This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13397.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
IU-MVS98.77 486.00 5496.84 6381.26 23797.26 695.50 799.13 399.03 4
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8392.25 4598.99 1098.84 8
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 7995.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11897.17 3886.26 12792.83 6197.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23394.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8696.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7292.73 6697.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8093.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5791.98 8297.19 3485.43 5499.56 792.06 5298.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15493.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9295.47 16989.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6893.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6893.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10093.65 4397.21 3286.10 4599.49 2391.68 6598.77 2498.30 41
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12095.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7093.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
test9_res91.91 5898.71 3098.07 63
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 20694.00 17897.08 4390.05 3295.65 1797.29 2689.66 1098.97 7993.95 1698.71 3098.50 22
9.1494.47 1797.79 5296.08 5097.44 1286.13 13195.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17196.78 7081.86 22392.77 6396.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4792.81 6296.97 4585.37 5599.24 4490.87 8198.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8596.10 1396.96 4689.09 1598.94 8394.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior290.54 8498.68 3598.27 47
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8197.26 2982.67 20493.81 3996.29 7587.29 3299.27 4289.87 8998.67 3798.65 15
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16496.88 5987.67 9792.63 6896.39 7286.62 3998.87 8791.50 6898.67 3798.11 61
test_prior294.12 16487.67 9792.63 6896.39 7286.62 3991.50 6898.67 37
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11595.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16392.19 4898.66 4096.76 120
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17396.66 8580.09 24992.77 6396.63 6286.62 3999.04 6387.40 11698.66 4098.17 54
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11592.62 7096.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6691.83 8897.17 3683.96 7499.55 1291.44 7098.64 4398.43 34
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10697.12 4087.13 10792.51 7396.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 13995.05 2397.18 3587.31 3199.07 5891.90 6198.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8497.78 187.45 10393.26 5197.33 2484.62 6599.51 2190.75 8398.57 4698.32 40
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5997.16 3785.02 6099.49 2391.99 5398.56 4798.47 28
X-MVStestdata88.31 15986.13 20094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5923.41 35285.02 6099.49 2391.99 5398.56 4798.47 28
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18196.72 7981.96 21792.16 7896.23 7887.85 2298.97 7991.95 5798.55 4997.90 76
DELS-MVS93.43 5493.25 5393.97 5995.42 12685.04 7493.06 21797.13 3990.74 2091.84 8695.09 11586.32 4399.21 4791.22 7398.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS98.15 3586.62 3597.07 4483.63 18094.19 3096.91 4887.57 2999.26 4391.99 5398.44 51
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11197.21 3484.33 16893.89 3897.09 3987.20 3399.29 4191.90 6198.44 5198.12 59
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8093.26 5196.83 5185.48 5399.59 491.43 7198.40 5398.30 41
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13692.47 7497.13 3882.38 8699.07 5890.51 8598.40 5397.92 75
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10594.85 2497.04 4286.99 3799.52 2091.54 6798.33 5698.71 12
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11396.99 4789.02 5989.56 11597.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4297.37 1884.15 17090.05 11295.66 10087.77 2399.15 5389.91 8898.27 5898.07 63
原ACMM192.01 12797.34 6681.05 17696.81 6878.89 26190.45 10795.92 9182.65 8398.84 9580.68 21098.26 5996.14 137
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21097.24 3088.76 6491.60 9395.85 9486.07 4798.66 10191.91 5898.16 6098.03 67
test1294.34 5397.13 7486.15 5196.29 10591.04 10385.08 5899.01 7098.13 6197.86 79
新几何193.10 8197.30 6884.35 9495.56 16271.09 32891.26 10096.24 7782.87 8298.86 9079.19 23198.10 6296.07 144
112190.42 10689.49 11293.20 7797.27 7184.46 8892.63 22795.51 16771.01 32991.20 10196.21 7982.92 8199.05 6080.56 21298.07 6396.10 142
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8394.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
test117293.97 3994.07 3493.66 7198.11 3783.45 11496.26 4096.84 6388.33 7694.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16086.37 4397.18 797.02 4689.20 5284.31 22696.66 6173.74 18999.17 5086.74 12697.96 6797.79 83
CANet93.54 5193.20 5694.55 4495.65 11985.73 6794.94 10996.69 8391.89 590.69 10595.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22696.56 9383.44 18691.68 9295.04 11686.60 4298.99 7685.60 13697.92 6996.93 116
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11193.92 3797.47 1683.88 7598.96 8292.71 3797.87 7098.26 49
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22290.24 10996.44 7178.59 13198.61 10689.68 9097.85 7197.06 109
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7387.46 10193.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
test22296.55 8881.70 15992.22 24195.01 19668.36 33490.20 11096.14 8580.26 11097.80 7296.05 146
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12088.73 497.07 1396.77 7290.84 1684.02 23196.62 6375.95 15699.34 3387.77 11197.68 7598.59 18
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7696.97 114
Regformer-194.22 3294.13 3294.51 4695.54 12386.36 4494.57 13496.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
Regformer-294.33 2794.22 2594.68 3895.54 12386.75 2994.57 13496.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
EPNet91.79 7891.02 8894.10 5890.10 30585.25 7396.03 5392.05 27292.83 187.39 15195.78 9679.39 12299.01 7088.13 10897.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS92.60 6892.56 6792.73 9895.55 12282.35 14896.14 4696.85 6288.71 6591.44 9691.51 24084.13 7198.48 11291.27 7297.47 8097.34 97
testdata90.49 18896.40 9277.89 25295.37 18172.51 32193.63 4596.69 5882.08 9497.65 16983.08 16597.39 8195.94 148
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10884.43 9293.08 21596.09 12088.20 8391.12 10295.72 9981.33 10297.76 16391.74 6397.37 8296.75 121
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9193.20 5497.22 3180.35 10799.18 4991.91 5897.21 8397.26 100
MVSFormer91.68 8391.30 8192.80 9493.86 18983.88 10395.96 5795.90 13684.66 16491.76 8994.91 11977.92 13897.30 20189.64 9197.11 8497.24 101
lupinMVS90.92 9490.21 9893.03 8593.86 18983.88 10392.81 22393.86 23979.84 25291.76 8994.29 14277.92 13898.04 14890.48 8697.11 8497.17 105
EIA-MVS91.95 7691.94 7491.98 13095.16 13680.01 20595.36 7896.73 7788.44 7389.34 11992.16 21383.82 7698.45 11889.35 9397.06 8697.48 93
MG-MVS91.77 7991.70 7892.00 12997.08 7580.03 20493.60 19395.18 18987.85 9190.89 10496.47 7082.06 9598.36 12285.07 14097.04 8797.62 86
jason90.80 9590.10 10192.90 9193.04 21583.53 11293.08 21594.15 23280.22 24691.41 9794.91 11976.87 14497.93 15790.28 8796.90 8897.24 101
jason: jason.
