This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 196.28 194.80 3398.77 485.99 5497.13 997.44 1390.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
MSP-MVS95.67 296.02 294.64 4098.78 285.93 5797.09 1196.73 7390.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 31
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7197.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4897.46 297.40 1889.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
DVP-MVS95.42 595.56 594.98 1998.49 1686.52 3796.91 2097.47 891.73 896.10 1396.69 5489.90 999.30 3994.70 998.04 6399.13 1
CNVR-MVS95.40 695.37 695.50 598.11 3688.51 595.29 8296.96 5292.09 395.32 1997.08 3789.49 1299.33 3695.10 898.85 1598.66 14
SD-MVS94.96 1195.33 793.88 6297.25 6986.69 3096.19 3997.11 4390.42 2596.95 1097.27 2489.53 1196.91 22894.38 1398.85 1598.03 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7286.33 4497.33 397.30 2791.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVS95.20 795.07 995.59 398.14 3588.48 696.26 3797.28 2985.90 13097.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4496.11 4596.62 8488.14 8496.10 1396.96 4389.09 1598.94 8094.48 1298.68 3598.48 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5596.96 5291.75 794.02 3396.83 4788.12 2199.55 1293.41 2498.94 1298.28 44
SF-MVS94.97 1094.90 1295.20 897.84 4687.76 896.65 2897.48 787.76 9395.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
DeepPCF-MVS89.96 194.20 3594.77 1392.49 10896.52 8680.00 20194.00 17497.08 4490.05 3295.65 1797.29 2389.66 1098.97 7693.95 1698.71 3098.50 21
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4485.63 6795.21 8895.47 16489.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
NCCC94.81 1394.69 1595.17 1097.83 4787.46 1495.66 6696.93 5592.34 293.94 3496.58 6187.74 2499.44 2792.83 3298.40 5298.62 16
ACMMP_NAP94.74 1494.56 1695.28 698.02 4187.70 1095.68 6497.34 2088.28 7895.30 2097.67 1385.90 4899.54 1693.91 1798.95 1198.60 17
9.1494.47 1797.79 4896.08 4697.44 1386.13 12895.10 2297.40 1888.34 1899.22 4593.25 2798.70 32
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5187.71 995.98 5297.44 1386.67 11795.25 2197.31 2287.73 2599.24 4393.11 3098.76 2698.40 34
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 2088.63 6893.65 3997.21 2986.10 4499.49 2392.35 4098.77 2498.30 40
XVS94.45 2094.32 2094.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5597.16 3485.02 5999.49 2391.99 5098.56 4798.47 27
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2588.24 7993.15 5197.04 3986.17 4399.62 192.40 3898.81 1898.52 20
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2588.63 6893.53 4697.26 2685.04 5899.54 1692.35 4098.78 2198.50 21
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3388.60 7093.58 4397.27 2485.22 5599.54 1692.21 4398.74 2998.56 19
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
Regformer-294.33 2794.22 2594.68 3895.54 11986.75 2994.57 13096.70 7791.84 694.41 2596.56 6387.19 3399.13 5393.50 2097.65 7398.16 54
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3188.53 7292.73 6297.23 2785.20 5699.32 3792.15 4698.83 1798.25 49
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10297.12 4187.13 10492.51 6996.30 7089.24 1499.34 3393.46 2198.62 4498.73 11
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4097.23 3387.28 10294.85 2497.04 3986.99 3699.52 2091.54 6398.33 5598.71 12
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6496.40 3396.90 5788.20 8294.33 2797.40 1884.75 6399.03 6393.35 2597.99 6498.48 23
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 2087.51 9993.65 3997.21 2986.10 4499.49 2391.68 6198.77 2498.30 40
Regformer-194.22 3294.13 3294.51 4695.54 11986.36 4394.57 13096.44 9291.69 994.32 2896.56 6387.05 3599.03 6393.35 2597.65 7398.15 55
MSLP-MVS++93.72 4494.08 3392.65 10197.31 6383.43 11195.79 5997.33 2390.03 3393.58 4396.96 4384.87 6197.76 15992.19 4598.66 4096.76 117
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4696.71 2696.98 4889.04 5791.98 7897.19 3185.43 5399.56 792.06 4998.79 1998.44 32
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 3986.90 2195.88 5696.94 5485.68 13695.05 2397.18 3287.31 3099.07 5791.90 5798.61 4598.28 44
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss94.21 3394.00 3694.85 2798.17 3486.65 3394.82 11497.17 3986.26 12492.83 5797.87 1085.57 5199.56 794.37 1498.92 1398.34 37
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3393.97 3794.90 2498.41 2286.82 2396.54 3097.19 3688.24 7993.26 4796.83 4785.48 5299.59 491.43 6798.40 5298.30 40
HPM-MVScopyleft94.02 3793.88 3894.43 5098.39 2385.78 6497.25 597.07 4586.90 11292.62 6696.80 5184.85 6299.17 4992.43 3698.65 4298.33 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Regformer-493.91 4093.81 3994.19 5795.36 12385.47 6994.68 12296.41 9591.60 1093.75 3896.71 5285.95 4799.10 5693.21 2896.65 9098.01 68
DeepC-MVS_fast89.43 294.04 3693.79 4094.80 3397.48 5886.78 2695.65 6896.89 5889.40 4792.81 5896.97 4285.37 5499.24 4390.87 7798.69 3398.38 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS93.99 3893.78 4194.63 4198.50 1585.90 6296.87 2196.91 5688.70 6691.83 8497.17 3383.96 7199.55 1291.44 6698.64 4398.43 33
APD-MVS_3200maxsize93.78 4393.77 4293.80 6797.92 4384.19 9396.30 3596.87 6186.96 10893.92 3597.47 1683.88 7298.96 7992.71 3497.87 6898.26 48
PGM-MVS93.96 3993.72 4394.68 3898.43 1986.22 4995.30 8097.78 187.45 10093.26 4797.33 2184.62 6499.51 2190.75 7998.57 4698.32 39
PHI-MVS93.89 4293.65 4494.62 4296.84 7586.43 4096.69 2797.49 585.15 15193.56 4596.28 7285.60 5099.31 3892.45 3598.79 1998.12 58
Regformer-393.68 4593.64 4593.81 6695.36 12384.61 7894.68 12295.83 13791.27 1293.60 4296.71 5285.75 4998.86 8692.87 3196.65 9097.96 70
ETH3D cwj APD-0.1693.91 4093.53 4695.06 1396.76 7787.78 794.92 10797.21 3584.33 16593.89 3697.09 3687.20 3299.29 4191.90 5798.44 5198.12 58
test_prior393.60 4893.53 4693.82 6497.29 6584.49 8294.12 16096.88 5987.67 9692.63 6496.39 6886.62 3898.87 8391.50 6498.67 3798.11 60
TSAR-MVS + GP.93.66 4693.41 4894.41 5296.59 8286.78 2694.40 14293.93 23389.77 3894.21 2995.59 9887.35 2998.61 10292.72 3396.15 9997.83 78
MVS_111021_HR93.45 5093.31 4993.84 6396.99 7284.84 7493.24 20697.24 3188.76 6491.60 8995.85 9086.07 4698.66 9791.91 5498.16 5998.03 66
DELS-MVS93.43 5293.25 5093.97 5995.42 12285.04 7393.06 21397.13 4090.74 2091.84 8295.09 11186.32 4299.21 4691.22 6998.45 5097.65 82
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3 D test640093.64 4793.22 5194.92 2097.79 4886.84 2295.31 7797.26 3082.67 20093.81 3796.29 7187.29 3199.27 4289.87 8598.67 3798.65 15
