This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
OPU-MVS99.37 2099.24 8899.05 1099.02 5499.16 5897.81 299.37 15397.24 7699.73 4399.70 45
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9098.43 3299.10 4398.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4899.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5498.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 45
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 102
MSP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6498.58 14197.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 48
test072699.72 1299.25 299.06 4898.88 4997.62 1199.56 599.50 497.42 6
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16598.91 4397.58 1499.54 799.46 997.10 999.94 397.64 5799.84 899.83 5
CNVR-MVS98.78 698.56 999.45 1499.32 6498.87 1598.47 15798.81 7697.72 698.76 4999.16 5897.05 1099.78 9198.06 3399.66 5799.69 48
segment_acmp96.85 11
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 16698.68 11597.04 4698.52 6398.80 10696.78 1299.83 5597.93 3799.61 6499.74 33
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
NCCC98.61 1798.35 2499.38 1799.28 7898.61 2398.45 15898.76 9497.82 598.45 6798.93 9396.65 1499.83 5597.38 7399.41 9399.71 43
SD-MVS98.64 1498.68 598.53 8999.33 6198.36 4198.90 7498.85 6497.28 2999.72 399.39 1496.63 1597.60 31398.17 2899.85 399.64 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS98.34 4698.06 4699.18 4799.15 9798.12 5799.04 5099.09 2093.32 20498.83 4599.10 6696.54 1699.83 5597.70 5499.76 3299.59 77
SMA-MVS98.58 2398.25 3599.56 599.51 3899.04 1198.95 6898.80 8693.67 19199.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
MSLP-MVS++98.56 2898.57 898.55 8599.26 8196.80 10598.71 11899.05 2497.28 2998.84 4399.28 3796.47 1899.40 15098.52 1399.70 5199.47 95
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4799.14 3698.66 12696.84 5199.56 599.31 3296.34 1999.70 11098.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 4898.38 3498.21 19098.52 15397.95 399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
SF-MVS98.59 2098.32 3099.41 1699.54 3598.71 1899.04 5098.81 7695.12 12399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
TSAR-MVS + GP.98.38 4198.24 3898.81 7299.22 9097.25 9098.11 20998.29 19997.19 3898.99 3599.02 7796.22 2099.67 11798.52 1398.56 13199.51 86
TEST999.31 6698.50 2897.92 22398.73 10292.63 22797.74 10798.68 11796.20 2399.80 75
train_agg97.97 5597.52 6999.33 2799.31 6698.50 2897.92 22398.73 10292.98 21697.74 10798.68 11796.20 2399.80 7596.59 10899.57 7199.68 54
test_899.29 7498.44 3097.89 22998.72 10492.98 21697.70 11098.66 12096.20 2399.80 75
agg_prior197.95 5997.51 7199.28 3599.30 7198.38 3497.81 23698.72 10493.16 21097.57 12198.66 12096.14 2699.81 6696.63 10799.56 7699.66 62
Regformer-298.69 1198.52 1299.19 4399.35 5698.01 6198.37 16998.81 7697.48 1899.21 2199.21 4596.13 2799.80 7598.40 2299.73 4399.75 28
DeepPCF-MVS96.37 297.93 6198.48 1796.30 23899.00 10589.54 30497.43 25998.87 5598.16 299.26 1899.38 2196.12 2899.64 12198.30 2699.77 2699.72 39
Regformer-198.66 1298.51 1399.12 5599.35 5697.81 6998.37 16998.76 9497.49 1799.20 2299.21 4596.08 2999.79 8798.42 2099.73 4399.75 28
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4599.23 2198.96 3296.10 7998.94 3699.17 5396.06 3099.92 2197.62 5899.78 2399.75 28
#test#98.54 3198.27 3399.32 2899.72 1298.29 4598.98 6398.96 3295.65 9598.94 3699.17 5396.06 3099.92 2197.21 7899.78 2399.75 28
9.1498.06 4699.47 4598.71 11898.82 7094.36 15699.16 2499.29 3696.05 3299.81 6697.00 8399.71 50
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6699.34 1198.87 5595.96 8298.60 6099.13 6196.05 3299.94 397.77 4899.86 199.77 20
DVP-MVS98.74 898.55 1099.29 3199.75 398.23 4899.26 1898.88 4997.52 1599.41 1198.78 10896.00 3499.79 8797.79 4799.59 6899.85 2
MVS_111021_HR98.47 3698.34 2698.88 7099.22 9097.32 8397.91 22599.58 397.20 3798.33 7499.00 8295.99 3599.64 12198.05 3599.76 3299.69 48
test_prior398.22 5397.90 5599.19 4399.31 6698.22 4997.80 23798.84 6596.12 7797.89 10198.69 11595.96 3699.70 11096.89 9299.60 6599.65 64
test_prior297.80 23796.12 7797.89 10198.69 11595.96 3696.89 9299.60 65
CDPH-MVS97.94 6097.49 7299.28 3599.47 4598.44 3097.91 22598.67 12392.57 23198.77 4898.85 10095.93 3899.72 10495.56 14599.69 5299.68 54
region2R98.61 1798.38 2099.29 3199.74 798.16 5499.23 2198.93 3796.15 7498.94 3699.17 5395.91 3999.94 397.55 6699.79 1999.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6499.20 4995.90 4099.89 3597.85 4399.74 4199.78 13
X-MVStestdata94.06 25792.30 27699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6443.50 34795.90 4099.89 3597.85 4399.74 4199.78 13
Regformer-498.64 1498.53 1198.99 6199.43 5397.37 8298.40 16798.79 8897.46 1999.09 2899.31 3295.86 4299.80 7598.64 399.76 3299.79 10
Regformer-398.59 2098.50 1498.86 7199.43 5397.05 9698.40 16798.68 11597.43 2099.06 2999.31 3295.80 4399.77 9698.62 599.76 3299.78 13
HPM-MVS++copyleft98.58 2398.25 3599.55 699.50 4099.08 998.72 11798.66 12697.51 1698.15 7798.83 10395.70 4499.92 2197.53 6899.67 5499.66 62
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5599.23 2198.95 3496.10 7998.93 4099.19 5295.70 4499.94 397.62 5899.79 1999.78 13
旧先验199.29 7497.48 7898.70 11199.09 7195.56 4699.47 8699.61 72
PGM-MVS98.49 3498.23 3999.27 3899.72 1298.08 5898.99 6099.49 595.43 10499.03 3099.32 3095.56 4699.94 396.80 10299.77 2699.78 13
APD-MVScopyleft98.35 4498.00 5099.42 1599.51 3898.72 1798.80 10098.82 7094.52 15199.23 2099.25 4095.54 4899.80 7596.52 11199.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj98.33 4897.95 5299.47 1199.49 4498.70 1998.83 9098.86 6195.48 10198.91 4299.17 5395.48 4999.93 1595.80 13599.53 8199.76 26
ZNCC-MVS98.49 3498.20 4199.35 2299.73 1198.39 3399.19 3198.86 6195.77 8898.31 7699.10 6695.46 5099.93 1597.57 6599.81 1099.74 33
ETH3D-3000-0.198.35 4498.00 5099.38 1799.47 4598.68 2098.67 12898.84 6594.66 14699.11 2699.25 4095.46 5099.81 6696.80 10299.73 4399.63 70
mPP-MVS98.51 3398.26 3499.25 3999.75 398.04 5999.28 1698.81 7696.24 7098.35 7399.23 4295.46 5099.94 397.42 7199.81 1099.77 20
EI-MVSNet-Vis-set98.47 3698.39 1998.69 7699.46 4896.49 12098.30 18198.69 11297.21 3698.84 4399.36 2695.41 5399.78 9198.62 599.65 5899.80 9