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13083.78 10596.14 4695.98 12889.89 3590.45 10796.58 6575.09 16698.31 12984.75 14696.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
114514_t89.51 12588.50 13592.54 10898.11 3781.99 15395.16 9796.36 10370.19 33185.81 17795.25 10976.70 14898.63 10482.07 18496.86 9097.00 113
Vis-MVSNet (Re-imp)89.59 12389.44 11490.03 20895.74 11575.85 28395.61 7390.80 30787.66 9987.83 14195.40 10676.79 14696.46 25978.37 23696.73 9197.80 82
API-MVS90.66 10090.07 10292.45 11296.36 9484.57 8196.06 5295.22 18882.39 20689.13 12194.27 14580.32 10898.46 11580.16 21996.71 9294.33 209
MAR-MVS90.30 10789.37 11693.07 8496.61 8584.48 8795.68 6895.67 15382.36 20887.85 14092.85 19176.63 15098.80 9780.01 22096.68 9395.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Regformer-393.68 4793.64 4893.81 6795.36 12784.61 7994.68 12695.83 14291.27 1293.60 4696.71 5685.75 5098.86 9092.87 3296.65 9497.96 71
Regformer-493.91 4193.81 4194.19 5795.36 12785.47 7094.68 12696.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
OpenMVScopyleft83.78 1188.74 14987.29 16493.08 8292.70 22485.39 7196.57 2996.43 9878.74 26680.85 27796.07 8769.64 23799.01 7078.01 24296.65 9494.83 186
ETV-MVS92.74 6692.66 6592.97 8895.20 13584.04 10095.07 10196.51 9490.73 2192.96 5891.19 24884.06 7298.34 12591.72 6496.54 9796.54 128
QAPM89.51 12588.15 14693.59 7294.92 14684.58 8096.82 2496.70 8178.43 26983.41 24796.19 8373.18 19799.30 3977.11 25196.54 9796.89 118
IS-MVSNet91.43 8591.09 8792.46 11195.87 11381.38 16996.95 1493.69 24489.72 4089.50 11795.98 8978.57 13297.77 16283.02 16796.50 9998.22 52
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 12996.66 8582.69 20390.03 11395.82 9582.30 8999.03 6484.57 14896.48 10096.91 117
CANet_DTU90.26 10989.41 11592.81 9393.46 20383.01 12793.48 19694.47 22089.43 4687.76 14494.23 14670.54 22799.03 6484.97 14196.39 10196.38 130
UGNet89.95 11588.95 12692.95 8994.51 16383.31 11895.70 6795.23 18689.37 4887.58 14693.94 15664.00 28598.78 9883.92 15696.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14693.93 23889.77 3894.21 2995.59 10287.35 3098.61 10692.72 3696.15 10397.83 81
PVSNet_Blended90.73 9790.32 9791.98 13096.12 10081.25 17192.55 23196.83 6582.04 21589.10 12292.56 20181.04 10498.85 9386.72 12995.91 10495.84 153
PS-MVSNAJ91.18 9190.92 8991.96 13295.26 13382.60 14392.09 24695.70 15186.27 12691.84 8692.46 20379.70 11798.99 7689.08 9695.86 10594.29 210
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7690.15 11197.03 4481.44 10099.51 2190.85 8295.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LCM-MVSNet-Re88.30 16088.32 14288.27 25994.71 15572.41 31193.15 21190.98 30187.77 9379.25 29891.96 22578.35 13595.75 29083.04 16695.62 10796.65 124
CHOSEN 1792x268888.84 14687.69 15492.30 12196.14 9981.42 16890.01 28395.86 14074.52 30487.41 14893.94 15675.46 16398.36 12280.36 21595.53 10897.12 108
AdaColmapbinary89.89 11889.07 12392.37 11797.41 6383.03 12594.42 14595.92 13382.81 20186.34 17094.65 13173.89 18599.02 6880.69 20995.51 10995.05 174
MVS87.44 18986.10 20391.44 15392.61 22783.62 11092.63 22795.66 15567.26 33581.47 26992.15 21477.95 13798.22 13379.71 22395.48 11092.47 287
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8784.47 15095.47 11197.45 95
xiu_mvs_v2_base91.13 9290.89 9191.86 13794.97 14282.42 14492.24 24095.64 15886.11 13291.74 9193.14 18379.67 12098.89 8689.06 9795.46 11294.28 211
casdiffmvs92.51 7092.43 7092.74 9794.41 16981.98 15494.54 13696.23 11189.57 4291.96 8396.17 8482.58 8498.01 15090.95 7995.45 11398.23 51
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12194.87 11596.66 8583.29 19089.27 12094.46 13780.29 10999.17 5087.57 11495.37 11496.05 146
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16694.37 15396.24 11086.39 12587.41 14894.80 12682.06 9598.48 11282.80 17395.37 11497.61 87
CHOSEN 280x42085.15 24683.99 24888.65 25092.47 22878.40 24079.68 34292.76 25774.90 30181.41 27189.59 28569.85 23595.51 29779.92 22295.29 11692.03 297
TAPA-MVS84.62 688.16 16387.01 17191.62 14796.64 8480.65 18694.39 14896.21 11576.38 28586.19 17395.44 10379.75 11598.08 14562.75 32995.29 11696.13 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline92.39 7392.29 7292.69 10294.46 16681.77 15894.14 16396.27 10689.22 5191.88 8496.00 8882.35 8797.99 15291.05 7595.27 11898.30 41