HPM-MVS_fast93.40 5393.22 5193.94 6198.36 2584.83 7597.15 896.80 6885.77 13392.47 7097.13 3582.38 8299.07 5790.51 8198.40 5297.92 74
CANet93.54 4993.20 5394.55 4495.65 11585.73 6694.94 10596.69 7991.89 590.69 10195.88 8981.99 9399.54 1693.14 2997.95 6698.39 35
train_agg93.44 5193.08 5494.52 4597.53 5486.49 3894.07 16796.78 6981.86 21992.77 5996.20 7687.63 2799.12 5492.14 4798.69 3397.94 71
abl_693.18 5993.05 5593.57 7197.52 5684.27 9295.53 7296.67 8087.85 9093.20 5097.22 2880.35 10399.18 4891.91 5497.21 7997.26 97
CSCG93.23 5893.05 5593.76 6898.04 4084.07 9596.22 3897.37 1984.15 16790.05 10895.66 9687.77 2399.15 5289.91 8498.27 5798.07 62
DeepC-MVS88.79 393.31 5492.99 5794.26 5596.07 10185.83 6394.89 10996.99 4789.02 5989.56 11197.37 2082.51 8199.38 2992.20 4498.30 5697.57 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior193.29 5592.97 5894.26 5597.38 6085.92 5993.92 17796.72 7581.96 21392.16 7496.23 7487.85 2298.97 7691.95 5398.55 4997.90 75
EI-MVSNet-Vis-set93.01 6192.92 5993.29 7295.01 13583.51 11094.48 13495.77 14190.87 1592.52 6896.67 5684.50 6599.00 7291.99 5094.44 12797.36 93
ACMMPcopyleft93.24 5792.88 6094.30 5498.09 3885.33 7196.86 2297.45 1188.33 7690.15 10797.03 4181.44 9699.51 2190.85 7895.74 10298.04 65
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs93.27 5692.75 6194.85 2795.70 11487.66 1196.33 3496.41 9590.00 3494.09 3194.60 12982.33 8498.62 10192.40 3892.86 15398.27 46
ETV-MVS92.74 6492.66 6292.97 8695.20 13184.04 9795.07 9796.51 9090.73 2192.96 5491.19 24384.06 6998.34 12191.72 6096.54 9396.54 125
EI-MVSNet-UG-set92.74 6492.62 6393.12 7894.86 14683.20 11694.40 14295.74 14490.71 2292.05 7796.60 6084.00 7098.99 7391.55 6293.63 13597.17 102
CS-MVS92.60 6692.56 6492.73 9695.55 11882.35 14396.14 4296.85 6288.71 6591.44 9291.51 23684.13 6898.48 10891.27 6897.47 7697.34 94
UA-Net92.83 6292.54 6593.68 6996.10 9984.71 7795.66 6696.39 9791.92 493.22 4996.49 6583.16 7598.87 8384.47 14595.47 10797.45 92
alignmvs93.08 6092.50 6694.81 3295.62 11787.61 1295.99 5096.07 11889.77 3894.12 3094.87 11780.56 10298.66 9792.42 3793.10 14898.15 55
casdiffmvs92.51 6892.43 6792.74 9594.41 16581.98 14994.54 13296.23 10789.57 4291.96 7996.17 8082.58 8098.01 14690.95 7595.45 10998.23 50
CDPH-MVS92.83 6292.30 6894.44 4897.79 4886.11 5194.06 16996.66 8180.09 24592.77 5996.63 5886.62 3899.04 6287.40 11298.66 4098.17 53
baseline92.39 7192.29 6992.69 10094.46 16281.77 15394.14 15996.27 10289.22 5191.88 8096.00 8482.35 8397.99 14891.05 7195.27 11498.30 40
MVS_111021_LR92.47 6992.29 6992.98 8595.99 10484.43 8993.08 21196.09 11688.20 8291.12 9895.72 9581.33 9897.76 15991.74 5997.37 7896.75 118
EIA-MVS91.95 7491.94 7191.98 12895.16 13280.01 20095.36 7496.73 7388.44 7389.34 11592.16 20983.82 7398.45 11489.35 8997.06 8297.48 90
VNet92.24 7291.91 7293.24 7496.59 8283.43 11194.84 11396.44 9289.19 5394.08 3295.90 8877.85 13798.17 13188.90 9493.38 14298.13 57
CPTT-MVS91.99 7391.80 7392.55 10598.24 3181.98 14996.76 2596.49 9181.89 21890.24 10596.44 6778.59 12798.61 10289.68 8697.85 6997.06 106
DPM-MVS92.58 6791.74 7495.08 1296.19 9489.31 392.66 22296.56 8983.44 18291.68 8895.04 11286.60 4198.99 7385.60 13297.92 6796.93 113
MG-MVS91.77 7791.70 7592.00 12797.08 7180.03 19993.60 18995.18 18487.85 9090.89 10096.47 6682.06 9198.36 11885.07 13697.04 8397.62 83
EPP-MVSNet91.70 8091.56 7692.13 12495.88 10780.50 18797.33 395.25 18086.15 12689.76 11095.60 9783.42 7498.32 12487.37 11493.25 14597.56 88
3Dnovator+87.14 492.42 7091.37 7795.55 495.63 11688.73 497.07 1396.77 7190.84 1684.02 22796.62 5975.95 15299.34 3387.77 10797.68 7198.59 18
MVSFormer91.68 8191.30 7892.80 9293.86 18583.88 10095.96 5395.90 13184.66 16191.76 8594.91 11577.92 13497.30 19689.64 8797.11 8097.24 98
DP-MVS Recon91.95 7491.28 7993.96 6098.33 2785.92 5994.66 12596.66 8182.69 19990.03 10995.82 9182.30 8599.03 6384.57 14496.48 9696.91 114
diffmvs91.37 8591.23 8091.77 14193.09 20880.27 18992.36 23295.52 16187.03 10791.40 9494.93 11480.08 10797.44 18192.13 4894.56 12397.61 84
Vis-MVSNetpermissive91.75 7891.23 8093.29 7295.32 12683.78 10296.14 4295.98 12389.89 3590.45 10396.58 6175.09 16298.31 12584.75 14296.90 8497.78 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+91.59 8291.11 8293.01 8494.35 16983.39 11394.60 12795.10 18887.10 10590.57 10293.10 18181.43 9798.07 14289.29 9094.48 12597.59 86
MVS_Test91.31 8691.11 8291.93 13294.37 16680.14 19293.46 19495.80 13986.46 12091.35 9593.77 16382.21 8798.09 14087.57 11094.95 11697.55 89
IS-MVSNet91.43 8391.09 8492.46 10995.87 10981.38 16496.95 1493.69 23989.72 4089.50 11395.98 8578.57 12897.77 15883.02 16296.50 9598.22 51
EPNet91.79 7691.02 8594.10 5890.10 30085.25 7296.03 4992.05 26792.83 187.39 14795.78 9279.39 11899.01 6988.13 10497.48 7598.05 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ91.18 8990.92 8691.96 13095.26 12982.60 13892.09 24295.70 14686.27 12391.84 8292.46 19979.70 11398.99 7389.08 9295.86 10194.29 207
PVSNet_Blended_VisFu91.38 8490.91 8792.80 9296.39 8983.17 11794.87 11196.66 8183.29 18689.27 11694.46 13380.29 10599.17 4987.57 11095.37 11096.05 143
xiu_mvs_v2_base91.13 9090.89 8891.86 13594.97 13882.42 13992.24 23695.64 15386.11 12991.74 8793.14 17979.67 11698.89 8289.06 9395.46 10894.28 208
3Dnovator86.66 591.73 7990.82 8994.44 4894.59 15686.37 4297.18 797.02 4689.20 5284.31 22296.66 5773.74 18599.17 4986.74 12297.96 6597.79 80
PAPM_NR91.22 8890.78 9092.52 10797.60 5381.46 16194.37 14996.24 10686.39 12287.41 14494.80 12282.06 9198.48 10882.80 16895.37 11097.61 84
OMC-MVS91.23 8790.62 9193.08 8096.27 9284.07 9593.52 19195.93 12786.95 10989.51 11296.13 8278.50 12998.35 12085.84 13092.90 15296.83 116
nrg03091.08 9190.39 9293.17 7793.07 20986.91 2096.41 3296.26 10388.30 7788.37 12894.85 12082.19 8897.64 16791.09 7082.95 25994.96 176
FIs90.51 10390.35 9390.99 16993.99 18180.98 17295.73 6197.54 389.15 5486.72 15894.68 12581.83 9597.24 20485.18 13588.31 21194.76 186
PVSNet_Blended90.73 9590.32 9491.98 12896.12 9681.25 16692.55 22796.83 6482.04 21189.10 11892.56 19781.04 10098.85 8986.72 12595.91 10095.84 150
lupinMVS90.92 9290.21 9593.03 8393.86 18583.88 10092.81 21993.86 23479.84 24891.76 8594.29 13877.92 13498.04 14490.48 8297.11 8097.17 102
HQP_MVS90.60 10290.19 9691.82 13894.70 15282.73 13295.85 5796.22 10890.81 1786.91 15494.86 11874.23 17398.12 13288.15 10289.99 18094.63 188
FC-MVSNet-test90.27 10690.18 9790.53 18093.71 19179.85 20595.77 6097.59 289.31 4986.27 16794.67 12681.93 9497.01 22284.26 14788.09 21594.71 187
jason90.80 9390.10 9892.90 8993.04 21183.53 10993.08 21194.15 22780.22 24291.41 9394.91 11576.87 14097.93 15390.28 8396.90 8497.24 98
jason: jason.
