This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6799.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5790.86 196.85 6799.61 396.03 199.06 999.07 5
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 597.40 2089.03 6696.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 4
SED-MVS95.91 296.28 294.80 3698.77 585.99 5897.13 1397.44 1490.31 3197.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_TWO97.44 1490.31 3197.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5698.29 197.49 590.75 2297.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
test_0728_THIRD90.75 2297.04 1098.05 892.09 699.55 1595.64 699.13 399.13 2
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6197.09 1596.73 8390.27 3397.04 1098.05 891.47 899.55 1595.62 899.08 798.45 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1798.79 286.43 4397.09 1597.49 599.61 395.62 899.08 798.99 8
IU-MVS98.77 586.00 5696.84 6981.26 25397.26 795.50 1099.13 399.03 7
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9596.96 5792.09 395.32 2397.08 4389.49 1599.33 3995.10 1198.85 1998.66 20
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2497.47 1091.73 996.10 1796.69 6389.90 1299.30 4294.70 1298.04 7399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4497.28 3185.90 14697.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8397.51 489.13 6397.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5596.62 9588.14 9396.10 1796.96 5089.09 1898.94 8794.48 1598.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.96 1295.33 893.88 6597.25 8086.69 3296.19 4897.11 4690.42 3096.95 1297.27 2989.53 1496.91 24894.38 1698.85 1998.03 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVS-pluss94.21 3494.00 4194.85 2998.17 3686.65 3594.82 12797.17 4286.26 14092.83 7297.87 1285.57 5899.56 1094.37 1798.92 1798.34 45
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8386.33 4797.33 697.30 2991.38 1395.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
patch_mono-293.74 4894.32 2292.01 13497.54 6478.37 25293.40 21197.19 3888.02 9594.99 2897.21 3488.35 2198.44 12394.07 1998.09 7099.23 1
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11696.52 9980.00 21794.00 18897.08 4790.05 3795.65 2197.29 2889.66 1398.97 8393.95 2098.71 3498.50 28
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7697.34 2288.28 8795.30 2497.67 1585.90 5499.54 1993.91 2198.95 1598.60 23
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7295.21 10195.47 17889.44 5295.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3297.48 987.76 10695.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
DROMVSNet93.44 5893.71 5192.63 10995.21 14882.43 15097.27 896.71 8790.57 2992.88 6995.80 10583.16 8498.16 14393.68 2498.14 6797.31 109
dcpmvs_293.49 5694.19 3291.38 16597.69 6176.78 28594.25 16796.29 11388.33 8394.46 3096.88 5388.07 2698.64 10793.62 2598.09 7098.73 16
CS-MVS-test93.62 5393.88 4392.86 9696.59 9382.12 15796.43 3596.57 9991.76 793.52 5794.41 15083.85 8198.24 13693.62 2598.17 6498.21 62
CS-MVS94.05 3794.45 1992.84 9796.57 9682.09 15897.63 396.97 5391.71 1093.51 5896.22 8785.65 5698.24 13693.60 2798.17 6498.20 63
Regformer-294.33 2894.22 2894.68 4195.54 13586.75 3194.57 14396.70 8891.84 694.41 3196.56 7587.19 3999.13 5793.50 2897.65 8698.16 66
MCST-MVS94.45 2194.20 3195.19 1198.46 2087.50 1595.00 11597.12 4487.13 11992.51 8496.30 8289.24 1799.34 3693.46 2998.62 4898.73 16
zzz-MVS94.47 1994.30 2495.00 1898.42 2286.95 2095.06 11396.97 5391.07 1593.14 6497.56 1684.30 7399.56 1093.43 3098.75 3198.47 34
MTAPA94.42 2594.22 2895.00 1898.42 2286.95 2094.36 16396.97 5391.07 1593.14 6497.56 1684.30 7399.56 1093.43 3098.75 3198.47 34
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6696.96 5791.75 894.02 4196.83 5688.12 2599.55 1593.41 3298.94 1698.28 54
SR-MVS94.23 3294.17 3494.43 5398.21 3585.78 6996.40 3896.90 6288.20 9194.33 3397.40 2384.75 7099.03 6793.35 3397.99 7498.48 30
Regformer-194.22 3394.13 3694.51 4995.54 13586.36 4694.57 14396.44 10491.69 1194.32 3496.56 7587.05 4199.03 6793.35 3397.65 8698.15 67
test117293.97 4194.07 3893.66 7498.11 3983.45 12096.26 4496.84 6988.33 8394.19 3697.43 2084.24 7599.01 7393.26 3597.98 7598.52 26
9.1494.47 1897.79 5496.08 5697.44 1486.13 14495.10 2697.40 2388.34 2299.22 4993.25 3698.70 36
Regformer-493.91 4393.81 4694.19 6095.36 14085.47 7594.68 13596.41 10791.60 1293.75 4696.71 6185.95 5399.10 6093.21 3796.65 10598.01 80
CANet93.54 5593.20 6294.55 4795.65 13085.73 7194.94 11896.69 9091.89 590.69 11595.88 10281.99 10499.54 1993.14 3897.95 7798.39 42
ETH3D-3000-0.194.61 1794.44 2095.12 1397.70 6087.71 1195.98 6397.44 1486.67 13295.25 2597.31 2787.73 3099.24 4793.11 3998.76 3098.40 41
Regformer-393.68 5093.64 5493.81 7095.36 14084.61 8494.68 13595.83 15191.27 1493.60 5296.71 6185.75 5598.86 9492.87 4096.65 10597.96 82
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 7896.93 6092.34 293.94 4296.58 7387.74 2999.44 3092.83 4198.40 5798.62 22
SR-MVS-dyc-post93.82 4693.82 4593.82 6797.92 4784.57 8696.28 4296.76 7987.46 11393.75 4697.43 2084.24 7599.01 7392.73 4297.80 8197.88 88
RE-MVS-def93.68 5297.92 4784.57 8696.28 4296.76 7987.46 11393.75 4697.43 2082.94 8792.73 4297.80 8197.88 88
TSAR-MVS + GP.93.66 5193.41 5794.41 5596.59 9386.78 2894.40 15593.93 24889.77 4694.21 3595.59 11387.35 3598.61 11192.72 4496.15 11497.83 92
APD-MVS_3200maxsize93.78 4793.77 4993.80 7197.92 4784.19 10196.30 4096.87 6686.96 12393.92 4397.47 1883.88 8098.96 8692.71 4597.87 7998.26 58
PC_three_145282.47 22197.09 997.07 4592.72 198.04 15992.70 4699.02 1298.86 10
PHI-MVS93.89 4593.65 5394.62 4596.84 8686.43 4396.69 3197.49 585.15 16893.56 5596.28 8485.60 5799.31 4192.45 4798.79 2398.12 70
HPM-MVScopyleft94.02 3993.88 4394.43 5398.39 2585.78 6997.25 997.07 4886.90 12792.62 8196.80 6084.85 6999.17 5392.43 4898.65 4698.33 46
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
alignmvs93.08 6892.50 7494.81 3595.62 13287.61 1495.99 6196.07 13189.77 4694.12 3894.87 13280.56 11398.66 10592.42 4993.10 16498.15 67
ZNCC-MVS94.47 1994.28 2595.03 1698.52 1686.96 1996.85 2797.32 2788.24 8893.15 6397.04 4686.17 4999.62 192.40 5098.81 2298.52 26
canonicalmvs93.27 6492.75 7094.85 2995.70 12987.66 1396.33 3996.41 10790.00 3994.09 3994.60 14582.33 9598.62 11092.40 5092.86 16998.27 56