LS3D87.89 16986.32 19592.59 10596.07 10582.92 13095.23 9094.92 20475.66 29282.89 25495.98 8972.48 20599.21 4768.43 30695.23 11995.64 159
MVS_Test91.31 8891.11 8591.93 13494.37 17080.14 19793.46 19895.80 14486.46 12391.35 9993.77 16782.21 9198.09 14487.57 11494.95 12097.55 92
PAPR90.02 11289.27 12092.29 12295.78 11480.95 17992.68 22596.22 11281.91 22086.66 16393.75 16982.23 9098.44 11979.40 23094.79 12197.48 93
xiu_mvs_v1_base_debu90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
xiu_mvs_v1_base90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
xiu_mvs_v1_base_debi90.64 10190.05 10392.40 11393.97 18684.46 8893.32 20095.46 17085.17 15192.25 7594.03 14870.59 22398.57 10890.97 7694.67 12294.18 212
gg-mvs-nofinetune81.77 27979.37 29188.99 24290.85 28777.73 25986.29 32179.63 34874.88 30283.19 25269.05 34360.34 30896.11 27475.46 26594.64 12593.11 268
BH-RMVSNet88.37 15787.48 15991.02 17095.28 13179.45 21692.89 22293.07 25285.45 14686.91 15894.84 12570.35 22897.76 16373.97 27794.59 12695.85 152
diffmvs91.37 8791.23 8391.77 14393.09 21280.27 19492.36 23695.52 16687.03 11091.40 9894.93 11880.08 11197.44 18592.13 5194.56 12797.61 87
BH-untuned88.60 15388.13 14790.01 21095.24 13478.50 23793.29 20594.15 23284.75 16284.46 21693.40 17175.76 15797.40 19577.59 24594.52 12894.12 217
Effi-MVS+91.59 8491.11 8593.01 8694.35 17383.39 11794.60 13195.10 19387.10 10890.57 10693.10 18581.43 10198.07 14689.29 9494.48 12997.59 89
PCF-MVS84.11 1087.74 17386.08 20492.70 10194.02 18084.43 9289.27 29395.87 13973.62 31184.43 21894.33 13978.48 13498.86 9070.27 29294.45 13094.81 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 13983.51 11394.48 13895.77 14690.87 1592.52 7296.67 6084.50 6699.00 7591.99 5394.44 13197.36 96
MS-PatchMatch85.05 24884.16 24587.73 27191.42 26178.51 23691.25 26493.53 24577.50 27680.15 28791.58 23761.99 29595.51 29775.69 26394.35 13289.16 328
mvs_anonymous89.37 13489.32 11789.51 23093.47 20274.22 29291.65 25794.83 21082.91 19985.45 19193.79 16581.23 10396.36 26586.47 13194.09 13397.94 72
MVP-Stereo85.97 23084.86 23589.32 23290.92 28382.19 15092.11 24594.19 23078.76 26578.77 30091.63 23568.38 25596.56 25175.01 27193.95 13489.20 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS90.08 11189.13 12292.95 8996.71 8282.32 14996.08 5089.91 32186.79 11692.15 8096.81 5362.60 29198.34 12587.18 12093.90 13598.19 53
PVSNet78.82 1885.55 23784.65 23988.23 26294.72 15471.93 31287.12 31792.75 25878.80 26484.95 20790.53 26764.43 28496.71 24074.74 27293.86 13696.06 145
CNLPA89.07 13987.98 14992.34 11896.87 7884.78 7794.08 17093.24 24981.41 23384.46 21695.13 11475.57 16296.62 24377.21 24993.84 13795.61 160
EPNet_dtu86.49 22385.94 21088.14 26490.24 30372.82 30494.11 16692.20 26886.66 12179.42 29792.36 20773.52 19095.81 28871.26 28793.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15083.20 12094.40 14695.74 14990.71 2292.05 8196.60 6484.00 7398.99 7691.55 6693.63 13997.17 105
Fast-Effi-MVS+89.41 13188.64 13291.71 14594.74 15280.81 18393.54 19495.10 19383.11 19386.82 16190.67 26579.74 11697.75 16680.51 21493.55 14096.57 126
131487.51 18686.57 18790.34 19792.42 23079.74 21292.63 22795.35 18378.35 27080.14 28891.62 23674.05 18297.15 21581.05 20093.53 14194.12 217
BH-w/o87.57 18487.05 17089.12 23794.90 14877.90 25192.41 23393.51 24682.89 20083.70 23991.34 24275.75 15897.07 22375.49 26493.49 14292.39 290
PMMVS85.71 23684.96 23287.95 26888.90 31877.09 26988.68 30290.06 31772.32 32286.47 16490.76 26472.15 20894.40 31281.78 19293.49 14292.36 291
PatchMatch-RL86.77 21485.54 21990.47 19095.88 11182.71 13990.54 27392.31 26579.82 25384.32 22491.57 23968.77 25096.39 26273.16 28293.48 14492.32 293
PLCcopyleft84.53 789.06 14088.03 14892.15 12597.27 7182.69 14094.29 15695.44 17579.71 25484.01 23294.18 14776.68 14998.75 9977.28 24893.41 14595.02 175
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet92.24 7491.91 7593.24 7696.59 8683.43 11594.84 11796.44 9689.19 5394.08 3495.90 9277.85 14198.17 13588.90 9893.38 14698.13 58