ETV-MVS97.96 5697.81 5698.40 10198.42 14797.27 8698.73 11398.55 14696.84 5198.38 7197.44 22995.39 5499.35 15497.62 5898.89 11498.58 181
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5299.09 4498.82 7096.58 6199.10 2799.32 3095.39 5499.82 6297.70 5499.63 6199.72 39
ACMMP_NAP98.61 1798.30 3199.55 699.62 3098.95 1398.82 9398.81 7695.80 8799.16 2499.47 895.37 5699.92 2197.89 4199.75 3899.79 10
CSCG97.85 6497.74 5998.20 11399.67 2695.16 17799.22 2599.32 793.04 21397.02 13798.92 9595.36 5799.91 3097.43 7099.64 6099.52 82
DP-MVS Recon97.86 6397.46 7499.06 5999.53 3698.35 4298.33 17398.89 4692.62 22898.05 8298.94 9295.34 5899.65 11996.04 12699.42 9299.19 129
APD-MVS_3200maxsize98.53 3298.33 2999.15 5299.50 4097.92 6599.15 3598.81 7696.24 7099.20 2299.37 2295.30 5999.80 7597.73 5099.67 5499.72 39
GST-MVS98.43 3898.12 4499.34 2399.72 1298.38 3499.09 4498.82 7095.71 9198.73 5299.06 7595.27 6099.93 1597.07 8299.63 6199.72 39
DeepC-MVS_fast96.70 198.55 2998.34 2699.18 4799.25 8298.04 5998.50 15498.78 9097.72 698.92 4199.28 3795.27 6099.82 6297.55 6699.77 2699.69 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss98.31 5097.92 5499.49 999.72 1298.88 1498.43 16398.78 9094.10 16297.69 11199.42 1295.25 6299.92 2198.09 3299.80 1799.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.41 3998.34 2698.61 8199.45 5196.32 12898.28 18498.68 11597.17 3998.74 5099.37 2295.25 6299.79 8798.57 799.54 8099.73 36
原ACMM198.65 7999.32 6496.62 11198.67 12393.27 20797.81 10398.97 8495.18 6499.83 5593.84 19699.46 8999.50 88
HPM-MVS_fast98.38 4198.13 4399.12 5599.75 397.86 6699.44 498.82 7094.46 15498.94 3699.20 4995.16 6599.74 10297.58 6299.85 399.77 20
test1299.18 4799.16 9598.19 5198.53 15198.07 8195.13 6699.72 10499.56 7699.63 70
HPM-MVScopyleft98.36 4398.10 4599.13 5399.74 797.82 6899.53 198.80 8694.63 14798.61 5998.97 8495.13 6699.77 9697.65 5699.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS97.55 8396.99 9599.23 4299.04 10398.55 2597.17 28198.35 18594.85 13797.93 9898.58 12895.07 6899.71 10992.60 23099.34 9899.43 103
MVS_111021_LR98.34 4698.23 3998.67 7899.27 7996.90 10297.95 22299.58 397.14 4198.44 6899.01 8195.03 6999.62 12697.91 3899.75 3899.50 88
EIA-MVS97.75 6897.58 6498.27 10798.38 14996.44 12299.01 5698.60 13495.88 8497.26 12697.53 22394.97 7099.33 15697.38 7399.20 10399.05 146
DELS-MVS98.40 4098.20 4198.99 6199.00 10597.66 7197.75 24198.89 4697.71 898.33 7498.97 8494.97 7099.88 4398.42 2099.76 3299.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft95.07 497.20 10396.78 10498.44 9699.29 7496.31 13098.14 20498.76 9492.41 23796.39 16898.31 15894.92 7299.78 9194.06 19198.77 12299.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS98.55 2998.25 3599.46 1299.76 198.64 2198.55 14798.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3299.46 1299.76 198.64 2198.90 7498.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
112197.37 9596.77 10899.16 5099.34 5897.99 6498.19 19798.68 11590.14 29598.01 9098.97 8494.80 7599.87 4493.36 21099.46 8999.61 72
Test By Simon94.64 76
ETH3D cwj APD-0.1697.96 5697.52 6999.29 3199.05 10198.52 2698.33 17398.68 11593.18 20898.68 5499.13 6194.62 7799.83 5596.45 11399.55 7999.52 82
新几何199.16 5099.34 5898.01 6198.69 11290.06 29698.13 7898.95 9194.60 7899.89 3591.97 25099.47 8699.59 77
CS-MVS97.81 6597.61 6298.41 10098.52 14497.15 9499.09 4498.55 14696.18 7397.61 11897.20 24494.59 7999.39 15197.62 5899.10 10798.70 169
MP-MVScopyleft98.33 4898.01 4999.28 3599.75 398.18 5299.22 2598.79 8896.13 7697.92 9999.23 4294.54 8099.94 396.74 10699.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pcd_1.5k_mvsjas7.88 32510.50 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35394.51 810.00 3540.00 3510.00 3510.00 350
PS-MVSNAJss96.43 13096.26 12696.92 19095.84 30495.08 18299.16 3498.50 16195.87 8593.84 23698.34 15594.51 8198.61 23196.88 9593.45 23997.06 222
PS-MVSNAJ97.73 6997.77 5797.62 15298.68 13295.58 16097.34 26898.51 15697.29 2898.66 5697.88 19194.51 8199.90 3397.87 4299.17 10597.39 213
API-MVS97.41 9297.25 8397.91 13098.70 12996.80 10598.82 9398.69 11294.53 14998.11 7998.28 16094.50 8499.57 13094.12 18899.49 8497.37 215
ACMMPcopyleft98.23 5297.95 5299.09 5799.74 797.62 7499.03 5299.41 695.98 8197.60 12099.36 2694.45 8599.93 1597.14 7998.85 11899.70 45
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testdata98.26 10999.20 9395.36 17098.68 11591.89 25398.60 6099.10 6694.44 8699.82 6294.27 18399.44 9199.58 79
xiu_mvs_v2_base97.66 7397.70 6097.56 15698.61 13895.46 16797.44 25798.46 16697.15 4098.65 5798.15 17194.33 8799.80 7597.84 4598.66 12797.41 211
PAPR96.84 11796.24 12798.65 7998.72 12896.92 10197.36 26698.57 14293.33 20396.67 15297.57 22094.30 8899.56 13291.05 26598.59 12999.47 95
PAPM_NR97.46 8597.11 8898.50 9199.50 4096.41 12498.63 13398.60 13495.18 11997.06 13598.06 17794.26 8999.57 13093.80 19898.87 11799.52 82
test22299.23 8997.17 9397.40 26098.66 12688.68 31098.05 8298.96 8994.14 9099.53 8199.61 72
EPP-MVSNet97.46 8597.28 8297.99 12698.64 13595.38 16999.33 1398.31 19193.61 19497.19 12899.07 7494.05 9199.23 16396.89 9298.43 13999.37 107
F-COLMAP97.09 10996.80 10197.97 12799.45 5194.95 19098.55 14798.62 13393.02 21496.17 17398.58 12894.01 9299.81 6693.95 19398.90 11399.14 137
TAPA-MVS93.98 795.35 17894.56 19297.74 14199.13 9894.83 19598.33 17398.64 13186.62 31796.29 17098.61 12394.00 9399.29 15880.00 33199.41 9399.09 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640097.59 7997.01 9399.34 2399.40 5598.56 2498.20 19398.81 7691.63 26198.44 6898.85 10093.98 9499.82 6294.11 18999.69 5299.64 67
MG-MVS97.81 6597.60 6398.44 9699.12 9995.97 14397.75 24198.78 9096.89 5098.46 6499.22 4493.90 9599.68 11694.81 16699.52 8399.67 58
CDS-MVSNet96.99 11196.69 11097.90 13198.05 17995.98 13898.20 19398.33 18893.67 19196.95 13898.49 13693.54 9698.42 25295.24 15797.74 16199.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS97.02 11096.79 10397.70 14598.06 17895.31 17498.52 14998.31 19193.95 17197.05 13698.61 12393.49 9798.52 24195.33 15197.81 15799.29 119