HFP-MVS94.52 1894.40 2194.86 2798.61 1086.81 2696.94 1997.34 2288.63 7593.65 4997.21 3486.10 5099.49 2692.35 5298.77 2898.30 50
ACMMPR94.43 2394.28 2594.91 2498.63 986.69 3296.94 1997.32 2788.63 7593.53 5697.26 3185.04 6599.54 1992.35 5298.78 2598.50 28
OPU-MVS96.21 398.00 4690.85 397.13 1397.08 4392.59 298.94 8792.25 5498.99 1498.84 13
region2R94.43 2394.27 2794.92 2298.65 886.67 3496.92 2397.23 3588.60 7793.58 5397.27 2985.22 6299.54 1992.21 5598.74 3398.56 25
DeepC-MVS88.79 393.31 6292.99 6694.26 5896.07 11485.83 6794.89 12296.99 5189.02 6789.56 12897.37 2582.51 9299.38 3292.20 5698.30 6197.57 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++93.72 4994.08 3792.65 10897.31 7483.43 12195.79 7197.33 2590.03 3893.58 5396.96 5084.87 6897.76 17592.19 5798.66 4496.76 132
CP-MVS94.34 2794.21 3094.74 4098.39 2586.64 3697.60 497.24 3388.53 7992.73 7797.23 3285.20 6399.32 4092.15 5898.83 2198.25 59
train_agg93.44 5893.08 6394.52 4897.53 6586.49 4194.07 18196.78 7681.86 23992.77 7496.20 8987.63 3299.12 5892.14 5998.69 3797.94 83
diffmvs91.37 9291.23 8891.77 15293.09 22980.27 20592.36 25095.52 17587.03 12291.40 10894.93 12980.08 11897.44 20192.13 6094.56 13897.61 99
h-mvs3390.80 10090.15 10692.75 10296.01 11682.66 14695.43 8695.53 17489.80 4293.08 6695.64 11175.77 16599.00 7892.07 6178.05 33196.60 137
hse-mvs289.88 12689.34 12491.51 15994.83 16781.12 18593.94 19193.91 25189.80 4293.08 6693.60 18575.77 16597.66 18292.07 6177.07 33895.74 171
MP-MVScopyleft94.25 3094.07 3894.77 3898.47 1986.31 4996.71 3096.98 5289.04 6591.98 9397.19 3785.43 6099.56 1092.06 6398.79 2398.44 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZD-MVS98.15 3786.62 3797.07 4883.63 19594.19 3696.91 5287.57 3499.26 4691.99 6498.44 55
EI-MVSNet-Vis-set93.01 6992.92 6893.29 7795.01 15483.51 11994.48 14795.77 15590.87 1892.52 8396.67 6584.50 7299.00 7891.99 6494.44 14297.36 108
XVS94.45 2194.32 2294.85 2998.54 1486.60 3896.93 2197.19 3890.66 2792.85 7097.16 4085.02 6699.49 2691.99 6498.56 5198.47 34
X-MVStestdata88.31 17086.13 21394.85 2998.54 1486.60 3896.93 2197.19 3890.66 2792.85 7023.41 37385.02 6699.49 2691.99 6498.56 5198.47 34
agg_prior193.29 6392.97 6794.26 5897.38 7185.92 6393.92 19296.72 8581.96 23392.16 8996.23 8687.85 2798.97 8391.95 6898.55 5397.90 87
test9_res91.91 6998.71 3498.07 74
abl_693.18 6793.05 6493.57 7697.52 6784.27 10095.53 8496.67 9187.85 10393.20 6297.22 3380.35 11499.18 5291.91 6997.21 9197.26 112
MVS_111021_HR93.45 5793.31 5893.84 6696.99 8384.84 8093.24 22397.24 3388.76 7291.60 10495.85 10386.07 5298.66 10591.91 6998.16 6698.03 78
ETH3D cwj APD-0.1693.91 4393.53 5595.06 1596.76 8887.78 994.92 12097.21 3784.33 18293.89 4497.09 4287.20 3899.29 4491.90 7298.44 5598.12 70
APD-MVScopyleft94.24 3194.07 3894.75 3998.06 4386.90 2395.88 6796.94 5985.68 15295.05 2797.18 3887.31 3699.07 6191.90 7298.61 4998.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR92.47 7692.29 7792.98 9095.99 11884.43 9793.08 22896.09 12988.20 9191.12 11295.72 10981.33 10997.76 17591.74 7497.37 9096.75 133
ETV-MVS92.74 7292.66 7192.97 9195.20 14984.04 10595.07 11096.51 10290.73 2592.96 6891.19 26284.06 7798.34 13091.72 7596.54 10896.54 141
#test#94.32 2994.14 3594.86 2798.61 1086.81 2696.43 3597.34 2287.51 11293.65 4997.21 3486.10 5099.49 2691.68 7698.77 2898.30 50
EI-MVSNet-UG-set92.74 7292.62 7293.12 8394.86 16583.20 12694.40 15595.74 15890.71 2692.05 9296.60 7284.00 7898.99 8091.55 7793.63 15097.17 117
testtj94.39 2694.18 3395.00 1898.24 3386.77 3096.16 4997.23 3587.28 11794.85 2997.04 4686.99 4299.52 2391.54 7898.33 6098.71 18
test_prior393.60 5493.53 5593.82 6797.29 7684.49 9094.12 17496.88 6487.67 10992.63 7996.39 8086.62 4498.87 9191.50 7998.67 4198.11 72
test_prior294.12 17487.67 10992.63 7996.39 8086.62 4491.50 7998.67 41
mPP-MVS93.99 4093.78 4894.63 4498.50 1785.90 6696.87 2596.91 6188.70 7391.83 9997.17 3983.96 7999.55 1591.44 8198.64 4798.43 40
GST-MVS94.21 3493.97 4294.90 2698.41 2486.82 2596.54 3497.19 3888.24 8893.26 5996.83 5685.48 5999.59 791.43 8298.40 5798.30 50
DELS-MVS93.43 6093.25 5993.97 6295.42 13985.04 7993.06 23097.13 4390.74 2491.84 9795.09 12686.32 4899.21 5091.22 8398.45 5497.65 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
nrg03091.08 9890.39 10093.17 8293.07 23086.91 2296.41 3796.26 11688.30 8688.37 14594.85 13582.19 9997.64 18691.09 8482.95 27594.96 194
baseline92.39 7892.29 7792.69 10794.46 18381.77 16694.14 17396.27 11589.22 5991.88 9596.00 9782.35 9497.99 16491.05 8595.27 12998.30 50
xiu_mvs_v1_base_debu90.64 10790.05 10992.40 11993.97 20384.46 9393.32 21395.46 17985.17 16592.25 8694.03 16170.59 23598.57 11390.97 8694.67 13394.18 228
xiu_mvs_v1_base90.64 10790.05 10992.40 11993.97 20384.46 9393.32 21395.46 17985.17 16592.25 8694.03 16170.59 23598.57 11390.97 8694.67 13394.18 228
xiu_mvs_v1_base_debi90.64 10790.05 10992.40 11993.97 20384.46 9393.32 21395.46 17985.17 16592.25 8694.03 16170.59 23598.57 11390.97 8694.67 13394.18 228
VDD-MVS90.74 10289.92 11493.20 8096.27 10583.02 13295.73 7393.86 25288.42 8292.53 8296.84 5562.09 30998.64 10790.95 8992.62 17297.93 85
casdiffmvs92.51 7592.43 7592.74 10394.41 18681.98 16294.54 14596.23 12089.57 5091.96 9496.17 9382.58 9198.01 16290.95 8995.45 12498.23 60
DeepC-MVS_fast89.43 294.04 3893.79 4794.80 3697.48 6986.78 2895.65 8096.89 6389.40 5592.81 7396.97 4985.37 6199.24 4790.87 9198.69 3798.38 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft93.24 6592.88 6994.30 5798.09 4285.33 7796.86 2697.45 1388.33 8390.15 12497.03 4881.44 10799.51 2490.85 9295.74 11798.04 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS93.96 4293.72 5094.68 4198.43 2186.22 5295.30 9397.78 187.45 11593.26 5997.33 2684.62 7199.51 2490.75 9398.57 5098.32 49
agg_prior290.54 9498.68 3998.27 56
HPM-MVS_fast93.40 6193.22 6093.94 6498.36 2784.83 8197.15 1296.80 7585.77 14992.47 8597.13 4182.38 9399.07 6190.51 9598.40 5797.92 86
lupinMVS90.92 9990.21 10393.03 8893.86 20683.88 10892.81 23793.86 25279.84 26991.76 10094.29 15577.92 14698.04 15990.48 9697.11 9297.17 117
jason90.80 10090.10 10792.90 9493.04 23283.53 11893.08 22894.15 24280.22 26391.41 10794.91 13076.87 15297.93 16990.28 9796.90 9897.24 113
jason: jason.
