This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8392.25 4598.99 1098.84 8
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 20694.00 17897.08 4390.05 3295.65 1797.29 2689.66 1098.97 7993.95 1698.71 3098.50 22
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23394.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8696.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10697.12 4087.13 10792.51 7396.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8596.10 1396.96 4689.09 1598.94 8394.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13397.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
9.1494.47 1797.79 5296.08 5097.44 1286.13 13195.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9295.47 16989.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18196.72 7981.96 21792.16 7896.23 7887.85 2298.97 7991.95 5798.55 4997.90 76
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4297.37 1884.15 17090.05 11295.66 10087.77 2399.15 5389.91 8898.27 5898.07 63
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12095.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
TEST997.53 5886.49 3994.07 17196.78 7081.61 23092.77 6396.20 8087.71 2699.12 55
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17196.78 7081.86 22392.77 6396.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
test_897.49 6186.30 4894.02 17696.76 7381.86 22392.70 6796.20 8087.63 2799.02 68
ZD-MVS98.15 3586.62 3597.07 4483.63 18094.19 3096.91 4887.57 2999.26 4391.99 5398.44 51
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14693.93 23889.77 3894.21 2995.59 10287.35 3098.61 10692.72 3696.15 10397.83 81
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 13995.05 2397.18 3587.31 3199.07 5891.90 6198.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8197.26 2982.67 20493.81 3996.29 7587.29 3299.27 4289.87 8998.67 3798.65 15
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11197.21 3484.33 16893.89 3897.09 3987.20 3399.29 4191.90 6198.44 5198.12 59
Regformer-294.33 2794.22 2594.68 3895.54 12386.75 2994.57 13496.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
segment_acmp87.16 35
Regformer-194.22 3294.13 3294.51 4695.54 12386.36 4494.57 13496.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10594.85 2497.04 4286.99 3799.52 2091.54 6798.33 5698.71 12
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7696.97 114
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16496.88 5987.67 9792.63 6896.39 7286.62 3998.87 8791.50 6898.67 3798.11 61
test_prior294.12 16487.67 9792.63 6896.39 7286.62 3991.50 6898.67 37
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17396.66 8580.09 24992.77 6396.63 6286.62 3999.04 6387.40 11698.66 4098.17 54
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22696.56 9383.44 18691.68 9295.04 11686.60 4298.99 7685.60 13697.92 6996.93 116
DELS-MVS93.43 5493.25 5393.97 5995.42 12685.04 7493.06 21797.13 3990.74 2091.84 8695.09 11586.32 4399.21 4791.22 7398.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8093.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6893.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10093.65 4397.21 3286.10 4599.49 2391.68 6598.77 2498.30 41
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21097.24 3088.76 6491.60 9395.85 9486.07 4798.66 10191.91 5898.16 6098.03 67
Regformer-493.91 4193.81 4194.19 5795.36 12785.47 7094.68 12696.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 7995.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
Regformer-393.68 4793.64 4893.81 6795.36 12784.61 7994.68 12695.83 14291.27 1293.60 4696.71 5685.75 5098.86 9092.87 3296.65 9497.96 71
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15493.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11897.17 3886.26 12792.83 6197.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8093.26 5196.83 5185.48 5399.59 491.43 7198.40 5398.30 41
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5791.98 8297.19 3485.43 5499.56 792.06 5298.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4792.81 6296.97 4585.37 5599.24 4490.87 8198.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7093.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7292.73 6697.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
test1294.34 5397.13 7486.15 5196.29 10591.04 10385.08 5899.01 7098.13 6197.86 79
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6893.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5997.16 3785.02 6099.49 2391.99 5398.56 4798.47 28
X-MVStestdata88.31 15986.13 20094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5923.41 35285.02 6099.49 2391.99 5398.56 4798.47 28
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11595.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16392.19 4898.66 4096.76 120
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11592.62 7096.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8394.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8497.78 187.45 10393.26 5197.33 2484.62 6599.51 2190.75 8398.57 4698.32 40
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 13983.51 11394.48 13895.77 14690.87 1592.52 7296.67 6084.50 6699.00 7591.99 5394.44 13197.36 96
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
test117293.97 3994.07 3493.66 7198.11 3783.45 11496.26 4096.84 6388.33 7694.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
CS-MVS92.60 6892.56 6792.73 9895.55 12282.35 14896.14 4696.85 6288.71 6591.44 9691.51 24084.13 7198.48 11291.27 7297.47 8097.34 97
ETV-MVS92.74 6692.66 6592.97 8895.20 13584.04 10095.07 10196.51 9490.73 2192.96 5891.19 24884.06 7298.34 12591.72 6496.54 9796.54 128
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15083.20 12094.40 14695.74 14990.71 2292.05 8196.60 6484.00 7398.99 7691.55 6693.63 13997.17 105
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6691.83 8897.17 3683.96 7499.55 1291.44 7098.64 4398.43 34
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11193.92 3797.47 1683.88 7598.96 8292.71 3797.87 7098.26 49
EIA-MVS91.95 7691.94 7491.98 13095.16 13680.01 20595.36 7896.73 7788.44 7389.34 11992.16 21383.82 7698.45 11889.35 9397.06 8697.48 93
EPP-MVSNet91.70 8291.56 7992.13 12695.88 11180.50 19297.33 395.25 18586.15 12989.76 11495.60 10183.42 7798.32 12887.37 11893.25 14997.56 91
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8784.47 15095.47 11197.45 95
UniMVSNet_NR-MVSNet89.92 11789.29 11891.81 14293.39 20483.72 10694.43 14497.12 4089.80 3786.46 16593.32 17483.16 7897.23 21184.92 14281.02 29194.49 204
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
112190.42 10689.49 11293.20 7797.27 7184.46 8892.63 22795.51 16771.01 32991.20 10196.21 7982.92 8199.05 6080.56 21298.07 6396.10 142
新几何193.10 8197.30 6884.35 9495.56 16271.09 32891.26 10096.24 7782.87 8298.86 9079.19 23198.10 6296.07 144
原ACMM192.01 12797.34 6681.05 17696.81 6878.89 26190.45 10795.92 9182.65 8398.84 9580.68 21098.26 5996.14 137
casdiffmvs92.51 7092.43 7092.74 9794.41 16981.98 15494.54 13696.23 11189.57 4291.96 8396.17 8482.58 8498.01 15090.95 7995.45 11398.23 51
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11396.99 4789.02 5989.56 11597.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13692.47 7497.13 3882.38 8699.07 5890.51 8598.40 5397.92 75
baseline92.39 7392.29 7292.69 10294.46 16681.77 15894.14 16396.27 10689.22 5191.88 8496.00 8882.35 8797.99 15291.05 7595.27 11898.30 41
canonicalmvs93.27 5892.75 6494.85 2795.70 11887.66 1196.33 3596.41 9990.00 3494.09 3394.60 13382.33 8898.62 10592.40 4192.86 15798.27 47
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 12996.66 8582.69 20390.03 11395.82 9582.30 8999.03 6484.57 14896.48 10096.91 117