abl_698.30 5198.03 4899.13 5399.56 3497.76 7099.13 3998.82 7096.14 7599.26 1899.37 2293.33 9899.93 1596.96 8799.67 5499.69 48
CNLPA97.45 8897.03 9298.73 7499.05 10197.44 8198.07 21198.53 15195.32 11296.80 14998.53 13293.32 9999.72 10494.31 18299.31 10099.02 148
OMC-MVS97.55 8397.34 8098.20 11399.33 6195.92 15098.28 18498.59 13695.52 10097.97 9399.10 6693.28 10099.49 14195.09 15998.88 11599.19 129
UA-Net97.96 5697.62 6198.98 6398.86 11697.47 7998.89 7899.08 2196.67 5898.72 5399.54 193.15 10199.81 6694.87 16298.83 11999.65 64
CPTT-MVS97.72 7097.32 8198.92 6799.64 2897.10 9599.12 4198.81 7692.34 23998.09 8099.08 7393.01 10299.92 2196.06 12599.77 2699.75 28
114514_t96.93 11396.27 12598.92 6799.50 4097.63 7398.85 8698.90 4484.80 32897.77 10499.11 6492.84 10399.66 11894.85 16399.77 2699.47 95
PVSNet_Blended_VisFu97.70 7197.46 7498.44 9699.27 7995.91 15198.63 13399.16 1794.48 15397.67 11298.88 9892.80 10499.91 3097.11 8099.12 10699.50 88
PVSNet_BlendedMVS96.73 12096.60 11497.12 17599.25 8295.35 17298.26 18799.26 894.28 15797.94 9697.46 22692.74 10599.81 6696.88 9593.32 24296.20 305
PVSNet_Blended97.38 9497.12 8798.14 11699.25 8295.35 17297.28 27399.26 893.13 21197.94 9698.21 16792.74 10599.81 6696.88 9599.40 9599.27 121
MVS_Test97.28 9897.00 9498.13 11898.33 15695.97 14398.74 10998.07 23694.27 15898.44 6898.07 17692.48 10799.26 15996.43 11598.19 14699.16 134
miper_enhance_ethall95.10 19294.75 18496.12 24697.53 21493.73 23596.61 31298.08 23492.20 24793.89 23296.65 28892.44 10898.30 27294.21 18591.16 26796.34 299
MVSFormer97.57 8197.49 7297.84 13398.07 17695.76 15699.47 298.40 17794.98 13098.79 4698.83 10392.34 10998.41 25996.91 8999.59 6899.34 108
lupinMVS97.44 8997.22 8598.12 12098.07 17695.76 15697.68 24697.76 25694.50 15298.79 4698.61 12392.34 10999.30 15797.58 6299.59 6899.31 114
CHOSEN 280x42097.18 10497.18 8697.20 16998.81 12093.27 25095.78 32499.15 1895.25 11696.79 15098.11 17492.29 11199.07 18498.56 899.85 399.25 123
canonicalmvs97.67 7297.23 8498.98 6398.70 12998.38 3499.34 1198.39 17996.76 5497.67 11297.40 23292.26 11299.49 14198.28 2796.28 19899.08 144
IterMVS-LS95.46 16795.21 16496.22 24198.12 17393.72 23698.32 17898.13 22493.71 18494.26 21597.31 23692.24 11398.10 28694.63 16890.12 27896.84 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 14695.83 13896.36 23497.93 18593.70 23798.12 20798.27 20093.70 18695.07 18599.02 7792.23 11498.54 23994.68 16793.46 23796.84 244
WTY-MVS97.37 9596.92 9898.72 7598.86 11696.89 10498.31 17998.71 10895.26 11597.67 11298.56 13192.21 11599.78 9195.89 13096.85 17799.48 93
Effi-MVS+97.12 10796.69 11098.39 10298.19 16796.72 10997.37 26498.43 17393.71 18497.65 11598.02 17992.20 11699.25 16096.87 9897.79 15899.19 129
1112_ss96.63 12296.00 13498.50 9198.56 14096.37 12598.18 20198.10 22992.92 21994.84 19198.43 14192.14 11799.58 12994.35 18096.51 18899.56 81
LS3D97.16 10596.66 11398.68 7798.53 14397.19 9298.93 7198.90 4492.83 22495.99 17799.37 2292.12 11899.87 4493.67 20299.57 7198.97 153
nrg03096.28 13795.72 14097.96 12996.90 25898.15 5599.39 598.31 19195.47 10294.42 20898.35 15192.09 11998.69 22497.50 6989.05 29497.04 223
mvs_anonymous96.70 12196.53 11897.18 17198.19 16793.78 23098.31 17998.19 21094.01 16794.47 20298.27 16392.08 12098.46 24697.39 7297.91 15399.31 114
FC-MVSNet-test96.42 13196.05 13197.53 15896.95 25397.27 8699.36 899.23 1295.83 8693.93 23098.37 14992.00 12198.32 26896.02 12792.72 25097.00 225
FIs96.51 12896.12 13097.67 14897.13 24497.54 7799.36 899.22 1495.89 8394.03 22898.35 15191.98 12298.44 24996.40 11692.76 24997.01 224
sss97.39 9396.98 9698.61 8198.60 13996.61 11398.22 18998.93 3793.97 17098.01 9098.48 13791.98 12299.85 4996.45 11398.15 14799.39 105
miper_ehance_all_eth95.01 19694.69 18795.97 25097.70 19993.31 24997.02 28898.07 23692.23 24493.51 24896.96 27091.85 12498.15 28293.68 20091.16 26796.44 296
DP-MVS96.59 12595.93 13598.57 8399.34 5896.19 13498.70 12298.39 17989.45 30494.52 20099.35 2891.85 12499.85 4992.89 22698.88 11599.68 54
Test_1112_low_res96.34 13495.66 14798.36 10398.56 14095.94 14697.71 24398.07 23692.10 24894.79 19597.29 23791.75 12699.56 13294.17 18696.50 18999.58 79
UniMVSNet_NR-MVSNet95.71 15895.15 16697.40 16496.84 26196.97 9898.74 10999.24 1095.16 12093.88 23397.72 20791.68 12798.31 27095.81 13387.25 31496.92 230
UniMVSNet (Re)95.78 15595.19 16597.58 15496.99 25297.47 7998.79 10499.18 1695.60 9693.92 23197.04 26191.68 12798.48 24395.80 13587.66 30996.79 248
HY-MVS93.96 896.82 11896.23 12898.57 8398.46 14697.00 9798.14 20498.21 20793.95 17196.72 15197.99 18391.58 12999.76 9894.51 17696.54 18798.95 156
xiu_mvs_v1_base_debu97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base_debi97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
MAR-MVS96.91 11496.40 12198.45 9598.69 13196.90 10298.66 13198.68 11592.40 23897.07 13497.96 18491.54 13399.75 10093.68 20098.92 11298.69 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet98.05 5497.76 5898.90 6998.73 12497.27 8698.35 17198.78 9097.37 2697.72 10998.96 8991.53 13499.92 2198.79 299.65 5899.51 86
cl_fuxian94.79 20994.43 20295.89 25597.75 19493.12 25697.16 28298.03 24392.23 24493.46 25197.05 26091.39 13598.01 29493.58 20589.21 29296.53 283
EPNet97.28 9896.87 10098.51 9094.98 32096.14 13598.90 7497.02 30098.28 195.99 17799.11 6491.36 13699.89 3596.98 8499.19 10499.50 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.64 7497.44 7698.25 11098.35 15196.20 13299.00 5898.32 18996.33 6998.03 8599.17 5391.35 13799.16 16998.10 3198.29 14599.39 105
131496.25 13995.73 13997.79 13697.13 24495.55 16498.19 19798.59 13693.47 19892.03 29197.82 20091.33 13899.49 14194.62 17098.44 13798.32 191
diffmvs97.58 8097.40 7898.13 11898.32 15895.81 15598.06 21298.37 18296.20 7298.74 5098.89 9791.31 13999.25 16098.16 2998.52 13299.34 108
PAPM94.95 20294.00 22497.78 13797.04 24995.65 15896.03 32098.25 20591.23 27794.19 22097.80 20291.27 14098.86 21282.61 32697.61 16598.84 162
casdiffmvs97.63 7597.41 7798.28 10698.33 15696.14 13598.82 9398.32 18996.38 6797.95 9499.21 4591.23 14199.23 16398.12 3098.37 14099.48 93
jason97.32 9797.08 9098.06 12397.45 22295.59 15997.87 23197.91 25194.79 13898.55 6298.83 10391.12 14299.23 16397.58 6299.60 6599.34 108
jason: jason.