API-MVS90.66 9890.07 9992.45 11096.36 9084.57 8096.06 4895.22 18382.39 20289.13 11794.27 14180.32 10498.46 11180.16 21496.71 8894.33 206
xiu_mvs_v1_base_debu90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base_debi90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
test_yl90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
DCV-MVSNet90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
VDD-MVS90.74 9489.92 10593.20 7596.27 9283.02 12295.73 6193.86 23488.42 7592.53 6796.84 4662.09 28998.64 9990.95 7592.62 15697.93 73
PVSNet_BlendedMVS89.98 11189.70 10690.82 17396.12 9681.25 16693.92 17796.83 6483.49 18189.10 11892.26 20781.04 10098.85 8986.72 12587.86 21992.35 288
PS-MVSNAJss89.97 11289.62 10791.02 16691.90 23980.85 17795.26 8595.98 12386.26 12486.21 16894.29 13879.70 11397.65 16588.87 9588.10 21394.57 194
OPM-MVS90.12 10889.56 10891.82 13893.14 20683.90 9994.16 15895.74 14488.96 6087.86 13595.43 10172.48 20197.91 15488.10 10590.18 17993.65 243
112190.42 10489.49 10993.20 7597.27 6784.46 8592.63 22395.51 16271.01 32491.20 9796.21 7582.92 7799.05 5980.56 20798.07 6296.10 139
XVG-OURS-SEG-HR89.95 11389.45 11091.47 14994.00 18081.21 16991.87 24596.06 12085.78 13288.55 12495.73 9474.67 16997.27 20088.71 9789.64 18995.91 146
Vis-MVSNet (Re-imp)89.59 12189.44 11190.03 20595.74 11175.85 27895.61 6990.80 30287.66 9887.83 13795.40 10276.79 14296.46 25478.37 23196.73 8797.80 79
CANet_DTU90.26 10789.41 11292.81 9193.46 19983.01 12393.48 19294.47 21589.43 4687.76 14094.23 14270.54 22399.03 6384.97 13796.39 9796.38 127
MAR-MVS90.30 10589.37 11393.07 8296.61 8184.48 8495.68 6495.67 14882.36 20487.85 13692.85 18776.63 14698.80 9380.01 21596.68 8995.91 146
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous89.37 13289.32 11489.51 22793.47 19874.22 28791.65 25394.83 20582.91 19585.45 18793.79 16181.23 9996.36 26086.47 12794.09 12997.94 71
UniMVSNet_NR-MVSNet89.92 11589.29 11591.81 14093.39 20083.72 10394.43 14097.12 4189.80 3786.46 16193.32 17083.16 7597.23 20684.92 13881.02 28794.49 201
HQP-MVS89.80 11789.28 11691.34 15394.17 17181.56 15594.39 14496.04 12188.81 6185.43 19093.97 15173.83 18397.96 15087.11 11989.77 18794.50 199
PAPR90.02 11089.27 11792.29 12095.78 11080.95 17492.68 22196.22 10881.91 21686.66 15993.75 16582.23 8698.44 11579.40 22594.79 11797.48 90
mvs-test189.45 12689.14 11890.38 19093.33 20177.63 25694.95 10494.36 21887.70 9487.10 15192.81 19173.45 18898.03 14585.57 13393.04 14995.48 159
LFMVS90.08 10989.13 11992.95 8796.71 7882.32 14496.08 4689.91 31786.79 11392.15 7696.81 4962.60 28698.34 12187.18 11693.90 13198.19 52
UniMVSNet (Re)89.80 11789.07 12092.01 12593.60 19584.52 8194.78 11797.47 889.26 5086.44 16492.32 20482.10 8997.39 19384.81 14180.84 29194.12 213
AdaColmapbinary89.89 11689.07 12092.37 11597.41 5983.03 12194.42 14195.92 12882.81 19786.34 16694.65 12773.89 18199.02 6780.69 20495.51 10595.05 171
VPA-MVSNet89.62 11988.96 12291.60 14693.86 18582.89 12795.46 7397.33 2387.91 8788.43 12793.31 17174.17 17697.40 19087.32 11582.86 26494.52 197
UGNet89.95 11388.95 12392.95 8794.51 15983.31 11495.70 6395.23 18189.37 4887.58 14293.94 15264.00 28198.78 9483.92 15196.31 9896.74 119
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS89.60 12088.92 12491.67 14495.47 12181.15 17092.38 23194.78 20983.11 18989.06 12094.32 13678.67 12696.61 24181.57 19190.89 17397.24 98
LPG-MVS_test89.45 12688.90 12591.12 15894.47 16081.49 15995.30 8096.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
CLD-MVS89.47 12588.90 12591.18 15794.22 17082.07 14792.13 24096.09 11687.90 8885.37 19692.45 20074.38 17197.56 17187.15 11790.43 17593.93 223
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EI-MVSNet89.10 13688.86 12789.80 21691.84 24178.30 23793.70 18695.01 19185.73 13487.15 14895.28 10379.87 11097.21 20883.81 15387.36 22493.88 227
XVG-OURS89.40 13188.70 12891.52 14794.06 17481.46 16191.27 25996.07 11886.14 12788.89 12295.77 9368.73 24797.26 20287.39 11389.96 18295.83 151
Fast-Effi-MVS+89.41 12988.64 12991.71 14394.74 14880.81 17893.54 19095.10 18883.11 18986.82 15790.67 26079.74 11297.75 16280.51 20993.55 13696.57 123
test_djsdf89.03 13988.64 12990.21 19590.74 28679.28 21995.96 5395.90 13184.66 16185.33 19892.94 18574.02 17997.30 19689.64 8788.53 20494.05 219
CDS-MVSNet89.45 12688.51 13192.29 12093.62 19483.61 10893.01 21494.68 21281.95 21487.82 13893.24 17578.69 12596.99 22380.34 21193.23 14696.28 130
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DU-MVS89.34 13388.50 13291.85 13793.04 21183.72 10394.47 13796.59 8689.50 4386.46 16193.29 17377.25 13897.23 20684.92 13881.02 28794.59 192
114514_t89.51 12388.50 13292.54 10698.11 3681.99 14895.16 9396.36 9970.19 32685.81 17395.25 10576.70 14498.63 10082.07 17996.86 8697.00 110
VDDNet89.56 12288.49 13492.76 9495.07 13482.09 14696.30 3593.19 24581.05 23791.88 8096.86 4561.16 29998.33 12388.43 10092.49 15997.84 77
ACMM84.12 989.14 13588.48 13591.12 15894.65 15581.22 16895.31 7796.12 11585.31 14785.92 17294.34 13470.19 22798.06 14385.65 13188.86 20194.08 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu88.65 14988.35 13689.54 22493.33 20176.39 27394.47 13794.36 21887.70 9485.43 19089.56 28273.45 18897.26 20285.57 13391.28 16694.97 173
ab-mvs89.41 12988.35 13692.60 10295.15 13382.65 13692.20 23895.60 15583.97 17188.55 12493.70 16674.16 17798.21 13082.46 17389.37 19296.94 112
ACMP84.23 889.01 14188.35 13690.99 16994.73 14981.27 16595.07 9795.89 13386.48 11983.67 23694.30 13769.33 23697.99 14887.10 12188.55 20393.72 241
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re88.30 15888.32 13988.27 25694.71 15172.41 30693.15 20790.98 29687.77 9279.25 29391.96 22178.35 13195.75 28583.04 16195.62 10396.65 121
MVSTER88.84 14488.29 14090.51 18392.95 21680.44 18893.73 18395.01 19184.66 16187.15 14893.12 18072.79 19797.21 20887.86 10687.36 22493.87 228
TAMVS89.21 13488.29 14091.96 13093.71 19182.62 13793.30 20094.19 22582.22 20687.78 13993.94 15278.83 12296.95 22577.70 23992.98 15196.32 128
sss88.93 14288.26 14290.94 17294.05 17580.78 17991.71 25095.38 17481.55 22788.63 12393.91 15675.04 16395.47 29782.47 17291.61 16496.57 123
QAPM89.51 12388.15 14393.59 7094.92 14284.58 7996.82 2496.70 7778.43 26583.41 24396.19 7973.18 19399.30 3977.11 24696.54 9396.89 115
