This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145282.47 22097.09 997.07 4592.72 198.04 15892.70 4599.02 1298.86 10
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5698.29 197.49 590.75 2297.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
OPU-MVS96.21 398.00 4690.85 397.13 1397.08 4392.59 298.94 8792.25 5398.99 1498.84 13
SED-MVS95.91 296.28 294.80 3698.77 585.99 5897.13 1397.44 1490.31 3197.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_ONE98.77 585.99 5897.44 1490.26 3597.71 197.96 1092.31 499.38 32
test_0728_THIRD90.75 2297.04 1098.05 892.09 699.55 1595.64 699.13 399.13 2
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8397.51 489.13 6397.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6197.09 1596.73 8390.27 3397.04 1098.05 891.47 899.55 1595.62 899.08 798.45 37
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 6197.19 1097.47 1090.27 3397.64 498.13 191.47 8
test_241102_TWO97.44 1490.31 3197.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
test_one_060198.58 1285.83 6797.44 1491.05 1796.78 1398.06 691.45 11
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2497.47 1091.73 996.10 1796.69 6289.90 1299.30 4294.70 1298.04 7299.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11696.52 9880.00 21794.00 18797.08 4790.05 3795.65 2197.29 2889.66 1398.97 8393.95 2098.71 3498.50 27
SD-MVS94.96 1295.33 893.88 6597.25 7986.69 3296.19 4897.11 4690.42 3096.95 1297.27 2989.53 1496.91 24794.38 1698.85 1998.03 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9596.96 5792.09 395.32 2397.08 4389.49 1599.33 3995.10 1198.85 1998.66 19
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 597.40 2089.03 6696.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 4
MCST-MVS94.45 2194.20 3195.19 1198.46 2087.50 1595.00 11597.12 4487.13 11892.51 8396.30 8189.24 1799.34 3693.46 2898.62 4898.73 16
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5596.62 9588.14 9296.10 1796.96 5089.09 1898.94 8794.48 1598.68 3998.48 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8286.33 4797.33 697.30 2991.38 1395.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4497.28 3185.90 14597.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-293.74 4894.32 2292.01 13497.54 6378.37 25293.40 21097.19 3888.02 9494.99 2897.21 3488.35 2198.44 12294.07 1998.09 7099.23 1
9.1494.47 1897.79 5496.08 5697.44 1486.13 14395.10 2697.40 2388.34 2299.22 4993.25 3598.70 36
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7295.21 10195.47 17789.44 5295.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 29
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3297.48 987.76 10595.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 29
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6696.96 5791.75 894.02 4096.83 5588.12 2599.55 1593.41 3198.94 1698.28 53
agg_prior193.29 6292.97 6694.26 5897.38 7085.92 6393.92 19196.72 8581.96 23292.16 8896.23 8587.85 2698.97 8391.95 6798.55 5397.90 86
CSCG93.23 6593.05 6393.76 7298.04 4484.07 10396.22 4797.37 2184.15 18390.05 12495.66 10987.77 2799.15 5689.91 9798.27 6298.07 73
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 7896.93 6092.34 293.94 4196.58 7287.74 2899.44 3092.83 4098.40 5798.62 21
ETH3D-3000-0.194.61 1794.44 2095.12 1397.70 6087.71 1195.98 6397.44 1486.67 13195.25 2597.31 2787.73 2999.24 4793.11 3898.76 3098.40 40
TEST997.53 6486.49 4194.07 18096.78 7681.61 24592.77 7396.20 8887.71 3099.12 58
train_agg93.44 5793.08 6294.52 4897.53 6486.49 4194.07 18096.78 7681.86 23892.77 7396.20 8887.63 3199.12 5892.14 5898.69 3797.94 82
test_897.49 6786.30 5094.02 18596.76 7981.86 23892.70 7796.20 8887.63 3199.02 71
ZD-MVS98.15 3786.62 3797.07 4883.63 19494.19 3596.91 5287.57 3399.26 4691.99 6398.44 55
TSAR-MVS + GP.93.66 5193.41 5694.41 5596.59 9286.78 2894.40 15593.93 24789.77 4694.21 3495.59 11287.35 3498.61 11092.72 4396.15 11397.83 91
APD-MVScopyleft94.24 3194.07 3794.75 3998.06 4386.90 2395.88 6796.94 5985.68 15195.05 2797.18 3887.31 3599.07 6191.90 7198.61 4998.28 53
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3 D test640093.64 5293.22 5994.92 2297.79 5486.84 2495.31 9097.26 3282.67 21893.81 4496.29 8287.29 3699.27 4589.87 9898.67 4198.65 20
ETH3D cwj APD-0.1693.91 4393.53 5495.06 1596.76 8787.78 994.92 12097.21 3784.33 18193.89 4397.09 4287.20 3799.29 4491.90 7198.44 5598.12 69
Regformer-294.33 2894.22 2894.68 4195.54 13486.75 3194.57 14396.70 8891.84 694.41 3096.56 7487.19 3899.13 5793.50 2797.65 8598.16 65
segment_acmp87.16 39
Regformer-194.22 3394.13 3594.51 4995.54 13486.36 4694.57 14396.44 10491.69 1194.32 3396.56 7487.05 4099.03 6793.35 3297.65 8598.15 66
testtj94.39 2694.18 3295.00 1898.24 3386.77 3096.16 4997.23 3587.28 11694.85 2997.04 4686.99 4199.52 2391.54 7798.33 6098.71 17
旧先验196.79 8681.81 16595.67 16196.81 5786.69 4297.66 8496.97 125
test_prior393.60 5493.53 5493.82 6797.29 7584.49 9094.12 17396.88 6487.67 10892.63 7896.39 7986.62 4398.87 9191.50 7898.67 4198.11 71
test_prior294.12 17387.67 10892.63 7896.39 7986.62 4391.50 7898.67 41
CDPH-MVS92.83 6992.30 7594.44 5197.79 5486.11 5494.06 18296.66 9280.09 26592.77 7396.63 6986.62 4399.04 6687.40 12698.66 4498.17 64
DPM-MVS92.58 7391.74 8195.08 1496.19 10689.31 592.66 23996.56 10183.44 20091.68 10295.04 12686.60 4698.99 8085.60 15097.92 7796.93 127
DELS-MVS93.43 5993.25 5893.97 6295.42 13885.04 7993.06 22997.13 4390.74 2491.84 9695.09 12586.32 4799.21 5091.22 8298.45 5497.65 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS94.47 1994.28 2595.03 1698.52 1686.96 1996.85 2797.32 2788.24 8793.15 6297.04 4686.17 4899.62 192.40 4998.81 2298.52 25
HFP-MVS94.52 1894.40 2194.86 2798.61 1086.81 2696.94 1997.34 2288.63 7593.65 4897.21 3486.10 4999.49 2692.35 5198.77 2898.30 49
#test#94.32 2994.14 3494.86 2798.61 1086.81 2696.43 3597.34 2287.51 11193.65 4897.21 3486.10 4999.49 2691.68 7598.77 2898.30 49
MVS_111021_HR93.45 5693.31 5793.84 6696.99 8284.84 8093.24 22297.24 3388.76 7291.60 10395.85 10286.07 5198.66 10591.91 6898.16 6698.03 77
Regformer-493.91 4393.81 4594.19 6095.36 13985.47 7594.68 13596.41 10791.60 1293.75 4596.71 6085.95 5299.10 6093.21 3696.65 10498.01 79
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7697.34 2288.28 8695.30 2497.67 1585.90 5399.54 1993.91 2198.95 1598.60 22
Regformer-393.68 5093.64 5393.81 7095.36 13984.61 8494.68 13595.83 15091.27 1493.60 5196.71 6085.75 5498.86 9492.87 3996.65 10497.96 81
CS-MVS94.05 3794.45 1992.84 9796.57 9582.09 15897.63 396.97 5391.71 1093.51 5796.22 8685.65 5598.24 13593.60 2698.17 6498.20 62
PHI-MVS93.89 4593.65 5294.62 4596.84 8586.43 4396.69 3197.49 585.15 16793.56 5496.28 8385.60 5699.31 4192.45 4698.79 2398.12 69
