This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15997.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
IU-MVS98.77 586.00 5096.84 6581.26 27197.26 795.50 2399.13 399.03 8
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
PC_three_145282.47 23897.09 1097.07 5192.72 198.04 16592.70 5599.02 1298.86 11
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6698.99 1498.84 14
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4896.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13597.17 3986.26 15092.83 7797.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8397.23 4185.20 5599.32 3892.15 7098.83 2198.25 57
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6597.04 5286.17 4499.62 292.40 5998.81 2298.52 26
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9997.19 4485.43 5299.56 1292.06 7698.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17893.56 5896.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5997.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5497.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
MVS_030494.60 1894.38 2595.23 1195.41 13487.49 1696.53 3892.75 28393.82 293.07 7097.84 2283.66 7499.59 897.61 298.76 2898.61 22
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17296.97 5091.07 1393.14 6697.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5697.27 3885.22 5499.54 2092.21 6798.74 3198.56 25
bld_raw_dy_0_6492.29 8392.45 7991.80 15595.49 13179.68 23193.44 22096.40 10386.21 15293.01 7194.88 14181.93 10898.57 10991.99 7798.73 3297.16 117
test9_res91.91 8398.71 3398.07 68
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11996.52 8780.00 22294.00 19697.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
MVSMamba_pp92.75 7492.66 7293.02 8995.09 14982.85 14094.72 14396.46 9786.35 14593.33 6194.96 13781.98 10698.55 11492.35 6298.70 3597.67 92
9.1494.47 2097.79 4996.08 6197.44 1586.13 15795.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18896.78 7281.86 25592.77 8096.20 8787.63 2999.12 5192.14 7198.69 3797.94 77
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7896.97 5485.37 5399.24 4390.87 10398.69 3798.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 2898.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior290.54 10698.68 3998.27 52
test_prior294.12 18287.67 11592.63 8596.39 8286.62 3891.50 9198.67 41
mamv492.71 7792.58 7693.09 8395.16 14583.05 13294.67 14696.50 9586.30 14793.09 6794.88 14182.03 10498.57 10991.94 8298.66 4297.63 94
MSLP-MVS++93.72 4894.08 3892.65 11197.31 6583.43 11695.79 8197.33 2590.03 3693.58 5696.96 5584.87 6297.76 18092.19 6998.66 4296.76 138
CDPH-MVS92.83 7292.30 8194.44 4597.79 4986.11 4994.06 19096.66 8580.09 28492.77 8096.63 7386.62 3899.04 5787.40 13998.66 4298.17 62
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8696.80 6584.85 6399.17 4792.43 5798.65 4598.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10897.17 4683.96 7199.55 1691.44 9298.64 4698.43 38
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7395.77 10885.02 5998.33 13793.03 4798.62 4798.13 64
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12497.12 4187.13 12392.51 8996.30 8389.24 1799.34 3493.46 3998.62 4798.73 17
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16595.05 3497.18 4587.31 3599.07 5391.90 8598.61 4998.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10497.78 187.45 11993.26 6297.33 3684.62 6599.51 2490.75 10598.57 5098.32 46
iter_conf05_1192.98 7092.96 6693.03 8795.91 11282.49 15396.06 6596.37 10686.94 12994.09 4495.16 13081.94 10798.67 9891.65 8998.56 5197.95 76
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7597.16 4785.02 5999.49 2691.99 7798.56 5198.47 33
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7523.41 40885.02 5999.49 2691.99 7798.56 5198.47 33
DELS-MVS93.43 5893.25 5993.97 5695.42 13385.04 7293.06 24097.13 4090.74 2191.84 10695.09 13486.32 4299.21 4591.22 9498.45 5497.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS98.15 3486.62 3397.07 4583.63 21094.19 4296.91 5787.57 3199.26 4291.99 7798.44 55
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6296.83 6185.48 5199.59 891.43 9398.40 5698.30 47
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16292.47 9097.13 4882.38 9099.07 5390.51 10898.40 5697.92 80
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4996.58 7687.74 2799.44 2992.83 5098.40 5698.62 21
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 13096.99 4889.02 7189.56 13897.37 3582.51 8999.38 3192.20 6898.30 5997.57 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19890.05 13495.66 11287.77 2699.15 5089.91 11298.27 6098.07 68
原ACMM192.01 13597.34 6481.05 18896.81 7078.89 30090.45 12695.92 10082.65 8798.84 8880.68 24398.26 6196.14 161
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 6096.21 8685.61 4898.24 14293.64 3798.17 6298.19 60
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23397.24 3288.76 7791.60 11395.85 10386.07 4698.66 9991.91 8398.16 6398.03 72
EC-MVSNet93.44 5593.71 5192.63 11295.21 14382.43 15497.27 996.71 8290.57 2692.88 7495.80 10683.16 7998.16 14893.68 3698.14 6497.31 106
test1294.34 5097.13 7086.15 4896.29 11191.04 12185.08 5799.01 6398.13 6597.86 83
新几何193.10 8197.30 6684.35 9495.56 17471.09 37691.26 11996.24 8582.87 8598.86 8479.19 26498.10 6696.07 167
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 26093.40 22197.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3298.09 6799.23 1
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29294.25 17596.29 11188.33 9094.46 3896.88 5888.07 2598.64 10193.62 3898.09 6798.73 17
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11684.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6997.17 113
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 7099.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6499.03 5893.35 4397.99 7198.48 30