CSCG93.23 6693.05 6493.76 7298.04 4484.07 10396.22 4797.37 2184.15 18490.05 12595.66 11087.77 2899.15 5689.91 9898.27 6298.07 74
ETH3 D test640093.64 5293.22 6094.92 2297.79 5486.84 2495.31 9097.26 3282.67 21993.81 4596.29 8387.29 3799.27 4589.87 9998.67 4198.65 21
CPTT-MVS91.99 8091.80 8192.55 11398.24 3381.98 16296.76 2996.49 10381.89 23890.24 12096.44 7978.59 13898.61 11189.68 10097.85 8097.06 121
MVSFormer91.68 8891.30 8692.80 9993.86 20683.88 10895.96 6495.90 14584.66 17891.76 10094.91 13077.92 14697.30 21689.64 10197.11 9297.24 113
test_djsdf89.03 15188.64 14090.21 21290.74 30779.28 23595.96 6495.90 14584.66 17885.33 21992.94 20574.02 19397.30 21689.64 10188.53 22094.05 238
bset_n11_16_dypcd86.83 22285.55 23290.65 19288.22 34381.70 16788.88 31690.42 32785.26 16485.49 20590.69 27967.11 27497.02 24189.51 10384.39 26093.23 277
EIA-MVS91.95 8191.94 7991.98 13895.16 15080.01 21695.36 8796.73 8388.44 8089.34 13292.16 22983.82 8298.45 12289.35 10497.06 9497.48 105
Effi-MVS+91.59 8991.11 9093.01 8994.35 19083.39 12394.60 14095.10 20287.10 12090.57 11693.10 20181.43 10898.07 15789.29 10594.48 14097.59 101
ET-MVSNet_ETH3D87.51 19885.91 22492.32 12593.70 21483.93 10692.33 25190.94 32084.16 18372.09 35192.52 21869.90 24495.85 30089.20 10688.36 22697.17 117
PS-MVSNAJ91.18 9690.92 9491.96 14095.26 14682.60 14992.09 26095.70 16086.27 13991.84 9792.46 21979.70 12498.99 8089.08 10795.86 11694.29 226
xiu_mvs_v2_base91.13 9790.89 9691.86 14694.97 15782.42 15192.24 25495.64 16786.11 14591.74 10293.14 19979.67 12798.89 9089.06 10895.46 12394.28 227
VNet92.24 7991.91 8093.24 7996.59 9383.43 12194.84 12696.44 10489.19 6194.08 4095.90 10177.85 14998.17 14288.90 10993.38 15898.13 69
PS-MVSNAJss89.97 12189.62 11691.02 18191.90 26080.85 19395.26 9895.98 13786.26 14086.21 18794.29 15579.70 12497.65 18488.87 11088.10 22994.57 213
RRT_MVS88.86 15687.68 16692.39 12292.02 25786.09 5594.38 16194.94 20885.45 15987.14 16893.84 17765.88 29197.11 23388.73 11186.77 24793.98 241
XVG-OURS-SEG-HR89.95 12289.45 11991.47 16294.00 20181.21 18391.87 26396.06 13385.78 14888.55 14195.73 10874.67 18397.27 22088.71 11289.64 20595.91 162
jajsoiax88.24 17287.50 16990.48 20190.89 30180.14 20895.31 9095.65 16684.97 17284.24 24594.02 16465.31 29397.42 20388.56 11388.52 22193.89 243
mvs_tets88.06 17887.28 17690.38 20790.94 29779.88 21995.22 10095.66 16485.10 16984.21 24693.94 16963.53 30197.40 21088.50 11488.40 22593.87 246
VDDNet89.56 13288.49 14792.76 10195.07 15382.09 15896.30 4093.19 26481.05 25891.88 9596.86 5461.16 31998.33 13288.43 11592.49 17597.84 91
RRT_test8_iter0586.90 22086.36 20488.52 26793.00 23573.27 31994.32 16495.96 13985.50 15884.26 24492.86 20660.76 32197.70 18088.32 11682.29 28394.60 210
HQP_MVS90.60 11090.19 10491.82 14994.70 17382.73 14295.85 6896.22 12190.81 2086.91 17394.86 13374.23 18798.12 14488.15 11789.99 19694.63 207
plane_prior596.22 12198.12 14488.15 11789.99 19694.63 207
EPNet91.79 8391.02 9394.10 6190.10 32185.25 7896.03 6092.05 28992.83 187.39 16595.78 10679.39 12999.01 7388.13 11997.48 8898.05 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS90.12 11689.56 11791.82 14993.14 22783.90 10794.16 17295.74 15888.96 6887.86 15295.43 11672.48 21597.91 17088.10 12090.18 19593.65 261
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSTER88.84 15788.29 15390.51 19992.95 23780.44 20393.73 19995.01 20584.66 17887.15 16693.12 20072.79 21197.21 22787.86 12187.36 24093.87 246
3Dnovator+87.14 492.42 7791.37 8595.55 695.63 13188.73 697.07 1796.77 7890.84 1984.02 24896.62 7175.95 16499.34 3687.77 12297.68 8498.59 24
LPG-MVS_test89.45 13688.90 13691.12 17394.47 18181.49 17395.30 9396.14 12686.73 13085.45 20895.16 12369.89 24598.10 14687.70 12389.23 21293.77 255
LGP-MVS_train91.12 17394.47 18181.49 17396.14 12686.73 13085.45 20895.16 12369.89 24598.10 14687.70 12389.23 21293.77 255
MVS_Test91.31 9391.11 9091.93 14294.37 18780.14 20893.46 21095.80 15386.46 13591.35 10993.77 18082.21 9898.09 15487.57 12594.95 13197.55 104
PVSNet_Blended_VisFu91.38 9190.91 9592.80 9996.39 10283.17 12794.87 12496.66 9283.29 20589.27 13394.46 14980.29 11699.17 5387.57 12595.37 12596.05 159
CDPH-MVS92.83 7092.30 7694.44 5197.79 5486.11 5494.06 18396.66 9280.09 26692.77 7496.63 7086.62 4499.04 6687.40 12798.66 4498.17 65
XVG-OURS89.40 14188.70 13991.52 15894.06 19581.46 17591.27 27696.07 13186.14 14388.89 13995.77 10768.73 26497.26 22287.39 12889.96 19895.83 167
EPP-MVSNet91.70 8791.56 8492.13 13295.88 12280.50 20297.33 695.25 19486.15 14289.76 12795.60 11283.42 8398.32 13387.37 12993.25 16197.56 103
VPA-MVSNet89.62 12988.96 13391.60 15793.86 20682.89 13795.46 8597.33 2587.91 9888.43 14493.31 19174.17 19097.40 21087.32 13082.86 28094.52 216
LFMVS90.08 11789.13 13092.95 9296.71 8982.32 15596.08 5689.91 33986.79 12892.15 9196.81 5862.60 30698.34 13087.18 13193.90 14698.19 64
anonymousdsp87.84 18187.09 17990.12 21789.13 33280.54 20194.67 13795.55 17182.05 22983.82 25392.12 23271.47 22497.15 22987.15 13287.80 23692.67 296
CLD-MVS89.47 13588.90 13691.18 17294.22 19182.07 16092.13 25896.09 12987.90 9985.37 21792.45 22074.38 18597.56 19187.15 13290.43 19193.93 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BP-MVS87.11 134
HQP-MVS89.80 12789.28 12791.34 16794.17 19281.56 16994.39 15796.04 13588.81 6985.43 21193.97 16873.83 19797.96 16687.11 13489.77 20394.50 218
ACMP84.23 889.01 15388.35 14990.99 18494.73 17081.27 17995.07 11095.89 14786.48 13483.67 25794.30 15469.33 25397.99 16487.10 13688.55 21993.72 259
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
旧先验293.36 21271.25 34794.37 3297.13 23286.74 137
3Dnovator86.66 591.73 8690.82 9794.44 5194.59 17786.37 4597.18 1197.02 5089.20 6084.31 24396.66 6673.74 19999.17 5386.74 13797.96 7697.79 94
PVSNet_BlendedMVS89.98 12089.70 11590.82 18896.12 10981.25 18093.92 19296.83 7183.49 20089.10 13592.26 22781.04 11198.85 9786.72 13987.86 23592.35 307
PVSNet_Blended90.73 10390.32 10291.98 13896.12 10981.25 18092.55 24596.83 7182.04 23189.10 13592.56 21781.04 11198.85 9786.72 13995.91 11595.84 166
mvs_anonymous89.37 14289.32 12589.51 24493.47 21974.22 30991.65 27194.83 21982.91 21485.45 20893.79 17881.23 11096.36 28086.47 14194.09 14497.94 83
test111189.10 14688.64 14090.48 20195.53 13774.97 30296.08 5684.89 35988.13 9490.16 12396.65 6763.29 30298.10 14686.14 14296.90 9898.39 42
AUN-MVS87.78 18486.54 19991.48 16194.82 16881.05 18693.91 19593.93 24883.00 21186.93 17193.53 18669.50 25197.67 18186.14 14277.12 33795.73 172
test_yl90.69 10490.02 11292.71 10495.72 12782.41 15394.11 17695.12 20085.63 15391.49 10594.70 13974.75 18098.42 12586.13 14492.53 17397.31 109
DCV-MVSNet90.69 10490.02 11292.71 10495.72 12782.41 15394.11 17695.12 20085.63 15391.49 10594.70 13974.75 18098.42 12586.13 14492.53 17397.31 109
test250687.21 21286.28 20990.02 22395.62 13273.64 31596.25 4671.38 37487.89 10190.45 11796.65 6755.29 34398.09 15486.03 14696.94 9698.33 46
ECVR-MVScopyleft89.09 14888.53 14390.77 19095.62 13275.89 29696.16 4984.22 36187.89 10190.20 12196.65 6763.19 30498.10 14685.90 14796.94 9698.33 46
OMC-MVS91.23 9490.62 9993.08 8596.27 10584.07 10393.52 20795.93 14186.95 12489.51 12996.13 9578.50 14098.35 12985.84 14892.90 16896.83 131
