This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND95.01 1598.79 186.43 4097.09 1197.49 599.61 395.62 599.08 798.99 5
MSP-MVS95.67 296.02 294.64 4098.78 285.93 5797.09 1196.73 7390.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 31
test072698.78 285.93 5797.19 697.47 890.27 2897.64 498.13 191.47 6
SED-MVS95.91 196.28 194.80 3398.77 485.99 5497.13 997.44 1390.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
IU-MVS98.77 486.00 5396.84 6381.26 23397.26 695.50 799.13 399.03 4
test_241102_ONE98.77 485.99 5497.44 1390.26 3097.71 197.96 892.31 299.38 29
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3388.60 7093.58 4397.27 2485.22 5599.54 1692.21 4398.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2588.63 6893.53 4697.26 2685.04 5899.54 1692.35 4098.78 2198.50 21
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 2088.63 6893.65 3997.21 2986.10 4499.49 2392.35 4098.77 2498.30 40
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 2087.51 9993.65 3997.21 2986.10 4499.49 2391.68 6198.77 2498.30 40
test_part298.55 1187.22 1696.40 11
XVS94.45 2094.32 2094.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5597.16 3485.02 5999.49 2391.99 5098.56 4798.47 27
X-MVStestdata88.31 15786.13 19794.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5523.41 34785.02 5999.49 2391.99 5098.56 4798.47 27
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2588.24 7993.15 5197.04 3986.17 4399.62 192.40 3898.81 1898.52 20
mPP-MVS93.99 3893.78 4194.63 4198.50 1585.90 6296.87 2196.91 5688.70 6691.83 8497.17 3383.96 7199.55 1291.44 6698.64 4398.43 33
DVP-MVS95.42 595.56 594.98 1998.49 1686.52 3796.91 2097.47 891.73 896.10 1396.69 5489.90 999.30 3994.70 998.04 6399.13 1
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4696.71 2696.98 4889.04 5791.98 7897.19 3185.43 5399.56 792.06 4998.79 1998.44 32
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10297.12 4187.13 10492.51 6996.30 7089.24 1499.34 3393.46 2198.62 4498.73 11
PGM-MVS93.96 3993.72 4394.68 3898.43 1986.22 4995.30 8097.78 187.45 10093.26 4797.33 2184.62 6499.51 2190.75 7998.57 4698.32 39
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
GST-MVS94.21 3393.97 3794.90 2498.41 2286.82 2396.54 3097.19 3688.24 7993.26 4796.83 4785.48 5299.59 491.43 6798.40 5298.30 40
HPM-MVScopyleft94.02 3793.88 3894.43 5098.39 2385.78 6497.25 597.07 4586.90 11292.62 6696.80 5184.85 6299.17 4992.43 3698.65 4298.33 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3188.53 7292.73 6297.23 2785.20 5699.32 3792.15 4698.83 1798.25 49
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7197.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
HPM-MVS_fast93.40 5393.22 5193.94 6198.36 2584.83 7597.15 896.80 6885.77 13392.47 7097.13 3582.38 8299.07 5790.51 8198.40 5297.92 74
DP-MVS Recon91.95 7491.28 7993.96 6098.33 2785.92 5994.66 12596.66 8182.69 19990.03 10995.82 9182.30 8599.03 6384.57 14496.48 9696.91 114
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4897.46 297.40 1889.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4496.11 4596.62 8488.14 8496.10 1396.96 4389.09 1598.94 8094.48 1298.68 3598.48 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5596.96 5291.75 794.02 3396.83 4788.12 2199.55 1293.41 2498.94 1298.28 44
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4097.23 3387.28 10294.85 2497.04 3986.99 3699.52 2091.54 6398.33 5598.71 12
CPTT-MVS91.99 7391.80 7392.55 10598.24 3181.98 14996.76 2596.49 9181.89 21890.24 10596.44 6778.59 12798.61 10289.68 8697.85 6997.06 106
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6496.40 3396.90 5788.20 8294.33 2797.40 1884.75 6399.03 6393.35 2597.99 6498.48 23
MP-MVS-pluss94.21 3394.00 3694.85 2798.17 3486.65 3394.82 11497.17 3986.26 12492.83 5797.87 1085.57 5199.56 794.37 1498.92 1398.34 37
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVS95.20 795.07 995.59 398.14 3588.48 696.26 3797.28 2985.90 13097.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
CNVR-MVS95.40 695.37 695.50 598.11 3688.51 595.29 8296.96 5292.09 395.32 1997.08 3789.49 1299.33 3695.10 898.85 1598.66 14
114514_t89.51 12388.50 13292.54 10698.11 3681.99 14895.16 9396.36 9970.19 32685.81 17395.25 10576.70 14498.63 10082.07 17996.86 8697.00 110
ACMMPcopyleft93.24 5792.88 6094.30 5498.09 3885.33 7196.86 2297.45 1188.33 7690.15 10797.03 4181.44 9699.51 2190.85 7895.74 10298.04 65
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 3986.90 2195.88 5696.94 5485.68 13695.05 2397.18 3287.31 3099.07 5791.90 5798.61 4598.28 44
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 5893.05 5593.76 6898.04 4084.07 9596.22 3897.37 1984.15 16790.05 10895.66 9687.77 2399.15 5289.91 8498.27 5798.07 62
ACMMP_NAP94.74 1494.56 1695.28 698.02 4187.70 1095.68 6497.34 2088.28 7895.30 2097.67 1385.90 4899.54 1693.91 1798.95 1198.60 17
OPU-MVS96.21 198.00 4290.85 197.13 997.08 3792.59 198.94 8092.25 4298.99 1098.84 8
APD-MVS_3200maxsize93.78 4393.77 4293.80 6797.92 4384.19 9396.30 3596.87 6186.96 10893.92 3597.47 1683.88 7298.96 7992.71 3497.87 6898.26 48
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4485.63 6795.21 8895.47 16489.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
save fliter97.85 4485.63 6795.21 8896.82 6689.44 44
SF-MVS94.97 1094.90 1295.20 897.84 4687.76 896.65 2897.48 787.76 9395.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
NCCC94.81 1394.69 1595.17 1097.83 4787.46 1495.66 6696.93 5592.34 293.94 3496.58 6187.74 2499.44 2792.83 3298.40 5298.62 16
ETH3 D test640093.64 4793.22 5194.92 2097.79 4886.84 2295.31 7797.26 3082.67 20093.81 3796.29 7187.29 3199.27 4289.87 8598.67 3798.65 15
9.1494.47 1797.79 4896.08 4697.44 1386.13 12895.10 2297.40 1888.34 1899.22 4593.25 2798.70 32
CDPH-MVS92.83 6292.30 6894.44 4897.79 4886.11 5194.06 16996.66 8180.09 24592.77 5996.63 5886.62 3899.04 6287.40 11298.66 4098.17 53
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5187.71 995.98 5297.44 1386.67 11795.25 2197.31 2287.73 2599.24 4393.11 3098.76 2698.40 34
DP-MVS87.25 19485.36 22292.90 8997.65 5283.24 11594.81 11592.00 26974.99 29581.92 26295.00 11372.66 19899.05 5966.92 30992.33 16096.40 126
PAPM_NR91.22 8890.78 9092.52 10797.60 5381.46 16194.37 14996.24 10686.39 12287.41 14494.80 12282.06 9198.48 10882.80 16895.37 11097.61 84
