This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4598.99 1098.84 8
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5697.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11196.52 9080.00 20894.00 17997.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4297.11 4290.42 2596.95 1097.27 2789.53 1196.91 23594.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8796.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5996.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10797.12 4087.13 10892.51 7496.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8696.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 3997.28 2885.90 13597.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
9.1494.47 1797.79 5296.08 5097.44 1286.13 13395.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9395.47 16989.44 4595.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9595.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18296.72 7981.96 22092.16 7996.23 7887.85 2298.97 8091.95 5898.55 4997.90 76
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4197.37 1884.15 17390.05 11395.66 10087.77 2399.15 5389.91 8998.27 5898.07 63
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12195.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
TEST997.53 5886.49 3994.07 17296.78 7081.61 23392.77 6496.20 8087.71 2699.12 55
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17296.78 7081.86 22692.77 6496.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
test_897.49 6186.30 4894.02 17796.76 7381.86 22692.70 6896.20 8087.63 2799.02 68
ZD-MVS98.15 3586.62 3597.07 4483.63 18394.19 3096.91 4887.57 2999.26 4391.99 5498.44 51
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14793.93 23889.77 3994.21 2995.59 10387.35 3098.61 10792.72 3696.15 10397.83 81
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14195.05 2397.18 3587.31 3199.07 5891.90 6298.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8297.26 2982.67 20793.81 3996.29 7587.29 3299.27 4289.87 9098.67 3798.65 15
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11297.21 3484.33 17193.89 3897.09 3987.20 3399.29 4191.90 6298.44 5198.12 59
Regformer-294.33 2794.22 2594.68 3895.54 12586.75 2994.57 13596.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
segment_acmp87.16 35
Regformer-194.22 3294.13 3294.51 4695.54 12586.36 4494.57 13596.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4397.23 3287.28 10694.85 2497.04 4286.99 3799.52 2091.54 6898.33 5698.71 12
旧先验196.79 8081.81 15895.67 15396.81 5386.69 3897.66 7696.97 114
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16596.88 5987.67 9892.63 6996.39 7286.62 3998.87 8891.50 6998.67 3798.11 61
test_prior294.12 16587.67 9892.63 6996.39 7286.62 3991.50 6998.67 37
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17496.66 8580.09 25392.77 6496.63 6286.62 3999.04 6387.40 11898.66 4098.17 54
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22996.56 9383.44 18991.68 9395.04 11786.60 4298.99 7785.60 13997.92 6996.93 116
DELS-MVS93.43 5493.25 5393.97 5995.42 12885.04 7493.06 21997.13 3990.74 2091.84 8795.09 11686.32 4399.21 4791.22 7498.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8193.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6993.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10193.65 4397.21 3286.10 4599.49 2391.68 6698.77 2498.30 41
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21297.24 3088.76 6591.60 9495.85 9486.07 4798.66 10291.91 5998.16 6098.03 67
Regformer-493.91 4193.81 4194.19 5795.36 12985.47 7094.68 12796.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 8095.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
Regformer-393.68 4793.64 4893.81 6795.36 12984.61 7994.68 12795.83 14291.27 1293.60 4696.71 5685.75 5098.86 9192.87 3296.65 9497.96 71
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15793.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11997.17 3886.26 12992.83 6297.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8193.26 5196.83 5185.48 5399.59 491.43 7298.40 5398.30 41
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5891.98 8397.19 3485.43 5499.56 792.06 5398.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4892.81 6396.97 4585.37 5599.24 4490.87 8298.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7193.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7392.73 6797.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
test1294.34 5397.13 7486.15 5196.29 10591.04 10485.08 5899.01 7098.13 6197.86 79
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6993.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6097.16 3785.02 6099.49 2391.99 5498.56 4798.47 28
X-MVStestdata88.31 16186.13 20394.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6023.41 35985.02 6099.49 2391.99 5498.56 4798.47 28
MSLP-MVS++93.72 4694.08 3392.65 10497.31 6783.43 11695.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16492.19 4898.66 4096.76 120
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11692.62 7196.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3396.90 5788.20 8494.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8597.78 187.45 10493.26 5197.33 2484.62 6599.51 2190.75 8498.57 4698.32 40
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 14183.51 11494.48 13995.77 14690.87 1592.52 7396.67 6084.50 6699.00 7591.99 5494.44 13197.36 96
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10596.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15596.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 3996.84 6388.33 7794.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3796.76 7387.46 10293.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
CS-MVS92.60 6892.56 6792.73 9995.55 12482.35 14996.14 4596.85 6288.71 6691.44 9791.51 24384.13 7198.48 11391.27 7397.47 8097.34 97
ETV-MVS92.74 6692.66 6592.97 8895.20 13784.04 10095.07 10296.51 9490.73 2192.96 5991.19 25084.06 7298.34 12691.72 6596.54 9796.54 129
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15283.20 12194.40 14795.74 14990.71 2292.05 8296.60 6484.00 7398.99 7791.55 6793.63 13997.17 105
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6791.83 8997.17 3683.96 7499.55 1291.44 7198.64 4398.43 34
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3596.87 6186.96 11293.92 3797.47 1683.88 7598.96 8392.71 3797.87 7098.26 49
EIA-MVS91.95 7691.94 7491.98 13295.16 13880.01 20795.36 7996.73 7788.44 7489.34 12092.16 21683.82 7698.45 11989.35 9597.06 8697.48 93
EPP-MVSNet91.70 8291.56 7992.13 12795.88 11380.50 19497.33 395.25 18586.15 13189.76 11595.60 10283.42 7798.32 12987.37 12093.25 14997.56 91
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8884.47 15295.47 11197.45 95
UniMVSNet_NR-MVSNet89.92 11889.29 11991.81 14493.39 20783.72 10794.43 14597.12 4089.80 3786.46 16793.32 17783.16 7897.23 21284.92 14581.02 29294.49 207
RE-MVS-def93.68 4697.92 4584.57 8196.28 3796.76 7387.46 10293.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
112190.42 10789.49 11393.20 7797.27 7184.46 8892.63 23095.51 16771.01 33691.20 10296.21 7982.92 8199.05 6080.56 21498.07 6396.10 143
新几何193.10 8197.30 6884.35 9495.56 16171.09 33591.26 10196.24 7782.87 8298.86 9179.19 23398.10 6296.07 145
原ACMM192.01 12997.34 6681.05 17896.81 6878.89 26790.45 10895.92 9182.65 8398.84 9680.68 21298.26 5996.14 138
casdiffmvs92.51 7092.43 7092.74 9894.41 17281.98 15594.54 13796.23 11189.57 4391.96 8496.17 8482.58 8498.01 15190.95 8095.45 11398.23 51
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11496.99 4789.02 6089.56 11697.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13892.47 7597.13 3882.38 8699.07 5890.51 8698.40 5397.92 75
baseline92.39 7392.29 7292.69 10394.46 16981.77 15994.14 16496.27 10689.22 5291.88 8596.00 8882.35 8797.99 15391.05 7695.27 11898.30 41
canonicalmvs93.27 5892.75 6494.85 2795.70 12087.66 1196.33 3496.41 9990.00 3494.09 3394.60 13482.33 8898.62 10692.40 4192.86 15798.27 47
