8498.09 25592.32 28994.31 25497.06 29488.39 21898.55 27592.90 26188.87 34196.34 340
v7n94.19 27993.43 29296.47 25595.90 34694.38 23599.26 2898.34 20591.99 29892.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13699.03 7199.03 3795.04 16293.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 270
MVSTER96.06 16395.72 16397.08 20298.23 19195.93 16098.73 14998.27 21894.86 17295.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 288
CHOSEN 1792x268897.12 12096.80 11798.08 13399.30 6894.56 22898.05 25099.71 193.57 23897.09 16098.91 11788.17 22299.89 4796.87 13299.56 9099.81 17
CR-MVSNet94.76 23994.15 24396.59 24097.00 29093.43 26994.96 38297.56 29592.46 28096.93 16996.24 33788.15 22397.88 34587.38 35296.65 21398.46 218
Patchmtry93.22 30892.35 31495.84 28996.77 30593.09 28794.66 38997.56 29587.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
v1094.29 27393.55 28696.51 25196.39 32794.80 21598.99 8198.19 23091.35 31793.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
ppachtmachnet_test93.22 30892.63 30894.97 31895.45 36190.84 32296.88 35297.88 27690.60 33392.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
WB-MVSnew94.19 27994.04 24994.66 33096.82 30492.14 29697.86 27495.96 37093.50 24095.64 21696.77 32088.06 22797.99 33584.87 36896.86 20693.85 385
Vis-MVSNetpermissive97.42 10497.11 10498.34 10798.66 14996.23 14199.22 3799.00 3996.63 8498.04 11299.21 6588.05 22899.35 18096.01 16199.21 12199.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v114494.59 25093.92 25996.60 23996.21 33294.78 21798.59 17898.14 24391.86 30394.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
PatchT93.06 31391.97 31996.35 26696.69 31292.67 29194.48 39297.08 33286.62 37197.08 16192.23 39287.94 23097.90 34178.89 38996.69 21198.49 217
ADS-MVSNet294.58 25194.40 23195.11 31498.00 21388.74 35996.04 37097.30 32090.15 34296.47 19496.64 32787.89 23197.56 35690.08 31997.06 20099.02 170
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21391.91 30296.04 37097.74 28490.15 34296.47 19496.64 32787.89 23198.96 23190.08 31997.06 20099.02 170
XVG-OURS-SEG-HR96.51 14496.34 13997.02 20598.77 13693.76 25597.79 28298.50 17395.45 13796.94 16899.09 9287.87 23399.55 15296.76 13995.83 24497.74 242
test_post196.68 36130.43 41287.85 23498.69 26392.59 269
test-LLR95.10 21894.87 20795.80 29096.77 30589.70 34196.91 34695.21 37895.11 15794.83 23395.72 35887.71 23598.97 22793.06 25498.50 15698.72 196
test0.0.03 194.08 29093.51 28895.80 29095.53 35792.89 29097.38 31095.97 36995.11 15792.51 32496.66 32487.71 23596.94 36787.03 35493.67 27297.57 250
JIA-IIPM93.35 30392.49 31195.92 28496.48 32490.65 32795.01 38196.96 34385.93 37796.08 20587.33 39887.70 23798.78 25891.35 29895.58 24798.34 224
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21698.67 16798.08 25692.72 27394.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
CVMVSNet95.43 19696.04 15193.57 34697.93 22283.62 38498.12 24198.59 14495.68 12796.56 18799.02 9887.51 23997.51 35893.56 24397.44 19499.60 77
WR-MVS95.15 21594.46 22597.22 19096.67 31496.45 12798.21 22698.81 8694.15 19893.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 278
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16399.14 5198.41 19093.75 22093.16 30297.46 25987.50 24198.41 29895.63 17694.03 26396.50 331
v14419294.39 26793.70 27996.48 25496.06 34094.35 23698.58 18098.16 24091.45 31294.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
baseline295.11 21794.52 22196.87 21796.65 31593.56 26398.27 22294.10 39293.45 24392.02 33597.43 26387.45 24399.19 19693.88 23297.41 19697.87 238
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24594.69 17892.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 266