TEST997.53 5486.49 3894.07 16796.78 6981.61 22692.77 5996.20 7687.71 2699.12 54
train_agg93.44 5193.08 5494.52 4597.53 5486.49 3894.07 16796.78 6981.86 21992.77 5996.20 7687.63 2799.12 5492.14 4798.69 3397.94 71
abl_693.18 5993.05 5593.57 7197.52 5684.27 9295.53 7296.67 8087.85 9093.20 5097.22 2880.35 10399.18 4891.91 5497.21 7997.26 97
test_897.49 5786.30 4794.02 17296.76 7281.86 21992.70 6396.20 7687.63 2799.02 67
DeepC-MVS_fast89.43 294.04 3693.79 4094.80 3397.48 5886.78 2695.65 6896.89 5889.40 4792.81 5896.97 4285.37 5499.24 4390.87 7798.69 3398.38 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 11689.07 12092.37 11597.41 5983.03 12194.42 14195.92 12882.81 19786.34 16694.65 12773.89 18199.02 6780.69 20495.51 10595.05 171
agg_prior193.29 5592.97 5894.26 5597.38 6085.92 5993.92 17796.72 7581.96 21392.16 7496.23 7487.85 2298.97 7691.95 5398.55 4997.90 75
agg_prior97.38 6085.92 5996.72 7592.16 7498.97 76
原ACMM192.01 12597.34 6281.05 17196.81 6778.89 25790.45 10395.92 8782.65 7998.84 9180.68 20598.26 5896.14 134
MSLP-MVS++93.72 4494.08 3392.65 10197.31 6383.43 11195.79 5997.33 2390.03 3393.58 4396.96 4384.87 6197.76 15992.19 4598.66 4096.76 117
新几何193.10 7997.30 6484.35 9195.56 15771.09 32391.26 9696.24 7382.87 7898.86 8679.19 22698.10 6196.07 141
test_prior393.60 4893.53 4693.82 6497.29 6584.49 8294.12 16096.88 5987.67 9692.63 6496.39 6886.62 3898.87 8391.50 6498.67 3798.11 60
test_prior93.82 6497.29 6584.49 8296.88 5998.87 8398.11 60
112190.42 10489.49 10993.20 7597.27 6784.46 8592.63 22395.51 16271.01 32491.20 9796.21 7582.92 7799.05 5980.56 20798.07 6296.10 139
PLCcopyleft84.53 789.06 13888.03 14592.15 12397.27 6782.69 13594.29 15295.44 17079.71 25084.01 22894.18 14376.68 14598.75 9577.28 24393.41 14195.02 172
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1195.33 793.88 6297.25 6986.69 3096.19 3997.11 4390.42 2596.95 1097.27 2489.53 1196.91 22894.38 1398.85 1598.03 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5397.13 7086.15 5096.29 10191.04 9985.08 5799.01 6998.13 6097.86 76
MG-MVS91.77 7791.70 7592.00 12797.08 7180.03 19993.60 18995.18 18487.85 9090.89 10096.47 6682.06 9198.36 11885.07 13697.04 8397.62 83
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7286.33 4497.33 397.30 2791.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5093.31 4993.84 6396.99 7284.84 7493.24 20697.24 3188.76 6491.60 8995.85 9086.07 4698.66 9791.91 5498.16 5998.03 66
CNLPA89.07 13787.98 14692.34 11696.87 7484.78 7694.08 16693.24 24481.41 22984.46 21295.13 11075.57 15896.62 23877.21 24493.84 13395.61 157
PHI-MVS93.89 4293.65 4494.62 4296.84 7586.43 4096.69 2797.49 585.15 15193.56 4596.28 7285.60 5099.31 3892.45 3598.79 1998.12 58
旧先验196.79 7681.81 15295.67 14896.81 4986.69 3797.66 7296.97 111
ETH3D cwj APD-0.1693.91 4093.53 4695.06 1396.76 7787.78 794.92 10797.21 3584.33 16593.89 3697.09 3687.20 3299.29 4191.90 5798.44 5198.12 58
LFMVS90.08 10989.13 11992.95 8796.71 7882.32 14496.08 4689.91 31786.79 11392.15 7696.81 4962.60 28698.34 12187.18 11693.90 13198.19 52
Anonymous20240521187.68 17286.13 19792.31 11896.66 7980.74 18094.87 11191.49 28480.47 24189.46 11495.44 9954.72 32398.23 12782.19 17789.89 18497.97 69
TAPA-MVS84.62 688.16 16187.01 16891.62 14596.64 8080.65 18194.39 14496.21 11176.38 28186.19 16995.44 9979.75 11198.08 14162.75 32495.29 11296.13 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 10589.37 11393.07 8296.61 8184.48 8495.68 6495.67 14882.36 20487.85 13692.85 18776.63 14698.80 9380.01 21596.68 8995.91 146
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7291.91 7293.24 7496.59 8283.43 11194.84 11396.44 9289.19 5394.08 3295.90 8877.85 13798.17 13188.90 9493.38 14298.13 57
TSAR-MVS + GP.93.66 4693.41 4894.41 5296.59 8286.78 2694.40 14293.93 23389.77 3894.21 2995.59 9887.35 2998.61 10292.72 3396.15 9997.83 78
test22296.55 8481.70 15492.22 23795.01 19168.36 32990.20 10696.14 8180.26 10697.80 7096.05 143
Anonymous2024052988.09 16386.59 18392.58 10496.53 8581.92 15195.99 5095.84 13674.11 30389.06 12095.21 10761.44 29498.81 9283.67 15687.47 22197.01 109
Anonymous2023121186.59 21685.13 22590.98 17196.52 8681.50 15796.14 4296.16 11273.78 30583.65 23792.15 21063.26 28497.37 19482.82 16781.74 27794.06 218
DeepPCF-MVS89.96 194.20 3594.77 1392.49 10896.52 8680.00 20194.00 17497.08 4490.05 3295.65 1797.29 2389.66 1098.97 7693.95 1698.71 3098.50 21
testdata90.49 18496.40 8877.89 24795.37 17672.51 31693.63 4196.69 5482.08 9097.65 16583.08 16097.39 7795.94 145
PVSNet_Blended_VisFu91.38 8490.91 8792.80 9296.39 8983.17 11794.87 11196.66 8183.29 18689.27 11694.46 13380.29 10599.17 4987.57 11095.37 11096.05 143
API-MVS90.66 9890.07 9992.45 11096.36 9084.57 8096.06 4895.22 18382.39 20289.13 11794.27 14180.32 10498.46 11180.16 21496.71 8894.33 206
F-COLMAP87.95 16686.80 17391.40 15196.35 9180.88 17694.73 12095.45 16879.65 25182.04 26094.61 12871.13 21198.50 10776.24 25491.05 17194.80 185
VDD-MVS90.74 9489.92 10593.20 7596.27 9283.02 12295.73 6193.86 23488.42 7592.53 6796.84 4662.09 28998.64 9990.95 7592.62 15697.93 73
OMC-MVS91.23 8790.62 9193.08 8096.27 9284.07 9593.52 19195.93 12786.95 10989.51 11296.13 8278.50 12998.35 12085.84 13092.90 15296.83 116
DPM-MVS92.58 6791.74 7495.08 1296.19 9489.31 392.66 22296.56 8983.44 18291.68 8895.04 11286.60 4198.99 7385.60 13297.92 6796.93 113
CHOSEN 1792x268888.84 14487.69 15192.30 11996.14 9581.42 16390.01 27995.86 13574.52 30087.41 14493.94 15275.46 15998.36 11880.36 21095.53 10497.12 105
thres100view90087.63 17786.71 17690.38 19096.12 9678.55 22995.03 10191.58 28087.15 10388.06 13292.29 20668.91 24498.10 13470.13 29191.10 16794.48 202
PVSNet_BlendedMVS89.98 11189.70 10690.82 17396.12 9681.25 16693.92 17796.83 6483.49 18189.10 11892.26 20781.04 10098.85 8986.72 12587.86 21992.35 288
PVSNet_Blended90.73 9590.32 9491.98 12896.12 9681.25 16692.55 22796.83 6482.04 21189.10 11892.56 19781.04 10098.85 8986.72 12595.91 10095.84 150
UA-Net92.83 6292.54 6593.68 6996.10 9984.71 7795.66 6696.39 9791.92 493.22 4996.49 6583.16 7598.87 8384.47 14595.47 10797.45 92
thres600view787.65 17486.67 17890.59 17696.08 10078.72 22594.88 11091.58 28087.06 10688.08 13192.30 20568.91 24498.10 13470.05 29491.10 16794.96 176