test-LLR85.87 23285.41 22287.25 28390.95 27971.67 31489.55 28789.88 32383.41 18784.54 21387.95 30867.25 25895.11 30681.82 19093.37 14794.97 176
test-mter84.54 25683.64 25487.25 28390.95 27971.67 31489.55 28789.88 32379.17 25784.54 21387.95 30855.56 32495.11 30681.82 19093.37 14794.97 176
EPP-MVSNet91.70 8291.56 7992.13 12695.88 11180.50 19297.33 395.25 18586.15 12989.76 11495.60 10183.42 7798.32 12887.37 11893.25 14997.56 91
CDS-MVSNet89.45 12888.51 13492.29 12293.62 19883.61 11193.01 21894.68 21781.95 21887.82 14293.24 17978.69 12996.99 22880.34 21693.23 15096.28 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM86.68 21585.39 22390.53 18493.05 21479.33 22389.79 28694.77 21578.82 26381.95 26693.24 17976.81 14597.30 20166.94 31293.16 15194.95 182
alignmvs93.08 6292.50 6994.81 3295.62 12187.61 1295.99 5496.07 12289.77 3894.12 3294.87 12180.56 10698.66 10192.42 4093.10 15298.15 56
mvs-test189.45 12889.14 12190.38 19493.33 20577.63 26194.95 10894.36 22387.70 9587.10 15592.81 19573.45 19298.03 14985.57 13793.04 15395.48 162
thisisatest051587.33 19285.99 20691.37 15593.49 20179.55 21390.63 27289.56 32880.17 24787.56 14790.86 25967.07 26198.28 13081.50 19793.02 15496.29 132
TAMVS89.21 13688.29 14391.96 13293.71 19582.62 14293.30 20494.19 23082.22 21087.78 14393.94 15678.83 12696.95 23077.70 24492.98 15596.32 131
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19595.93 13286.95 11289.51 11696.13 8678.50 13398.35 12485.84 13492.90 15696.83 119
canonicalmvs93.27 5892.75 6494.85 2795.70 11887.66 1196.33 3596.41 9990.00 3494.09 3394.60 13382.33 8898.62 10592.40 4192.86 15798.27 47
TESTMET0.1,183.74 26482.85 26386.42 29889.96 30971.21 31889.55 28787.88 33277.41 27783.37 24887.31 31656.71 32193.65 32180.62 21192.85 15894.40 208
thisisatest053088.67 15087.61 15791.86 13794.87 14980.07 20094.63 13089.90 32284.00 17388.46 13093.78 16666.88 26498.46 11583.30 16392.65 15997.06 109
VDD-MVS90.74 9689.92 10893.20 7796.27 9683.02 12695.73 6593.86 23988.42 7592.53 7196.84 5062.09 29498.64 10390.95 7992.62 16097.93 74
test_yl90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13292.53 16197.31 98
DCV-MVSNet90.69 9890.02 10692.71 9995.72 11682.41 14694.11 16695.12 19185.63 14091.49 9494.70 12774.75 17098.42 12086.13 13292.53 16197.31 98
VDDNet89.56 12488.49 13792.76 9695.07 13882.09 15196.30 3693.19 25081.05 24191.88 8496.86 4961.16 30498.33 12788.43 10492.49 16397.84 80
DP-MVS87.25 19685.36 22592.90 9197.65 5683.24 11994.81 11992.00 27474.99 29981.92 26795.00 11772.66 20299.05 6066.92 31492.33 16496.40 129
GG-mvs-BLEND87.94 26989.73 31377.91 25087.80 31078.23 35080.58 28183.86 32859.88 31295.33 30371.20 28892.22 16590.60 320
tttt051788.61 15287.78 15391.11 16594.96 14377.81 25595.35 7989.69 32585.09 15688.05 13794.59 13466.93 26298.48 11283.27 16492.13 16697.03 111
HyFIR lowres test88.09 16586.81 17591.93 13496.00 10780.63 18790.01 28395.79 14573.42 31387.68 14592.10 21973.86 18697.96 15480.75 20891.70 16797.19 104
sss88.93 14488.26 14590.94 17694.05 17980.78 18491.71 25495.38 17981.55 23188.63 12793.91 16075.04 16795.47 30182.47 17791.61 16896.57 126
cascas86.43 22484.98 23190.80 17892.10 23880.92 18090.24 27795.91 13573.10 31683.57 24488.39 30165.15 28097.46 18284.90 14491.43 16994.03 224
Effi-MVS+-dtu88.65 15188.35 13989.54 22793.33 20576.39 27894.47 14194.36 22387.70 9585.43 19489.56 28773.45 19297.26 20785.57 13791.28 17094.97 176
thres100view90087.63 17986.71 17990.38 19496.12 10078.55 23495.03 10591.58 28587.15 10688.06 13692.29 21068.91 24898.10 13870.13 29691.10 17194.48 205
tfpn200view987.58 18386.64 18290.41 19195.99 10878.64 23294.58 13291.98 27686.94 11388.09 13391.77 22969.18 24598.10 13870.13 29691.10 17194.48 205
thres600view787.65 17686.67 18190.59 18096.08 10478.72 23094.88 11491.58 28587.06 10988.08 13592.30 20968.91 24898.10 13870.05 29991.10 17194.96 179
thres40087.62 18186.64 18290.57 18195.99 10878.64 23294.58 13291.98 27686.94 11388.09 13391.77 22969.18 24598.10 13870.13 29691.10 17194.96 179
F-COLMAP87.95 16886.80 17691.40 15496.35 9580.88 18194.73 12495.45 17379.65 25582.04 26594.61 13271.13 21598.50 11176.24 25991.05 17594.80 188
thres20087.21 20086.24 19890.12 20495.36 12778.53 23593.26 20792.10 27086.42 12488.00 13891.11 25469.24 24498.00 15169.58 30091.04 17693.83 236