MP-MVS-pluss94.21 3494.00 4094.85 2998.17 3686.65 3594.82 12797.17 4286.26 13992.83 7197.87 1285.57 5799.56 1094.37 1798.92 1798.34 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3493.97 4194.90 2698.41 2486.82 2596.54 3497.19 3888.24 8793.26 5896.83 5585.48 5899.59 791.43 8198.40 5798.30 49
MP-MVScopyleft94.25 3094.07 3794.77 3898.47 1986.31 4996.71 3096.98 5289.04 6591.98 9297.19 3785.43 5999.56 1092.06 6298.79 2398.44 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3697.48 6886.78 2895.65 8096.89 6389.40 5592.81 7296.97 4985.37 6099.24 4790.87 9098.69 3798.38 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R94.43 2394.27 2794.92 2298.65 886.67 3496.92 2397.23 3588.60 7793.58 5297.27 2985.22 6199.54 1992.21 5498.74 3398.56 24
CP-MVS94.34 2794.21 3094.74 4098.39 2586.64 3697.60 497.24 3388.53 7992.73 7697.23 3285.20 6299.32 4092.15 5798.83 2198.25 58
test1294.34 5697.13 8086.15 5396.29 11391.04 11285.08 6399.01 7398.13 6897.86 89
ACMMPR94.43 2394.28 2594.91 2498.63 986.69 3296.94 1997.32 2788.63 7593.53 5597.26 3185.04 6499.54 1992.35 5198.78 2598.50 27
XVS94.45 2194.32 2294.85 2998.54 1486.60 3896.93 2197.19 3890.66 2792.85 6997.16 4085.02 6599.49 2691.99 6398.56 5198.47 33
X-MVStestdata88.31 16986.13 21294.85 2998.54 1486.60 3896.93 2197.19 3890.66 2792.85 6923.41 37285.02 6599.49 2691.99 6398.56 5198.47 33
MSLP-MVS++93.72 4994.08 3692.65 10897.31 7383.43 12195.79 7197.33 2590.03 3893.58 5296.96 5084.87 6797.76 17492.19 5698.66 4496.76 131
HPM-MVScopyleft94.02 3993.88 4294.43 5398.39 2585.78 6997.25 997.07 4886.90 12692.62 8096.80 5984.85 6899.17 5392.43 4798.65 4698.33 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS94.23 3294.17 3394.43 5398.21 3585.78 6996.40 3896.90 6288.20 9094.33 3297.40 2384.75 6999.03 6793.35 3297.99 7398.48 29
PGM-MVS93.96 4293.72 4994.68 4198.43 2186.22 5295.30 9397.78 187.45 11493.26 5897.33 2684.62 7099.51 2490.75 9298.57 5098.32 48
EI-MVSNet-Vis-set93.01 6892.92 6793.29 7795.01 15383.51 11994.48 14795.77 15490.87 1892.52 8296.67 6484.50 7199.00 7891.99 6394.44 14197.36 107
zzz-MVS94.47 1994.30 2495.00 1898.42 2286.95 2095.06 11396.97 5391.07 1593.14 6397.56 1684.30 7299.56 1093.43 2998.75 3198.47 33
MTAPA94.42 2594.22 2895.00 1898.42 2286.95 2094.36 16396.97 5391.07 1593.14 6397.56 1684.30 7299.56 1093.43 2998.75 3198.47 33
test117293.97 4194.07 3793.66 7498.11 3983.45 12096.26 4496.84 6988.33 8394.19 3597.43 2084.24 7499.01 7393.26 3497.98 7498.52 25
SR-MVS-dyc-post93.82 4693.82 4493.82 6797.92 4784.57 8696.28 4296.76 7987.46 11293.75 4597.43 2084.24 7499.01 7392.73 4197.80 8097.88 87
ETV-MVS92.74 7192.66 7092.97 9195.20 14884.04 10595.07 11096.51 10290.73 2592.96 6791.19 26184.06 7698.34 12991.72 7496.54 10796.54 140
EI-MVSNet-UG-set92.74 7192.62 7193.12 8394.86 16483.20 12694.40 15595.74 15790.71 2692.05 9196.60 7184.00 7798.99 8091.55 7693.63 14997.17 116
mPP-MVS93.99 4093.78 4794.63 4498.50 1785.90 6696.87 2596.91 6188.70 7391.83 9897.17 3983.96 7899.55 1591.44 8098.64 4798.43 39
APD-MVS_3200maxsize93.78 4793.77 4893.80 7197.92 4784.19 10196.30 4096.87 6686.96 12293.92 4297.47 1883.88 7998.96 8692.71 4497.87 7898.26 57
CS-MVS-test93.62 5393.88 4292.86 9696.59 9282.12 15796.43 3596.57 9991.76 793.52 5694.41 14983.85 8098.24 13593.62 2598.17 6498.21 61
EIA-MVS91.95 8091.94 7891.98 13895.16 14980.01 21695.36 8796.73 8388.44 8089.34 13192.16 22883.82 8198.45 12189.35 10397.06 9397.48 104
EPP-MVSNet91.70 8691.56 8392.13 13295.88 12180.50 20297.33 695.25 19386.15 14189.76 12695.60 11183.42 8298.32 13287.37 12893.25 16097.56 102
UA-Net92.83 6992.54 7293.68 7396.10 11184.71 8395.66 7896.39 10991.92 493.22 6096.49 7683.16 8398.87 9184.47 16395.47 12197.45 106
UniMVSNet_NR-MVSNet89.92 12389.29 12591.81 15193.39 22083.72 11294.43 15397.12 4489.80 4286.46 17993.32 18983.16 8397.23 22484.92 15681.02 30394.49 219
DROMVSNet93.44 5793.71 5092.63 10995.21 14782.43 15097.27 896.71 8790.57 2992.88 6895.80 10483.16 8398.16 14293.68 2498.14 6797.31 108
RE-MVS-def93.68 5197.92 4784.57 8696.28 4296.76 7987.46 11293.75 4597.43 2082.94 8692.73 4197.80 8097.88 87
112190.42 11189.49 11793.20 8097.27 7784.46 9392.63 24095.51 17571.01 34891.20 11096.21 8782.92 8799.05 6380.56 22698.07 7196.10 154
新几何193.10 8497.30 7484.35 9995.56 16971.09 34791.26 10996.24 8482.87 8898.86 9479.19 24598.10 6996.07 156
原ACMM192.01 13497.34 7281.05 18696.81 7478.89 27990.45 11695.92 9982.65 8998.84 9980.68 22498.26 6396.14 149
casdiffmvs92.51 7492.43 7492.74 10394.41 18581.98 16294.54 14596.23 11989.57 5091.96 9396.17 9282.58 9098.01 16190.95 8895.45 12398.23 59
DeepC-MVS88.79 393.31 6192.99 6594.26 5896.07 11385.83 6794.89 12296.99 5189.02 6789.56 12797.37 2582.51 9199.38 3292.20 5598.30 6197.57 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast93.40 6093.22 5993.94 6498.36 2784.83 8197.15 1296.80 7585.77 14892.47 8497.13 4182.38 9299.07 6190.51 9498.40 5797.92 85
baseline92.39 7792.29 7692.69 10794.46 18281.77 16694.14 17296.27 11489.22 5991.88 9496.00 9682.35 9397.99 16391.05 8495.27 12898.30 49
canonicalmvs93.27 6392.75 6994.85 2995.70 12887.66 1396.33 3996.41 10790.00 3994.09 3894.60 14482.33 9498.62 10992.40 4992.86 16898.27 55
DP-MVS Recon91.95 8091.28 8693.96 6398.33 2985.92 6394.66 13896.66 9282.69 21790.03 12595.82 10382.30 9599.03 6784.57 16296.48 11096.91 128
PAPR90.02 11889.27 12792.29 12895.78 12480.95 19092.68 23896.22 12081.91 23586.66 17793.75 18182.23 9698.44 12279.40 24494.79 13197.48 104
MVS_Test91.31 9291.11 8991.93 14294.37 18680.14 20893.46 20995.80 15286.46 13491.35 10893.77 17982.21 9798.09 15387.57 12494.95 13097.55 103
nrg03091.08 9790.39 9993.17 8293.07 22986.91 2296.41 3796.26 11588.30 8588.37 14494.85 13482.19 9897.64 18591.09 8382.95 27494.96 193
UniMVSNet (Re)89.80 12689.07 13092.01 13493.60 21584.52 8994.78 13097.47 1089.26 5886.44 18292.32 22382.10 9997.39 21284.81 15980.84 30794.12 231
testdata90.49 19996.40 10077.89 26495.37 18972.51 34093.63 5096.69 6282.08 10097.65 18383.08 17897.39 8895.94 160
PAPM_NR91.22 9490.78 9792.52 11597.60 6281.46 17594.37 16296.24 11886.39 13787.41 16194.80 13682.06 10198.48 11682.80 18695.37 12497.61 98
MG-MVS91.77 8391.70 8292.00 13797.08 8180.03 21593.60 20495.18 19787.85 10290.89 11396.47 7782.06 10198.36 12685.07 15497.04 9497.62 97
CANet93.54 5593.20 6194.55 4795.65 12985.73 7194.94 11896.69 9091.89 590.69 11495.88 10181.99 10399.54 1993.14 3797.95 7698.39 41
FC-MVSNet-test90.27 11390.18 10490.53 19593.71 21179.85 22195.77 7297.59 289.31 5786.27 18594.67 14181.93 10497.01 24184.26 16588.09 23094.71 204
FIs90.51 11090.35 10090.99 18393.99 20180.98 18895.73 7397.54 389.15 6286.72 17694.68 14081.83 10597.24 22385.18 15388.31 22694.76 203