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 13096.66 8582.69 20690.03 11495.82 9582.30 8999.03 6484.57 15196.48 10096.91 117
PAPR90.02 11389.27 12192.29 12395.78 11680.95 18292.68 22896.22 11281.91 22386.66 16593.75 17082.23 9098.44 12079.40 23294.79 12197.48 93
MVS_Test91.31 8891.11 8591.93 13694.37 17380.14 19993.46 20095.80 14486.46 12491.35 10093.77 16882.21 9198.09 14587.57 11694.95 12097.55 92
nrg03091.08 9390.39 9593.17 7993.07 21686.91 2096.41 3296.26 10788.30 7988.37 13394.85 12582.19 9297.64 17491.09 7582.95 26394.96 181
UniMVSNet (Re)89.80 12089.07 12492.01 12993.60 20284.52 8494.78 12297.47 889.26 5186.44 17092.32 21182.10 9397.39 20084.81 14880.84 29694.12 219
testdata90.49 19096.40 9277.89 25495.37 18172.51 32893.63 4596.69 5882.08 9497.65 17283.08 16797.39 8195.94 149
PAPM_NR91.22 9090.78 9392.52 11097.60 5781.46 16894.37 15496.24 11086.39 12787.41 14994.80 12782.06 9598.48 11382.80 17595.37 11497.61 87
MG-MVS91.77 7991.70 7892.00 13197.08 7580.03 20693.60 19595.18 18987.85 9290.89 10596.47 7082.06 9598.36 12385.07 14397.04 8797.62 86
CANet93.54 5193.20 5694.55 4495.65 12185.73 6794.94 11096.69 8391.89 590.69 10695.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
FC-MVSNet-test90.27 10990.18 10090.53 18693.71 19879.85 21295.77 6497.59 289.31 5086.27 17394.67 13181.93 9897.01 22984.26 15488.09 21994.71 192
FIs90.51 10690.35 9690.99 17593.99 18880.98 18095.73 6597.54 389.15 5586.72 16494.68 13081.83 9997.24 21185.18 14288.31 21594.76 191
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7790.15 11297.03 4481.44 10099.51 2190.85 8395.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+91.59 8491.11 8593.01 8694.35 17683.39 11894.60 13295.10 19387.10 10990.57 10793.10 18881.43 10198.07 14789.29 9694.48 12997.59 89
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10984.43 9293.08 21796.09 12088.20 8491.12 10395.72 9981.33 10297.76 16491.74 6497.37 8296.75 121
mvs_anonymous89.37 13589.32 11889.51 23293.47 20574.22 29691.65 26094.83 21082.91 20285.45 19593.79 16681.23 10396.36 26786.47 13294.09 13397.94 72
PVSNet_BlendedMVS89.98 11489.70 11090.82 17996.12 10081.25 17393.92 18296.83 6583.49 18889.10 12392.26 21481.04 10498.85 9486.72 13087.86 22392.35 294
PVSNet_Blended90.73 9890.32 9791.98 13296.12 10081.25 17392.55 23496.83 6582.04 21889.10 12392.56 20481.04 10498.85 9486.72 13095.91 10495.84 154
alignmvs93.08 6292.50 6994.81 3295.62 12387.61 1295.99 5496.07 12289.77 3994.12 3294.87 12280.56 10698.66 10292.42 4093.10 15298.15 56
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9293.20 5497.22 3180.35 10799.18 4991.91 5997.21 8397.26 100
API-MVS90.66 10190.07 10392.45 11396.36 9484.57 8196.06 5295.22 18882.39 20989.13 12294.27 14680.32 10898.46 11680.16 22196.71 9294.33 212
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11696.66 8583.29 19389.27 12194.46 13880.29 10999.17 5087.57 11695.37 11496.05 147
test22296.55 8881.70 16092.22 24495.01 19668.36 34190.20 11196.14 8580.26 11097.80 7296.05 147
diffmvs91.37 8791.23 8391.77 14593.09 21580.27 19692.36 23995.52 16687.03 11191.40 9994.93 11980.08 11197.44 18892.13 5194.56 12797.61 87
Test By Simon80.02 112
IterMVS-LS88.36 16087.91 15489.70 22593.80 19578.29 24593.73 18995.08 19585.73 13984.75 21391.90 23079.88 11396.92 23483.83 15982.51 26993.89 230
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 13988.86 13189.80 22191.84 24878.30 24493.70 19295.01 19685.73 13987.15 15395.28 10879.87 11497.21 21483.81 16087.36 22893.88 232
TAPA-MVS84.62 688.16 16587.01 17391.62 14996.64 8480.65 18994.39 14996.21 11576.38 29286.19 17595.44 10479.75 11598.08 14662.75 33695.29 11696.13 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+89.41 13288.64 13391.71 14794.74 15580.81 18693.54 19695.10 19383.11 19686.82 16390.67 26879.74 11697.75 16780.51 21693.55 14096.57 127
pcd_1.5k_mvsjas6.64 3358.86 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36579.70 1170.00 3650.00 3630.00 3630.00 361
PS-MVSNAJss89.97 11589.62 11191.02 17291.90 24680.85 18595.26 9095.98 12886.26 12986.21 17494.29 14379.70 11797.65 17288.87 10188.10 21794.57 200
PS-MVSNAJ91.18 9190.92 8991.96 13495.26 13582.60 14492.09 24995.70 15186.27 12891.84 8792.46 20679.70 11798.99 7789.08 9895.86 10594.29 213
xiu_mvs_v2_base91.13 9290.89 9191.86 13994.97 14482.42 14592.24 24395.64 15886.11 13491.74 9293.14 18679.67 12098.89 8789.06 9995.46 11294.28 214
WR-MVS_H87.80 17487.37 16489.10 24093.23 21178.12 24895.61 7397.30 2687.90 9083.72 24292.01 22779.65 12196.01 28076.36 25880.54 30093.16 268
EPNet91.79 7891.02 8894.10 5890.10 30785.25 7396.03 5392.05 27892.83 187.39 15295.78 9679.39 12299.01 7088.13 11097.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth87.22 20286.62 18789.02 24392.13 23877.40 26890.91 27194.81 21281.28 23984.32 22890.08 27979.26 12396.62 24583.81 16082.94 26493.04 273
miper_enhance_ethall86.90 21086.18 20289.06 24191.66 25677.58 26590.22 28394.82 21179.16 26484.48 21989.10 29379.19 12496.66 24384.06 15682.94 26492.94 276
NR-MVSNet88.58 15687.47 16291.93 13693.04 21884.16 9794.77 12396.25 10989.05 5780.04 29493.29 18079.02 12597.05 22681.71 19780.05 30794.59 198
TAMVS89.21 13788.29 14491.96 13493.71 19882.62 14393.30 20694.19 23082.22 21387.78 14493.94 15778.83 12696.95 23277.70 24692.98 15596.32 132
cl_fuxian87.14 20686.50 19289.04 24292.20 23577.26 26991.22 26794.70 21682.01 21984.34 22790.43 27278.81 12796.61 24883.70 16281.09 28993.25 262
1112_ss88.42 15787.33 16591.72 14694.92 14880.98 18092.97 22294.54 21878.16 28183.82 24093.88 16278.78 12897.91 15979.45 22889.41 19596.26 135
CDS-MVSNet89.45 12988.51 13592.29 12393.62 20183.61 11293.01 22094.68 21781.95 22187.82 14393.24 18278.69 12996.99 23080.34 21893.23 15096.28 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS89.60 12388.92 12891.67 14895.47 12781.15 17792.38 23894.78 21483.11 19689.06 12594.32 14178.67 13096.61 24881.57 19890.89 17797.24 101
CPTT-MVS91.99 7591.80 7692.55 10898.24 3181.98 15596.76 2596.49 9581.89 22590.24 11096.44 7178.59 13198.61 10789.68 9197.85 7197.06 109
IS-MVSNet91.43 8591.09 8792.46 11295.87 11581.38 17196.95 1493.69 24689.72 4189.50 11895.98 8978.57 13297.77 16383.02 16996.50 9998.22 52
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19795.93 13286.95 11389.51 11796.13 8678.50 13398.35 12585.84 13692.90 15696.83 119
PCF-MVS84.11 1087.74 17686.08 20792.70 10294.02 18384.43 9289.27 29795.87 13973.62 31984.43 22294.33 14078.48 13498.86 9170.27 29694.45 13094.81 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LCM-MVSNet-Re88.30 16288.32 14388.27 26194.71 15872.41 31693.15 21390.98 30787.77 9479.25 30291.96 22878.35 13595.75 29283.04 16895.62 10796.65 124
HY-MVS83.01 1289.03 14287.94 15392.29 12394.86 15282.77 13392.08 25094.49 21981.52 23586.93 15892.79 20078.32 13698.23 13279.93 22390.55 17895.88 152
MVS87.44 19286.10 20691.44 15592.61 22983.62 11192.63 23095.66 15567.26 34281.47 27292.15 21777.95 13798.22 13479.71 22595.48 11092.47 289
MVSFormer91.68 8391.30 8192.80 9493.86 19283.88 10395.96 5795.90 13684.66 16791.76 9094.91 12077.92 13897.30 20389.64 9297.11 8497.24 101
lupinMVS90.92 9490.21 9893.03 8593.86 19283.88 10392.81 22693.86 24179.84 25691.76 9094.29 14377.92 13898.04 14990.48 8797.11 8497.17 105
Test_1112_low_res87.65 17986.51 19191.08 16894.94 14779.28 22691.77 25494.30 22676.04 29783.51 24992.37 20977.86 14097.73 16878.69 23789.13 20296.22 136
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11896.44 9689.19 5494.08 3495.90 9277.85 14198.17 13688.90 10093.38 14698.13 58
DU-MVS89.34 13688.50 13691.85 14193.04 21883.72 10794.47 14296.59 9089.50 4486.46 16793.29 18077.25 14297.23 21284.92 14581.02 29294.59 198
Baseline_NR-MVSNet87.07 20786.63 18688.40 25791.44 25977.87 25594.23 16192.57 26684.12 17485.74 18192.08 22377.25 14296.04 27782.29 18379.94 30891.30 311
jason90.80 9590.10 10292.90 9193.04 21883.53 11393.08 21794.15 23280.22 25091.41 9894.91 12076.87 14497.93 15890.28 8896.90 8897.24 101
jason: jason.