WTY-MVS89.60 12288.92 12791.67 14695.47 12581.15 17592.38 23594.78 21483.11 19389.06 12494.32 14078.67 13096.61 24681.57 19690.89 17797.24 101
HY-MVS83.01 1289.03 14187.94 15192.29 12294.86 15082.77 13392.08 24794.49 21981.52 23286.93 15792.79 19778.32 13698.23 13179.93 22190.55 17895.88 151
CLD-MVS89.47 12788.90 12891.18 16194.22 17482.07 15292.13 24496.09 12087.90 8985.37 20092.45 20474.38 17597.56 17587.15 12190.43 17993.93 227
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CVMVSNet84.69 25584.79 23784.37 31291.84 24664.92 34193.70 19091.47 29066.19 33786.16 17495.28 10767.18 26093.33 32480.89 20690.42 18094.88 184
SCA86.32 22585.18 22789.73 22292.15 23476.60 27491.12 26691.69 28383.53 18485.50 18888.81 29466.79 26596.48 25676.65 25490.35 18196.12 139
Fast-Effi-MVS+-dtu87.44 18986.72 17889.63 22592.04 23977.68 26094.03 17593.94 23785.81 13482.42 25891.32 24570.33 22997.06 22480.33 21790.23 18294.14 215
OPM-MVS90.12 11089.56 11191.82 14093.14 21083.90 10294.16 16295.74 14988.96 6087.86 13995.43 10572.48 20597.91 15888.10 10990.18 18393.65 247
HQP_MVS90.60 10490.19 9991.82 14094.70 15682.73 13795.85 6196.22 11290.81 1786.91 15894.86 12274.23 17798.12 13688.15 10689.99 18494.63 191
plane_prior596.22 11298.12 13688.15 10689.99 18494.63 191
XVG-OURS89.40 13388.70 13191.52 14994.06 17881.46 16691.27 26396.07 12286.14 13088.89 12695.77 9768.73 25197.26 20787.39 11789.96 18695.83 154
baseline286.50 22185.39 22389.84 21591.12 27376.70 27391.88 24888.58 33082.35 20979.95 29290.95 25873.42 19497.63 17280.27 21889.95 18795.19 171
Anonymous20240521187.68 17486.13 20092.31 12096.66 8380.74 18594.87 11591.49 28980.47 24589.46 11895.44 10354.72 32898.23 13182.19 18289.89 18897.97 70
plane_prior82.73 13795.21 9289.66 4189.88 189
TR-MVS86.78 21185.76 21789.82 21694.37 17078.41 23992.47 23292.83 25581.11 24086.36 16992.40 20568.73 25197.48 18073.75 28089.85 19093.57 249
HQP3-MVS96.04 12689.77 191
HQP-MVS89.80 11989.28 11991.34 15694.17 17581.56 16094.39 14896.04 12688.81 6185.43 19493.97 15573.83 18797.96 15487.11 12389.77 19194.50 202
XVG-OURS-SEG-HR89.95 11589.45 11391.47 15194.00 18481.21 17491.87 24996.06 12485.78 13588.55 12895.73 9874.67 17397.27 20588.71 10189.64 19395.91 149
GA-MVS86.61 21685.27 22690.66 17991.33 26678.71 23190.40 27593.81 24285.34 14985.12 20489.57 28661.25 30197.11 21980.99 20489.59 19496.15 136
1112_ss88.42 15587.33 16391.72 14494.92 14680.98 17792.97 22094.54 21878.16 27483.82 23693.88 16178.78 12897.91 15879.45 22689.41 19596.26 134
ab-mvs89.41 13188.35 13992.60 10495.15 13782.65 14192.20 24295.60 16083.97 17488.55 12893.70 17074.16 18198.21 13482.46 17889.37 19696.94 115
CR-MVSNet85.35 24183.76 25190.12 20490.58 29679.34 22085.24 32791.96 27878.27 27185.55 18387.87 31171.03 21795.61 29273.96 27889.36 19795.40 166
RPMNet83.95 26181.53 27191.21 15990.58 29679.34 22085.24 32796.76 7371.44 32685.55 18382.97 33370.87 21998.91 8561.01 33389.36 19795.40 166
DSMNet-mixed76.94 30676.29 30778.89 32283.10 34256.11 34987.78 31179.77 34760.65 34175.64 31688.71 29761.56 29888.34 34260.07 33689.29 19992.21 296
LPG-MVS_test89.45 12888.90 12891.12 16294.47 16481.49 16495.30 8496.14 11786.73 11885.45 19195.16 11269.89 23398.10 13887.70 11289.23 20093.77 241
LGP-MVS_train91.12 16294.47 16481.49 16496.14 11786.73 11885.45 19195.16 11269.89 23398.10 13887.70 11289.23 20093.77 241
Test_1112_low_res87.65 17686.51 18891.08 16694.94 14579.28 22491.77 25194.30 22676.04 29083.51 24592.37 20677.86 14097.73 16778.69 23589.13 20296.22 135
PatchmatchNetpermissive85.85 23384.70 23889.29 23391.76 24975.54 28688.49 30491.30 29381.63 22985.05 20588.70 29871.71 20996.24 26974.61 27489.05 20396.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.56 25591.69 25369.93 32887.75 31291.54 28778.60 26784.86 20888.90 29369.54 23896.03 27670.25 29388.93 204
MIMVSNet82.59 27380.53 27888.76 24591.51 25678.32 24186.57 32090.13 31579.32 25680.70 27988.69 29952.98 33393.07 32866.03 31788.86 20594.90 183
ACMM84.12 989.14 13788.48 13891.12 16294.65 15981.22 17395.31 8196.12 11985.31 15085.92 17694.34 13870.19 23198.06 14785.65 13588.86 20594.08 221