PAPR90.02 11289.27 12092.29 12295.78 11480.95 17992.68 22596.22 11281.91 22086.66 16393.75 16982.23 9098.44 11979.40 23094.79 12197.48 93
MVS_Test91.31 8891.11 8591.93 13494.37 17080.14 19793.46 19895.80 14486.46 12391.35 9993.77 16782.21 9198.09 14487.57 11494.95 12097.55 92
nrg03091.08 9390.39 9593.17 7993.07 21386.91 2096.41 3396.26 10788.30 7888.37 13294.85 12482.19 9297.64 17191.09 7482.95 26394.96 179
UniMVSNet (Re)89.80 11989.07 12392.01 12793.60 19984.52 8494.78 12197.47 889.26 5086.44 16892.32 20882.10 9397.39 19884.81 14580.84 29594.12 217
testdata90.49 18896.40 9277.89 25295.37 18172.51 32193.63 4596.69 5882.08 9497.65 16983.08 16597.39 8195.94 148
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16694.37 15396.24 11086.39 12587.41 14894.80 12682.06 9598.48 11282.80 17395.37 11497.61 87
MG-MVS91.77 7991.70 7892.00 12997.08 7580.03 20493.60 19395.18 18987.85 9190.89 10496.47 7082.06 9598.36 12285.07 14097.04 8797.62 86
CANet93.54 5193.20 5694.55 4495.65 11985.73 6794.94 10996.69 8391.89 590.69 10595.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
FC-MVSNet-test90.27 10890.18 10090.53 18493.71 19579.85 21095.77 6497.59 289.31 4986.27 17194.67 13081.93 9897.01 22784.26 15288.09 21994.71 190
FIs90.51 10590.35 9690.99 17393.99 18580.98 17795.73 6597.54 389.15 5486.72 16294.68 12981.83 9997.24 20985.18 13988.31 21594.76 189
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7690.15 11197.03 4481.44 10099.51 2190.85 8295.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+91.59 8491.11 8593.01 8694.35 17383.39 11794.60 13195.10 19387.10 10890.57 10693.10 18581.43 10198.07 14689.29 9494.48 12997.59 89
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10884.43 9293.08 21596.09 12088.20 8391.12 10295.72 9981.33 10297.76 16391.74 6397.37 8296.75 121
mvs_anonymous89.37 13489.32 11789.51 23093.47 20274.22 29291.65 25794.83 21082.91 19985.45 19193.79 16581.23 10396.36 26586.47 13194.09 13397.94 72
PVSNet_BlendedMVS89.98 11389.70 10990.82 17796.12 10081.25 17193.92 18196.83 6583.49 18589.10 12292.26 21181.04 10498.85 9386.72 12987.86 22392.35 292
PVSNet_Blended90.73 9790.32 9791.98 13096.12 10081.25 17192.55 23196.83 6582.04 21589.10 12292.56 20181.04 10498.85 9386.72 12995.91 10495.84 153
alignmvs93.08 6292.50 6994.81 3295.62 12187.61 1295.99 5496.07 12289.77 3894.12 3294.87 12180.56 10698.66 10192.42 4093.10 15298.15 56
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9193.20 5497.22 3180.35 10799.18 4991.91 5897.21 8397.26 100
API-MVS90.66 10090.07 10292.45 11296.36 9484.57 8196.06 5295.22 18882.39 20689.13 12194.27 14580.32 10898.46 11580.16 21996.71 9294.33 209
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12194.87 11596.66 8583.29 19089.27 12094.46 13780.29 10999.17 5087.57 11495.37 11496.05 146
test22296.55 8881.70 15992.22 24195.01 19668.36 33490.20 11096.14 8580.26 11097.80 7296.05 146
diffmvs91.37 8791.23 8391.77 14393.09 21280.27 19492.36 23695.52 16687.03 11091.40 9894.93 11880.08 11197.44 18592.13 5194.56 12797.61 87
Test By Simon80.02 112
IterMVS-LS88.36 15887.91 15289.70 22393.80 19278.29 24393.73 18795.08 19585.73 13784.75 20991.90 22779.88 11396.92 23283.83 15782.51 26993.89 229
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 13888.86 13089.80 21991.84 24678.30 24293.70 19095.01 19685.73 13787.15 15295.28 10779.87 11497.21 21383.81 15887.36 22893.88 231
TAPA-MVS84.62 688.16 16387.01 17191.62 14796.64 8480.65 18694.39 14896.21 11576.38 28586.19 17395.44 10379.75 11598.08 14562.75 32995.29 11696.13 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+89.41 13188.64 13291.71 14594.74 15280.81 18393.54 19495.10 19383.11 19386.82 16190.67 26579.74 11697.75 16680.51 21493.55 14096.57 126
pcd_1.5k_mvsjas6.64 3288.86 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35879.70 1170.00 3580.00 3560.00 3560.00 354
PS-MVSNAJss89.97 11489.62 11091.02 17091.90 24480.85 18295.26 8995.98 12886.26 12786.21 17294.29 14279.70 11797.65 16988.87 9988.10 21794.57 197
PS-MVSNAJ91.18 9190.92 8991.96 13295.26 13382.60 14392.09 24695.70 15186.27 12691.84 8692.46 20379.70 11798.99 7689.08 9695.86 10594.29 210
xiu_mvs_v2_base91.13 9290.89 9191.86 13794.97 14282.42 14492.24 24095.64 15886.11 13291.74 9193.14 18379.67 12098.89 8689.06 9795.46 11294.28 211
WR-MVS_H87.80 17287.37 16289.10 23893.23 20878.12 24695.61 7397.30 2687.90 8983.72 23892.01 22479.65 12196.01 27876.36 25680.54 29993.16 266
EPNet91.79 7891.02 8894.10 5890.10 30585.25 7396.03 5392.05 27292.83 187.39 15195.78 9679.39 12299.01 7088.13 10897.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth87.22 19986.62 18589.02 24192.13 23677.40 26690.91 26894.81 21281.28 23684.32 22490.08 27679.26 12396.62 24383.81 15882.94 26493.04 271
miper_enhance_ethall86.90 20786.18 19989.06 23991.66 25477.58 26390.22 27994.82 21179.16 25884.48 21589.10 29079.19 12496.66 24184.06 15482.94 26492.94 274
NR-MVSNet88.58 15487.47 16091.93 13493.04 21584.16 9794.77 12296.25 10989.05 5680.04 29193.29 17779.02 12597.05 22581.71 19580.05 30594.59 195
TAMVS89.21 13688.29 14391.96 13293.71 19582.62 14293.30 20494.19 23082.22 21087.78 14393.94 15678.83 12696.95 23077.70 24492.98 15596.32 131
cl_fuxian87.14 20386.50 18989.04 24092.20 23377.26 26791.22 26594.70 21682.01 21684.34 22390.43 26978.81 12796.61 24683.70 16081.09 28893.25 261
1112_ss88.42 15587.33 16391.72 14494.92 14680.98 17792.97 22094.54 21878.16 27483.82 23693.88 16178.78 12897.91 15879.45 22689.41 19596.26 134
CDS-MVSNet89.45 12888.51 13492.29 12293.62 19883.61 11193.01 21894.68 21781.95 21887.82 14293.24 17978.69 12996.99 22880.34 21693.23 15096.28 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS89.60 12288.92 12791.67 14695.47 12581.15 17592.38 23594.78 21483.11 19389.06 12494.32 14078.67 13096.61 24681.57 19690.89 17797.24 101
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22290.24 10996.44 7178.59 13198.61 10689.68 9097.85 7197.06 109
IS-MVSNet91.43 8591.09 8792.46 11195.87 11381.38 16996.95 1493.69 24489.72 4089.50 11795.98 8978.57 13297.77 16283.02 16796.50 9998.22 52
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19595.93 13286.95 11289.51 11696.13 8678.50 13398.35 12485.84 13492.90 15696.83 119
PCF-MVS84.11 1087.74 17386.08 20492.70 10194.02 18084.43 9289.27 29395.87 13973.62 31184.43 21894.33 13978.48 13498.86 9070.27 29294.45 13094.81 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LCM-MVSNet-Re88.30 16088.32 14288.27 25994.71 15572.41 31193.15 21190.98 30187.77 9379.25 29891.96 22578.35 13595.75 29083.04 16695.62 10796.65 124
HY-MVS83.01 1289.03 14187.94 15192.29 12294.86 15082.77 13392.08 24794.49 21981.52 23286.93 15792.79 19778.32 13698.23 13179.93 22190.55 17895.88 151
MVS87.44 18986.10 20391.44 15392.61 22783.62 11092.63 22795.66 15567.26 33581.47 26992.15 21477.95 13798.22 13379.71 22395.48 11092.47 287
MVSFormer91.68 8391.30 8192.80 9493.86 18983.88 10395.96 5795.90 13684.66 16491.76 8994.91 11977.92 13897.30 20189.64 9197.11 8497.24 101
lupinMVS90.92 9490.21 9893.03 8593.86 18983.88 10392.81 22393.86 23979.84 25291.76 8994.29 14277.92 13898.04 14890.48 8697.11 8497.17 105
Test_1112_low_res87.65 17686.51 18891.08 16694.94 14579.28 22491.77 25194.30 22676.04 29083.51 24592.37 20677.86 14097.73 16778.69 23589.13 20296.22 135
VNet92.24 7491.91 7593.24 7696.59 8683.43 11594.84 11796.44 9689.19 5394.08 3495.90 9277.85 14198.17 13588.90 9893.38 14698.13 58
DU-MVS89.34 13588.50 13591.85 13993.04 21583.72 10694.47 14196.59 9089.50 4386.46 16593.29 17777.25 14297.23 21184.92 14281.02 29194.59 195
Baseline_NR-MVSNet87.07 20486.63 18488.40 25591.44 25777.87 25394.23 16092.57 26284.12 17185.74 17992.08 22077.25 14296.04 27582.29 18179.94 30691.30 309
jason90.80 9590.10 10192.90 9193.04 21583.53 11293.08 21594.15 23280.22 24691.41 9794.91 11976.87 14497.93 15790.28 8796.90 8897.24 101
jason: jason.