PAPM86.68 21985.39 22790.53 18693.05 21779.33 22589.79 29094.77 21578.82 26981.95 26993.24 18276.81 14597.30 20366.94 31993.16 15194.95 184
Vis-MVSNet (Re-imp)89.59 12489.44 11590.03 21095.74 11775.85 28595.61 7390.80 31387.66 10087.83 14295.40 10776.79 14696.46 26178.37 23896.73 9197.80 82
baseline188.10 16687.28 16790.57 18494.96 14580.07 20294.27 15891.29 30086.74 11887.41 14994.00 15476.77 14796.20 27280.77 20979.31 31595.44 166
114514_t89.51 12688.50 13692.54 10998.11 3781.99 15495.16 9896.36 10370.19 33885.81 17995.25 11076.70 14898.63 10582.07 18696.86 9097.00 113
PLCcopyleft84.53 789.06 14188.03 14992.15 12697.27 7182.69 14094.29 15795.44 17579.71 25884.01 23694.18 14876.68 14998.75 10077.28 25093.41 14595.02 177
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet88.84 14887.95 15291.49 15292.68 22883.01 12894.92 11296.31 10489.88 3685.53 18893.85 16476.63 15096.96 23181.91 19079.87 31094.50 205
MAR-MVS90.30 10889.37 11793.07 8496.61 8584.48 8795.68 6895.67 15382.36 21187.85 14192.85 19476.63 15098.80 9880.01 22296.68 9395.91 150
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS88.38 15887.67 15890.52 18893.30 21080.18 19793.26 20995.96 13088.57 7285.47 19492.81 19876.12 15296.91 23581.24 20182.29 27194.47 210
v887.50 19186.71 18189.89 21591.37 26579.40 21994.50 13895.38 17984.81 16483.60 24791.33 24576.05 15397.42 19082.84 17380.51 30492.84 280
v14887.04 20886.32 19889.21 23690.94 28377.26 26993.71 19194.43 22184.84 16384.36 22690.80 26476.04 15497.05 22682.12 18579.60 31293.31 259
eth_miper_zixun_eth86.50 22585.77 21988.68 25191.94 24575.81 28690.47 27794.89 20582.05 21684.05 23490.46 27175.96 15596.77 23982.76 17679.36 31493.46 256
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12288.73 497.07 1396.77 7290.84 1684.02 23596.62 6375.95 15699.34 3387.77 11397.68 7598.59 18
hse-mvs390.80 9590.15 10192.75 9796.01 10782.66 14195.43 7895.53 16589.80 3793.08 5895.64 10175.77 15799.00 7592.07 5278.05 31996.60 125
BH-untuned88.60 15588.13 14890.01 21295.24 13678.50 23993.29 20794.15 23284.75 16584.46 22093.40 17475.76 15897.40 19777.59 24794.52 12894.12 219
cl-mvsnet186.53 22385.78 21788.75 24892.02 24376.45 27990.74 27394.30 22681.83 22883.34 25390.82 26375.75 15996.57 25181.73 19681.52 28493.24 263
BH-w/o87.57 18787.05 17289.12 23994.90 15077.90 25392.41 23693.51 24882.89 20383.70 24391.34 24475.75 15997.07 22475.49 26693.49 14292.39 292
cl-mvsnet_86.52 22485.78 21788.75 24892.03 24276.46 27890.74 27394.30 22681.83 22883.34 25390.78 26575.74 16196.57 25181.74 19581.54 28393.22 265
cdsmvs_eth3d_5k22.14 33029.52 3330.00 3470.00 3680.00 3690.00 35995.76 1470.00 3640.00 36594.29 14375.66 1620.00 3650.00 3630.00 3630.00 361
CNLPA89.07 14087.98 15192.34 11996.87 7884.78 7794.08 17193.24 25181.41 23684.46 22095.13 11575.57 16396.62 24577.21 25193.84 13795.61 162
CHOSEN 1792x268888.84 14887.69 15692.30 12296.14 9981.42 17090.01 28795.86 14074.52 31287.41 14993.94 15775.46 16498.36 12380.36 21795.53 10897.12 108
CP-MVSNet87.63 18287.26 16988.74 25093.12 21476.59 27795.29 8796.58 9188.43 7583.49 25092.98 19175.28 16595.83 28878.97 23481.15 28893.79 238
v1087.25 19986.38 19389.85 21691.19 27179.50 21694.48 13995.45 17383.79 18083.62 24691.19 25075.13 16697.42 19081.94 18980.60 29892.63 285
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13283.78 10696.14 4595.98 12889.89 3590.45 10896.58 6575.09 16798.31 13084.75 14996.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss88.93 14688.26 14690.94 17894.05 18280.78 18791.71 25795.38 17981.55 23488.63 12893.91 16175.04 16895.47 30382.47 17991.61 16896.57 127
v114487.61 18586.79 17990.06 20991.01 27879.34 22293.95 18195.42 17883.36 19285.66 18491.31 24874.98 16997.42 19083.37 16482.06 27493.42 257
miper_lstm_enhance85.27 24784.59 24587.31 28291.28 26974.63 29187.69 31894.09 23681.20 24381.36 27589.85 28574.97 17094.30 31781.03 20579.84 31193.01 274
test_yl90.69 9990.02 10792.71 10095.72 11882.41 14794.11 16795.12 19185.63 14291.49 9594.70 12874.75 17198.42 12186.13 13492.53 16197.31 98
DCV-MVSNet90.69 9990.02 10792.71 10095.72 11882.41 14794.11 16795.12 19185.63 14291.49 9594.70 12874.75 17198.42 12186.13 13492.53 16197.31 98
V4287.68 17786.86 17590.15 20490.58 29880.14 19994.24 16095.28 18483.66 18285.67 18391.33 24574.73 17397.41 19584.43 15381.83 27892.89 278
XVG-OURS-SEG-HR89.95 11689.45 11491.47 15494.00 18781.21 17691.87 25296.06 12485.78 13788.55 12995.73 9874.67 17497.27 20788.71 10389.64 19395.91 150
v2v48287.84 17287.06 17190.17 20290.99 27979.23 22994.00 17995.13 19084.87 16285.53 18892.07 22574.45 17597.45 18684.71 15081.75 28093.85 236
CLD-MVS89.47 12888.90 12991.18 16394.22 17782.07 15392.13 24796.09 12087.90 9085.37 20492.45 20774.38 17697.56 17887.15 12390.43 17993.93 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS87.65 17986.85 17690.03 21092.14 23780.60 19293.76 18895.23 18682.94 20184.60 21594.02 15274.27 17795.49 30281.04 20383.68 25694.01 227
HQP_MVS90.60 10590.19 9991.82 14294.70 15982.73 13795.85 6196.22 11290.81 1786.91 16094.86 12374.23 17898.12 13788.15 10889.99 18494.63 194
plane_prior694.52 16582.75 13474.23 178
v14419287.19 20486.35 19689.74 22290.64 29678.24 24693.92 18295.43 17681.93 22285.51 19091.05 25874.21 18097.45 18682.86 17281.56 28293.53 251
VPA-MVSNet89.62 12288.96 12691.60 15093.86 19282.89 13295.46 7797.33 2287.91 8988.43 13293.31 17874.17 18197.40 19787.32 12182.86 26894.52 203
ab-mvs89.41 13288.35 14092.60 10595.15 13982.65 14292.20 24595.60 16083.97 17788.55 12993.70 17274.16 18298.21 13582.46 18089.37 19696.94 115
131487.51 18986.57 18990.34 19992.42 23279.74 21492.63 23095.35 18378.35 27780.14 29191.62 23974.05 18397.15 21681.05 20293.53 14194.12 219