ACMMPcopyleft93.24 6492.88 6894.30 5798.09 4285.33 7796.86 2697.45 1388.33 8390.15 12397.03 4881.44 10699.51 2490.85 9195.74 11698.04 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+91.59 8891.11 8993.01 8994.35 18983.39 12394.60 14095.10 20187.10 11990.57 11593.10 20081.43 10798.07 15689.29 10494.48 13997.59 100
MVS_111021_LR92.47 7592.29 7692.98 9095.99 11784.43 9793.08 22796.09 12888.20 9091.12 11195.72 10881.33 10897.76 17491.74 7397.37 8996.75 132
mvs_anonymous89.37 14189.32 12489.51 24393.47 21874.22 30891.65 27094.83 21882.91 21385.45 20793.79 17781.23 10996.36 27986.47 14094.09 14397.94 82
PVSNet_BlendedMVS89.98 11989.70 11490.82 18796.12 10881.25 18093.92 19196.83 7183.49 19989.10 13492.26 22681.04 11098.85 9786.72 13887.86 23492.35 306
PVSNet_Blended90.73 10290.32 10191.98 13896.12 10881.25 18092.55 24496.83 7182.04 23089.10 13492.56 21681.04 11098.85 9786.72 13895.91 11495.84 165
alignmvs93.08 6792.50 7394.81 3595.62 13187.61 1495.99 6196.07 13089.77 4694.12 3794.87 13180.56 11298.66 10592.42 4893.10 16398.15 66
abl_693.18 6693.05 6393.57 7697.52 6684.27 10095.53 8496.67 9187.85 10293.20 6197.22 3380.35 11399.18 5291.91 6897.21 9097.26 111
API-MVS90.66 10590.07 10792.45 11896.36 10284.57 8696.06 5995.22 19682.39 22189.13 13394.27 15780.32 11498.46 11880.16 23396.71 10294.33 224
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9996.39 10183.17 12794.87 12496.66 9283.29 20489.27 13294.46 14880.29 11599.17 5387.57 12495.37 12496.05 158
test22296.55 9681.70 16792.22 25495.01 20468.36 35390.20 12096.14 9380.26 11697.80 8096.05 158
diffmvs91.37 9191.23 8791.77 15293.09 22880.27 20592.36 24995.52 17487.03 12191.40 10794.93 12880.08 11797.44 20092.13 5994.56 13797.61 98
Test By Simon80.02 118
IterMVS-LS88.36 16887.91 16289.70 23693.80 20878.29 25593.73 19895.08 20385.73 14984.75 22591.90 24279.88 11996.92 24683.83 17082.51 28093.89 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 14588.86 13789.80 23291.84 26178.30 25493.70 20195.01 20485.73 14987.15 16595.28 11779.87 12097.21 22683.81 17187.36 23993.88 244
TAPA-MVS84.62 688.16 17387.01 18191.62 15696.64 9080.65 19794.39 15796.21 12376.38 30486.19 18795.44 11379.75 12198.08 15562.75 34895.29 12696.13 150
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+89.41 13888.64 13991.71 15494.74 16880.81 19493.54 20595.10 20183.11 20786.82 17590.67 27979.74 12297.75 17780.51 22893.55 15196.57 138
pcd_1.5k_mvsjas6.64 3468.86 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 37879.70 1230.00 3790.00 3770.00 3770.00 375
PS-MVSNAJss89.97 12089.62 11591.02 18091.90 25980.85 19395.26 9895.98 13686.26 13986.21 18694.29 15479.70 12397.65 18388.87 10988.10 22894.57 212
PS-MVSNAJ91.18 9590.92 9391.96 14095.26 14582.60 14992.09 25995.70 15986.27 13891.84 9692.46 21879.70 12398.99 8089.08 10695.86 11594.29 225
xiu_mvs_v2_base91.13 9690.89 9591.86 14694.97 15682.42 15192.24 25395.64 16686.11 14491.74 10193.14 19879.67 12698.89 9089.06 10795.46 12294.28 226
WR-MVS_H87.80 18287.37 17289.10 25193.23 22478.12 25895.61 8197.30 2987.90 9883.72 25492.01 23979.65 12796.01 29276.36 27080.54 31193.16 280
EPNet91.79 8291.02 9294.10 6190.10 32085.25 7896.03 6092.05 28892.83 187.39 16495.78 10579.39 12899.01 7388.13 11897.48 8798.05 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth87.22 21086.62 19589.02 25492.13 25177.40 27890.91 28194.81 22081.28 25184.32 24090.08 29079.26 12996.62 25783.81 17182.94 27593.04 285
miper_enhance_ethall86.90 21986.18 21189.06 25291.66 26977.58 27590.22 29394.82 21979.16 27684.48 23189.10 30479.19 13096.66 25584.06 16782.94 27592.94 288
NR-MVSNet88.58 16487.47 17091.93 14293.04 23184.16 10294.77 13196.25 11789.05 6480.04 30693.29 19279.02 13197.05 23881.71 20880.05 31894.59 210
TAMVS89.21 14388.29 15291.96 14093.71 21182.62 14893.30 21694.19 23982.22 22587.78 15593.94 16878.83 13296.95 24477.70 25892.98 16696.32 143
c3_l87.14 21586.50 20089.04 25392.20 24877.26 27991.22 27794.70 22482.01 23184.34 23990.43 28378.81 13396.61 26083.70 17381.09 30093.25 274
1112_ss88.42 16587.33 17391.72 15394.92 16080.98 18892.97 23294.54 22778.16 29383.82 25293.88 17378.78 13497.91 16979.45 24089.41 20696.26 146
CDS-MVSNet89.45 13588.51 14392.29 12893.62 21483.61 11793.01 23094.68 22581.95 23387.82 15493.24 19478.69 13596.99 24280.34 23093.23 16196.28 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS89.60 12988.92 13491.67 15595.47 13781.15 18492.38 24894.78 22283.11 20789.06 13694.32 15278.67 13696.61 26081.57 20990.89 18897.24 112
CPTT-MVS91.99 7991.80 8092.55 11398.24 3381.98 16296.76 2996.49 10381.89 23790.24 11996.44 7878.59 13798.61 11089.68 9997.85 7997.06 120
IS-MVSNet91.43 8991.09 9192.46 11795.87 12381.38 17896.95 1893.69 25689.72 4889.50 12995.98 9778.57 13897.77 17383.02 18096.50 10998.22 60
OMC-MVS91.23 9390.62 9893.08 8596.27 10484.07 10393.52 20695.93 14086.95 12389.51 12896.13 9478.50 13998.35 12885.84 14792.90 16796.83 130
PCF-MVS84.11 1087.74 18486.08 21692.70 10694.02 19684.43 9789.27 30795.87 14773.62 33184.43 23494.33 15178.48 14098.86 9470.27 30894.45 14094.81 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LCM-MVSNet-Re88.30 17088.32 15188.27 27294.71 17172.41 33093.15 22390.98 31787.77 10479.25 31491.96 24078.35 14195.75 30483.04 17995.62 11796.65 135
HY-MVS83.01 1289.03 15087.94 16192.29 12894.86 16482.77 13892.08 26094.49 22881.52 24786.93 17092.79 21278.32 14298.23 13779.93 23590.55 18995.88 163
GeoE90.05 11789.43 12091.90 14595.16 14980.37 20495.80 7094.65 22683.90 18887.55 16094.75 13778.18 14397.62 18781.28 21293.63 14997.71 95
MVS87.44 20086.10 21591.44 16392.61 24283.62 11692.63 24095.66 16367.26 35481.47 28492.15 22977.95 14498.22 13979.71 23795.48 12092.47 301
MVSFormer91.68 8791.30 8592.80 9993.86 20583.88 10895.96 6495.90 14484.66 17791.76 9994.91 12977.92 14597.30 21589.64 10097.11 9197.24 112
lupinMVS90.92 9890.21 10293.03 8893.86 20583.88 10892.81 23693.86 25179.84 26891.76 9994.29 15477.92 14598.04 15890.48 9597.11 9197.17 116
Test_1112_low_res87.65 18786.51 19991.08 17694.94 15979.28 23591.77 26494.30 23576.04 30983.51 26192.37 22177.86 14797.73 17878.69 24989.13 21396.22 147
VNet92.24 7891.91 7993.24 7996.59 9283.43 12194.84 12696.44 10489.19 6194.08 3995.90 10077.85 14898.17 14188.90 10893.38 15798.13 68
DU-MVS89.34 14288.50 14491.85 14893.04 23183.72 11294.47 15096.59 9789.50 5186.46 17993.29 19277.25 14997.23 22484.92 15681.02 30394.59 210
Baseline_NR-MVSNet87.07 21686.63 19488.40 26891.44 27277.87 26594.23 16992.57 27684.12 18485.74 19392.08 23577.25 14996.04 28982.29 19479.94 31991.30 323
jason90.80 9990.10 10692.90 9493.04 23183.53 11893.08 22794.15 24180.22 26291.41 10694.91 12976.87 15197.93 16890.28 9696.90 9797.24 112
jason: jason.