PAPM86.68 21585.39 22390.53 18493.05 21479.33 22389.79 28694.77 21578.82 26381.95 26693.24 17976.81 14597.30 20166.94 31293.16 15194.95 182
Vis-MVSNet (Re-imp)89.59 12389.44 11490.03 20895.74 11575.85 28395.61 7390.80 30787.66 9987.83 14195.40 10676.79 14696.46 25978.37 23696.73 9197.80 82
baseline188.10 16487.28 16590.57 18194.96 14380.07 20094.27 15791.29 29486.74 11787.41 14894.00 15376.77 14796.20 27080.77 20779.31 31395.44 164
114514_t89.51 12588.50 13592.54 10898.11 3781.99 15395.16 9796.36 10370.19 33185.81 17795.25 10976.70 14898.63 10482.07 18496.86 9097.00 113
PLCcopyleft84.53 789.06 14088.03 14892.15 12597.27 7182.69 14094.29 15695.44 17579.71 25484.01 23294.18 14776.68 14998.75 9977.28 24893.41 14595.02 175
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet88.84 14687.95 15091.49 15092.68 22583.01 12794.92 11196.31 10489.88 3685.53 18593.85 16376.63 15096.96 22981.91 18879.87 30894.50 202
MAR-MVS90.30 10789.37 11693.07 8496.61 8584.48 8795.68 6895.67 15382.36 20887.85 14092.85 19176.63 15098.80 9780.01 22096.68 9395.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS88.38 15687.67 15690.52 18693.30 20780.18 19593.26 20795.96 13088.57 7185.47 19092.81 19576.12 15296.91 23381.24 19982.29 27194.47 207
v887.50 18886.71 17989.89 21391.37 26379.40 21794.50 13795.38 17984.81 16183.60 24391.33 24376.05 15397.42 18882.84 17180.51 30292.84 278
v14887.04 20586.32 19589.21 23490.94 28177.26 26793.71 18994.43 22184.84 16084.36 22290.80 26276.04 15497.05 22582.12 18379.60 31093.31 258
eth_miper_zixun_eth86.50 22185.77 21688.68 24991.94 24375.81 28490.47 27494.89 20582.05 21384.05 23090.46 26875.96 15596.77 23782.76 17479.36 31293.46 255
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12088.73 497.07 1396.77 7290.84 1684.02 23196.62 6375.95 15699.34 3387.77 11197.68 7598.59 18
BH-untuned88.60 15388.13 14790.01 21095.24 13478.50 23793.29 20594.15 23284.75 16284.46 21693.40 17175.76 15797.40 19577.59 24594.52 12894.12 217
cl-mvsnet186.53 21985.78 21488.75 24692.02 24176.45 27790.74 27094.30 22681.83 22583.34 24990.82 26175.75 15896.57 24981.73 19481.52 28493.24 262
BH-w/o87.57 18487.05 17089.12 23794.90 14877.90 25192.41 23393.51 24682.89 20083.70 23991.34 24275.75 15897.07 22375.49 26493.49 14292.39 290
cl-mvsnet_86.52 22085.78 21488.75 24692.03 24076.46 27690.74 27094.30 22681.83 22583.34 24990.78 26375.74 16096.57 24981.74 19381.54 28393.22 263
cdsmvs_eth3d_5k22.14 32329.52 3260.00 3400.00 3610.00 3620.00 35295.76 1470.00 3570.00 35894.29 14275.66 1610.00 3580.00 3560.00 3560.00 354
CNLPA89.07 13987.98 14992.34 11896.87 7884.78 7794.08 17093.24 24981.41 23384.46 21695.13 11475.57 16296.62 24377.21 24993.84 13795.61 160
CHOSEN 1792x268888.84 14687.69 15492.30 12196.14 9981.42 16890.01 28395.86 14074.52 30487.41 14893.94 15675.46 16398.36 12280.36 21595.53 10897.12 108
CP-MVSNet87.63 17987.26 16788.74 24893.12 21176.59 27595.29 8696.58 9188.43 7483.49 24692.98 18875.28 16495.83 28678.97 23281.15 28793.79 237
v1087.25 19686.38 19089.85 21491.19 26979.50 21494.48 13895.45 17383.79 17783.62 24291.19 24875.13 16597.42 18881.94 18780.60 29792.63 283
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13083.78 10596.14 4695.98 12889.89 3590.45 10796.58 6575.09 16698.31 12984.75 14696.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss88.93 14488.26 14590.94 17694.05 17980.78 18491.71 25495.38 17981.55 23188.63 12793.91 16075.04 16795.47 30182.47 17791.61 16896.57 126
v114487.61 18286.79 17790.06 20791.01 27679.34 22093.95 18095.42 17883.36 18985.66 18191.31 24674.98 16897.42 18883.37 16282.06 27493.42 256
miper_lstm_enhance85.27 24484.59 24187.31 28091.28 26774.63 28987.69 31394.09 23681.20 23981.36 27289.85 28274.97 16994.30 31481.03 20379.84 30993.01 272
test_yl90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13292.53 16197.31 98
DCV-MVSNet90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13292.53 16197.31 98
V4287.68 17486.86 17390.15 20290.58 29680.14 19794.24 15995.28 18483.66 17985.67 18091.33 24374.73 17297.41 19384.43 15181.83 27892.89 276
XVG-OURS-SEG-HR89.95 11589.45 11391.47 15194.00 18481.21 17491.87 24996.06 12485.78 13588.55 12895.73 9874.67 17397.27 20588.71 10189.64 19395.91 149
v2v48287.84 17087.06 16990.17 20090.99 27779.23 22794.00 17895.13 19084.87 15985.53 18592.07 22274.45 17497.45 18384.71 14781.75 28093.85 235
CLD-MVS89.47 12788.90 12891.18 16194.22 17482.07 15292.13 24496.09 12087.90 8985.37 20092.45 20474.38 17597.56 17587.15 12190.43 17993.93 227
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS87.65 17686.85 17490.03 20892.14 23580.60 18993.76 18695.23 18682.94 19784.60 21194.02 15174.27 17695.49 30081.04 20183.68 25694.01 225
HQP_MVS90.60 10490.19 9991.82 14094.70 15682.73 13795.85 6196.22 11290.81 1786.91 15894.86 12274.23 17798.12 13688.15 10689.99 18494.63 191
plane_prior694.52 16282.75 13474.23 177
v14419287.19 20186.35 19389.74 22090.64 29478.24 24493.92 18195.43 17681.93 21985.51 18791.05 25674.21 17997.45 18382.86 17081.56 28293.53 250
VPA-MVSNet89.62 12188.96 12591.60 14893.86 18982.89 13195.46 7797.33 2287.91 8888.43 13193.31 17574.17 18097.40 19587.32 11982.86 26894.52 200
ab-mvs89.41 13188.35 13992.60 10495.15 13782.65 14192.20 24295.60 16083.97 17488.55 12893.70 17074.16 18198.21 13482.46 17889.37 19696.94 115
131487.51 18686.57 18790.34 19792.42 23079.74 21292.63 22795.35 18378.35 27080.14 28891.62 23674.05 18297.15 21581.05 20093.53 14194.12 217