BH-untuned88.60 15188.13 14490.01 20795.24 13078.50 23293.29 20194.15 22784.75 15984.46 21293.40 16775.76 15397.40 19077.59 24094.52 12494.12 213
PLCcopyleft84.53 789.06 13888.03 14592.15 12397.27 6782.69 13594.29 15295.44 17079.71 25084.01 22894.18 14376.68 14598.75 9577.28 24393.41 14195.02 172
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 13787.98 14692.34 11696.87 7484.78 7694.08 16693.24 24481.41 22984.46 21295.13 11075.57 15896.62 23877.21 24493.84 13395.61 157
TranMVSNet+NR-MVSNet88.84 14487.95 14791.49 14892.68 22183.01 12394.92 10796.31 10089.88 3685.53 18193.85 15976.63 14696.96 22481.91 18379.87 30494.50 199
HY-MVS83.01 1289.03 13987.94 14892.29 12094.86 14682.77 12892.08 24394.49 21481.52 22886.93 15392.79 19378.32 13298.23 12779.93 21690.55 17495.88 148
IterMVS-LS88.36 15687.91 14989.70 22093.80 18878.29 23893.73 18395.08 19085.73 13484.75 20591.90 22379.88 10996.92 22783.83 15282.51 26593.89 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051788.61 15087.78 15091.11 16194.96 13977.81 25095.35 7589.69 32185.09 15388.05 13394.59 13066.93 25898.48 10883.27 15992.13 16297.03 108
CHOSEN 1792x268888.84 14487.69 15192.30 11996.14 9581.42 16390.01 27995.86 13574.52 30087.41 14493.94 15275.46 15998.36 11880.36 21095.53 10497.12 105
RRT_MVS88.86 14387.68 15292.39 11492.02 23686.09 5294.38 14894.94 19485.45 14387.14 15093.84 16065.88 27397.11 21488.73 9686.77 23193.98 222
WR-MVS88.38 15487.67 15390.52 18293.30 20380.18 19093.26 20395.96 12588.57 7185.47 18692.81 19176.12 14896.91 22881.24 19482.29 26794.47 204
thisisatest053088.67 14887.61 15491.86 13594.87 14580.07 19594.63 12689.90 31884.00 17088.46 12693.78 16266.88 26098.46 11183.30 15892.65 15597.06 106
jajsoiax88.24 15987.50 15590.48 18590.89 28080.14 19295.31 7795.65 15284.97 15584.24 22494.02 14765.31 27597.42 18388.56 9888.52 20593.89 225
BH-RMVSNet88.37 15587.48 15691.02 16695.28 12779.45 21192.89 21893.07 24785.45 14386.91 15494.84 12170.35 22497.76 15973.97 27294.59 12295.85 149
VPNet88.20 16087.47 15790.39 18893.56 19679.46 21094.04 17095.54 16088.67 6786.96 15294.58 13169.33 23697.15 21084.05 15080.53 29694.56 195
NR-MVSNet88.58 15287.47 15791.93 13293.04 21184.16 9494.77 11896.25 10589.05 5680.04 28693.29 17379.02 12197.05 22081.71 19080.05 30194.59 192
WR-MVS_H87.80 17087.37 15989.10 23593.23 20478.12 24195.61 6997.30 2787.90 8883.72 23492.01 22079.65 11796.01 27376.36 25180.54 29593.16 262
1112_ss88.42 15387.33 16091.72 14294.92 14280.98 17292.97 21694.54 21378.16 27083.82 23293.88 15778.78 12497.91 15479.45 22189.41 19196.26 131
OpenMVScopyleft83.78 1188.74 14787.29 16193.08 8092.70 22085.39 7096.57 2996.43 9478.74 26280.85 27296.07 8369.64 23399.01 6978.01 23796.65 9094.83 183
mvs_tets88.06 16587.28 16290.38 19090.94 27679.88 20395.22 8795.66 15085.10 15284.21 22593.94 15263.53 28397.40 19088.50 9988.40 20993.87 228
baseline188.10 16287.28 16290.57 17794.96 13980.07 19594.27 15391.29 28986.74 11487.41 14494.00 14976.77 14396.20 26580.77 20279.31 30995.44 161
CP-MVSNet87.63 17787.26 16488.74 24593.12 20776.59 27095.29 8296.58 8788.43 7483.49 24292.98 18475.28 16095.83 28178.97 22781.15 28393.79 233
anonymousdsp87.84 16887.09 16590.12 20089.13 31080.54 18594.67 12495.55 15882.05 20983.82 23292.12 21271.47 20997.15 21087.15 11787.80 22092.67 277
v2v48287.84 16887.06 16690.17 19690.99 27279.23 22294.00 17495.13 18584.87 15685.53 18192.07 21874.45 17097.45 17984.71 14381.75 27693.85 231
BH-w/o87.57 18287.05 16789.12 23494.90 14477.90 24692.41 22993.51 24182.89 19683.70 23591.34 23775.75 15497.07 21875.49 25993.49 13892.39 286
TAPA-MVS84.62 688.16 16187.01 16891.62 14596.64 8080.65 18194.39 14496.21 11176.38 28186.19 16995.44 9979.75 11198.08 14162.75 32495.29 11296.13 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS87.32 19186.88 16988.63 24892.99 21576.33 27595.33 7696.61 8588.22 8183.30 24793.07 18273.03 19595.79 28478.36 23281.00 28993.75 239
V4287.68 17286.86 17090.15 19890.58 29180.14 19294.24 15595.28 17983.66 17685.67 17691.33 23874.73 16897.41 18884.43 14681.83 27492.89 272
XXY-MVS87.65 17486.85 17190.03 20592.14 23080.60 18493.76 18295.23 18182.94 19384.60 20794.02 14774.27 17295.49 29681.04 19683.68 25294.01 221
HyFIR lowres test88.09 16386.81 17291.93 13296.00 10380.63 18290.01 27995.79 14073.42 30887.68 14192.10 21573.86 18297.96 15080.75 20391.70 16397.19 101
F-COLMAP87.95 16686.80 17391.40 15196.35 9180.88 17694.73 12095.45 16879.65 25182.04 26094.61 12871.13 21198.50 10776.24 25491.05 17194.80 185
v114487.61 18086.79 17490.06 20491.01 27179.34 21593.95 17695.42 17383.36 18585.66 17791.31 24174.98 16497.42 18383.37 15782.06 27093.42 252
Fast-Effi-MVS+-dtu87.44 18786.72 17589.63 22292.04 23477.68 25594.03 17193.94 23285.81 13182.42 25491.32 24070.33 22597.06 21980.33 21290.23 17894.14 212
thres100view90087.63 17786.71 17690.38 19096.12 9678.55 22995.03 10191.58 28087.15 10388.06 13292.29 20668.91 24498.10 13470.13 29191.10 16794.48 202
v887.50 18686.71 17689.89 21091.37 25879.40 21294.50 13395.38 17484.81 15883.60 23991.33 23876.05 14997.42 18382.84 16680.51 29892.84 274
thres600view787.65 17486.67 17890.59 17696.08 10078.72 22594.88 11091.58 28087.06 10688.08 13192.30 20568.91 24498.10 13470.05 29491.10 16794.96 176
tfpn200view987.58 18186.64 17990.41 18795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.48 202
thres40087.62 17986.64 17990.57 17795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.96 176
Baseline_NR-MVSNet87.07 20286.63 18188.40 25291.44 25277.87 24894.23 15692.57 25784.12 16885.74 17592.08 21677.25 13896.04 27082.29 17679.94 30291.30 305
miper_ehance_all_eth87.22 19786.62 18289.02 23892.13 23177.40 26190.91 26494.81 20781.28 23284.32 22090.08 27179.26 11996.62 23883.81 15382.94 26093.04 267
Anonymous2024052988.09 16386.59 18392.58 10496.53 8581.92 15195.99 5095.84 13674.11 30389.06 12095.21 10761.44 29498.81 9283.67 15687.47 22197.01 109
131487.51 18486.57 18490.34 19392.42 22579.74 20792.63 22395.35 17878.35 26680.14 28391.62 23274.05 17897.15 21081.05 19593.53 13794.12 213
Test_1112_low_res87.65 17486.51 18591.08 16294.94 14179.28 21991.77 24794.30 22176.04 28683.51 24192.37 20277.86 13697.73 16378.69 23089.13 19896.22 132