PAPM86.68 22885.39 23690.53 19593.05 23079.33 23489.79 30094.77 22378.82 28181.95 28193.24 19476.81 15297.30 21566.94 33193.16 16294.95 196
Vis-MVSNet (Re-imp)89.59 13089.44 11990.03 22095.74 12575.85 29695.61 8190.80 32387.66 11087.83 15395.40 11676.79 15396.46 27378.37 25096.73 10197.80 92
baseline188.10 17487.28 17590.57 19394.96 15780.07 21194.27 16691.29 31086.74 12887.41 16194.00 16576.77 15496.20 28480.77 22179.31 32695.44 178
114514_t89.51 13288.50 14492.54 11498.11 3981.99 16195.16 10696.36 11170.19 35085.81 19195.25 11976.70 15598.63 10882.07 19796.86 10097.00 124
PLCcopyleft84.53 789.06 14988.03 15792.15 13197.27 7782.69 14594.29 16595.44 18379.71 27084.01 24894.18 15976.68 15698.75 10377.28 26293.41 15695.02 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet88.84 15687.95 16091.49 16092.68 24183.01 13394.92 12096.31 11289.88 4185.53 20093.85 17576.63 15796.96 24381.91 20179.87 32194.50 217
MAR-MVS90.30 11289.37 12293.07 8796.61 9184.48 9295.68 7695.67 16182.36 22387.85 15292.85 20676.63 15798.80 10180.01 23496.68 10395.91 161
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS88.38 16687.67 16690.52 19793.30 22380.18 20693.26 21995.96 13888.57 7885.47 20692.81 21076.12 15996.91 24781.24 21382.29 28294.47 222
v887.50 19986.71 18989.89 22691.37 27879.40 22894.50 14695.38 18784.81 17483.60 25991.33 25676.05 16097.42 20282.84 18480.51 31592.84 292
v14887.04 21786.32 20689.21 24790.94 29677.26 27993.71 20094.43 23084.84 17384.36 23890.80 27576.04 16197.05 23882.12 19679.60 32393.31 271
eth_miper_zixun_eth86.50 23485.77 22888.68 26291.94 25875.81 29790.47 28794.89 21382.05 22884.05 24690.46 28275.96 16296.77 25182.76 18779.36 32593.46 268
3Dnovator+87.14 492.42 7691.37 8495.55 695.63 13088.73 697.07 1796.77 7890.84 1984.02 24796.62 7075.95 16399.34 3687.77 12197.68 8398.59 23
h-mvs3390.80 9990.15 10592.75 10296.01 11582.66 14695.43 8695.53 17389.80 4293.08 6595.64 11075.77 16499.00 7892.07 6078.05 33096.60 136
hse-mvs289.88 12589.34 12391.51 15994.83 16681.12 18593.94 19093.91 25089.80 4293.08 6593.60 18475.77 16497.66 18192.07 6077.07 33795.74 170
BH-untuned88.60 16388.13 15690.01 22395.24 14678.50 24893.29 21794.15 24184.75 17584.46 23293.40 18675.76 16697.40 20977.59 25994.52 13894.12 231
DIV-MVS_self_test86.53 23285.78 22688.75 25992.02 25676.45 28990.74 28394.30 23581.83 24083.34 26590.82 27475.75 16796.57 26381.73 20781.52 29593.24 275
BH-w/o87.57 19587.05 18089.12 25094.90 16277.90 26392.41 24693.51 25882.89 21483.70 25591.34 25575.75 16797.07 23675.49 27893.49 15392.39 304
cl____86.52 23385.78 22688.75 25992.03 25576.46 28890.74 28394.30 23581.83 24083.34 26590.78 27675.74 16996.57 26381.74 20681.54 29493.22 277
cdsmvs_eth3d_5k22.14 34129.52 3440.00 3600.00 3830.00 3840.00 37195.76 1550.00 3780.00 37994.29 15475.66 1700.00 3790.00 3770.00 3770.00 375
CNLPA89.07 14887.98 15992.34 12496.87 8484.78 8294.08 17993.24 26181.41 24884.46 23295.13 12475.57 17196.62 25777.21 26393.84 14795.61 174
CHOSEN 1792x268888.84 15687.69 16492.30 12796.14 10781.42 17790.01 29795.86 14874.52 32487.41 16193.94 16875.46 17298.36 12680.36 22995.53 11897.12 119
CP-MVSNet87.63 19087.26 17788.74 26193.12 22776.59 28795.29 9596.58 9888.43 8183.49 26292.98 20375.28 17395.83 30078.97 24681.15 29993.79 250
v1087.25 20786.38 20189.85 22791.19 28479.50 22594.48 14795.45 18183.79 19183.62 25891.19 26175.13 17497.42 20281.94 20080.60 30992.63 297
Vis-MVSNetpermissive91.75 8491.23 8793.29 7795.32 14283.78 11196.14 5295.98 13689.89 4090.45 11696.58 7275.09 17598.31 13384.75 16096.90 9797.78 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss88.93 15488.26 15490.94 18694.05 19580.78 19591.71 26795.38 18781.55 24688.63 13993.91 17275.04 17695.47 31582.47 19091.61 17996.57 138
v114487.61 19386.79 18790.06 21991.01 29179.34 23193.95 18995.42 18683.36 20385.66 19691.31 25974.98 17797.42 20283.37 17582.06 28593.42 269
miper_lstm_enhance85.27 25684.59 25487.31 29391.28 28274.63 30387.69 32994.09 24581.20 25581.36 28789.85 29674.97 17894.30 32981.03 21779.84 32293.01 286
test_yl90.69 10390.02 11192.71 10495.72 12682.41 15394.11 17595.12 19985.63 15291.49 10494.70 13874.75 17998.42 12486.13 14392.53 17297.31 108
DCV-MVSNet90.69 10390.02 11192.71 10495.72 12682.41 15394.11 17595.12 19985.63 15291.49 10494.70 13874.75 17998.42 12486.13 14392.53 17297.31 108
V4287.68 18586.86 18390.15 21490.58 31180.14 20894.24 16895.28 19283.66 19385.67 19591.33 25674.73 18197.41 20784.43 16481.83 28992.89 290
XVG-OURS-SEG-HR89.95 12189.45 11891.47 16294.00 20081.21 18391.87 26296.06 13285.78 14788.55 14095.73 10774.67 18297.27 21988.71 11189.64 20495.91 161
v2v48287.84 18087.06 17990.17 21290.99 29279.23 23894.00 18795.13 19884.87 17285.53 20092.07 23774.45 18397.45 19884.71 16181.75 29193.85 248
CLD-MVS89.47 13488.90 13591.18 17194.22 19082.07 16092.13 25796.09 12887.90 9885.37 21692.45 21974.38 18497.56 19087.15 13190.43 19093.93 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS87.65 18786.85 18490.03 22092.14 25080.60 20093.76 19795.23 19482.94 21284.60 22794.02 16374.27 18595.49 31481.04 21583.68 26794.01 239
HQP_MVS90.60 10990.19 10391.82 14994.70 17282.73 14295.85 6896.22 12090.81 2086.91 17294.86 13274.23 18698.12 14388.15 11689.99 19594.63 206
plane_prior694.52 17882.75 13974.23 186
v14419287.19 21386.35 20489.74 23390.64 30978.24 25693.92 19195.43 18481.93 23485.51 20291.05 26974.21 18897.45 19882.86 18381.56 29393.53 263
VPA-MVSNet89.62 12888.96 13291.60 15793.86 20582.89 13795.46 8597.33 2587.91 9788.43 14393.31 19074.17 18997.40 20987.32 12982.86 27994.52 215
ab-mvs89.41 13888.35 14892.60 11095.15 15182.65 14792.20 25595.60 16883.97 18788.55 14093.70 18374.16 19098.21 14082.46 19189.37 20796.94 126
131487.51 19786.57 19790.34 20992.42 24579.74 22392.63 24095.35 19178.35 28980.14 30391.62 25174.05 19197.15 22881.05 21493.53 15294.12 231
test_djsdf89.03 15088.64 13990.21 21190.74 30679.28 23595.96 6495.90 14484.66 17785.33 21892.94 20474.02 19297.30 21589.64 10088.53 21994.05 237
cl2286.78 22485.98 21989.18 24992.34 24677.62 27490.84 28294.13 24381.33 25083.97 24990.15 28873.96 19396.60 26284.19 16682.94 27593.33 270
AdaColmapbinary89.89 12489.07 13092.37 12397.41 6983.03 13194.42 15495.92 14182.81 21586.34 18494.65 14273.89 19499.02 7180.69 22395.51 11995.05 188
HyFIR lowres test88.09 17586.81 18591.93 14296.00 11680.63 19890.01 29795.79 15373.42 33287.68 15792.10 23473.86 19597.96 16580.75 22291.70 17897.19 115
HQP2-MVS73.83 196
HQP-MVS89.80 12689.28 12691.34 16694.17 19181.56 16994.39 15796.04 13488.81 6985.43 21093.97 16773.83 19697.96 16587.11 13389.77 20294.50 217
3Dnovator86.66 591.73 8590.82 9694.44 5194.59 17686.37 4597.18 1197.02 5089.20 6084.31 24296.66 6573.74 19899.17 5386.74 13697.96 7597.79 93
EPNet_dtu86.49 23685.94 22288.14 27790.24 31872.82 32294.11 17592.20 28486.66 13279.42 31392.36 22273.52 19995.81 30271.26 30293.66 14895.80 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)84.43 26983.06 27288.54 26591.72 26578.44 24995.18 10492.82 27082.73 21679.67 31092.12 23173.49 20095.96 29471.10 30768.73 35591.21 326