test_djsdf89.03 14188.64 13290.21 19990.74 29179.28 22495.96 5795.90 13684.66 16485.33 20292.94 18974.02 18397.30 20189.64 9188.53 20894.05 223
cl-mvsnet286.78 21185.98 20789.18 23692.34 23177.62 26290.84 26994.13 23481.33 23583.97 23390.15 27473.96 18496.60 24884.19 15382.94 26493.33 257
AdaColmapbinary89.89 11889.07 12392.37 11797.41 6383.03 12594.42 14595.92 13382.81 20186.34 17094.65 13173.89 18599.02 6880.69 20995.51 10995.05 174
HyFIR lowres test88.09 16586.81 17591.93 13496.00 10780.63 18790.01 28395.79 14573.42 31387.68 14592.10 21973.86 18697.96 15480.75 20891.70 16797.19 104
HQP2-MVS73.83 187
HQP-MVS89.80 11989.28 11991.34 15694.17 17581.56 16094.39 14896.04 12688.81 6185.43 19493.97 15573.83 18797.96 15487.11 12389.77 19194.50 202
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16086.37 4397.18 797.02 4689.20 5284.31 22696.66 6173.74 18999.17 5086.74 12697.96 6797.79 83
EPNet_dtu86.49 22385.94 21088.14 26490.24 30372.82 30494.11 16692.20 26886.66 12179.42 29792.36 20773.52 19095.81 28871.26 28793.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)84.43 25783.06 26088.54 25291.72 25078.44 23895.18 9592.82 25682.73 20279.67 29492.12 21673.49 19195.96 28071.10 29168.73 33791.21 312
Effi-MVS+-dtu88.65 15188.35 13989.54 22793.33 20576.39 27894.47 14194.36 22387.70 9585.43 19489.56 28773.45 19297.26 20785.57 13791.28 17094.97 176
mvs-test189.45 12889.14 12190.38 19493.33 20577.63 26194.95 10894.36 22387.70 9587.10 15592.81 19573.45 19298.03 14985.57 13793.04 15395.48 162
baseline286.50 22185.39 22389.84 21591.12 27376.70 27391.88 24888.58 33082.35 20979.95 29290.95 25873.42 19497.63 17280.27 21889.95 18795.19 171
PEN-MVS86.80 21086.27 19788.40 25592.32 23275.71 28595.18 9596.38 10287.97 8682.82 25593.15 18273.39 19595.92 28176.15 26079.03 31693.59 248
v119287.25 19686.33 19490.00 21190.76 29079.04 22893.80 18495.48 16882.57 20585.48 18991.18 25073.38 19697.42 18882.30 18082.06 27493.53 250
QAPM89.51 12588.15 14693.59 7294.92 14684.58 8096.82 2496.70 8178.43 26983.41 24796.19 8373.18 19799.30 3977.11 25196.54 9796.89 118
tpmrst85.35 24184.99 23086.43 29790.88 28667.88 33488.71 30191.43 29180.13 24886.08 17588.80 29673.05 19896.02 27782.48 17683.40 26295.40 166
PS-CasMVS87.32 19386.88 17288.63 25192.99 21976.33 28095.33 8096.61 8988.22 8283.30 25193.07 18673.03 19995.79 28978.36 23781.00 29393.75 243
DTE-MVSNet86.11 22885.48 22187.98 26791.65 25574.92 28894.93 11095.75 14887.36 10482.26 26093.04 18772.85 20095.82 28774.04 27677.46 32193.20 264
MVSTER88.84 14688.29 14390.51 18792.95 22080.44 19393.73 18795.01 19684.66 16487.15 15293.12 18472.79 20197.21 21387.86 11087.36 22893.87 232
v192192086.97 20686.06 20589.69 22490.53 29978.11 24793.80 18495.43 17681.90 22185.33 20291.05 25672.66 20297.41 19382.05 18581.80 27993.53 250
DP-MVS87.25 19685.36 22592.90 9197.65 5683.24 11994.81 11992.00 27474.99 29981.92 26795.00 11772.66 20299.05 6066.92 31492.33 16496.40 129
v7n86.81 20985.76 21789.95 21290.72 29279.25 22695.07 10195.92 13384.45 16782.29 25990.86 25972.60 20497.53 17779.42 22980.52 30193.08 270
OPM-MVS90.12 11089.56 11191.82 14093.14 21083.90 10294.16 16295.74 14988.96 6087.86 13995.43 10572.48 20597.91 15888.10 10990.18 18393.65 247
LS3D87.89 16986.32 19592.59 10596.07 10582.92 13095.23 9094.92 20475.66 29282.89 25495.98 8972.48 20599.21 4768.43 30695.23 11995.64 159
pm-mvs186.61 21685.54 21989.82 21691.44 25780.18 19595.28 8894.85 20883.84 17681.66 26892.62 20072.45 20796.48 25679.67 22478.06 31792.82 279
PMMVS85.71 23684.96 23287.95 26888.90 31877.09 26988.68 30290.06 31772.32 32286.47 16490.76 26472.15 20894.40 31281.78 19293.49 14292.36 291
PatchmatchNetpermissive85.85 23384.70 23889.29 23391.76 24975.54 28688.49 30491.30 29381.63 22985.05 20588.70 29871.71 20996.24 26974.61 27489.05 20396.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs171.70 21096.12 139
patchmatchnet-post83.76 32971.53 21196.48 256
v124086.78 21185.85 21289.56 22690.45 30077.79 25693.61 19295.37 18181.65 22785.43 19491.15 25271.50 21297.43 18681.47 19882.05 27693.47 254
anonymousdsp87.84 17087.09 16890.12 20489.13 31580.54 19094.67 12895.55 16382.05 21383.82 23692.12 21671.47 21397.15 21587.15 12187.80 22492.67 281
Patchmatch-test81.37 28679.30 29287.58 27490.92 28374.16 29480.99 34087.68 33570.52 33076.63 31188.81 29471.21 21492.76 32960.01 33786.93 23495.83 154
F-COLMAP87.95 16886.80 17691.40 15496.35 9580.88 18194.73 12495.45 17379.65 25582.04 26594.61 13271.13 21598.50 11176.24 25991.05 17594.80 188
pmmvs485.43 23983.86 25090.16 20190.02 30882.97 12990.27 27692.67 26075.93 29180.73 27891.74 23171.05 21695.73 29178.85 23383.46 26091.78 300
CR-MVSNet85.35 24183.76 25190.12 20490.58 29679.34 22085.24 32791.96 27878.27 27185.55 18387.87 31171.03 21795.61 29273.96 27889.36 19795.40 166
Patchmtry82.71 27180.93 27788.06 26690.05 30776.37 27984.74 32991.96 27872.28 32381.32 27387.87 31171.03 21795.50 29968.97 30280.15 30492.32 293
RPMNet83.95 26181.53 27191.21 15990.58 29679.34 22085.24 32796.76 7371.44 32685.55 18382.97 33370.87 21998.91 8561.01 33389.36 19795.40 166
Patchmatch-RL test81.67 28079.96 28686.81 29585.42 33571.23 31782.17 33887.50 33678.47 26877.19 30982.50 33470.81 22093.48 32282.66 17572.89 32995.71 158
CostFormer85.77 23584.94 23388.26 26091.16 27272.58 31089.47 29191.04 30076.26 28886.45 16789.97 27970.74 22196.86 23682.35 17987.07 23395.34 169
sam_mvs70.60 222
xiu_mvs_v1_base_debu90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