DeepC-MVS88.79 393.31 5492.99 5794.26 5596.07 10185.83 6394.89 10996.99 4789.02 5989.56 11197.37 2082.51 8199.38 2992.20 4498.30 5697.57 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 16786.32 19292.59 10396.07 10182.92 12695.23 8694.92 19975.66 28882.89 25095.98 8572.48 20199.21 4668.43 30195.23 11595.64 156
HyFIR lowres test88.09 16386.81 17291.93 13296.00 10380.63 18290.01 27995.79 14073.42 30887.68 14192.10 21573.86 18297.96 15080.75 20391.70 16397.19 101
tfpn200view987.58 18186.64 17990.41 18795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.48 202
thres40087.62 17986.64 17990.57 17795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.96 176
MVS_111021_LR92.47 6992.29 6992.98 8595.99 10484.43 8993.08 21196.09 11688.20 8291.12 9895.72 9581.33 9897.76 15991.74 5997.37 7896.75 118
PatchMatch-RL86.77 21285.54 21690.47 18695.88 10782.71 13490.54 26992.31 26079.82 24984.32 22091.57 23568.77 24696.39 25773.16 27793.48 14092.32 289
EPP-MVSNet91.70 8091.56 7692.13 12495.88 10780.50 18797.33 395.25 18086.15 12689.76 11095.60 9783.42 7498.32 12487.37 11493.25 14597.56 88
IS-MVSNet91.43 8391.09 8492.46 10995.87 10981.38 16496.95 1493.69 23989.72 4089.50 11395.98 8578.57 12897.77 15883.02 16296.50 9598.22 51
PAPR90.02 11089.27 11792.29 12095.78 11080.95 17492.68 22196.22 10881.91 21686.66 15993.75 16582.23 8698.44 11579.40 22594.79 11797.48 90
Vis-MVSNet (Re-imp)89.59 12189.44 11190.03 20595.74 11175.85 27895.61 6990.80 30287.66 9887.83 13795.40 10276.79 14296.46 25478.37 23196.73 8797.80 79
test_yl90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
DCV-MVSNet90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
canonicalmvs93.27 5692.75 6194.85 2795.70 11487.66 1196.33 3496.41 9590.00 3494.09 3194.60 12982.33 8498.62 10192.40 3892.86 15398.27 46
CANet93.54 4993.20 5394.55 4495.65 11585.73 6694.94 10596.69 7991.89 590.69 10195.88 8981.99 9399.54 1693.14 2997.95 6698.39 35
3Dnovator+87.14 492.42 7091.37 7795.55 495.63 11688.73 497.07 1396.77 7190.84 1684.02 22796.62 5975.95 15299.34 3387.77 10797.68 7198.59 18
alignmvs93.08 6092.50 6694.81 3295.62 11787.61 1295.99 5096.07 11889.77 3894.12 3094.87 11780.56 10298.66 9792.42 3793.10 14898.15 55
CS-MVS92.60 6692.56 6492.73 9695.55 11882.35 14396.14 4296.85 6288.71 6591.44 9291.51 23684.13 6898.48 10891.27 6897.47 7697.34 94
Regformer-194.22 3294.13 3294.51 4695.54 11986.36 4394.57 13096.44 9291.69 994.32 2896.56 6387.05 3599.03 6393.35 2597.65 7398.15 55
Regformer-294.33 2794.22 2594.68 3895.54 11986.75 2994.57 13096.70 7791.84 694.41 2596.56 6387.19 3399.13 5393.50 2097.65 7398.16 54
WTY-MVS89.60 12088.92 12491.67 14495.47 12181.15 17092.38 23194.78 20983.11 18989.06 12094.32 13678.67 12696.61 24181.57 19190.89 17397.24 98
DELS-MVS93.43 5293.25 5093.97 5995.42 12285.04 7393.06 21397.13 4090.74 2091.84 8295.09 11186.32 4299.21 4691.22 6998.45 5097.65 82
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-393.68 4593.64 4593.81 6695.36 12384.61 7894.68 12295.83 13791.27 1293.60 4296.71 5285.75 4998.86 8692.87 3196.65 9097.96 70
Regformer-493.91 4093.81 3994.19 5795.36 12385.47 6994.68 12296.41 9591.60 1093.75 3896.71 5285.95 4799.10 5693.21 2896.65 9098.01 68
thres20087.21 19886.24 19590.12 20095.36 12378.53 23093.26 20392.10 26586.42 12188.00 13491.11 24969.24 24098.00 14769.58 29591.04 17293.83 232
Vis-MVSNetpermissive91.75 7891.23 8093.29 7295.32 12683.78 10296.14 4295.98 12389.89 3590.45 10396.58 6175.09 16298.31 12584.75 14296.90 8497.78 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BH-RMVSNet88.37 15587.48 15691.02 16695.28 12779.45 21192.89 21893.07 24785.45 14386.91 15494.84 12170.35 22497.76 15973.97 27294.59 12295.85 149
COLMAP_ROBcopyleft80.39 1683.96 25782.04 26389.74 21795.28 12779.75 20694.25 15492.28 26175.17 29378.02 29993.77 16358.60 31297.84 15665.06 31785.92 23391.63 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 8990.92 8691.96 13095.26 12982.60 13892.09 24295.70 14686.27 12391.84 8292.46 19979.70 11398.99 7389.08 9295.86 10194.29 207
BH-untuned88.60 15188.13 14490.01 20795.24 13078.50 23293.29 20194.15 22784.75 15984.46 21293.40 16775.76 15397.40 19077.59 24094.52 12494.12 213
ETV-MVS92.74 6492.66 6292.97 8695.20 13184.04 9795.07 9796.51 9090.73 2192.96 5491.19 24384.06 6998.34 12191.72 6096.54 9396.54 125
EIA-MVS91.95 7491.94 7191.98 12895.16 13280.01 20095.36 7496.73 7388.44 7389.34 11592.16 20983.82 7398.45 11489.35 8997.06 8297.48 90
ab-mvs89.41 12988.35 13692.60 10295.15 13382.65 13692.20 23895.60 15583.97 17188.55 12493.70 16674.16 17798.21 13082.46 17389.37 19296.94 112
VDDNet89.56 12288.49 13492.76 9495.07 13482.09 14696.30 3593.19 24581.05 23791.88 8096.86 4561.16 29998.33 12388.43 10092.49 15997.84 77
AllTest83.42 26281.39 26789.52 22595.01 13577.79 25193.12 20890.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
TestCases89.52 22595.01 13577.79 25190.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
EI-MVSNet-Vis-set93.01 6192.92 5993.29 7295.01 13583.51 11094.48 13495.77 14190.87 1592.52 6896.67 5684.50 6599.00 7291.99 5094.44 12797.36 93
xiu_mvs_v2_base91.13 9090.89 8891.86 13594.97 13882.42 13992.24 23695.64 15386.11 12991.74 8793.14 17979.67 11698.89 8289.06 9395.46 10894.28 208
tttt051788.61 15087.78 15091.11 16194.96 13977.81 25095.35 7589.69 32185.09 15388.05 13394.59 13066.93 25898.48 10883.27 15992.13 16297.03 108
baseline188.10 16287.28 16290.57 17794.96 13980.07 19594.27 15391.29 28986.74 11487.41 14494.00 14976.77 14396.20 26580.77 20279.31 30995.44 161
Test_1112_low_res87.65 17486.51 18591.08 16294.94 14179.28 21991.77 24794.30 22176.04 28683.51 24192.37 20277.86 13697.73 16378.69 23089.13 19896.22 132
1112_ss88.42 15387.33 16091.72 14294.92 14280.98 17292.97 21694.54 21378.16 27083.82 23293.88 15778.78 12497.91 15479.45 22189.41 19196.26 131
QAPM89.51 12388.15 14393.59 7094.92 14284.58 7996.82 2496.70 7778.43 26583.41 24396.19 7973.18 19399.30 3977.11 24696.54 9396.89 115
BH-w/o87.57 18287.05 16789.12 23494.90 14477.90 24692.41 22993.51 24182.89 19683.70 23591.34 23775.75 15497.07 21875.49 25993.49 13892.39 286
thisisatest053088.67 14887.61 15491.86 13594.87 14580.07 19594.63 12689.90 31884.00 17088.46 12693.78 16266.88 26098.46 11183.30 15892.65 15597.06 106
EI-MVSNet-UG-set92.74 6492.62 6393.12 7894.86 14683.20 11694.40 14295.74 14490.71 2292.05 7796.60 6084.00 7098.99 7391.55 6293.63 13597.17 102
