MSC_two_6792asdad | | | | | 96.52 1 | 97.78 57 | 90.86 1 | | 96.85 65 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 4 |
|
No_MVS | | | | | 96.52 1 | 97.78 57 | 90.86 1 | | 96.85 65 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 4 |
|
OPU-MVS | | | | | 96.21 3 | 98.00 46 | 90.85 3 | 97.13 12 | | | | 97.08 42 | 92.59 2 | 98.94 87 | 92.25 51 | 98.99 14 | 98.84 12 |
|
HPM-MVS++ |  | | 95.14 10 | 94.91 12 | 95.83 4 | 98.25 31 | 89.65 4 | 95.92 65 | 96.96 55 | 91.75 7 | 94.02 39 | 96.83 54 | 88.12 24 | 99.55 15 | 93.41 28 | 98.94 16 | 98.28 52 |
|
DPM-MVS | | | 92.58 70 | 91.74 80 | 95.08 14 | 96.19 103 | 89.31 5 | 92.66 238 | 96.56 100 | 83.44 199 | 91.68 100 | 95.04 124 | 86.60 45 | 98.99 80 | 85.60 149 | 97.92 75 | 96.93 124 |
|
3Dnovator+ | | 87.14 4 | 92.42 75 | 91.37 83 | 95.55 6 | 95.63 127 | 88.73 6 | 97.07 16 | 96.77 76 | 90.84 17 | 84.02 246 | 96.62 69 | 75.95 162 | 99.34 36 | 87.77 120 | 97.68 81 | 98.59 22 |
|
CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 7 | 98.11 39 | 88.51 7 | 95.29 95 | 96.96 55 | 92.09 3 | 95.32 23 | 97.08 42 | 89.49 15 | 99.33 39 | 95.10 11 | 98.85 19 | 98.66 18 |
|
SMA-MVS |  | | 95.20 8 | 95.07 10 | 95.59 5 | 98.14 38 | 88.48 8 | 96.26 43 | 97.28 31 | 85.90 144 | 97.67 3 | 98.10 2 | 88.41 20 | 99.56 10 | 94.66 13 | 99.19 1 | 98.71 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ETH3D cwj APD-0.16 | | | 93.91 42 | 93.53 51 | 95.06 15 | 96.76 86 | 87.78 9 | 94.92 120 | 97.21 37 | 84.33 180 | 93.89 42 | 97.09 41 | 87.20 36 | 99.29 44 | 91.90 69 | 98.44 55 | 98.12 66 |
|
SF-MVS | | | 94.97 11 | 94.90 13 | 95.20 10 | 97.84 52 | 87.76 10 | 96.65 31 | 97.48 9 | 87.76 104 | 95.71 19 | 97.70 13 | 88.28 22 | 99.35 34 | 93.89 21 | 98.78 25 | 98.48 28 |
|
ETH3D-3000-0.1 | | | 94.61 17 | 94.44 19 | 95.12 13 | 97.70 60 | 87.71 11 | 95.98 62 | 97.44 14 | 86.67 130 | 95.25 25 | 97.31 27 | 87.73 28 | 99.24 47 | 93.11 35 | 98.76 30 | 98.40 39 |
|
ACMMP_NAP | | | 94.74 15 | 94.56 17 | 95.28 8 | 98.02 45 | 87.70 12 | 95.68 75 | 97.34 22 | 88.28 85 | 95.30 24 | 97.67 15 | 85.90 52 | 99.54 19 | 93.91 20 | 98.95 15 | 98.60 21 |
|
canonicalmvs | | | 93.27 60 | 92.75 67 | 94.85 29 | 95.70 125 | 87.66 13 | 96.33 38 | 96.41 106 | 90.00 37 | 94.09 37 | 94.60 142 | 82.33 93 | 98.62 109 | 92.40 47 | 92.86 167 | 98.27 54 |
|
alignmvs | | | 93.08 64 | 92.50 72 | 94.81 35 | 95.62 128 | 87.61 14 | 95.99 60 | 96.07 129 | 89.77 44 | 94.12 36 | 94.87 129 | 80.56 111 | 98.66 105 | 92.42 46 | 93.10 162 | 98.15 63 |
|
MCST-MVS | | | 94.45 21 | 94.20 29 | 95.19 11 | 98.46 20 | 87.50 15 | 95.00 115 | 97.12 43 | 87.13 117 | 92.51 80 | 96.30 80 | 89.24 17 | 99.34 36 | 93.46 25 | 98.62 48 | 98.73 15 |
|
NCCC | | | 94.81 14 | 94.69 16 | 95.17 12 | 97.83 53 | 87.46 16 | 95.66 77 | 96.93 58 | 92.34 2 | 93.94 40 | 96.58 71 | 87.74 27 | 99.44 30 | 92.83 37 | 98.40 57 | 98.62 20 |
|
DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 9 | 98.36 27 | 87.28 17 | 95.56 82 | 97.51 4 | 89.13 61 | 97.14 8 | 97.91 11 | 91.64 7 | 99.62 1 | 94.61 14 | 99.17 2 | 98.86 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_part2 | | | | | | 98.55 13 | 87.22 18 | | | | 96.40 14 | | | | | | |
|
ZNCC-MVS | | | 94.47 19 | 94.28 23 | 95.03 16 | 98.52 16 | 86.96 19 | 96.85 26 | 97.32 27 | 88.24 86 | 93.15 59 | 97.04 45 | 86.17 47 | 99.62 1 | 92.40 47 | 98.81 22 | 98.52 24 |
|
zzz-MVS | | | 94.47 19 | 94.30 22 | 95.00 18 | 98.42 22 | 86.95 20 | 95.06 113 | 96.97 52 | 91.07 13 | 93.14 60 | 97.56 16 | 84.30 70 | 99.56 10 | 93.43 26 | 98.75 31 | 98.47 32 |
|
MTAPA | | | 94.42 25 | 94.22 26 | 95.00 18 | 98.42 22 | 86.95 20 | 94.36 163 | 96.97 52 | 91.07 13 | 93.14 60 | 97.56 16 | 84.30 70 | 99.56 10 | 93.43 26 | 98.75 31 | 98.47 32 |
|
nrg030 | | | 91.08 96 | 90.39 98 | 93.17 82 | 93.07 228 | 86.91 22 | 96.41 36 | 96.26 114 | 88.30 84 | 88.37 143 | 94.85 132 | 82.19 97 | 97.64 184 | 91.09 81 | 82.95 273 | 94.96 192 |
|
APD-MVS |  | | 94.24 31 | 94.07 35 | 94.75 39 | 98.06 43 | 86.90 23 | 95.88 66 | 96.94 57 | 85.68 150 | 95.05 27 | 97.18 37 | 87.31 34 | 99.07 61 | 91.90 69 | 98.61 49 | 98.28 52 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ETH3 D test6400 | | | 93.64 50 | 93.22 56 | 94.92 22 | 97.79 54 | 86.84 24 | 95.31 89 | 97.26 32 | 82.67 217 | 93.81 43 | 96.29 81 | 87.29 35 | 99.27 45 | 89.87 97 | 98.67 41 | 98.65 19 |
|
GST-MVS | | | 94.21 34 | 93.97 39 | 94.90 26 | 98.41 24 | 86.82 25 | 96.54 33 | 97.19 38 | 88.24 86 | 93.26 55 | 96.83 54 | 85.48 56 | 99.59 7 | 91.43 79 | 98.40 57 | 98.30 48 |
|
HFP-MVS | | | 94.52 18 | 94.40 20 | 94.86 27 | 98.61 10 | 86.81 26 | 96.94 18 | 97.34 22 | 88.63 74 | 93.65 47 | 97.21 34 | 86.10 48 | 99.49 26 | 92.35 49 | 98.77 28 | 98.30 48 |
|
#test# | | | 94.32 29 | 94.14 32 | 94.86 27 | 98.61 10 | 86.81 26 | 96.43 34 | 97.34 22 | 87.51 110 | 93.65 47 | 97.21 34 | 86.10 48 | 99.49 26 | 91.68 73 | 98.77 28 | 98.30 48 |
|
TSAR-MVS + GP. | | | 93.66 49 | 93.41 53 | 94.41 55 | 96.59 91 | 86.78 28 | 94.40 155 | 93.93 246 | 89.77 44 | 94.21 33 | 95.59 110 | 87.35 33 | 98.61 110 | 92.72 40 | 96.15 112 | 97.83 88 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 37 | 93.79 43 | 94.80 36 | 97.48 67 | 86.78 28 | 95.65 79 | 96.89 61 | 89.40 53 | 92.81 69 | 96.97 48 | 85.37 58 | 99.24 47 | 90.87 88 | 98.69 37 | 98.38 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testtj | | | 94.39 26 | 94.18 30 | 95.00 18 | 98.24 33 | 86.77 30 | 96.16 48 | 97.23 35 | 87.28 115 | 94.85 28 | 97.04 45 | 86.99 40 | 99.52 23 | 91.54 75 | 98.33 60 | 98.71 16 |
|
Regformer-2 | | | 94.33 28 | 94.22 26 | 94.68 41 | 95.54 131 | 86.75 31 | 94.57 143 | 96.70 86 | 91.84 6 | 94.41 29 | 96.56 73 | 87.19 37 | 99.13 57 | 93.50 24 | 97.65 83 | 98.16 62 |
|
SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 65 | 97.25 78 | 86.69 32 | 96.19 47 | 97.11 45 | 90.42 28 | 96.95 12 | 97.27 29 | 89.53 14 | 96.91 246 | 94.38 16 | 98.85 19 | 98.03 74 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMPR | | | 94.43 23 | 94.28 23 | 94.91 24 | 98.63 9 | 86.69 32 | 96.94 18 | 97.32 27 | 88.63 74 | 93.53 54 | 97.26 31 | 85.04 62 | 99.54 19 | 92.35 49 | 98.78 25 | 98.50 26 |
|
region2R | | | 94.43 23 | 94.27 25 | 94.92 22 | 98.65 8 | 86.67 34 | 96.92 22 | 97.23 35 | 88.60 76 | 93.58 51 | 97.27 29 | 85.22 59 | 99.54 19 | 92.21 52 | 98.74 33 | 98.56 23 |
|
MP-MVS-pluss | | | 94.21 34 | 94.00 38 | 94.85 29 | 98.17 36 | 86.65 35 | 94.82 127 | 97.17 41 | 86.26 138 | 92.83 68 | 97.87 12 | 85.57 55 | 99.56 10 | 94.37 17 | 98.92 17 | 98.34 43 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CP-MVS | | | 94.34 27 | 94.21 28 | 94.74 40 | 98.39 25 | 86.64 36 | 97.60 3 | 97.24 33 | 88.53 78 | 92.73 73 | 97.23 32 | 85.20 60 | 99.32 40 | 92.15 55 | 98.83 21 | 98.25 57 |
|
ZD-MVS | | | | | | 98.15 37 | 86.62 37 | | 97.07 47 | 83.63 193 | 94.19 34 | 96.91 51 | 87.57 32 | 99.26 46 | 91.99 61 | 98.44 55 | |
|
XVS | | | 94.45 21 | 94.32 21 | 94.85 29 | 98.54 14 | 86.60 38 | 96.93 20 | 97.19 38 | 90.66 25 | 92.85 66 | 97.16 39 | 85.02 63 | 99.49 26 | 91.99 61 | 98.56 51 | 98.47 32 |
|
X-MVStestdata | | | 88.31 168 | 86.13 211 | 94.85 29 | 98.54 14 | 86.60 38 | 96.93 20 | 97.19 38 | 90.66 25 | 92.85 66 | 23.41 371 | 85.02 63 | 99.49 26 | 91.99 61 | 98.56 51 | 98.47 32 |
|
MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 21 | 98.49 18 | 86.52 40 | 96.91 23 | 97.47 10 | 91.73 8 | 96.10 17 | 96.69 61 | 89.90 12 | 99.30 42 | 94.70 12 | 98.04 70 | 99.13 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
TEST9 | | | | | | 97.53 63 | 86.49 41 | 94.07 180 | 96.78 74 | 81.61 244 | 92.77 70 | 96.20 86 | 87.71 29 | 99.12 58 | | | |
|
train_agg | | | 93.44 54 | 93.08 59 | 94.52 48 | 97.53 63 | 86.49 41 | 94.07 180 | 96.78 74 | 81.86 237 | 92.77 70 | 96.20 86 | 87.63 30 | 99.12 58 | 92.14 56 | 98.69 37 | 97.94 79 |
|
test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 43 | 97.09 14 | 97.49 5 | | | | | 99.61 3 | 95.62 8 | 99.08 7 | 98.99 7 |
|
PHI-MVS | | | 93.89 44 | 93.65 49 | 94.62 45 | 96.84 84 | 86.43 43 | 96.69 30 | 97.49 5 | 85.15 166 | 93.56 53 | 96.28 82 | 85.60 54 | 99.31 41 | 92.45 44 | 98.79 23 | 98.12 66 |
|
3Dnovator | | 86.66 5 | 91.73 84 | 90.82 95 | 94.44 51 | 94.59 174 | 86.37 45 | 97.18 10 | 97.02 49 | 89.20 58 | 84.31 241 | 96.66 64 | 73.74 197 | 99.17 53 | 86.74 135 | 97.96 73 | 97.79 90 |
|
Regformer-1 | | | 94.22 33 | 94.13 33 | 94.51 49 | 95.54 131 | 86.36 46 | 94.57 143 | 96.44 103 | 91.69 9 | 94.32 32 | 96.56 73 | 87.05 39 | 99.03 67 | 93.35 29 | 97.65 83 | 98.15 63 |
|
TSAR-MVS + MP. | | | 94.85 13 | 94.94 11 | 94.58 46 | 98.25 31 | 86.33 47 | 96.11 54 | 96.62 94 | 88.14 92 | 96.10 17 | 96.96 49 | 89.09 18 | 98.94 87 | 94.48 15 | 98.68 39 | 98.48 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 29 | 96.99 81 | 86.33 47 | 97.33 5 | 97.30 29 | 91.38 11 | 95.39 22 | 97.46 19 | 88.98 19 | 99.40 31 | 94.12 18 | 98.89 18 | 98.82 14 |
Skip Steuart: Steuart Systems R&D Blog. |
MP-MVS |  | | 94.25 30 | 94.07 35 | 94.77 38 | 98.47 19 | 86.31 49 | 96.71 29 | 96.98 51 | 89.04 63 | 91.98 90 | 97.19 36 | 85.43 57 | 99.56 10 | 92.06 60 | 98.79 23 | 98.44 37 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
test_8 | | | | | | 97.49 66 | 86.30 50 | 94.02 185 | 96.76 77 | 81.86 237 | 92.70 74 | 96.20 86 | 87.63 30 | 99.02 71 | | | |
|
APDe-MVS | | | 95.46 5 | 95.64 5 | 94.91 24 | 98.26 30 | 86.29 51 | 97.46 4 | 97.40 20 | 89.03 65 | 96.20 16 | 98.10 2 | 89.39 16 | 99.34 36 | 95.88 3 | 99.03 11 | 99.10 3 |
|
PGM-MVS | | | 93.96 41 | 93.72 46 | 94.68 41 | 98.43 21 | 86.22 52 | 95.30 92 | 97.78 1 | 87.45 113 | 93.26 55 | 97.33 26 | 84.62 68 | 99.51 24 | 90.75 91 | 98.57 50 | 98.32 47 |
|
test12 | | | | | 94.34 56 | 97.13 79 | 86.15 53 | | 96.29 112 | | 91.04 111 | | 85.08 61 | 99.01 73 | | 98.13 67 | 97.86 86 |