IS-MVSNet97.22 10096.88 9998.25 11098.85 11896.36 12699.19 3197.97 24695.39 10697.23 12798.99 8391.11 14398.93 20194.60 17198.59 12999.47 95
PMMVS96.60 12396.33 12397.41 16297.90 18793.93 22697.35 26798.41 17592.84 22397.76 10597.45 22891.10 14499.20 16696.26 11997.91 15399.11 140
MVS94.67 21793.54 25298.08 12196.88 25996.56 11798.19 19798.50 16178.05 33792.69 27498.02 17991.07 14599.63 12490.09 27698.36 14298.04 196
Fast-Effi-MVS+96.28 13795.70 14498.03 12498.29 16095.97 14398.58 13998.25 20591.74 25695.29 18497.23 24191.03 14699.15 17292.90 22497.96 15298.97 153
Effi-MVS+-dtu96.29 13596.56 11595.51 26697.89 18890.22 29798.80 10098.10 22996.57 6296.45 16796.66 28690.81 14798.91 20395.72 13897.99 15197.40 212
mvs-test196.60 12396.68 11296.37 23397.89 18891.81 27098.56 14598.10 22996.57 6296.52 16397.94 18690.81 14799.45 14895.72 13898.01 15097.86 201
test_yl97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
DCV-MVSNet97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
alignmvs97.56 8297.07 9199.01 6098.66 13398.37 4098.83 9098.06 24096.74 5598.00 9297.65 21290.80 14999.48 14598.37 2396.56 18699.19 129
AdaColmapbinary97.15 10696.70 10998.48 9399.16 9596.69 11098.01 21798.89 4694.44 15596.83 14598.68 11790.69 15299.76 9894.36 17999.29 10198.98 152
cdsmvs_eth3d_5k23.98 32131.98 3220.00 3370.00 3560.00 3570.00 34898.59 1360.00 3520.00 35398.61 12390.60 1530.00 3540.00 3510.00 3510.00 350
eth_miper_zixun_eth94.68 21494.41 20395.47 26897.64 20291.71 27596.73 30998.07 23692.71 22693.64 24197.21 24390.54 15498.17 28193.38 20889.76 28296.54 281
DeepC-MVS95.98 397.88 6297.58 6498.77 7399.25 8296.93 10098.83 9098.75 9796.96 4996.89 14499.50 490.46 15599.87 4497.84 4599.76 3299.52 82
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H95.05 19594.46 19896.81 19496.86 26095.82 15499.24 2099.24 1093.87 17592.53 27996.84 28090.37 15698.24 27893.24 21387.93 30696.38 298
EPNet_dtu95.21 18694.95 17795.99 24896.17 29190.45 29598.16 20397.27 28896.77 5393.14 26298.33 15690.34 15798.42 25285.57 31798.81 12199.09 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VNet97.79 6797.40 7898.96 6598.88 11497.55 7698.63 13398.93 3796.74 5599.02 3198.84 10290.33 15899.83 5598.53 996.66 18299.50 88
MSDG95.93 14895.30 16297.83 13498.90 11295.36 17096.83 30598.37 18291.32 27294.43 20798.73 11490.27 15999.60 12790.05 27998.82 12098.52 182
LCM-MVSNet-Re95.22 18595.32 16094.91 28498.18 16987.85 32598.75 10695.66 32595.11 12488.96 31496.85 27990.26 16097.65 31195.65 14398.44 13799.22 125
Vis-MVSNet (Re-imp)96.87 11696.55 11697.83 13498.73 12495.46 16799.20 2998.30 19794.96 13296.60 15698.87 9990.05 16198.59 23593.67 20298.60 12899.46 99
miper_lstm_enhance94.33 23794.07 21995.11 27997.75 19490.97 28697.22 27698.03 24391.67 26092.76 27196.97 26890.03 16297.78 30992.51 23789.64 28496.56 278
baseline195.84 15295.12 16898.01 12598.49 14595.98 13898.73 11397.03 29895.37 10996.22 17198.19 16989.96 16399.16 16994.60 17187.48 31098.90 159
MDTV_nov1_ep13_2view84.26 33396.89 30090.97 28397.90 10089.89 16493.91 19499.18 133
our_test_393.65 26493.30 25994.69 29295.45 31589.68 30396.91 29597.65 26191.97 25191.66 29596.88 27689.67 16597.93 30188.02 30391.49 26296.48 293
tpmrst95.63 16295.69 14595.44 27097.54 21288.54 31896.97 29097.56 26593.50 19797.52 12396.93 27489.49 16699.16 16995.25 15696.42 19198.64 177
D2MVS95.18 18895.08 17095.48 26797.10 24692.07 26698.30 18199.13 1994.02 16692.90 26796.73 28389.48 16798.73 22394.48 17793.60 23695.65 317
sam_mvs189.45 16899.20 126
patchmatchnet-post95.10 32189.42 16998.89 207
3Dnovator+94.38 697.43 9096.78 10499.38 1797.83 19198.52 2699.37 798.71 10897.09 4592.99 26699.13 6189.36 17099.89 3596.97 8599.57 7199.71 43
NR-MVSNet94.98 20094.16 21497.44 16096.53 27697.22 9198.74 10998.95 3494.96 13289.25 31397.69 20889.32 17198.18 28094.59 17387.40 31296.92 230
HyFIR lowres test96.90 11596.49 11998.14 11699.33 6195.56 16297.38 26299.65 292.34 23997.61 11898.20 16889.29 17299.10 18196.97 8597.60 16699.77 20
3Dnovator94.51 597.46 8596.93 9799.07 5897.78 19397.64 7299.35 1099.06 2297.02 4793.75 24099.16 5889.25 17399.92 2197.22 7799.75 3899.64 67
PatchmatchNetpermissive95.71 15895.52 14996.29 23997.58 20790.72 29196.84 30497.52 27194.06 16397.08 13296.96 27089.24 17498.90 20692.03 24898.37 14099.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.40 15197.48 21688.34 32096.85 30397.29 28693.74 18197.48 12497.26 23889.18 17599.05 18591.92 25197.43 169
test_djsdf96.00 14595.69 14596.93 18895.72 30695.49 16699.47 298.40 17794.98 13094.58 19897.86 19389.16 17698.41 25996.91 8994.12 22396.88 239
cl-mvsnet194.52 22794.03 22095.99 24897.57 21193.38 24797.05 28697.94 24991.74 25692.81 26997.10 24889.12 17798.07 29092.60 23090.30 27696.53 283
QAPM96.29 13595.40 15198.96 6597.85 19097.60 7599.23 2198.93 3789.76 29993.11 26399.02 7789.11 17899.93 1591.99 24999.62 6399.34 108
pmmvs494.69 21293.99 22696.81 19495.74 30595.94 14697.40 26097.67 26090.42 29093.37 25397.59 21889.08 17998.20 27992.97 22291.67 26096.30 303
cl-mvsnet_94.51 22894.01 22396.02 24797.58 20793.40 24697.05 28697.96 24891.73 25892.76 27197.08 25489.06 18098.13 28492.61 22990.29 27796.52 286
sam_mvs88.99 181
Patchmatch-test94.42 23393.68 24796.63 20697.60 20591.76 27294.83 33297.49 27589.45 30494.14 22297.10 24888.99 18198.83 21585.37 32098.13 14899.29 119
Patchmatch-RL test91.49 28890.85 28893.41 30891.37 33684.40 33292.81 33895.93 32391.87 25487.25 32094.87 32288.99 18196.53 33192.54 23682.00 33099.30 117
Fast-Effi-MVS+-dtu95.87 15095.85 13795.91 25397.74 19791.74 27498.69 12498.15 22195.56 9894.92 18997.68 21188.98 18498.79 21993.19 21597.78 15997.20 219
BH-untuned95.95 14795.72 14096.65 20398.55 14292.26 26398.23 18897.79 25593.73 18294.62 19798.01 18188.97 18599.00 19293.04 22098.51 13398.68 172
XVG-OURS96.55 12796.41 12096.99 18198.75 12393.76 23197.50 25698.52 15395.67 9396.83 14599.30 3588.95 18699.53 13895.88 13196.26 19997.69 207
PVSNet91.96 1896.35 13396.15 12996.96 18599.17 9492.05 26796.08 31798.68 11593.69 18797.75 10697.80 20288.86 18799.69 11594.26 18499.01 10999.15 135
test_post31.83 35088.83 18898.91 203
v894.47 23193.77 24096.57 21596.36 28494.83 19599.05 4998.19 21091.92 25293.16 25996.97 26888.82 18998.48 24391.69 25687.79 30796.39 297
BH-w/o95.38 17495.08 17096.26 24098.34 15591.79 27197.70 24497.43 28092.87 22294.24 21797.22 24288.66 19098.84 21391.55 25897.70 16398.16 194