Effi-MVS+-dtu88.65 16188.35 14889.54 24093.33 22176.39 29094.47 15094.36 23287.70 10685.43 21089.56 30173.45 20197.26 22185.57 15191.28 18194.97 190
mvs-test189.45 13589.14 12890.38 20693.33 22177.63 27394.95 11794.36 23287.70 10687.10 16892.81 21073.45 20198.03 16085.57 15193.04 16495.48 176
baseline286.50 23485.39 23689.84 22891.12 28876.70 28591.88 26188.58 34782.35 22479.95 30790.95 27173.42 20397.63 18680.27 23289.95 19895.19 185
PEN-MVS86.80 22386.27 20988.40 26892.32 24775.71 29895.18 10496.38 11087.97 9582.82 27193.15 19773.39 20495.92 29576.15 27479.03 32893.59 261
v119287.25 20786.33 20590.00 22490.76 30579.04 23993.80 19595.48 17682.57 21985.48 20591.18 26373.38 20597.42 20282.30 19382.06 28593.53 263
QAPM89.51 13288.15 15593.59 7594.92 16084.58 8596.82 2896.70 8878.43 28883.41 26396.19 9173.18 20699.30 4277.11 26596.54 10796.89 129
tpmrst85.35 25384.99 24386.43 31090.88 30167.88 35488.71 31791.43 30780.13 26486.08 18988.80 31073.05 20796.02 29182.48 18983.40 27395.40 180
PS-CasMVS87.32 20486.88 18288.63 26492.99 23576.33 29295.33 8996.61 9688.22 8983.30 26793.07 20173.03 20895.79 30378.36 25181.00 30593.75 256
DTE-MVSNet86.11 24085.48 23487.98 28091.65 27074.92 30294.93 11995.75 15687.36 11582.26 27693.04 20272.85 20995.82 30174.04 29077.46 33493.20 278
MVSTER88.84 15688.29 15290.51 19892.95 23680.44 20393.73 19895.01 20484.66 17787.15 16593.12 19972.79 21097.21 22687.86 12087.36 23993.87 245
v192192086.97 21886.06 21789.69 23790.53 31478.11 25993.80 19595.43 18481.90 23685.33 21891.05 26972.66 21197.41 20782.05 19881.80 29093.53 263
DP-MVS87.25 20785.36 23892.90 9497.65 6183.24 12594.81 12892.00 29074.99 31981.92 28295.00 12772.66 21199.05 6366.92 33392.33 17596.40 141
v7n86.81 22285.76 22989.95 22590.72 30779.25 23795.07 11095.92 14184.45 18082.29 27590.86 27272.60 21397.53 19279.42 24380.52 31493.08 284
OPM-MVS90.12 11589.56 11691.82 14993.14 22683.90 10794.16 17195.74 15788.96 6887.86 15195.43 11572.48 21497.91 16988.10 11990.18 19493.65 260
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D87.89 17986.32 20692.59 11196.07 11382.92 13695.23 9994.92 21275.66 31182.89 27095.98 9772.48 21499.21 5068.43 32295.23 12995.64 173
pm-mvs186.61 22985.54 23289.82 22991.44 27280.18 20695.28 9794.85 21683.84 19081.66 28392.62 21572.45 21696.48 27079.67 23878.06 32992.82 293
PMMVS85.71 24884.96 24587.95 28188.90 33477.09 28188.68 31890.06 33472.32 34186.47 17890.76 27772.15 21794.40 32681.78 20593.49 15392.36 305
PatchmatchNetpermissive85.85 24584.70 25189.29 24691.76 26475.54 29988.49 32091.30 30981.63 24485.05 22188.70 31271.71 21896.24 28374.61 28889.05 21496.08 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs171.70 21996.12 151
test_part189.00 15387.99 15892.04 13395.94 12083.81 11096.14 5296.05 13386.44 13585.69 19493.73 18271.57 22097.66 18185.80 14880.54 31194.66 205
patchmatchnet-post83.76 34871.53 22196.48 270
v124086.78 22485.85 22489.56 23990.45 31577.79 26893.61 20395.37 18981.65 24285.43 21091.15 26571.50 22297.43 20181.47 21182.05 28793.47 267
anonymousdsp87.84 18087.09 17890.12 21689.13 33180.54 20194.67 13795.55 17082.05 22883.82 25292.12 23171.47 22397.15 22887.15 13187.80 23592.67 295
Patchmatch-test81.37 29879.30 30487.58 28790.92 29874.16 31080.99 35887.68 35270.52 34976.63 32988.81 30871.21 22492.76 34760.01 35686.93 24595.83 166
F-COLMAP87.95 17886.80 18691.40 16496.35 10380.88 19294.73 13395.45 18179.65 27182.04 28094.61 14371.13 22598.50 11576.24 27391.05 18694.80 202
pmmvs485.43 25183.86 26290.16 21390.02 32382.97 13590.27 28992.67 27475.93 31080.73 29391.74 24671.05 22695.73 30578.85 24783.46 27191.78 314
CR-MVSNet85.35 25383.76 26390.12 21690.58 31179.34 23185.24 34391.96 29478.27 29085.55 19887.87 32571.03 22795.61 30673.96 29289.36 20895.40 180
Patchmtry82.71 28280.93 28888.06 27990.05 32276.37 29184.74 34791.96 29472.28 34281.32 28887.87 32571.03 22795.50 31368.97 31880.15 31792.32 307
CL-MVSNet_self_test81.74 29180.53 28985.36 32085.96 35372.45 32990.25 29093.07 26581.24 25379.85 30987.29 33270.93 22992.52 34866.95 33069.23 35191.11 330
RPMNet83.95 27381.53 28391.21 16990.58 31179.34 23185.24 34396.76 7971.44 34585.55 19882.97 35270.87 23098.91 8961.01 35289.36 20895.40 180
Patchmatch-RL test81.67 29279.96 29886.81 30885.42 35771.23 33682.17 35687.50 35378.47 28777.19 32582.50 35370.81 23193.48 33982.66 18872.89 34595.71 172
CostFormer85.77 24784.94 24688.26 27391.16 28772.58 32889.47 30591.04 31676.26 30786.45 18189.97 29370.74 23296.86 25082.35 19287.07 24495.34 183
sam_mvs70.60 233
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11993.97 20284.46 9393.32 21295.46 17885.17 16492.25 8594.03 16070.59 23498.57 11290.97 8594.67 13294.18 227
xiu_mvs_v1_base90.64 10690.05 10892.40 11993.97 20284.46 9393.32 21295.46 17885.17 16492.25 8594.03 16070.59 23498.57 11290.97 8594.67 13294.18 227
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11993.97 20284.46 9393.32 21295.46 17885.17 16492.25 8594.03 16070.59 23498.57 11290.97 8594.67 13294.18 227
test_post10.29 37370.57 23795.91 297
CANet_DTU90.26 11489.41 12192.81 9893.46 21983.01 13393.48 20794.47 22989.43 5487.76 15694.23 15870.54 23899.03 6784.97 15596.39 11196.38 142
BH-RMVSNet88.37 16787.48 16991.02 18095.28 14379.45 22792.89 23493.07 26585.45 15886.91 17294.84 13570.35 23997.76 17473.97 29194.59 13695.85 164
Fast-Effi-MVS+-dtu87.44 20086.72 18889.63 23892.04 25477.68 27294.03 18493.94 24685.81 14682.42 27491.32 25870.33 24097.06 23780.33 23190.23 19394.14 230
MDTV_nov1_ep13_2view55.91 37187.62 33173.32 33384.59 22870.33 24074.65 28795.50 175
ACMM84.12 989.14 14488.48 14791.12 17294.65 17581.22 18295.31 9096.12 12785.31 16285.92 19094.34 15070.19 24298.06 15785.65 14988.86 21694.08 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D87.51 19785.91 22392.32 12593.70 21383.93 10692.33 25090.94 31984.16 18272.09 35092.52 21769.90 24395.85 29989.20 10588.36 22597.17 116
LPG-MVS_test89.45 13588.90 13591.12 17294.47 18081.49 17395.30 9396.14 12586.73 12985.45 20795.16 12269.89 24498.10 14587.70 12289.23 21193.77 254
LGP-MVS_train91.12 17294.47 18081.49 17396.14 12586.73 12985.45 20795.16 12269.89 24498.10 14587.70 12289.23 21193.77 254
CHOSEN 280x42085.15 25883.99 26088.65 26392.47 24378.40 25179.68 36092.76 27174.90 32181.41 28689.59 29969.85 24695.51 31179.92 23695.29 12692.03 311
LTVRE_ROB82.13 1386.26 23984.90 24790.34 20994.44 18481.50 17192.31 25294.89 21383.03 20979.63 31192.67 21369.69 24797.79 17271.20 30386.26 24791.72 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft83.78 1188.74 15987.29 17493.08 8592.70 24085.39 7696.57 3396.43 10678.74 28480.85 29296.07 9569.64 24899.01 7378.01 25696.65 10494.83 200
MDTV_nov1_ep1383.56 26791.69 26869.93 34787.75 32891.54 30378.60 28684.86 22488.90 30769.54 24996.03 29070.25 30988.93 215
AUN-MVS87.78 18386.54 19891.48 16194.82 16781.05 18693.91 19493.93 24783.00 21086.93 17093.53 18569.50 25097.67 18086.14 14177.12 33695.73 171
PatchT82.68 28381.27 28586.89 30690.09 32170.94 34184.06 34990.15 33174.91 32085.63 19783.57 34969.37 25194.87 32465.19 33888.50 22194.84 199
VPNet88.20 17287.47 17090.39 20493.56 21679.46 22694.04 18395.54 17288.67 7486.96 16994.58 14669.33 25297.15 22884.05 16880.53 31394.56 213