3Dnovator86.66 591.73 9190.82 10294.44 4594.59 17686.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7297.79 88
CANet93.54 5193.20 6194.55 4395.65 12385.73 6594.94 12796.69 8491.89 890.69 12495.88 10281.99 10599.54 2093.14 4697.95 7398.39 39
DPM-MVS92.58 7891.74 8795.08 1596.19 9589.31 592.66 25196.56 9383.44 21691.68 11295.04 13586.60 4098.99 7085.60 16397.92 7496.93 130
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 5097.47 2983.88 7298.96 7792.71 5497.87 7598.26 56
CPTT-MVS91.99 8591.80 8692.55 11698.24 3181.98 16496.76 3096.49 9681.89 25490.24 12996.44 8178.59 14398.61 10689.68 11397.85 7697.06 121
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17584.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7797.96 75
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3184.24 6899.01 6392.73 5197.80 7897.88 81
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3182.94 8392.73 5197.80 7897.88 81
test22296.55 8481.70 17092.22 26795.01 20768.36 38290.20 13096.14 9280.26 12197.80 7896.05 170
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 8197.86 83
3Dnovator+87.14 492.42 8191.37 9095.55 795.63 12488.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8298.59 24
旧先验196.79 7681.81 16895.67 16696.81 6386.69 3797.66 8396.97 128
EPNet91.79 8891.02 9894.10 5490.10 33985.25 7196.03 6892.05 30292.83 387.39 17895.78 10779.39 13399.01 6388.13 13097.48 8498.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22384.26 9595.83 7996.14 12689.00 7292.43 9197.50 2883.37 7898.72 9696.61 1297.44 8596.32 153
testdata90.49 20796.40 8977.89 27295.37 19272.51 36893.63 5596.69 6682.08 10197.65 18883.08 19397.39 8695.94 172
MVS_111021_LR92.47 8092.29 8292.98 9295.99 10984.43 9193.08 23896.09 13288.20 9791.12 12095.72 11181.33 11497.76 18091.74 8697.37 8796.75 139
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 11189.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8897.74 90
MVSFormer91.68 9391.30 9192.80 10293.86 21383.88 10395.96 7395.90 14884.66 19291.76 10994.91 13977.92 15197.30 22589.64 11497.11 8997.24 109
lupinMVS90.92 10490.21 10993.03 8793.86 21383.88 10392.81 24893.86 26079.84 28791.76 10994.29 16977.92 15198.04 16590.48 10997.11 8997.17 113
EIA-MVS91.95 8691.94 8491.98 13995.16 14580.01 22195.36 9996.73 7988.44 8789.34 14292.16 24283.82 7398.45 12589.35 11697.06 9197.48 102
MG-MVS91.77 8991.70 8892.00 13897.08 7180.03 22093.60 21495.18 20087.85 11090.89 12296.47 8082.06 10298.36 13285.07 16797.04 9297.62 95
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13784.98 7395.61 9396.28 11486.31 14696.75 1697.86 2187.40 3398.74 9597.07 897.02 9397.07 120
test250687.21 22286.28 21990.02 23095.62 12573.64 32896.25 4871.38 40687.89 10890.45 12696.65 7055.29 36398.09 16086.03 15896.94 9498.33 43
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12575.89 30596.16 5384.22 38487.89 10890.20 13096.65 7063.19 31798.10 15285.90 15996.94 9498.33 43
test111189.10 15488.64 14990.48 20895.53 13074.97 31496.08 6184.89 38288.13 10090.16 13296.65 7063.29 31598.10 15286.14 15496.90 9698.39 39
jason90.80 10590.10 11392.90 9793.04 24383.53 11493.08 23894.15 24980.22 28191.41 11694.91 13976.87 15897.93 17490.28 11196.90 9697.24 109
jason: jason.
Vis-MVSNetpermissive91.75 9091.23 9393.29 7395.32 13683.78 10596.14 5795.98 14089.89 3990.45 12696.58 7675.09 18298.31 14084.75 17396.90 9697.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
114514_t89.51 14188.50 15492.54 11798.11 3681.99 16395.16 11696.36 10770.19 37985.81 21195.25 12476.70 16298.63 10382.07 21696.86 9997.00 126
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13885.43 6895.68 8696.43 9986.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 10097.16 117
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22895.74 11875.85 30695.61 9390.80 33887.66 11687.83 16795.40 12076.79 16096.46 28178.37 26896.73 10197.80 87
API-MVS90.66 11190.07 11492.45 12196.36 9184.57 8296.06 6595.22 19982.39 23989.13 14494.27 17280.32 11998.46 12180.16 25196.71 10294.33 242
MAR-MVS90.30 11889.37 13193.07 8696.61 8184.48 8795.68 8695.67 16682.36 24187.85 16692.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8492.70 25385.39 6996.57 3696.43 9978.74 30580.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 216
ETV-MVS92.74 7592.66 7292.97 9395.20 14484.04 10095.07 12096.51 9490.73 2292.96 7291.19 27684.06 6998.34 13591.72 8796.54 10596.54 149
QAPM89.51 14188.15 16593.59 7094.92 15984.58 8196.82 2996.70 8378.43 31083.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 133
IS-MVSNet91.43 9591.09 9792.46 12095.87 11581.38 18096.95 1993.69 26689.72 4989.50 14095.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
DP-MVS Recon91.95 8691.28 9293.96 5798.33 2785.92 5794.66 14896.66 8582.69 23690.03 13595.82 10582.30 9499.03 5884.57 17596.48 10896.91 132
CANet_DTU90.26 12089.41 13092.81 10193.46 22983.01 13593.48 21794.47 23689.43 5487.76 17094.23 17370.54 24699.03 5884.97 16896.39 10996.38 152
UGNet89.95 12988.95 14192.95 9594.51 18283.31 12095.70 8595.23 19789.37 5687.58 17293.94 18364.00 31098.78 9183.92 18496.31 11096.74 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9995.62 12583.17 12496.14 5796.12 12988.13 10095.82 2698.04 1683.43 7598.48 11796.97 996.23 11196.92 131
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 10093.75 21983.13 12696.02 6995.74 16087.68 11495.89 2598.17 282.78 8698.46 12196.71 1096.17 11296.98 127
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16593.93 25689.77 4794.21 4195.59 11587.35 3498.61 10692.72 5396.15 11397.83 86
PVSNet_Blended90.73 10890.32 10891.98 13996.12 9781.25 18292.55 25596.83 6682.04 24889.10 14592.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