test_part189.00 15487.99 15992.04 13395.94 12183.81 11096.14 5296.05 13486.44 13685.69 19593.73 18371.57 22197.66 18285.80 14980.54 31294.66 206
ACMM84.12 989.14 14588.48 14891.12 17394.65 17681.22 18295.31 9096.12 12885.31 16385.92 19194.34 15170.19 24398.06 15885.65 15088.86 21794.08 236
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS92.58 7491.74 8295.08 1496.19 10789.31 592.66 24096.56 10183.44 20191.68 10395.04 12786.60 4798.99 8085.60 15197.92 7896.93 128
Effi-MVS+-dtu88.65 16288.35 14989.54 24193.33 22276.39 29194.47 15094.36 23387.70 10785.43 21189.56 30273.45 20297.26 22285.57 15291.28 18294.97 191
mvs-test189.45 13689.14 12990.38 20793.33 22277.63 27394.95 11794.36 23387.70 10787.10 16992.81 21173.45 20298.03 16185.57 15293.04 16595.48 177
FIs90.51 11190.35 10190.99 18493.99 20280.98 18895.73 7397.54 389.15 6286.72 17794.68 14181.83 10697.24 22485.18 15488.31 22794.76 204
MG-MVS91.77 8491.70 8392.00 13797.08 8280.03 21593.60 20595.18 19887.85 10390.89 11496.47 7882.06 10298.36 12785.07 15597.04 9597.62 98
CANet_DTU90.26 11589.41 12292.81 9893.46 22083.01 13393.48 20894.47 23089.43 5487.76 15794.23 15970.54 23999.03 6784.97 15696.39 11296.38 143
UniMVSNet_NR-MVSNet89.92 12489.29 12691.81 15193.39 22183.72 11294.43 15397.12 4489.80 4286.46 18093.32 19083.16 8497.23 22584.92 15781.02 30494.49 220
DU-MVS89.34 14388.50 14591.85 14893.04 23283.72 11294.47 15096.59 9789.50 5186.46 18093.29 19377.25 15097.23 22584.92 15781.02 30494.59 211
cascas86.43 23884.98 24590.80 18992.10 25480.92 19190.24 29295.91 14473.10 33683.57 26188.39 31665.15 29497.46 19884.90 15991.43 18194.03 239
UniMVSNet (Re)89.80 12789.07 13192.01 13493.60 21684.52 8994.78 13097.47 1089.26 5886.44 18392.32 22482.10 10097.39 21384.81 16080.84 30894.12 232
Vis-MVSNetpermissive91.75 8591.23 8893.29 7795.32 14383.78 11196.14 5295.98 13789.89 4090.45 11796.58 7375.09 17698.31 13484.75 16196.90 9897.78 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v2v48287.84 18187.06 18090.17 21390.99 29379.23 23894.00 18895.13 19984.87 17385.53 20192.07 23874.45 18497.45 19984.71 16281.75 29293.85 249
DP-MVS Recon91.95 8191.28 8793.96 6398.33 2985.92 6394.66 13896.66 9282.69 21890.03 12695.82 10482.30 9699.03 6784.57 16396.48 11196.91 129
UA-Net92.83 7092.54 7393.68 7396.10 11284.71 8395.66 7896.39 10991.92 493.22 6196.49 7783.16 8498.87 9184.47 16495.47 12297.45 107
V4287.68 18686.86 18490.15 21590.58 31280.14 20894.24 16995.28 19383.66 19485.67 19691.33 25774.73 18297.41 20884.43 16581.83 29092.89 291
FC-MVSNet-test90.27 11490.18 10590.53 19693.71 21279.85 22195.77 7297.59 289.31 5786.27 18694.67 14281.93 10597.01 24284.26 16688.09 23194.71 205
cl2286.78 22585.98 22089.18 25092.34 24777.62 27490.84 28394.13 24481.33 25183.97 25090.15 28973.96 19496.60 26384.19 16782.94 27693.33 271
miper_enhance_ethall86.90 22086.18 21289.06 25391.66 27077.58 27590.22 29494.82 22079.16 27784.48 23289.10 30579.19 13196.66 25684.06 16882.94 27692.94 289
VPNet88.20 17387.47 17190.39 20593.56 21779.46 22694.04 18495.54 17388.67 7486.96 17094.58 14769.33 25397.15 22984.05 16980.53 31494.56 214
UGNet89.95 12288.95 13492.95 9294.51 18083.31 12495.70 7595.23 19589.37 5687.58 15993.94 16964.00 29998.78 10283.92 17096.31 11396.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS88.36 16987.91 16389.70 23793.80 20978.29 25593.73 19995.08 20485.73 15084.75 22691.90 24379.88 12096.92 24783.83 17182.51 28193.89 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth87.22 21186.62 19689.02 25592.13 25277.40 27890.91 28294.81 22181.28 25284.32 24190.08 29179.26 13096.62 25883.81 17282.94 27693.04 286
EI-MVSNet89.10 14688.86 13889.80 23391.84 26278.30 25493.70 20295.01 20585.73 15087.15 16695.28 11879.87 12197.21 22783.81 17287.36 24093.88 245
c3_l87.14 21686.50 20189.04 25492.20 24977.26 27991.22 27894.70 22582.01 23284.34 24090.43 28478.81 13496.61 26183.70 17481.09 30193.25 275
Anonymous2024052988.09 17686.59 19792.58 11296.53 9881.92 16495.99 6195.84 15074.11 32889.06 13795.21 12261.44 31498.81 10083.67 17587.47 23797.01 124
v114487.61 19486.79 18890.06 22091.01 29279.34 23193.95 19095.42 18783.36 20485.66 19791.31 26074.98 17897.42 20383.37 17682.06 28693.42 270
thisisatest053088.67 16187.61 16891.86 14694.87 16480.07 21194.63 13989.90 34084.00 18788.46 14393.78 17966.88 27898.46 11983.30 17792.65 17197.06 121
tttt051788.61 16387.78 16491.11 17694.96 15877.81 26795.35 8889.69 34385.09 17088.05 15094.59 14666.93 27698.48 11783.27 17892.13 17897.03 123
testdata90.49 20096.40 10177.89 26495.37 19072.51 34193.63 5196.69 6382.08 10197.65 18483.08 17997.39 8995.94 161
LCM-MVSNet-Re88.30 17188.32 15288.27 27394.71 17272.41 33193.15 22490.98 31887.77 10579.25 31591.96 24178.35 14295.75 30583.04 18095.62 11896.65 136
IS-MVSNet91.43 9091.09 9292.46 11795.87 12481.38 17896.95 1893.69 25789.72 4889.50 13095.98 9878.57 13997.77 17483.02 18196.50 11098.22 61
UniMVSNet_ETH3D87.53 19786.37 20391.00 18392.44 24578.96 24094.74 13295.61 16884.07 18685.36 21894.52 14859.78 32897.34 21582.93 18287.88 23496.71 135
XVG-ACMP-BASELINE86.00 24284.84 25089.45 24591.20 28478.00 26091.70 26995.55 17185.05 17182.97 27092.25 22854.49 34697.48 19682.93 18287.45 23992.89 291
v14419287.19 21486.35 20589.74 23490.64 31078.24 25693.92 19295.43 18581.93 23585.51 20391.05 27074.21 18997.45 19982.86 18481.56 29493.53 264
v887.50 20086.71 19089.89 22791.37 27979.40 22894.50 14695.38 18884.81 17583.60 26091.33 25776.05 16197.42 20382.84 18580.51 31692.84 293
Anonymous2023121186.59 23285.13 24290.98 18696.52 9981.50 17196.14 5296.16 12573.78 33083.65 25892.15 23063.26 30397.37 21482.82 18681.74 29394.06 237
PAPM_NR91.22 9590.78 9892.52 11597.60 6381.46 17594.37 16296.24 11986.39 13887.41 16294.80 13782.06 10298.48 11782.80 18795.37 12597.61 99
eth_miper_zixun_eth86.50 23585.77 22988.68 26391.94 25975.81 29890.47 28894.89 21482.05 22984.05 24790.46 28375.96 16396.77 25282.76 18879.36 32693.46 269
Patchmatch-RL test81.67 29379.96 29986.81 30985.42 35871.23 33782.17 35787.50 35478.47 28877.19 32682.50 35470.81 23293.48 34082.66 18972.89 34695.71 173
tpmrst85.35 25484.99 24486.43 31190.88 30267.88 35588.71 31891.43 30880.13 26586.08 19088.80 31173.05 20896.02 29282.48 19083.40 27495.40 181
sss88.93 15588.26 15590.94 18794.05 19680.78 19591.71 26895.38 18881.55 24788.63 14093.91 17375.04 17795.47 31682.47 19191.61 18096.57 139
ab-mvs89.41 13988.35 14992.60 11095.15 15282.65 14792.20 25695.60 16983.97 18888.55 14193.70 18474.16 19198.21 14182.46 19289.37 20896.94 127
CostFormer85.77 24884.94 24788.26 27491.16 28872.58 32989.47 30691.04 31776.26 30886.45 18289.97 29470.74 23396.86 25182.35 19387.07 24595.34 184
v119287.25 20886.33 20690.00 22590.76 30679.04 23993.80 19695.48 17782.57 22085.48 20691.18 26473.38 20697.42 20382.30 19482.06 28693.53 264
Baseline_NR-MVSNet87.07 21786.63 19588.40 26991.44 27377.87 26594.23 17092.57 27784.12 18585.74 19492.08 23677.25 15096.04 29082.29 19579.94 32091.30 324
Anonymous20240521187.68 18686.13 21392.31 12696.66 9080.74 19694.87 12491.49 30680.47 26289.46 13195.44 11454.72 34598.23 13882.19 19689.89 20097.97 81