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP84.23 889.01 14388.35 13990.99 17394.73 15381.27 17095.07 10195.89 13886.48 12283.67 24094.30 14169.33 24097.99 15287.10 12588.55 20793.72 245
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf89.03 14188.64 13290.21 19990.74 29179.28 22495.96 5795.90 13684.66 16485.33 20292.94 18974.02 18397.30 20189.64 9188.53 20894.05 223
jajsoiax88.24 16187.50 15890.48 18990.89 28580.14 19795.31 8195.65 15784.97 15884.24 22894.02 15165.31 27997.42 18888.56 10288.52 20993.89 229
PatchT82.68 27281.27 27386.89 29390.09 30670.94 32284.06 33190.15 31474.91 30085.63 18283.57 33069.37 23994.87 31065.19 31988.50 21094.84 185
MSDG84.86 25283.09 25990.14 20393.80 19280.05 20289.18 29693.09 25178.89 26178.19 30191.91 22665.86 27897.27 20568.47 30588.45 21193.11 268
MVS-HIRNet73.70 30972.20 31278.18 32491.81 24856.42 34882.94 33782.58 34355.24 34368.88 33566.48 34455.32 32695.13 30558.12 33888.42 21283.01 339
mvs_tets88.06 16787.28 16590.38 19490.94 28179.88 20895.22 9195.66 15585.10 15584.21 22993.94 15663.53 28897.40 19588.50 10388.40 21393.87 232
ET-MVSNet_ETH3D87.51 18685.91 21192.32 11993.70 19783.93 10192.33 23790.94 30384.16 16972.09 33092.52 20269.90 23295.85 28589.20 9588.36 21497.17 105
FIs90.51 10590.35 9690.99 17393.99 18580.98 17795.73 6597.54 389.15 5486.72 16294.68 12981.83 9997.24 20985.18 13988.31 21594.76 189
MVS_030483.46 26581.92 26888.10 26590.63 29577.49 26493.26 20793.75 24380.04 25080.44 28487.24 31747.94 34195.55 29475.79 26288.16 21691.26 310
PS-MVSNAJss89.97 11489.62 11091.02 17091.90 24480.85 18295.26 8995.98 12886.26 12786.21 17294.29 14279.70 11797.65 16988.87 9988.10 21794.57 197
CMPMVSbinary59.16 2180.52 29379.20 29384.48 31183.98 33967.63 33689.95 28593.84 24164.79 33866.81 33991.14 25357.93 31995.17 30476.25 25888.10 21790.65 317
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FC-MVSNet-test90.27 10890.18 10090.53 18493.71 19579.85 21095.77 6497.59 289.31 4986.27 17194.67 13081.93 9897.01 22784.26 15288.09 21994.71 190
ACMMP++88.01 220
D2MVS85.90 23185.09 22988.35 25790.79 28877.42 26591.83 25095.70 15180.77 24380.08 29090.02 27766.74 26796.37 26381.88 18987.97 22191.26 310
UniMVSNet_ETH3D87.53 18586.37 19191.00 17292.44 22978.96 22994.74 12395.61 15984.07 17285.36 20194.52 13659.78 31397.34 20082.93 16887.88 22296.71 123
PVSNet_BlendedMVS89.98 11389.70 10990.82 17796.12 10081.25 17193.92 18196.83 6583.49 18589.10 12292.26 21181.04 10498.85 9386.72 12987.86 22392.35 292
anonymousdsp87.84 17087.09 16890.12 20489.13 31580.54 19094.67 12895.55 16382.05 21383.82 23692.12 21671.47 21397.15 21587.15 12187.80 22492.67 281
Anonymous2024052988.09 16586.59 18692.58 10696.53 8981.92 15695.99 5495.84 14174.11 30789.06 12495.21 11161.44 29998.81 9683.67 16187.47 22597.01 112
ACMMP++_ref87.47 225
XVG-ACMP-BASELINE86.00 22984.84 23689.45 23191.20 26878.00 24891.70 25595.55 16385.05 15782.97 25392.25 21254.49 32997.48 18082.93 16887.45 22792.89 276
EI-MVSNet89.10 13888.86 13089.80 21991.84 24678.30 24293.70 19095.01 19685.73 13787.15 15295.28 10779.87 11497.21 21383.81 15887.36 22893.88 231
MVSTER88.84 14688.29 14390.51 18792.95 22080.44 19393.73 18795.01 19684.66 16487.15 15293.12 18472.79 20197.21 21387.86 11087.36 22893.87 232
EG-PatchMatch MVS82.37 27580.34 28088.46 25490.27 30279.35 21992.80 22494.33 22577.14 28173.26 32790.18 27347.47 34396.72 23870.25 29387.32 23089.30 325
EPMVS83.90 26382.70 26587.51 27590.23 30472.67 30688.62 30381.96 34581.37 23485.01 20688.34 30266.31 27294.45 31175.30 26787.12 23195.43 165
tpm284.08 25982.94 26187.48 27891.39 26271.27 31689.23 29590.37 31171.95 32484.64 21089.33 28867.30 25796.55 25375.17 26887.09 23294.63 191
CostFormer85.77 23584.94 23388.26 26091.16 27272.58 31089.47 29191.04 30076.26 28886.45 16789.97 27970.74 22196.86 23682.35 17987.07 23395.34 169
Patchmatch-test81.37 28679.30 29287.58 27490.92 28374.16 29480.99 34087.68 33570.52 33076.63 31188.81 29471.21 21492.76 32960.01 33786.93 23495.83 154
RRT_MVS88.86 14587.68 15592.39 11692.02 24186.09 5394.38 15294.94 19985.45 14687.14 15493.84 16465.88 27797.11 21988.73 10086.77 23593.98 226