tpmvs94.60 22094.36 20595.33 27397.46 21888.60 31796.88 30197.68 25991.29 27493.80 23896.42 29788.58 19199.24 16291.06 26396.04 20698.17 193
DU-MVS95.42 17194.76 18397.40 16496.53 27696.97 9898.66 13198.99 2995.43 10493.88 23397.69 20888.57 19298.31 27095.81 13387.25 31496.92 230
Baseline_NR-MVSNet94.35 23693.81 23695.96 25196.20 28994.05 22498.61 13696.67 31691.44 26693.85 23597.60 21788.57 19298.14 28394.39 17886.93 31795.68 316
PCF-MVS93.45 1194.68 21493.43 25698.42 9998.62 13796.77 10795.48 32698.20 20984.63 32993.34 25498.32 15788.55 19499.81 6684.80 32298.96 11198.68 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14894.29 24093.76 24295.91 25396.10 29492.93 25898.58 13997.97 24692.59 23093.47 25096.95 27288.53 19598.32 26892.56 23487.06 31696.49 292
PatchMatch-RL96.59 12596.03 13398.27 10799.31 6696.51 11997.91 22599.06 2293.72 18396.92 14298.06 17788.50 19699.65 11991.77 25499.00 11098.66 175
V4294.78 21094.14 21696.70 20096.33 28695.22 17698.97 6498.09 23292.32 24194.31 21397.06 25888.39 19798.55 23892.90 22488.87 29896.34 299
v7n94.19 24693.43 25696.47 22595.90 30194.38 21599.26 1898.34 18791.99 25092.76 27197.13 24788.31 19898.52 24189.48 29187.70 30896.52 286
TranMVSNet+NR-MVSNet95.14 19094.48 19697.11 17696.45 28196.36 12699.03 5299.03 2595.04 12893.58 24397.93 18788.27 19998.03 29394.13 18786.90 31996.95 229
MVSTER96.06 14295.72 14097.08 17898.23 16295.93 14998.73 11398.27 20094.86 13695.07 18598.09 17588.21 20098.54 23996.59 10893.46 23796.79 248
RRT_MVS96.04 14395.53 14897.56 15697.07 24897.32 8398.57 14498.09 23295.15 12195.02 18798.44 14088.20 20198.58 23796.17 12293.09 24696.79 248
CHOSEN 1792x268897.12 10796.80 10198.08 12199.30 7194.56 20998.05 21399.71 193.57 19597.09 13198.91 9688.17 20299.89 3596.87 9899.56 7699.81 8
CR-MVSNet94.76 21194.15 21596.59 21197.00 25093.43 24394.96 32897.56 26592.46 23296.93 14096.24 30088.15 20397.88 30687.38 30696.65 18398.46 184
Patchmtry93.22 27292.35 27595.84 25796.77 26393.09 25794.66 33397.56 26587.37 31592.90 26796.24 30088.15 20397.90 30287.37 30790.10 27996.53 283
v1094.29 24093.55 25196.51 22296.39 28394.80 19798.99 6098.19 21091.35 27093.02 26596.99 26688.09 20598.41 25990.50 27288.41 30296.33 301
ppachtmachnet_test93.22 27292.63 27194.97 28395.45 31590.84 28796.88 30197.88 25290.60 28692.08 29097.26 23888.08 20697.86 30885.12 32190.33 27596.22 304
Vis-MVSNetpermissive97.42 9197.11 8898.34 10498.66 13396.23 13199.22 2599.00 2796.63 6098.04 8499.21 4588.05 20799.35 15496.01 12899.21 10299.45 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v114494.59 22293.92 22996.60 21096.21 28894.78 19998.59 13798.14 22391.86 25594.21 21997.02 26387.97 20898.41 25991.72 25589.57 28596.61 271
PatchT93.06 27691.97 28096.35 23596.69 26992.67 26094.48 33497.08 29486.62 31797.08 13292.23 33387.94 20997.90 30278.89 33596.69 18198.49 183
ADS-MVSNet294.58 22394.40 20495.11 27998.00 18088.74 31596.04 31897.30 28590.15 29396.47 16596.64 28987.89 21097.56 31590.08 27797.06 17399.02 148
ADS-MVSNet95.00 19794.45 20096.63 20698.00 18091.91 26996.04 31897.74 25890.15 29396.47 16596.64 28987.89 21098.96 19690.08 27797.06 17399.02 148
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18098.77 12293.76 23197.79 23998.50 16195.45 10396.94 13999.09 7187.87 21299.55 13796.76 10595.83 20897.74 204
test_post196.68 31030.43 35187.85 21398.69 22492.59 232
test-LLR95.10 19294.87 18095.80 25896.77 26389.70 30196.91 29595.21 32795.11 12494.83 19395.72 31487.71 21498.97 19393.06 21898.50 13498.72 167
test0.0.03 194.08 25593.51 25395.80 25895.53 31292.89 25997.38 26295.97 32195.11 12492.51 28196.66 28687.71 21496.94 32487.03 30893.67 23297.57 209
JIA-IIPM93.35 26792.49 27395.92 25296.48 28090.65 29295.01 32796.96 30285.93 32396.08 17487.33 33887.70 21698.78 22091.35 26095.58 21098.34 189
v2v48294.69 21294.03 22096.65 20396.17 29194.79 19898.67 12898.08 23492.72 22594.00 22997.16 24687.69 21798.45 24792.91 22388.87 29896.72 257
CVMVSNet95.43 17096.04 13293.57 30797.93 18583.62 33498.12 20798.59 13695.68 9296.56 15799.02 7787.51 21897.51 31793.56 20697.44 16899.60 75
WR-MVS95.15 18994.46 19897.22 16896.67 27196.45 12198.21 19098.81 7694.15 16093.16 25997.69 20887.51 21898.30 27295.29 15488.62 30096.90 237
anonymousdsp95.42 17194.91 17896.94 18795.10 31995.90 15299.14 3698.41 17593.75 17993.16 25997.46 22687.50 22098.41 25995.63 14494.03 22596.50 291
v14419294.39 23593.70 24596.48 22496.06 29694.35 21698.58 13998.16 22091.45 26594.33 21297.02 26387.50 22098.45 24791.08 26289.11 29396.63 269
baseline295.11 19194.52 19496.87 19196.65 27293.56 23998.27 18694.10 34193.45 19992.02 29297.43 23087.45 22299.19 16793.88 19597.41 17097.87 200
EU-MVSNet93.66 26294.14 21692.25 31695.96 30083.38 33598.52 14998.12 22594.69 14292.61 27698.13 17387.36 22396.39 33391.82 25290.00 28096.98 226
CP-MVSNet94.94 20494.30 20796.83 19396.72 26895.56 16299.11 4298.95 3493.89 17392.42 28497.90 18987.19 22498.12 28594.32 18188.21 30396.82 247
HQP_MVS96.14 14095.90 13696.85 19297.42 22394.60 20798.80 10098.56 14497.28 2995.34 18198.28 16087.09 22599.03 18996.07 12394.27 21596.92 230
plane_prior697.35 22894.61 20587.09 225
RPSCF94.87 20695.40 15193.26 31198.89 11382.06 33998.33 17398.06 24090.30 29296.56 15799.26 3987.09 22599.49 14193.82 19796.32 19498.24 192
RPMNet92.52 28191.17 28596.59 21197.00 25093.43 24394.96 32897.26 28982.27 33296.93 14092.12 33486.98 22897.88 30676.32 33996.65 18398.46 184
v119294.32 23893.58 25096.53 22096.10 29494.45 21198.50 15498.17 21891.54 26394.19 22097.06 25886.95 22998.43 25190.14 27589.57 28596.70 261
CANet_DTU96.96 11296.55 11698.21 11298.17 17196.07 13797.98 22098.21 20797.24 3597.13 13098.93 9386.88 23099.91 3095.00 16199.37 9798.66 175
HQP2-MVS86.75 231
HQP-MVS95.72 15795.40 15196.69 20197.20 23794.25 22098.05 21398.46 16696.43 6494.45 20397.73 20586.75 23198.96 19695.30 15294.18 21996.86 243
OpenMVScopyleft93.04 1395.83 15395.00 17398.32 10597.18 24197.32 8399.21 2898.97 3089.96 29791.14 29999.05 7686.64 23399.92 2193.38 20899.47 8697.73 205
cl-mvsnet294.68 21494.19 21196.13 24598.11 17493.60 23896.94 29298.31 19192.43 23693.32 25596.87 27886.51 23498.28 27694.10 19091.16 26796.51 289
ET-MVSNet_ETH3D94.13 25092.98 26497.58 15498.22 16396.20 13297.31 27195.37 32694.53 14979.56 33597.63 21686.51 23497.53 31696.91 8990.74 27299.02 148
YYNet190.70 29689.39 29894.62 29594.79 32490.65 29297.20 27797.46 27687.54 31472.54 34095.74 31186.51 23496.66 32986.00 31486.76 32196.54 281