|
CDPH-MVS | | | 92.83 66 | 92.30 74 | 94.44 51 | 97.79 54 | 86.11 54 | 94.06 182 | 96.66 91 | 80.09 264 | 92.77 70 | 96.63 68 | 86.62 42 | 99.04 66 | 87.40 125 | 98.66 44 | 98.17 61 |
|
RRT_MVS | | | 88.86 154 | 87.68 164 | 92.39 120 | 92.02 255 | 86.09 55 | 94.38 161 | 94.94 206 | 85.45 157 | 87.14 166 | 93.84 175 | 65.88 289 | 97.11 231 | 88.73 109 | 86.77 245 | 93.98 239 |
|
DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 34 | 97.78 57 | 86.00 56 | 98.29 1 | 97.49 5 | 90.75 20 | 97.62 5 | 98.06 6 | 92.59 2 | 99.61 3 | 95.64 6 | 99.02 12 | 98.86 9 |
|
IU-MVS | | | | | | 98.77 5 | 86.00 56 | | 96.84 67 | 81.26 251 | 97.26 7 | | | | 95.50 10 | 99.13 3 | 99.03 6 |
|
SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 36 | 98.77 5 | 85.99 58 | 97.13 12 | 97.44 14 | 90.31 29 | 97.71 1 | 98.07 4 | 92.31 4 | 99.58 8 | 95.66 4 | 99.13 3 | 98.84 12 |
|
test_241102_ONE | | | | | | 98.77 5 | 85.99 58 | | 97.44 14 | 90.26 33 | 97.71 1 | 97.96 10 | 92.31 4 | 99.38 32 | | | |
|
test_prior4 | | | | | | | 85.96 60 | 94.11 175 | | | | | | | | | |
|
DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 43 | 98.78 3 | 85.93 61 | 97.09 14 | 96.73 81 | 90.27 31 | 97.04 10 | 98.05 8 | 91.47 8 | 99.55 15 | 95.62 8 | 99.08 7 | 98.45 36 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.78 3 | 85.93 61 | 97.19 9 | 97.47 10 | 90.27 31 | 97.64 4 | 98.13 1 | 91.47 8 | | | | |
|
agg_prior1 | | | 93.29 59 | 92.97 63 | 94.26 58 | 97.38 69 | 85.92 63 | 93.92 191 | 96.72 83 | 81.96 231 | 92.16 85 | 96.23 84 | 87.85 25 | 98.97 83 | 91.95 65 | 98.55 53 | 97.90 83 |
|
agg_prior | | | | | | 97.38 69 | 85.92 63 | | 96.72 83 | | 92.16 85 | | | 98.97 83 | | | |
|
DP-MVS Recon | | | 91.95 79 | 91.28 85 | 93.96 63 | 98.33 29 | 85.92 63 | 94.66 138 | 96.66 91 | 82.69 216 | 90.03 124 | 95.82 101 | 82.30 94 | 99.03 67 | 84.57 161 | 96.48 109 | 96.91 125 |
|
mPP-MVS | | | 93.99 39 | 93.78 44 | 94.63 44 | 98.50 17 | 85.90 66 | 96.87 24 | 96.91 59 | 88.70 72 | 91.83 96 | 97.17 38 | 83.96 77 | 99.55 15 | 91.44 78 | 98.64 47 | 98.43 38 |
|
test_one_0601 | | | | | | 98.58 12 | 85.83 67 | | 97.44 14 | 91.05 15 | 96.78 13 | 98.06 6 | 91.45 11 | | | | |
|
DeepC-MVS | | 88.79 3 | 93.31 58 | 92.99 62 | 94.26 58 | 96.07 110 | 85.83 67 | 94.89 122 | 96.99 50 | 89.02 66 | 89.56 126 | 97.37 25 | 82.51 90 | 99.38 32 | 92.20 53 | 98.30 61 | 97.57 98 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS | | | 94.23 32 | 94.17 31 | 94.43 53 | 98.21 35 | 85.78 69 | 96.40 37 | 96.90 60 | 88.20 89 | 94.33 31 | 97.40 23 | 84.75 67 | 99.03 67 | 93.35 29 | 97.99 71 | 98.48 28 |
|
HPM-MVS |  | | 94.02 38 | 93.88 40 | 94.43 53 | 98.39 25 | 85.78 69 | 97.25 8 | 97.07 47 | 86.90 125 | 92.62 77 | 96.80 58 | 84.85 66 | 99.17 53 | 92.43 45 | 98.65 46 | 98.33 44 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CANet | | | 93.54 52 | 93.20 58 | 94.55 47 | 95.65 126 | 85.73 71 | 94.94 118 | 96.69 88 | 91.89 5 | 90.69 113 | 95.88 99 | 81.99 102 | 99.54 19 | 93.14 34 | 97.95 74 | 98.39 40 |
|
xxxxxxxxxxxxxcwj | | | 94.65 16 | 94.70 15 | 94.48 50 | 97.85 50 | 85.63 72 | 95.21 101 | 95.47 176 | 89.44 50 | 95.71 19 | 97.70 13 | 88.28 22 | 99.35 34 | 93.89 21 | 98.78 25 | 98.48 28 |
|
save fliter | | | | | | 97.85 50 | 85.63 72 | 95.21 101 | 96.82 71 | 89.44 50 | | | | | | | |
|
FOURS1 | | | | | | 98.86 1 | 85.54 74 | 98.29 1 | 97.49 5 | 89.79 43 | 96.29 15 | | | | | | |
|
Regformer-4 | | | 93.91 42 | 93.81 42 | 94.19 60 | 95.36 136 | 85.47 75 | 94.68 135 | 96.41 106 | 91.60 10 | 93.75 44 | 96.71 59 | 85.95 51 | 99.10 60 | 93.21 33 | 96.65 103 | 98.01 76 |
|
OpenMVS |  | 83.78 11 | 88.74 158 | 87.29 173 | 93.08 85 | 92.70 239 | 85.39 76 | 96.57 32 | 96.43 105 | 78.74 283 | 80.85 291 | 96.07 93 | 69.64 247 | 99.01 73 | 78.01 255 | 96.65 103 | 94.83 199 |
|
ACMMP |  | | 93.24 61 | 92.88 65 | 94.30 57 | 98.09 42 | 85.33 77 | 96.86 25 | 97.45 13 | 88.33 82 | 90.15 122 | 97.03 47 | 81.44 105 | 99.51 24 | 90.85 89 | 95.74 115 | 98.04 73 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
EPNet | | | 91.79 81 | 91.02 91 | 94.10 61 | 90.10 319 | 85.25 78 | 96.03 59 | 92.05 287 | 92.83 1 | 87.39 163 | 95.78 103 | 79.39 127 | 99.01 73 | 88.13 117 | 97.48 85 | 98.05 72 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 93.43 56 | 93.25 55 | 93.97 62 | 95.42 135 | 85.04 79 | 93.06 228 | 97.13 42 | 90.74 22 | 91.84 94 | 95.09 123 | 86.32 46 | 99.21 50 | 91.22 80 | 98.45 54 | 97.65 93 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_HR | | | 93.45 53 | 93.31 54 | 93.84 66 | 96.99 81 | 84.84 80 | 93.24 221 | 97.24 33 | 88.76 71 | 91.60 101 | 95.85 100 | 86.07 50 | 98.66 105 | 91.91 66 | 98.16 65 | 98.03 74 |
|
HPM-MVS_fast | | | 93.40 57 | 93.22 56 | 93.94 64 | 98.36 27 | 84.83 81 | 97.15 11 | 96.80 73 | 85.77 147 | 92.47 81 | 97.13 40 | 82.38 91 | 99.07 61 | 90.51 93 | 98.40 57 | 97.92 82 |
|
CNLPA | | | 89.07 147 | 87.98 158 | 92.34 122 | 96.87 83 | 84.78 82 | 94.08 179 | 93.24 260 | 81.41 247 | 84.46 231 | 95.13 122 | 75.57 170 | 96.62 256 | 77.21 262 | 93.84 146 | 95.61 173 |
|
UA-Net | | | 92.83 66 | 92.54 71 | 93.68 73 | 96.10 108 | 84.71 83 | 95.66 77 | 96.39 108 | 91.92 4 | 93.22 57 | 96.49 75 | 83.16 82 | 98.87 91 | 84.47 162 | 95.47 120 | 97.45 103 |
|
Regformer-3 | | | 93.68 48 | 93.64 50 | 93.81 70 | 95.36 136 | 84.61 84 | 94.68 135 | 95.83 149 | 91.27 12 | 93.60 50 | 96.71 59 | 85.75 53 | 98.86 94 | 92.87 36 | 96.65 103 | 97.96 78 |
|
QAPM | | | 89.51 131 | 88.15 154 | 93.59 75 | 94.92 157 | 84.58 85 | 96.82 27 | 96.70 86 | 78.43 287 | 83.41 262 | 96.19 89 | 73.18 205 | 99.30 42 | 77.11 264 | 96.54 106 | 96.89 126 |
|
SR-MVS-dyc-post | | | 93.82 45 | 93.82 41 | 93.82 67 | 97.92 47 | 84.57 86 | 96.28 41 | 96.76 77 | 87.46 111 | 93.75 44 | 97.43 20 | 84.24 72 | 99.01 73 | 92.73 38 | 97.80 78 | 97.88 84 |
|
RE-MVS-def | | | | 93.68 48 | | 97.92 47 | 84.57 86 | 96.28 41 | 96.76 77 | 87.46 111 | 93.75 44 | 97.43 20 | 82.94 85 | | 92.73 38 | 97.80 78 | 97.88 84 |
|
API-MVS | | | 90.66 104 | 90.07 106 | 92.45 116 | 96.36 99 | 84.57 86 | 96.06 58 | 95.22 195 | 82.39 220 | 89.13 132 | 94.27 156 | 80.32 113 | 98.46 118 | 80.16 232 | 96.71 101 | 94.33 223 |
|
UniMVSNet (Re) | | | 89.80 125 | 89.07 129 | 92.01 133 | 93.60 214 | 84.52 89 | 94.78 130 | 97.47 10 | 89.26 56 | 86.44 181 | 92.32 222 | 82.10 98 | 97.39 211 | 84.81 158 | 80.84 306 | 94.12 230 |
|
test_prior3 | | | 93.60 51 | 93.53 51 | 93.82 67 | 97.29 74 | 84.49 90 | 94.12 173 | 96.88 62 | 87.67 107 | 92.63 75 | 96.39 78 | 86.62 42 | 98.87 91 | 91.50 76 | 98.67 41 | 98.11 68 |
|
test_prior | | | | | 93.82 67 | 97.29 74 | 84.49 90 | | 96.88 62 | | | | | 98.87 91 | | | 98.11 68 |
|
MAR-MVS | | | 90.30 111 | 89.37 121 | 93.07 87 | 96.61 90 | 84.48 92 | 95.68 75 | 95.67 160 | 82.36 222 | 87.85 151 | 92.85 205 | 76.63 156 | 98.80 101 | 80.01 233 | 96.68 102 | 95.91 160 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
xiu_mvs_v1_base_debu | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 201 | 84.46 93 | 93.32 211 | 95.46 177 | 85.17 163 | 92.25 82 | 94.03 159 | 70.59 233 | 98.57 112 | 90.97 83 | 94.67 131 | 94.18 226 |
|
xiu_mvs_v1_base | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 201 | 84.46 93 | 93.32 211 | 95.46 177 | 85.17 163 | 92.25 82 | 94.03 159 | 70.59 233 | 98.57 112 | 90.97 83 | 94.67 131 | 94.18 226 |
|
xiu_mvs_v1_base_debi | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 201 | 84.46 93 | 93.32 211 | 95.46 177 | 85.17 163 | 92.25 82 | 94.03 159 | 70.59 233 | 98.57 112 | 90.97 83 | 94.67 131 | 94.18 226 |
|
1121 | | | 90.42 110 | 89.49 116 | 93.20 80 | 97.27 76 | 84.46 93 | 92.63 239 | 95.51 174 | 71.01 347 | 91.20 108 | 96.21 85 | 82.92 86 | 99.05 63 | 80.56 225 | 98.07 69 | 96.10 153 |
|
MVS_111021_LR | | | 92.47 74 | 92.29 75 | 92.98 90 | 95.99 114 | 84.43 97 | 93.08 226 | 96.09 127 | 88.20 89 | 91.12 109 | 95.72 106 | 81.33 107 | 97.76 173 | 91.74 71 | 97.37 88 | 96.75 129 |
|
PCF-MVS | | 84.11 10 | 87.74 183 | 86.08 215 | 92.70 104 | 94.02 195 | 84.43 97 | 89.27 306 | 95.87 146 | 73.62 330 | 84.43 233 | 94.33 150 | 78.48 139 | 98.86 94 | 70.27 307 | 94.45 139 | 94.81 200 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
新几何1 | | | | | 93.10 84 | 97.30 73 | 84.35 99 | | 95.56 168 | 71.09 346 | 91.26 107 | 96.24 83 | 82.87 87 | 98.86 94 | 79.19 244 | 98.10 68 | 96.07 155 |
|
abl_6 | | | 93.18 63 | 93.05 60 | 93.57 76 | 97.52 65 | 84.27 100 | 95.53 83 | 96.67 90 | 87.85 101 | 93.20 58 | 97.22 33 | 80.35 112 | 99.18 52 | 91.91 66 | 97.21 89 | 97.26 108 |
|
APD-MVS_3200maxsize | | | 93.78 46 | 93.77 45 | 93.80 71 | 97.92 47 | 84.19 101 | 96.30 39 | 96.87 64 | 86.96 121 | 93.92 41 | 97.47 18 | 83.88 78 | 98.96 86 | 92.71 41 | 97.87 76 | 98.26 56 |
|
NR-MVSNet | | | 88.58 163 | 87.47 169 | 91.93 140 | 93.04 230 | 84.16 102 | 94.77 131 | 96.25 116 | 89.05 62 | 80.04 305 | 93.29 191 | 79.02 130 | 97.05 237 | 81.71 207 | 80.05 317 | 94.59 209 |
|
CSCG | | | 93.23 62 | 93.05 60 | 93.76 72 | 98.04 44 | 84.07 103 | 96.22 46 | 97.37 21 | 84.15 182 | 90.05 123 | 95.66 107 | 87.77 26 | 99.15 56 | 89.91 96 | 98.27 62 | 98.07 70 |
|
OMC-MVS | | | 91.23 92 | 90.62 97 | 93.08 85 | 96.27 101 | 84.07 103 | 93.52 206 | 95.93 139 | 86.95 122 | 89.51 127 | 96.13 92 | 78.50 138 | 98.35 127 | 85.84 146 | 92.90 166 | 96.83 127 |
|
ETV-MVS | | | 92.74 68 | 92.66 69 | 92.97 91 | 95.20 145 | 84.04 105 | 95.07 110 | 96.51 101 | 90.73 23 | 92.96 64 | 91.19 260 | 84.06 74 | 98.34 128 | 91.72 72 | 96.54 106 | 96.54 138 |
|
ET-MVSNet_ETH3D | | | 87.51 196 | 85.91 222 | 92.32 123 | 93.70 212 | 83.93 106 | 92.33 249 | 90.94 318 | 84.16 181 | 72.09 349 | 92.52 216 | 69.90 242 | 95.85 298 | 89.20 104 | 88.36 224 | 97.17 113 |
|