CP-MVSNet94.94 23294.30 23396.83 21996.72 31095.56 17399.11 5698.95 4693.89 21292.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 287
HQP_MVS96.14 16195.90 15796.85 21897.42 26394.60 22698.80 13498.56 15597.28 4595.34 21998.28 18887.09 24699.03 22096.07 15594.27 25396.92 271
plane_prior697.35 27094.61 22487.09 246
RPSCF94.87 23495.40 17593.26 35298.89 12582.06 39098.33 21098.06 26390.30 34196.56 18799.26 5787.09 24699.49 15993.82 23496.32 22498.24 227
RPMNet92.81 31591.34 32497.24 18997.00 29093.43 26994.96 38298.80 9382.27 38996.93 16992.12 39386.98 24999.82 7676.32 39496.65 21398.46 218
v119294.32 27093.58 28496.53 24996.10 33894.45 23098.50 19498.17 23891.54 31094.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
CANet_DTU96.96 12596.55 13198.21 11998.17 20296.07 14897.98 25898.21 22697.24 5097.13 15998.93 11486.88 25199.91 3995.00 19499.37 11698.66 205
HQP2-MVS86.75 252
HQP-MVS95.72 18095.40 17596.69 22897.20 27894.25 24198.05 25098.46 18096.43 9194.45 24397.73 23686.75 25298.96 23195.30 18494.18 25796.86 284
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28297.32 8499.21 4098.97 4289.96 34591.14 34299.05 9786.64 25499.92 3193.38 24599.47 10397.73 243
cl2294.68 24294.19 23996.13 27698.11 20593.60 26296.94 34398.31 20992.43 28493.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17198.22 19296.20 14297.31 31995.37 37694.53 18679.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 170
YYNet190.70 33689.39 33994.62 33294.79 37390.65 32797.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32994.83 37190.78 32497.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
v192192094.20 27893.47 29096.40 26495.98 34394.08 24598.52 18998.15 24191.33 31894.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28198.58 18098.11 24889.92 34693.57 28699.10 8686.37 26099.79 9890.78 31098.10 17397.09 261
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVP-Stereo94.28 27593.92 25995.35 30794.95 36992.60 29297.97 25997.65 28791.61 30990.68 34797.09 28786.32 26198.42 29189.70 32899.34 11795.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CLD-MVS95.62 18795.34 18196.46 25897.52 25593.75 25797.27 32298.46 18095.53 13394.42 24898.00 21286.21 26298.97 22796.25 15394.37 25196.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat193.36 30292.80 30495.07 31697.58 24787.97 37196.76 35897.86 27882.17 39093.53 28796.04 34786.13 26399.13 20489.24 33695.87 24398.10 233
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21199.17 4799.00 3993.51 23992.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
v124094.06 29293.29 29696.34 26796.03 34293.90 25198.44 20198.17 23891.18 32794.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
CostFormer94.95 23094.73 21295.60 29897.28 27289.06 35297.53 30196.89 34989.66 35196.82 17696.72 32286.05 26598.95 23695.53 17996.13 23898.79 190
ACMM93.85 995.69 18495.38 17996.61 23797.61 24593.84 25398.91 9898.44 18495.25 15094.28 25598.47 16786.04 26799.12 20695.50 18093.95 26796.87 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SDMVSNet96.85 13096.42 13698.14 12499.30 6896.38 13399.21 4099.23 2095.92 11195.96 21098.76 13785.88 26899.44 17397.93 7095.59 24598.60 209
DTE-MVSNet93.98 29493.26 29796.14 27596.06 34094.39 23499.20 4298.86 7593.06 26191.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
VPA-MVSNet95.75 17995.11 19597.69 16197.24 27497.27 8798.94 9399.23 2095.13 15595.51 21797.32 27085.73 27098.91 24097.33 11189.55 32996.89 279
EPMVS94.99 22594.48 22396.52 25097.22 27691.75 30597.23 32391.66 40194.11 19997.28 15496.81 31885.70 27198.84 25093.04 25697.28 19798.97 175
TransMVSNet (Re)92.67 31791.51 32396.15 27496.58 31894.65 21998.90 9996.73 35490.86 33189.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