v14887.04 21886.32 20789.21 24890.94 29777.26 27993.71 20194.43 23184.84 17484.36 23990.80 27676.04 16297.05 23982.12 19779.60 32493.31 272
114514_t89.51 13388.50 14592.54 11498.11 3981.99 16195.16 10696.36 11170.19 35185.81 19295.25 12076.70 15698.63 10982.07 19896.86 10197.00 125
v192192086.97 21986.06 21889.69 23890.53 31578.11 25993.80 19695.43 18581.90 23785.33 21991.05 27072.66 21297.41 20882.05 19981.80 29193.53 264
OurMVSNet-221017-085.35 25484.64 25487.49 29190.77 30572.59 32894.01 18794.40 23284.72 17779.62 31393.17 19761.91 31196.72 25381.99 20081.16 29893.16 281
v1087.25 20886.38 20289.85 22891.19 28579.50 22594.48 14795.45 18283.79 19283.62 25991.19 26275.13 17597.42 20381.94 20180.60 31092.63 298
TranMVSNet+NR-MVSNet88.84 15787.95 16191.49 16092.68 24283.01 13394.92 12096.31 11289.88 4185.53 20193.85 17676.63 15896.96 24481.91 20279.87 32294.50 218
D2MVS85.90 24485.09 24388.35 27190.79 30477.42 27791.83 26495.70 16080.77 26080.08 30690.02 29266.74 28196.37 27881.88 20387.97 23391.26 325
test-LLR85.87 24585.41 23687.25 29790.95 29571.67 33489.55 30289.88 34183.41 20284.54 23087.95 32367.25 27195.11 32181.82 20493.37 15994.97 191
test-mter84.54 26983.64 26787.25 29790.95 29571.67 33489.55 30289.88 34179.17 27684.54 23087.95 32355.56 34095.11 32181.82 20493.37 15994.97 191
PMMVS85.71 24984.96 24687.95 28288.90 33577.09 28188.68 31990.06 33572.32 34286.47 17990.76 27872.15 21894.40 32781.78 20693.49 15492.36 306
cl____86.52 23485.78 22788.75 26092.03 25676.46 28990.74 28494.30 23681.83 24183.34 26690.78 27775.74 17096.57 26481.74 20781.54 29593.22 278
DIV-MVS_self_test86.53 23385.78 22788.75 26092.02 25776.45 29090.74 28494.30 23681.83 24183.34 26690.82 27575.75 16896.57 26481.73 20881.52 29693.24 276
NR-MVSNet88.58 16587.47 17191.93 14293.04 23284.16 10294.77 13196.25 11889.05 6480.04 30793.29 19379.02 13297.05 23981.71 20980.05 31994.59 211
WTY-MVS89.60 13088.92 13591.67 15595.47 13881.15 18492.38 24994.78 22383.11 20889.06 13794.32 15378.67 13796.61 26181.57 21090.89 18997.24 113
thisisatest051587.33 20485.99 21991.37 16693.49 21879.55 22490.63 28689.56 34680.17 26487.56 16090.86 27367.07 27598.28 13581.50 21193.02 16696.29 145
v124086.78 22585.85 22589.56 24090.45 31677.79 26893.61 20495.37 19081.65 24385.43 21191.15 26671.50 22397.43 20281.47 21282.05 28893.47 268
GeoE90.05 11889.43 12191.90 14595.16 15080.37 20495.80 7094.65 22783.90 18987.55 16194.75 13878.18 14497.62 18881.28 21393.63 15097.71 96
WR-MVS88.38 16787.67 16790.52 19893.30 22480.18 20693.26 22095.96 13988.57 7885.47 20792.81 21176.12 16096.91 24881.24 21482.29 28394.47 223
131487.51 19886.57 19890.34 21092.42 24679.74 22392.63 24195.35 19278.35 29080.14 30491.62 25274.05 19297.15 22981.05 21593.53 15394.12 232
IterMVS-SCA-FT85.45 25184.53 25688.18 27791.71 26776.87 28490.19 29592.65 27685.40 16181.44 28690.54 28166.79 27995.00 32481.04 21681.05 30292.66 297
XXY-MVS87.65 18886.85 18590.03 22192.14 25180.60 20093.76 19895.23 19582.94 21384.60 22894.02 16474.27 18695.49 31581.04 21683.68 26894.01 240
miper_lstm_enhance85.27 25784.59 25587.31 29491.28 28374.63 30487.69 33094.09 24681.20 25681.36 28889.85 29774.97 17994.30 33081.03 21879.84 32393.01 287
GA-MVS86.61 23085.27 24090.66 19191.33 28278.71 24290.40 28993.81 25585.34 16285.12 22189.57 30161.25 31697.11 23380.99 21989.59 20696.15 149
IB-MVS80.51 1585.24 25883.26 27091.19 17192.13 25279.86 22091.75 26691.29 31183.28 20680.66 29688.49 31561.28 31598.46 11980.99 21979.46 32595.25 185
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet84.69 26884.79 25184.37 32991.84 26264.92 36393.70 20291.47 30766.19 35786.16 18995.28 11867.18 27393.33 34280.89 22190.42 19294.88 199
baseline188.10 17587.28 17690.57 19494.96 15880.07 21194.27 16691.29 31186.74 12987.41 16294.00 16676.77 15596.20 28580.77 22279.31 32795.44 179
HyFIR lowres test88.09 17686.81 18691.93 14296.00 11780.63 19890.01 29895.79 15473.42 33387.68 15892.10 23573.86 19697.96 16680.75 22391.70 17997.19 116
AdaColmapbinary89.89 12589.07 13192.37 12397.41 7083.03 13194.42 15495.92 14282.81 21686.34 18594.65 14373.89 19599.02 7180.69 22495.51 12095.05 189
原ACMM192.01 13497.34 7381.05 18696.81 7478.89 28090.45 11795.92 10082.65 9098.84 9980.68 22598.26 6396.14 150
TESTMET0.1,183.74 27782.85 27686.42 31289.96 32571.21 33889.55 30287.88 35077.41 29783.37 26587.31 33256.71 33793.65 33980.62 22692.85 17094.40 224
无先验93.28 21996.26 11673.95 32999.05 6380.56 22796.59 138
112190.42 11289.49 11893.20 8097.27 7884.46 9392.63 24195.51 17671.01 34991.20 11196.21 8882.92 8899.05 6380.56 22798.07 7296.10 155
Fast-Effi-MVS+89.41 13988.64 14091.71 15494.74 16980.81 19493.54 20695.10 20283.11 20886.82 17690.67 28079.74 12397.75 17880.51 22993.55 15296.57 139
CHOSEN 1792x268888.84 15787.69 16592.30 12796.14 10881.42 17790.01 29895.86 14974.52 32587.41 16293.94 16975.46 17398.36 12780.36 23095.53 11997.12 120
CDS-MVSNet89.45 13688.51 14492.29 12893.62 21583.61 11793.01 23194.68 22681.95 23487.82 15593.24 19578.69 13696.99 24380.34 23193.23 16296.28 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu87.44 20186.72 18989.63 23992.04 25577.68 27294.03 18593.94 24785.81 14782.42 27591.32 25970.33 24197.06 23880.33 23290.23 19494.14 231
baseline286.50 23585.39 23789.84 22991.12 28976.70 28691.88 26288.58 34882.35 22579.95 30890.95 27273.42 20497.63 18780.27 23389.95 19995.19 186
API-MVS90.66 10690.07 10892.45 11896.36 10384.57 8696.06 5995.22 19782.39 22289.13 13494.27 15880.32 11598.46 11980.16 23496.71 10394.33 225
MAR-MVS90.30 11389.37 12393.07 8796.61 9284.48 9295.68 7695.67 16282.36 22487.85 15392.85 20776.63 15898.80 10180.01 23596.68 10495.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 15187.94 16292.29 12894.86 16582.77 13892.08 26194.49 22981.52 24886.93 17192.79 21378.32 14398.23 13879.93 23690.55 19095.88 164
CHOSEN 280x42085.15 25983.99 26188.65 26492.47 24478.40 25179.68 36192.76 27274.90 32281.41 28789.59 30069.85 24795.51 31279.92 23795.29 12792.03 312
MVS87.44 20186.10 21691.44 16392.61 24383.62 11692.63 24195.66 16467.26 35581.47 28592.15 23077.95 14598.22 14079.71 23895.48 12192.47 302
pm-mvs186.61 23085.54 23389.82 23091.44 27380.18 20695.28 9794.85 21783.84 19181.66 28492.62 21672.45 21796.48 27179.67 23978.06 33092.82 294
IterMVS84.88 26483.98 26287.60 28791.44 27376.03 29590.18 29692.41 27983.24 20781.06 29290.42 28566.60 28294.28 33179.46 24080.98 30792.48 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
1112_ss88.42 16687.33 17491.72 15394.92 16180.98 18892.97 23394.54 22878.16 29483.82 25393.88 17478.78 13597.91 17079.45 24189.41 20796.26 147
gm-plane-assit89.60 33168.00 35377.28 30088.99 30697.57 19079.44 242
PM-MVS78.11 32176.12 32384.09 33383.54 36370.08 34788.97 31585.27 35879.93 26874.73 34186.43 33734.70 36893.48 34079.43 24372.06 34888.72 351
v7n86.81 22385.76 23089.95 22690.72 30879.25 23795.07 11095.92 14284.45 18182.29 27690.86 27372.60 21497.53 19379.42 24480.52 31593.08 285
PAPR90.02 11989.27 12892.29 12895.78 12580.95 19092.68 23996.22 12181.91 23686.66 17893.75 18282.23 9798.44 12379.40 24594.79 13297.48 105
新几何193.10 8497.30 7584.35 9995.56 17071.09 34891.26 11096.24 8582.87 8998.86 9479.19 24698.10 6996.07 157