PS-MVSNAJ91.18 10190.92 9991.96 14195.26 14182.60 15292.09 27295.70 16486.27 14991.84 10692.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
ACMMPcopyleft93.24 6392.88 6894.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13397.03 5381.44 11299.51 2490.85 10495.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvs_mvgpermissive92.96 7192.83 6993.35 7294.59 17683.40 11895.00 12496.34 10890.30 3092.05 9796.05 9583.43 7598.15 14992.07 7395.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17072.41 34593.15 23490.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 143
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9681.42 17990.01 32095.86 15274.52 34987.41 17593.94 18375.46 17998.36 13280.36 24795.53 11997.12 119
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9195.02 15183.67 10896.19 5096.10 13187.27 12195.98 2498.05 1383.07 8298.45 12596.68 1195.51 12096.88 134
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13394.42 16495.92 14582.81 23386.34 20294.65 15773.89 20299.02 6180.69 24295.51 12095.05 204
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25295.66 16867.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
UA-Net92.83 7292.54 7793.68 6896.10 10084.71 7995.66 8996.39 10491.92 793.22 6496.49 7983.16 7998.87 8284.47 17795.47 12397.45 104
xiu_mvs_v2_base91.13 10290.89 10191.86 14994.97 15582.42 15592.24 26695.64 17186.11 15891.74 11193.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
casdiffmvspermissive92.51 7992.43 8092.74 10694.41 18981.98 16494.54 15596.23 12089.57 5191.96 10196.17 9182.58 8898.01 16790.95 10195.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9392.49 25683.62 11196.02 6995.72 16386.78 13496.04 2298.19 182.30 9498.43 12996.38 1395.42 12696.86 135
PVSNet_Blended_VisFu91.38 9690.91 10092.80 10296.39 9083.17 12494.87 13296.66 8583.29 22189.27 14394.46 16480.29 12099.17 4787.57 13795.37 12796.05 170
PAPM_NR91.22 10090.78 10392.52 11897.60 5681.46 17794.37 17196.24 11986.39 14487.41 17594.80 14982.06 10298.48 11782.80 20195.37 12797.61 96
CHOSEN 280x42085.15 27483.99 27788.65 27692.47 25778.40 25979.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 19994.39 16796.21 12476.38 32986.19 20695.44 11779.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline92.39 8292.29 8292.69 11094.46 18581.77 16994.14 18196.27 11589.22 6191.88 10496.00 9682.35 9197.99 16991.05 9695.27 13198.30 47
LS3D87.89 18886.32 21792.59 11496.07 10382.92 13895.23 11094.92 21675.66 33682.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
test_vis1_n_192089.39 14989.84 12188.04 29192.97 24772.64 34094.71 14496.03 13986.18 15391.94 10396.56 7861.63 32495.74 31693.42 4195.11 13395.74 182
MVS_Test91.31 9891.11 9591.93 14394.37 19080.14 21293.46 21995.80 15586.46 14291.35 11893.77 19382.21 9798.09 16087.57 13794.95 13497.55 101
test_cas_vis1_n_192088.83 16688.85 14788.78 27091.15 30676.72 29393.85 20494.93 21583.23 22492.81 7896.00 9661.17 33394.45 33791.67 8894.84 13595.17 201
PAPR90.02 12589.27 13692.29 13095.78 11780.95 19292.68 25096.22 12181.91 25286.66 19393.75 19582.23 9698.44 12779.40 26394.79 13697.48 102
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34994.01 19494.04 25478.30 31291.97 10095.22 12556.28 35793.71 35292.89 4994.71 13794.52 229
xiu_mvs_v1_base_debu90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
xiu_mvs_v1_base90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22495.46 18185.17 17592.25 9294.03 17570.59 24298.57 10990.97 9894.67 13894.18 245
gg-mvs-nofinetune81.77 31079.37 32588.99 26790.85 32177.73 28086.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14193.11 299
BH-RMVSNet88.37 17687.48 17991.02 18795.28 13879.45 23592.89 24593.07 27585.45 17186.91 18594.84 14870.35 24797.76 18073.97 31194.59 14295.85 176
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34794.55 15494.43 23778.47 30891.95 10295.50 11651.16 37693.81 35093.02 4894.56 14395.26 198
diffmvspermissive91.37 9791.23 9391.77 15693.09 23880.27 20892.36 26095.52 17987.03 12691.40 11794.93 13880.08 12297.44 21092.13 7294.56 14397.61 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned88.60 17188.13 16690.01 23195.24 14278.50 25693.29 22994.15 24984.75 18984.46 25493.40 20075.76 17397.40 21977.59 27894.52 14594.12 249
Effi-MVS+91.59 9491.11 9593.01 9094.35 19483.39 11994.60 15195.10 20487.10 12490.57 12593.10 21481.43 11398.07 16389.29 11794.48 14697.59 98
PCF-MVS84.11 1087.74 19386.08 22892.70 10994.02 20484.43 9189.27 33295.87 15173.62 35884.43 25694.33 16678.48 14698.86 8470.27 33194.45 14794.81 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set93.01 6992.92 6793.29 7395.01 15283.51 11594.48 15795.77 15790.87 1592.52 8896.67 6884.50 6699.00 6891.99 7794.44 14897.36 105
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25591.25 29393.53 26777.50 31980.15 32291.58 26761.99 32295.51 32375.69 29694.35 14989.16 371
FE-MVS87.40 21186.02 23091.57 16294.56 18079.69 23090.27 30993.72 26580.57 27988.80 15091.62 26565.32 30298.59 10874.97 30594.33 15096.44 150
mvs_anonymous89.37 15089.32 13389.51 25493.47 22874.22 32391.65 28394.83 22382.91 23185.45 22693.79 19181.23 11596.36 28886.47 15394.09 15197.94 77
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33794.68 14593.78 26479.55 29190.70 12395.31 12148.75 38193.28 35893.15 4593.99 15294.38 240
MVP-Stereo85.97 25784.86 26489.32 25790.92 31782.19 16092.11 27194.19 24778.76 30478.77 34091.63 26468.38 27696.56 27375.01 30493.95 15389.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS90.08 12389.13 13792.95 9596.71 7782.32 15996.08 6189.91 35486.79 13392.15 9696.81 6362.60 31998.34 13587.18 14393.90 15498.19 60
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 16971.93 34687.12 36192.75 28378.80 30384.95 24390.53 29764.43 30896.71 26274.74 30693.86 15596.06 169