OPM-MVS | | | 90.12 114 | 89.56 115 | 91.82 147 | 93.14 225 | 83.90 107 | 94.16 171 | 95.74 156 | 88.96 67 | 87.86 150 | 95.43 113 | 72.48 213 | 97.91 168 | 88.10 118 | 90.18 193 | 93.65 259 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MVSFormer | | | 91.68 86 | 91.30 84 | 92.80 97 | 93.86 204 | 83.88 108 | 95.96 63 | 95.90 143 | 84.66 176 | 91.76 97 | 94.91 127 | 77.92 144 | 97.30 214 | 89.64 99 | 97.11 90 | 97.24 109 |
|
lupinMVS | | | 90.92 97 | 90.21 101 | 93.03 88 | 93.86 204 | 83.88 108 | 92.81 235 | 93.86 250 | 79.84 267 | 91.76 97 | 94.29 153 | 77.92 144 | 98.04 157 | 90.48 94 | 97.11 90 | 97.17 113 |
|
test_part1 | | | 89.00 152 | 87.99 157 | 92.04 131 | 95.94 117 | 83.81 110 | 96.14 51 | 96.05 132 | 86.44 134 | 85.69 193 | 93.73 181 | 71.57 219 | 97.66 180 | 85.80 147 | 80.54 310 | 94.66 204 |
|
Vis-MVSNet |  | | 91.75 83 | 91.23 86 | 93.29 77 | 95.32 139 | 83.78 111 | 96.14 51 | 95.98 135 | 89.89 38 | 90.45 115 | 96.58 71 | 75.09 174 | 98.31 132 | 84.75 159 | 96.90 96 | 97.78 91 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UniMVSNet_NR-MVSNet | | | 89.92 122 | 89.29 124 | 91.81 149 | 93.39 219 | 83.72 112 | 94.43 153 | 97.12 43 | 89.80 40 | 86.46 178 | 93.32 188 | 83.16 82 | 97.23 223 | 84.92 155 | 81.02 302 | 94.49 218 |
|
DU-MVS | | | 89.34 141 | 88.50 143 | 91.85 146 | 93.04 230 | 83.72 112 | 94.47 150 | 96.59 96 | 89.50 49 | 86.46 178 | 93.29 191 | 77.25 148 | 97.23 223 | 84.92 155 | 81.02 302 | 94.59 209 |
|
FMVSNet2 | | | 87.19 212 | 85.82 224 | 91.30 166 | 94.01 196 | 83.67 114 | 94.79 129 | 94.94 206 | 83.57 194 | 83.88 249 | 92.05 237 | 66.59 281 | 96.51 267 | 77.56 259 | 85.01 254 | 93.73 256 |
|
FMVSNet3 | | | 87.40 201 | 86.11 213 | 91.30 166 | 93.79 209 | 83.64 115 | 94.20 170 | 94.81 219 | 83.89 188 | 84.37 234 | 91.87 242 | 68.45 265 | 96.56 264 | 78.23 252 | 85.36 251 | 93.70 258 |
|
MVS | | | 87.44 199 | 86.10 214 | 91.44 162 | 92.61 241 | 83.62 116 | 92.63 239 | 95.66 162 | 67.26 353 | 81.47 283 | 92.15 228 | 77.95 143 | 98.22 136 | 79.71 236 | 95.48 119 | 92.47 300 |
|
CDS-MVSNet | | | 89.45 134 | 88.51 142 | 92.29 126 | 93.62 213 | 83.61 117 | 93.01 229 | 94.68 224 | 81.95 232 | 87.82 153 | 93.24 193 | 78.69 134 | 96.99 241 | 80.34 229 | 93.23 160 | 96.28 143 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
jason | | | 90.80 98 | 90.10 105 | 92.90 94 | 93.04 230 | 83.53 118 | 93.08 226 | 94.15 240 | 80.22 261 | 91.41 104 | 94.91 127 | 76.87 150 | 97.93 167 | 90.28 95 | 96.90 96 | 97.24 109 |
jason: jason. |
EI-MVSNet-Vis-set | | | 93.01 65 | 92.92 64 | 93.29 77 | 95.01 150 | 83.51 119 | 94.48 147 | 95.77 153 | 90.87 16 | 92.52 79 | 96.67 63 | 84.50 69 | 99.00 78 | 91.99 61 | 94.44 140 | 97.36 104 |
|
test1172 | | | 93.97 40 | 94.07 35 | 93.66 74 | 98.11 39 | 83.45 120 | 96.26 43 | 96.84 67 | 88.33 82 | 94.19 34 | 97.43 20 | 84.24 72 | 99.01 73 | 93.26 31 | 97.98 72 | 98.52 24 |
|
MSLP-MVS++ | | | 93.72 47 | 94.08 34 | 92.65 106 | 97.31 72 | 83.43 121 | 95.79 70 | 97.33 25 | 90.03 36 | 93.58 51 | 96.96 49 | 84.87 65 | 97.76 173 | 92.19 54 | 98.66 44 | 96.76 128 |
|
VNet | | | 92.24 77 | 91.91 78 | 93.24 79 | 96.59 91 | 83.43 121 | 94.84 126 | 96.44 103 | 89.19 59 | 94.08 38 | 95.90 98 | 77.85 147 | 98.17 138 | 88.90 107 | 93.38 156 | 98.13 65 |
|
Effi-MVS+ | | | 91.59 87 | 91.11 88 | 93.01 89 | 94.35 187 | 83.39 123 | 94.60 140 | 95.10 200 | 87.10 118 | 90.57 114 | 93.10 199 | 81.43 106 | 98.07 154 | 89.29 103 | 94.48 138 | 97.59 97 |
|
UGNet | | | 89.95 120 | 88.95 132 | 92.95 92 | 94.51 177 | 83.31 124 | 95.70 74 | 95.23 193 | 89.37 54 | 87.58 157 | 93.94 167 | 64.00 297 | 98.78 102 | 83.92 168 | 96.31 111 | 96.74 130 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DP-MVS | | | 87.25 206 | 85.36 237 | 92.90 94 | 97.65 61 | 83.24 125 | 94.81 128 | 92.00 289 | 74.99 318 | 81.92 281 | 95.00 125 | 72.66 210 | 99.05 63 | 66.92 332 | 92.33 174 | 96.40 139 |
|
EI-MVSNet-UG-set | | | 92.74 68 | 92.62 70 | 93.12 83 | 94.86 162 | 83.20 126 | 94.40 155 | 95.74 156 | 90.71 24 | 92.05 89 | 96.60 70 | 84.00 76 | 98.99 80 | 91.55 74 | 93.63 148 | 97.17 113 |
|
PVSNet_Blended_VisFu | | | 91.38 89 | 90.91 93 | 92.80 97 | 96.39 98 | 83.17 127 | 94.87 124 | 96.66 91 | 83.29 203 | 89.27 131 | 94.46 147 | 80.29 114 | 99.17 53 | 87.57 123 | 95.37 123 | 96.05 157 |
|
GBi-Net | | | 87.26 204 | 85.98 218 | 91.08 175 | 94.01 196 | 83.10 128 | 95.14 107 | 94.94 206 | 83.57 194 | 84.37 234 | 91.64 246 | 66.59 281 | 96.34 279 | 78.23 252 | 85.36 251 | 93.79 249 |
|
test1 | | | 87.26 204 | 85.98 218 | 91.08 175 | 94.01 196 | 83.10 128 | 95.14 107 | 94.94 206 | 83.57 194 | 84.37 234 | 91.64 246 | 66.59 281 | 96.34 279 | 78.23 252 | 85.36 251 | 93.79 249 |
|
FMVSNet1 | | | 85.85 244 | 84.11 257 | 91.08 175 | 92.81 237 | 83.10 128 | 95.14 107 | 94.94 206 | 81.64 242 | 82.68 271 | 91.64 246 | 59.01 330 | 96.34 279 | 75.37 279 | 83.78 263 | 93.79 249 |
|
AdaColmap |  | | 89.89 123 | 89.07 129 | 92.37 121 | 97.41 68 | 83.03 131 | 94.42 154 | 95.92 140 | 82.81 214 | 86.34 183 | 94.65 140 | 73.89 193 | 99.02 71 | 80.69 222 | 95.51 118 | 95.05 187 |
|
VDD-MVS | | | 90.74 100 | 89.92 112 | 93.20 80 | 96.27 101 | 83.02 132 | 95.73 72 | 93.86 250 | 88.42 81 | 92.53 78 | 96.84 53 | 62.09 307 | 98.64 107 | 90.95 86 | 92.62 170 | 97.93 81 |
|
CANet_DTU | | | 90.26 113 | 89.41 120 | 92.81 96 | 93.46 218 | 83.01 133 | 93.48 207 | 94.47 228 | 89.43 52 | 87.76 155 | 94.23 157 | 70.54 237 | 99.03 67 | 84.97 154 | 96.39 110 | 96.38 140 |
|
TranMVSNet+NR-MVSNet | | | 88.84 155 | 87.95 159 | 91.49 159 | 92.68 240 | 83.01 133 | 94.92 120 | 96.31 111 | 89.88 39 | 85.53 199 | 93.85 174 | 76.63 156 | 96.96 242 | 81.91 200 | 79.87 320 | 94.50 216 |
|
pmmvs4 | | | 85.43 250 | 83.86 261 | 90.16 212 | 90.02 322 | 82.97 135 | 90.27 288 | 92.67 273 | 75.93 309 | 80.73 292 | 91.74 245 | 71.05 225 | 95.73 304 | 78.85 246 | 83.46 270 | 91.78 313 |
|
LS3D | | | 87.89 178 | 86.32 205 | 92.59 109 | 96.07 110 | 82.92 136 | 95.23 99 | 94.92 211 | 75.66 310 | 82.89 269 | 95.98 95 | 72.48 213 | 99.21 50 | 68.43 321 | 95.23 128 | 95.64 172 |
|
VPA-MVSNet | | | 89.62 127 | 88.96 131 | 91.60 155 | 93.86 204 | 82.89 137 | 95.46 84 | 97.33 25 | 87.91 96 | 88.43 142 | 93.31 189 | 74.17 188 | 97.40 208 | 87.32 128 | 82.86 278 | 94.52 214 |
|
HY-MVS | | 83.01 12 | 89.03 149 | 87.94 160 | 92.29 126 | 94.86 162 | 82.77 138 | 92.08 259 | 94.49 227 | 81.52 246 | 86.93 169 | 92.79 211 | 78.32 141 | 98.23 134 | 79.93 234 | 90.55 188 | 95.88 162 |
|
plane_prior6 | | | | | | 94.52 176 | 82.75 139 | | | | | | 74.23 185 | | | | |
|
plane_prior3 | | | | | | | 82.75 139 | | | 90.26 33 | 86.91 171 | | | | | | |
|
plane_prior7 | | | | | | 94.70 170 | 82.74 141 | | | | | | | | | | |
|
HQP_MVS | | | 90.60 108 | 90.19 102 | 91.82 147 | 94.70 170 | 82.73 142 | 95.85 67 | 96.22 119 | 90.81 18 | 86.91 171 | 94.86 130 | 74.23 185 | 98.12 140 | 88.15 115 | 89.99 194 | 94.63 205 |
|
plane_prior | | | | | | | 82.73 142 | 95.21 101 | | 89.66 47 | | | | | | 89.88 199 | |
|
PatchMatch-RL | | | 86.77 226 | 85.54 231 | 90.47 201 | 95.88 118 | 82.71 144 | 90.54 285 | 92.31 280 | 79.82 268 | 84.32 239 | 91.57 253 | 68.77 261 | 96.39 275 | 73.16 295 | 93.48 154 | 92.32 306 |
|
PLC |  | 84.53 7 | 89.06 148 | 88.03 156 | 92.15 129 | 97.27 76 | 82.69 145 | 94.29 165 | 95.44 182 | 79.71 269 | 84.01 247 | 94.18 158 | 76.68 155 | 98.75 103 | 77.28 261 | 93.41 155 | 95.02 188 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
h-mvs33 | | | 90.80 98 | 90.15 104 | 92.75 100 | 96.01 112 | 82.66 146 | 95.43 85 | 95.53 172 | 89.80 40 | 93.08 62 | 95.64 108 | 75.77 163 | 99.00 78 | 92.07 58 | 78.05 329 | 96.60 134 |
|
ab-mvs | | | 89.41 137 | 88.35 147 | 92.60 108 | 95.15 148 | 82.65 147 | 92.20 254 | 95.60 167 | 83.97 186 | 88.55 139 | 93.70 182 | 74.16 189 | 98.21 137 | 82.46 190 | 89.37 206 | 96.94 123 |
|
TAMVS | | | 89.21 142 | 88.29 151 | 91.96 138 | 93.71 210 | 82.62 148 | 93.30 215 | 94.19 238 | 82.22 224 | 87.78 154 | 93.94 167 | 78.83 131 | 96.95 243 | 77.70 257 | 92.98 165 | 96.32 141 |
|
PS-MVSNAJ | | | 91.18 94 | 90.92 92 | 91.96 138 | 95.26 142 | 82.60 149 | 92.09 258 | 95.70 158 | 86.27 137 | 91.84 94 | 92.46 217 | 79.70 122 | 98.99 80 | 89.08 105 | 95.86 114 | 94.29 224 |
|
DROMVSNet | | | 93.44 54 | 93.71 47 | 92.63 107 | 95.21 144 | 82.43 150 | 97.27 7 | 96.71 85 | 90.57 27 | 92.88 65 | 95.80 102 | 83.16 82 | 98.16 139 | 93.68 23 | 98.14 66 | 97.31 105 |
|
xiu_mvs_v2_base | | | 91.13 95 | 90.89 94 | 91.86 144 | 94.97 153 | 82.42 151 | 92.24 252 | 95.64 165 | 86.11 143 | 91.74 99 | 93.14 197 | 79.67 125 | 98.89 90 | 89.06 106 | 95.46 121 | 94.28 225 |
|
NP-MVS | | | | | | 94.37 184 | 82.42 151 | | | | | 93.98 165 | | | | | |
|
test_yl | | | 90.69 102 | 90.02 110 | 92.71 102 | 95.72 123 | 82.41 153 | 94.11 175 | 95.12 198 | 85.63 151 | 91.49 102 | 94.70 136 | 74.75 178 | 98.42 123 | 86.13 142 | 92.53 171 | 97.31 105 |
|
DCV-MVSNet | | | 90.69 102 | 90.02 110 | 92.71 102 | 95.72 123 | 82.41 153 | 94.11 175 | 95.12 198 | 85.63 151 | 91.49 102 | 94.70 136 | 74.75 178 | 98.42 123 | 86.13 142 | 92.53 171 | 97.31 105 |
|
LFMVS | | | 90.08 115 | 89.13 128 | 92.95 92 | 96.71 87 | 82.32 155 | 96.08 55 | 89.91 337 | 86.79 126 | 92.15 87 | 96.81 56 | 62.60 304 | 98.34 128 | 87.18 129 | 93.90 144 | 98.19 60 |
|
MVP-Stereo | | | 85.97 241 | 84.86 247 | 89.32 244 | 90.92 297 | 82.19 156 | 92.11 257 | 94.19 238 | 78.76 282 | 78.77 315 | 91.63 249 | 68.38 266 | 96.56 264 | 75.01 284 | 93.95 143 | 89.20 345 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
VDDNet | | | 89.56 130 | 88.49 145 | 92.76 99 | 95.07 149 | 82.09 157 | 96.30 39 | 93.19 262 | 81.05 256 | 91.88 92 | 96.86 52 | 61.16 317 | 98.33 130 | 88.43 113 | 92.49 173 | 97.84 87 |
|