cl_fuxian87.14 20186.50 18689.04 23792.20 22877.26 26291.22 26194.70 21182.01 21284.34 21990.43 26478.81 12396.61 24183.70 15581.09 28493.25 257
v1087.25 19486.38 18789.85 21191.19 26479.50 20994.48 13495.45 16883.79 17483.62 23891.19 24375.13 16197.42 18381.94 18280.60 29392.63 279
UniMVSNet_ETH3D87.53 18386.37 18891.00 16892.44 22478.96 22494.74 11995.61 15484.07 16985.36 19794.52 13259.78 30897.34 19582.93 16387.88 21896.71 120
RRT_test8_iter0586.90 20586.36 18988.52 25093.00 21473.27 29594.32 15195.96 12585.50 14284.26 22392.86 18660.76 30197.70 16488.32 10182.29 26794.60 191
v14419287.19 19986.35 19089.74 21790.64 28978.24 23993.92 17795.43 17181.93 21585.51 18391.05 25174.21 17597.45 17982.86 16581.56 27893.53 246
v119287.25 19486.33 19190.00 20890.76 28579.04 22393.80 18095.48 16382.57 20185.48 18591.18 24573.38 19297.42 18382.30 17582.06 27093.53 246
v14887.04 20386.32 19289.21 23190.94 27677.26 26293.71 18594.43 21684.84 15784.36 21890.80 25776.04 15097.05 22082.12 17879.60 30693.31 254
LS3D87.89 16786.32 19292.59 10396.07 10182.92 12695.23 8694.92 19975.66 28882.89 25095.98 8572.48 20199.21 4668.43 30195.23 11595.64 156
PEN-MVS86.80 20886.27 19488.40 25292.32 22775.71 28095.18 9196.38 9887.97 8582.82 25193.15 17873.39 19195.92 27676.15 25579.03 31193.59 244
thres20087.21 19886.24 19590.12 20095.36 12378.53 23093.26 20392.10 26586.42 12188.00 13491.11 24969.24 24098.00 14769.58 29591.04 17293.83 232
miper_enhance_ethall86.90 20586.18 19689.06 23691.66 24977.58 25890.22 27594.82 20679.16 25484.48 21189.10 28579.19 12096.66 23684.06 14982.94 26092.94 270
Anonymous20240521187.68 17286.13 19792.31 11896.66 7980.74 18094.87 11191.49 28480.47 24189.46 11495.44 9954.72 32398.23 12782.19 17789.89 18497.97 69
X-MVStestdata88.31 15786.13 19794.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5523.41 34785.02 5999.49 2391.99 5098.56 4798.47 27
FMVSNet387.40 18986.11 19991.30 15493.79 19083.64 10694.20 15794.81 20783.89 17284.37 21591.87 22468.45 25096.56 24678.23 23485.36 23893.70 242
MVS87.44 18786.10 20091.44 15092.61 22283.62 10792.63 22395.66 15067.26 33081.47 26492.15 21077.95 13398.22 12979.71 21895.48 10692.47 283
PCF-MVS84.11 1087.74 17186.08 20192.70 9994.02 17684.43 8989.27 28995.87 13473.62 30784.43 21494.33 13578.48 13098.86 8670.27 28794.45 12694.81 184
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v192192086.97 20486.06 20289.69 22190.53 29478.11 24293.80 18095.43 17181.90 21785.33 19891.05 25172.66 19897.41 18882.05 18081.80 27593.53 246
thisisatest051587.33 19085.99 20391.37 15293.49 19779.55 20890.63 26889.56 32480.17 24387.56 14390.86 25467.07 25798.28 12681.50 19293.02 15096.29 129
cl-mvsnet286.78 20985.98 20489.18 23392.34 22677.62 25790.84 26594.13 22981.33 23183.97 22990.15 26973.96 18096.60 24384.19 14882.94 26093.33 253
GBi-Net87.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
test187.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
EPNet_dtu86.49 22185.94 20788.14 26190.24 29872.82 29994.11 16292.20 26386.66 11879.42 29292.36 20373.52 18695.81 28371.26 28293.66 13495.80 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D87.51 18485.91 20892.32 11793.70 19383.93 9892.33 23390.94 29884.16 16672.09 32592.52 19869.90 22895.85 28089.20 9188.36 21097.17 102
v124086.78 20985.85 20989.56 22390.45 29577.79 25193.61 18895.37 17681.65 22385.43 19091.15 24771.50 20897.43 18281.47 19382.05 27293.47 250
FMVSNet287.19 19985.82 21091.30 15494.01 17783.67 10594.79 11694.94 19483.57 17783.88 23092.05 21966.59 26596.51 24977.56 24185.01 24193.73 240
cl-mvsnet_86.52 21885.78 21188.75 24392.03 23576.46 27190.74 26694.30 22181.83 22183.34 24590.78 25875.74 15696.57 24481.74 18881.54 27993.22 259
cl-mvsnet186.53 21785.78 21188.75 24392.02 23676.45 27290.74 26694.30 22181.83 22183.34 24590.82 25675.75 15496.57 24481.73 18981.52 28093.24 258
eth_miper_zixun_eth86.50 21985.77 21388.68 24691.94 23875.81 27990.47 27094.89 20082.05 20984.05 22690.46 26375.96 15196.77 23282.76 16979.36 30893.46 251
v7n86.81 20785.76 21489.95 20990.72 28779.25 22195.07 9795.92 12884.45 16482.29 25590.86 25472.60 20097.53 17379.42 22480.52 29793.08 266
TR-MVS86.78 20985.76 21489.82 21394.37 16678.41 23492.47 22892.83 25081.11 23686.36 16592.40 20168.73 24797.48 17673.75 27589.85 18693.57 245
pm-mvs186.61 21485.54 21689.82 21391.44 25280.18 19095.28 8494.85 20383.84 17381.66 26392.62 19672.45 20396.48 25179.67 21978.06 31292.82 275
PatchMatch-RL86.77 21285.54 21690.47 18695.88 10782.71 13490.54 26992.31 26079.82 24984.32 22091.57 23568.77 24696.39 25773.16 27793.48 14092.32 289
DTE-MVSNet86.11 22585.48 21887.98 26491.65 25074.92 28394.93 10695.75 14387.36 10182.26 25693.04 18372.85 19695.82 28274.04 27177.46 31693.20 260
test-LLR85.87 22985.41 21987.25 28090.95 27471.67 30989.55 28389.88 31983.41 18384.54 20987.95 30367.25 25495.11 30281.82 18593.37 14394.97 173
baseline286.50 21985.39 22089.84 21291.12 26876.70 26891.88 24488.58 32682.35 20579.95 28790.95 25373.42 19097.63 16880.27 21389.95 18395.19 168
PAPM86.68 21385.39 22090.53 18093.05 21079.33 21889.79 28294.77 21078.82 25981.95 26193.24 17576.81 14197.30 19666.94 30793.16 14794.95 179
DP-MVS87.25 19485.36 22292.90 8997.65 5283.24 11594.81 11592.00 26974.99 29581.92 26295.00 11372.66 19899.05 5966.92 30992.33 16096.40 126
GA-MVS86.61 21485.27 22390.66 17591.33 26178.71 22690.40 27193.81 23785.34 14685.12 20089.57 28161.25 29697.11 21480.99 19989.59 19096.15 133
SCA86.32 22385.18 22489.73 21992.15 22976.60 26991.12 26291.69 27883.53 18085.50 18488.81 28966.79 26196.48 25176.65 24990.35 17796.12 136
Anonymous2023121186.59 21685.13 22590.98 17196.52 8681.50 15796.14 4296.16 11273.78 30583.65 23792.15 21063.26 28497.37 19482.82 16781.74 27794.06 218
D2MVS85.90 22885.09 22688.35 25490.79 28377.42 26091.83 24695.70 14680.77 23980.08 28590.02 27266.74 26396.37 25881.88 18487.97 21791.26 306
tpmrst85.35 23884.99 22786.43 29490.88 28167.88 32988.71 29791.43 28680.13 24486.08 17188.80 29173.05 19496.02 27282.48 17183.40 25895.40 163
cascas86.43 22284.98 22890.80 17492.10 23380.92 17590.24 27395.91 13073.10 31183.57 24088.39 29665.15 27697.46 17884.90 14091.43 16594.03 220