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18793.24 27181.41 26784.46 25495.13 13375.57 17896.62 26577.21 28293.84 15695.61 189
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33594.11 18392.20 29886.66 13879.42 33492.36 23673.52 20795.81 31271.26 32393.66 15795.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GeoE90.05 12489.43 12991.90 14895.16 14580.37 20795.80 8094.65 23383.90 20387.55 17494.75 15178.18 14997.62 19381.28 23193.63 15897.71 91
EI-MVSNet-UG-set92.74 7592.62 7593.12 8094.86 16383.20 12394.40 16595.74 16090.71 2392.05 9796.60 7584.00 7098.99 7091.55 9093.63 15897.17 113
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16780.81 19693.54 21595.10 20483.11 22586.82 19190.67 29579.74 12797.75 18380.51 24693.55 16096.57 147
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 17980.27 20891.36 28894.74 22984.87 18489.82 13692.61 22974.72 18998.47 12083.97 18393.53 16197.04 123
131487.51 20686.57 20890.34 21792.42 26079.74 22992.63 25295.35 19478.35 31180.14 32391.62 26574.05 19997.15 23881.05 23393.53 16194.12 249
BH-w/o87.57 20487.05 19089.12 26294.90 16177.90 27192.41 25793.51 26882.89 23283.70 27591.34 27075.75 17497.07 24575.49 29793.49 16392.39 322
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28888.68 34290.06 35072.32 37086.47 19590.76 29372.15 22594.40 33981.78 22493.49 16392.36 323
PatchMatch-RL86.77 23985.54 24690.47 21195.88 11382.71 14790.54 30692.31 29479.82 28884.32 26291.57 26968.77 27196.39 28573.16 31693.48 16592.32 325
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14894.29 17395.44 18679.71 28984.01 26994.18 17476.68 16398.75 9377.28 28193.41 16695.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet92.24 8491.91 8593.24 7596.59 8283.43 11694.84 13496.44 9889.19 6394.08 4795.90 10177.85 15498.17 14788.90 12193.38 16798.13 64
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35189.55 32689.88 35683.41 21784.54 25187.95 34567.25 28195.11 33281.82 22293.37 16894.97 206
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35189.55 32689.88 35679.17 29584.54 25187.95 34555.56 35995.11 33281.82 22293.37 16894.97 206
EPP-MVSNet91.70 9291.56 8992.13 13495.88 11380.50 20497.33 795.25 19686.15 15489.76 13795.60 11483.42 7798.32 13987.37 14193.25 17097.56 100
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22483.61 11393.01 24194.68 23281.95 25087.82 16893.24 20878.69 14196.99 25080.34 24893.23 17196.28 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM86.68 24185.39 25090.53 20393.05 24279.33 24289.79 32394.77 22878.82 30281.95 30193.24 20876.81 15997.30 22566.94 35593.16 17294.95 212
alignmvs93.08 6792.50 7894.81 3295.62 12587.61 1495.99 7196.07 13489.77 4794.12 4394.87 14380.56 11898.66 9992.42 5893.10 17398.15 63
thisisatest051587.33 21485.99 23191.37 17193.49 22779.55 23290.63 30589.56 36180.17 28287.56 17390.86 28767.07 28498.28 14181.50 22993.02 17496.29 155
TAMVS89.21 15288.29 16291.96 14193.71 22082.62 15193.30 22894.19 24782.22 24387.78 16993.94 18378.83 13896.95 25277.70 27792.98 17596.32 153
OMC-MVS91.23 9990.62 10493.08 8496.27 9384.07 9893.52 21695.93 14486.95 12889.51 13996.13 9378.50 14598.35 13485.84 16192.90 17696.83 137
sasdasda93.27 6192.75 7094.85 2595.70 12187.66 1296.33 4196.41 10190.00 3794.09 4494.60 15982.33 9298.62 10492.40 5992.86 17798.27 52
canonicalmvs93.27 6192.75 7094.85 2595.70 12187.66 1296.33 4196.41 10190.00 3794.09 4494.60 15982.33 9298.62 10492.40 5992.86 17798.27 52
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35589.55 32687.88 36877.41 32083.37 28487.31 35356.71 35593.65 35480.62 24492.85 17994.40 239
MGCFI-Net93.03 6892.63 7494.23 5395.62 12585.92 5796.08 6196.33 10989.86 4193.89 5194.66 15682.11 9998.50 11592.33 6592.82 18098.27 52
thisisatest053088.67 16887.61 17691.86 14994.87 16280.07 21594.63 14989.90 35584.00 20188.46 15693.78 19266.88 28798.46 12183.30 19192.65 18197.06 121
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 30086.14 37579.90 28686.26 20490.72 29457.17 35495.81 31271.03 32992.62 18295.35 196
VDD-MVS90.74 10789.92 12093.20 7796.27 9383.02 13495.73 8393.86 26088.42 8992.53 8796.84 6062.09 32198.64 10190.95 10192.62 18297.93 79
test_yl90.69 10990.02 11892.71 10795.72 11982.41 15794.11 18395.12 20285.63 16691.49 11494.70 15274.75 18698.42 13086.13 15692.53 18497.31 106
DCV-MVSNet90.69 10990.02 11892.71 10795.72 11982.41 15794.11 18395.12 20285.63 16691.49 11494.70 15274.75 18698.42 13086.13 15692.53 18497.31 106
VDDNet89.56 14088.49 15692.76 10495.07 15082.09 16196.30 4393.19 27381.05 27691.88 10496.86 5961.16 33498.33 13788.43 12792.49 18697.84 85
DP-MVS87.25 21885.36 25292.90 9797.65 5583.24 12194.81 13692.00 30474.99 34481.92 30295.00 13672.66 21999.05 5566.92 35792.33 18796.40 151
GG-mvs-BLEND87.94 29489.73 34877.91 27087.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18890.60 359
tttt051788.61 17087.78 17391.11 18294.96 15677.81 27595.35 10089.69 35885.09 18088.05 16394.59 16166.93 28598.48 11783.27 19292.13 18997.03 124
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10680.63 20090.01 32095.79 15673.42 36087.68 17192.10 24873.86 20397.96 17180.75 24191.70 19097.19 112
sss88.93 16288.26 16490.94 19394.05 20380.78 19791.71 28095.38 19081.55 26588.63 15293.91 18775.04 18395.47 32782.47 20591.61 19196.57 147
testing22284.84 28083.32 28589.43 25694.15 20175.94 30491.09 29789.41 36284.90 18385.78 21289.44 32252.70 37396.28 29270.80 33091.57 19296.07 167
cascas86.43 25284.98 26090.80 19692.10 26980.92 19390.24 31395.91 14773.10 36383.57 28088.39 33865.15 30497.46 20684.90 17191.43 19394.03 256
ETVMVS84.43 28582.92 29488.97 26894.37 19074.67 31791.23 29488.35 36683.37 21986.06 20989.04 32755.38 36195.67 31867.12 35391.34 19496.58 146