xiu_mvs_v1_base90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
xiu_mvs_v1_base_debi90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
test_post10.29 35370.57 22695.91 283
CANet_DTU90.26 10989.41 11592.81 9393.46 20383.01 12793.48 19694.47 22089.43 4687.76 14494.23 14670.54 22799.03 6484.97 14196.39 10196.38 130
BH-RMVSNet88.37 15787.48 15991.02 17095.28 13179.45 21692.89 22293.07 25285.45 14686.91 15894.84 12570.35 22897.76 16373.97 27794.59 12695.85 152
Fast-Effi-MVS+-dtu87.44 18986.72 17889.63 22592.04 23977.68 26094.03 17593.94 23785.81 13482.42 25891.32 24570.33 22997.06 22480.33 21790.23 18294.14 215
MDTV_nov1_ep13_2view55.91 35087.62 31573.32 31484.59 21270.33 22974.65 27395.50 161
ACMM84.12 989.14 13788.48 13891.12 16294.65 15981.22 17395.31 8196.12 11985.31 15085.92 17694.34 13870.19 23198.06 14785.65 13588.86 20594.08 221
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D87.51 18685.91 21192.32 11993.70 19783.93 10192.33 23790.94 30384.16 16972.09 33092.52 20269.90 23295.85 28589.20 9588.36 21497.17 105
LPG-MVS_test89.45 12888.90 12891.12 16294.47 16481.49 16495.30 8496.14 11786.73 11885.45 19195.16 11269.89 23398.10 13887.70 11289.23 20093.77 241
LGP-MVS_train91.12 16294.47 16481.49 16496.14 11786.73 11885.45 19195.16 11269.89 23398.10 13887.70 11289.23 20093.77 241
CHOSEN 280x42085.15 24683.99 24888.65 25092.47 22878.40 24079.68 34292.76 25774.90 30181.41 27189.59 28569.85 23595.51 29779.92 22295.29 11692.03 297
LTVRE_ROB82.13 1386.26 22684.90 23490.34 19794.44 16881.50 16292.31 23994.89 20583.03 19579.63 29592.67 19869.69 23697.79 16171.20 28886.26 23691.72 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft83.78 1188.74 14987.29 16493.08 8292.70 22485.39 7196.57 2996.43 9878.74 26680.85 27796.07 8769.64 23799.01 7078.01 24296.65 9494.83 186
MDTV_nov1_ep1383.56 25591.69 25369.93 32887.75 31291.54 28778.60 26784.86 20888.90 29369.54 23896.03 27670.25 29388.93 204
PatchT82.68 27281.27 27386.89 29390.09 30670.94 32284.06 33190.15 31474.91 30085.63 18283.57 33069.37 23994.87 31065.19 31988.50 21094.84 185
VPNet88.20 16287.47 16090.39 19293.56 20079.46 21594.04 17495.54 16588.67 6786.96 15694.58 13569.33 24097.15 21584.05 15580.53 30094.56 198
ACMP84.23 889.01 14388.35 13990.99 17394.73 15381.27 17095.07 10195.89 13886.48 12283.67 24094.30 14169.33 24097.99 15287.10 12588.55 20793.72 245
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_post188.00 3099.81 35469.31 24295.53 29576.65 254
tpmvs83.35 26982.07 26687.20 28791.07 27571.00 32188.31 30791.70 28278.91 26080.49 28387.18 31869.30 24397.08 22268.12 31083.56 25893.51 253
thres20087.21 20086.24 19890.12 20495.36 12778.53 23593.26 20792.10 27086.42 12488.00 13891.11 25469.24 24498.00 15169.58 30091.04 17693.83 236
tfpn200view987.58 18386.64 18290.41 19195.99 10878.64 23294.58 13291.98 27686.94 11388.09 13391.77 22969.18 24598.10 13870.13 29691.10 17194.48 205
thres40087.62 18186.64 18290.57 18195.99 10878.64 23294.58 13291.98 27686.94 11388.09 13391.77 22969.18 24598.10 13870.13 29691.10 17194.96 179
tfpnnormal84.72 25483.23 25889.20 23592.79 22380.05 20294.48 13895.81 14382.38 20781.08 27591.21 24769.01 24796.95 23061.69 33180.59 29890.58 321
thres100view90087.63 17986.71 17990.38 19496.12 10078.55 23495.03 10591.58 28587.15 10688.06 13692.29 21068.91 24898.10 13870.13 29691.10 17194.48 205
thres600view787.65 17686.67 18190.59 18096.08 10478.72 23094.88 11491.58 28587.06 10988.08 13592.30 20968.91 24898.10 13870.05 29991.10 17194.96 179
PatchMatch-RL86.77 21485.54 21990.47 19095.88 11182.71 13990.54 27392.31 26579.82 25384.32 22491.57 23968.77 25096.39 26273.16 28293.48 14492.32 293
XVG-OURS89.40 13388.70 13191.52 14994.06 17881.46 16691.27 26396.07 12286.14 13088.89 12695.77 9768.73 25197.26 20787.39 11789.96 18695.83 154
TR-MVS86.78 21185.76 21789.82 21694.37 17078.41 23992.47 23292.83 25581.11 24086.36 16992.40 20568.73 25197.48 18073.75 28089.85 19093.57 249
tpm84.73 25384.02 24786.87 29490.33 30168.90 33189.06 29789.94 32080.85 24285.75 17889.86 28168.54 25395.97 27977.76 24384.05 25295.75 157
FMVSNet387.40 19186.11 20291.30 15793.79 19483.64 10994.20 16194.81 21283.89 17584.37 21991.87 22868.45 25496.56 25178.23 23985.36 24293.70 246
MVP-Stereo85.97 23084.86 23589.32 23290.92 28382.19 15092.11 24594.19 23078.76 26578.77 30091.63 23568.38 25596.56 25175.01 27193.95 13489.20 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat181.96 27680.27 28187.01 28991.09 27471.02 32087.38 31691.53 28866.25 33680.17 28686.35 32168.22 25696.15 27369.16 30182.29 27193.86 234
tpm284.08 25982.94 26187.48 27891.39 26271.27 31689.23 29590.37 31171.95 32484.64 21089.33 28867.30 25796.55 25375.17 26887.09 23294.63 191
test-LLR85.87 23285.41 22287.25 28390.95 27971.67 31489.55 28789.88 32383.41 18784.54 21387.95 30867.25 25895.11 30681.82 19093.37 14794.97 176
test0.0.03 182.41 27481.69 26984.59 31088.23 32572.89 30390.24 27787.83 33383.41 18779.86 29389.78 28367.25 25888.99 34165.18 32083.42 26191.90 299
CVMVSNet84.69 25584.79 23784.37 31291.84 24664.92 34193.70 19091.47 29066.19 33786.16 17495.28 10767.18 26093.33 32480.89 20690.42 18094.88 184
thisisatest051587.33 19285.99 20691.37 15593.49 20179.55 21390.63 27289.56 32880.17 24787.56 14790.86 25967.07 26198.28 13081.50 19793.02 15496.29 132
tttt051788.61 15287.78 15391.11 16594.96 14377.81 25595.35 7989.69 32585.09 15688.05 13794.59 13466.93 26298.48 11283.27 16492.13 16697.03 111