MDA-MVSNet_test_wron90.71 29589.38 29994.68 29394.83 32390.78 29097.19 27897.46 27687.60 31372.41 34195.72 31486.51 23496.71 32885.92 31586.80 32096.56 278
v192192094.20 24593.47 25596.40 23295.98 29994.08 22398.52 14998.15 22191.33 27194.25 21697.20 24486.41 23898.42 25290.04 28089.39 29096.69 266
COLMAP_ROBcopyleft93.27 1295.33 18094.87 18096.71 19899.29 7493.24 25298.58 13998.11 22789.92 29893.57 24499.10 6686.37 23999.79 8790.78 26898.10 14997.09 220
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVP-Stereo94.28 24293.92 22995.35 27294.95 32192.60 26197.97 22197.65 26191.61 26290.68 30497.09 25286.32 24098.42 25289.70 28699.34 9895.02 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CLD-MVS95.62 16395.34 15796.46 22897.52 21593.75 23397.27 27498.46 16695.53 9994.42 20898.00 18286.21 24198.97 19396.25 12094.37 21396.66 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat193.36 26692.80 26795.07 28197.58 20787.97 32396.76 30797.86 25382.17 33393.53 24596.04 30886.13 24299.13 17489.24 29495.87 20798.10 195
PEN-MVS94.42 23393.73 24496.49 22396.28 28794.84 19399.17 3399.00 2793.51 19692.23 28797.83 19986.10 24397.90 30292.55 23586.92 31896.74 254
v124094.06 25793.29 26096.34 23696.03 29893.90 22798.44 16198.17 21891.18 28094.13 22397.01 26586.05 24498.42 25289.13 29689.50 28896.70 261
CostFormer94.95 20294.73 18595.60 26597.28 23189.06 31197.53 25596.89 30889.66 30196.82 14796.72 28486.05 24498.95 20095.53 14696.13 20498.79 164
ACMM93.85 995.69 16095.38 15596.61 20897.61 20493.84 22998.91 7398.44 17095.25 11694.28 21498.47 13886.04 24699.12 17595.50 14793.95 22896.87 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet93.98 25993.26 26196.14 24496.06 29694.39 21499.20 2998.86 6193.06 21291.78 29397.81 20185.87 24797.58 31490.53 27186.17 32396.46 295
VPA-MVSNet95.75 15695.11 16997.69 14697.24 23397.27 8698.94 7099.23 1295.13 12295.51 18097.32 23585.73 24898.91 20397.33 7589.55 28796.89 238
EPMVS94.99 19894.48 19696.52 22197.22 23591.75 27397.23 27591.66 34594.11 16197.28 12596.81 28185.70 24998.84 21393.04 22097.28 17198.97 153
TransMVSNet (Re)92.67 27991.51 28496.15 24396.58 27494.65 20098.90 7496.73 31290.86 28489.46 31297.86 19385.62 25098.09 28886.45 31181.12 33395.71 315
dp94.15 24993.90 23194.90 28597.31 23086.82 33096.97 29097.19 29291.22 27896.02 17696.61 29185.51 25199.02 19190.00 28194.30 21498.85 160
LPG-MVS_test95.62 16395.34 15796.47 22597.46 21893.54 24098.99 6098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
LGP-MVS_train96.47 22597.46 21893.54 24098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
PS-CasMVS94.67 21793.99 22696.71 19896.68 27095.26 17599.13 3999.03 2593.68 18992.33 28597.95 18585.35 25498.10 28693.59 20488.16 30596.79 248
ab-mvs96.42 13195.71 14398.55 8598.63 13696.75 10897.88 23098.74 9893.84 17696.54 16198.18 17085.34 25599.75 10095.93 12996.35 19299.15 135
N_pmnet87.12 30887.77 30685.17 32595.46 31461.92 34897.37 26470.66 35485.83 32488.73 31696.04 30885.33 25697.76 31080.02 33090.48 27495.84 313
OPM-MVS95.69 16095.33 15996.76 19696.16 29394.63 20298.43 16398.39 17996.64 5995.02 18798.78 10885.15 25799.05 18595.21 15894.20 21896.60 272
BH-RMVSNet95.92 14995.32 16097.69 14698.32 15894.64 20198.19 19797.45 27894.56 14896.03 17598.61 12385.02 25899.12 17590.68 27099.06 10899.30 117
DSMNet-mixed92.52 28192.58 27292.33 31594.15 32882.65 33798.30 18194.26 33889.08 30892.65 27595.73 31285.01 25995.76 33486.24 31297.76 16098.59 179
tfpnnormal93.66 26292.70 27096.55 21996.94 25495.94 14698.97 6499.19 1591.04 28291.38 29797.34 23384.94 26098.61 23185.45 31989.02 29695.11 321
LTVRE_ROB92.95 1594.60 22093.90 23196.68 20297.41 22694.42 21298.52 14998.59 13691.69 25991.21 29898.35 15184.87 26199.04 18891.06 26393.44 24096.60 272
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS95.20 18794.45 20097.46 15996.75 26696.56 11798.86 8598.65 13093.30 20693.27 25698.27 16384.85 26298.87 21094.82 16591.26 26696.96 227
thisisatest051595.61 16594.89 17997.76 13998.15 17295.15 17996.77 30694.41 33592.95 21897.18 12997.43 23084.78 26399.45 14894.63 16897.73 16298.68 172
AllTest95.24 18494.65 18896.99 18199.25 8293.21 25398.59 13798.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
TestCases96.99 18199.25 8293.21 25398.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
thres20095.25 18394.57 19197.28 16798.81 12094.92 19198.20 19397.11 29395.24 11896.54 16196.22 30484.58 26699.53 13887.93 30496.50 18997.39 213
pm-mvs193.94 26093.06 26396.59 21196.49 27995.16 17798.95 6898.03 24392.32 24191.08 30097.84 19684.54 26798.41 25992.16 24286.13 32596.19 306
ACMP93.49 1095.34 17994.98 17596.43 23097.67 20093.48 24298.73 11398.44 17094.94 13592.53 27998.53 13284.50 26899.14 17395.48 14894.00 22696.66 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres100view90095.38 17494.70 18697.41 16298.98 10894.92 19198.87 8396.90 30695.38 10796.61 15596.88 27684.29 26999.56 13288.11 30096.29 19597.76 202
thres600view795.49 16694.77 18297.67 14898.98 10895.02 18398.85 8696.90 30695.38 10796.63 15496.90 27584.29 26999.59 12888.65 29996.33 19398.40 186
FMVSNet394.97 20194.26 20897.11 17698.18 16996.62 11198.56 14598.26 20493.67 19194.09 22497.10 24884.25 27198.01 29492.08 24492.14 25396.70 261
tfpn200view995.32 18194.62 18997.43 16198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19597.76 202
thres40095.38 17494.62 18997.65 15198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19598.40 186
cascas94.63 21993.86 23496.93 18896.91 25794.27 21896.00 32198.51 15685.55 32694.54 19996.23 30284.20 27498.87 21095.80 13596.98 17697.66 208
tpm94.13 25093.80 23795.12 27896.50 27887.91 32497.44 25795.89 32492.62 22896.37 16996.30 29984.13 27598.30 27293.24 21391.66 26199.14 137
tttt051796.07 14195.51 15097.78 13798.41 14894.84 19399.28 1694.33 33794.26 15997.64 11698.64 12284.05 27699.47 14695.34 15097.60 16699.03 147
IterMVS94.09 25493.85 23594.80 29097.99 18290.35 29697.18 27998.12 22593.68 18992.46 28397.34 23384.05 27697.41 31892.51 23791.33 26396.62 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 25293.87 23394.85 28797.98 18490.56 29497.18 27998.11 22793.75 17992.58 27797.48 22583.97 27897.41 31892.48 23991.30 26496.58 274
SCA95.46 16795.13 16796.46 22897.67 20091.29 28297.33 26997.60 26394.68 14396.92 14297.10 24883.97 27898.89 20792.59 23298.32 14499.20 126
TR-MVS94.94 20494.20 21097.17 17297.75 19494.14 22297.59 25297.02 30092.28 24395.75 17997.64 21483.88 28098.96 19689.77 28396.15 20398.40 186