HY-MVS83.01 1289.03 13987.94 14892.29 12094.86 14682.77 12892.08 24394.49 21481.52 22886.93 15392.79 19378.32 13298.23 12779.93 21690.55 17495.88 148
Fast-Effi-MVS+89.41 12988.64 12991.71 14394.74 14880.81 17893.54 19095.10 18883.11 18986.82 15790.67 26079.74 11297.75 16280.51 20993.55 13696.57 123
ACMP84.23 889.01 14188.35 13690.99 16994.73 14981.27 16595.07 9795.89 13386.48 11983.67 23694.30 13769.33 23697.99 14887.10 12188.55 20393.72 241
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 23484.65 23688.23 25994.72 15071.93 30787.12 31392.75 25378.80 26084.95 20390.53 26264.43 28096.71 23574.74 26793.86 13296.06 142
LCM-MVSNet-Re88.30 15888.32 13988.27 25694.71 15172.41 30693.15 20790.98 29687.77 9279.25 29391.96 22178.35 13195.75 28583.04 16195.62 10396.65 121
HQP_MVS90.60 10290.19 9691.82 13894.70 15282.73 13295.85 5796.22 10890.81 1786.91 15494.86 11874.23 17398.12 13288.15 10289.99 18094.63 188
plane_prior794.70 15282.74 131
ACMH+81.04 1485.05 24583.46 25289.82 21394.66 15479.37 21394.44 13994.12 23082.19 20778.04 29892.82 19058.23 31397.54 17273.77 27482.90 26392.54 280
ACMM84.12 989.14 13588.48 13591.12 15894.65 15581.22 16895.31 7796.12 11585.31 14785.92 17294.34 13470.19 22798.06 14385.65 13188.86 20194.08 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
plane_prior194.59 156
3Dnovator86.66 591.73 7990.82 8994.44 4894.59 15686.37 4297.18 797.02 4689.20 5284.31 22296.66 5773.74 18599.17 4986.74 12297.96 6597.79 80
plane_prior694.52 15882.75 12974.23 173
UGNet89.95 11388.95 12392.95 8794.51 15983.31 11495.70 6395.23 18189.37 4887.58 14293.94 15264.00 28198.78 9483.92 15196.31 9896.74 119
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 12688.90 12591.12 15894.47 16081.49 15995.30 8096.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
LGP-MVS_train91.12 15894.47 16081.49 15996.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
baseline92.39 7192.29 6992.69 10094.46 16281.77 15394.14 15996.27 10289.22 5191.88 8096.00 8482.35 8397.99 14891.05 7195.27 11498.30 40
ACMH80.38 1785.36 23783.68 24890.39 18894.45 16380.63 18294.73 12094.85 20382.09 20877.24 30392.65 19560.01 30697.58 16972.25 28084.87 24292.96 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 22484.90 23190.34 19394.44 16481.50 15792.31 23594.89 20083.03 19179.63 29092.67 19469.69 23297.79 15771.20 28386.26 23291.72 297
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvs92.51 6892.43 6792.74 9594.41 16581.98 14994.54 13296.23 10789.57 4291.96 7996.17 8082.58 8098.01 14690.95 7595.45 10998.23 50
MVS_Test91.31 8691.11 8291.93 13294.37 16680.14 19293.46 19495.80 13986.46 12091.35 9593.77 16382.21 8798.09 14087.57 11094.95 11697.55 89
NP-MVS94.37 16682.42 13993.98 150
TR-MVS86.78 20985.76 21489.82 21394.37 16678.41 23492.47 22892.83 25081.11 23686.36 16592.40 20168.73 24797.48 17673.75 27589.85 18693.57 245
Effi-MVS+91.59 8291.11 8293.01 8494.35 16983.39 11394.60 12795.10 18887.10 10590.57 10293.10 18181.43 9798.07 14289.29 9094.48 12597.59 86
CLD-MVS89.47 12588.90 12591.18 15794.22 17082.07 14792.13 24096.09 11687.90 8885.37 19692.45 20074.38 17197.56 17187.15 11790.43 17593.93 223
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC94.17 17194.39 14488.81 6185.43 190
ACMP_Plane94.17 17194.39 14488.81 6185.43 190
HQP-MVS89.80 11789.28 11691.34 15394.17 17181.56 15594.39 14496.04 12188.81 6185.43 19093.97 15173.83 18397.96 15087.11 11989.77 18794.50 199
XVG-OURS89.40 13188.70 12891.52 14794.06 17481.46 16191.27 25996.07 11886.14 12788.89 12295.77 9368.73 24797.26 20287.39 11389.96 18295.83 151
sss88.93 14288.26 14290.94 17294.05 17580.78 17991.71 25095.38 17481.55 22788.63 12393.91 15675.04 16395.47 29782.47 17291.61 16496.57 123
PCF-MVS84.11 1087.74 17186.08 20192.70 9994.02 17684.43 8989.27 28995.87 13473.62 30784.43 21494.33 13578.48 13098.86 8670.27 28794.45 12694.81 184
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
test187.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
FMVSNet287.19 19985.82 21091.30 15494.01 17783.67 10594.79 11694.94 19483.57 17783.88 23092.05 21966.59 26596.51 24977.56 24185.01 24193.73 240
XVG-OURS-SEG-HR89.95 11389.45 11091.47 14994.00 18081.21 16991.87 24596.06 12085.78 13288.55 12495.73 9474.67 16997.27 20088.71 9789.64 18995.91 146
FIs90.51 10390.35 9390.99 16993.99 18180.98 17295.73 6197.54 389.15 5486.72 15894.68 12581.83 9597.24 20485.18 13588.31 21194.76 186
xiu_mvs_v1_base_debu90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base_debi90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
VPA-MVSNet89.62 11988.96 12291.60 14693.86 18582.89 12795.46 7397.33 2387.91 8788.43 12793.31 17174.17 17697.40 19087.32 11582.86 26494.52 197
MVSFormer91.68 8191.30 7892.80 9293.86 18583.88 10095.96 5395.90 13184.66 16191.76 8594.91 11577.92 13497.30 19689.64 8797.11 8097.24 98
lupinMVS90.92 9290.21 9593.03 8393.86 18583.88 10092.81 21993.86 23479.84 24891.76 8594.29 13877.92 13498.04 14490.48 8297.11 8097.17 102
IterMVS-LS88.36 15687.91 14989.70 22093.80 18878.29 23893.73 18395.08 19085.73 13484.75 20591.90 22379.88 10996.92 22783.83 15282.51 26593.89 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 24983.09 25590.14 19993.80 18880.05 19789.18 29293.09 24678.89 25778.19 29691.91 22265.86 27497.27 20068.47 30088.45 20793.11 264
FMVSNet387.40 18986.11 19991.30 15493.79 19083.64 10694.20 15794.81 20783.89 17284.37 21591.87 22468.45 25096.56 24678.23 23485.36 23893.70 242
FC-MVSNet-test90.27 10690.18 9790.53 18093.71 19179.85 20595.77 6097.59 289.31 4986.27 16794.67 12681.93 9497.01 22284.26 14788.09 21594.71 187
TAMVS89.21 13488.29 14091.96 13093.71 19182.62 13793.30 20094.19 22582.22 20687.78 13993.94 15278.83 12296.95 22577.70 23992.98 15196.32 128
ET-MVSNet_ETH3D87.51 18485.91 20892.32 11793.70 19383.93 9892.33 23390.94 29884.16 16672.09 32592.52 19869.90 22895.85 28089.20 9188.36 21097.17 102
CDS-MVSNet89.45 12688.51 13192.29 12093.62 19483.61 10893.01 21494.68 21281.95 21487.82 13893.24 17578.69 12596.99 22380.34 21193.23 14696.28 130
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 11789.07 12092.01 12593.60 19584.52 8194.78 11797.47 889.26 5086.44 16492.32 20482.10 8997.39 19384.81 14180.84 29194.12 213
VPNet88.20 16087.47 15790.39 18893.56 19679.46 21094.04 17095.54 16088.67 6786.96 15294.58 13169.33 23697.15 21084.05 15080.53 29694.56 195