test_djsdf89.03 14288.64 13390.21 20190.74 29379.28 22695.96 5795.90 13684.66 16785.33 20692.94 19274.02 18497.30 20389.64 9288.53 20894.05 225
cl-mvsnet286.78 21585.98 21089.18 23892.34 23377.62 26490.84 27294.13 23481.33 23883.97 23790.15 27773.96 18596.60 25084.19 15582.94 26493.33 258
AdaColmapbinary89.89 11989.07 12492.37 11897.41 6383.03 12694.42 14695.92 13382.81 20486.34 17294.65 13273.89 18699.02 6880.69 21195.51 10995.05 176
HyFIR lowres test88.09 16786.81 17791.93 13696.00 10880.63 19090.01 28795.79 14573.42 32087.68 14692.10 22273.86 18797.96 15580.75 21091.70 16797.19 104
HQP2-MVS73.83 188
HQP-MVS89.80 12089.28 12091.34 15894.17 17881.56 16294.39 14996.04 12688.81 6285.43 19893.97 15673.83 18897.96 15587.11 12589.77 19194.50 205
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16386.37 4397.18 797.02 4689.20 5384.31 23096.66 6173.74 19099.17 5086.74 12897.96 6797.79 83
EPNet_dtu86.49 22785.94 21388.14 26690.24 30572.82 30894.11 16792.20 27486.66 12279.42 30192.36 21073.52 19195.81 29071.26 29093.66 13895.80 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)84.43 26083.06 26388.54 25491.72 25278.44 24095.18 9692.82 26082.73 20579.67 29892.12 21973.49 19295.96 28271.10 29568.73 34291.21 314
Effi-MVS+-dtu88.65 15388.35 14089.54 22993.33 20876.39 28094.47 14294.36 22387.70 9685.43 19889.56 29073.45 19397.26 20985.57 14091.28 17094.97 178
mvs-test189.45 12989.14 12290.38 19693.33 20877.63 26394.95 10994.36 22387.70 9687.10 15692.81 19873.45 19398.03 15085.57 14093.04 15395.48 164
baseline286.50 22585.39 22789.84 21791.12 27576.70 27591.88 25188.58 33782.35 21279.95 29590.95 26073.42 19597.63 17580.27 22089.95 18795.19 173
PEN-MVS86.80 21486.27 20088.40 25792.32 23475.71 28795.18 9696.38 10287.97 8782.82 25993.15 18573.39 19695.92 28376.15 26279.03 31793.59 249
v119287.25 19986.33 19790.00 21390.76 29279.04 23093.80 18695.48 16882.57 20885.48 19391.18 25273.38 19797.42 19082.30 18282.06 27493.53 251
QAPM89.51 12688.15 14793.59 7294.92 14884.58 8096.82 2496.70 8178.43 27683.41 25196.19 8373.18 19899.30 3977.11 25396.54 9796.89 118
tpmrst85.35 24484.99 23486.43 29990.88 28867.88 34088.71 30691.43 29780.13 25286.08 17788.80 29973.05 19996.02 27982.48 17883.40 26295.40 168
PS-CasMVS87.32 19686.88 17488.63 25392.99 22276.33 28295.33 8196.61 8988.22 8383.30 25593.07 18973.03 20095.79 29178.36 23981.00 29493.75 244
DTE-MVSNet86.11 23185.48 22587.98 26991.65 25774.92 29094.93 11195.75 14887.36 10582.26 26493.04 19072.85 20195.82 28974.04 27877.46 32393.20 266
MVSTER88.84 14888.29 14490.51 18992.95 22380.44 19593.73 18995.01 19684.66 16787.15 15393.12 18772.79 20297.21 21487.86 11287.36 22893.87 233
v192192086.97 20986.06 20889.69 22690.53 30178.11 24993.80 18695.43 17681.90 22485.33 20691.05 25872.66 20397.41 19582.05 18781.80 27993.53 251
DP-MVS87.25 19985.36 22992.90 9197.65 5683.24 12094.81 12092.00 28074.99 30781.92 27095.00 11872.66 20399.05 6066.92 32192.33 16496.40 130
v7n86.81 21385.76 22089.95 21490.72 29479.25 22895.07 10295.92 13384.45 17082.29 26390.86 26172.60 20597.53 18079.42 23180.52 30393.08 272
OPM-MVS90.12 11189.56 11291.82 14293.14 21383.90 10294.16 16395.74 14988.96 6187.86 14095.43 10672.48 20697.91 15988.10 11190.18 18393.65 248
LS3D87.89 17186.32 19892.59 10696.07 10582.92 13195.23 9194.92 20475.66 29982.89 25895.98 8972.48 20699.21 4768.43 31095.23 11995.64 161
pm-mvs186.61 22085.54 22389.82 21891.44 25980.18 19795.28 8994.85 20883.84 17981.66 27192.62 20372.45 20896.48 25879.67 22678.06 31892.82 281
PMMVS85.71 23984.96 23687.95 27088.90 32077.09 27188.68 30790.06 32472.32 32986.47 16690.76 26672.15 20994.40 31481.78 19493.49 14292.36 293
PatchmatchNetpermissive85.85 23684.70 24289.29 23591.76 25175.54 28888.49 30991.30 29981.63 23285.05 20988.70 30171.71 21096.24 27174.61 27689.05 20396.08 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs171.70 21196.12 140
test_part189.00 14587.99 15092.04 12895.94 11283.81 10596.14 4596.05 12586.44 12585.69 18293.73 17171.57 21297.66 17185.80 13780.54 30094.66 193
patchmatchnet-post83.76 33671.53 21396.48 258
v124086.78 21585.85 21589.56 22890.45 30277.79 25893.61 19495.37 18181.65 23085.43 19891.15 25471.50 21497.43 18981.47 20082.05 27693.47 255
anonymousdsp87.84 17287.09 17090.12 20689.13 31780.54 19394.67 12995.55 16282.05 21683.82 24092.12 21971.47 21597.15 21687.15 12387.80 22492.67 283
Patchmatch-test81.37 28979.30 29587.58 27690.92 28574.16 29880.99 34787.68 34270.52 33776.63 31788.81 29771.21 21692.76 33560.01 34486.93 23495.83 155
F-COLMAP87.95 17086.80 17891.40 15696.35 9580.88 18494.73 12595.45 17379.65 25982.04 26894.61 13371.13 21798.50 11276.24 26191.05 17594.80 190
pmmvs485.43 24283.86 25390.16 20390.02 31082.97 13090.27 27992.67 26475.93 29880.73 28191.74 23471.05 21895.73 29378.85 23583.46 26091.78 302
CR-MVSNet85.35 24483.76 25490.12 20690.58 29879.34 22285.24 33291.96 28478.27 27885.55 18687.87 31471.03 21995.61 29473.96 28089.36 19795.40 168
Patchmtry82.71 27380.93 27988.06 26890.05 30976.37 28184.74 33691.96 28472.28 33081.32 27687.87 31471.03 21995.50 30168.97 30680.15 30692.32 295
CL-MVSNet_2432*160081.74 28280.53 28085.36 30985.96 33972.45 31590.25 28093.07 25581.24 24179.85 29787.29 32170.93 22192.52 33666.95 31869.23 33891.11 318
RPMNet83.95 26481.53 27491.21 16190.58 29879.34 22285.24 33296.76 7371.44 33385.55 18682.97 34070.87 22298.91 8661.01 34089.36 19795.40 168
Patchmatch-RL test81.67 28379.96 28986.81 29785.42 34371.23 32282.17 34587.50 34378.47 27577.19 31382.50 34170.81 22393.48 32782.66 17772.89 33295.71 160
CostFormer85.77 23884.94 23788.26 26291.16 27472.58 31489.47 29591.04 30676.26 29586.45 16989.97 28270.74 22496.86 23882.35 18187.07 23395.34 171