jajsoiax95.45 16995.03 17296.73 19795.42 31794.63 20299.14 3698.52 15395.74 8993.22 25798.36 15083.87 28198.65 22996.95 8894.04 22496.91 235
Anonymous2023120691.66 28791.10 28693.33 30994.02 33087.35 32798.58 13997.26 28990.48 28790.16 30696.31 29883.83 28296.53 33179.36 33389.90 28196.12 307
thisisatest053096.01 14495.36 15697.97 12798.38 14995.52 16598.88 8194.19 33994.04 16497.64 11698.31 15883.82 28399.46 14795.29 15497.70 16398.93 157
tpm294.19 24693.76 24295.46 26997.23 23489.04 31297.31 27196.85 31187.08 31696.21 17296.79 28283.75 28498.74 22292.43 24096.23 20198.59 179
mvs_tets95.41 17395.00 17396.65 20395.58 31094.42 21299.00 5898.55 14695.73 9093.21 25898.38 14883.45 28598.63 23097.09 8194.00 22696.91 235
OurMVSNet-221017-094.21 24494.00 22494.85 28795.60 30989.22 30998.89 7897.43 28095.29 11392.18 28898.52 13582.86 28698.59 23593.46 20791.76 25996.74 254
UGNet96.78 11996.30 12498.19 11598.24 16195.89 15398.88 8198.93 3797.39 2396.81 14897.84 19682.60 28799.90 3396.53 11099.49 8498.79 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs593.65 26492.97 26595.68 26295.49 31392.37 26298.20 19397.28 28789.66 30192.58 27797.26 23882.14 28898.09 28893.18 21690.95 27196.58 274
DWT-MVSNet_test94.82 20794.36 20596.20 24297.35 22890.79 28998.34 17296.57 31892.91 22095.33 18396.44 29682.00 28999.12 17594.52 17595.78 20998.70 169
ACMH92.88 1694.55 22593.95 22896.34 23697.63 20393.26 25198.81 9998.49 16593.43 20089.74 30998.53 13281.91 29099.08 18393.69 19993.30 24396.70 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF95.44 27097.42 22391.32 28197.50 27395.09 12793.59 24298.35 15181.70 29198.88 20989.71 28593.39 24196.12 307
Anonymous2023121194.10 25393.26 26196.61 20899.11 10094.28 21799.01 5698.88 4986.43 31992.81 26997.57 22081.66 29298.68 22794.83 16489.02 29696.88 239
GBi-Net94.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
test194.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
FMVSNet294.47 23193.61 24997.04 17998.21 16496.43 12398.79 10498.27 20092.46 23293.50 24997.09 25281.16 29398.00 29691.09 26191.93 25796.70 261
GA-MVS94.81 20894.03 22097.14 17397.15 24393.86 22896.76 30797.58 26494.00 16894.76 19697.04 26180.91 29698.48 24391.79 25396.25 20099.09 141
SixPastTwentyTwo93.34 26892.86 26694.75 29195.67 30789.41 30798.75 10696.67 31693.89 17390.15 30798.25 16580.87 29798.27 27790.90 26690.64 27396.57 276
ACMH+92.99 1494.30 23993.77 24095.88 25697.81 19292.04 26898.71 11898.37 18293.99 16990.60 30598.47 13880.86 29899.05 18592.75 22892.40 25296.55 280
gg-mvs-nofinetune92.21 28490.58 29097.13 17496.75 26695.09 18195.85 32289.40 34885.43 32794.50 20181.98 34180.80 29998.40 26592.16 24298.33 14397.88 199
test20.0390.89 29490.38 29192.43 31493.48 33188.14 32298.33 17397.56 26593.40 20187.96 31896.71 28580.69 30094.13 34079.15 33486.17 32395.01 325
VPNet94.99 19894.19 21197.40 16497.16 24296.57 11698.71 11898.97 3095.67 9394.84 19198.24 16680.36 30198.67 22896.46 11287.32 31396.96 227
GG-mvs-BLEND96.59 21196.34 28594.98 18796.51 31588.58 34993.10 26494.34 32580.34 30298.05 29289.53 28996.99 17596.74 254
PVSNet_088.72 1991.28 29090.03 29495.00 28297.99 18287.29 32894.84 33198.50 16192.06 24989.86 30895.19 31979.81 30399.39 15192.27 24169.79 34198.33 190
MS-PatchMatch93.84 26193.63 24894.46 29996.18 29089.45 30597.76 24098.27 20092.23 24492.13 28997.49 22479.50 30498.69 22489.75 28499.38 9695.25 319
MVS-HIRNet89.46 30388.40 30392.64 31397.58 20782.15 33894.16 33793.05 34475.73 33990.90 30182.52 34079.42 30598.33 26783.53 32498.68 12397.43 210
MDA-MVSNet-bldmvs89.97 30088.35 30494.83 28995.21 31891.34 27897.64 24997.51 27288.36 31171.17 34296.13 30679.22 30696.63 33083.65 32386.27 32296.52 286
XVG-ACMP-BASELINE94.54 22694.14 21695.75 26196.55 27591.65 27698.11 20998.44 17094.96 13294.22 21897.90 18979.18 30799.11 17894.05 19293.85 23096.48 293
RRT_test8_iter0594.56 22494.19 21195.67 26397.60 20591.34 27898.93 7198.42 17494.75 13993.39 25297.87 19279.00 30898.61 23196.78 10490.99 27097.07 221
Anonymous2024052995.10 19294.22 20997.75 14099.01 10494.26 21998.87 8398.83 6985.79 32596.64 15398.97 8478.73 30999.85 4996.27 11894.89 21299.12 139
TESTMET0.1,194.18 24893.69 24695.63 26496.92 25589.12 31096.91 29594.78 33293.17 20994.88 19096.45 29578.52 31098.92 20293.09 21798.50 13498.85 160
pmmvs-eth3d90.36 29889.05 30094.32 30191.10 33792.12 26497.63 25196.95 30388.86 30984.91 33093.13 32878.32 31196.74 32588.70 29881.81 33294.09 331
Anonymous20240521195.28 18294.49 19597.67 14899.00 10593.75 23398.70 12297.04 29790.66 28596.49 16498.80 10678.13 31299.83 5596.21 12195.36 21199.44 102
IB-MVS91.98 1793.27 27091.97 28097.19 17097.47 21793.41 24597.09 28595.99 32093.32 20492.47 28295.73 31278.06 31399.53 13894.59 17382.98 32898.62 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LF4IMVS93.14 27592.79 26894.20 30295.88 30288.67 31697.66 24897.07 29593.81 17891.71 29497.65 21277.96 31498.81 21791.47 25991.92 25895.12 320
test-mter94.08 25593.51 25395.80 25896.77 26389.70 30196.91 29595.21 32792.89 22194.83 19395.72 31477.69 31598.97 19393.06 21898.50 13498.72 167
USDC93.33 26992.71 26995.21 27596.83 26290.83 28896.91 29597.50 27393.84 17690.72 30398.14 17277.69 31598.82 21689.51 29093.21 24595.97 311
test_040291.32 28990.27 29294.48 29796.60 27391.12 28498.50 15497.22 29186.10 32288.30 31796.98 26777.65 31797.99 29778.13 33792.94 24894.34 327
K. test v392.55 28091.91 28294.48 29795.64 30889.24 30899.07 4794.88 33194.04 16486.78 32297.59 21877.64 31897.64 31292.08 24489.43 28996.57 276
TDRefinement91.06 29289.68 29695.21 27585.35 34391.49 27798.51 15397.07 29591.47 26488.83 31597.84 19677.31 31999.09 18292.79 22777.98 33695.04 323
new_pmnet90.06 29989.00 30193.22 31294.18 32788.32 32196.42 31696.89 30886.19 32085.67 32893.62 32677.18 32097.10 32281.61 32889.29 29194.23 328
new-patchmatchnet88.50 30587.45 30791.67 31890.31 33985.89 33197.16 28297.33 28489.47 30383.63 33292.77 32976.38 32195.06 33882.70 32577.29 33794.06 332
lessismore_v094.45 30094.93 32288.44 31991.03 34686.77 32397.64 21476.23 32298.42 25290.31 27485.64 32696.51 289
TinyColmap92.31 28391.53 28394.65 29496.92 25589.75 30096.92 29396.68 31590.45 28989.62 31097.85 19576.06 32398.81 21786.74 30992.51 25195.41 318
pmmvs691.77 28690.63 28995.17 27794.69 32691.24 28398.67 12897.92 25086.14 32189.62 31097.56 22275.79 32498.34 26690.75 26984.56 32795.94 312