AUN-MVS94.53 25593.73 27796.92 21598.50 16393.52 26798.34 20998.10 25193.83 21795.94 21297.98 21585.59 27399.03 22094.35 21580.94 38598.22 229
dp94.15 28393.90 26294.90 32097.31 27186.82 37896.97 34197.19 32791.22 32596.02 20796.61 32985.51 27499.02 22390.00 32394.30 25298.85 185
LPG-MVS_test95.62 18795.34 18196.47 25597.46 25893.54 26498.99 8198.54 16094.67 18094.36 25198.77 13385.39 27599.11 20895.71 17294.15 25996.76 291
LGP-MVS_train96.47 25597.46 25893.54 26498.54 16094.67 18094.36 25198.77 13385.39 27599.11 20895.71 17294.15 25996.76 291
PS-CasMVS94.67 24593.99 25696.71 22596.68 31395.26 18999.13 5499.03 3793.68 23192.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 288
ab-mvs96.42 14895.71 16698.55 8598.63 15396.75 11297.88 27298.74 10893.84 21596.54 19198.18 19985.34 27899.75 10995.93 16296.35 22299.15 151
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
FE-MVS95.62 18794.90 20597.78 15198.37 17394.92 20897.17 33197.38 31890.95 33097.73 13697.70 23985.32 28099.63 13491.18 30098.33 16698.79 190
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 26085.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22198.43 20398.39 19496.64 8395.02 22898.78 13185.15 28299.05 21695.21 19094.20 25696.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet95.92 17195.32 18497.69 16198.32 18494.64 22098.19 23197.45 31294.56 18496.03 20698.61 15285.02 28399.12 20690.68 31299.06 12699.30 125
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 36092.65 31895.73 35685.01 28495.76 38486.24 35897.76 18598.59 211
tfpnnormal93.66 29792.70 30796.55 24896.94 29595.94 15798.97 8499.19 2491.04 32891.38 34097.34 26884.94 28598.61 27085.45 36589.02 33995.11 367
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26694.42 23298.52 18998.59 14491.69 30791.21 34198.35 17984.87 28699.04 21991.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS95.20 21394.45 22797.46 17596.75 30896.56 12398.86 11598.65 13593.30 25093.27 29998.27 19184.85 28798.87 24794.82 19991.26 30896.96 268
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35381.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
thisisatest051595.61 19094.89 20697.76 15498.15 20395.15 19696.77 35794.41 38692.95 26697.18 15897.43 26384.78 28999.45 17094.63 20497.73 18798.68 201
Syy-MVS92.55 31892.61 30992.38 35997.39 26783.41 38597.91 26597.46 30893.16 25693.42 29495.37 36484.75 29096.12 38077.00 39396.99 20297.60 248
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36996.51 36698.07 25890.49 33490.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
test_cas_vis1_n_192097.38 10797.36 9397.45 17798.95 12193.25 28099.00 7898.53 16297.70 2099.77 799.35 4484.71 29299.85 6398.57 2899.66 6599.26 131
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28298.59 17898.18 23391.36 31593.52 28898.77 13384.67 29399.72 11389.70 32897.87 18098.02 235
TestCases96.99 20699.25 8193.21 28298.18 23391.36 31593.52 28898.77 13384.67 29399.72 11389.70 32897.87 18098.02 235
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24796.30 36689.04 36181.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
thres20095.25 20994.57 21897.28 18898.81 13494.92 20898.20 22897.11 33095.24 15296.54 19196.22 34184.58 29699.53 15387.93 35096.50 21997.39 254
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19498.95 9098.03 26592.32 28991.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24093.48 26898.73 14998.44 18494.94 17092.53 32298.53 16184.50 29899.14 20395.48 18194.00 26596.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres100view90095.38 20094.70 21397.41 18198.98 11994.92 20898.87 11296.90 34795.38 14196.61 18596.88 31384.29 29999.56 14588.11 34696.29 22797.76 240