Effi-MVS+-dtu88.65 16988.35 15889.54 25193.33 23276.39 29994.47 16094.36 24187.70 11385.43 22989.56 32173.45 20997.26 23185.57 16491.28 19594.97 206
thres100view90087.63 19986.71 20090.38 21596.12 9778.55 25395.03 12391.58 31687.15 12288.06 16292.29 23968.91 26998.10 15270.13 33591.10 19694.48 236
tfpn200view987.58 20386.64 20390.41 21295.99 10978.64 25194.58 15291.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.48 236
thres600view787.65 19686.67 20290.59 20096.08 10278.72 24994.88 13191.58 31687.06 12588.08 16192.30 23868.91 26998.10 15270.05 33891.10 19694.96 209
thres40087.62 20186.64 20390.57 20195.99 10978.64 25194.58 15291.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.96 209
testing1186.44 25185.35 25389.69 24694.29 19575.40 31291.30 29090.53 34184.76 18885.06 24090.13 30858.95 34897.45 20782.08 21591.09 20096.21 159
F-COLMAP87.95 18786.80 19791.40 16996.35 9280.88 19494.73 14195.45 18479.65 29082.04 30094.61 15871.13 23398.50 11576.24 29391.05 20194.80 218
thres20087.21 22286.24 22190.12 22495.36 13578.53 25493.26 23192.10 30086.42 14388.00 16491.11 28269.24 26498.00 16869.58 33991.04 20293.83 266
WTY-MVS89.60 13888.92 14291.67 15995.47 13281.15 18692.38 25994.78 22783.11 22589.06 14794.32 16778.67 14296.61 26881.57 22890.89 20397.24 109
testing9187.11 22786.18 22289.92 23494.43 18875.38 31391.53 28592.27 29686.48 14086.50 19490.24 30261.19 33297.53 19982.10 21490.88 20496.84 136
testing9986.72 24085.73 24589.69 24694.23 19674.91 31691.35 28990.97 33386.14 15586.36 20090.22 30359.41 34497.48 20382.24 21190.66 20596.69 142
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16382.77 14192.08 27394.49 23581.52 26686.93 18392.79 22578.32 14898.23 14379.93 25390.55 20695.88 175
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35791.89 27487.98 36778.91 29884.78 24590.22 30369.11 26794.02 34664.70 36690.44 20790.71 355
CLD-MVS89.47 14388.90 14491.18 17894.22 19782.07 16292.13 27096.09 13287.90 10685.37 23592.45 23374.38 19297.56 19787.15 14490.43 20893.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21191.47 32166.19 38686.16 20795.28 12267.18 28393.33 35780.89 23990.42 20994.88 214
SCA86.32 25385.18 25689.73 24492.15 26576.60 29591.12 29691.69 31383.53 21485.50 22388.81 33166.79 28896.48 27876.65 28790.35 21096.12 163
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24992.04 27077.68 28194.03 19293.94 25585.81 16082.42 29491.32 27370.33 24897.06 24680.33 24990.23 21194.14 248
OPM-MVS90.12 12289.56 12591.82 15293.14 23683.90 10294.16 18095.74 16088.96 7387.86 16595.43 11972.48 22297.91 17588.10 13290.18 21293.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS90.60 11590.19 11091.82 15294.70 17182.73 14595.85 7796.22 12190.81 1786.91 18594.86 14474.23 19498.12 15088.15 12889.99 21394.63 221
plane_prior596.22 12198.12 15088.15 12889.99 21394.63 221
XVG-OURS89.40 14888.70 14891.52 16394.06 20281.46 17791.27 29296.07 13486.14 15588.89 14995.77 10868.73 27297.26 23187.39 14089.96 21595.83 178
baseline286.50 24885.39 25089.84 23791.12 30776.70 29491.88 27588.58 36482.35 24279.95 32790.95 28673.42 21097.63 19280.27 25089.95 21695.19 200
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19894.87 13291.49 32080.47 28089.46 14195.44 11754.72 36598.23 14382.19 21289.89 21797.97 74
plane_prior82.73 14595.21 11289.66 5089.88 218
SDMVSNet90.19 12189.61 12491.93 14396.00 10683.09 13092.89 24595.98 14088.73 7886.85 18995.20 12872.09 22697.08 24388.90 12189.85 21995.63 187
sd_testset88.59 17287.85 17290.83 19496.00 10680.42 20692.35 26194.71 23088.73 7886.85 18995.20 12867.31 27996.43 28379.64 25789.85 21995.63 187
TR-MVS86.78 23685.76 24289.82 23894.37 19078.41 25892.47 25692.83 28081.11 27586.36 20092.40 23468.73 27297.48 20373.75 31489.85 21993.57 280
HQP3-MVS96.04 13789.77 222
HQP-MVS89.80 13489.28 13591.34 17294.17 19881.56 17194.39 16796.04 13788.81 7485.43 22993.97 18273.83 20497.96 17187.11 14689.77 22294.50 233
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20881.21 18591.87 27696.06 13685.78 16188.55 15395.73 11074.67 19097.27 22988.71 12489.64 22495.91 173
GA-MVS86.61 24285.27 25590.66 19991.33 29978.71 25090.40 30893.81 26385.34 17385.12 23989.57 32061.25 32997.11 24280.99 23789.59 22596.15 160
iter_conf0590.51 11690.46 10590.67 19893.09 23880.06 21794.62 15094.98 21086.30 14788.54 15594.80 14981.89 11097.59 19490.45 11089.49 22694.36 241
1112_ss88.42 17487.33 18391.72 15794.92 15980.98 19092.97 24394.54 23478.16 31683.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 157
ab-mvs89.41 14688.35 15892.60 11395.15 14882.65 15092.20 26895.60 17383.97 20288.55 15393.70 19674.16 19898.21 14682.46 20689.37 22896.94 129
CR-MVSNet85.35 26983.76 28090.12 22490.58 33079.34 23985.24 37491.96 30878.27 31385.55 21887.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23985.24 37496.76 7571.44 37485.55 21882.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18381.49 17595.30 10496.14 12686.73 13685.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
LGP-MVS_train91.12 17994.47 18381.49 17596.14 12686.73 13685.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15879.28 24391.77 27894.30 24376.04 33483.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
PatchmatchNetpermissive85.85 26084.70 26789.29 25891.76 28275.54 30988.49 34491.30 32481.63 26385.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30784.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
MIMVSNet82.59 30480.53 30988.76 27191.51 28978.32 26186.57 36590.13 34879.32 29280.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
ACMM84.12 989.14 15388.48 15791.12 17994.65 17481.22 18495.31 10296.12 12985.31 17485.92 21094.34 16570.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16796.68 3392.37 29189.03 6987.00 18194.85 14673.05 21497.65 18891.03 9788.63 23994.51 231