our_test_381.93 27780.46 27986.33 29988.46 32273.48 29888.46 30591.11 29676.46 28376.69 31088.25 30466.89 26394.36 31368.75 30379.08 31591.14 314
thisisatest053088.67 15087.61 15791.86 13794.87 14980.07 20094.63 13089.90 32284.00 17388.46 13093.78 16666.88 26498.46 11583.30 16392.65 15997.06 109
IterMVS-SCA-FT85.45 23884.53 24288.18 26391.71 25176.87 27290.19 28092.65 26185.40 14881.44 27090.54 26666.79 26595.00 30981.04 20181.05 28992.66 282
SCA86.32 22585.18 22789.73 22292.15 23476.60 27491.12 26691.69 28383.53 18485.50 18888.81 29466.79 26596.48 25676.65 25490.35 18196.12 139
D2MVS85.90 23185.09 22988.35 25790.79 28877.42 26591.83 25095.70 15180.77 24380.08 29090.02 27766.74 26796.37 26381.88 18987.97 22191.26 310
IterMVS84.88 25183.98 24987.60 27391.44 25776.03 28290.18 28192.41 26483.24 19281.06 27690.42 27066.60 26894.28 31579.46 22580.98 29492.48 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net87.26 19485.98 20791.08 16694.01 18183.10 12295.14 9894.94 19983.57 18184.37 21991.64 23266.59 26996.34 26678.23 23985.36 24293.79 237
test187.26 19485.98 20791.08 16694.01 18183.10 12295.14 9894.94 19983.57 18184.37 21991.64 23266.59 26996.34 26678.23 23985.36 24293.79 237
FMVSNet287.19 20185.82 21391.30 15794.01 18183.67 10894.79 12094.94 19983.57 18183.88 23492.05 22366.59 26996.51 25477.56 24685.01 24593.73 244
EPMVS83.90 26382.70 26587.51 27590.23 30472.67 30688.62 30381.96 34581.37 23485.01 20688.34 30266.31 27294.45 31175.30 26787.12 23195.43 165
ppachtmachnet_test81.84 27880.07 28587.15 28888.46 32274.43 29189.04 29892.16 26975.33 29577.75 30588.99 29166.20 27395.37 30265.12 32177.60 31991.65 302
MDA-MVSNet_test_wron79.21 30277.19 30485.29 30588.22 32672.77 30585.87 32390.06 31774.34 30562.62 34287.56 31466.14 27491.99 33366.90 31573.01 32791.10 316
YYNet179.22 30177.20 30385.28 30688.20 32772.66 30785.87 32390.05 31974.33 30662.70 34187.61 31366.09 27592.03 33266.94 31272.97 32891.15 313
JIA-IIPM81.04 28978.98 29787.25 28388.64 31973.48 29881.75 33989.61 32773.19 31582.05 26473.71 34066.07 27695.87 28471.18 29084.60 24892.41 289
RRT_MVS88.86 14587.68 15592.39 11692.02 24186.09 5394.38 15294.94 19985.45 14687.14 15493.84 16465.88 27797.11 21988.73 10086.77 23593.98 226
MSDG84.86 25283.09 25990.14 20393.80 19280.05 20289.18 29693.09 25178.89 26178.19 30191.91 22665.86 27897.27 20568.47 30588.45 21193.11 268
jajsoiax88.24 16187.50 15890.48 18990.89 28580.14 19795.31 8195.65 15784.97 15884.24 22894.02 15165.31 27997.42 18888.56 10288.52 20993.89 229
cascas86.43 22484.98 23190.80 17892.10 23880.92 18090.24 27795.91 13573.10 31683.57 24488.39 30165.15 28097.46 18284.90 14491.43 16994.03 224
ADS-MVSNet281.66 28179.71 28987.50 27691.35 26474.19 29383.33 33488.48 33172.90 31882.24 26185.77 32364.98 28193.20 32664.57 32383.74 25495.12 172
ADS-MVSNet81.56 28379.78 28786.90 29291.35 26471.82 31383.33 33489.16 32972.90 31882.24 26185.77 32364.98 28193.76 31964.57 32383.74 25495.12 172
pmmvs584.21 25882.84 26488.34 25888.95 31776.94 27192.41 23391.91 28075.63 29380.28 28591.18 25064.59 28395.57 29377.09 25283.47 25992.53 285
PVSNet78.82 1885.55 23784.65 23988.23 26294.72 15471.93 31287.12 31792.75 25878.80 26484.95 20790.53 26764.43 28496.71 24074.74 27293.86 13696.06 145
UGNet89.95 11588.95 12692.95 8994.51 16383.31 11895.70 6795.23 18689.37 4887.58 14693.94 15664.00 28598.78 9883.92 15696.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF85.07 24784.27 24487.48 27892.91 22170.62 32491.69 25692.46 26376.20 28982.67 25795.22 11063.94 28697.29 20477.51 24785.80 23994.53 199
test_part186.16 22784.40 24391.46 15292.63 22682.80 13296.42 3296.05 12573.47 31282.06 26391.43 24163.89 28797.43 18684.51 14979.11 31494.14 215
mvs_tets88.06 16787.28 16590.38 19490.94 28179.88 20895.22 9195.66 15585.10 15584.21 22993.94 15663.53 28897.40 19588.50 10388.40 21393.87 232
Anonymous2023121186.59 21885.13 22890.98 17596.52 9081.50 16296.14 4696.16 11673.78 30983.65 24192.15 21463.26 28997.37 19982.82 17281.74 28194.06 222
dp81.47 28580.23 28285.17 30789.92 31065.49 34086.74 31890.10 31676.30 28781.10 27487.12 31962.81 29095.92 28168.13 30979.88 30794.09 220
LFMVS90.08 11189.13 12292.95 8996.71 8282.32 14996.08 5089.91 32186.79 11692.15 8096.81 5362.60 29198.34 12587.18 12093.90 13598.19 53
DWT-MVSNet_test84.95 25083.68 25288.77 24491.43 26073.75 29691.74 25390.98 30180.66 24483.84 23587.36 31562.44 29297.11 21978.84 23485.81 23895.46 163
Anonymous2023120681.03 29079.77 28884.82 30987.85 33070.26 32691.42 26092.08 27173.67 31077.75 30589.25 28962.43 29393.08 32761.50 33282.00 27791.12 315
VDD-MVS90.74 9689.92 10893.20 7796.27 9683.02 12695.73 6593.86 23988.42 7592.53 7196.84 5062.09 29498.64 10390.95 7992.62 16097.93 74
MS-PatchMatch85.05 24884.16 24587.73 27191.42 26178.51 23691.25 26493.53 24577.50 27680.15 28791.58 23761.99 29595.51 29775.69 26394.35 13289.16 328
OurMVSNet-221017-085.35 24184.64 24087.49 27790.77 28972.59 30994.01 17794.40 22284.72 16379.62 29693.17 18161.91 29696.72 23881.99 18681.16 28593.16 266
test20.0379.95 29679.08 29582.55 31885.79 33467.74 33591.09 26791.08 29781.23 23874.48 32289.96 28061.63 29790.15 33960.08 33576.38 32389.76 323
DSMNet-mixed76.94 30676.29 30778.89 32283.10 34256.11 34987.78 31179.77 34760.65 34175.64 31688.71 29761.56 29888.34 34260.07 33689.29 19992.21 296
Anonymous2024052988.09 16586.59 18692.58 10696.53 8981.92 15695.99 5495.84 14174.11 30789.06 12495.21 11161.44 29998.81 9683.67 16187.47 22597.01 112