ACMP84.23 889.01 15288.35 14890.99 18394.73 16981.27 17995.07 11095.89 14686.48 13383.67 25694.30 15369.33 25297.99 16387.10 13588.55 21893.72 258
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_post188.00 3259.81 37469.31 25495.53 30976.65 268
tpmvs83.35 28082.07 27887.20 30091.07 29071.00 34088.31 32391.70 29878.91 27880.49 29887.18 33469.30 25597.08 23568.12 32683.56 26993.51 266
thres20087.21 21186.24 21090.12 21695.36 13978.53 24693.26 21992.10 28686.42 13688.00 15091.11 26769.24 25698.00 16269.58 31691.04 18793.83 249
tfpn200view987.58 19486.64 19290.41 20395.99 11778.64 24394.58 14191.98 29286.94 12488.09 14591.77 24469.18 25798.10 14570.13 31291.10 18294.48 220
thres40087.62 19286.64 19290.57 19395.99 11778.64 24394.58 14191.98 29286.94 12488.09 14591.77 24469.18 25798.10 14570.13 31291.10 18294.96 193
tfpnnormal84.72 26683.23 27089.20 24892.79 23980.05 21394.48 14795.81 15182.38 22281.08 29091.21 26069.01 25996.95 24461.69 35080.59 31090.58 337
thres100view90087.63 19086.71 18990.38 20696.12 10878.55 24595.03 11491.58 30187.15 11788.06 14892.29 22568.91 26098.10 14570.13 31291.10 18294.48 220
thres600view787.65 18786.67 19190.59 19296.08 11278.72 24194.88 12391.58 30187.06 12088.08 14792.30 22468.91 26098.10 14570.05 31591.10 18294.96 193
PatchMatch-RL86.77 22785.54 23290.47 20295.88 12182.71 14490.54 28692.31 28179.82 26984.32 24091.57 25468.77 26296.39 27673.16 29693.48 15592.32 307
XVG-OURS89.40 14088.70 13891.52 15894.06 19481.46 17591.27 27596.07 13086.14 14288.89 13895.77 10668.73 26397.26 22187.39 12789.96 19795.83 166
TR-MVS86.78 22485.76 22989.82 22994.37 18678.41 25092.47 24592.83 26981.11 25686.36 18392.40 22068.73 26397.48 19573.75 29489.85 20193.57 262
tpm84.73 26584.02 25986.87 30790.33 31668.90 35089.06 31289.94 33780.85 25885.75 19289.86 29568.54 26595.97 29377.76 25784.05 26395.75 169
FMVSNet387.40 20286.11 21491.30 16793.79 21083.64 11594.20 17094.81 22083.89 18984.37 23591.87 24368.45 26696.56 26578.23 25385.36 25293.70 259
MVP-Stereo85.97 24284.86 24889.32 24590.92 29882.19 15692.11 25894.19 23978.76 28378.77 31691.63 25068.38 26796.56 26575.01 28593.95 14489.20 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat181.96 28780.27 29387.01 30291.09 28971.02 33987.38 33291.53 30466.25 35580.17 30186.35 33868.22 26896.15 28769.16 31782.29 28293.86 247
tpm284.08 27182.94 27387.48 29191.39 27771.27 33589.23 30990.37 32871.95 34384.64 22689.33 30267.30 26996.55 26775.17 28287.09 24394.63 206
test-LLR85.87 24485.41 23587.25 29690.95 29471.67 33389.55 30189.88 34083.41 20184.54 22987.95 32267.25 27095.11 32081.82 20393.37 15894.97 190
test0.0.03 182.41 28581.69 28184.59 32688.23 34172.89 32190.24 29187.83 35083.41 20179.86 30889.78 29767.25 27088.99 36165.18 33983.42 27291.90 313
CVMVSNet84.69 26784.79 25084.37 32891.84 26164.92 36293.70 20191.47 30666.19 35686.16 18895.28 11767.18 27293.33 34180.89 22090.42 19194.88 198
bset_n11_16_dypcd86.83 22185.55 23190.65 19188.22 34281.70 16788.88 31590.42 32685.26 16385.49 20490.69 27867.11 27397.02 24089.51 10284.39 25993.23 276
thisisatest051587.33 20385.99 21891.37 16593.49 21779.55 22490.63 28589.56 34580.17 26387.56 15990.86 27267.07 27498.28 13481.50 21093.02 16596.29 144
tttt051788.61 16287.78 16391.11 17594.96 15777.81 26795.35 8889.69 34285.09 16988.05 14994.59 14566.93 27598.48 11683.27 17792.13 17797.03 122
our_test_381.93 28880.46 29186.33 31288.46 33873.48 31688.46 32191.11 31276.46 30276.69 32888.25 31866.89 27694.36 32768.75 31979.08 32791.14 328
thisisatest053088.67 16087.61 16791.86 14694.87 16380.07 21194.63 13989.90 33984.00 18688.46 14293.78 17866.88 27798.46 11883.30 17692.65 17097.06 120
IterMVS-SCA-FT85.45 25084.53 25588.18 27691.71 26676.87 28490.19 29492.65 27585.40 16081.44 28590.54 28066.79 27895.00 32381.04 21581.05 30192.66 296
SCA86.32 23885.18 24089.73 23592.15 24976.60 28691.12 27891.69 29983.53 19885.50 20388.81 30866.79 27896.48 27076.65 26890.35 19296.12 151
D2MVS85.90 24385.09 24288.35 27090.79 30377.42 27791.83 26395.70 15980.77 25980.08 30590.02 29166.74 28096.37 27781.88 20287.97 23291.26 324
IterMVS84.88 26383.98 26187.60 28691.44 27276.03 29490.18 29592.41 27883.24 20681.06 29190.42 28466.60 28194.28 33079.46 23980.98 30692.48 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net87.26 20585.98 21991.08 17694.01 19783.10 12895.14 10794.94 20783.57 19584.37 23591.64 24766.59 28296.34 28078.23 25385.36 25293.79 250
test187.26 20585.98 21991.08 17694.01 19783.10 12895.14 10794.94 20783.57 19584.37 23591.64 24766.59 28296.34 28078.23 25385.36 25293.79 250
FMVSNet287.19 21385.82 22591.30 16794.01 19783.67 11494.79 12994.94 20783.57 19583.88 25092.05 23866.59 28296.51 26877.56 26085.01 25593.73 257
EPMVS83.90 27582.70 27787.51 28890.23 31972.67 32488.62 31981.96 36581.37 24985.01 22288.34 31666.31 28594.45 32575.30 28187.12 24295.43 179
ppachtmachnet_test81.84 28980.07 29787.15 30188.46 33874.43 30789.04 31392.16 28575.33 31577.75 32188.99 30566.20 28695.37 31665.12 34077.60 33291.65 316
MDA-MVSNet_test_wron79.21 31677.19 31885.29 32188.22 34272.77 32385.87 33990.06 33474.34 32562.62 36187.56 32866.14 28791.99 35266.90 33473.01 34391.10 331
YYNet179.22 31577.20 31785.28 32288.20 34472.66 32585.87 33990.05 33674.33 32662.70 36087.61 32766.09 28892.03 35166.94 33172.97 34491.15 327
JIA-IIPM81.04 30178.98 31187.25 29688.64 33573.48 31681.75 35789.61 34473.19 33482.05 27973.71 36066.07 28995.87 29871.18 30584.60 25892.41 303
RRT_MVS88.86 15587.68 16592.39 12292.02 25686.09 5594.38 16194.94 20785.45 15887.14 16793.84 17665.88 29097.11 23288.73 11086.77 24693.98 240
MSDG84.86 26483.09 27190.14 21593.80 20880.05 21389.18 31093.09 26478.89 27978.19 31791.91 24165.86 29197.27 21968.47 32188.45 22293.11 282
jajsoiax88.24 17187.50 16890.48 20090.89 30080.14 20895.31 9095.65 16584.97 17184.24 24494.02 16365.31 29297.42 20288.56 11288.52 22093.89 242
cascas86.43 23784.98 24490.80 18892.10 25380.92 19190.24 29195.91 14373.10 33583.57 26088.39 31565.15 29397.46 19784.90 15891.43 18094.03 238
ADS-MVSNet281.66 29379.71 30187.50 28991.35 27974.19 30983.33 35288.48 34872.90 33782.24 27785.77 34264.98 29493.20 34364.57 34283.74 26595.12 186
ADS-MVSNet81.56 29579.78 29986.90 30591.35 27971.82 33283.33 35289.16 34672.90 33782.24 27785.77 34264.98 29493.76 33664.57 34283.74 26595.12 186
pmmvs584.21 27082.84 27688.34 27188.95 33376.94 28392.41 24691.91 29675.63 31280.28 30091.18 26364.59 29695.57 30777.09 26683.47 27092.53 299
PVSNet78.82 1885.55 24984.65 25288.23 27594.72 17071.93 33187.12 33392.75 27278.80 28284.95 22390.53 28164.43 29796.71 25474.74 28693.86 14696.06 157
UGNet89.95 12188.95 13392.95 9294.51 17983.31 12495.70 7595.23 19489.37 5687.58 15893.94 16864.00 29898.78 10283.92 16996.31 11296.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF85.07 25984.27 25687.48 29192.91 23770.62 34391.69 26992.46 27776.20 30882.67 27395.22 12063.94 29997.29 21877.51 26185.80 25094.53 214
mvs_tets88.06 17787.28 17590.38 20690.94 29679.88 21995.22 10095.66 16385.10 16884.21 24593.94 16863.53 30097.40 20988.50 11388.40 22493.87 245