thisisatest051587.33 19085.99 20391.37 15293.49 19779.55 20890.63 26889.56 32480.17 24387.56 14390.86 25467.07 25798.28 12681.50 19293.02 15096.29 129
mvs_anonymous89.37 13289.32 11489.51 22793.47 19874.22 28791.65 25394.83 20582.91 19585.45 18793.79 16181.23 9996.36 26086.47 12794.09 12997.94 71
CANet_DTU90.26 10789.41 11292.81 9193.46 19983.01 12393.48 19294.47 21589.43 4687.76 14094.23 14270.54 22399.03 6384.97 13796.39 9796.38 127
UniMVSNet_NR-MVSNet89.92 11589.29 11591.81 14093.39 20083.72 10394.43 14097.12 4189.80 3786.46 16193.32 17083.16 7597.23 20684.92 13881.02 28794.49 201
Effi-MVS+-dtu88.65 14988.35 13689.54 22493.33 20176.39 27394.47 13794.36 21887.70 9485.43 19089.56 28273.45 18897.26 20285.57 13391.28 16694.97 173
mvs-test189.45 12689.14 11890.38 19093.33 20177.63 25694.95 10494.36 21887.70 9487.10 15192.81 19173.45 18898.03 14585.57 13393.04 14995.48 159
WR-MVS88.38 15487.67 15390.52 18293.30 20380.18 19093.26 20395.96 12588.57 7185.47 18692.81 19176.12 14896.91 22881.24 19482.29 26794.47 204
WR-MVS_H87.80 17087.37 15989.10 23593.23 20478.12 24195.61 6997.30 2787.90 8883.72 23492.01 22079.65 11796.01 27376.36 25180.54 29593.16 262
test_040281.30 28579.17 29087.67 26993.19 20578.17 24092.98 21591.71 27675.25 29276.02 31090.31 26659.23 31096.37 25850.22 33883.63 25388.47 330
OPM-MVS90.12 10889.56 10891.82 13893.14 20683.90 9994.16 15895.74 14488.96 6087.86 13595.43 10172.48 20197.91 15488.10 10590.18 17993.65 243
CP-MVSNet87.63 17787.26 16488.74 24593.12 20776.59 27095.29 8296.58 8788.43 7483.49 24292.98 18475.28 16095.83 28178.97 22781.15 28393.79 233
diffmvs91.37 8591.23 8091.77 14193.09 20880.27 18992.36 23295.52 16187.03 10791.40 9494.93 11480.08 10797.44 18192.13 4894.56 12397.61 84
nrg03091.08 9190.39 9293.17 7793.07 20986.91 2096.41 3296.26 10388.30 7788.37 12894.85 12082.19 8897.64 16791.09 7082.95 25994.96 176
PAPM86.68 21385.39 22090.53 18093.05 21079.33 21889.79 28294.77 21078.82 25981.95 26193.24 17576.81 14197.30 19666.94 30793.16 14794.95 179
DU-MVS89.34 13388.50 13291.85 13793.04 21183.72 10394.47 13796.59 8689.50 4386.46 16193.29 17377.25 13897.23 20684.92 13881.02 28794.59 192
NR-MVSNet88.58 15287.47 15791.93 13293.04 21184.16 9494.77 11896.25 10589.05 5680.04 28693.29 17379.02 12197.05 22081.71 19080.05 30194.59 192
jason90.80 9390.10 9892.90 8993.04 21183.53 10993.08 21194.15 22780.22 24291.41 9394.91 11576.87 14097.93 15390.28 8396.90 8497.24 98
jason: jason.
RRT_test8_iter0586.90 20586.36 18988.52 25093.00 21473.27 29594.32 15195.96 12585.50 14284.26 22392.86 18660.76 30197.70 16488.32 10182.29 26794.60 191
PS-CasMVS87.32 19186.88 16988.63 24892.99 21576.33 27595.33 7696.61 8588.22 8183.30 24793.07 18273.03 19595.79 28478.36 23281.00 28993.75 239
MVSTER88.84 14488.29 14090.51 18392.95 21680.44 18893.73 18395.01 19184.66 16187.15 14893.12 18072.79 19797.21 20887.86 10687.36 22493.87 228
RPSCF85.07 24484.27 24087.48 27592.91 21770.62 31991.69 25292.46 25876.20 28582.67 25395.22 10663.94 28297.29 19977.51 24285.80 23594.53 196
FMVSNet185.85 23084.11 24291.08 16292.81 21883.10 11895.14 9494.94 19481.64 22482.68 25291.64 22859.01 31196.34 26175.37 26183.78 24993.79 233
tfpnnormal84.72 25183.23 25489.20 23292.79 21980.05 19794.48 13495.81 13882.38 20381.08 27091.21 24269.01 24396.95 22561.69 32680.59 29490.58 317
OpenMVScopyleft83.78 1188.74 14787.29 16193.08 8092.70 22085.39 7096.57 2996.43 9478.74 26280.85 27296.07 8369.64 23399.01 6978.01 23796.65 9094.83 183
TranMVSNet+NR-MVSNet88.84 14487.95 14791.49 14892.68 22183.01 12394.92 10796.31 10089.88 3685.53 18193.85 15976.63 14696.96 22481.91 18379.87 30494.50 199
MVS87.44 18786.10 20091.44 15092.61 22283.62 10792.63 22395.66 15067.26 33081.47 26492.15 21077.95 13398.22 12979.71 21895.48 10692.47 283
CHOSEN 280x42085.15 24383.99 24488.65 24792.47 22378.40 23579.68 33892.76 25274.90 29781.41 26689.59 28069.85 23195.51 29379.92 21795.29 11292.03 293
UniMVSNet_ETH3D87.53 18386.37 18891.00 16892.44 22478.96 22494.74 11995.61 15484.07 16985.36 19794.52 13259.78 30897.34 19582.93 16387.88 21896.71 120
131487.51 18486.57 18490.34 19392.42 22579.74 20792.63 22395.35 17878.35 26680.14 28391.62 23274.05 17897.15 21081.05 19593.53 13794.12 213
cl-mvsnet286.78 20985.98 20489.18 23392.34 22677.62 25790.84 26594.13 22981.33 23183.97 22990.15 26973.96 18096.60 24384.19 14882.94 26093.33 253
PEN-MVS86.80 20886.27 19488.40 25292.32 22775.71 28095.18 9196.38 9887.97 8582.82 25193.15 17873.39 19195.92 27676.15 25579.03 31193.59 244
cl_fuxian87.14 20186.50 18689.04 23792.20 22877.26 26291.22 26194.70 21182.01 21284.34 21990.43 26478.81 12396.61 24183.70 15581.09 28493.25 257
SCA86.32 22385.18 22489.73 21992.15 22976.60 26991.12 26291.69 27883.53 18085.50 18488.81 28966.79 26196.48 25176.65 24990.35 17796.12 136
XXY-MVS87.65 17486.85 17190.03 20592.14 23080.60 18493.76 18295.23 18182.94 19384.60 20794.02 14774.27 17295.49 29681.04 19683.68 25294.01 221
miper_ehance_all_eth87.22 19786.62 18289.02 23892.13 23177.40 26190.91 26494.81 20781.28 23284.32 22090.08 27179.26 11996.62 23883.81 15382.94 26093.04 267
IB-MVS80.51 1585.24 24283.26 25391.19 15692.13 23179.86 20491.75 24891.29 28983.28 18780.66 27588.49 29561.28 29598.46 11180.99 19979.46 30795.25 167
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 22284.98 22890.80 17492.10 23380.92 17590.24 27395.91 13073.10 31183.57 24088.39 29665.15 27697.46 17884.90 14091.43 16594.03 220
Fast-Effi-MVS+-dtu87.44 18786.72 17589.63 22292.04 23477.68 25594.03 17193.94 23285.81 13182.42 25491.32 24070.33 22597.06 21980.33 21290.23 17894.14 212
cl-mvsnet_86.52 21885.78 21188.75 24392.03 23576.46 27190.74 26694.30 22181.83 22183.34 24590.78 25875.74 15696.57 24481.74 18881.54 27993.22 259
cl-mvsnet186.53 21785.78 21188.75 24392.02 23676.45 27290.74 26694.30 22181.83 22183.34 24590.82 25675.75 15496.57 24481.73 18981.52 28093.24 258
RRT_MVS88.86 14387.68 15292.39 11492.02 23686.09 5294.38 14894.94 19485.45 14387.14 15093.84 16065.88 27397.11 21488.73 9686.77 23193.98 222
eth_miper_zixun_eth86.50 21985.77 21388.68 24691.94 23875.81 27990.47 27094.89 20082.05 20984.05 22690.46 26375.96 15196.77 23282.76 16979.36 30893.46 251
PS-MVSNAJss89.97 11289.62 10791.02 16691.90 23980.85 17795.26 8595.98 12386.26 12486.21 16894.29 13879.70 11397.65 16588.87 9588.10 21394.57 194