CP-MVSNet87.63 19187.26 17888.74 26293.12 22876.59 28895.29 9596.58 9888.43 8183.49 26392.98 20475.28 17495.83 30178.97 24781.15 30093.79 251
pmmvs485.43 25283.86 26390.16 21490.02 32482.97 13590.27 29092.67 27575.93 31180.73 29491.74 24771.05 22795.73 30678.85 24883.46 27291.78 315
DWT-MVSNet_test84.95 26383.68 26588.77 25891.43 27673.75 31391.74 26790.98 31880.66 26183.84 25287.36 33162.44 30797.11 23378.84 24985.81 25095.46 178
Test_1112_low_res87.65 18886.51 20091.08 17794.94 16079.28 23591.77 26594.30 23676.04 31083.51 26292.37 22277.86 14897.73 17978.69 25089.13 21496.22 148
Vis-MVSNet (Re-imp)89.59 13189.44 12090.03 22195.74 12675.85 29795.61 8190.80 32487.66 11187.83 15495.40 11776.79 15496.46 27478.37 25196.73 10297.80 93
PS-CasMVS87.32 20586.88 18388.63 26592.99 23676.33 29395.33 8996.61 9688.22 9083.30 26893.07 20273.03 20995.79 30478.36 25281.00 30693.75 257
testdata298.75 10378.30 253
GBi-Net87.26 20685.98 22091.08 17794.01 19883.10 12895.14 10794.94 20883.57 19684.37 23691.64 24866.59 28396.34 28178.23 25485.36 25393.79 251
test187.26 20685.98 22091.08 17794.01 19883.10 12895.14 10794.94 20883.57 19684.37 23691.64 24866.59 28396.34 28178.23 25485.36 25393.79 251
FMVSNet387.40 20386.11 21591.30 16893.79 21183.64 11594.20 17194.81 22183.89 19084.37 23691.87 24468.45 26796.56 26678.23 25485.36 25393.70 260
OpenMVScopyleft83.78 1188.74 16087.29 17593.08 8592.70 24185.39 7696.57 3396.43 10678.74 28580.85 29396.07 9669.64 24999.01 7378.01 25796.65 10594.83 201
tpm84.73 26684.02 26086.87 30890.33 31768.90 35189.06 31389.94 33880.85 25985.75 19389.86 29668.54 26695.97 29477.76 25884.05 26495.75 170
TAMVS89.21 14488.29 15391.96 14093.71 21282.62 14893.30 21794.19 24082.22 22687.78 15693.94 16978.83 13396.95 24577.70 25992.98 16796.32 144
BH-untuned88.60 16488.13 15790.01 22495.24 14778.50 24893.29 21894.15 24284.75 17684.46 23393.40 18775.76 16797.40 21077.59 26094.52 13994.12 232
FMVSNet287.19 21485.82 22691.30 16894.01 19883.67 11494.79 12994.94 20883.57 19683.88 25192.05 23966.59 28396.51 26977.56 26185.01 25693.73 258
RPSCF85.07 26084.27 25787.48 29292.91 23870.62 34491.69 27092.46 27876.20 30982.67 27495.22 12163.94 30097.29 21977.51 26285.80 25194.53 215
PLCcopyleft84.53 789.06 15088.03 15892.15 13197.27 7882.69 14594.29 16595.44 18479.71 27184.01 24994.18 16076.68 15798.75 10377.28 26393.41 15795.02 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 14987.98 16092.34 12496.87 8584.78 8294.08 18093.24 26281.41 24984.46 23395.13 12575.57 17296.62 25877.21 26493.84 14895.61 175
K. test v381.59 29580.15 29785.91 31889.89 32769.42 35092.57 24487.71 35285.56 15573.44 34789.71 29955.58 33995.52 31177.17 26569.76 35092.78 295
QAPM89.51 13388.15 15693.59 7594.92 16184.58 8596.82 2896.70 8878.43 28983.41 26496.19 9273.18 20799.30 4277.11 26696.54 10896.89 130
pmmvs584.21 27182.84 27788.34 27288.95 33476.94 28392.41 24791.91 29775.63 31380.28 30191.18 26464.59 29795.57 30877.09 26783.47 27192.53 300
pmmvs683.42 27981.60 28388.87 25788.01 34677.87 26594.96 11694.24 23974.67 32478.80 31691.09 26960.17 32596.49 27077.06 26875.40 34292.23 310
test_post188.00 3269.81 37569.31 25595.53 31076.65 269
SCA86.32 23985.18 24189.73 23692.15 25076.60 28791.12 27991.69 30083.53 19985.50 20488.81 30966.79 27996.48 27176.65 26990.35 19396.12 152
WR-MVS_H87.80 18387.37 17389.10 25293.23 22578.12 25895.61 8197.30 2987.90 9983.72 25592.01 24079.65 12896.01 29376.36 27180.54 31293.16 281
EU-MVSNet81.32 30080.95 28882.42 33888.50 33863.67 36493.32 21391.33 30964.02 35980.57 29892.83 20961.21 31892.27 35176.34 27280.38 31791.32 323
CMPMVSbinary59.16 2180.52 30679.20 30884.48 32883.98 36167.63 35789.95 30093.84 25464.79 35866.81 35991.14 26757.93 33595.17 31976.25 27388.10 22990.65 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
F-COLMAP87.95 17986.80 18791.40 16496.35 10480.88 19294.73 13395.45 18279.65 27282.04 28194.61 14471.13 22698.50 11676.24 27491.05 18794.80 203
PEN-MVS86.80 22486.27 21088.40 26992.32 24875.71 29995.18 10496.38 11087.97 9682.82 27293.15 19873.39 20595.92 29676.15 27579.03 32993.59 262
SixPastTwentyTwo83.91 27582.90 27586.92 30590.99 29370.67 34393.48 20891.99 29285.54 15677.62 32492.11 23460.59 32296.87 25076.05 27677.75 33293.20 279
MVS_030483.46 27881.92 28188.10 27990.63 31177.49 27693.26 22093.75 25680.04 26780.44 30087.24 33447.94 36095.55 30975.79 27788.16 22891.26 325
MS-PatchMatch85.05 26184.16 25887.73 28591.42 27778.51 24791.25 27793.53 25877.50 29680.15 30391.58 25361.99 31095.51 31275.69 27894.35 14389.16 348
BH-w/o87.57 19687.05 18189.12 25194.90 16377.90 26392.41 24793.51 25982.89 21583.70 25691.34 25675.75 16897.07 23775.49 27993.49 15492.39 305
gg-mvs-nofinetune81.77 29179.37 30488.99 25690.85 30377.73 27186.29 33879.63 37074.88 32383.19 26969.05 36460.34 32396.11 28975.46 28094.64 13693.11 283
FMVSNet185.85 24684.11 25991.08 17792.81 23983.10 12895.14 10794.94 20881.64 24482.68 27391.64 24859.01 33296.34 28175.37 28183.78 26593.79 251
EPMVS83.90 27682.70 27887.51 28990.23 32072.67 32588.62 32081.96 36681.37 25085.01 22388.34 31766.31 28694.45 32675.30 28287.12 24395.43 180
pmmvs-eth3d80.97 30478.72 31387.74 28484.99 36079.97 21890.11 29791.65 30175.36 31573.51 34686.03 34059.45 32993.96 33675.17 28372.21 34789.29 346
tpm284.08 27282.94 27487.48 29291.39 27871.27 33689.23 31090.37 32971.95 34484.64 22789.33 30367.30 27096.55 26875.17 28387.09 24494.63 207
lessismore_v086.04 31488.46 33968.78 35280.59 36873.01 34990.11 29055.39 34196.43 27675.06 28565.06 35892.90 290
MVP-Stereo85.97 24384.86 24989.32 24690.92 29982.19 15692.11 25994.19 24078.76 28478.77 31791.63 25168.38 26896.56 26675.01 28693.95 14589.20 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PVSNet78.82 1885.55 25084.65 25388.23 27694.72 17171.93 33287.12 33492.75 27378.80 28384.95 22490.53 28264.43 29896.71 25574.74 28793.86 14796.06 158
MDTV_nov1_ep13_2view55.91 37287.62 33273.32 33484.59 22970.33 24174.65 28895.50 176
PatchmatchNetpermissive85.85 24684.70 25289.29 24791.76 26575.54 30088.49 32191.30 31081.63 24585.05 22288.70 31371.71 21996.24 28474.61 28989.05 21596.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LF4IMVS80.37 30879.07 31184.27 33186.64 35069.87 34989.39 30791.05 31676.38 30574.97 34090.00 29347.85 36194.25 33274.55 29080.82 30988.69 352
DTE-MVSNet86.11 24185.48 23587.98 28191.65 27174.92 30394.93 11995.75 15787.36 11682.26 27793.04 20372.85 21095.82 30274.04 29177.46 33593.20 279
BH-RMVSNet88.37 16887.48 17091.02 18195.28 14479.45 22792.89 23593.07 26685.45 15986.91 17394.84 13670.35 24097.76 17573.97 29294.59 13795.85 165
CR-MVSNet85.35 25483.76 26490.12 21790.58 31279.34 23185.24 34491.96 29578.27 29185.55 19987.87 32671.03 22895.61 30773.96 29389.36 20995.40 181
ACMH+81.04 1485.05 26183.46 26989.82 23094.66 17579.37 22994.44 15294.12 24582.19 22778.04 32092.82 21058.23 33497.54 19273.77 29482.90 27992.54 299
TR-MVS86.78 22585.76 23089.82 23094.37 18778.41 25092.47 24692.83 27081.11 25786.36 18492.40 22168.73 26497.48 19673.75 29589.85 20293.57 263
UnsupCasMVSNet_eth80.07 31078.27 31485.46 32085.24 35972.63 32788.45 32394.87 21682.99 21271.64 35488.07 32256.34 33891.75 35573.48 29663.36 36192.01 313