test111189.10 14588.64 13990.48 20095.53 13674.97 30196.08 5684.89 35888.13 9390.16 12296.65 6663.29 30198.10 14586.14 14196.90 9798.39 41
Anonymous2023121186.59 23185.13 24190.98 18596.52 9881.50 17196.14 5296.16 12473.78 32983.65 25792.15 22963.26 30297.37 21382.82 18581.74 29294.06 236
ECVR-MVScopyleft89.09 14788.53 14290.77 18995.62 13175.89 29596.16 4984.22 36087.89 10090.20 12096.65 6663.19 30398.10 14585.90 14696.94 9598.33 45
dp81.47 29780.23 29485.17 32389.92 32565.49 36086.74 33490.10 33376.30 30681.10 28987.12 33562.81 30495.92 29568.13 32579.88 32094.09 234
LFMVS90.08 11689.13 12992.95 9296.71 8882.32 15596.08 5689.91 33886.79 12792.15 9096.81 5762.60 30598.34 12987.18 13093.90 14598.19 63
DWT-MVSNet_test84.95 26283.68 26488.77 25791.43 27573.75 31291.74 26690.98 31780.66 26083.84 25187.36 33062.44 30697.11 23278.84 24885.81 24995.46 177
Anonymous2023120681.03 30279.77 30084.82 32587.85 34770.26 34591.42 27392.08 28773.67 33077.75 32189.25 30362.43 30793.08 34461.50 35182.00 28891.12 329
VDD-MVS90.74 10189.92 11393.20 8096.27 10483.02 13295.73 7393.86 25188.42 8292.53 8196.84 5462.09 30898.64 10790.95 8892.62 17197.93 84
MS-PatchMatch85.05 26084.16 25787.73 28491.42 27678.51 24791.25 27693.53 25777.50 29580.15 30291.58 25261.99 30995.51 31175.69 27794.35 14289.16 347
OurMVSNet-221017-085.35 25384.64 25387.49 29090.77 30472.59 32794.01 18694.40 23184.72 17679.62 31293.17 19661.91 31096.72 25281.99 19981.16 29793.16 280
test20.0379.95 31079.08 30982.55 33685.79 35467.74 35591.09 27991.08 31381.23 25474.48 34289.96 29461.63 31190.15 35860.08 35476.38 33889.76 340
DSMNet-mixed76.94 32276.29 32178.89 34083.10 36356.11 37087.78 32779.77 36860.65 36075.64 33588.71 31161.56 31288.34 36260.07 35589.29 21092.21 310
Anonymous2024052988.09 17586.59 19692.58 11296.53 9781.92 16495.99 6195.84 14974.11 32789.06 13695.21 12161.44 31398.81 10083.67 17487.47 23697.01 123
IB-MVS80.51 1585.24 25783.26 26991.19 17092.13 25179.86 22091.75 26591.29 31083.28 20580.66 29588.49 31461.28 31498.46 11880.99 21879.46 32495.25 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS86.61 22985.27 23990.66 19091.33 28178.71 24290.40 28893.81 25485.34 16185.12 22089.57 30061.25 31597.11 23280.99 21889.59 20596.15 148
N_pmnet68.89 32868.44 33170.23 34789.07 33228.79 37988.06 32419.50 38069.47 35171.86 35284.93 34461.24 31691.75 35454.70 36077.15 33590.15 338
EU-MVSNet81.32 29980.95 28782.42 33788.50 33763.67 36393.32 21291.33 30864.02 35880.57 29792.83 20861.21 31792.27 35076.34 27180.38 31691.32 322
VDDNet89.56 13188.49 14692.76 10195.07 15282.09 15896.30 4093.19 26381.05 25791.88 9496.86 5361.16 31898.33 13188.43 11492.49 17497.84 90
PVSNet_073.20 2077.22 32174.83 32684.37 32890.70 30871.10 33883.09 35489.67 34372.81 33973.93 34483.13 35160.79 31993.70 33768.54 32050.84 36688.30 354
RRT_test8_iter0586.90 21986.36 20388.52 26693.00 23473.27 31894.32 16495.96 13885.50 15784.26 24392.86 20560.76 32097.70 17988.32 11582.29 28294.60 209
SixPastTwentyTwo83.91 27482.90 27486.92 30490.99 29270.67 34293.48 20791.99 29185.54 15577.62 32392.11 23360.59 32196.87 24976.05 27577.75 33193.20 278
gg-mvs-nofinetune81.77 29079.37 30388.99 25590.85 30277.73 27186.29 33779.63 36974.88 32283.19 26869.05 36360.34 32296.11 28875.46 27994.64 13593.11 282
MDA-MVSNet-bldmvs78.85 31776.31 32086.46 30989.76 32773.88 31188.79 31690.42 32679.16 27659.18 36288.33 31760.20 32394.04 33262.00 34968.96 35391.48 320
pmmvs683.42 27881.60 28288.87 25688.01 34577.87 26594.96 11694.24 23874.67 32378.80 31591.09 26860.17 32496.49 26977.06 26775.40 34192.23 309
ACMH80.38 1785.36 25283.68 26490.39 20494.45 18380.63 19894.73 13394.85 21682.09 22777.24 32492.65 21460.01 32597.58 18872.25 30084.87 25692.96 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND87.94 28289.73 32877.91 26287.80 32678.23 37180.58 29683.86 34759.88 32695.33 31771.20 30392.22 17690.60 336
UniMVSNet_ETH3D87.53 19686.37 20291.00 18292.44 24478.96 24094.74 13295.61 16784.07 18585.36 21794.52 14759.78 32797.34 21482.93 18187.88 23396.71 134
pmmvs-eth3d80.97 30378.72 31287.74 28384.99 35979.97 21890.11 29691.65 30075.36 31473.51 34586.03 33959.45 32893.96 33575.17 28272.21 34689.29 345
test_040281.30 30079.17 30887.67 28593.19 22578.17 25792.98 23191.71 29775.25 31676.02 33490.31 28559.23 32996.37 27750.22 36383.63 26888.47 353
KD-MVS_self_test80.20 30879.24 30583.07 33485.64 35665.29 36191.01 28093.93 24778.71 28576.32 33086.40 33759.20 33092.93 34672.59 29869.35 35091.00 332
FMVSNet185.85 24584.11 25891.08 17692.81 23883.10 12895.14 10794.94 20781.64 24382.68 27291.64 24759.01 33196.34 28075.37 28083.78 26493.79 250
COLMAP_ROBcopyleft80.39 1683.96 27282.04 27989.74 23395.28 14379.75 22294.25 16792.28 28275.17 31778.02 32093.77 17958.60 33297.84 17165.06 34185.92 24891.63 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+81.04 1485.05 26083.46 26889.82 22994.66 17479.37 22994.44 15294.12 24482.19 22678.04 31992.82 20958.23 33397.54 19173.77 29382.90 27892.54 298
CMPMVSbinary59.16 2180.52 30579.20 30784.48 32783.98 36067.63 35689.95 29993.84 25364.79 35766.81 35891.14 26657.93 33495.17 31876.25 27288.10 22890.65 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ITE_SJBPF88.24 27491.88 26077.05 28292.92 26785.54 15580.13 30493.30 19157.29 33596.20 28472.46 29984.71 25791.49 319
TESTMET0.1,183.74 27682.85 27586.42 31189.96 32471.21 33789.55 30187.88 34977.41 29683.37 26487.31 33156.71 33693.65 33880.62 22592.85 16994.40 223
UnsupCasMVSNet_eth80.07 30978.27 31385.46 31985.24 35872.63 32688.45 32294.87 21582.99 21171.64 35388.07 32156.34 33791.75 35473.48 29563.36 36092.01 312
K. test v381.59 29480.15 29685.91 31789.89 32669.42 34992.57 24387.71 35185.56 15473.44 34689.71 29855.58 33895.52 31077.17 26469.76 34992.78 294
test-mter84.54 26883.64 26687.25 29690.95 29471.67 33389.55 30189.88 34079.17 27584.54 22987.95 32255.56 33995.11 32081.82 20393.37 15894.97 190
lessismore_v086.04 31388.46 33868.78 35180.59 36773.01 34890.11 28955.39 34096.43 27575.06 28465.06 35792.90 289
MVS-HIRNet73.70 32572.20 32878.18 34391.81 26356.42 36982.94 35582.58 36355.24 36268.88 35566.48 36455.32 34195.13 31958.12 35788.42 22383.01 358
test250687.21 21186.28 20890.02 22295.62 13173.64 31496.25 4671.38 37387.89 10090.45 11696.65 6655.29 34298.09 15386.03 14596.94 9598.33 45
new-patchmatchnet76.41 32375.17 32580.13 33982.65 36559.61 36587.66 33091.08 31378.23 29269.85 35483.22 35054.76 34391.63 35664.14 34464.89 35889.16 347
Anonymous20240521187.68 18586.13 21292.31 12696.66 8980.74 19694.87 12491.49 30580.47 26189.46 13095.44 11354.72 34498.23 13782.19 19589.89 19997.97 80
XVG-ACMP-BASELINE86.00 24184.84 24989.45 24491.20 28378.00 26091.70 26895.55 17085.05 17082.97 26992.25 22754.49 34597.48 19582.93 18187.45 23892.89 290
USDC82.76 28181.26 28687.26 29591.17 28574.55 30489.27 30793.39 26078.26 29175.30 33792.08 23554.43 34696.63 25671.64 30185.79 25190.61 334
AllTest83.42 27881.39 28489.52 24195.01 15377.79 26893.12 22490.89 32177.41 29676.12 33293.34 18754.08 34797.51 19368.31 32384.27 26193.26 272
TestCases89.52 24195.01 15377.79 26890.89 32177.41 29676.12 33293.34 18754.08 34797.51 19368.31 32384.27 26193.26 272