ITE_SJBPF88.24 25891.88 24077.05 26592.92 24885.54 14080.13 28493.30 17257.29 31596.20 26572.46 27984.71 24391.49 301
EI-MVSNet89.10 13688.86 12789.80 21691.84 24178.30 23793.70 18695.01 19185.73 13487.15 14895.28 10379.87 11097.21 20883.81 15387.36 22493.88 227
CVMVSNet84.69 25284.79 23484.37 30991.84 24164.92 33693.70 18691.47 28566.19 33286.16 17095.28 10367.18 25693.33 32080.89 20190.42 17694.88 181
MVS-HIRNet73.70 30672.20 30878.18 32191.81 24356.42 34382.94 33382.58 33955.24 33868.88 33066.48 33955.32 32195.13 30158.12 33388.42 20883.01 335
PatchmatchNetpermissive85.85 23084.70 23589.29 23091.76 24475.54 28188.49 30091.30 28881.63 22585.05 20188.70 29371.71 20596.24 26474.61 26989.05 19996.08 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 25483.06 25688.54 24991.72 24578.44 23395.18 9192.82 25182.73 19879.67 28992.12 21273.49 18795.96 27571.10 28668.73 33291.21 308
IterMVS-SCA-FT85.45 23584.53 23988.18 26091.71 24676.87 26790.19 27692.65 25685.40 14581.44 26590.54 26166.79 26195.00 30581.04 19681.05 28592.66 278
TinyColmap79.76 29577.69 29685.97 29891.71 24673.12 29689.55 28390.36 30875.03 29472.03 32690.19 26746.22 33996.19 26763.11 32281.03 28688.59 329
MDTV_nov1_ep1383.56 25191.69 24869.93 32387.75 30891.54 28278.60 26384.86 20488.90 28869.54 23496.03 27170.25 28888.93 200
miper_enhance_ethall86.90 20586.18 19689.06 23691.66 24977.58 25890.22 27594.82 20679.16 25484.48 21189.10 28579.19 12096.66 23684.06 14982.94 26092.94 270
DTE-MVSNet86.11 22585.48 21887.98 26491.65 25074.92 28394.93 10695.75 14387.36 10182.26 25693.04 18372.85 19695.82 28274.04 27177.46 31693.20 260
MIMVSNet82.59 27080.53 27488.76 24291.51 25178.32 23686.57 31690.13 31179.32 25280.70 27488.69 29452.98 32893.07 32466.03 31288.86 20194.90 180
pm-mvs186.61 21485.54 21689.82 21391.44 25280.18 19095.28 8494.85 20383.84 17381.66 26392.62 19672.45 20396.48 25179.67 21978.06 31292.82 275
Baseline_NR-MVSNet87.07 20286.63 18188.40 25291.44 25277.87 24894.23 15692.57 25784.12 16885.74 17592.08 21677.25 13896.04 27082.29 17679.94 30291.30 305
IterMVS84.88 24883.98 24587.60 27091.44 25276.03 27790.18 27792.41 25983.24 18881.06 27190.42 26566.60 26494.28 31179.46 22080.98 29092.48 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test84.95 24783.68 24888.77 24191.43 25573.75 29191.74 24990.98 29680.66 24083.84 23187.36 31062.44 28797.11 21478.84 22985.81 23495.46 160
MS-PatchMatch85.05 24584.16 24187.73 26891.42 25678.51 23191.25 26093.53 24077.50 27280.15 28291.58 23361.99 29095.51 29375.69 25894.35 12889.16 324
tpm284.08 25682.94 25787.48 27591.39 25771.27 31189.23 29190.37 30771.95 31984.64 20689.33 28367.30 25396.55 24875.17 26387.09 22894.63 188
v887.50 18686.71 17689.89 21091.37 25879.40 21294.50 13395.38 17484.81 15883.60 23991.33 23876.05 14997.42 18382.84 16680.51 29892.84 274
ADS-MVSNet281.66 27879.71 28587.50 27391.35 25974.19 28883.33 33088.48 32772.90 31382.24 25785.77 31864.98 27793.20 32264.57 31883.74 25095.12 169
ADS-MVSNet81.56 28079.78 28386.90 28991.35 25971.82 30883.33 33089.16 32572.90 31382.24 25785.77 31864.98 27793.76 31564.57 31883.74 25095.12 169
GA-MVS86.61 21485.27 22390.66 17591.33 26178.71 22690.40 27193.81 23785.34 14685.12 20089.57 28161.25 29697.11 21480.99 19989.59 19096.15 133
miper_lstm_enhance85.27 24184.59 23887.31 27791.28 26274.63 28487.69 30994.09 23181.20 23581.36 26789.85 27774.97 16594.30 31081.03 19879.84 30593.01 268
XVG-ACMP-BASELINE86.00 22684.84 23389.45 22891.20 26378.00 24391.70 25195.55 15885.05 15482.97 24992.25 20854.49 32497.48 17682.93 16387.45 22392.89 272
v1087.25 19486.38 18789.85 21191.19 26479.50 20994.48 13495.45 16883.79 17483.62 23891.19 24375.13 16197.42 18381.94 18280.60 29392.63 279
FMVSNet581.52 28179.60 28687.27 27891.17 26577.95 24491.49 25592.26 26276.87 27876.16 30787.91 30551.67 32992.34 32667.74 30681.16 28191.52 300
USDC82.76 26781.26 26987.26 27991.17 26574.55 28589.27 28993.39 24378.26 26875.30 31292.08 21654.43 32596.63 23771.64 28185.79 23690.61 314
CostFormer85.77 23284.94 23088.26 25791.16 26772.58 30589.47 28791.04 29576.26 28486.45 16389.97 27470.74 21796.86 23182.35 17487.07 22995.34 166
baseline286.50 21985.39 22089.84 21291.12 26876.70 26891.88 24488.58 32682.35 20579.95 28790.95 25373.42 19097.63 16880.27 21389.95 18395.19 168
tpm cat181.96 27380.27 27787.01 28691.09 26971.02 31587.38 31291.53 28366.25 33180.17 28186.35 31668.22 25296.15 26869.16 29682.29 26793.86 230
tpmvs83.35 26582.07 26287.20 28491.07 27071.00 31688.31 30391.70 27778.91 25680.49 27887.18 31369.30 23997.08 21768.12 30583.56 25493.51 249
v114487.61 18086.79 17490.06 20491.01 27179.34 21593.95 17695.42 17383.36 18585.66 17791.31 24174.98 16497.42 18383.37 15782.06 27093.42 252
v2v48287.84 16887.06 16690.17 19690.99 27279.23 22294.00 17495.13 18584.87 15685.53 18192.07 21874.45 17097.45 17984.71 14381.75 27693.85 231
SixPastTwentyTwo83.91 25882.90 25886.92 28890.99 27270.67 31893.48 19291.99 27085.54 14077.62 30292.11 21460.59 30296.87 23076.05 25677.75 31393.20 260
test-LLR85.87 22985.41 21987.25 28090.95 27471.67 30989.55 28389.88 31983.41 18384.54 20987.95 30367.25 25495.11 30281.82 18593.37 14394.97 173
test-mter84.54 25383.64 25087.25 28090.95 27471.67 30989.55 28389.88 31979.17 25384.54 20987.95 30355.56 31995.11 30281.82 18593.37 14394.97 173
v14887.04 20386.32 19289.21 23190.94 27677.26 26293.71 18594.43 21684.84 15784.36 21890.80 25776.04 15097.05 22082.12 17879.60 30693.31 254
mvs_tets88.06 16587.28 16290.38 19090.94 27679.88 20395.22 8795.66 15085.10 15284.21 22593.94 15263.53 28397.40 19088.50 9988.40 20993.87 228
MVP-Stereo85.97 22784.86 23289.32 22990.92 27882.19 14592.11 24194.19 22578.76 26178.77 29591.63 23168.38 25196.56 24675.01 26693.95 13089.20 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 28379.30 28887.58 27190.92 27874.16 28980.99 33687.68 33170.52 32576.63 30688.81 28971.21 21092.76 32560.01 33286.93 23095.83 151
jajsoiax88.24 15987.50 15590.48 18590.89 28080.14 19295.31 7795.65 15284.97 15584.24 22494.02 14765.31 27597.42 18388.56 9888.52 20593.89 225
tpmrst85.35 23884.99 22786.43 29490.88 28167.88 32988.71 29791.43 28680.13 24486.08 17188.80 29173.05 19496.02 27282.48 17183.40 25895.40 163