thres600view795.49 19194.77 20997.67 16498.98 11995.02 20098.85 11796.90 34795.38 14196.63 18396.90 31284.29 29999.59 14088.65 34396.33 22398.40 220
dmvs_re94.48 26194.18 24195.37 30697.68 23990.11 33698.54 18897.08 33294.56 18494.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 227
FMVSNet394.97 22994.26 23597.11 20098.18 19996.62 11698.56 18698.26 22293.67 23394.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
tfpn200view995.32 20794.62 21697.43 17998.94 12294.98 20498.68 16496.93 34595.33 14496.55 18996.53 33084.23 30399.56 14588.11 34696.29 22797.76 240
thres40095.38 20094.62 21697.65 16898.94 12294.98 20498.68 16496.93 34595.33 14496.55 18996.53 33084.23 30399.56 14588.11 34696.29 22798.40 220
cascas94.63 24793.86 26696.93 21296.91 29894.27 23996.00 37398.51 16885.55 38094.54 23996.23 33984.20 30598.87 24795.80 16896.98 20597.66 246
tpm94.13 28493.80 27095.12 31396.50 32287.91 37297.44 30595.89 37392.62 27696.37 19996.30 33684.13 30698.30 31193.24 24991.66 30399.14 153
tttt051796.07 16295.51 17497.78 15198.41 17094.84 21199.28 2594.33 38894.26 19797.64 14598.64 15084.05 30799.47 16695.34 18297.60 19199.03 169
IterMVS94.09 28993.85 26794.80 32697.99 21590.35 33297.18 32998.12 24593.68 23192.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 28793.87 26594.85 32397.98 21790.56 32997.18 32998.11 24893.75 22092.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
SCA95.46 19395.13 19296.46 25897.67 24091.29 31497.33 31797.60 29194.68 17996.92 17197.10 28383.97 30998.89 24492.59 26998.32 16899.20 139
TR-MVS94.94 23294.20 23897.17 19597.75 23294.14 24497.59 29897.02 34092.28 29195.75 21597.64 24783.88 31198.96 23189.77 32596.15 23798.40 220
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22199.14 5198.52 16695.74 12393.22 30098.36 17883.87 31298.65 26896.95 12294.04 26296.91 276
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37598.58 18097.26 32490.48 33590.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
thisisatest053096.01 16495.36 18097.97 13998.38 17195.52 17698.88 10894.19 39094.04 20297.64 14598.31 18683.82 31499.46 16895.29 18697.70 18898.93 180
tpm294.19 27993.76 27595.46 30397.23 27589.04 35397.31 31996.85 35387.08 37096.21 20296.79 31983.75 31598.74 26092.43 27796.23 23598.59 211
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23299.00 7898.55 15895.73 12593.21 30198.38 17683.45 31698.63 26997.09 11694.00 26596.91 276
OurMVSNet-221017-094.21 27794.00 25494.85 32395.60 35489.22 35098.89 10397.43 31495.29 14792.18 33198.52 16482.86 31798.59 27393.46 24491.76 30096.74 294
sd_testset96.17 15995.76 16197.42 18099.30 6894.34 23798.82 12599.08 3295.92 11195.96 21098.76 13782.83 31899.32 18395.56 17795.59 24598.60 209
UGNet96.78 13396.30 14298.19 12398.24 18995.89 16498.88 10898.93 5097.39 3896.81 17797.84 22782.60 31999.90 4596.53 14399.49 10098.79 190
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs593.65 29992.97 30295.68 29495.49 35892.37 29398.20 22897.28 32289.66 35192.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
ACMH92.88 1694.55 25293.95 25896.34 26797.63 24493.26 27998.81 13398.49 17893.43 24489.74 35498.53 16181.91 32199.08 21493.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF95.44 30497.42 26391.32 31397.50 30595.09 16093.59 28498.35 17981.70 32298.88 24689.71 32793.39 28296.12 348
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23899.01 7698.88 6286.43 37392.81 31297.57 25381.66 32398.68 26694.83 19889.02 33996.88 280
test111195.94 16995.78 16096.41 26298.99 11890.12 33599.04 6892.45 39996.99 6698.03 11399.27 5681.40 32499.48 16496.87 13299.04 12799.63 73
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32199.03 7191.80 40096.96 6798.10 10799.26 5781.31 32599.51 15796.90 12699.04 12799.59 79