MIMVSNet93.26 27192.21 27796.41 23197.73 19893.13 25595.65 32597.03 29891.27 27694.04 22796.06 30775.33 32597.19 32186.56 31096.23 20198.92 158
UnsupCasMVSNet_eth90.99 29389.92 29594.19 30394.08 32989.83 29997.13 28498.67 12393.69 18785.83 32796.19 30575.15 32696.74 32589.14 29579.41 33596.00 310
LFMVS95.86 15194.98 17598.47 9498.87 11596.32 12898.84 8996.02 31993.40 20198.62 5899.20 4974.99 32799.63 12497.72 5197.20 17299.46 99
CMPMVSbinary66.06 2189.70 30189.67 29789.78 32093.19 33276.56 34197.00 28998.35 18580.97 33481.57 33497.75 20474.75 32898.61 23189.85 28293.63 23494.17 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet591.81 28590.92 28794.49 29697.21 23692.09 26598.00 21997.55 26989.31 30690.86 30295.61 31874.48 32995.32 33685.57 31789.70 28396.07 309
testgi93.06 27692.45 27494.88 28696.43 28289.90 29898.75 10697.54 27095.60 9691.63 29697.91 18874.46 33097.02 32386.10 31393.67 23297.72 206
VDD-MVS95.82 15495.23 16397.61 15398.84 11993.98 22598.68 12597.40 28295.02 12997.95 9499.34 2974.37 33199.78 9198.64 396.80 17899.08 144
FMVSNet193.19 27492.07 27896.56 21697.54 21295.00 18498.82 9398.18 21390.38 29192.27 28697.07 25573.68 33297.95 29889.36 29391.30 26496.72 257
VDDNet95.36 17794.53 19397.86 13298.10 17595.13 18098.85 8697.75 25790.46 28898.36 7299.39 1473.27 33399.64 12197.98 3696.58 18598.81 163
UniMVSNet_ETH3D94.24 24393.33 25896.97 18497.19 24093.38 24798.74 10998.57 14291.21 27993.81 23798.58 12872.85 33498.77 22195.05 16093.93 22998.77 166
DeepMVS_CXcopyleft86.78 32297.09 24772.30 34495.17 33075.92 33884.34 33195.19 31970.58 33595.35 33579.98 33289.04 29592.68 337
OpenMVS_ROBcopyleft86.42 2089.00 30487.43 30893.69 30693.08 33389.42 30697.91 22596.89 30878.58 33685.86 32694.69 32369.48 33698.29 27577.13 33893.29 24493.36 336
EG-PatchMatch MVS91.13 29190.12 29394.17 30494.73 32589.00 31398.13 20697.81 25489.22 30785.32 32996.46 29467.71 33798.42 25287.89 30593.82 23195.08 322
MIMVSNet189.67 30288.28 30593.82 30592.81 33491.08 28598.01 21797.45 27887.95 31287.90 31995.87 31067.63 33894.56 33978.73 33688.18 30495.83 314
pmmvs386.67 30984.86 31192.11 31788.16 34187.19 32996.63 31194.75 33379.88 33587.22 32192.75 33066.56 33995.20 33781.24 32976.56 33893.96 333
MVS_030492.81 27892.01 27995.23 27497.46 21891.33 28098.17 20298.81 7691.13 28193.80 23895.68 31766.08 34098.06 29190.79 26796.13 20496.32 302
tmp_tt68.90 31566.97 31674.68 33050.78 35359.95 35087.13 34383.47 35238.80 34862.21 34496.23 30264.70 34176.91 35088.91 29730.49 34787.19 340
UnsupCasMVSNet_bld87.17 30785.12 31093.31 31091.94 33588.77 31494.92 33098.30 19784.30 33082.30 33390.04 33563.96 34297.25 32085.85 31674.47 34093.93 334
testing_290.61 29788.50 30296.95 18690.08 34095.57 16197.69 24598.06 24093.02 21476.55 33692.48 33261.18 34398.44 24995.45 14991.98 25696.84 244
PM-MVS87.77 30686.55 30991.40 31991.03 33883.36 33696.92 29395.18 32991.28 27586.48 32593.42 32753.27 34496.74 32589.43 29281.97 33194.11 330
ambc89.49 32186.66 34275.78 34292.66 33996.72 31386.55 32492.50 33146.01 34597.90 30290.32 27382.09 32994.80 326
Gipumacopyleft78.40 31176.75 31383.38 32695.54 31180.43 34079.42 34697.40 28264.67 34273.46 33980.82 34245.65 34693.14 34166.32 34287.43 31176.56 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 31863.26 32066.53 33381.73 34658.81 35291.85 34084.75 35151.93 34759.09 34675.13 34543.32 34779.09 34942.03 34739.47 34561.69 345
E-PMN64.94 31764.25 31867.02 33282.28 34559.36 35191.83 34185.63 35052.69 34560.22 34577.28 34441.06 34880.12 34846.15 34641.14 34461.57 346
FPMVS77.62 31377.14 31279.05 32879.25 34760.97 34995.79 32395.94 32265.96 34167.93 34394.40 32437.73 34988.88 34568.83 34188.46 30187.29 339
PMMVS277.95 31275.44 31585.46 32482.54 34474.95 34394.23 33693.08 34372.80 34074.68 33887.38 33736.36 35091.56 34373.95 34063.94 34289.87 338
LCM-MVSNet78.70 31076.24 31486.08 32377.26 34971.99 34594.34 33596.72 31361.62 34376.53 33789.33 33633.91 35192.78 34281.85 32774.60 33993.46 335
ANet_high69.08 31465.37 31780.22 32765.99 35171.96 34690.91 34290.09 34782.62 33149.93 34878.39 34329.36 35281.75 34662.49 34338.52 34686.95 341
PMVScopyleft61.03 2365.95 31663.57 31973.09 33157.90 35251.22 35385.05 34593.93 34254.45 34444.32 34983.57 33913.22 35389.15 34458.68 34481.00 33478.91 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12320.95 32323.72 32512.64 33513.54 3558.19 35596.55 3146.13 3577.48 35116.74 35137.98 34912.97 3546.05 35216.69 3495.43 35023.68 347
wuyk23d30.17 32030.18 32330.16 33478.61 34843.29 35466.79 34714.21 35517.31 34914.82 35211.93 35211.55 35541.43 35137.08 34819.30 3485.76 349
MVEpermissive62.14 2263.28 31959.38 32174.99 32974.33 35065.47 34785.55 34480.50 35352.02 34651.10 34775.00 34610.91 35680.50 34751.60 34553.40 34378.99 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.48 32224.95 32411.09 33614.89 3546.47 35696.56 3139.87 3567.55 35017.93 35039.02 3489.43 3575.90 35316.56 35012.72 34920.91 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.84 650.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.20 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.43 1410.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.71 2099.23 698.64 13195.28 11499.63 498.35 2499.81 1099.83 5
save fliter99.46 4898.38 3498.21 19098.71 10897.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 6498.88 4999.94 398.47 1599.81 1099.84 4
GSMVS99.20 126
test_part299.63 2999.18 899.27 17
MTGPAbinary98.74 98
MTMP98.89 7894.14 340
gm-plane-assit95.88 30287.47 32689.74 30096.94 27399.19 16793.32 212
test9_res96.39 11799.57 7199.69 48
agg_prior295.87 13299.57 7199.68 54
agg_prior99.30 7198.38 3498.72 10497.57 12199.81 66
test_prior498.01 6197.86 232
test_prior99.19 4399.31 6698.22 4998.84 6599.70 11099.65 64
旧先验297.57 25491.30 27398.67 5599.80 7595.70 142
新几何297.64 249
无先验97.58 25398.72 10491.38 26799.87 4493.36 21099.60 75
原ACMM297.67 247
testdata299.89 3591.65 257
testdata197.32 27096.34 68
plane_prior797.42 22394.63 202
plane_prior598.56 14499.03 18996.07 12394.27 21596.92 230
plane_prior498.28 160
plane_prior394.61 20597.02 4795.34 181
plane_prior298.80 10097.28 29
plane_prior197.37 227
plane_prior94.60 20798.44 16196.74 5594.22 217
n20.00 358
nn0.00 358
door-mid94.37 336
test1198.66 126
door94.64 334
HQP5-MVS94.25 220
HQP-NCC97.20 23798.05 21396.43 6494.45 203
ACMP_Plane97.20 23798.05 21396.43 6494.45 203
BP-MVS95.30 152
HQP4-MVS94.45 20398.96 19696.87 241
HQP3-MVS98.46 16694.18 219
NP-MVS97.28 23194.51 21097.73 205
ACMMP++_ref92.97 247
ACMMP++93.61 235