sam_mvs70.60 225
xiu_mvs_v1_base_debu90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
xiu_mvs_v1_base90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
xiu_mvs_v1_base_debi90.64 10290.05 10492.40 11493.97 18984.46 8893.32 20295.46 17085.17 15492.25 7694.03 14970.59 22698.57 10990.97 7794.67 12294.18 215
test_post10.29 36070.57 22995.91 285
CANet_DTU90.26 11089.41 11692.81 9393.46 20683.01 12893.48 19894.47 22089.43 4787.76 14594.23 14770.54 23099.03 6484.97 14496.39 10196.38 131
BH-RMVSNet88.37 15987.48 16191.02 17295.28 13379.45 21892.89 22493.07 25585.45 14886.91 16094.84 12670.35 23197.76 16473.97 27994.59 12695.85 153
Fast-Effi-MVS+-dtu87.44 19286.72 18089.63 22792.04 24177.68 26294.03 17693.94 23785.81 13682.42 26291.32 24770.33 23297.06 22580.33 21990.23 18294.14 218
MDTV_nov1_ep13_2view55.91 35787.62 32073.32 32184.59 21670.33 23274.65 27595.50 163
ACMM84.12 989.14 13888.48 13991.12 16494.65 16281.22 17595.31 8296.12 11985.31 15285.92 17894.34 13970.19 23498.06 14885.65 13888.86 20594.08 223
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D87.51 18985.91 21492.32 12093.70 20083.93 10192.33 24090.94 30984.16 17272.09 33892.52 20569.90 23595.85 28789.20 9788.36 21497.17 105
LPG-MVS_test89.45 12988.90 12991.12 16494.47 16781.49 16695.30 8596.14 11786.73 11985.45 19595.16 11369.89 23698.10 13987.70 11489.23 20093.77 242
LGP-MVS_train91.12 16494.47 16781.49 16696.14 11786.73 11985.45 19595.16 11369.89 23698.10 13987.70 11489.23 20093.77 242
CHOSEN 280x42085.15 24983.99 25188.65 25292.47 23078.40 24279.68 34992.76 26174.90 30981.41 27489.59 28869.85 23895.51 29979.92 22495.29 11692.03 299
LTVRE_ROB82.13 1386.26 23084.90 23890.34 19994.44 17181.50 16492.31 24294.89 20583.03 19879.63 29992.67 20169.69 23997.79 16271.20 29186.26 23691.72 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft83.78 1188.74 15187.29 16693.08 8292.70 22785.39 7196.57 2996.43 9878.74 27280.85 28096.07 8769.64 24099.01 7078.01 24496.65 9494.83 188
MDTV_nov1_ep1383.56 25891.69 25569.93 33387.75 31791.54 29378.60 27484.86 21288.90 29669.54 24196.03 27870.25 29788.93 204
AUN-MVS87.78 17586.54 19091.48 15394.82 15481.05 17893.91 18593.93 23883.00 19986.93 15893.53 17369.50 24297.67 17086.14 13377.12 32595.73 159
PatchT82.68 27481.27 27686.89 29590.09 30870.94 32784.06 33890.15 32174.91 30885.63 18583.57 33769.37 24394.87 31265.19 32688.50 21094.84 187
VPNet88.20 16487.47 16290.39 19493.56 20379.46 21794.04 17595.54 16488.67 6886.96 15794.58 13669.33 24497.15 21684.05 15780.53 30294.56 201
ACMP84.23 889.01 14488.35 14090.99 17594.73 15681.27 17295.07 10295.89 13886.48 12383.67 24494.30 14269.33 24497.99 15387.10 12788.55 20793.72 246
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_post188.00 3149.81 36169.31 24695.53 29776.65 256
tpmvs83.35 27182.07 26987.20 28991.07 27771.00 32688.31 31291.70 28878.91 26680.49 28687.18 32369.30 24797.08 22368.12 31483.56 25893.51 254
thres20087.21 20386.24 20190.12 20695.36 12978.53 23793.26 20992.10 27686.42 12688.00 13991.11 25669.24 24898.00 15269.58 30491.04 17693.83 237
tfpn200view987.58 18686.64 18490.41 19395.99 10978.64 23494.58 13391.98 28286.94 11488.09 13491.77 23269.18 24998.10 13970.13 30091.10 17194.48 208
thres40087.62 18486.64 18490.57 18495.99 10978.64 23494.58 13391.98 28286.94 11488.09 13491.77 23269.18 24998.10 13970.13 30091.10 17194.96 181
tfpnnormal84.72 25783.23 26189.20 23792.79 22680.05 20494.48 13995.81 14382.38 21081.08 27891.21 24969.01 25196.95 23261.69 33880.59 29990.58 325
thres100view90087.63 18286.71 18190.38 19696.12 10078.55 23695.03 10691.58 29187.15 10788.06 13792.29 21368.91 25298.10 13970.13 30091.10 17194.48 208
thres600view787.65 17986.67 18390.59 18396.08 10478.72 23294.88 11591.58 29187.06 11088.08 13692.30 21268.91 25298.10 13970.05 30391.10 17194.96 181
PatchMatch-RL86.77 21885.54 22390.47 19295.88 11382.71 13990.54 27692.31 27179.82 25784.32 22891.57 24268.77 25496.39 26473.16 28493.48 14492.32 295
XVG-OURS89.40 13488.70 13291.52 15194.06 18181.46 16891.27 26596.07 12286.14 13288.89 12795.77 9768.73 25597.26 20987.39 11989.96 18695.83 155
TR-MVS86.78 21585.76 22089.82 21894.37 17378.41 24192.47 23592.83 25981.11 24486.36 17192.40 20868.73 25597.48 18373.75 28289.85 19093.57 250
tpm84.73 25684.02 25086.87 29690.33 30368.90 33689.06 30189.94 32780.85 24685.75 18089.86 28468.54 25795.97 28177.76 24584.05 25295.75 158
FMVSNet387.40 19486.11 20591.30 15993.79 19783.64 11094.20 16294.81 21283.89 17884.37 22391.87 23168.45 25896.56 25378.23 24185.36 24193.70 247
MVP-Stereo85.97 23384.86 23989.32 23490.92 28582.19 15192.11 24894.19 23078.76 27178.77 30491.63 23868.38 25996.56 25375.01 27393.95 13489.20 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat181.96 27880.27 28487.01 29191.09 27671.02 32587.38 32191.53 29466.25 34380.17 28986.35 32768.22 26096.15 27569.16 30582.29 27193.86 235
tpm284.08 26282.94 26487.48 28091.39 26471.27 32189.23 29990.37 31871.95 33184.64 21489.33 29167.30 26196.55 25575.17 27087.09 23294.63 194
test-LLR85.87 23585.41 22687.25 28590.95 28171.67 31989.55 29189.88 33083.41 19084.54 21787.95 31167.25 26295.11 30881.82 19293.37 14794.97 178
test0.0.03 182.41 27681.69 27284.59 31588.23 32772.89 30790.24 28187.83 34083.41 19079.86 29689.78 28667.25 26288.99 34865.18 32783.42 26191.90 301
CVMVSNet84.69 25884.79 24184.37 31791.84 24864.92 34893.70 19291.47 29666.19 34486.16 17695.28 10867.18 26493.33 32980.89 20890.42 18094.88 186
bset_n11_16_dypcd86.83 21285.55 22290.65 18288.22 32881.70 16088.88 30490.42 31685.26 15385.49 19290.69 26767.11 26597.02 22889.51 9484.39 24893.23 264