gg-mvs-nofinetune81.77 27679.37 28788.99 23990.85 28277.73 25486.29 31779.63 34474.88 29883.19 24869.05 33860.34 30396.11 26975.46 26094.64 12193.11 264
D2MVS85.90 22885.09 22688.35 25490.79 28377.42 26091.83 24695.70 14680.77 23980.08 28590.02 27266.74 26396.37 25881.88 18487.97 21791.26 306
OurMVSNet-221017-085.35 23884.64 23787.49 27490.77 28472.59 30494.01 17394.40 21784.72 16079.62 29193.17 17761.91 29196.72 23381.99 18181.16 28193.16 262
v119287.25 19486.33 19190.00 20890.76 28579.04 22393.80 18095.48 16382.57 20185.48 18591.18 24573.38 19297.42 18382.30 17582.06 27093.53 246
test_djsdf89.03 13988.64 12990.21 19590.74 28679.28 21995.96 5395.90 13184.66 16185.33 19892.94 18574.02 17997.30 19689.64 8788.53 20494.05 219
v7n86.81 20785.76 21489.95 20990.72 28779.25 22195.07 9795.92 12884.45 16482.29 25590.86 25472.60 20097.53 17379.42 22480.52 29793.08 266
PVSNet_073.20 2077.22 30274.83 30684.37 30990.70 28871.10 31483.09 33289.67 32272.81 31573.93 31983.13 32760.79 30093.70 31668.54 29950.84 34188.30 331
v14419287.19 19986.35 19089.74 21790.64 28978.24 23993.92 17795.43 17181.93 21585.51 18391.05 25174.21 17597.45 17982.86 16581.56 27893.53 246
MVS_030483.46 26181.92 26488.10 26290.63 29077.49 25993.26 20393.75 23880.04 24680.44 27987.24 31247.94 33695.55 29075.79 25788.16 21291.26 306
V4287.68 17286.86 17090.15 19890.58 29180.14 19294.24 15595.28 17983.66 17685.67 17691.33 23874.73 16897.41 18884.43 14681.83 27492.89 272
CR-MVSNet85.35 23883.76 24790.12 20090.58 29179.34 21585.24 32391.96 27378.27 26785.55 17987.87 30671.03 21395.61 28773.96 27389.36 19395.40 163
RPMNet83.18 26680.87 27390.12 20090.58 29179.34 21585.24 32390.78 30371.44 32185.55 17982.97 32870.87 21595.61 28761.01 32889.36 19395.40 163
v192192086.97 20486.06 20289.69 22190.53 29478.11 24293.80 18095.43 17181.90 21785.33 19891.05 25172.66 19897.41 18882.05 18081.80 27593.53 246
v124086.78 20985.85 20989.56 22390.45 29577.79 25193.61 18895.37 17681.65 22385.43 19091.15 24771.50 20897.43 18281.47 19382.05 27293.47 250
tpm84.73 25084.02 24386.87 29190.33 29668.90 32689.06 29389.94 31680.85 23885.75 17489.86 27668.54 24995.97 27477.76 23884.05 24895.75 154
EG-PatchMatch MVS82.37 27280.34 27688.46 25190.27 29779.35 21492.80 22094.33 22077.14 27773.26 32290.18 26847.47 33896.72 23370.25 28887.32 22689.30 321
EPNet_dtu86.49 22185.94 20788.14 26190.24 29872.82 29994.11 16292.20 26386.66 11879.42 29292.36 20373.52 18695.81 28371.26 28293.66 13495.80 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 25982.70 26187.51 27290.23 29972.67 30188.62 29981.96 34181.37 23085.01 20288.34 29766.31 26894.45 30775.30 26287.12 22795.43 162
EPNet91.79 7691.02 8594.10 5890.10 30085.25 7296.03 4992.05 26792.83 187.39 14795.78 9279.39 11899.01 6988.13 10497.48 7598.05 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 26981.27 26886.89 29090.09 30170.94 31784.06 32790.15 31074.91 29685.63 17883.57 32569.37 23594.87 30665.19 31488.50 20694.84 182
Patchmtry82.71 26880.93 27288.06 26390.05 30276.37 27484.74 32591.96 27372.28 31881.32 26887.87 30671.03 21395.50 29568.97 29780.15 30092.32 289
pmmvs485.43 23683.86 24690.16 19790.02 30382.97 12590.27 27292.67 25575.93 28780.73 27391.74 22771.05 21295.73 28678.85 22883.46 25691.78 296
TESTMET0.1,183.74 26082.85 25986.42 29589.96 30471.21 31389.55 28387.88 32877.41 27383.37 24487.31 31156.71 31693.65 31780.62 20692.85 15494.40 205
dp81.47 28280.23 27885.17 30489.92 30565.49 33586.74 31490.10 31276.30 28381.10 26987.12 31462.81 28595.92 27668.13 30479.88 30394.09 216
K. test v381.59 27980.15 28085.91 29989.89 30669.42 32592.57 22687.71 33085.56 13973.44 32189.71 27955.58 31895.52 29277.17 24569.76 32892.78 276
MDA-MVSNet-bldmvs78.85 30076.31 30286.46 29389.76 30773.88 29088.79 29690.42 30679.16 25459.18 33888.33 29860.20 30494.04 31362.00 32568.96 33091.48 302
GG-mvs-BLEND87.94 26689.73 30877.91 24587.80 30678.23 34680.58 27683.86 32359.88 30795.33 29971.20 28392.22 16190.60 316
gm-plane-assit89.60 30968.00 32877.28 27688.99 28697.57 17079.44 222
anonymousdsp87.84 16887.09 16590.12 20089.13 31080.54 18594.67 12495.55 15882.05 20983.82 23292.12 21271.47 20997.15 21087.15 11787.80 22092.67 277
N_pmnet68.89 30968.44 31170.23 32589.07 31128.79 35388.06 30419.50 35469.47 32771.86 32784.93 32161.24 29791.75 33154.70 33677.15 31790.15 318
pmmvs584.21 25582.84 26088.34 25588.95 31276.94 26692.41 22991.91 27575.63 28980.28 28091.18 24564.59 27995.57 28977.09 24783.47 25592.53 281
PMMVS85.71 23384.96 22987.95 26588.90 31377.09 26488.68 29890.06 31372.32 31786.47 16090.76 25972.15 20494.40 30881.78 18793.49 13892.36 287
JIA-IIPM81.04 28678.98 29387.25 28088.64 31473.48 29381.75 33589.61 32373.19 31082.05 25973.71 33566.07 27295.87 27971.18 28584.60 24492.41 285
Gipumacopyleft57.99 31454.91 31567.24 32788.51 31565.59 33452.21 34690.33 30943.58 34342.84 34351.18 34420.29 34985.07 34134.77 34370.45 32751.05 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 28480.95 27182.42 31688.50 31663.67 33793.32 19691.33 28764.02 33480.57 27792.83 18961.21 29892.27 32776.34 25280.38 29991.32 304
our_test_381.93 27480.46 27586.33 29688.46 31773.48 29388.46 30191.11 29176.46 27976.69 30588.25 29966.89 25994.36 30968.75 29879.08 31091.14 310
ppachtmachnet_test81.84 27580.07 28187.15 28588.46 31774.43 28689.04 29492.16 26475.33 29177.75 30088.99 28666.20 26995.37 29865.12 31677.60 31491.65 298
lessismore_v086.04 29788.46 31768.78 32780.59 34273.01 32390.11 27055.39 32096.43 25675.06 26565.06 33492.90 271
test0.0.03 182.41 27181.69 26584.59 30788.23 32072.89 29890.24 27387.83 32983.41 18379.86 28889.78 27867.25 25488.99 33765.18 31583.42 25791.90 295
MDA-MVSNet_test_wron79.21 29977.19 30085.29 30288.22 32172.77 30085.87 31990.06 31374.34 30162.62 33787.56 30966.14 27091.99 32966.90 31073.01 32291.10 312
YYNet179.22 29877.20 29985.28 30388.20 32272.66 30285.87 31990.05 31574.33 30262.70 33687.61 30866.09 27192.03 32866.94 30772.97 32391.15 309
pmmvs683.42 26281.60 26688.87 24088.01 32377.87 24894.96 10394.24 22474.67 29978.80 29491.09 25060.17 30596.49 25077.06 24875.40 32092.23 291
testgi80.94 28980.20 27983.18 31387.96 32466.29 33291.28 25890.70 30583.70 17578.12 29792.84 18851.37 33090.82 33463.34 32182.46 26692.43 284
Anonymous2023120681.03 28779.77 28484.82 30687.85 32570.26 32191.42 25692.08 26673.67 30677.75 30089.25 28462.43 28893.08 32361.50 32782.00 27391.12 311