IB-MVS80.51 1585.24 24583.26 25791.19 16092.13 23679.86 20991.75 25291.29 29483.28 19180.66 28088.49 30061.28 30098.46 11580.99 20479.46 31195.25 170
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS86.61 21685.27 22690.66 17991.33 26678.71 23190.40 27593.81 24285.34 14985.12 20489.57 28661.25 30197.11 21980.99 20489.59 19496.15 136
N_pmnet68.89 31268.44 31570.23 32889.07 31628.79 35888.06 30819.50 35869.47 33271.86 33284.93 32661.24 30291.75 33554.70 34177.15 32290.15 322
EU-MVSNet81.32 28780.95 27682.42 31988.50 32163.67 34293.32 20091.33 29264.02 33980.57 28292.83 19361.21 30392.27 33176.34 25780.38 30391.32 308
VDDNet89.56 12488.49 13792.76 9695.07 13882.09 15196.30 3693.19 25081.05 24191.88 8496.86 4961.16 30498.33 12788.43 10492.49 16397.84 80
PVSNet_073.20 2077.22 30574.83 31084.37 31290.70 29371.10 31983.09 33689.67 32672.81 32073.93 32483.13 33260.79 30593.70 32068.54 30450.84 34688.30 335
RRT_test8_iter0586.90 20786.36 19288.52 25393.00 21873.27 30094.32 15595.96 13085.50 14584.26 22792.86 19060.76 30697.70 16888.32 10582.29 27194.60 194
SixPastTwentyTwo83.91 26282.90 26286.92 29190.99 27770.67 32393.48 19691.99 27585.54 14377.62 30792.11 21860.59 30796.87 23576.05 26177.75 31893.20 264
gg-mvs-nofinetune81.77 27979.37 29188.99 24290.85 28777.73 25986.29 32179.63 34874.88 30283.19 25269.05 34360.34 30896.11 27475.46 26594.64 12593.11 268
MDA-MVSNet-bldmvs78.85 30376.31 30686.46 29689.76 31273.88 29588.79 30090.42 31079.16 25859.18 34388.33 30360.20 30994.04 31762.00 33068.96 33591.48 306
pmmvs683.42 26681.60 27088.87 24388.01 32877.87 25394.96 10794.24 22974.67 30378.80 29991.09 25560.17 31096.49 25577.06 25375.40 32592.23 295
ACMH80.38 1785.36 24083.68 25290.39 19294.45 16780.63 18794.73 12494.85 20882.09 21277.24 30892.65 19960.01 31197.58 17372.25 28584.87 24692.96 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND87.94 26989.73 31377.91 25087.80 31078.23 35080.58 28183.86 32859.88 31295.33 30371.20 28892.22 16590.60 320
UniMVSNet_ETH3D87.53 18586.37 19191.00 17292.44 22978.96 22994.74 12395.61 15984.07 17285.36 20194.52 13659.78 31397.34 20082.93 16887.88 22296.71 123
pmmvs-eth3d80.97 29178.72 29887.74 27084.99 33879.97 20790.11 28291.65 28475.36 29473.51 32586.03 32259.45 31493.96 31875.17 26872.21 33089.29 326
test_040281.30 28879.17 29487.67 27293.19 20978.17 24592.98 21991.71 28175.25 29676.02 31590.31 27159.23 31596.37 26350.22 34383.63 25788.47 334
FMVSNet185.85 23384.11 24691.08 16692.81 22283.10 12295.14 9894.94 19981.64 22882.68 25691.64 23259.01 31696.34 26675.37 26683.78 25393.79 237
COLMAP_ROBcopyleft80.39 1683.96 26082.04 26789.74 22095.28 13179.75 21194.25 15892.28 26675.17 29778.02 30493.77 16758.60 31797.84 16065.06 32285.92 23791.63 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+81.04 1485.05 24883.46 25689.82 21694.66 15879.37 21894.44 14394.12 23582.19 21178.04 30392.82 19458.23 31897.54 17673.77 27982.90 26792.54 284
CMPMVSbinary59.16 2180.52 29379.20 29384.48 31183.98 33967.63 33689.95 28593.84 24164.79 33866.81 33991.14 25357.93 31995.17 30476.25 25888.10 21790.65 317
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ITE_SJBPF88.24 26191.88 24577.05 27092.92 25385.54 14380.13 28993.30 17657.29 32096.20 27072.46 28484.71 24791.49 305
TESTMET0.1,183.74 26482.85 26386.42 29889.96 30971.21 31889.55 28787.88 33277.41 27783.37 24887.31 31656.71 32193.65 32180.62 21192.85 15894.40 208
UnsupCasMVSNet_eth80.07 29578.27 29985.46 30485.24 33672.63 30888.45 30694.87 20782.99 19671.64 33388.07 30756.34 32291.75 33573.48 28163.36 34292.01 298
K. test v381.59 28280.15 28485.91 30289.89 31169.42 33092.57 23087.71 33485.56 14273.44 32689.71 28455.58 32395.52 29677.17 25069.76 33392.78 280
test-mter84.54 25683.64 25487.25 28390.95 27971.67 31489.55 28789.88 32379.17 25784.54 21387.95 30855.56 32495.11 30681.82 19093.37 14794.97 176
lessismore_v086.04 30088.46 32268.78 33280.59 34673.01 32890.11 27555.39 32596.43 26175.06 27065.06 33992.90 275
MVS-HIRNet73.70 30972.20 31278.18 32491.81 24856.42 34882.94 33782.58 34355.24 34368.88 33566.48 34455.32 32695.13 30558.12 33888.42 21283.01 339
new-patchmatchnet76.41 30775.17 30980.13 32182.65 34459.61 34487.66 31491.08 29778.23 27369.85 33483.22 33154.76 32791.63 33764.14 32564.89 34089.16 328
Anonymous20240521187.68 17486.13 20092.31 12096.66 8380.74 18594.87 11591.49 28980.47 24589.46 11895.44 10354.72 32898.23 13182.19 18289.89 18897.97 70
XVG-ACMP-BASELINE86.00 22984.84 23689.45 23191.20 26878.00 24891.70 25595.55 16385.05 15782.97 25392.25 21254.49 32997.48 18082.93 16887.45 22792.89 276
USDC82.76 27081.26 27487.26 28291.17 27074.55 29089.27 29393.39 24878.26 27275.30 31792.08 22054.43 33096.63 24271.64 28685.79 24090.61 318
AllTest83.42 26681.39 27289.52 22895.01 13977.79 25693.12 21290.89 30577.41 27776.12 31393.34 17254.08 33197.51 17868.31 30784.27 25093.26 259
TestCases89.52 22895.01 13977.79 25690.89 30577.41 27776.12 31393.34 17254.08 33197.51 17868.31 30784.27 25093.26 259
MIMVSNet82.59 27380.53 27888.76 24591.51 25678.32 24186.57 32090.13 31579.32 25680.70 27988.69 29952.98 33393.07 32866.03 31788.86 20594.90 183
FMVSNet581.52 28479.60 29087.27 28191.17 27077.95 24991.49 25992.26 26776.87 28276.16 31287.91 31051.67 33492.34 33067.74 31181.16 28591.52 304
testgi80.94 29280.20 28383.18 31687.96 32966.29 33791.28 26290.70 30983.70 17878.12 30292.84 19251.37 33590.82 33863.34 32682.46 27092.43 288