GBi-Net94.49 25993.80 27096.56 24498.21 19395.00 20198.82 12598.18 23392.46 28094.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19395.00 20198.82 12598.18 23392.46 28094.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet294.47 26293.61 28397.04 20498.21 19396.43 12998.79 13998.27 21892.46 28093.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
GA-MVS94.81 23694.03 25097.14 19797.15 28493.86 25296.76 35897.58 29294.00 20694.76 23697.04 29780.91 32998.48 28291.79 29196.25 23399.09 158
SixPastTwentyTwo93.34 30492.86 30394.75 32795.67 35289.41 34898.75 14296.67 35893.89 21290.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
ACMH+92.99 1494.30 27193.77 27395.88 28897.81 22992.04 30198.71 15698.37 20093.99 20790.60 34898.47 16780.86 33199.05 21692.75 26592.40 29496.55 320
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 30895.09 19895.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16697.88 237
test20.0390.89 33490.38 33292.43 35893.48 38388.14 37098.33 21097.56 29593.40 24587.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
VPNet94.99 22594.19 23997.40 18397.16 28396.57 12298.71 15698.97 4295.67 12894.84 23198.24 19580.36 33498.67 26796.46 14587.32 35796.96 268
test_fmvs196.42 14896.67 12795.66 29598.82 13388.53 36398.80 13498.20 22896.39 9599.64 1799.20 6780.35 33599.67 12699.04 1799.57 8498.78 193
GG-mvs-BLEND96.59 24096.34 32994.98 20496.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20296.74 294
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35797.95 26097.94 27290.35 34090.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
PVSNet_088.72 1991.28 32990.03 33595.00 31797.99 21587.29 37694.84 38598.50 17392.06 29789.86 35395.19 36679.81 33899.39 17892.27 27869.79 40198.33 225
MS-PatchMatch93.84 29693.63 28294.46 33896.18 33489.45 34697.76 28398.27 21892.23 29292.13 33297.49 25779.50 33998.69 26389.75 32699.38 11595.25 363
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24782.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14497.43 251
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32595.21 36591.34 31297.64 29497.51 30488.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29396.55 31991.65 30898.11 24398.44 18494.96 16794.22 25997.90 22079.18 34299.11 20894.05 22893.85 26996.48 334
Anonymous2024052995.10 21894.22 23797.75 15599.01 11394.26 24098.87 11298.83 8085.79 37996.64 18298.97 10578.73 34399.85 6396.27 15094.89 25099.12 155
UWE-MVS94.30 27193.89 26495.53 29997.83 22788.95 35697.52 30393.25 39494.44 19296.63 18397.07 29078.70 34499.28 18691.99 28697.56 19398.36 223
TESTMET0.1,194.18 28293.69 28095.63 29696.92 29689.12 35196.91 34694.78 38393.17 25594.88 23096.45 33378.52 34598.92 23893.09 25398.50 15698.85 185
test_vis1_n_192096.71 13596.84 11696.31 26999.11 10489.74 34099.05 6598.58 14998.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6099.27 129
pmmvs-eth3d90.36 33889.05 34394.32 34091.10 39392.12 29797.63 29796.95 34488.86 36284.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
KD-MVS_2432*160089.61 34487.96 35194.54 33394.06 37991.59 30995.59 37897.63 28989.87 34788.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33394.06 37991.59 30995.59 37897.63 28989.87 34788.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
Anonymous20240521195.28 20894.49 22297.67 16499.00 11493.75 25798.70 16097.04 33790.66 33296.49 19398.80 12878.13 35099.83 6996.21 15495.36 24999.44 107
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25793.41 27197.09 33695.99 36893.32 24892.47 32595.73 35678.06 35199.53 15394.59 20982.98 37698.62 208