thisisatest051587.33 19585.99 20991.37 15793.49 20479.55 21590.63 27589.56 33580.17 25187.56 14890.86 26167.07 26698.28 13181.50 19993.02 15496.29 133
tttt051788.61 15487.78 15591.11 16794.96 14577.81 25795.35 8089.69 33285.09 15988.05 13894.59 13566.93 26798.48 11383.27 16692.13 16697.03 111
our_test_381.93 27980.46 28286.33 30188.46 32473.48 30288.46 31091.11 30276.46 29076.69 31688.25 30766.89 26894.36 31568.75 30779.08 31691.14 316
thisisatest053088.67 15287.61 15991.86 13994.87 15180.07 20294.63 13189.90 32984.00 17688.46 13193.78 16766.88 26998.46 11683.30 16592.65 15997.06 109
IterMVS-SCA-FT85.45 24184.53 24688.18 26591.71 25376.87 27490.19 28492.65 26585.40 15081.44 27390.54 26966.79 27095.00 31181.04 20381.05 29092.66 284
SCA86.32 22985.18 23189.73 22492.15 23676.60 27691.12 26891.69 28983.53 18785.50 19188.81 29766.79 27096.48 25876.65 25690.35 18196.12 140
D2MVS85.90 23485.09 23388.35 25990.79 29077.42 26791.83 25395.70 15180.77 24780.08 29390.02 28066.74 27296.37 26581.88 19187.97 22191.26 312
IterMVS84.88 25483.98 25287.60 27591.44 25976.03 28490.18 28592.41 26883.24 19581.06 27990.42 27366.60 27394.28 31879.46 22780.98 29592.48 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net87.26 19785.98 21091.08 16894.01 18483.10 12395.14 9994.94 19983.57 18484.37 22391.64 23566.59 27496.34 26878.23 24185.36 24193.79 238
test187.26 19785.98 21091.08 16894.01 18483.10 12395.14 9994.94 19983.57 18484.37 22391.64 23566.59 27496.34 26878.23 24185.36 24193.79 238
FMVSNet287.19 20485.82 21691.30 15994.01 18483.67 10994.79 12194.94 19983.57 18483.88 23892.05 22666.59 27496.51 25677.56 24885.01 24493.73 245
EPMVS83.90 26682.70 26887.51 27790.23 30672.67 31088.62 30881.96 35281.37 23785.01 21088.34 30566.31 27794.45 31375.30 26987.12 23195.43 167
ppachtmachnet_test81.84 28080.07 28887.15 29088.46 32474.43 29589.04 30292.16 27575.33 30377.75 30988.99 29466.20 27895.37 30465.12 32877.60 32191.65 304
MDA-MVSNet_test_wron79.21 30777.19 30985.29 31088.22 32872.77 30985.87 32890.06 32474.34 31362.62 34987.56 31766.14 27991.99 34066.90 32273.01 33091.10 319
YYNet179.22 30677.20 30885.28 31188.20 33072.66 31185.87 32890.05 32674.33 31462.70 34887.61 31666.09 28092.03 33966.94 31972.97 33191.15 315
JIA-IIPM81.04 29278.98 30287.25 28588.64 32173.48 30281.75 34689.61 33473.19 32282.05 26773.71 34766.07 28195.87 28671.18 29384.60 24792.41 291
RRT_MVS88.86 14787.68 15792.39 11792.02 24386.09 5394.38 15394.94 19985.45 14887.14 15593.84 16565.88 28297.11 22088.73 10286.77 23593.98 228
MSDG84.86 25583.09 26290.14 20593.80 19580.05 20489.18 30093.09 25478.89 26778.19 30591.91 22965.86 28397.27 20768.47 30988.45 21193.11 270
jajsoiax88.24 16387.50 16090.48 19190.89 28780.14 19995.31 8295.65 15784.97 16184.24 23294.02 15265.31 28497.42 19088.56 10488.52 20993.89 230
cascas86.43 22884.98 23590.80 18092.10 24080.92 18390.24 28195.91 13573.10 32383.57 24888.39 30465.15 28597.46 18584.90 14791.43 16994.03 226
ADS-MVSNet281.66 28479.71 29287.50 27891.35 26674.19 29783.33 34188.48 33872.90 32582.24 26585.77 33164.98 28693.20 33164.57 33083.74 25495.12 174
ADS-MVSNet81.56 28679.78 29086.90 29491.35 26671.82 31883.33 34189.16 33672.90 32582.24 26585.77 33164.98 28693.76 32464.57 33083.74 25495.12 174
pmmvs584.21 26182.84 26788.34 26088.95 31976.94 27392.41 23691.91 28675.63 30080.28 28891.18 25264.59 28895.57 29577.09 25483.47 25992.53 287
PVSNet78.82 1885.55 24084.65 24388.23 26494.72 15771.93 31787.12 32292.75 26278.80 27084.95 21190.53 27064.43 28996.71 24274.74 27493.86 13696.06 146
UGNet89.95 11688.95 12792.95 8994.51 16683.31 11995.70 6795.23 18689.37 4987.58 14793.94 15764.00 29098.78 9983.92 15896.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF85.07 25084.27 24787.48 28092.91 22470.62 32991.69 25992.46 26776.20 29682.67 26195.22 11163.94 29197.29 20677.51 24985.80 23994.53 202
mvs_tets88.06 16987.28 16790.38 19690.94 28379.88 21095.22 9295.66 15585.10 15884.21 23393.94 15763.53 29297.40 19788.50 10588.40 21393.87 233
Anonymous2023121186.59 22285.13 23290.98 17796.52 9081.50 16496.14 4596.16 11673.78 31783.65 24592.15 21763.26 29397.37 20182.82 17481.74 28194.06 224
dp81.47 28880.23 28585.17 31289.92 31265.49 34686.74 32390.10 32376.30 29481.10 27787.12 32462.81 29495.92 28368.13 31379.88 30994.09 222
LFMVS90.08 11289.13 12392.95 8996.71 8282.32 15096.08 5089.91 32886.79 11792.15 8196.81 5362.60 29598.34 12687.18 12293.90 13598.19 53
DWT-MVSNet_test84.95 25383.68 25588.77 24691.43 26273.75 30091.74 25690.98 30780.66 24883.84 23987.36 31962.44 29697.11 22078.84 23685.81 23895.46 165
Anonymous2023120681.03 29379.77 29184.82 31487.85 33370.26 33191.42 26392.08 27773.67 31877.75 30989.25 29262.43 29793.08 33261.50 33982.00 27791.12 317
VDD-MVS90.74 9789.92 10993.20 7796.27 9683.02 12795.73 6593.86 24188.42 7692.53 7296.84 5062.09 29898.64 10490.95 8092.62 16097.93 74
MS-PatchMatch85.05 25184.16 24887.73 27391.42 26378.51 23891.25 26693.53 24777.50 28380.15 29091.58 24061.99 29995.51 29975.69 26594.35 13289.16 335
OurMVSNet-221017-085.35 24484.64 24487.49 27990.77 29172.59 31394.01 17894.40 22284.72 16679.62 30093.17 18461.91 30096.72 24081.99 18881.16 28693.16 268
test20.0379.95 30179.08 30082.55 32585.79 34067.74 34191.09 26991.08 30381.23 24274.48 33089.96 28361.63 30190.15 34660.08 34276.38 32689.76 328
DSMNet-mixed76.94 31376.29 31278.89 32983.10 34956.11 35687.78 31679.77 35460.65 34875.64 32388.71 30061.56 30288.34 34960.07 34389.29 19992.21 298
Anonymous2024052988.09 16786.59 18892.58 10796.53 8981.92 15795.99 5495.84 14174.11 31589.06 12595.21 11261.44 30398.81 9783.67 16387.47 22597.01 112