UnsupCasMVSNet_bld76.23 30873.27 31185.09 30883.79 34072.92 30285.65 32693.47 24771.52 32568.84 33679.08 33849.77 33693.21 32566.81 31660.52 34489.13 330
OpenMVS_ROBcopyleft74.94 1979.51 29977.03 30586.93 29087.00 33176.23 28192.33 23790.74 30868.93 33374.52 32188.23 30549.58 33796.62 24357.64 33984.29 24987.94 336
testing_283.40 26881.02 27590.56 18385.06 33780.51 19191.37 26195.57 16182.92 19867.06 33885.54 32549.47 33897.24 20986.74 12685.44 24193.93 227
TDRefinement79.81 29777.34 30187.22 28679.24 34675.48 28793.12 21292.03 27376.45 28475.01 31891.58 23749.19 33996.44 26070.22 29569.18 33489.75 324
MIMVSNet179.38 30077.28 30285.69 30386.35 33373.67 29791.61 25892.75 25878.11 27572.64 32988.12 30648.16 34091.97 33460.32 33477.49 32091.43 307
MVS_030483.46 26581.92 26888.10 26590.63 29577.49 26493.26 20793.75 24380.04 25080.44 28487.24 31747.94 34195.55 29475.79 26288.16 21691.26 310
LF4IMVS80.37 29479.07 29684.27 31486.64 33269.87 32989.39 29291.05 29976.38 28574.97 31990.00 27847.85 34294.25 31674.55 27580.82 29688.69 332
EG-PatchMatch MVS82.37 27580.34 28088.46 25490.27 30279.35 21992.80 22494.33 22577.14 28173.26 32790.18 27347.47 34396.72 23870.25 29387.32 23089.30 325
TinyColmap79.76 29877.69 30085.97 30191.71 25173.12 30189.55 28790.36 31275.03 29872.03 33190.19 27246.22 34496.19 27263.11 32781.03 29088.59 333
tmp_tt35.64 32239.24 32424.84 33614.87 35823.90 35962.71 34851.51 3576.58 35436.66 35062.08 34744.37 34530.34 35552.40 34222.00 35220.27 350
new_pmnet72.15 31070.13 31378.20 32382.95 34365.68 33883.91 33282.40 34462.94 34064.47 34079.82 33742.85 34686.26 34457.41 34074.44 32682.65 340
pmmvs371.81 31168.71 31481.11 32075.86 34770.42 32586.74 31883.66 34258.95 34268.64 33780.89 33636.93 34789.52 34063.10 32863.59 34183.39 338
PM-MVS78.11 30476.12 30884.09 31583.54 34170.08 32788.97 29985.27 34079.93 25174.73 32086.43 32034.70 34893.48 32279.43 22872.06 33188.72 331
ambc83.06 31779.99 34563.51 34377.47 34392.86 25474.34 32384.45 32728.74 34995.06 30873.06 28368.89 33690.61 318
DeepMVS_CXcopyleft56.31 33374.23 34851.81 35156.67 35644.85 34748.54 34775.16 33927.87 35058.74 35340.92 34652.22 34558.39 346
FPMVS64.63 31462.55 31670.88 32770.80 34956.71 34684.42 33084.42 34151.78 34549.57 34581.61 33523.49 35181.48 34740.61 34776.25 32474.46 343
ANet_high58.88 31654.22 32072.86 32656.50 35656.67 34780.75 34186.00 33773.09 31737.39 34964.63 34622.17 35279.49 34943.51 34523.96 35082.43 341
EMVS42.07 32141.12 32344.92 33563.45 35435.56 35773.65 34463.48 35333.05 35126.88 35445.45 35121.27 35367.14 35119.80 35223.02 35132.06 349
Gipumacopyleft57.99 31754.91 31967.24 33088.51 32065.59 33952.21 35090.33 31343.58 34842.84 34851.18 34920.29 35485.07 34534.77 34870.45 33251.05 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 32042.29 32246.03 33465.58 35237.41 35573.51 34564.62 35233.99 35028.47 35347.87 35019.90 35567.91 35022.23 35124.45 34932.77 348
PMMVS259.60 31556.40 31869.21 32968.83 35046.58 35373.02 34777.48 35155.07 34449.21 34672.95 34217.43 35680.04 34849.32 34444.33 34780.99 342
LCM-MVSNet66.00 31362.16 31777.51 32564.51 35358.29 34583.87 33390.90 30448.17 34654.69 34473.31 34116.83 35786.75 34365.47 31861.67 34387.48 337
PMVScopyleft47.18 2252.22 31848.46 32163.48 33145.72 35746.20 35473.41 34678.31 34941.03 34930.06 35165.68 3456.05 35883.43 34630.04 34965.86 33860.80 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 31938.59 32557.77 33256.52 35548.77 35255.38 34958.64 35529.33 35228.96 35252.65 3484.68 35964.62 35228.11 35033.07 34859.93 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d21.27 32420.48 32723.63 33768.59 35136.41 35649.57 3516.85 3599.37 3537.89 3554.46 3574.03 36031.37 35417.47 35316.07 3533.12 351
test1238.76 32611.22 3291.39 3380.85 3600.97 36085.76 3250.35 3610.54 3562.45 3578.14 3560.60 3610.48 3562.16 3550.17 3552.71 352
testmvs8.92 32511.52 3281.12 3391.06 3590.46 36186.02 3220.65 3600.62 3552.74 3569.52 3550.31 3620.45 3572.38 3540.39 3542.46 353
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re7.82 32710.43 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35893.88 1610.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
IU-MVS98.77 486.00 5496.84 6381.26 23797.26 695.50 799.13 399.03 4
save fliter97.85 4885.63 6895.21 9296.82 6789.44 44
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
GSMVS96.12 139
test_part298.55 1187.22 1696.40 11
MTGPAbinary96.97 49
MTMP96.16 4460.64 354
gm-plane-assit89.60 31468.00 33377.28 28088.99 29197.57 17479.44 227
test9_res91.91 5898.71 3098.07 63
agg_prior290.54 8498.68 3598.27 47
agg_prior97.38 6485.92 6096.72 7992.16 7898.97 79
test_prior485.96 5794.11 166
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8798.11 61
旧先验293.36 19971.25 32794.37 2697.13 21886.74 126
新几何293.11 214
无先验93.28 20696.26 10773.95 30899.05 6080.56 21296.59 125
原ACMM292.94 221
testdata298.75 9978.30 238
testdata192.15 24387.94 87
plane_prior794.70 15682.74 136
plane_prior596.22 11298.12 13688.15 10689.99 18494.63 191
plane_prior494.86 122
plane_prior382.75 13490.26 3086.91 158
plane_prior295.85 6190.81 17
plane_prior194.59 160
plane_prior82.73 13795.21 9289.66 4189.88 189
n20.00 362
nn0.00 362
door-mid85.49 338
test1196.57 92
door85.33 339
HQP5-MVS81.56 160
HQP-NCC94.17 17594.39 14888.81 6185.43 194
ACMP_Plane94.17 17594.39 14888.81 6185.43 194
BP-MVS87.11 123
HQP4-MVS85.43 19497.96 15494.51 201
HQP3-MVS96.04 12689.77 191
NP-MVS94.37 17082.42 14493.98 154
ACMMP++_ref87.47 225
ACMMP++88.01 220