ACMP84.23 889.01 16188.35 15890.99 19094.73 16881.27 18195.07 12095.89 15086.48 14083.67 27694.30 16869.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf89.03 15988.64 14990.21 21990.74 32579.28 24395.96 7395.90 14884.66 19285.33 23792.94 21874.02 20097.30 22589.64 11488.53 24194.05 255
jajsoiax88.24 18087.50 17890.48 20890.89 31980.14 21295.31 10295.65 17084.97 18284.24 26594.02 17865.31 30397.42 21288.56 12588.52 24293.89 259
PatchT82.68 30381.27 30586.89 32090.09 34070.94 36084.06 38190.15 34774.91 34585.63 21783.57 37669.37 25994.87 33665.19 36288.50 24394.84 215
MSDG84.86 27983.09 29090.14 22393.80 21680.05 21889.18 33593.09 27478.89 30078.19 34191.91 25565.86 30197.27 22968.47 34488.45 24493.11 299
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
mvs_tets88.06 18687.28 18590.38 21590.94 31579.88 22595.22 11195.66 16885.10 17984.21 26693.94 18363.53 31397.40 21988.50 12688.40 24693.87 262
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22283.93 10192.33 26390.94 33484.16 19772.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 113
FIs90.51 11690.35 10790.99 19093.99 20980.98 19095.73 8397.54 489.15 6486.72 19294.68 15481.83 11197.24 23385.18 16688.31 24894.76 219
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19595.26 10995.98 14086.26 15086.21 20594.29 16979.70 12897.65 18888.87 12388.10 24994.57 226
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FC-MVSNet-test90.27 11990.18 11190.53 20393.71 22079.85 22795.77 8297.59 389.31 5886.27 20394.67 15581.93 10897.01 24984.26 17988.09 25194.71 220
ACMMP++88.01 252
D2MVS85.90 25885.09 25888.35 28290.79 32277.42 28491.83 27795.70 16480.77 27880.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24894.74 14095.61 17284.07 20085.36 23694.52 16359.78 34297.34 22482.93 19687.88 25496.71 141
PVSNet_BlendedMVS89.98 12689.70 12290.82 19596.12 9781.25 18293.92 20196.83 6683.49 21589.10 14592.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25978.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25978.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
anonymousdsp87.84 18987.09 18890.12 22489.13 35280.54 20394.67 14695.55 17582.05 24683.82 27292.12 24571.47 23197.15 23887.15 14487.80 25892.67 312
testing380.46 32679.59 32483.06 35593.44 23064.64 38493.33 22385.47 37984.34 19679.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
Anonymous2024052988.09 18486.59 20792.58 11596.53 8681.92 16695.99 7195.84 15374.11 35389.06 14795.21 12761.44 32798.81 8983.67 18987.47 26097.01 125
ACMMP++_ref87.47 260
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25591.20 30178.00 26891.70 28195.55 17585.05 18182.97 28992.25 24154.49 36697.48 20382.93 19687.45 26292.89 307
EI-MVSNet89.10 15488.86 14689.80 24191.84 27878.30 26293.70 21195.01 20785.73 16387.15 17995.28 12279.87 12597.21 23683.81 18687.36 26393.88 261
MVSTER88.84 16388.29 16290.51 20692.95 24880.44 20593.73 20895.01 20784.66 19287.15 17993.12 21372.79 21897.21 23687.86 13387.36 26393.87 262
EG-PatchMatch MVS82.37 30680.34 31288.46 27990.27 33679.35 23892.80 24994.33 24277.14 32473.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33888.62 34381.96 39081.37 26885.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
tpm284.08 28982.94 29387.48 30391.39 29571.27 35389.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 221
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34389.47 33091.04 33176.26 33286.45 19889.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32580.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31187.61 35880.97 39276.82 32688.68 15195.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 20092.89 27877.62 31886.89 18893.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21794.44 18781.50 17392.31 26594.89 21783.03 22779.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24295.28 13879.75 22894.25 17592.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28292.46 28976.20 33382.67 29395.22 12563.94 31197.29 22877.51 28085.80 27494.53 228
USDC82.76 30181.26 30687.26 30791.17 30374.55 31989.27 33293.39 27078.26 31475.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27590.04 31990.19 34684.70 19181.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
GBi-Net87.26 21685.98 23291.08 18394.01 20583.10 12795.14 11794.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20583.10 12795.14 11794.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
FMVSNet387.40 21186.11 22691.30 17493.79 21883.64 11094.20 17994.81 22583.89 20484.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
FMVSNet287.19 22485.82 23891.30 17494.01 20583.67 10894.79 13794.94 21183.57 21183.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
ACMH80.38 1785.36 26883.68 28190.39 21394.45 18680.63 20094.73 14194.85 22182.09 24577.24 34892.65 22760.01 34097.58 19572.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF88.24 28691.88 27777.05 28992.92 27785.54 16980.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 33081.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
tt080586.92 23285.74 24490.48 20892.22 26379.98 22395.63 9294.88 21983.83 20684.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30292.33 26390.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
AllTest83.42 29881.39 30489.52 25295.01 15277.79 27793.12 23590.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
TestCases89.52 25295.01 15277.79 27790.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27785.75 21389.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11794.94 21181.64 26282.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32483.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34883.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
XXY-MVS87.65 19686.85 19590.03 22892.14 26680.60 20293.76 20795.23 19782.94 23084.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