CLD-MVS | | | 89.47 133 | 88.90 134 | 91.18 170 | 94.22 188 | 82.07 158 | 92.13 256 | 96.09 127 | 87.90 97 | 85.37 215 | 92.45 218 | 74.38 183 | 97.56 189 | 87.15 130 | 90.43 189 | 93.93 240 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
114514_t | | | 89.51 131 | 88.50 143 | 92.54 112 | 98.11 39 | 81.99 159 | 95.16 106 | 96.36 110 | 70.19 349 | 85.81 190 | 95.25 117 | 76.70 154 | 98.63 108 | 82.07 196 | 96.86 99 | 97.00 121 |
|
casdiffmvs | | | 92.51 73 | 92.43 73 | 92.74 101 | 94.41 183 | 81.98 160 | 94.54 145 | 96.23 118 | 89.57 48 | 91.96 91 | 96.17 90 | 82.58 89 | 98.01 160 | 90.95 86 | 95.45 122 | 98.23 58 |
|
CPTT-MVS | | | 91.99 78 | 91.80 79 | 92.55 111 | 98.24 33 | 81.98 160 | 96.76 28 | 96.49 102 | 81.89 236 | 90.24 118 | 96.44 77 | 78.59 136 | 98.61 110 | 89.68 98 | 97.85 77 | 97.06 117 |
|
Anonymous20240529 | | | 88.09 174 | 86.59 195 | 92.58 110 | 96.53 94 | 81.92 162 | 95.99 60 | 95.84 148 | 74.11 326 | 89.06 135 | 95.21 119 | 61.44 312 | 98.81 100 | 83.67 173 | 87.47 235 | 97.01 120 |
|
旧先验1 | | | | | | 96.79 85 | 81.81 163 | | 95.67 160 | | | 96.81 56 | 86.69 41 | | | 97.66 82 | 96.97 122 |
|
baseline | | | 92.39 76 | 92.29 75 | 92.69 105 | 94.46 180 | 81.77 164 | 94.14 172 | 96.27 113 | 89.22 57 | 91.88 92 | 96.00 94 | 82.35 92 | 97.99 162 | 91.05 82 | 95.27 127 | 98.30 48 |
|
bset_n11_16_dypcd | | | 86.83 220 | 85.55 230 | 90.65 190 | 88.22 341 | 81.70 165 | 88.88 314 | 90.42 325 | 85.26 162 | 85.49 203 | 90.69 277 | 67.11 272 | 97.02 239 | 89.51 101 | 84.39 258 | 93.23 275 |
|
test222 | | | | | | 96.55 93 | 81.70 165 | 92.22 253 | 95.01 203 | 68.36 352 | 90.20 119 | 96.14 91 | 80.26 115 | | | 97.80 78 | 96.05 157 |
|
HQP5-MVS | | | | | | | 81.56 167 | | | | | | | | | | |
|
HQP-MVS | | | 89.80 125 | 89.28 125 | 91.34 165 | 94.17 190 | 81.56 167 | 94.39 157 | 96.04 133 | 88.81 68 | 85.43 209 | 93.97 166 | 73.83 195 | 97.96 164 | 87.11 132 | 89.77 201 | 94.50 216 |
|
Anonymous20231211 | | | 86.59 230 | 85.13 240 | 90.98 184 | 96.52 95 | 81.50 169 | 96.14 51 | 96.16 123 | 73.78 328 | 83.65 256 | 92.15 228 | 63.26 301 | 97.37 212 | 82.82 184 | 81.74 291 | 94.06 235 |
|
LTVRE_ROB | | 82.13 13 | 86.26 238 | 84.90 246 | 90.34 208 | 94.44 182 | 81.50 169 | 92.31 251 | 94.89 212 | 83.03 208 | 79.63 310 | 92.67 212 | 69.69 246 | 97.79 171 | 71.20 302 | 86.26 246 | 91.72 314 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LPG-MVS_test | | | 89.45 134 | 88.90 134 | 91.12 171 | 94.47 178 | 81.49 171 | 95.30 92 | 96.14 124 | 86.73 128 | 85.45 206 | 95.16 120 | 69.89 243 | 98.10 142 | 87.70 121 | 89.23 210 | 93.77 253 |
|
LGP-MVS_train | | | | | 91.12 171 | 94.47 178 | 81.49 171 | | 96.14 124 | 86.73 128 | 85.45 206 | 95.16 120 | 69.89 243 | 98.10 142 | 87.70 121 | 89.23 210 | 93.77 253 |
|
XVG-OURS | | | 89.40 139 | 88.70 137 | 91.52 157 | 94.06 193 | 81.46 173 | 91.27 274 | 96.07 129 | 86.14 141 | 88.89 137 | 95.77 104 | 68.73 262 | 97.26 220 | 87.39 126 | 89.96 196 | 95.83 165 |
|
PAPM_NR | | | 91.22 93 | 90.78 96 | 92.52 113 | 97.60 62 | 81.46 173 | 94.37 162 | 96.24 117 | 86.39 136 | 87.41 160 | 94.80 134 | 82.06 100 | 98.48 116 | 82.80 185 | 95.37 123 | 97.61 95 |
|
CHOSEN 1792x2688 | | | 88.84 155 | 87.69 163 | 92.30 125 | 96.14 104 | 81.42 175 | 90.01 296 | 95.86 147 | 74.52 323 | 87.41 160 | 93.94 167 | 75.46 171 | 98.36 125 | 80.36 228 | 95.53 117 | 97.12 116 |
|
IS-MVSNet | | | 91.43 88 | 91.09 90 | 92.46 115 | 95.87 120 | 81.38 176 | 96.95 17 | 93.69 255 | 89.72 46 | 89.50 128 | 95.98 95 | 78.57 137 | 97.77 172 | 83.02 179 | 96.50 108 | 98.22 59 |
|
CS-MVS-test | | | 92.55 71 | 92.72 68 | 92.02 132 | 94.87 160 | 81.34 177 | 96.43 34 | 96.57 98 | 89.04 63 | 91.05 110 | 94.41 148 | 83.85 79 | 98.09 150 | 90.83 90 | 97.47 86 | 96.64 133 |
|
ACMP | | 84.23 8 | 89.01 151 | 88.35 147 | 90.99 182 | 94.73 167 | 81.27 178 | 95.07 110 | 95.89 145 | 86.48 132 | 83.67 255 | 94.30 152 | 69.33 251 | 97.99 162 | 87.10 134 | 88.55 217 | 93.72 257 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PVSNet_BlendedMVS | | | 89.98 118 | 89.70 113 | 90.82 186 | 96.12 105 | 81.25 179 | 93.92 191 | 96.83 69 | 83.49 198 | 89.10 133 | 92.26 225 | 81.04 109 | 98.85 97 | 86.72 137 | 87.86 233 | 92.35 305 |
|
PVSNet_Blended | | | 90.73 101 | 90.32 100 | 91.98 136 | 96.12 105 | 81.25 179 | 92.55 243 | 96.83 69 | 82.04 229 | 89.10 133 | 92.56 215 | 81.04 109 | 98.85 97 | 86.72 137 | 95.91 113 | 95.84 164 |
|
ACMM | | 84.12 9 | 89.14 143 | 88.48 146 | 91.12 171 | 94.65 173 | 81.22 181 | 95.31 89 | 96.12 126 | 85.31 161 | 85.92 189 | 94.34 149 | 70.19 241 | 98.06 155 | 85.65 148 | 88.86 215 | 94.08 234 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVG-OURS-SEG-HR | | | 89.95 120 | 89.45 117 | 91.47 161 | 94.00 199 | 81.21 182 | 91.87 261 | 96.06 131 | 85.78 146 | 88.55 139 | 95.73 105 | 74.67 181 | 97.27 218 | 88.71 110 | 89.64 203 | 95.91 160 |
|
WTY-MVS | | | 89.60 128 | 88.92 133 | 91.67 153 | 95.47 134 | 81.15 183 | 92.38 247 | 94.78 221 | 83.11 206 | 89.06 135 | 94.32 151 | 78.67 135 | 96.61 259 | 81.57 208 | 90.89 187 | 97.24 109 |
|
hse-mvs2 | | | 89.88 124 | 89.34 122 | 91.51 158 | 94.83 164 | 81.12 184 | 93.94 190 | 93.91 249 | 89.80 40 | 93.08 62 | 93.60 183 | 75.77 163 | 97.66 180 | 92.07 58 | 77.07 336 | 95.74 169 |
|
AUN-MVS | | | 87.78 182 | 86.54 197 | 91.48 160 | 94.82 165 | 81.05 185 | 93.91 194 | 93.93 246 | 83.00 209 | 86.93 169 | 93.53 184 | 69.50 249 | 97.67 179 | 86.14 140 | 77.12 335 | 95.73 170 |
|
原ACMM1 | | | | | 92.01 133 | 97.34 71 | 81.05 185 | | 96.81 72 | 78.89 278 | 90.45 115 | 95.92 97 | 82.65 88 | 98.84 99 | 80.68 223 | 98.26 63 | 96.14 148 |
|
FIs | | | 90.51 109 | 90.35 99 | 90.99 182 | 93.99 200 | 80.98 187 | 95.73 72 | 97.54 3 | 89.15 60 | 86.72 175 | 94.68 138 | 81.83 104 | 97.24 222 | 85.18 152 | 88.31 225 | 94.76 202 |
|
1112_ss | | | 88.42 164 | 87.33 172 | 91.72 151 | 94.92 157 | 80.98 187 | 92.97 231 | 94.54 226 | 78.16 292 | 83.82 251 | 93.88 172 | 78.78 133 | 97.91 168 | 79.45 239 | 89.41 205 | 96.26 144 |
|
PAPR | | | 90.02 117 | 89.27 126 | 92.29 126 | 95.78 121 | 80.95 189 | 92.68 237 | 96.22 119 | 81.91 234 | 86.66 176 | 93.75 180 | 82.23 95 | 98.44 122 | 79.40 243 | 94.79 130 | 97.48 101 |
|
cascas | | | 86.43 236 | 84.98 243 | 90.80 187 | 92.10 252 | 80.92 190 | 90.24 290 | 95.91 142 | 73.10 334 | 83.57 259 | 88.39 314 | 65.15 292 | 97.46 196 | 84.90 157 | 91.43 179 | 94.03 237 |
|
F-COLMAP | | | 87.95 177 | 86.80 185 | 91.40 163 | 96.35 100 | 80.88 191 | 94.73 133 | 95.45 180 | 79.65 270 | 82.04 279 | 94.61 141 | 71.13 224 | 98.50 115 | 76.24 272 | 91.05 185 | 94.80 201 |
|
PS-MVSNAJss | | | 89.97 119 | 89.62 114 | 91.02 179 | 91.90 258 | 80.85 192 | 95.26 98 | 95.98 135 | 86.26 138 | 86.21 185 | 94.29 153 | 79.70 122 | 97.65 182 | 88.87 108 | 88.10 227 | 94.57 211 |
|
Fast-Effi-MVS+ | | | 89.41 137 | 88.64 138 | 91.71 152 | 94.74 166 | 80.81 193 | 93.54 205 | 95.10 200 | 83.11 206 | 86.82 174 | 90.67 278 | 79.74 121 | 97.75 176 | 80.51 227 | 93.55 150 | 96.57 136 |
|
sss | | | 88.93 153 | 88.26 153 | 90.94 185 | 94.05 194 | 80.78 194 | 91.71 266 | 95.38 186 | 81.55 245 | 88.63 138 | 93.91 171 | 75.04 175 | 95.47 314 | 82.47 189 | 91.61 178 | 96.57 136 |
|
Anonymous202405211 | | | 87.68 184 | 86.13 211 | 92.31 124 | 96.66 88 | 80.74 195 | 94.87 124 | 91.49 304 | 80.47 260 | 89.46 129 | 95.44 111 | 54.72 343 | 98.23 134 | 82.19 194 | 89.89 198 | 97.97 77 |
|
TAPA-MVS | | 84.62 6 | 88.16 172 | 87.01 180 | 91.62 154 | 96.64 89 | 80.65 196 | 94.39 157 | 96.21 122 | 76.38 303 | 86.19 186 | 95.44 111 | 79.75 120 | 98.08 153 | 62.75 347 | 95.29 125 | 96.13 149 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
HyFIR lowres test | | | 88.09 174 | 86.81 184 | 91.93 140 | 96.00 113 | 80.63 197 | 90.01 296 | 95.79 152 | 73.42 331 | 87.68 156 | 92.10 233 | 73.86 194 | 97.96 164 | 80.75 221 | 91.70 177 | 97.19 112 |
|
ACMH | | 80.38 17 | 85.36 251 | 83.68 263 | 90.39 203 | 94.45 181 | 80.63 197 | 94.73 133 | 94.85 215 | 82.09 226 | 77.24 323 | 92.65 213 | 60.01 324 | 97.58 187 | 72.25 299 | 84.87 255 | 92.96 286 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XXY-MVS | | | 87.65 186 | 86.85 183 | 90.03 219 | 92.14 249 | 80.60 199 | 93.76 197 | 95.23 193 | 82.94 211 | 84.60 226 | 94.02 162 | 74.27 184 | 95.49 313 | 81.04 214 | 83.68 266 | 94.01 238 |
|
CS-MVS | | | 92.55 71 | 92.87 66 | 91.58 156 | 94.21 189 | 80.54 200 | 95.30 92 | 96.68 89 | 88.18 91 | 92.09 88 | 94.57 145 | 84.06 74 | 98.05 156 | 92.56 43 | 98.19 64 | 96.15 146 |
|
anonymousdsp | | | 87.84 179 | 87.09 177 | 90.12 215 | 89.13 330 | 80.54 200 | 94.67 137 | 95.55 169 | 82.05 227 | 83.82 251 | 92.12 230 | 71.47 222 | 97.15 227 | 87.15 130 | 87.80 234 | 92.67 294 |
|
EPP-MVSNet | | | 91.70 85 | 91.56 82 | 92.13 130 | 95.88 118 | 80.50 202 | 97.33 5 | 95.25 192 | 86.15 140 | 89.76 125 | 95.60 109 | 83.42 81 | 98.32 131 | 87.37 127 | 93.25 159 | 97.56 99 |
|
MVSTER | | | 88.84 155 | 88.29 151 | 90.51 197 | 92.95 235 | 80.44 203 | 93.73 198 | 95.01 203 | 84.66 176 | 87.15 164 | 93.12 198 | 72.79 209 | 97.21 225 | 87.86 119 | 87.36 238 | 93.87 244 |
|
GeoE | | | 90.05 116 | 89.43 119 | 91.90 143 | 95.16 146 | 80.37 204 | 95.80 69 | 94.65 225 | 83.90 187 | 87.55 159 | 94.75 135 | 78.18 142 | 97.62 186 | 81.28 211 | 93.63 148 | 97.71 92 |
|
diffmvs | | | 91.37 90 | 91.23 86 | 91.77 150 | 93.09 227 | 80.27 205 | 92.36 248 | 95.52 173 | 87.03 120 | 91.40 105 | 94.93 126 | 80.08 116 | 97.44 199 | 92.13 57 | 94.56 136 | 97.61 95 |
|
pm-mvs1 | | | 86.61 228 | 85.54 231 | 89.82 228 | 91.44 271 | 80.18 206 | 95.28 97 | 94.85 215 | 83.84 189 | 81.66 282 | 92.62 214 | 72.45 215 | 96.48 269 | 79.67 237 | 78.06 328 | 92.82 292 |
|
WR-MVS | | | 88.38 165 | 87.67 165 | 90.52 196 | 93.30 222 | 80.18 206 | 93.26 218 | 95.96 137 | 88.57 77 | 85.47 205 | 92.81 209 | 76.12 158 | 96.91 246 | 81.24 212 | 82.29 281 | 94.47 221 |