PMMVS85.71 23384.96 22987.95 26588.90 31377.09 26488.68 29890.06 31372.32 31786.47 16090.76 25972.15 20494.40 30881.78 18793.49 13892.36 287
CostFormer85.77 23284.94 23088.26 25791.16 26772.58 30589.47 28791.04 29576.26 28486.45 16389.97 27470.74 21796.86 23182.35 17487.07 22995.34 166
LTVRE_ROB82.13 1386.26 22484.90 23190.34 19394.44 16481.50 15792.31 23594.89 20083.03 19179.63 29092.67 19469.69 23297.79 15771.20 28386.26 23291.72 297
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo85.97 22784.86 23289.32 22990.92 27882.19 14592.11 24194.19 22578.76 26178.77 29591.63 23168.38 25196.56 24675.01 26693.95 13089.20 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE86.00 22684.84 23389.45 22891.20 26378.00 24391.70 25195.55 15885.05 15482.97 24992.25 20854.49 32497.48 17682.93 16387.45 22392.89 272
CVMVSNet84.69 25284.79 23484.37 30991.84 24164.92 33693.70 18691.47 28566.19 33286.16 17095.28 10367.18 25693.33 32080.89 20190.42 17694.88 181
PatchmatchNetpermissive85.85 23084.70 23589.29 23091.76 24475.54 28188.49 30091.30 28881.63 22585.05 20188.70 29371.71 20596.24 26474.61 26989.05 19996.08 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet78.82 1885.55 23484.65 23688.23 25994.72 15071.93 30787.12 31392.75 25378.80 26084.95 20390.53 26264.43 28096.71 23574.74 26793.86 13296.06 142
OurMVSNet-221017-085.35 23884.64 23787.49 27490.77 28472.59 30494.01 17394.40 21784.72 16079.62 29193.17 17761.91 29196.72 23381.99 18181.16 28193.16 262
miper_lstm_enhance85.27 24184.59 23887.31 27791.28 26274.63 28487.69 30994.09 23181.20 23581.36 26789.85 27774.97 16594.30 31081.03 19879.84 30593.01 268
IterMVS-SCA-FT85.45 23584.53 23988.18 26091.71 24676.87 26790.19 27692.65 25685.40 14581.44 26590.54 26166.79 26195.00 30581.04 19681.05 28592.66 278
RPSCF85.07 24484.27 24087.48 27592.91 21770.62 31991.69 25292.46 25876.20 28582.67 25395.22 10663.94 28297.29 19977.51 24285.80 23594.53 196
MS-PatchMatch85.05 24584.16 24187.73 26891.42 25678.51 23191.25 26093.53 24077.50 27280.15 28291.58 23361.99 29095.51 29375.69 25894.35 12889.16 324
FMVSNet185.85 23084.11 24291.08 16292.81 21883.10 11895.14 9494.94 19481.64 22482.68 25291.64 22859.01 31196.34 26175.37 26183.78 24993.79 233
tpm84.73 25084.02 24386.87 29190.33 29668.90 32689.06 29389.94 31680.85 23885.75 17489.86 27668.54 24995.97 27477.76 23884.05 24895.75 154
CHOSEN 280x42085.15 24383.99 24488.65 24792.47 22378.40 23579.68 33892.76 25274.90 29781.41 26689.59 28069.85 23195.51 29379.92 21795.29 11292.03 293
IterMVS84.88 24883.98 24587.60 27091.44 25276.03 27790.18 27792.41 25983.24 18881.06 27190.42 26566.60 26494.28 31179.46 22080.98 29092.48 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs485.43 23683.86 24690.16 19790.02 30382.97 12590.27 27292.67 25575.93 28780.73 27391.74 22771.05 21295.73 28678.85 22883.46 25691.78 296
CR-MVSNet85.35 23883.76 24790.12 20090.58 29179.34 21585.24 32391.96 27378.27 26785.55 17987.87 30671.03 21395.61 28773.96 27389.36 19395.40 163
DWT-MVSNet_test84.95 24783.68 24888.77 24191.43 25573.75 29191.74 24990.98 29680.66 24083.84 23187.36 31062.44 28797.11 21478.84 22985.81 23495.46 160
ACMH80.38 1785.36 23783.68 24890.39 18894.45 16380.63 18294.73 12094.85 20382.09 20877.24 30392.65 19560.01 30697.58 16972.25 28084.87 24292.96 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test-mter84.54 25383.64 25087.25 28090.95 27471.67 30989.55 28389.88 31979.17 25384.54 20987.95 30355.56 31995.11 30281.82 18593.37 14394.97 173
MDTV_nov1_ep1383.56 25191.69 24869.93 32387.75 30891.54 28278.60 26384.86 20488.90 28869.54 23496.03 27170.25 28888.93 200
ACMH+81.04 1485.05 24583.46 25289.82 21394.66 15479.37 21394.44 13994.12 23082.19 20778.04 29892.82 19058.23 31397.54 17273.77 27482.90 26392.54 280
IB-MVS80.51 1585.24 24283.26 25391.19 15692.13 23179.86 20491.75 24891.29 28983.28 18780.66 27588.49 29561.28 29598.46 11180.99 19979.46 30795.25 167
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal84.72 25183.23 25489.20 23292.79 21980.05 19794.48 13495.81 13882.38 20381.08 27091.21 24269.01 24396.95 22561.69 32680.59 29490.58 317
MSDG84.86 24983.09 25590.14 19993.80 18880.05 19789.18 29293.09 24678.89 25778.19 29691.91 22265.86 27497.27 20068.47 30088.45 20793.11 264
TransMVSNet (Re)84.43 25483.06 25688.54 24991.72 24578.44 23395.18 9192.82 25182.73 19879.67 28992.12 21273.49 18795.96 27571.10 28668.73 33291.21 308
tpm284.08 25682.94 25787.48 27591.39 25771.27 31189.23 29190.37 30771.95 31984.64 20689.33 28367.30 25396.55 24875.17 26387.09 22894.63 188
SixPastTwentyTwo83.91 25882.90 25886.92 28890.99 27270.67 31893.48 19291.99 27085.54 14077.62 30292.11 21460.59 30296.87 23076.05 25677.75 31393.20 260
TESTMET0.1,183.74 26082.85 25986.42 29589.96 30471.21 31389.55 28387.88 32877.41 27383.37 24487.31 31156.71 31693.65 31780.62 20692.85 15494.40 205
pmmvs584.21 25582.84 26088.34 25588.95 31276.94 26692.41 22991.91 27575.63 28980.28 28091.18 24564.59 27995.57 28977.09 24783.47 25592.53 281
EPMVS83.90 25982.70 26187.51 27290.23 29972.67 30188.62 29981.96 34181.37 23085.01 20288.34 29766.31 26894.45 30775.30 26287.12 22795.43 162
tpmvs83.35 26582.07 26287.20 28491.07 27071.00 31688.31 30391.70 27778.91 25680.49 27887.18 31369.30 23997.08 21768.12 30583.56 25493.51 249
COLMAP_ROBcopyleft80.39 1683.96 25782.04 26389.74 21795.28 12779.75 20694.25 15492.28 26175.17 29378.02 29993.77 16358.60 31297.84 15665.06 31785.92 23391.63 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030483.46 26181.92 26488.10 26290.63 29077.49 25993.26 20393.75 23880.04 24680.44 27987.24 31247.94 33695.55 29075.79 25788.16 21291.26 306
test0.0.03 182.41 27181.69 26584.59 30788.23 32072.89 29890.24 27387.83 32983.41 18379.86 28889.78 27867.25 25488.99 33765.18 31583.42 25791.90 295
pmmvs683.42 26281.60 26688.87 24088.01 32377.87 24894.96 10394.24 22474.67 29978.80 29491.09 25060.17 30596.49 25077.06 24875.40 32092.23 291
AllTest83.42 26281.39 26789.52 22595.01 13577.79 25193.12 20890.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
PatchT82.68 26981.27 26886.89 29090.09 30170.94 31784.06 32790.15 31074.91 29685.63 17883.57 32569.37 23594.87 30665.19 31488.50 20694.84 182
USDC82.76 26781.26 26987.26 27991.17 26574.55 28589.27 28993.39 24378.26 26875.30 31292.08 21654.43 32596.63 23771.64 28185.79 23690.61 314