test_040281.30 32079.17 33087.67 29793.19 23578.17 26592.98 24291.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35988.31 34791.70 31278.91 29880.49 31987.18 35769.30 26397.08 24368.12 34983.56 29493.51 284
pmmvs584.21 28782.84 29788.34 28388.95 35476.94 29092.41 25791.91 31075.63 33780.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
pmmvs485.43 26683.86 27990.16 22190.02 34282.97 13790.27 30992.67 28675.93 33580.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33490.24 31387.83 36983.41 21779.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28386.08 20888.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
nrg03091.08 10390.39 10693.17 7893.07 24086.91 2296.41 3996.26 11688.30 9288.37 15894.85 14682.19 9897.64 19191.09 9582.95 29994.96 209
cl2286.78 23685.98 23289.18 26192.34 26177.62 28290.84 30294.13 25181.33 26983.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
miper_ehance_all_eth87.22 22186.62 20689.02 26692.13 26777.40 28590.91 30194.81 22581.28 27084.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
miper_enhance_ethall86.90 23386.18 22289.06 26491.66 28777.58 28390.22 31594.82 22479.16 29684.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
ACMH+81.04 1485.05 27683.46 28489.82 23894.66 17379.37 23794.44 16294.12 25282.19 24478.04 34392.82 22258.23 35097.54 19873.77 31382.90 30392.54 315
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21382.89 13995.46 9797.33 2587.91 10588.43 15793.31 20474.17 19797.40 21987.32 14282.86 30494.52 229
IterMVS-LS88.36 17787.91 17189.70 24593.80 21678.29 26393.73 20895.08 20685.73 16384.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29190.70 34083.70 20878.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 35090.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
WR-MVS88.38 17587.67 17590.52 20593.30 23380.18 21093.26 23195.96 14388.57 8585.47 22592.81 22376.12 16696.91 25581.24 23282.29 30894.47 238
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35887.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
v119287.25 21886.33 21690.00 23290.76 32479.04 24793.80 20595.48 18082.57 23785.48 22491.18 27873.38 21297.42 21282.30 20982.06 31093.53 281
v114487.61 20286.79 19890.06 22791.01 31079.34 23993.95 19895.42 18983.36 22085.66 21691.31 27474.98 18497.42 21283.37 19082.06 31093.42 287
v124086.78 23685.85 23789.56 25090.45 33477.79 27793.61 21395.37 19281.65 26185.43 22991.15 28071.50 23097.43 21181.47 23082.05 31293.47 285
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28792.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
V4287.68 19486.86 19490.15 22290.58 33080.14 21294.24 17795.28 19583.66 20985.67 21591.33 27174.73 18897.41 21784.43 17881.83 31492.89 307
v192192086.97 23186.06 22989.69 24690.53 33378.11 26793.80 20595.43 18781.90 25385.33 23791.05 28472.66 21997.41 21782.05 21781.80 31593.53 281
v2v48287.84 18987.06 18990.17 22090.99 31179.23 24694.00 19695.13 20184.87 18485.53 22092.07 25174.45 19197.45 20784.71 17481.75 31693.85 265
Anonymous2023121186.59 24485.13 25790.98 19296.52 8781.50 17396.14 5796.16 12573.78 35683.65 27792.15 24363.26 31697.37 22382.82 20081.74 31794.06 254
v14419287.19 22486.35 21589.74 24290.64 32878.24 26493.92 20195.43 18781.93 25185.51 22291.05 28474.21 19697.45 20782.86 19881.56 31893.53 281
cl____86.52 24785.78 23988.75 27292.03 27176.46 29790.74 30394.30 24381.83 25783.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
DIV-MVS_self_test86.53 24685.78 23988.75 27292.02 27276.45 29890.74 30394.30 24381.83 25783.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24793.23 27275.61 33875.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34294.01 19494.40 23984.72 19079.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26991.49 28692.26 29776.87 32576.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
CP-MVSNet87.63 19987.26 18788.74 27493.12 23776.59 29695.29 10696.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
c3_l87.14 22686.50 21189.04 26592.20 26477.26 28691.22 29594.70 23182.01 24984.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29190.19 31692.65 28785.40 17281.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33289.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23183.72 10694.43 16397.12 4189.80 4386.46 19693.32 20383.16 7997.23 23484.92 16981.02 32894.49 235
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 16096.59 9089.50 5286.46 19693.29 20677.25 15697.23 23484.92 16981.02 32894.59 224
PS-CasMVS87.32 21586.88 19388.63 27792.99 24676.33 30195.33 10196.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30390.18 31792.41 29083.24 22381.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22584.52 8594.78 13897.47 1189.26 6086.44 19992.32 23782.10 10097.39 22284.81 17280.84 33294.12 249
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32974.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
v1087.25 21886.38 21389.85 23691.19 30279.50 23394.48 15795.45 18483.79 20783.62 27891.19 27675.13 18197.42 21281.94 21980.60 33492.63 314
tfpnnormal84.72 28283.23 28889.20 26092.79 25280.05 21894.48 15795.81 15482.38 24081.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
WR-MVS_H87.80 19187.37 18289.10 26393.23 23478.12 26695.61 9397.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
VPNet88.20 18187.47 18090.39 21393.56 22679.46 23494.04 19195.54 17788.67 8186.96 18294.58 16269.33 26097.15 23884.05 18280.53 33794.56 227
v7n86.81 23485.76 24289.95 23390.72 32679.25 24595.07 12095.92 14584.45 19582.29 29590.86 28772.60 22197.53 19979.42 26280.52 33893.08 301
v887.50 20886.71 20089.89 23591.37 29679.40 23694.50 15695.38 19084.81 18783.60 27991.33 27176.05 16797.42 21282.84 19980.51 33992.84 309