IB-MVS80.51 1585.24 24883.26 26091.19 16292.13 23879.86 21191.75 25591.29 30083.28 19480.66 28388.49 30361.28 30498.46 11680.99 20679.46 31395.25 172
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS86.61 22085.27 23090.66 18191.33 26878.71 23390.40 27893.81 24485.34 15185.12 20889.57 28961.25 30597.11 22080.99 20689.59 19496.15 137
N_pmnet68.89 31968.44 32270.23 33589.07 31828.79 36588.06 31319.50 36569.47 33971.86 34084.93 33361.24 30691.75 34254.70 34877.15 32490.15 326
EU-MVSNet81.32 29080.95 27882.42 32688.50 32363.67 34993.32 20291.33 29864.02 34680.57 28592.83 19661.21 30792.27 33876.34 25980.38 30591.32 310
VDDNet89.56 12588.49 13892.76 9695.07 14082.09 15296.30 3593.19 25381.05 24591.88 8596.86 4961.16 30898.33 12888.43 10692.49 16397.84 80
PVSNet_073.20 2077.22 31274.83 31784.37 31790.70 29571.10 32483.09 34389.67 33372.81 32773.93 33283.13 33960.79 30993.70 32568.54 30850.84 35388.30 342
RRT_test8_iter0586.90 21086.36 19588.52 25593.00 22173.27 30494.32 15695.96 13085.50 14784.26 23192.86 19360.76 31097.70 16988.32 10782.29 27194.60 197
SixPastTwentyTwo83.91 26582.90 26586.92 29390.99 27970.67 32893.48 19891.99 28185.54 14577.62 31192.11 22160.59 31196.87 23776.05 26377.75 32093.20 266
gg-mvs-nofinetune81.77 28179.37 29488.99 24490.85 28977.73 26186.29 32679.63 35574.88 31083.19 25669.05 35060.34 31296.11 27675.46 26794.64 12593.11 270
MDA-MVSNet-bldmvs78.85 30876.31 31186.46 29889.76 31473.88 29988.79 30590.42 31679.16 26459.18 35088.33 30660.20 31394.04 32062.00 33768.96 34091.48 308
pmmvs683.42 26981.60 27388.87 24588.01 33177.87 25594.96 10894.24 22974.67 31178.80 30391.09 25760.17 31496.49 25777.06 25575.40 32892.23 297
ACMH80.38 1785.36 24383.68 25590.39 19494.45 17080.63 19094.73 12594.85 20882.09 21577.24 31292.65 20260.01 31597.58 17672.25 28884.87 24592.96 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND87.94 27189.73 31577.91 25287.80 31578.23 35780.58 28483.86 33559.88 31695.33 30571.20 29192.22 16590.60 324
UniMVSNet_ETH3D87.53 18886.37 19491.00 17492.44 23178.96 23194.74 12495.61 15984.07 17585.36 20594.52 13759.78 31797.34 20282.93 17087.88 22296.71 123
pmmvs-eth3d80.97 29478.72 30387.74 27284.99 34579.97 20990.11 28691.65 29075.36 30273.51 33386.03 32859.45 31893.96 32375.17 27072.21 33389.29 333
test_040281.30 29179.17 29987.67 27493.19 21278.17 24792.98 22191.71 28775.25 30476.02 32290.31 27459.23 31996.37 26550.22 35083.63 25788.47 341
DIV-MVS_2432*160080.20 29979.24 29683.07 32385.64 34265.29 34791.01 27093.93 23878.71 27376.32 31886.40 32659.20 32092.93 33472.59 28669.35 33791.00 320
FMVSNet185.85 23684.11 24991.08 16892.81 22583.10 12395.14 9994.94 19981.64 23182.68 26091.64 23559.01 32196.34 26875.37 26883.78 25393.79 238
COLMAP_ROBcopyleft80.39 1683.96 26382.04 27089.74 22295.28 13379.75 21394.25 15992.28 27275.17 30578.02 30893.77 16858.60 32297.84 16165.06 32985.92 23791.63 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+81.04 1485.05 25183.46 25989.82 21894.66 16179.37 22094.44 14494.12 23582.19 21478.04 30792.82 19758.23 32397.54 17973.77 28182.90 26792.54 286
CMPMVSbinary59.16 2180.52 29679.20 29884.48 31683.98 34667.63 34289.95 28993.84 24364.79 34566.81 34691.14 25557.93 32495.17 30676.25 26088.10 21790.65 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ITE_SJBPF88.24 26391.88 24777.05 27292.92 25785.54 14580.13 29293.30 17957.29 32596.20 27272.46 28784.71 24691.49 307
TESTMET0.1,183.74 26782.85 26686.42 30089.96 31171.21 32389.55 29187.88 33977.41 28483.37 25287.31 32056.71 32693.65 32680.62 21392.85 15894.40 211
UnsupCasMVSNet_eth80.07 30078.27 30485.46 30885.24 34472.63 31288.45 31194.87 20782.99 20071.64 34188.07 31056.34 32791.75 34273.48 28363.36 34792.01 300
K. test v381.59 28580.15 28785.91 30689.89 31369.42 33592.57 23387.71 34185.56 14473.44 33489.71 28755.58 32895.52 29877.17 25269.76 33692.78 282
test-mter84.54 25983.64 25787.25 28590.95 28171.67 31989.55 29189.88 33079.17 26384.54 21787.95 31155.56 32995.11 30881.82 19293.37 14794.97 178
lessismore_v086.04 30288.46 32468.78 33780.59 35373.01 33690.11 27855.39 33096.43 26375.06 27265.06 34492.90 277
MVS-HIRNet73.70 31672.20 31978.18 33191.81 25056.42 35582.94 34482.58 35055.24 35068.88 34366.48 35155.32 33195.13 30758.12 34588.42 21283.01 346
new-patchmatchnet76.41 31475.17 31680.13 32882.65 35159.61 35187.66 31991.08 30378.23 28069.85 34283.22 33854.76 33291.63 34464.14 33264.89 34589.16 335
Anonymous20240521187.68 17786.13 20392.31 12196.66 8380.74 18894.87 11691.49 29580.47 24989.46 11995.44 10454.72 33398.23 13282.19 18489.89 18897.97 70
XVG-ACMP-BASELINE86.00 23284.84 24089.45 23391.20 27078.00 25091.70 25895.55 16285.05 16082.97 25792.25 21554.49 33497.48 18382.93 17087.45 22792.89 278
USDC82.76 27281.26 27787.26 28491.17 27274.55 29289.27 29793.39 25078.26 27975.30 32592.08 22354.43 33596.63 24471.64 28985.79 24090.61 322
AllTest83.42 26981.39 27589.52 23095.01 14177.79 25893.12 21490.89 31177.41 28476.12 32093.34 17554.08 33697.51 18168.31 31184.27 25093.26 260
TestCases89.52 23095.01 14177.79 25890.89 31177.41 28476.12 32093.34 17554.08 33697.51 18168.31 31184.27 25093.26 260
KD-MVS_2432*160078.50 30976.02 31485.93 30486.22 33774.47 29384.80 33492.33 26979.29 26176.98 31485.92 32953.81 33893.97 32167.39 31657.42 35089.36 330
miper_refine_blended78.50 30976.02 31485.93 30486.22 33774.47 29384.80 33492.33 26979.29 26176.98 31485.92 32953.81 33893.97 32167.39 31657.42 35089.36 330
MIMVSNet82.59 27580.53 28088.76 24791.51 25878.32 24386.57 32590.13 32279.32 26080.70 28288.69 30252.98 34093.07 33366.03 32488.86 20594.90 185
FMVSNet581.52 28779.60 29387.27 28391.17 27277.95 25191.49 26292.26 27376.87 28976.16 31987.91 31351.67 34192.34 33767.74 31581.16 28691.52 306