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LF4IMVS93.14 31292.79 30594.20 34195.88 34788.67 36097.66 29297.07 33493.81 21891.71 33797.65 24577.96 35298.81 25591.47 29791.92 29995.12 366
test-mter94.08 29093.51 28895.80 29096.77 30589.70 34196.91 34695.21 37892.89 26894.83 23395.72 35877.69 35398.97 22793.06 25498.50 15698.72 196
USDC93.33 30592.71 30695.21 31096.83 30390.83 32396.91 34697.50 30593.84 21590.72 34698.14 20177.69 35398.82 25489.51 33293.21 28695.97 352
test_040291.32 32790.27 33394.48 33696.60 31691.12 31698.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
K. test v392.55 31891.91 32194.48 33695.64 35389.24 34999.07 6294.88 38294.04 20286.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
TDRefinement91.06 33289.68 33795.21 31085.35 40691.49 31198.51 19397.07 33491.47 31188.83 36497.84 22777.31 35799.09 21392.79 26477.98 39495.04 369
test250694.44 26493.91 26196.04 27899.02 11188.99 35599.06 6379.47 41396.96 6798.36 9899.26 5777.21 35899.52 15696.78 13899.04 12799.59 79
testing9194.98 22794.25 23697.20 19197.94 22093.41 27198.00 25697.58 29294.99 16495.45 21896.04 34777.20 35999.42 17494.97 19596.02 24098.78 193
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36796.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36498.94 9397.56 29588.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
testing1195.00 22394.28 23497.16 19697.96 21993.36 27698.09 24697.06 33694.94 17095.33 22296.15 34376.89 36299.40 17595.77 17096.30 22698.72 196
tt080594.54 25393.85 26796.63 23497.98 21793.06 28898.77 14197.84 27993.67 23393.80 28098.04 20876.88 36398.96 23194.79 20192.86 28997.86 239
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 38097.16 33397.33 31989.47 35483.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
testing9994.83 23594.08 24797.07 20397.94 22093.13 28498.10 24597.17 32894.86 17295.34 21996.00 35076.31 36599.40 17595.08 19295.90 24198.68 201
lessismore_v094.45 33994.93 37088.44 36591.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
TinyColmap92.31 32191.53 32294.65 33196.92 29689.75 33996.92 34496.68 35790.45 33789.62 35597.85 22676.06 36798.81 25586.74 35592.51 29395.41 361
pmmvs691.77 32490.63 32995.17 31294.69 37591.24 31598.67 16797.92 27486.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
MIMVSNet93.26 30792.21 31696.41 26297.73 23693.13 28495.65 37797.03 33891.27 32394.04 26896.06 34675.33 36997.19 36386.56 35696.23 23598.92 181
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34294.08 37889.83 33897.13 33598.67 12893.69 22985.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
LFMVS95.86 17494.98 20198.47 9598.87 12896.32 13898.84 12196.02 36793.40 24598.62 8399.20 6774.99 37199.63 13497.72 8497.20 19899.46 104
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20380.97 39181.57 39097.75 23574.75 37298.61 27089.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ETVMVS94.50 25893.44 29197.68 16398.18 19995.35 18598.19 23197.11 33093.73 22396.40 19795.39 36374.53 37398.84 25091.10 30296.31 22598.84 187
FMVSNet591.81 32390.92 32694.49 33597.21 27792.09 29898.00 25697.55 30089.31 35890.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
testgi93.06 31392.45 31394.88 32296.43 32689.90 33798.75 14297.54 30195.60 13091.63 33997.91 21974.46 37597.02 36586.10 35993.67 27297.72 244
VDD-MVS95.82 17795.23 18897.61 17098.84 13293.98 24898.68 16497.40 31695.02 16397.95 12199.34 4874.37 37699.78 10198.64 2596.80 20899.08 162
test_fmvs1_n95.90 17295.99 15495.63 29698.67 14888.32 36799.26 2898.22 22596.40 9499.67 1499.26 5773.91 37799.70 11999.02 1899.50 9898.87 184
FMVSNet193.19 31092.07 31796.56 24497.54 25295.00 20198.82 12598.18 23390.38 33992.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