OpenMVS_ROBcopyleft74.94 1979.51 29677.03 30186.93 28787.00 32676.23 27692.33 23390.74 30468.93 32874.52 31688.23 30049.58 33296.62 23857.64 33484.29 24587.94 332
LF4IMVS80.37 29179.07 29284.27 31186.64 32769.87 32489.39 28891.05 29476.38 28174.97 31490.00 27347.85 33794.25 31274.55 27080.82 29288.69 328
MIMVSNet179.38 29777.28 29885.69 30086.35 32873.67 29291.61 25492.75 25378.11 27172.64 32488.12 30148.16 33591.97 33060.32 32977.49 31591.43 303
test20.0379.95 29379.08 29182.55 31585.79 32967.74 33091.09 26391.08 29281.23 23474.48 31789.96 27561.63 29290.15 33560.08 33076.38 31889.76 319
Patchmatch-RL test81.67 27779.96 28286.81 29285.42 33071.23 31282.17 33487.50 33278.47 26477.19 30482.50 32970.81 21693.48 31882.66 17072.89 32495.71 155
UnsupCasMVSNet_eth80.07 29278.27 29585.46 30185.24 33172.63 30388.45 30294.87 20282.99 19271.64 32888.07 30256.34 31791.75 33173.48 27663.36 33792.01 294
testing_283.40 26481.02 27090.56 17985.06 33280.51 18691.37 25795.57 15682.92 19467.06 33385.54 32049.47 33397.24 20486.74 12285.44 23793.93 223
pmmvs-eth3d80.97 28878.72 29487.74 26784.99 33379.97 20290.11 27891.65 27975.36 29073.51 32086.03 31759.45 30993.96 31475.17 26372.21 32589.29 322
CMPMVSbinary59.16 2180.52 29079.20 28984.48 30883.98 33467.63 33189.95 28193.84 23664.79 33366.81 33491.14 24857.93 31495.17 30076.25 25388.10 21390.65 313
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 30573.27 30785.09 30583.79 33572.92 29785.65 32293.47 24271.52 32068.84 33179.08 33349.77 33193.21 32166.81 31160.52 33989.13 326
PM-MVS78.11 30176.12 30484.09 31283.54 33670.08 32288.97 29585.27 33679.93 24774.73 31586.43 31534.70 34393.48 31879.43 22372.06 32688.72 327
DSMNet-mixed76.94 30376.29 30378.89 31983.10 33756.11 34487.78 30779.77 34360.65 33675.64 31188.71 29261.56 29388.34 33860.07 33189.29 19592.21 292
new_pmnet72.15 30770.13 30978.20 32082.95 33865.68 33383.91 32882.40 34062.94 33564.47 33579.82 33242.85 34186.26 34057.41 33574.44 32182.65 336
new-patchmatchnet76.41 30475.17 30580.13 31882.65 33959.61 33987.66 31091.08 29278.23 26969.85 32983.22 32654.76 32291.63 33364.14 32064.89 33589.16 324
ambc83.06 31479.99 34063.51 33877.47 33992.86 24974.34 31884.45 32228.74 34495.06 30473.06 27868.89 33190.61 314
TDRefinement79.81 29477.34 29787.22 28379.24 34175.48 28293.12 20892.03 26876.45 28075.01 31391.58 23349.19 33496.44 25570.22 29069.18 32989.75 320
pmmvs371.81 30868.71 31081.11 31775.86 34270.42 32086.74 31483.66 33858.95 33768.64 33280.89 33136.93 34289.52 33663.10 32363.59 33683.39 334
DeepMVS_CXcopyleft56.31 33074.23 34351.81 34656.67 35244.85 34248.54 34275.16 33427.87 34558.74 34940.92 34152.22 34058.39 342
FPMVS64.63 31162.55 31270.88 32470.80 34456.71 34184.42 32684.42 33751.78 34049.57 34081.61 33023.49 34681.48 34340.61 34276.25 31974.46 339
PMMVS259.60 31256.40 31469.21 32668.83 34546.58 34873.02 34377.48 34755.07 33949.21 34172.95 33717.43 35180.04 34449.32 33944.33 34280.99 338
wuyk23d21.27 32120.48 32323.63 33468.59 34636.41 35149.57 3476.85 3559.37 3487.89 3504.46 3524.03 35531.37 35017.47 34816.07 3483.12 347
E-PMN43.23 31742.29 31846.03 33165.58 34737.41 35073.51 34164.62 34833.99 34528.47 34847.87 34519.90 35067.91 34622.23 34624.45 34432.77 344
LCM-MVSNet66.00 31062.16 31377.51 32264.51 34858.29 34083.87 32990.90 29948.17 34154.69 33973.31 33616.83 35286.75 33965.47 31361.67 33887.48 333
EMVS42.07 31841.12 31944.92 33263.45 34935.56 35273.65 34063.48 34933.05 34626.88 34945.45 34621.27 34867.14 34719.80 34723.02 34632.06 345
MVEpermissive39.65 2343.39 31638.59 32157.77 32956.52 35048.77 34755.38 34558.64 35129.33 34728.96 34752.65 3434.68 35464.62 34828.11 34533.07 34359.93 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 31354.22 31672.86 32356.50 35156.67 34280.75 33786.00 33373.09 31237.39 34464.63 34122.17 34779.49 34543.51 34023.96 34582.43 337
PMVScopyleft47.18 2252.22 31548.46 31763.48 32845.72 35246.20 34973.41 34278.31 34541.03 34430.06 34665.68 3406.05 35383.43 34230.04 34465.86 33360.80 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 31939.24 32024.84 33314.87 35323.90 35462.71 34451.51 3536.58 34936.66 34562.08 34244.37 34030.34 35152.40 33722.00 34720.27 346
testmvs8.92 32211.52 3241.12 3361.06 3540.46 35686.02 3180.65 3560.62 3502.74 3519.52 3500.31 3570.45 3532.38 3490.39 3492.46 349
test1238.76 32311.22 3251.39 3350.85 3550.97 35585.76 3210.35 3570.54 3512.45 3528.14 3510.60 3560.48 3522.16 3500.17 3502.71 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k22.14 32029.52 3220.00 3370.00 3560.00 3570.00 34895.76 1420.00 3520.00 35394.29 13875.66 1570.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.64 3258.86 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35379.70 1130.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.82 32410.43 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35393.88 1570.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_TWO97.44 1390.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 136
test_part10.00 3370.00 3570.00 34897.45 110.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs171.70 20696.12 136
sam_mvs70.60 218
MTGPAbinary96.97 49
test_post188.00 3059.81 34969.31 23895.53 29176.65 249
test_post10.29 34870.57 22295.91 278
patchmatchnet-post83.76 32471.53 20796.48 251
MTMP96.16 4060.64 350
test9_res91.91 5498.71 3098.07 62
agg_prior290.54 8098.68 3598.27 46
test_prior485.96 5694.11 162
test_prior294.12 16087.67 9692.63 6496.39 6886.62 3891.50 6498.67 37
旧先验293.36 19571.25 32294.37 2697.13 21386.74 122
新几何293.11 210
无先验93.28 20296.26 10373.95 30499.05 5980.56 20796.59 122
原ACMM292.94 217
testdata298.75 9578.30 233
segment_acmp87.16 34
testdata192.15 23987.94 86
plane_prior596.22 10898.12 13288.15 10289.99 18094.63 188
plane_prior494.86 118
plane_prior382.75 12990.26 3086.91 154
plane_prior295.85 5790.81 17
plane_prior82.73 13295.21 8889.66 4189.88 185
n20.00 358
nn0.00 358
door-mid85.49 334
test1196.57 88
door85.33 335
HQP5-MVS81.56 155
BP-MVS87.11 119
HQP4-MVS85.43 19097.96 15094.51 198
HQP3-MVS96.04 12189.77 187
HQP2-MVS73.83 183
MDTV_nov1_ep13_2view55.91 34587.62 31173.32 30984.59 20870.33 22574.65 26895.50 158
ACMMP++_ref87.47 221
ACMMP++88.01 216
Test By Simon80.02 108