|
jajsoiax | | | 88.24 170 | 87.50 167 | 90.48 199 | 90.89 299 | 80.14 208 | 95.31 89 | 95.65 164 | 84.97 170 | 84.24 243 | 94.02 162 | 65.31 291 | 97.42 201 | 88.56 111 | 88.52 219 | 93.89 241 |
|
V42 | | | 87.68 184 | 86.86 182 | 90.15 213 | 90.58 310 | 80.14 208 | 94.24 168 | 95.28 191 | 83.66 192 | 85.67 194 | 91.33 255 | 74.73 180 | 97.41 206 | 84.43 163 | 81.83 288 | 92.89 289 |
|
MVS_Test | | | 91.31 91 | 91.11 88 | 91.93 140 | 94.37 184 | 80.14 208 | 93.46 209 | 95.80 151 | 86.46 133 | 91.35 106 | 93.77 178 | 82.21 96 | 98.09 150 | 87.57 123 | 94.95 129 | 97.55 100 |
|
thisisatest0530 | | | 88.67 159 | 87.61 166 | 91.86 144 | 94.87 160 | 80.07 211 | 94.63 139 | 89.90 338 | 84.00 185 | 88.46 141 | 93.78 177 | 66.88 276 | 98.46 118 | 83.30 175 | 92.65 169 | 97.06 117 |
|
baseline1 | | | 88.10 173 | 87.28 174 | 90.57 192 | 94.96 154 | 80.07 211 | 94.27 166 | 91.29 309 | 86.74 127 | 87.41 160 | 94.00 164 | 76.77 153 | 96.20 283 | 80.77 220 | 79.31 325 | 95.44 177 |
|
tfpnnormal | | | 84.72 265 | 83.23 269 | 89.20 247 | 92.79 238 | 80.05 213 | 94.48 147 | 95.81 150 | 82.38 221 | 81.08 289 | 91.21 259 | 69.01 258 | 96.95 243 | 61.69 349 | 80.59 309 | 90.58 336 |
|
MSDG | | | 84.86 263 | 83.09 270 | 90.14 214 | 93.80 207 | 80.05 213 | 89.18 309 | 93.09 263 | 78.89 278 | 78.19 316 | 91.91 240 | 65.86 290 | 97.27 218 | 68.47 320 | 88.45 221 | 93.11 281 |
|
MG-MVS | | | 91.77 82 | 91.70 81 | 92.00 135 | 97.08 80 | 80.03 215 | 93.60 204 | 95.18 196 | 87.85 101 | 90.89 112 | 96.47 76 | 82.06 100 | 98.36 125 | 85.07 153 | 97.04 93 | 97.62 94 |
|
EIA-MVS | | | 91.95 79 | 91.94 77 | 91.98 136 | 95.16 146 | 80.01 216 | 95.36 86 | 96.73 81 | 88.44 79 | 89.34 130 | 92.16 227 | 83.82 80 | 98.45 121 | 89.35 102 | 97.06 92 | 97.48 101 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 36 | 94.77 14 | 92.49 114 | 96.52 95 | 80.00 217 | 94.00 187 | 97.08 46 | 90.05 35 | 95.65 21 | 97.29 28 | 89.66 13 | 98.97 83 | 93.95 19 | 98.71 34 | 98.50 26 |
|
pmmvs-eth3d | | | 80.97 302 | 78.72 311 | 87.74 282 | 84.99 358 | 79.97 218 | 90.11 295 | 91.65 299 | 75.36 313 | 73.51 344 | 86.03 338 | 59.45 327 | 93.96 334 | 75.17 281 | 72.21 345 | 89.29 344 |
|
mvs_tets | | | 88.06 176 | 87.28 174 | 90.38 205 | 90.94 295 | 79.88 219 | 95.22 100 | 95.66 162 | 85.10 167 | 84.21 244 | 93.94 167 | 63.53 299 | 97.40 208 | 88.50 112 | 88.40 223 | 93.87 244 |
|
IB-MVS | | 80.51 15 | 85.24 256 | 83.26 268 | 91.19 169 | 92.13 250 | 79.86 220 | 91.75 264 | 91.29 309 | 83.28 204 | 80.66 294 | 88.49 313 | 61.28 313 | 98.46 118 | 80.99 217 | 79.46 323 | 95.25 183 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
FC-MVSNet-test | | | 90.27 112 | 90.18 103 | 90.53 194 | 93.71 210 | 79.85 221 | 95.77 71 | 97.59 2 | 89.31 55 | 86.27 184 | 94.67 139 | 81.93 103 | 97.01 240 | 84.26 164 | 88.09 229 | 94.71 203 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 271 | 82.04 278 | 89.74 232 | 95.28 140 | 79.75 222 | 94.25 167 | 92.28 281 | 75.17 316 | 78.02 319 | 93.77 178 | 58.60 331 | 97.84 170 | 65.06 340 | 85.92 247 | 91.63 316 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
1314 | | | 87.51 196 | 86.57 196 | 90.34 208 | 92.42 244 | 79.74 223 | 92.63 239 | 95.35 190 | 78.35 288 | 80.14 302 | 91.62 250 | 74.05 190 | 97.15 227 | 81.05 213 | 93.53 151 | 94.12 230 |
|
thisisatest0515 | | | 87.33 202 | 85.99 217 | 91.37 164 | 93.49 216 | 79.55 224 | 90.63 284 | 89.56 344 | 80.17 262 | 87.56 158 | 90.86 271 | 67.07 273 | 98.28 133 | 81.50 209 | 93.02 164 | 96.29 142 |
|
v10 | | | 87.25 206 | 86.38 200 | 89.85 226 | 91.19 283 | 79.50 225 | 94.48 147 | 95.45 180 | 83.79 190 | 83.62 257 | 91.19 260 | 75.13 173 | 97.42 201 | 81.94 199 | 80.60 308 | 92.63 296 |
|
VPNet | | | 88.20 171 | 87.47 169 | 90.39 203 | 93.56 215 | 79.46 226 | 94.04 183 | 95.54 171 | 88.67 73 | 86.96 168 | 94.58 144 | 69.33 251 | 97.15 227 | 84.05 167 | 80.53 312 | 94.56 212 |
|
BH-RMVSNet | | | 88.37 166 | 87.48 168 | 91.02 179 | 95.28 140 | 79.45 227 | 92.89 233 | 93.07 264 | 85.45 157 | 86.91 171 | 94.84 133 | 70.35 238 | 97.76 173 | 73.97 290 | 94.59 135 | 95.85 163 |
|
v8 | | | 87.50 198 | 86.71 188 | 89.89 225 | 91.37 277 | 79.40 228 | 94.50 146 | 95.38 186 | 84.81 173 | 83.60 258 | 91.33 255 | 76.05 159 | 97.42 201 | 82.84 183 | 80.51 314 | 92.84 291 |
|
ACMH+ | | 81.04 14 | 85.05 259 | 83.46 267 | 89.82 228 | 94.66 172 | 79.37 229 | 94.44 152 | 94.12 243 | 82.19 225 | 78.04 318 | 92.82 208 | 58.23 332 | 97.54 190 | 73.77 292 | 82.90 277 | 92.54 297 |
|
EG-PatchMatch MVS | | | 82.37 285 | 80.34 291 | 88.46 266 | 90.27 316 | 79.35 230 | 92.80 236 | 94.33 233 | 77.14 299 | 73.26 346 | 90.18 286 | 47.47 360 | 96.72 251 | 70.25 308 | 87.32 240 | 89.30 343 |
|
v1144 | | | 87.61 192 | 86.79 186 | 90.06 218 | 91.01 290 | 79.34 231 | 93.95 189 | 95.42 185 | 83.36 202 | 85.66 195 | 91.31 258 | 74.98 176 | 97.42 201 | 83.37 174 | 82.06 284 | 93.42 268 |
|
CR-MVSNet | | | 85.35 252 | 83.76 262 | 90.12 215 | 90.58 310 | 79.34 231 | 85.24 342 | 91.96 293 | 78.27 289 | 85.55 197 | 87.87 324 | 71.03 226 | 95.61 305 | 73.96 291 | 89.36 207 | 95.40 179 |
|
RPMNet | | | 83.95 272 | 81.53 282 | 91.21 168 | 90.58 310 | 79.34 231 | 85.24 342 | 96.76 77 | 71.44 344 | 85.55 197 | 82.97 351 | 70.87 229 | 98.91 89 | 61.01 351 | 89.36 207 | 95.40 179 |
|
PAPM | | | 86.68 227 | 85.39 235 | 90.53 194 | 93.05 229 | 79.33 234 | 89.79 299 | 94.77 222 | 78.82 280 | 81.95 280 | 93.24 193 | 76.81 151 | 97.30 214 | 66.94 330 | 93.16 161 | 94.95 195 |
|
test_djsdf | | | 89.03 149 | 88.64 138 | 90.21 210 | 90.74 305 | 79.28 235 | 95.96 63 | 95.90 143 | 84.66 176 | 85.33 217 | 92.94 203 | 74.02 191 | 97.30 214 | 89.64 99 | 88.53 218 | 94.05 236 |
|
Test_1112_low_res | | | 87.65 186 | 86.51 198 | 91.08 175 | 94.94 156 | 79.28 235 | 91.77 263 | 94.30 234 | 76.04 308 | 83.51 260 | 92.37 220 | 77.86 146 | 97.73 177 | 78.69 248 | 89.13 212 | 96.22 145 |
|
v7n | | | 86.81 221 | 85.76 228 | 89.95 224 | 90.72 306 | 79.25 237 | 95.07 110 | 95.92 140 | 84.45 179 | 82.29 274 | 90.86 271 | 72.60 212 | 97.53 191 | 79.42 242 | 80.52 313 | 93.08 283 |
|
v2v482 | | | 87.84 179 | 87.06 178 | 90.17 211 | 90.99 291 | 79.23 238 | 94.00 187 | 95.13 197 | 84.87 171 | 85.53 199 | 92.07 236 | 74.45 182 | 97.45 197 | 84.71 160 | 81.75 290 | 93.85 247 |
|
v1192 | | | 87.25 206 | 86.33 204 | 90.00 223 | 90.76 304 | 79.04 239 | 93.80 195 | 95.48 175 | 82.57 218 | 85.48 204 | 91.18 262 | 73.38 204 | 97.42 201 | 82.30 192 | 82.06 284 | 93.53 262 |
|
UniMVSNet_ETH3D | | | 87.53 195 | 86.37 201 | 91.00 181 | 92.44 243 | 78.96 240 | 94.74 132 | 95.61 166 | 84.07 184 | 85.36 216 | 94.52 146 | 59.78 326 | 97.34 213 | 82.93 180 | 87.88 232 | 96.71 131 |
|
thres600view7 | | | 87.65 186 | 86.67 190 | 90.59 191 | 96.08 109 | 78.72 241 | 94.88 123 | 91.58 300 | 87.06 119 | 88.08 146 | 92.30 223 | 68.91 259 | 98.10 142 | 70.05 314 | 91.10 181 | 94.96 192 |
|
GA-MVS | | | 86.61 228 | 85.27 238 | 90.66 189 | 91.33 280 | 78.71 242 | 90.40 287 | 93.81 253 | 85.34 160 | 85.12 219 | 89.57 299 | 61.25 314 | 97.11 231 | 80.99 217 | 89.59 204 | 96.15 146 |
|
tfpn200view9 | | | 87.58 193 | 86.64 191 | 90.41 202 | 95.99 114 | 78.64 243 | 94.58 141 | 91.98 291 | 86.94 123 | 88.09 144 | 91.77 243 | 69.18 256 | 98.10 142 | 70.13 311 | 91.10 181 | 94.48 219 |
|
thres400 | | | 87.62 191 | 86.64 191 | 90.57 192 | 95.99 114 | 78.64 243 | 94.58 141 | 91.98 291 | 86.94 123 | 88.09 144 | 91.77 243 | 69.18 256 | 98.10 142 | 70.13 311 | 91.10 181 | 94.96 192 |
|
thres100view900 | | | 87.63 189 | 86.71 188 | 90.38 205 | 96.12 105 | 78.55 245 | 95.03 114 | 91.58 300 | 87.15 116 | 88.06 147 | 92.29 224 | 68.91 259 | 98.10 142 | 70.13 311 | 91.10 181 | 94.48 219 |
|
thres200 | | | 87.21 210 | 86.24 209 | 90.12 215 | 95.36 136 | 78.53 246 | 93.26 218 | 92.10 285 | 86.42 135 | 88.00 149 | 91.11 266 | 69.24 255 | 98.00 161 | 69.58 315 | 91.04 186 | 93.83 248 |
|
MS-PatchMatch | | | 85.05 259 | 84.16 256 | 87.73 283 | 91.42 275 | 78.51 247 | 91.25 275 | 93.53 256 | 77.50 294 | 80.15 301 | 91.58 251 | 61.99 308 | 95.51 310 | 75.69 276 | 94.35 141 | 89.16 346 |
|
BH-untuned | | | 88.60 162 | 88.13 155 | 90.01 222 | 95.24 143 | 78.50 248 | 93.29 216 | 94.15 240 | 84.75 174 | 84.46 231 | 93.40 185 | 75.76 165 | 97.40 208 | 77.59 258 | 94.52 137 | 94.12 230 |
|
TransMVSNet (Re) | | | 84.43 268 | 83.06 271 | 88.54 264 | 91.72 264 | 78.44 249 | 95.18 104 | 92.82 269 | 82.73 215 | 79.67 309 | 92.12 230 | 73.49 199 | 95.96 293 | 71.10 306 | 68.73 354 | 91.21 325 |
|
TR-MVS | | | 86.78 223 | 85.76 228 | 89.82 228 | 94.37 184 | 78.41 250 | 92.47 244 | 92.83 268 | 81.11 255 | 86.36 182 | 92.40 219 | 68.73 262 | 97.48 194 | 73.75 293 | 89.85 200 | 93.57 261 |
|
CHOSEN 280x420 | | | 85.15 257 | 83.99 259 | 88.65 262 | 92.47 242 | 78.40 251 | 79.68 359 | 92.76 270 | 74.90 320 | 81.41 285 | 89.59 298 | 69.85 245 | 95.51 310 | 79.92 235 | 95.29 125 | 92.03 310 |
|
MIMVSNet | | | 82.59 283 | 80.53 288 | 88.76 257 | 91.51 270 | 78.32 252 | 86.57 335 | 90.13 331 | 79.32 271 | 80.70 293 | 88.69 312 | 52.98 350 | 93.07 344 | 66.03 335 | 88.86 215 | 94.90 196 |
|
EI-MVSNet | | | 89.10 144 | 88.86 136 | 89.80 231 | 91.84 260 | 78.30 253 | 93.70 201 | 95.01 203 | 85.73 148 | 87.15 164 | 95.28 115 | 79.87 119 | 97.21 225 | 83.81 170 | 87.36 238 | 93.88 243 |
|
IterMVS-LS | | | 88.36 167 | 87.91 161 | 89.70 235 | 93.80 207 | 78.29 254 | 93.73 198 | 95.08 202 | 85.73 148 | 84.75 224 | 91.90 241 | 79.88 118 | 96.92 245 | 83.83 169 | 82.51 279 | 93.89 241 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v144192 | | | 87.19 212 | 86.35 203 | 89.74 232 | 90.64 308 | 78.24 255 | 93.92 191 | 95.43 183 | 81.93 233 | 85.51 201 | 91.05 268 | 74.21 187 | 97.45 197 | 82.86 182 | 81.56 292 | 93.53 262 |