testgi80.94 29580.20 28683.18 32287.96 33266.29 34391.28 26490.70 31583.70 18178.12 30692.84 19551.37 34290.82 34563.34 33382.46 27092.43 290
Anonymous2024052180.44 29779.21 29784.11 32085.75 34167.89 33992.86 22593.23 25275.61 30175.59 32487.47 31850.03 34394.33 31671.14 29481.21 28590.12 327
UnsupCasMVSNet_bld76.23 31573.27 31885.09 31383.79 34772.92 30685.65 33193.47 24971.52 33268.84 34479.08 34549.77 34493.21 33066.81 32360.52 34989.13 337
OpenMVS_ROBcopyleft74.94 1979.51 30477.03 31086.93 29287.00 33476.23 28392.33 24090.74 31468.93 34074.52 32988.23 30849.58 34596.62 24557.64 34684.29 24987.94 343
TDRefinement79.81 30277.34 30687.22 28879.24 35375.48 28993.12 21492.03 27976.45 29175.01 32691.58 24049.19 34696.44 26270.22 29969.18 33989.75 329
MIMVSNet179.38 30577.28 30785.69 30786.35 33673.67 30191.61 26192.75 26278.11 28272.64 33788.12 30948.16 34791.97 34160.32 34177.49 32291.43 309
MVS_030483.46 26881.92 27188.10 26790.63 29777.49 26693.26 20993.75 24580.04 25480.44 28787.24 32247.94 34895.55 29675.79 26488.16 21691.26 312
LF4IMVS80.37 29879.07 30184.27 31986.64 33569.87 33489.39 29691.05 30576.38 29274.97 32790.00 28147.85 34994.25 31974.55 27780.82 29788.69 339
EG-PatchMatch MVS82.37 27780.34 28388.46 25690.27 30479.35 22192.80 22794.33 22577.14 28873.26 33590.18 27647.47 35096.72 24070.25 29787.32 23089.30 332
TinyColmap79.76 30377.69 30585.97 30391.71 25373.12 30589.55 29190.36 31975.03 30672.03 33990.19 27546.22 35196.19 27463.11 33481.03 29188.59 340
tmp_tt35.64 32939.24 33124.84 34314.87 36523.90 36662.71 35551.51 3646.58 36136.66 35762.08 35444.37 35230.34 36252.40 34922.00 35920.27 357
new_pmnet72.15 31770.13 32078.20 33082.95 35065.68 34483.91 33982.40 35162.94 34764.47 34779.82 34442.85 35386.26 35157.41 34774.44 32982.65 347
pmmvs371.81 31868.71 32181.11 32775.86 35470.42 33086.74 32383.66 34958.95 34968.64 34580.89 34336.93 35489.52 34763.10 33563.59 34683.39 345
PM-MVS78.11 31176.12 31384.09 32183.54 34870.08 33288.97 30385.27 34779.93 25574.73 32886.43 32534.70 35593.48 32779.43 23072.06 33488.72 338
ambc83.06 32479.99 35263.51 35077.47 35092.86 25874.34 33184.45 33428.74 35695.06 31073.06 28568.89 34190.61 322
DeepMVS_CXcopyleft56.31 34074.23 35551.81 35856.67 36344.85 35448.54 35475.16 34627.87 35758.74 36040.92 35352.22 35258.39 353
FPMVS64.63 32162.55 32370.88 33470.80 35656.71 35384.42 33784.42 34851.78 35249.57 35281.61 34223.49 35881.48 35440.61 35476.25 32774.46 350
ANet_high58.88 32354.22 32772.86 33356.50 36356.67 35480.75 34886.00 34473.09 32437.39 35664.63 35322.17 35979.49 35643.51 35223.96 35782.43 348
EMVS42.07 32841.12 33044.92 34263.45 36135.56 36473.65 35163.48 36033.05 35826.88 36145.45 35821.27 36067.14 35819.80 35923.02 35832.06 356
Gipumacopyleft57.99 32454.91 32667.24 33788.51 32265.59 34552.21 35790.33 32043.58 35542.84 35551.18 35620.29 36185.07 35234.77 35570.45 33551.05 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 32742.29 32946.03 34165.58 35937.41 36273.51 35264.62 35933.99 35728.47 36047.87 35719.90 36267.91 35722.23 35824.45 35632.77 355
PMMVS259.60 32256.40 32569.21 33668.83 35746.58 36073.02 35477.48 35855.07 35149.21 35372.95 34917.43 36380.04 35549.32 35144.33 35480.99 349
LCM-MVSNet66.00 32062.16 32477.51 33264.51 36058.29 35283.87 34090.90 31048.17 35354.69 35173.31 34816.83 36486.75 35065.47 32561.67 34887.48 344
PMVScopyleft47.18 2252.22 32548.46 32863.48 33845.72 36446.20 36173.41 35378.31 35641.03 35630.06 35865.68 3526.05 36583.43 35330.04 35665.86 34360.80 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 32638.59 33257.77 33956.52 36248.77 35955.38 35658.64 36229.33 35928.96 35952.65 3554.68 36664.62 35928.11 35733.07 35559.93 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d21.27 33120.48 33423.63 34468.59 35836.41 36349.57 3586.85 3669.37 3607.89 3624.46 3644.03 36731.37 36117.47 36016.07 3603.12 358
test1238.76 33311.22 3361.39 3450.85 3670.97 36785.76 3300.35 3680.54 3632.45 3648.14 3630.60 3680.48 3632.16 3620.17 3622.71 359
testmvs8.92 33211.52 3351.12 3461.06 3660.46 36886.02 3270.65 3670.62 3622.74 3639.52 3620.31 3690.45 3642.38 3610.39 3612.46 360
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re7.82 33410.43 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36593.88 1620.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
IU-MVS98.77 486.00 5496.84 6381.26 24097.26 695.50 799.13 399.03 4
save fliter97.85 4885.63 6895.21 9396.82 6789.44 45
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
GSMVS96.12 140
test_part298.55 1187.22 1696.40 11
MTGPAbinary96.97 49
MTMP96.16 4360.64 361
gm-plane-assit89.60 31668.00 33877.28 28788.99 29497.57 17779.44 229
test9_res91.91 5998.71 3098.07 63
agg_prior290.54 8598.68 3598.27 47
agg_prior97.38 6485.92 6096.72 7992.16 7998.97 80
test_prior485.96 5794.11 167
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
旧先验293.36 20171.25 33494.37 2697.13 21986.74 128
新几何293.11 216
无先验93.28 20896.26 10773.95 31699.05 6080.56 21496.59 126
原ACMM292.94 223
testdata298.75 10078.30 240
testdata192.15 24687.94 88
plane_prior794.70 15982.74 136
plane_prior596.22 11298.12 13788.15 10889.99 18494.63 194
plane_prior494.86 123
plane_prior382.75 13490.26 3086.91 160
plane_prior295.85 6190.81 17
plane_prior194.59 163
plane_prior82.73 13795.21 9389.66 4289.88 189
n20.00 369
nn0.00 369
door-mid85.49 345
test1196.57 92
door85.33 346
HQP5-MVS81.56 162
HQP-NCC94.17 17894.39 14988.81 6285.43 198
ACMP_Plane94.17 17894.39 14988.81 6285.43 198
BP-MVS87.11 125
HQP4-MVS85.43 19897.96 15594.51 204
HQP3-MVS96.04 12689.77 191
NP-MVS94.37 17382.42 14593.98 155
ACMMP++_ref87.47 225
ACMMP++88.01 220