LTVRE_ROB82.13 1386.26 22684.90 23490.34 19794.44 16881.50 16292.31 23994.89 20583.03 19579.63 29592.67 19869.69 23697.79 16171.20 28886.26 23691.72 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft80.39 1683.96 26082.04 26789.74 22095.28 13179.75 21194.25 15892.28 26675.17 29778.02 30493.77 16758.60 31797.84 16065.06 32285.92 23791.63 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DWT-MVSNet_test84.95 25083.68 25288.77 24491.43 26073.75 29691.74 25390.98 30180.66 24483.84 23587.36 31562.44 29297.11 21978.84 23485.81 23895.46 163
RPSCF85.07 24784.27 24487.48 27892.91 22170.62 32491.69 25692.46 26376.20 28982.67 25795.22 11063.94 28697.29 20477.51 24785.80 23994.53 199
USDC82.76 27081.26 27487.26 28291.17 27074.55 29089.27 29393.39 24878.26 27275.30 31792.08 22054.43 33096.63 24271.64 28685.79 24090.61 318
testing_283.40 26881.02 27590.56 18385.06 33780.51 19191.37 26195.57 16182.92 19867.06 33885.54 32549.47 33897.24 20986.74 12685.44 24193.93 227
GBi-Net87.26 19485.98 20791.08 16694.01 18183.10 12295.14 9894.94 19983.57 18184.37 21991.64 23266.59 26996.34 26678.23 23985.36 24293.79 237
test187.26 19485.98 20791.08 16694.01 18183.10 12295.14 9894.94 19983.57 18184.37 21991.64 23266.59 26996.34 26678.23 23985.36 24293.79 237
FMVSNet387.40 19186.11 20291.30 15793.79 19483.64 10994.20 16194.81 21283.89 17584.37 21991.87 22868.45 25496.56 25178.23 23985.36 24293.70 246
FMVSNet287.19 20185.82 21391.30 15794.01 18183.67 10894.79 12094.94 19983.57 18183.88 23492.05 22366.59 26996.51 25477.56 24685.01 24593.73 244
ACMH80.38 1785.36 24083.68 25290.39 19294.45 16780.63 18794.73 12494.85 20882.09 21277.24 30892.65 19960.01 31197.58 17372.25 28584.87 24692.96 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF88.24 26191.88 24577.05 27092.92 25385.54 14380.13 28993.30 17657.29 32096.20 27072.46 28484.71 24791.49 305
JIA-IIPM81.04 28978.98 29787.25 28388.64 31973.48 29881.75 33989.61 32773.19 31582.05 26473.71 34066.07 27695.87 28471.18 29084.60 24892.41 289
OpenMVS_ROBcopyleft74.94 1979.51 29977.03 30586.93 29087.00 33176.23 28192.33 23790.74 30868.93 33374.52 32188.23 30549.58 33796.62 24357.64 33984.29 24987.94 336
AllTest83.42 26681.39 27289.52 22895.01 13977.79 25693.12 21290.89 30577.41 27776.12 31393.34 17254.08 33197.51 17868.31 30784.27 25093.26 259
TestCases89.52 22895.01 13977.79 25690.89 30577.41 27776.12 31393.34 17254.08 33197.51 17868.31 30784.27 25093.26 259
tpm84.73 25384.02 24786.87 29490.33 30168.90 33189.06 29789.94 32080.85 24285.75 17889.86 28168.54 25395.97 27977.76 24384.05 25295.75 157
FMVSNet185.85 23384.11 24691.08 16692.81 22283.10 12295.14 9894.94 19981.64 22882.68 25691.64 23259.01 31696.34 26675.37 26683.78 25393.79 237
ADS-MVSNet281.66 28179.71 28987.50 27691.35 26474.19 29383.33 33488.48 33172.90 31882.24 26185.77 32364.98 28193.20 32664.57 32383.74 25495.12 172
ADS-MVSNet81.56 28379.78 28786.90 29291.35 26471.82 31383.33 33489.16 32972.90 31882.24 26185.77 32364.98 28193.76 31964.57 32383.74 25495.12 172
XXY-MVS87.65 17686.85 17490.03 20892.14 23580.60 18993.76 18695.23 18682.94 19784.60 21194.02 15174.27 17695.49 30081.04 20183.68 25694.01 225
test_040281.30 28879.17 29487.67 27293.19 20978.17 24592.98 21991.71 28175.25 29676.02 31590.31 27159.23 31596.37 26350.22 34383.63 25788.47 334
tpmvs83.35 26982.07 26687.20 28791.07 27571.00 32188.31 30791.70 28278.91 26080.49 28387.18 31869.30 24397.08 22268.12 31083.56 25893.51 253
pmmvs584.21 25882.84 26488.34 25888.95 31776.94 27192.41 23391.91 28075.63 29380.28 28591.18 25064.59 28395.57 29377.09 25283.47 25992.53 285
pmmvs485.43 23983.86 25090.16 20190.02 30882.97 12990.27 27692.67 26075.93 29180.73 27891.74 23171.05 21695.73 29178.85 23383.46 26091.78 300
test0.0.03 182.41 27481.69 26984.59 31088.23 32572.89 30390.24 27787.83 33383.41 18779.86 29389.78 28367.25 25888.99 34165.18 32083.42 26191.90 299
tpmrst85.35 24184.99 23086.43 29790.88 28667.88 33488.71 30191.43 29180.13 24886.08 17588.80 29673.05 19896.02 27782.48 17683.40 26295.40 166
nrg03091.08 9390.39 9593.17 7993.07 21386.91 2096.41 3396.26 10788.30 7888.37 13294.85 12482.19 9297.64 17191.09 7482.95 26394.96 179
cl-mvsnet286.78 21185.98 20789.18 23692.34 23177.62 26290.84 26994.13 23481.33 23583.97 23390.15 27473.96 18496.60 24884.19 15382.94 26493.33 257