|
test_0402 | | | 81.30 299 | 79.17 307 | 87.67 284 | 93.19 224 | 78.17 256 | 92.98 230 | 91.71 296 | 75.25 315 | 76.02 333 | 90.31 284 | 59.23 328 | 96.37 276 | 50.22 362 | 83.63 267 | 88.47 352 |
|
WR-MVS_H | | | 87.80 181 | 87.37 171 | 89.10 250 | 93.23 223 | 78.12 257 | 95.61 80 | 97.30 29 | 87.90 97 | 83.72 253 | 92.01 238 | 79.65 126 | 96.01 291 | 76.36 269 | 80.54 310 | 93.16 279 |
|
v1921920 | | | 86.97 217 | 86.06 216 | 89.69 236 | 90.53 313 | 78.11 258 | 93.80 195 | 95.43 183 | 81.90 235 | 85.33 217 | 91.05 268 | 72.66 210 | 97.41 206 | 82.05 197 | 81.80 289 | 93.53 262 |
|
XVG-ACMP-BASELINE | | | 86.00 240 | 84.84 248 | 89.45 243 | 91.20 282 | 78.00 259 | 91.70 267 | 95.55 169 | 85.05 169 | 82.97 268 | 92.25 226 | 54.49 344 | 97.48 194 | 82.93 180 | 87.45 237 | 92.89 289 |
|
FMVSNet5 | | | 81.52 295 | 79.60 301 | 87.27 293 | 91.17 284 | 77.95 260 | 91.49 271 | 92.26 282 | 76.87 300 | 76.16 330 | 87.91 323 | 51.67 351 | 92.34 348 | 67.74 326 | 81.16 296 | 91.52 317 |
|
GG-mvs-BLEND | | | | | 87.94 281 | 89.73 327 | 77.91 261 | 87.80 325 | 78.23 370 | | 80.58 295 | 83.86 346 | 59.88 325 | 95.33 316 | 71.20 302 | 92.22 175 | 90.60 335 |
|
BH-w/o | | | 87.57 194 | 87.05 179 | 89.12 249 | 94.90 159 | 77.90 262 | 92.41 245 | 93.51 257 | 82.89 213 | 83.70 254 | 91.34 254 | 75.75 166 | 97.07 235 | 75.49 277 | 93.49 152 | 92.39 303 |
|
testdata | | | | | 90.49 198 | 96.40 97 | 77.89 263 | | 95.37 188 | 72.51 339 | 93.63 49 | 96.69 61 | 82.08 99 | 97.65 182 | 83.08 177 | 97.39 87 | 95.94 159 |
|
pmmvs6 | | | 83.42 277 | 81.60 281 | 88.87 255 | 88.01 344 | 77.87 264 | 94.96 116 | 94.24 237 | 74.67 322 | 78.80 314 | 91.09 267 | 60.17 323 | 96.49 268 | 77.06 266 | 75.40 340 | 92.23 308 |
|
Baseline_NR-MVSNet | | | 87.07 215 | 86.63 193 | 88.40 267 | 91.44 271 | 77.87 264 | 94.23 169 | 92.57 275 | 84.12 183 | 85.74 192 | 92.08 234 | 77.25 148 | 96.04 288 | 82.29 193 | 79.94 318 | 91.30 322 |
|
tttt0517 | | | 88.61 161 | 87.78 162 | 91.11 174 | 94.96 154 | 77.81 266 | 95.35 87 | 89.69 341 | 85.09 168 | 88.05 148 | 94.59 143 | 66.93 274 | 98.48 116 | 83.27 176 | 92.13 176 | 97.03 119 |
|
AllTest | | | 83.42 277 | 81.39 283 | 89.52 240 | 95.01 150 | 77.79 267 | 93.12 223 | 90.89 320 | 77.41 295 | 76.12 331 | 93.34 186 | 54.08 346 | 97.51 192 | 68.31 322 | 84.27 260 | 93.26 271 |
|
TestCases | | | | | 89.52 240 | 95.01 150 | 77.79 267 | | 90.89 320 | 77.41 295 | 76.12 331 | 93.34 186 | 54.08 346 | 97.51 192 | 68.31 322 | 84.27 260 | 93.26 271 |
|
v1240 | | | 86.78 223 | 85.85 223 | 89.56 238 | 90.45 314 | 77.79 267 | 93.61 203 | 95.37 188 | 81.65 241 | 85.43 209 | 91.15 264 | 71.50 221 | 97.43 200 | 81.47 210 | 82.05 286 | 93.47 266 |
|
gg-mvs-nofinetune | | | 81.77 289 | 79.37 302 | 88.99 254 | 90.85 301 | 77.73 270 | 86.29 336 | 79.63 368 | 74.88 321 | 83.19 267 | 69.05 362 | 60.34 321 | 96.11 287 | 75.46 278 | 94.64 134 | 93.11 281 |
|
Fast-Effi-MVS+-dtu | | | 87.44 199 | 86.72 187 | 89.63 237 | 92.04 253 | 77.68 271 | 94.03 184 | 93.94 245 | 85.81 145 | 82.42 273 | 91.32 257 | 70.33 239 | 97.06 236 | 80.33 230 | 90.23 192 | 94.14 229 |
|
mvs-test1 | | | 89.45 134 | 89.14 127 | 90.38 205 | 93.33 220 | 77.63 272 | 94.95 117 | 94.36 231 | 87.70 105 | 87.10 167 | 92.81 209 | 73.45 200 | 98.03 159 | 85.57 150 | 93.04 163 | 95.48 175 |
|
cl22 | | | 86.78 223 | 85.98 218 | 89.18 248 | 92.34 245 | 77.62 273 | 90.84 281 | 94.13 242 | 81.33 249 | 83.97 248 | 90.15 287 | 73.96 192 | 96.60 261 | 84.19 165 | 82.94 274 | 93.33 269 |
|
miper_enhance_ethall | | | 86.90 218 | 86.18 210 | 89.06 251 | 91.66 268 | 77.58 274 | 90.22 292 | 94.82 218 | 79.16 275 | 84.48 230 | 89.10 303 | 79.19 129 | 96.66 254 | 84.06 166 | 82.94 274 | 92.94 287 |
|
MVS_0304 | | | 83.46 276 | 81.92 279 | 88.10 277 | 90.63 309 | 77.49 275 | 93.26 218 | 93.75 254 | 80.04 265 | 80.44 298 | 87.24 332 | 47.94 358 | 95.55 307 | 75.79 275 | 88.16 226 | 91.26 323 |
|
D2MVS | | | 85.90 242 | 85.09 241 | 88.35 269 | 90.79 302 | 77.42 276 | 91.83 262 | 95.70 158 | 80.77 258 | 80.08 304 | 90.02 290 | 66.74 279 | 96.37 276 | 81.88 201 | 87.97 231 | 91.26 323 |
|
miper_ehance_all_eth | | | 87.22 209 | 86.62 194 | 89.02 253 | 92.13 250 | 77.40 277 | 90.91 280 | 94.81 219 | 81.28 250 | 84.32 239 | 90.08 289 | 79.26 128 | 96.62 256 | 83.81 170 | 82.94 274 | 93.04 284 |
|
c3_l | | | 87.14 214 | 86.50 199 | 89.04 252 | 92.20 247 | 77.26 278 | 91.22 276 | 94.70 223 | 82.01 230 | 84.34 238 | 90.43 282 | 78.81 132 | 96.61 259 | 83.70 172 | 81.09 299 | 93.25 273 |
|
v148 | | | 87.04 216 | 86.32 205 | 89.21 246 | 90.94 295 | 77.26 278 | 93.71 200 | 94.43 229 | 84.84 172 | 84.36 237 | 90.80 274 | 76.04 160 | 97.05 237 | 82.12 195 | 79.60 322 | 93.31 270 |
|
PMMVS | | | 85.71 247 | 84.96 244 | 87.95 280 | 88.90 333 | 77.09 280 | 88.68 317 | 90.06 333 | 72.32 340 | 86.47 177 | 90.76 276 | 72.15 216 | 94.40 325 | 81.78 204 | 93.49 152 | 92.36 304 |
|
ITE_SJBPF | | | | | 88.24 273 | 91.88 259 | 77.05 281 | | 92.92 266 | 85.54 154 | 80.13 303 | 93.30 190 | 57.29 334 | 96.20 283 | 72.46 298 | 84.71 256 | 91.49 318 |
|
pmmvs5 | | | 84.21 269 | 82.84 275 | 88.34 270 | 88.95 332 | 76.94 282 | 92.41 245 | 91.91 295 | 75.63 311 | 80.28 299 | 91.18 262 | 64.59 295 | 95.57 306 | 77.09 265 | 83.47 269 | 92.53 298 |
|
IterMVS-SCA-FT | | | 85.45 249 | 84.53 254 | 88.18 275 | 91.71 265 | 76.87 283 | 90.19 293 | 92.65 274 | 85.40 159 | 81.44 284 | 90.54 279 | 66.79 277 | 95.00 322 | 81.04 214 | 81.05 300 | 92.66 295 |
|
baseline2 | | | 86.50 233 | 85.39 235 | 89.84 227 | 91.12 287 | 76.70 284 | 91.88 260 | 88.58 346 | 82.35 223 | 79.95 306 | 90.95 270 | 73.42 202 | 97.63 185 | 80.27 231 | 89.95 197 | 95.19 184 |
|
SCA | | | 86.32 237 | 85.18 239 | 89.73 234 | 92.15 248 | 76.60 285 | 91.12 277 | 91.69 298 | 83.53 197 | 85.50 202 | 88.81 307 | 66.79 277 | 96.48 269 | 76.65 267 | 90.35 191 | 96.12 150 |
|
CP-MVSNet | | | 87.63 189 | 87.26 176 | 88.74 260 | 93.12 226 | 76.59 286 | 95.29 95 | 96.58 97 | 88.43 80 | 83.49 261 | 92.98 202 | 75.28 172 | 95.83 299 | 78.97 245 | 81.15 298 | 93.79 249 |
|
cl____ | | | 86.52 232 | 85.78 225 | 88.75 258 | 92.03 254 | 76.46 287 | 90.74 282 | 94.30 234 | 81.83 239 | 83.34 264 | 90.78 275 | 75.74 168 | 96.57 262 | 81.74 205 | 81.54 293 | 93.22 276 |
|
DIV-MVS_self_test | | | 86.53 231 | 85.78 225 | 88.75 258 | 92.02 255 | 76.45 288 | 90.74 282 | 94.30 234 | 81.83 239 | 83.34 264 | 90.82 273 | 75.75 166 | 96.57 262 | 81.73 206 | 81.52 294 | 93.24 274 |
|
Effi-MVS+-dtu | | | 88.65 160 | 88.35 147 | 89.54 239 | 93.33 220 | 76.39 289 | 94.47 150 | 94.36 231 | 87.70 105 | 85.43 209 | 89.56 300 | 73.45 200 | 97.26 220 | 85.57 150 | 91.28 180 | 94.97 189 |
|
Patchmtry | | | 82.71 281 | 80.93 287 | 88.06 278 | 90.05 321 | 76.37 290 | 84.74 346 | 91.96 293 | 72.28 341 | 81.32 287 | 87.87 324 | 71.03 226 | 95.50 312 | 68.97 317 | 80.15 316 | 92.32 306 |
|
PS-CasMVS | | | 87.32 203 | 86.88 181 | 88.63 263 | 92.99 234 | 76.33 291 | 95.33 88 | 96.61 95 | 88.22 88 | 83.30 266 | 93.07 200 | 73.03 207 | 95.79 302 | 78.36 250 | 81.00 304 | 93.75 255 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 312 | 77.03 318 | 86.93 302 | 87.00 347 | 76.23 292 | 92.33 249 | 90.74 323 | 68.93 351 | 74.52 340 | 88.23 318 | 49.58 355 | 96.62 256 | 57.64 357 | 84.29 259 | 87.94 354 |
|
IterMVS | | | 84.88 262 | 83.98 260 | 87.60 285 | 91.44 271 | 76.03 293 | 90.18 294 | 92.41 277 | 83.24 205 | 81.06 290 | 90.42 283 | 66.60 280 | 94.28 329 | 79.46 238 | 80.98 305 | 92.48 299 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ECVR-MVS |  | | 89.09 146 | 88.53 141 | 90.77 188 | 95.62 128 | 75.89 294 | 96.16 48 | 84.22 359 | 87.89 99 | 90.20 119 | 96.65 65 | 63.19 302 | 98.10 142 | 85.90 145 | 96.94 94 | 98.33 44 |
|
Vis-MVSNet (Re-imp) | | | 89.59 129 | 89.44 118 | 90.03 219 | 95.74 122 | 75.85 295 | 95.61 80 | 90.80 322 | 87.66 109 | 87.83 152 | 95.40 114 | 76.79 152 | 96.46 272 | 78.37 249 | 96.73 100 | 97.80 89 |
|
eth_miper_zixun_eth | | | 86.50 233 | 85.77 227 | 88.68 261 | 91.94 257 | 75.81 296 | 90.47 286 | 94.89 212 | 82.05 227 | 84.05 245 | 90.46 281 | 75.96 161 | 96.77 250 | 82.76 186 | 79.36 324 | 93.46 267 |
|
PEN-MVS | | | 86.80 222 | 86.27 208 | 88.40 267 | 92.32 246 | 75.71 297 | 95.18 104 | 96.38 109 | 87.97 94 | 82.82 270 | 93.15 196 | 73.39 203 | 95.92 294 | 76.15 273 | 79.03 327 | 93.59 260 |
|
PatchmatchNet |  | | 85.85 244 | 84.70 250 | 89.29 245 | 91.76 263 | 75.54 298 | 88.49 319 | 91.30 308 | 81.63 243 | 85.05 220 | 88.70 311 | 71.71 217 | 96.24 282 | 74.61 287 | 89.05 213 | 96.08 154 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TDRefinement | | | 79.81 310 | 77.34 314 | 87.22 298 | 79.24 366 | 75.48 299 | 93.12 223 | 92.03 288 | 76.45 302 | 75.01 337 | 91.58 251 | 49.19 356 | 96.44 273 | 70.22 310 | 69.18 351 | 89.75 340 |
|
test1111 | | | 89.10 144 | 88.64 138 | 90.48 199 | 95.53 133 | 74.97 300 | 96.08 55 | 84.89 357 | 88.13 93 | 90.16 121 | 96.65 65 | 63.29 300 | 98.10 142 | 86.14 140 | 96.90 96 | 98.39 40 |
|
DTE-MVSNet | | | 86.11 239 | 85.48 233 | 87.98 279 | 91.65 269 | 74.92 301 | 94.93 119 | 95.75 155 | 87.36 114 | 82.26 275 | 93.04 201 | 72.85 208 | 95.82 300 | 74.04 289 | 77.46 333 | 93.20 277 |
|
miper_lstm_enhance | | | 85.27 255 | 84.59 253 | 87.31 292 | 91.28 281 | 74.63 302 | 87.69 328 | 94.09 244 | 81.20 254 | 81.36 286 | 89.85 295 | 74.97 177 | 94.30 328 | 81.03 216 | 79.84 321 | 93.01 285 |
|
USDC | | | 82.76 280 | 81.26 285 | 87.26 294 | 91.17 284 | 74.55 303 | 89.27 306 | 93.39 259 | 78.26 290 | 75.30 336 | 92.08 234 | 54.43 345 | 96.63 255 | 71.64 300 | 85.79 250 | 90.61 333 |
|