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22491.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 30084.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13996.25 11889.05 6780.04 32693.29 20679.02 13797.05 24781.71 22780.05 34294.59 224
Baseline_NR-MVSNet87.07 22886.63 20588.40 28091.44 29177.87 27394.23 17892.57 28884.12 19985.74 21492.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33181.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13594.92 12996.31 11089.88 4085.53 22093.85 19076.63 16496.96 25181.91 22079.87 34594.50 233
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31887.69 35594.09 25381.20 27481.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
v14887.04 22986.32 21789.21 25990.94 31577.26 28693.71 21094.43 23784.84 18684.36 26090.80 29176.04 16897.05 24782.12 21379.60 34793.31 289
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27991.29 32583.28 22280.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
eth_miper_zixun_eth86.50 24885.77 24188.68 27591.94 27375.81 30790.47 30794.89 21782.05 24684.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
baseline188.10 18387.28 18590.57 20194.96 15680.07 21594.27 17491.29 32586.74 13587.41 17594.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
our_test_381.93 30880.46 31186.33 32888.46 36073.48 33088.46 34591.11 32776.46 32776.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
PEN-MVS86.80 23586.27 22088.40 28092.32 26275.71 30895.18 11496.38 10587.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
pm-mvs186.61 24285.54 24689.82 23891.44 29180.18 21095.28 10894.85 22183.84 20581.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
h-mvs3390.80 10590.15 11292.75 10596.01 10582.66 14995.43 9895.53 17889.80 4393.08 6895.64 11375.77 17199.00 6892.07 7378.05 35496.60 144
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21791.99 30585.54 16977.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32289.04 33892.16 29975.33 34077.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32791.61 28492.75 28378.11 31772.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31594.93 12895.75 15987.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
AUN-MVS87.78 19286.54 20991.48 16694.82 16681.05 18893.91 20393.93 25683.00 22886.93 18393.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
hse-mvs289.88 13389.34 13291.51 16494.83 16581.12 18793.94 19993.91 25989.80 4393.08 6893.60 19775.77 17197.66 18792.07 7377.07 36195.74 182
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23471.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29791.08 32881.23 27374.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26291.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32989.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
pmmvs683.42 29881.60 30288.87 26988.01 36677.87 27394.96 12694.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33685.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33985.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35482.17 38987.50 37278.47 30877.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33973.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28574.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25487.71 37085.56 16873.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29993.93 25678.71 30676.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34490.25 31193.07 27581.24 27279.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 31093.12 23592.03 30376.45 32875.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32688.79 34090.42 34279.16 29659.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
TransMVSNet (Re)84.43 28583.06 29288.54 27891.72 28378.44 25795.18 11492.82 28182.73 23579.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31569.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34188.45 34694.87 22082.99 22971.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33385.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35683.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1580.00 4140.00 41594.29 16975.66 1770.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS64.08 38559.14 382
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 419
eth-test0.00 419
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
save fliter97.85 4685.63 6695.21 11296.82 6889.44 53
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 163
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 22896.12 163
sam_mvs70.60 241
MTGPAbinary96.97 50
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
test_post10.29 40970.57 24595.91 307
patchmatchnet-post83.76 37571.53 22996.48 278
MTMP96.16 5360.64 410
gm-plane-assit89.60 35068.00 37177.28 32388.99 32897.57 19679.44 260
TEST997.53 5886.49 3794.07 18896.78 7281.61 26492.77 8096.20 8787.71 2899.12 51
test_897.49 6086.30 4594.02 19396.76 7581.86 25592.70 8496.20 8787.63 2999.02 61
agg_prior97.38 6385.92 5796.72 8192.16 9598.97 75
test_prior485.96 5494.11 183
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
旧先验293.36 22271.25 37594.37 3997.13 24186.74 149
新几何293.11 237
无先验93.28 23096.26 11673.95 35599.05 5580.56 24596.59 145
原ACMM292.94 244
testdata298.75 9378.30 271
segment_acmp87.16 36
testdata192.15 26987.94 104
plane_prior794.70 17182.74 144
plane_prior694.52 18182.75 14274.23 194
plane_prior494.86 144
plane_prior382.75 14290.26 3386.91 185
plane_prior295.85 7790.81 17
plane_prior194.59 176
n20.00 420
nn0.00 420
door-mid85.49 378
test1196.57 92
door85.33 380
HQP5-MVS81.56 171
HQP-NCC94.17 19894.39 16788.81 7485.43 229
ACMP_Plane94.17 19894.39 16788.81 7485.43 229
BP-MVS87.11 146
HQP4-MVS85.43 22997.96 17194.51 231
HQP2-MVS73.83 204
NP-MVS94.37 19082.42 15593.98 181
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
Test By Simon80.02 123