testing_283.40 26481.02 27090.56 17985.06 33280.51 18691.37 25795.57 15682.92 19467.06 33385.54 32049.47 33397.24 20486.74 12285.44 23793.93 223
EU-MVSNet81.32 28480.95 27182.42 31688.50 31663.67 33793.32 19691.33 28764.02 33480.57 27792.83 18961.21 29892.27 32776.34 25280.38 29991.32 304
Patchmtry82.71 26880.93 27288.06 26390.05 30276.37 27484.74 32591.96 27372.28 31881.32 26887.87 30671.03 21395.50 29568.97 29780.15 30092.32 289
RPMNet83.18 26680.87 27390.12 20090.58 29179.34 21585.24 32390.78 30371.44 32185.55 17982.97 32870.87 21595.61 28761.01 32889.36 19395.40 163
MIMVSNet82.59 27080.53 27488.76 24291.51 25178.32 23686.57 31690.13 31179.32 25280.70 27488.69 29452.98 32893.07 32466.03 31288.86 20194.90 180
our_test_381.93 27480.46 27586.33 29688.46 31773.48 29388.46 30191.11 29176.46 27976.69 30588.25 29966.89 25994.36 30968.75 29879.08 31091.14 310
EG-PatchMatch MVS82.37 27280.34 27688.46 25190.27 29779.35 21492.80 22094.33 22077.14 27773.26 32290.18 26847.47 33896.72 23370.25 28887.32 22689.30 321
tpm cat181.96 27380.27 27787.01 28691.09 26971.02 31587.38 31291.53 28366.25 33180.17 28186.35 31668.22 25296.15 26869.16 29682.29 26793.86 230
dp81.47 28280.23 27885.17 30489.92 30565.49 33586.74 31490.10 31276.30 28381.10 26987.12 31462.81 28595.92 27668.13 30479.88 30394.09 216
testgi80.94 28980.20 27983.18 31387.96 32466.29 33291.28 25890.70 30583.70 17578.12 29792.84 18851.37 33090.82 33463.34 32182.46 26692.43 284
K. test v381.59 27980.15 28085.91 29989.89 30669.42 32592.57 22687.71 33085.56 13973.44 32189.71 27955.58 31895.52 29277.17 24569.76 32892.78 276
ppachtmachnet_test81.84 27580.07 28187.15 28588.46 31774.43 28689.04 29492.16 26475.33 29177.75 30088.99 28666.20 26995.37 29865.12 31677.60 31491.65 298
Patchmatch-RL test81.67 27779.96 28286.81 29285.42 33071.23 31282.17 33487.50 33278.47 26477.19 30482.50 32970.81 21693.48 31882.66 17072.89 32495.71 155
ADS-MVSNet81.56 28079.78 28386.90 28991.35 25971.82 30883.33 33089.16 32572.90 31382.24 25785.77 31864.98 27793.76 31564.57 31883.74 25095.12 169
Anonymous2023120681.03 28779.77 28484.82 30687.85 32570.26 32191.42 25692.08 26673.67 30677.75 30089.25 28462.43 28893.08 32361.50 32782.00 27391.12 311
ADS-MVSNet281.66 27879.71 28587.50 27391.35 25974.19 28883.33 33088.48 32772.90 31382.24 25785.77 31864.98 27793.20 32264.57 31883.74 25095.12 169
FMVSNet581.52 28179.60 28687.27 27891.17 26577.95 24491.49 25592.26 26276.87 27876.16 30787.91 30551.67 32992.34 32667.74 30681.16 28191.52 300
gg-mvs-nofinetune81.77 27679.37 28788.99 23990.85 28277.73 25486.29 31779.63 34474.88 29883.19 24869.05 33860.34 30396.11 26975.46 26094.64 12193.11 264
Patchmatch-test81.37 28379.30 28887.58 27190.92 27874.16 28980.99 33687.68 33170.52 32576.63 30688.81 28971.21 21092.76 32560.01 33286.93 23095.83 151
CMPMVSbinary59.16 2180.52 29079.20 28984.48 30883.98 33467.63 33189.95 28193.84 23664.79 33366.81 33491.14 24857.93 31495.17 30076.25 25388.10 21390.65 313
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040281.30 28579.17 29087.67 26993.19 20578.17 24092.98 21591.71 27675.25 29276.02 31090.31 26659.23 31096.37 25850.22 33883.63 25388.47 330
test20.0379.95 29379.08 29182.55 31585.79 32967.74 33091.09 26391.08 29281.23 23474.48 31789.96 27561.63 29290.15 33560.08 33076.38 31889.76 319
LF4IMVS80.37 29179.07 29284.27 31186.64 32769.87 32489.39 28891.05 29476.38 28174.97 31490.00 27347.85 33794.25 31274.55 27080.82 29288.69 328
JIA-IIPM81.04 28678.98 29387.25 28088.64 31473.48 29381.75 33589.61 32373.19 31082.05 25973.71 33566.07 27295.87 27971.18 28584.60 24492.41 285
pmmvs-eth3d80.97 28878.72 29487.74 26784.99 33379.97 20290.11 27891.65 27975.36 29073.51 32086.03 31759.45 30993.96 31475.17 26372.21 32589.29 322
UnsupCasMVSNet_eth80.07 29278.27 29585.46 30185.24 33172.63 30388.45 30294.87 20282.99 19271.64 32888.07 30256.34 31791.75 33173.48 27663.36 33792.01 294
TinyColmap79.76 29577.69 29685.97 29891.71 24673.12 29689.55 28390.36 30875.03 29472.03 32690.19 26746.22 33996.19 26763.11 32281.03 28688.59 329
TDRefinement79.81 29477.34 29787.22 28379.24 34175.48 28293.12 20892.03 26876.45 28075.01 31391.58 23349.19 33496.44 25570.22 29069.18 32989.75 320
MIMVSNet179.38 29777.28 29885.69 30086.35 32873.67 29291.61 25492.75 25378.11 27172.64 32488.12 30148.16 33591.97 33060.32 32977.49 31591.43 303
YYNet179.22 29877.20 29985.28 30388.20 32272.66 30285.87 31990.05 31574.33 30262.70 33687.61 30866.09 27192.03 32866.94 30772.97 32391.15 309
MDA-MVSNet_test_wron79.21 29977.19 30085.29 30288.22 32172.77 30085.87 31990.06 31374.34 30162.62 33787.56 30966.14 27091.99 32966.90 31073.01 32291.10 312
OpenMVS_ROBcopyleft74.94 1979.51 29677.03 30186.93 28787.00 32676.23 27692.33 23390.74 30468.93 32874.52 31688.23 30049.58 33296.62 23857.64 33484.29 24587.94 332
MDA-MVSNet-bldmvs78.85 30076.31 30286.46 29389.76 30773.88 29088.79 29690.42 30679.16 25459.18 33888.33 29860.20 30494.04 31362.00 32568.96 33091.48 302
DSMNet-mixed76.94 30376.29 30378.89 31983.10 33756.11 34487.78 30779.77 34360.65 33675.64 31188.71 29261.56 29388.34 33860.07 33189.29 19592.21 292
PM-MVS78.11 30176.12 30484.09 31283.54 33670.08 32288.97 29585.27 33679.93 24774.73 31586.43 31534.70 34393.48 31879.43 22372.06 32688.72 327
new-patchmatchnet76.41 30475.17 30580.13 31882.65 33959.61 33987.66 31091.08 29278.23 26969.85 32983.22 32654.76 32291.63 33364.14 32064.89 33589.16 324
PVSNet_073.20 2077.22 30274.83 30684.37 30990.70 28871.10 31483.09 33289.67 32272.81 31573.93 31983.13 32760.79 30093.70 31668.54 29950.84 34188.30 331
UnsupCasMVSNet_bld76.23 30573.27 30785.09 30583.79 33572.92 29785.65 32293.47 24271.52 32068.84 33179.08 33349.77 33193.21 32166.81 31160.52 33989.13 326
MVS-HIRNet73.70 30672.20 30878.18 32191.81 24356.42 34382.94 33382.58 33955.24 33868.88 33066.48 33955.32 32195.13 30158.12 33388.42 20883.01 335
new_pmnet72.15 30770.13 30978.20 32082.95 33865.68 33383.91 32882.40 34062.94 33564.47 33579.82 33242.85 34186.26 34057.41 33574.44 32182.65 336
pmmvs371.81 30868.71 31081.11 31775.86 34270.42 32086.74 31483.66 33858.95 33768.64 33280.89 33136.93 34289.52 33663.10 32363.59 33683.39 334
N_pmnet68.89 30968.44 31170.23 32589.07 31128.79 35388.06 30419.50 35469.47 32771.86 32784.93 32161.24 29791.75 33154.70 33677.15 31790.15 318