KD-MVS_2432*1600 | | | 78.50 317 | 76.02 322 | 85.93 314 | 86.22 350 | 74.47 304 | 84.80 344 | 92.33 278 | 79.29 272 | 76.98 325 | 85.92 339 | 53.81 348 | 93.97 332 | 67.39 327 | 57.42 362 | 89.36 341 |
|
miper_refine_blended | | | 78.50 317 | 76.02 322 | 85.93 314 | 86.22 350 | 74.47 304 | 84.80 344 | 92.33 278 | 79.29 272 | 76.98 325 | 85.92 339 | 53.81 348 | 93.97 332 | 67.39 327 | 57.42 362 | 89.36 341 |
|
ppachtmachnet_test | | | 81.84 288 | 80.07 296 | 87.15 300 | 88.46 337 | 74.43 306 | 89.04 312 | 92.16 284 | 75.33 314 | 77.75 320 | 88.99 304 | 66.20 285 | 95.37 315 | 65.12 339 | 77.60 331 | 91.65 315 |
|
mvs_anonymous | | | 89.37 140 | 89.32 123 | 89.51 242 | 93.47 217 | 74.22 307 | 91.65 269 | 94.83 217 | 82.91 212 | 85.45 206 | 93.79 176 | 81.23 108 | 96.36 278 | 86.47 139 | 94.09 142 | 97.94 79 |
|
ADS-MVSNet2 | | | 81.66 292 | 79.71 300 | 87.50 288 | 91.35 278 | 74.19 308 | 83.33 351 | 88.48 347 | 72.90 336 | 82.24 276 | 85.77 341 | 64.98 293 | 93.20 342 | 64.57 341 | 83.74 264 | 95.12 185 |
|
Patchmatch-test | | | 81.37 297 | 79.30 303 | 87.58 286 | 90.92 297 | 74.16 309 | 80.99 357 | 87.68 351 | 70.52 348 | 76.63 328 | 88.81 307 | 71.21 223 | 92.76 346 | 60.01 355 | 86.93 244 | 95.83 165 |
|
MDA-MVSNet-bldmvs | | | 78.85 316 | 76.31 319 | 86.46 308 | 89.76 326 | 73.88 310 | 88.79 315 | 90.42 325 | 79.16 275 | 59.18 361 | 88.33 316 | 60.20 322 | 94.04 331 | 62.00 348 | 68.96 352 | 91.48 319 |
|
DWT-MVSNet_test | | | 84.95 261 | 83.68 263 | 88.77 256 | 91.43 274 | 73.75 311 | 91.74 265 | 90.98 316 | 80.66 259 | 83.84 250 | 87.36 329 | 62.44 305 | 97.11 231 | 78.84 247 | 85.81 248 | 95.46 176 |
|
MIMVSNet1 | | | 79.38 313 | 77.28 315 | 85.69 317 | 86.35 349 | 73.67 312 | 91.61 270 | 92.75 271 | 78.11 293 | 72.64 348 | 88.12 319 | 48.16 357 | 91.97 352 | 60.32 352 | 77.49 332 | 91.43 320 |
|
test2506 | | | 87.21 210 | 86.28 207 | 90.02 221 | 95.62 128 | 73.64 313 | 96.25 45 | 71.38 372 | 87.89 99 | 90.45 115 | 96.65 65 | 55.29 341 | 98.09 150 | 86.03 144 | 96.94 94 | 98.33 44 |
|
EGC-MVSNET | | | 61.97 330 | 56.37 334 | 78.77 340 | 89.63 328 | 73.50 314 | 89.12 310 | 82.79 361 | 0.21 376 | 1.24 377 | 84.80 344 | 39.48 364 | 90.04 358 | 44.13 364 | 75.94 339 | 72.79 363 |
|
our_test_3 | | | 81.93 287 | 80.46 290 | 86.33 311 | 88.46 337 | 73.48 315 | 88.46 320 | 91.11 311 | 76.46 301 | 76.69 327 | 88.25 317 | 66.89 275 | 94.36 326 | 68.75 318 | 79.08 326 | 91.14 327 |
|
JIA-IIPM | | | 81.04 300 | 78.98 310 | 87.25 295 | 88.64 334 | 73.48 315 | 81.75 356 | 89.61 343 | 73.19 333 | 82.05 278 | 73.71 359 | 66.07 288 | 95.87 297 | 71.18 304 | 84.60 257 | 92.41 302 |
|
RRT_test8_iter05 | | | 86.90 218 | 86.36 202 | 88.52 265 | 93.00 233 | 73.27 317 | 94.32 164 | 95.96 137 | 85.50 156 | 84.26 242 | 92.86 204 | 60.76 319 | 97.70 178 | 88.32 114 | 82.29 281 | 94.60 208 |
|
TinyColmap | | | 79.76 311 | 77.69 313 | 85.97 313 | 91.71 265 | 73.12 318 | 89.55 300 | 90.36 328 | 75.03 317 | 72.03 350 | 90.19 285 | 46.22 361 | 96.19 285 | 63.11 345 | 81.03 301 | 88.59 351 |
|
UnsupCasMVSNet_bld | | | 76.23 323 | 73.27 326 | 85.09 323 | 83.79 360 | 72.92 319 | 85.65 341 | 93.47 258 | 71.52 343 | 68.84 355 | 79.08 356 | 49.77 354 | 93.21 341 | 66.81 334 | 60.52 361 | 89.13 348 |
|
test0.0.03 1 | | | 82.41 284 | 81.69 280 | 84.59 325 | 88.23 340 | 72.89 320 | 90.24 290 | 87.83 349 | 83.41 200 | 79.86 307 | 89.78 296 | 67.25 269 | 88.99 360 | 65.18 338 | 83.42 271 | 91.90 312 |
|
EPNet_dtu | | | 86.49 235 | 85.94 221 | 88.14 276 | 90.24 317 | 72.82 321 | 94.11 175 | 92.20 283 | 86.66 131 | 79.42 312 | 92.36 221 | 73.52 198 | 95.81 301 | 71.26 301 | 93.66 147 | 95.80 167 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MDA-MVSNet_test_wron | | | 79.21 315 | 77.19 317 | 85.29 320 | 88.22 341 | 72.77 322 | 85.87 338 | 90.06 333 | 74.34 324 | 62.62 360 | 87.56 327 | 66.14 286 | 91.99 351 | 66.90 333 | 73.01 342 | 91.10 330 |
|
EPMVS | | | 83.90 274 | 82.70 276 | 87.51 287 | 90.23 318 | 72.67 323 | 88.62 318 | 81.96 364 | 81.37 248 | 85.01 221 | 88.34 315 | 66.31 284 | 94.45 324 | 75.30 280 | 87.12 241 | 95.43 178 |
|
YYNet1 | | | 79.22 314 | 77.20 316 | 85.28 321 | 88.20 343 | 72.66 324 | 85.87 338 | 90.05 335 | 74.33 325 | 62.70 359 | 87.61 326 | 66.09 287 | 92.03 350 | 66.94 330 | 72.97 343 | 91.15 326 |
|
UnsupCasMVSNet_eth | | | 80.07 308 | 78.27 312 | 85.46 318 | 85.24 357 | 72.63 325 | 88.45 321 | 94.87 214 | 82.99 210 | 71.64 352 | 88.07 320 | 56.34 336 | 91.75 353 | 73.48 294 | 63.36 359 | 92.01 311 |
|
OurMVSNet-221017-0 | | | 85.35 252 | 84.64 252 | 87.49 289 | 90.77 303 | 72.59 326 | 94.01 186 | 94.40 230 | 84.72 175 | 79.62 311 | 93.17 195 | 61.91 309 | 96.72 251 | 81.99 198 | 81.16 296 | 93.16 279 |
|
CostFormer | | | 85.77 246 | 84.94 245 | 88.26 272 | 91.16 286 | 72.58 327 | 89.47 304 | 91.04 315 | 76.26 306 | 86.45 180 | 89.97 292 | 70.74 231 | 96.86 249 | 82.35 191 | 87.07 243 | 95.34 182 |
|
CL-MVSNet_self_test | | | 81.74 290 | 80.53 288 | 85.36 319 | 85.96 352 | 72.45 328 | 90.25 289 | 93.07 264 | 81.24 252 | 79.85 308 | 87.29 331 | 70.93 228 | 92.52 347 | 66.95 329 | 69.23 350 | 91.11 329 |
|
LCM-MVSNet-Re | | | 88.30 169 | 88.32 150 | 88.27 271 | 94.71 169 | 72.41 329 | 93.15 222 | 90.98 316 | 87.77 103 | 79.25 313 | 91.96 239 | 78.35 140 | 95.75 303 | 83.04 178 | 95.62 116 | 96.65 132 |
|
PVSNet | | 78.82 18 | 85.55 248 | 84.65 251 | 88.23 274 | 94.72 168 | 71.93 330 | 87.12 332 | 92.75 271 | 78.80 281 | 84.95 222 | 90.53 280 | 64.43 296 | 96.71 253 | 74.74 285 | 93.86 145 | 96.06 156 |
|
ADS-MVSNet | | | 81.56 294 | 79.78 298 | 86.90 304 | 91.35 278 | 71.82 331 | 83.33 351 | 89.16 345 | 72.90 336 | 82.24 276 | 85.77 341 | 64.98 293 | 93.76 335 | 64.57 341 | 83.74 264 | 95.12 185 |
|
test-LLR | | | 85.87 243 | 85.41 234 | 87.25 295 | 90.95 293 | 71.67 332 | 89.55 300 | 89.88 339 | 83.41 200 | 84.54 228 | 87.95 321 | 67.25 269 | 95.11 319 | 81.82 202 | 93.37 157 | 94.97 189 |
|
test-mter | | | 84.54 267 | 83.64 265 | 87.25 295 | 90.95 293 | 71.67 332 | 89.55 300 | 89.88 339 | 79.17 274 | 84.54 228 | 87.95 321 | 55.56 338 | 95.11 319 | 81.82 202 | 93.37 157 | 94.97 189 |
|
tpm2 | | | 84.08 270 | 82.94 272 | 87.48 290 | 91.39 276 | 71.27 334 | 89.23 308 | 90.37 327 | 71.95 342 | 84.64 225 | 89.33 301 | 67.30 268 | 96.55 266 | 75.17 281 | 87.09 242 | 94.63 205 |
|
Patchmatch-RL test | | | 81.67 291 | 79.96 297 | 86.81 307 | 85.42 356 | 71.23 335 | 82.17 355 | 87.50 352 | 78.47 286 | 77.19 324 | 82.50 352 | 70.81 230 | 93.48 338 | 82.66 187 | 72.89 344 | 95.71 171 |
|
TESTMET0.1,1 | | | 83.74 275 | 82.85 274 | 86.42 310 | 89.96 323 | 71.21 336 | 89.55 300 | 87.88 348 | 77.41 295 | 83.37 263 | 87.31 330 | 56.71 335 | 93.65 337 | 80.62 224 | 92.85 168 | 94.40 222 |
|
PVSNet_0 | | 73.20 20 | 77.22 320 | 74.83 325 | 84.37 327 | 90.70 307 | 71.10 337 | 83.09 353 | 89.67 342 | 72.81 338 | 73.93 343 | 83.13 350 | 60.79 318 | 93.70 336 | 68.54 319 | 50.84 365 | 88.30 353 |
|
tpm cat1 | | | 81.96 286 | 80.27 292 | 87.01 301 | 91.09 288 | 71.02 338 | 87.38 331 | 91.53 303 | 66.25 354 | 80.17 300 | 86.35 337 | 68.22 267 | 96.15 286 | 69.16 316 | 82.29 281 | 93.86 246 |
|
tpmvs | | | 83.35 279 | 82.07 277 | 87.20 299 | 91.07 289 | 71.00 339 | 88.31 322 | 91.70 297 | 78.91 277 | 80.49 297 | 87.18 333 | 69.30 254 | 97.08 234 | 68.12 325 | 83.56 268 | 93.51 265 |
|
PatchT | | | 82.68 282 | 81.27 284 | 86.89 305 | 90.09 320 | 70.94 340 | 84.06 348 | 90.15 330 | 74.91 319 | 85.63 196 | 83.57 348 | 69.37 250 | 94.87 323 | 65.19 337 | 88.50 220 | 94.84 198 |
|
SixPastTwentyTwo | | | 83.91 273 | 82.90 273 | 86.92 303 | 90.99 291 | 70.67 341 | 93.48 207 | 91.99 290 | 85.54 154 | 77.62 322 | 92.11 232 | 60.59 320 | 96.87 248 | 76.05 274 | 77.75 330 | 93.20 277 |
|
RPSCF | | | 85.07 258 | 84.27 255 | 87.48 290 | 92.91 236 | 70.62 342 | 91.69 268 | 92.46 276 | 76.20 307 | 82.67 272 | 95.22 118 | 63.94 298 | 97.29 217 | 77.51 260 | 85.80 249 | 94.53 213 |
|
pmmvs3 | | | 71.81 326 | 68.71 329 | 81.11 337 | 75.86 367 | 70.42 343 | 86.74 333 | 83.66 360 | 58.95 360 | 68.64 356 | 80.89 354 | 36.93 365 | 89.52 359 | 63.10 346 | 63.59 358 | 83.39 356 |
|
Anonymous20231206 | | | 81.03 301 | 79.77 299 | 84.82 324 | 87.85 346 | 70.26 344 | 91.42 272 | 92.08 286 | 73.67 329 | 77.75 320 | 89.25 302 | 62.43 306 | 93.08 343 | 61.50 350 | 82.00 287 | 91.12 328 |
|
PM-MVS | | | 78.11 319 | 76.12 321 | 84.09 331 | 83.54 361 | 70.08 345 | 88.97 313 | 85.27 356 | 79.93 266 | 74.73 339 | 86.43 335 | 34.70 366 | 93.48 338 | 79.43 241 | 72.06 346 | 88.72 349 |
|
MDTV_nov1_ep13 | | | | 83.56 266 | | 91.69 267 | 69.93 346 | 87.75 327 | 91.54 302 | 78.60 285 | 84.86 223 | 88.90 306 | 69.54 248 | 96.03 289 | 70.25 308 | 88.93 214 | |
|
LF4IMVS | | | 80.37 306 | 79.07 309 | 84.27 329 | 86.64 348 | 69.87 347 | 89.39 305 | 91.05 314 | 76.38 303 | 74.97 338 | 90.00 291 | 47.85 359 | 94.25 330 | 74.55 288 | 80.82 307 | 88.69 350 |
|
K. test v3 | | | 81.59 293 | 80.15 295 | 85.91 316 | 89.89 325 | 69.42 348 | 92.57 242 | 87.71 350 | 85.56 153 | 73.44 345 | 89.71 297 | 55.58 337 | 95.52 309 | 77.17 263 | 69.76 348 | 92.78 293 |
|
tpm | | | 84.73 264 | 84.02 258 | 86.87 306 | 90.33 315 | 68.90 349 | 89.06 311 | 89.94 336 | 80.85 257 | 85.75 191 | 89.86 294 | 68.54 264 | 95.97 292 | 77.76 256 | 84.05 262 | 95.75 168 |
|
lessismore_v0 | | | | | 86.04 312 | 88.46 337 | 68.78 350 | | 80.59 366 | | 73.01 347 | 90.11 288 | 55.39 339 | 96.43 274 | 75.06 283 | 65.06 356 | 92.90 288 |
|
gm-plane-assit | | | | | | 89.60 329 | 68.00 351 | | | 77.28 298 | | 88.99 304 | | 97.57 188 | 79.44 240 | | |
|
Anonymous20240521 | | | 80.44 305 | 79.21 305 | 84.11 330 | 85.75 354 | 67.89 352 | 92.86 234 | 93.23 261 | 75.61 312 | 75.59 335 | 87.47 328 | 50.03 353 | 94.33 327 | 71.14 305 | 81.21 295 | 90.12 338 |
|