PatchMatch-RL86.77 22885.54 23390.47 20395.88 12282.71 14490.54 28792.31 28279.82 27084.32 24191.57 25568.77 26396.39 27773.16 29793.48 15692.32 308
ambc83.06 33679.99 36763.51 36577.47 36292.86 26974.34 34484.45 34728.74 36995.06 32373.06 29868.89 35590.61 335
KD-MVS_self_test80.20 30979.24 30683.07 33585.64 35765.29 36291.01 28193.93 24878.71 28676.32 33186.40 33859.20 33192.93 34772.59 29969.35 35191.00 333
ITE_SJBPF88.24 27591.88 26177.05 28292.92 26885.54 15680.13 30593.30 19257.29 33696.20 28572.46 30084.71 25891.49 320
ACMH80.38 1785.36 25383.68 26590.39 20594.45 18480.63 19894.73 13394.85 21782.09 22877.24 32592.65 21560.01 32697.58 18972.25 30184.87 25792.96 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC82.76 28281.26 28787.26 29691.17 28674.55 30589.27 30893.39 26178.26 29275.30 33892.08 23654.43 34796.63 25771.64 30285.79 25290.61 335
EPNet_dtu86.49 23785.94 22388.14 27890.24 31972.82 32394.11 17692.20 28586.66 13379.42 31492.36 22373.52 20095.81 30371.26 30393.66 14995.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND87.94 28389.73 32977.91 26287.80 32778.23 37280.58 29783.86 34859.88 32795.33 31871.20 30492.22 17790.60 337
LTVRE_ROB82.13 1386.26 24084.90 24890.34 21094.44 18581.50 17192.31 25394.89 21483.03 21079.63 31292.67 21469.69 24897.79 17371.20 30486.26 24891.72 316
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM81.04 30278.98 31287.25 29788.64 33673.48 31781.75 35889.61 34573.19 33582.05 28073.71 36166.07 29095.87 29971.18 30684.60 25992.41 304
Anonymous2024052180.44 30779.21 30784.11 33285.75 35667.89 35492.86 23693.23 26375.61 31475.59 33787.47 33050.03 35594.33 32971.14 30781.21 29790.12 340
TransMVSNet (Re)84.43 27083.06 27388.54 26691.72 26678.44 24995.18 10492.82 27182.73 21779.67 31192.12 23273.49 20195.96 29571.10 30868.73 35691.21 327
PCF-MVS84.11 1087.74 18586.08 21792.70 10694.02 19784.43 9789.27 30895.87 14873.62 33284.43 23594.33 15278.48 14198.86 9470.27 30994.45 14194.81 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EG-PatchMatch MVS82.37 28780.34 29388.46 26890.27 31879.35 23092.80 23894.33 23577.14 30173.26 34890.18 28847.47 36296.72 25370.25 31087.32 24289.30 345
MDTV_nov1_ep1383.56 26891.69 26969.93 34887.75 32991.54 30478.60 28784.86 22588.90 30869.54 25096.03 29170.25 31088.93 216
TDRefinement79.81 31277.34 31687.22 30079.24 36875.48 30193.12 22592.03 29076.45 30475.01 33991.58 25349.19 35896.44 27570.22 31269.18 35389.75 342
thres100view90087.63 19186.71 19090.38 20796.12 10978.55 24595.03 11491.58 30287.15 11888.06 14992.29 22668.91 26198.10 14670.13 31391.10 18394.48 221
tfpn200view987.58 19586.64 19390.41 20495.99 11878.64 24394.58 14191.98 29386.94 12588.09 14691.77 24569.18 25898.10 14670.13 31391.10 18394.48 221
thres40087.62 19386.64 19390.57 19495.99 11878.64 24394.58 14191.98 29386.94 12588.09 14691.77 24569.18 25898.10 14670.13 31391.10 18394.96 194
thres600view787.65 18886.67 19290.59 19396.08 11378.72 24194.88 12391.58 30287.06 12188.08 14892.30 22568.91 26198.10 14670.05 31691.10 18394.96 194
thres20087.21 21286.24 21190.12 21795.36 14078.53 24693.26 22092.10 28786.42 13788.00 15191.11 26869.24 25798.00 16369.58 31791.04 18893.83 250
tpm cat181.96 28880.27 29487.01 30391.09 29071.02 34087.38 33391.53 30566.25 35680.17 30286.35 33968.22 26996.15 28869.16 31882.29 28393.86 248
Patchmtry82.71 28380.93 28988.06 28090.05 32376.37 29284.74 34891.96 29572.28 34381.32 28987.87 32671.03 22895.50 31468.97 31980.15 31892.32 308
our_test_381.93 28980.46 29286.33 31388.46 33973.48 31788.46 32291.11 31376.46 30376.69 32988.25 31966.89 27794.36 32868.75 32079.08 32891.14 329
PVSNet_073.20 2077.22 32274.83 32784.37 32990.70 30971.10 33983.09 35589.67 34472.81 34073.93 34583.13 35260.79 32093.70 33868.54 32150.84 36788.30 355
MSDG84.86 26583.09 27290.14 21693.80 20980.05 21389.18 31193.09 26578.89 28078.19 31891.91 24265.86 29297.27 22068.47 32288.45 22393.11 283
LS3D87.89 18086.32 20792.59 11196.07 11482.92 13695.23 9994.92 21375.66 31282.89 27195.98 9872.48 21599.21 5068.43 32395.23 13095.64 174
AllTest83.42 27981.39 28589.52 24295.01 15477.79 26893.12 22590.89 32277.41 29776.12 33393.34 18854.08 34897.51 19468.31 32484.27 26293.26 273
TestCases89.52 24295.01 15477.79 26890.89 32277.41 29776.12 33393.34 18854.08 34897.51 19468.31 32484.27 26293.26 273
dp81.47 29880.23 29585.17 32489.92 32665.49 36186.74 33590.10 33476.30 30781.10 29087.12 33662.81 30595.92 29668.13 32679.88 32194.09 235
tpmvs83.35 28182.07 27987.20 30191.07 29171.00 34188.31 32491.70 29978.91 27980.49 29987.18 33569.30 25697.08 23668.12 32783.56 27093.51 267
FMVSNet581.52 29779.60 30387.27 29591.17 28677.95 26191.49 27392.26 28476.87 30276.16 33287.91 32551.67 35392.34 35067.74 32881.16 29891.52 319
KD-MVS_2432*160078.50 31976.02 32485.93 31686.22 35274.47 30684.80 34692.33 28079.29 27476.98 32785.92 34153.81 35093.97 33467.39 32957.42 36489.36 343
miper_refine_blended78.50 31976.02 32485.93 31686.22 35274.47 30684.80 34692.33 28079.29 27476.98 32785.92 34153.81 35093.97 33467.39 32957.42 36489.36 343
CL-MVSNet_self_test81.74 29280.53 29085.36 32185.96 35472.45 33090.25 29193.07 26681.24 25479.85 31087.29 33370.93 23092.52 34966.95 33169.23 35291.11 331
YYNet179.22 31677.20 31885.28 32388.20 34572.66 32685.87 34090.05 33774.33 32762.70 36187.61 32866.09 28992.03 35266.94 33272.97 34591.15 328
PAPM86.68 22985.39 23790.53 19693.05 23179.33 23489.79 30194.77 22478.82 28281.95 28293.24 19576.81 15397.30 21666.94 33293.16 16394.95 197
DP-MVS87.25 20885.36 23992.90 9497.65 6283.24 12594.81 12892.00 29174.99 32081.92 28395.00 12872.66 21299.05 6366.92 33492.33 17696.40 142
MDA-MVSNet_test_wron79.21 31777.19 31985.29 32288.22 34372.77 32485.87 34090.06 33574.34 32662.62 36287.56 32966.14 28891.99 35366.90 33573.01 34491.10 332
UnsupCasMVSNet_bld76.23 32573.27 32885.09 32583.79 36272.92 32185.65 34393.47 26071.52 34568.84 35779.08 35849.77 35693.21 34366.81 33660.52 36389.13 350
MIMVSNet82.59 28580.53 29088.76 25991.51 27278.32 25386.57 33790.13 33379.32 27380.70 29588.69 31452.98 35293.07 34666.03 33788.86 21794.90 198
LCM-MVSNet66.00 33062.16 33477.51 34564.51 37558.29 36783.87 35290.90 32148.17 36654.69 36473.31 36216.83 37886.75 36465.47 33861.67 36287.48 357
PatchT82.68 28481.27 28686.89 30790.09 32270.94 34284.06 35090.15 33274.91 32185.63 19883.57 35069.37 25294.87 32565.19 33988.50 22294.84 200
test0.0.03 182.41 28681.69 28284.59 32788.23 34272.89 32290.24 29287.83 35183.41 20279.86 30989.78 29867.25 27188.99 36265.18 34083.42 27391.90 314
ppachtmachnet_test81.84 29080.07 29887.15 30288.46 33974.43 30889.04 31492.16 28675.33 31677.75 32288.99 30666.20 28795.37 31765.12 34177.60 33391.65 317
COLMAP_ROBcopyleft80.39 1683.96 27382.04 28089.74 23495.28 14479.75 22294.25 16792.28 28375.17 31878.02 32193.77 18058.60 33397.84 17265.06 34285.92 24991.63 318
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet281.66 29479.71 30287.50 29091.35 28074.19 31083.33 35388.48 34972.90 33882.24 27885.77 34364.98 29593.20 34464.57 34383.74 26695.12 187
ADS-MVSNet81.56 29679.78 30086.90 30691.35 28071.82 33383.33 35389.16 34772.90 33882.24 27885.77 34364.98 29593.76 33764.57 34383.74 26695.12 187