FPMVS64.63 31162.55 31270.88 32470.80 34456.71 34184.42 32684.42 33751.78 34049.57 34081.61 33023.49 34681.48 34340.61 34276.25 31974.46 339
LCM-MVSNet66.00 31062.16 31377.51 32264.51 34858.29 34083.87 32990.90 29948.17 34154.69 33973.31 33616.83 35286.75 33965.47 31361.67 33887.48 333
PMMVS259.60 31256.40 31469.21 32668.83 34546.58 34873.02 34377.48 34755.07 33949.21 34172.95 33717.43 35180.04 34449.32 33944.33 34280.99 338
Gipumacopyleft57.99 31454.91 31567.24 32788.51 31565.59 33452.21 34690.33 30943.58 34342.84 34351.18 34420.29 34985.07 34134.77 34370.45 32751.05 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 31354.22 31672.86 32356.50 35156.67 34280.75 33786.00 33373.09 31237.39 34464.63 34122.17 34779.49 34543.51 34023.96 34582.43 337
PMVScopyleft47.18 2252.22 31548.46 31763.48 32845.72 35246.20 34973.41 34278.31 34541.03 34430.06 34665.68 3406.05 35383.43 34230.04 34465.86 33360.80 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 31742.29 31846.03 33165.58 34737.41 35073.51 34164.62 34833.99 34528.47 34847.87 34519.90 35067.91 34622.23 34624.45 34432.77 344
EMVS42.07 31841.12 31944.92 33263.45 34935.56 35273.65 34063.48 34933.05 34626.88 34945.45 34621.27 34867.14 34719.80 34723.02 34632.06 345
tmp_tt35.64 31939.24 32024.84 33314.87 35323.90 35462.71 34451.51 3536.58 34936.66 34562.08 34244.37 34030.34 35152.40 33722.00 34720.27 346
MVEpermissive39.65 2343.39 31638.59 32157.77 32956.52 35048.77 34755.38 34558.64 35129.33 34728.96 34752.65 3434.68 35464.62 34828.11 34533.07 34359.93 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.14 32029.52 3220.00 3370.00 3560.00 3570.00 34895.76 1420.00 3520.00 35394.29 13875.66 1570.00 3540.00 3510.00 3510.00 350
wuyk23d21.27 32120.48 32323.63 33468.59 34636.41 35149.57 3476.85 3559.37 3487.89 3504.46 3524.03 35531.37 35017.47 34816.07 3483.12 347
testmvs8.92 32211.52 3241.12 3361.06 3540.46 35686.02 3180.65 3560.62 3502.74 3519.52 3500.31 3570.45 3532.38 3490.39 3492.46 349
test1238.76 32311.22 3251.39 3350.85 3550.97 35585.76 3210.35 3570.54 3512.45 3528.14 3510.60 3560.48 3522.16 3500.17 3502.71 348
ab-mvs-re7.82 32410.43 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35393.88 1570.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.64 3258.86 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35379.70 1130.00 3540.00 3510.00 3510.00 350
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS98.77 486.00 5396.84 6381.26 23397.26 695.50 799.13 399.03 4
OPU-MVS96.21 198.00 4290.85 197.13 997.08 3792.59 198.94 8092.25 4298.99 1098.84 8
test_241102_TWO97.44 1390.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_241102_ONE98.77 485.99 5497.44 1390.26 3097.71 197.96 892.31 299.38 29
save fliter97.85 4485.63 6795.21 8896.82 6689.44 44
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
test_0728_SECOND95.01 1598.79 186.43 4097.09 1197.49 599.61 395.62 599.08 798.99 5
test072698.78 285.93 5797.19 697.47 890.27 2897.64 498.13 191.47 6
GSMVS96.12 136
test_part298.55 1187.22 1696.40 11
test_part10.00 3370.00 3570.00 34897.45 110.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs171.70 20696.12 136
sam_mvs70.60 218
ambc83.06 31479.99 34063.51 33877.47 33992.86 24974.34 31884.45 32228.74 34495.06 30473.06 27868.89 33190.61 314
MTGPAbinary96.97 49
test_post188.00 3059.81 34969.31 23895.53 29176.65 249
test_post10.29 34870.57 22295.91 278
patchmatchnet-post83.76 32471.53 20796.48 251
GG-mvs-BLEND87.94 26689.73 30877.91 24587.80 30678.23 34680.58 27683.86 32359.88 30795.33 29971.20 28392.22 16190.60 316
MTMP96.16 4060.64 350
gm-plane-assit89.60 30968.00 32877.28 27688.99 28697.57 17079.44 222
test9_res91.91 5498.71 3098.07 62
TEST997.53 5486.49 3894.07 16796.78 6981.61 22692.77 5996.20 7687.71 2699.12 54
test_897.49 5786.30 4794.02 17296.76 7281.86 21992.70 6396.20 7687.63 2799.02 67
agg_prior290.54 8098.68 3598.27 46
agg_prior97.38 6085.92 5996.72 7592.16 7498.97 76
TestCases89.52 22595.01 13577.79 25190.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
test_prior485.96 5694.11 162
test_prior294.12 16087.67 9692.63 6496.39 6886.62 3891.50 6498.67 37
test_prior93.82 6497.29 6584.49 8296.88 5998.87 8398.11 60
旧先验293.36 19571.25 32294.37 2697.13 21386.74 122
新几何293.11 210
新几何193.10 7997.30 6484.35 9195.56 15771.09 32391.26 9696.24 7382.87 7898.86 8679.19 22698.10 6196.07 141
旧先验196.79 7681.81 15295.67 14896.81 4986.69 3797.66 7296.97 111
无先验93.28 20296.26 10373.95 30499.05 5980.56 20796.59 122
原ACMM292.94 217
原ACMM192.01 12597.34 6281.05 17196.81 6778.89 25790.45 10395.92 8782.65 7998.84 9180.68 20598.26 5896.14 134
test22296.55 8481.70 15492.22 23795.01 19168.36 32990.20 10696.14 8180.26 10697.80 7096.05 143
testdata298.75 9578.30 233
segment_acmp87.16 34
testdata90.49 18496.40 8877.89 24795.37 17672.51 31693.63 4196.69 5482.08 9097.65 16583.08 16097.39 7795.94 145
testdata192.15 23987.94 86
test1294.34 5397.13 7086.15 5096.29 10191.04 9985.08 5799.01 6998.13 6097.86 76
plane_prior794.70 15282.74 131
plane_prior694.52 15882.75 12974.23 173
plane_prior596.22 10898.12 13288.15 10289.99 18094.63 188
plane_prior494.86 118
plane_prior382.75 12990.26 3086.91 154
plane_prior295.85 5790.81 17
plane_prior194.59 156
plane_prior82.73 13295.21 8889.66 4189.88 185
n20.00 358
nn0.00 358
door-mid85.49 334
lessismore_v086.04 29788.46 31768.78 32780.59 34273.01 32390.11 27055.39 32096.43 25675.06 26565.06 33492.90 271
LGP-MVS_train91.12 15894.47 16081.49 15996.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
test1196.57 88
door85.33 335
HQP5-MVS81.56 155
HQP-NCC94.17 17194.39 14488.81 6185.43 190
ACMP_Plane94.17 17194.39 14488.81 6185.43 190
BP-MVS87.11 119
HQP4-MVS85.43 19097.96 15094.51 198
HQP3-MVS96.04 12189.77 187
HQP2-MVS73.83 183
NP-MVS94.37 16682.42 13993.98 150
MDTV_nov1_ep13_2view55.91 34587.62 31173.32 30984.59 20870.33 22574.65 26895.50 158
ACMMP++_ref87.47 221
ACMMP++88.01 216
Test By Simon80.02 108
ITE_SJBPF88.24 25891.88 24077.05 26592.92 24885.54 14080.13 28493.30 17257.29 31596.20 26572.46 27984.71 24391.49 301
DeepMVS_CXcopyleft56.31 33074.23 34351.81 34656.67 35244.85 34248.54 34275.16 33427.87 34558.74 34940.92 34152.22 34058.39 342