tpmrst | | | 85.35 252 | 84.99 242 | 86.43 309 | 90.88 300 | 67.88 353 | 88.71 316 | 91.43 306 | 80.13 263 | 86.08 188 | 88.80 309 | 73.05 206 | 96.02 290 | 82.48 188 | 83.40 272 | 95.40 179 |
|
test20.03 | | | 79.95 309 | 79.08 308 | 82.55 335 | 85.79 353 | 67.74 354 | 91.09 278 | 91.08 312 | 81.23 253 | 74.48 341 | 89.96 293 | 61.63 310 | 90.15 357 | 60.08 353 | 76.38 337 | 89.76 339 |
|
CMPMVS |  | 59.16 21 | 80.52 304 | 79.20 306 | 84.48 326 | 83.98 359 | 67.63 355 | 89.95 298 | 93.84 252 | 64.79 356 | 66.81 357 | 91.14 265 | 57.93 333 | 95.17 317 | 76.25 271 | 88.10 227 | 90.65 332 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
testgi | | | 80.94 303 | 80.20 294 | 83.18 332 | 87.96 345 | 66.29 356 | 91.28 273 | 90.70 324 | 83.70 191 | 78.12 317 | 92.84 206 | 51.37 352 | 90.82 356 | 63.34 344 | 82.46 280 | 92.43 301 |
|
new_pmnet | | | 72.15 325 | 70.13 328 | 78.20 341 | 82.95 363 | 65.68 357 | 83.91 349 | 82.40 363 | 62.94 358 | 64.47 358 | 79.82 355 | 42.85 363 | 86.26 363 | 57.41 358 | 74.44 341 | 82.65 359 |
|
Gipuma |  | | 57.99 333 | 54.91 335 | 67.24 348 | 88.51 335 | 65.59 358 | 52.21 367 | 90.33 329 | 43.58 366 | 42.84 367 | 51.18 368 | 20.29 373 | 85.07 364 | 34.77 368 | 70.45 347 | 51.05 367 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
dp | | | 81.47 296 | 80.23 293 | 85.17 322 | 89.92 324 | 65.49 359 | 86.74 333 | 90.10 332 | 76.30 305 | 81.10 288 | 87.12 334 | 62.81 303 | 95.92 294 | 68.13 324 | 79.88 319 | 94.09 233 |
|
KD-MVS_self_test | | | 80.20 307 | 79.24 304 | 83.07 333 | 85.64 355 | 65.29 360 | 91.01 279 | 93.93 246 | 78.71 284 | 76.32 329 | 86.40 336 | 59.20 329 | 92.93 345 | 72.59 297 | 69.35 349 | 91.00 331 |
|
CVMVSNet | | | 84.69 266 | 84.79 249 | 84.37 327 | 91.84 260 | 64.92 361 | 93.70 201 | 91.47 305 | 66.19 355 | 86.16 187 | 95.28 115 | 67.18 271 | 93.33 340 | 80.89 219 | 90.42 190 | 94.88 197 |
|
EU-MVSNet | | | 81.32 298 | 80.95 286 | 82.42 336 | 88.50 336 | 63.67 362 | 93.32 211 | 91.33 307 | 64.02 357 | 80.57 296 | 92.83 207 | 61.21 316 | 92.27 349 | 76.34 270 | 80.38 315 | 91.32 321 |
|
ambc | | | | | 83.06 334 | 79.99 365 | 63.51 363 | 77.47 360 | 92.86 267 | | 74.34 342 | 84.45 345 | 28.74 367 | 95.06 321 | 73.06 296 | 68.89 353 | 90.61 333 |
|
new-patchmatchnet | | | 76.41 322 | 75.17 324 | 80.13 338 | 82.65 364 | 59.61 364 | 87.66 329 | 91.08 312 | 78.23 291 | 69.85 353 | 83.22 349 | 54.76 342 | 91.63 355 | 64.14 343 | 64.89 357 | 89.16 346 |
|
LCM-MVSNet | | | 66.00 328 | 62.16 332 | 77.51 343 | 64.51 373 | 58.29 365 | 83.87 350 | 90.90 319 | 48.17 364 | 54.69 362 | 73.31 360 | 16.83 376 | 86.75 362 | 65.47 336 | 61.67 360 | 87.48 355 |
|
FPMVS | | | 64.63 329 | 62.55 331 | 70.88 345 | 70.80 369 | 56.71 366 | 84.42 347 | 84.42 358 | 51.78 363 | 49.57 363 | 81.61 353 | 23.49 370 | 81.48 366 | 40.61 367 | 76.25 338 | 74.46 362 |
|
ANet_high | | | 58.88 332 | 54.22 336 | 72.86 344 | 56.50 376 | 56.67 367 | 80.75 358 | 86.00 353 | 73.09 335 | 37.39 368 | 64.63 365 | 22.17 371 | 79.49 368 | 43.51 365 | 23.96 370 | 82.43 360 |
|
MVS-HIRNet | | | 73.70 324 | 72.20 327 | 78.18 342 | 91.81 262 | 56.42 368 | 82.94 354 | 82.58 362 | 55.24 361 | 68.88 354 | 66.48 363 | 55.32 340 | 95.13 318 | 58.12 356 | 88.42 222 | 83.01 357 |
|
DSMNet-mixed | | | 76.94 321 | 76.29 320 | 78.89 339 | 83.10 362 | 56.11 369 | 87.78 326 | 79.77 367 | 60.65 359 | 75.64 334 | 88.71 310 | 61.56 311 | 88.34 361 | 60.07 354 | 89.29 209 | 92.21 309 |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 370 | 87.62 330 | | 73.32 332 | 84.59 227 | | 70.33 239 | | 74.65 286 | | 95.50 174 |
|
DeepMVS_CX |  | | | | 56.31 352 | 74.23 368 | 51.81 371 | | 56.67 377 | 44.85 365 | 48.54 365 | 75.16 357 | 27.87 369 | 58.74 373 | 40.92 366 | 52.22 364 | 58.39 366 |
|
MVE |  | 39.65 23 | 43.39 336 | 38.59 342 | 57.77 350 | 56.52 375 | 48.77 372 | 55.38 366 | 58.64 376 | 29.33 370 | 28.96 371 | 52.65 367 | 4.68 378 | 64.62 372 | 28.11 370 | 33.07 368 | 59.93 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 59.60 331 | 56.40 333 | 69.21 347 | 68.83 370 | 46.58 373 | 73.02 364 | 77.48 371 | 55.07 362 | 49.21 364 | 72.95 361 | 17.43 375 | 80.04 367 | 49.32 363 | 44.33 367 | 80.99 361 |
|
PMVS |  | 47.18 22 | 52.22 334 | 48.46 338 | 63.48 349 | 45.72 378 | 46.20 374 | 73.41 363 | 78.31 369 | 41.03 367 | 30.06 370 | 65.68 364 | 6.05 377 | 83.43 365 | 30.04 369 | 65.86 355 | 60.80 364 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 43.23 337 | 42.29 339 | 46.03 353 | 65.58 372 | 37.41 375 | 73.51 362 | 64.62 373 | 33.99 368 | 28.47 372 | 47.87 369 | 19.90 374 | 67.91 370 | 22.23 371 | 24.45 369 | 32.77 368 |
|
wuyk23d | | | 21.27 341 | 20.48 344 | 23.63 356 | 68.59 371 | 36.41 376 | 49.57 368 | 6.85 380 | 9.37 372 | 7.89 374 | 4.46 376 | 4.03 379 | 31.37 374 | 17.47 373 | 16.07 373 | 3.12 371 |
|
EMVS | | | 42.07 338 | 41.12 340 | 44.92 354 | 63.45 374 | 35.56 377 | 73.65 361 | 63.48 374 | 33.05 369 | 26.88 373 | 45.45 370 | 21.27 372 | 67.14 371 | 19.80 372 | 23.02 371 | 32.06 369 |
|
N_pmnet | | | 68.89 327 | 68.44 330 | 70.23 346 | 89.07 331 | 28.79 378 | 88.06 323 | 19.50 379 | 69.47 350 | 71.86 351 | 84.93 343 | 61.24 315 | 91.75 353 | 54.70 359 | 77.15 334 | 90.15 337 |
|
tmp_tt | | | 35.64 339 | 39.24 341 | 24.84 355 | 14.87 379 | 23.90 379 | 62.71 365 | 51.51 378 | 6.58 373 | 36.66 369 | 62.08 366 | 44.37 362 | 30.34 375 | 52.40 361 | 22.00 372 | 20.27 370 |
|
test_method | | | 50.52 335 | 48.47 337 | 56.66 351 | 52.26 377 | 18.98 380 | 41.51 369 | 81.40 365 | 10.10 371 | 44.59 366 | 75.01 358 | 28.51 368 | 68.16 369 | 53.54 360 | 49.31 366 | 82.83 358 |
|
test123 | | | 8.76 343 | 11.22 346 | 1.39 357 | 0.85 381 | 0.97 381 | 85.76 340 | 0.35 382 | 0.54 375 | 2.45 376 | 8.14 375 | 0.60 380 | 0.48 376 | 2.16 375 | 0.17 375 | 2.71 372 |
|
testmvs | | | 8.92 342 | 11.52 345 | 1.12 358 | 1.06 380 | 0.46 382 | 86.02 337 | 0.65 381 | 0.62 374 | 2.74 375 | 9.52 374 | 0.31 381 | 0.45 377 | 2.38 374 | 0.39 374 | 2.46 373 |
|
test_blank | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet_test | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
cdsmvs_eth3d_5k | | | 22.14 340 | 29.52 343 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 95.76 154 | 0.00 377 | 0.00 378 | 94.29 153 | 75.66 169 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
pcd_1.5k_mvsjas | | | 6.64 345 | 8.86 348 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 79.70 122 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet-low-res | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uncertanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
Regformer | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
ab-mvs-re | | | 7.82 344 | 10.43 347 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 93.88 172 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
PC_three_1452 | | | | | | | | | | 82.47 219 | 97.09 9 | 97.07 44 | 92.72 1 | 98.04 157 | 92.70 42 | 99.02 12 | 98.86 9 |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 97.44 14 | 90.31 29 | 97.62 5 | 98.07 4 | 91.46 10 | 99.58 8 | 95.66 4 | 99.12 6 | 98.98 8 |
|
9.14 | | | | 94.47 18 | | 97.79 54 | | 96.08 55 | 97.44 14 | 86.13 142 | 95.10 26 | 97.40 23 | 88.34 21 | 99.22 49 | 93.25 32 | 98.70 36 | |
|
test_0728_THIRD | | | | | | | | | | 90.75 20 | 97.04 10 | 98.05 8 | 92.09 6 | 99.55 15 | 95.64 6 | 99.13 3 | 99.13 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 150 |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 218 | | | | 96.12 150 |
|
sam_mvs | | | | | | | | | | | | | 70.60 232 | | | | |
|
MTGPA |  | | | | | | | | 96.97 52 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 324 | | | | 9.81 373 | 69.31 253 | 95.53 308 | 76.65 267 | | |
|
test_post | | | | | | | | | | | | 10.29 372 | 70.57 236 | 95.91 296 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 347 | 71.53 220 | 96.48 269 | | | |
|
MTMP | | | | | | | | 96.16 48 | 60.64 375 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 66 | 98.71 34 | 98.07 70 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 92 | 98.68 39 | 98.27 54 |
|
test_prior2 | | | | | | | | 94.12 173 | | 87.67 107 | 92.63 75 | 96.39 78 | 86.62 42 | | 91.50 76 | 98.67 41 | |
|
旧先验2 | | | | | | | | 93.36 210 | | 71.25 345 | 94.37 30 | | | 97.13 230 | 86.74 135 | | |
|
新几何2 | | | | | | | | 93.11 225 | | | | | | | | | |
|
无先验 | | | | | | | | 93.28 217 | 96.26 114 | 73.95 327 | | | | 99.05 63 | 80.56 225 | | 96.59 135 |
|
原ACMM2 | | | | | | | | 92.94 232 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 103 | 78.30 251 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 38 | | | | |
|
testdata1 | | | | | | | | 92.15 255 | | 87.94 95 | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.22 119 | | | | | 98.12 140 | 88.15 115 | 89.99 194 | 94.63 205 |
|
plane_prior4 | | | | | | | | | | | | 94.86 130 | | | | | |
|
plane_prior2 | | | | | | | | 95.85 67 | | 90.81 18 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 174 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 354 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 98 | | | | | | | | |
|
door | | | | | | | | | 85.33 355 | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 190 | | 94.39 157 | | 88.81 68 | 85.43 209 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 190 | | 94.39 157 | | 88.81 68 | 85.43 209 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 132 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 209 | | | 97.96 164 | | | 94.51 215 |
|
HQP3-MVS | | | | | | | | | 96.04 133 | | | | | | | 89.77 201 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 195 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 235 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 230 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 117 | | | | |
|