KD-MVS_2432*160078.50 31876.02 32385.93 31586.22 35174.47 30584.80 34592.33 27979.29 27376.98 32685.92 34053.81 34993.97 33367.39 32857.42 36389.36 342
miper_refine_blended78.50 31876.02 32385.93 31586.22 35174.47 30584.80 34592.33 27979.29 27376.98 32685.92 34053.81 34993.97 33367.39 32857.42 36389.36 342
MIMVSNet82.59 28480.53 28988.76 25891.51 27178.32 25386.57 33690.13 33279.32 27280.70 29488.69 31352.98 35193.07 34566.03 33688.86 21694.90 197
FMVSNet581.52 29679.60 30287.27 29491.17 28577.95 26191.49 27292.26 28376.87 30176.16 33187.91 32451.67 35292.34 34967.74 32781.16 29791.52 318
testgi80.94 30480.20 29583.18 33387.96 34666.29 35791.28 27490.70 32583.70 19278.12 31892.84 20751.37 35390.82 35763.34 34582.46 28192.43 302
Anonymous2024052180.44 30679.21 30684.11 33185.75 35567.89 35392.86 23593.23 26275.61 31375.59 33687.47 32950.03 35494.33 32871.14 30681.21 29690.12 339
UnsupCasMVSNet_bld76.23 32473.27 32785.09 32483.79 36172.92 32085.65 34293.47 25971.52 34468.84 35679.08 35749.77 35593.21 34266.81 33560.52 36289.13 349
OpenMVS_ROBcopyleft74.94 1979.51 31377.03 31986.93 30387.00 34876.23 29392.33 25090.74 32468.93 35274.52 34188.23 31949.58 35696.62 25757.64 35884.29 26087.94 355
TDRefinement79.81 31177.34 31587.22 29979.24 36775.48 30093.12 22492.03 28976.45 30375.01 33891.58 25249.19 35796.44 27470.22 31169.18 35289.75 341
MIMVSNet179.38 31477.28 31685.69 31886.35 35073.67 31391.61 27192.75 27278.11 29472.64 34988.12 32048.16 35891.97 35360.32 35377.49 33391.43 321
MVS_030483.46 27781.92 28088.10 27890.63 31077.49 27693.26 21993.75 25580.04 26680.44 29987.24 33347.94 35995.55 30875.79 27688.16 22791.26 324
LF4IMVS80.37 30779.07 31084.27 33086.64 34969.87 34889.39 30691.05 31576.38 30474.97 33990.00 29247.85 36094.25 33174.55 28980.82 30888.69 351
EG-PatchMatch MVS82.37 28680.34 29288.46 26790.27 31779.35 23092.80 23794.33 23477.14 30073.26 34790.18 28747.47 36196.72 25270.25 30987.32 24189.30 344
TinyColmap79.76 31277.69 31485.97 31491.71 26673.12 31989.55 30190.36 32975.03 31872.03 35190.19 28646.22 36296.19 28663.11 34681.03 30288.59 352
tmp_tt35.64 34039.24 34224.84 35614.87 38023.90 38062.71 36651.51 3796.58 37436.66 37062.08 36744.37 36330.34 37652.40 36222.00 37320.27 371
new_pmnet72.15 32670.13 32978.20 34282.95 36465.68 35883.91 35082.40 36462.94 35964.47 35979.82 35642.85 36486.26 36457.41 35974.44 34282.65 360
EGC-MVSNET61.97 33156.37 33578.77 34189.63 32973.50 31589.12 31182.79 3620.21 3771.24 37884.80 34539.48 36590.04 35944.13 36575.94 34072.79 364
pmmvs371.81 32768.71 33081.11 33875.86 36870.42 34486.74 33483.66 36158.95 36168.64 35780.89 35536.93 36689.52 36063.10 34763.59 35983.39 357
PM-MVS78.11 32076.12 32284.09 33283.54 36270.08 34688.97 31485.27 35779.93 26774.73 34086.43 33634.70 36793.48 33979.43 24272.06 34788.72 350
ambc83.06 33579.99 36663.51 36477.47 36192.86 26874.34 34384.45 34628.74 36895.06 32273.06 29768.89 35490.61 334
test_method50.52 33648.47 33856.66 35252.26 37818.98 38141.51 37081.40 36610.10 37244.59 36775.01 35928.51 36968.16 37053.54 36149.31 36782.83 359
DeepMVS_CXcopyleft56.31 35374.23 36951.81 37256.67 37844.85 36648.54 36675.16 35827.87 37058.74 37440.92 36752.22 36558.39 367
FPMVS64.63 33062.55 33270.88 34670.80 37056.71 36784.42 34884.42 35951.78 36449.57 36481.61 35423.49 37181.48 36740.61 36876.25 33974.46 363
ANet_high58.88 33354.22 33772.86 34556.50 37756.67 36880.75 35986.00 35473.09 33637.39 36964.63 36622.17 37279.49 36943.51 36623.96 37182.43 361
EMVS42.07 33941.12 34144.92 35563.45 37535.56 37873.65 36263.48 37533.05 37026.88 37445.45 37121.27 37367.14 37219.80 37323.02 37232.06 370
Gipumacopyleft57.99 33454.91 33667.24 34988.51 33665.59 35952.21 36890.33 33043.58 36742.84 36851.18 36920.29 37485.07 36534.77 36970.45 34851.05 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 33842.29 34046.03 35465.58 37337.41 37673.51 36364.62 37433.99 36928.47 37347.87 37019.90 37567.91 37122.23 37224.45 37032.77 369
PMMVS259.60 33256.40 33469.21 34868.83 37146.58 37473.02 36577.48 37255.07 36349.21 36572.95 36217.43 37680.04 36849.32 36444.33 36880.99 362
LCM-MVSNet66.00 32962.16 33377.51 34464.51 37458.29 36683.87 35190.90 32048.17 36554.69 36373.31 36116.83 37786.75 36365.47 33761.67 36187.48 356
PMVScopyleft47.18 2252.22 33548.46 33963.48 35045.72 37946.20 37573.41 36478.31 37041.03 36830.06 37165.68 3656.05 37883.43 36630.04 37065.86 35660.80 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 33738.59 34357.77 35156.52 37648.77 37355.38 36758.64 37729.33 37128.96 37252.65 3684.68 37964.62 37328.11 37133.07 36959.93 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d21.27 34220.48 34523.63 35768.59 37236.41 37749.57 3696.85 3819.37 3737.89 3754.46 3774.03 38031.37 37517.47 37416.07 3743.12 372
test1238.76 34411.22 3471.39 3580.85 3820.97 38285.76 3410.35 3830.54 3762.45 3778.14 3760.60 3810.48 3772.16 3760.17 3762.71 373
testmvs8.92 34311.52 3461.12 3591.06 3810.46 38386.02 3380.65 3820.62 3752.74 3769.52 3750.31 3820.45 3782.38 3750.39 3752.46 374
test_blank0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
sosnet-low-res0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
sosnet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
Regformer0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
ab-mvs-re7.82 34510.43 3480.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37993.88 1730.00 3830.00 3790.00 3770.00 3770.00 375
uanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
FOURS198.86 185.54 7498.29 197.49 589.79 4596.29 15
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6799.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5790.86 196.85 6799.61 396.03 199.06 999.07 5
eth-test20.00 383
eth-test0.00 383
IU-MVS98.77 586.00 5696.84 6981.26 25297.26 795.50 1099.13 399.03 7
save fliter97.85 5085.63 7295.21 10196.82 7389.44 52
test_0728_SECOND95.01 1798.79 286.43 4397.09 1597.49 599.61 395.62 899.08 798.99 8
GSMVS96.12 151
test_part298.55 1387.22 1896.40 14
MTGPAbinary96.97 53
MTMP96.16 4960.64 376
gm-plane-assit89.60 33068.00 35277.28 29988.99 30597.57 18979.44 241
test9_res91.91 6898.71 3498.07 73
agg_prior290.54 9398.68 3998.27 55
agg_prior97.38 7085.92 6396.72 8592.16 8898.97 83
test_prior485.96 6094.11 175
test_prior93.82 6797.29 7584.49 9096.88 6498.87 9198.11 71
旧先验293.36 21171.25 34694.37 3197.13 23186.74 136
新几何293.11 226
无先验93.28 21896.26 11573.95 32899.05 6380.56 22696.59 137
原ACMM292.94 233
testdata298.75 10378.30 252
testdata192.15 25687.94 96
plane_prior794.70 17282.74 141
plane_prior596.22 12098.12 14388.15 11689.99 19594.63 206
plane_prior494.86 132
plane_prior382.75 13990.26 3586.91 172
plane_prior295.85 6890.81 20
plane_prior194.59 176
plane_prior82.73 14295.21 10189.66 4989.88 200
n20.00 384
nn0.00 384
door-mid85.49 355
test1196.57 99
door85.33 356
HQP5-MVS81.56 169
HQP-NCC94.17 19194.39 15788.81 6985.43 210
ACMP_Plane94.17 19194.39 15788.81 6985.43 210
BP-MVS87.11 133
HQP4-MVS85.43 21097.96 16594.51 216
HQP3-MVS96.04 13489.77 202
NP-MVS94.37 18682.42 15193.98 166
ACMMP++_ref87.47 236
ACMMP++88.01 231