VDDNet95.36 20394.53 22097.86 14498.10 20695.13 19798.85 11797.75 28390.46 33698.36 9899.39 3273.27 37999.64 13197.98 6696.58 21598.81 189
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28193.38 27498.74 14598.57 15191.21 32693.81 27998.58 15772.85 38098.77 25995.05 19393.93 26898.77 195
testing22294.12 28693.03 30097.37 18698.02 21294.66 21897.94 26296.65 36094.63 18295.78 21495.76 35371.49 38198.92 23891.17 30195.88 24298.52 215
DeepMVS_CXcopyleft86.78 37297.09 28872.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
test_fmvs293.43 30193.58 28492.95 35696.97 29383.91 38399.19 4497.24 32595.74 12395.20 22498.27 19169.65 38398.72 26296.26 15193.73 27196.24 344
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34797.91 26596.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34497.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
myMVS_eth3d92.73 31692.01 31894.89 32197.39 26790.94 31997.91 26597.46 30893.16 25693.42 29495.37 36468.09 38696.12 38088.34 34596.99 20297.60 248
testing393.19 31092.48 31295.30 30998.07 20792.27 29498.64 17197.17 32893.94 21193.98 27197.04 29767.97 38796.01 38288.40 34497.14 19997.63 247
EG-PatchMatch MVS91.13 33190.12 33494.17 34394.73 37489.00 35498.13 24097.81 28089.22 35985.32 38496.46 33267.71 38898.42 29187.89 35193.82 27095.08 368
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31798.01 25497.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
test_vis1_n95.47 19295.13 19296.49 25297.77 23190.41 33199.27 2798.11 24896.58 8599.66 1599.18 7367.00 39099.62 13799.21 1599.40 11399.44 107
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37796.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35894.92 38498.30 21584.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
test_vis1_rt91.29 32890.65 32893.19 35497.45 26186.25 37998.57 18590.90 40493.30 25086.94 37393.59 38262.07 39699.11 20897.48 10595.58 24794.22 377
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 27995.49 37593.81 21887.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32286.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6596.61 36192.79 27288.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28696.33 36589.41 35785.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31988.66 342
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3199.80 2399.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3199.80 2399.86 8
eth-test20.00 419
eth-test0.00 419
IU-MVS99.71 1999.23 798.64 13695.28 14899.63 1898.35 4999.81 1699.83 13
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3999.81 1699.84 12
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
MTGPAbinary98.74 108
MTMP98.89 10394.14 391
gm-plane-assit95.88 34787.47 37489.74 35096.94 31099.19 19693.32 248
test9_res96.39 14999.57 8499.69 56
agg_prior295.87 16599.57 8499.68 61
agg_prior99.30 6898.38 3598.72 11397.57 15099.81 81
test_prior498.01 6197.86 274
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
旧先验297.57 30091.30 32098.67 7799.80 8895.70 174
新几何297.64 294
无先验97.58 29998.72 11391.38 31499.87 5893.36 24799.60 77
原ACMM297.67 291
testdata299.89 4791.65 295
testdata197.32 31896.34 97
plane_prior797.42 26394.63 221
plane_prior598.56 15599.03 22096.07 15594.27 25396.92 271
plane_prior498.28 188
plane_prior394.61 22497.02 6495.34 219
plane_prior298.80 13497.28 45
plane_prior197.37 269
plane_prior94.60 22698.44 20196.74 7894.22 255
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 131
door94.64 385
HQP5-MVS94.25 241
HQP-NCC97.20 27898.05 25096.43 9194.45 243
ACMP_Plane97.20 27898.05 25096.43 9194.45 243
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23196.87 282
HQP3-MVS98.46 18094.18 257
NP-MVS97.28 27294.51 22997.73 236
ACMMP++_ref92.97 287
ACMMP++93.61 276