new-patchmatchnet76.41 32475.17 32680.13 34082.65 36659.61 36687.66 33191.08 31478.23 29369.85 35583.22 35154.76 34491.63 35764.14 34564.89 35989.16 348
testgi80.94 30580.20 29683.18 33487.96 34766.29 35891.28 27590.70 32683.70 19378.12 31992.84 20851.37 35490.82 35863.34 34682.46 28292.43 303
TinyColmap79.76 31377.69 31585.97 31591.71 26773.12 32089.55 30290.36 33075.03 31972.03 35290.19 28746.22 36396.19 28763.11 34781.03 30388.59 353
pmmvs371.81 32868.71 33181.11 33975.86 36970.42 34586.74 33583.66 36258.95 36268.64 35880.89 35636.93 36789.52 36163.10 34863.59 36083.39 358
TAPA-MVS84.62 688.16 17487.01 18291.62 15696.64 9180.65 19794.39 15796.21 12476.38 30586.19 18895.44 11479.75 12298.08 15662.75 34995.29 12796.13 151
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet-bldmvs78.85 31876.31 32186.46 31089.76 32873.88 31288.79 31790.42 32779.16 27759.18 36388.33 31860.20 32494.04 33362.00 35068.96 35491.48 321
tfpnnormal84.72 26783.23 27189.20 24992.79 24080.05 21394.48 14795.81 15282.38 22381.08 29191.21 26169.01 26096.95 24561.69 35180.59 31190.58 338
Anonymous2023120681.03 30379.77 30184.82 32687.85 34870.26 34691.42 27492.08 28873.67 33177.75 32289.25 30462.43 30893.08 34561.50 35282.00 28991.12 330
RPMNet83.95 27481.53 28491.21 17090.58 31279.34 23185.24 34496.76 7971.44 34685.55 19982.97 35370.87 23198.91 8961.01 35389.36 20995.40 181
MIMVSNet179.38 31577.28 31785.69 31986.35 35173.67 31491.61 27292.75 27378.11 29572.64 35088.12 32148.16 35991.97 35460.32 35477.49 33491.43 322
test20.0379.95 31179.08 31082.55 33785.79 35567.74 35691.09 28091.08 31481.23 25574.48 34389.96 29561.63 31290.15 35960.08 35576.38 33989.76 341
DSMNet-mixed76.94 32376.29 32278.89 34183.10 36456.11 37187.78 32879.77 36960.65 36175.64 33688.71 31261.56 31388.34 36360.07 35689.29 21192.21 311
Patchmatch-test81.37 29979.30 30587.58 28890.92 29974.16 31180.99 35987.68 35370.52 35076.63 33088.81 30971.21 22592.76 34860.01 35786.93 24695.83 167
MVS-HIRNet73.70 32672.20 32978.18 34491.81 26456.42 37082.94 35682.58 36455.24 36368.88 35666.48 36555.32 34295.13 32058.12 35888.42 22483.01 359
OpenMVS_ROBcopyleft74.94 1979.51 31477.03 32086.93 30487.00 34976.23 29492.33 25190.74 32568.93 35374.52 34288.23 32049.58 35796.62 25857.64 35984.29 26187.94 356
new_pmnet72.15 32770.13 33078.20 34382.95 36565.68 35983.91 35182.40 36562.94 36064.47 36079.82 35742.85 36586.26 36557.41 36074.44 34382.65 361
N_pmnet68.89 32968.44 33270.23 34889.07 33328.79 38088.06 32519.50 38169.47 35271.86 35384.93 34561.24 31791.75 35554.70 36177.15 33690.15 339
test_method50.52 33748.47 33956.66 35352.26 37918.98 38241.51 37181.40 36710.10 37344.59 36875.01 36028.51 37068.16 37153.54 36249.31 36882.83 360
tmp_tt35.64 34139.24 34324.84 35714.87 38123.90 38162.71 36751.51 3806.58 37536.66 37162.08 36844.37 36430.34 37752.40 36322.00 37420.27 372
test_040281.30 30179.17 30987.67 28693.19 22678.17 25792.98 23291.71 29875.25 31776.02 33590.31 28659.23 33096.37 27850.22 36483.63 26988.47 354
PMMVS259.60 33356.40 33569.21 34968.83 37246.58 37573.02 36677.48 37355.07 36449.21 36672.95 36317.43 37780.04 36949.32 36544.33 36980.99 363
EGC-MVSNET61.97 33256.37 33678.77 34289.63 33073.50 31689.12 31282.79 3630.21 3781.24 37984.80 34639.48 36690.04 36044.13 36675.94 34172.79 365
ANet_high58.88 33454.22 33872.86 34656.50 37856.67 36980.75 36086.00 35573.09 33737.39 37064.63 36722.17 37379.49 37043.51 36723.96 37282.43 362
DeepMVS_CXcopyleft56.31 35474.23 37051.81 37356.67 37944.85 36748.54 36775.16 35927.87 37158.74 37540.92 36852.22 36658.39 368
FPMVS64.63 33162.55 33370.88 34770.80 37156.71 36884.42 34984.42 36051.78 36549.57 36581.61 35523.49 37281.48 36840.61 36976.25 34074.46 364
Gipumacopyleft57.99 33554.91 33767.24 35088.51 33765.59 36052.21 36990.33 33143.58 36842.84 36951.18 37020.29 37585.07 36634.77 37070.45 34951.05 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 33648.46 34063.48 35145.72 38046.20 37673.41 36578.31 37141.03 36930.06 37265.68 3666.05 37983.43 36730.04 37165.86 35760.80 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 33838.59 34457.77 35256.52 37748.77 37455.38 36858.64 37829.33 37228.96 37352.65 3694.68 38064.62 37428.11 37233.07 37059.93 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 33942.29 34146.03 35565.58 37437.41 37773.51 36464.62 37533.99 37028.47 37447.87 37119.90 37667.91 37222.23 37324.45 37132.77 370
EMVS42.07 34041.12 34244.92 35663.45 37635.56 37973.65 36363.48 37633.05 37126.88 37545.45 37221.27 37467.14 37319.80 37423.02 37332.06 371
wuyk23d21.27 34320.48 34623.63 35868.59 37336.41 37849.57 3706.85 3829.37 3747.89 3764.46 3784.03 38131.37 37617.47 37516.07 3753.12 373
testmvs8.92 34411.52 3471.12 3601.06 3820.46 38486.02 3390.65 3830.62 3762.74 3779.52 3760.31 3830.45 3792.38 3760.39 3762.46 375
test1238.76 34511.22 3481.39 3590.85 3830.97 38385.76 3420.35 3840.54 3772.45 3788.14 3770.60 3820.48 3782.16 3770.17 3772.71 374
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k22.14 34229.52 3450.00 3610.00 3840.00 3850.00 37295.76 1560.00 3790.00 38094.29 15575.66 1710.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas6.64 3478.86 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37979.70 1240.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re7.82 34610.43 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38093.88 1740.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS198.86 185.54 7498.29 197.49 589.79 4596.29 15
test_one_060198.58 1285.83 6797.44 1491.05 1796.78 1398.06 691.45 11
eth-test20.00 384
eth-test0.00 384
test_241102_ONE98.77 585.99 5897.44 1490.26 3597.71 197.96 1092.31 499.38 32
save fliter97.85 5085.63 7295.21 10196.82 7389.44 52
test072698.78 385.93 6197.19 1097.47 1090.27 3397.64 498.13 191.47 8
GSMVS96.12 152
test_part298.55 1387.22 1896.40 14
sam_mvs171.70 22096.12 152
sam_mvs70.60 234
MTGPAbinary96.97 53
test_post10.29 37470.57 23895.91 298
patchmatchnet-post83.76 34971.53 22296.48 271
MTMP96.16 4960.64 377
TEST997.53 6586.49 4194.07 18196.78 7681.61 24692.77 7496.20 8987.71 3199.12 58
test_897.49 6886.30 5094.02 18696.76 7981.86 23992.70 7896.20 8987.63 3299.02 71
agg_prior97.38 7185.92 6396.72 8592.16 8998.97 83
test_prior485.96 6094.11 176
test_prior93.82 6797.29 7684.49 9096.88 6498.87 9198.11 72
新几何293.11 227
旧先验196.79 8781.81 16595.67 16296.81 5886.69 4397.66 8596.97 126
原ACMM292.94 234
test22296.55 9781.70 16792.22 25595.01 20568.36 35490.20 12196.14 9480.26 11797.80 8196.05 159
segment_acmp87.16 40
testdata192.15 25787.94 97
test1294.34 5697.13 8186.15 5396.29 11391.04 11385.08 6499.01 7398.13 6897.86 90
plane_prior794.70 17382.74 141
plane_prior694.52 17982.75 13974.23 187
plane_prior494.86 133
plane_prior382.75 13990.26 3586.91 173
plane_prior295.85 6890.81 20
plane_prior194.59 177
plane_prior82.73 14295.21 10189.66 4989.88 201
n20.00 385
nn0.00 385
door-mid85.49 356
test1196.57 99
door85.33 357
HQP5-MVS81.56 169
HQP-NCC94.17 19294.39 15788.81 6985.43 211
ACMP_Plane94.17 19294.39 15788.81 6985.43 211
HQP4-MVS85.43 21197.96 16694.51 217
HQP3-MVS96.04 13589.77 203
HQP2-MVS73.83 197
NP-MVS94.37 18782.42 15193.98 167
ACMMP++_ref87.47 237
ACMMP++88.01 232
Test By Simon80.02 119