miper_ehance_all_eth87.22 19986.62 18589.02 24192.13 23677.40 26690.91 26894.81 21281.28 23684.32 22490.08 27679.26 12396.62 24383.81 15882.94 26493.04 271
miper_enhance_ethall86.90 20786.18 19989.06 23991.66 25477.58 26390.22 27994.82 21179.16 25884.48 21589.10 29079.19 12496.66 24184.06 15482.94 26492.94 274
ACMH+81.04 1485.05 24883.46 25689.82 21694.66 15879.37 21894.44 14394.12 23582.19 21178.04 30392.82 19458.23 31897.54 17673.77 27982.90 26792.54 284
VPA-MVSNet89.62 12188.96 12591.60 14893.86 18982.89 13195.46 7797.33 2287.91 8888.43 13193.31 17574.17 18097.40 19587.32 11982.86 26894.52 200
IterMVS-LS88.36 15887.91 15289.70 22393.80 19278.29 24393.73 18795.08 19585.73 13784.75 20991.90 22779.88 11396.92 23283.83 15782.51 26993.89 229
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testgi80.94 29280.20 28383.18 31687.96 32966.29 33791.28 26290.70 30983.70 17878.12 30292.84 19251.37 33590.82 33863.34 32682.46 27092.43 288
WR-MVS88.38 15687.67 15690.52 18693.30 20780.18 19593.26 20795.96 13088.57 7185.47 19092.81 19576.12 15296.91 23381.24 19982.29 27194.47 207
RRT_test8_iter0586.90 20786.36 19288.52 25393.00 21873.27 30094.32 15595.96 13085.50 14584.26 22792.86 19060.76 30697.70 16888.32 10582.29 27194.60 194
tpm cat181.96 27680.27 28187.01 28991.09 27471.02 32087.38 31691.53 28866.25 33680.17 28686.35 32168.22 25696.15 27369.16 30182.29 27193.86 234
v119287.25 19686.33 19490.00 21190.76 29079.04 22893.80 18495.48 16882.57 20585.48 18991.18 25073.38 19697.42 18882.30 18082.06 27493.53 250
v114487.61 18286.79 17790.06 20791.01 27679.34 22093.95 18095.42 17883.36 18985.66 18191.31 24674.98 16897.42 18883.37 16282.06 27493.42 256
v124086.78 21185.85 21289.56 22690.45 30077.79 25693.61 19295.37 18181.65 22785.43 19491.15 25271.50 21297.43 18681.47 19882.05 27693.47 254
Anonymous2023120681.03 29079.77 28884.82 30987.85 33070.26 32691.42 26092.08 27173.67 31077.75 30589.25 28962.43 29393.08 32761.50 33282.00 27791.12 315
V4287.68 17486.86 17390.15 20290.58 29680.14 19794.24 15995.28 18483.66 17985.67 18091.33 24374.73 17297.41 19384.43 15181.83 27892.89 276
v192192086.97 20686.06 20589.69 22490.53 29978.11 24793.80 18495.43 17681.90 22185.33 20291.05 25672.66 20297.41 19382.05 18581.80 27993.53 250
v2v48287.84 17087.06 16990.17 20090.99 27779.23 22794.00 17895.13 19084.87 15985.53 18592.07 22274.45 17497.45 18384.71 14781.75 28093.85 235
Anonymous2023121186.59 21885.13 22890.98 17596.52 9081.50 16296.14 4696.16 11673.78 30983.65 24192.15 21463.26 28997.37 19982.82 17281.74 28194.06 222
v14419287.19 20186.35 19389.74 22090.64 29478.24 24493.92 18195.43 17681.93 21985.51 18791.05 25674.21 17997.45 18382.86 17081.56 28293.53 250
cl-mvsnet_86.52 22085.78 21488.75 24692.03 24076.46 27690.74 27094.30 22681.83 22583.34 24990.78 26375.74 16096.57 24981.74 19381.54 28393.22 263
cl-mvsnet186.53 21985.78 21488.75 24692.02 24176.45 27790.74 27094.30 22681.83 22583.34 24990.82 26175.75 15896.57 24981.73 19481.52 28493.24 262
OurMVSNet-221017-085.35 24184.64 24087.49 27790.77 28972.59 30994.01 17794.40 22284.72 16379.62 29693.17 18161.91 29696.72 23881.99 18681.16 28593.16 266
FMVSNet581.52 28479.60 29087.27 28191.17 27077.95 24991.49 25992.26 26776.87 28276.16 31287.91 31051.67 33492.34 33067.74 31181.16 28591.52 304
CP-MVSNet87.63 17987.26 16788.74 24893.12 21176.59 27595.29 8696.58 9188.43 7483.49 24692.98 18875.28 16495.83 28678.97 23281.15 28793.79 237
cl_fuxian87.14 20386.50 18989.04 24092.20 23377.26 26791.22 26594.70 21682.01 21684.34 22390.43 26978.81 12796.61 24683.70 16081.09 28893.25 261
IterMVS-SCA-FT85.45 23884.53 24288.18 26391.71 25176.87 27290.19 28092.65 26185.40 14881.44 27090.54 26666.79 26595.00 30981.04 20181.05 28992.66 282
TinyColmap79.76 29877.69 30085.97 30191.71 25173.12 30189.55 28790.36 31275.03 29872.03 33190.19 27246.22 34496.19 27263.11 32781.03 29088.59 333
UniMVSNet_NR-MVSNet89.92 11789.29 11891.81 14293.39 20483.72 10694.43 14497.12 4089.80 3786.46 16593.32 17483.16 7897.23 21184.92 14281.02 29194.49 204
DU-MVS89.34 13588.50 13591.85 13993.04 21583.72 10694.47 14196.59 9089.50 4386.46 16593.29 17777.25 14297.23 21184.92 14281.02 29194.59 195
PS-CasMVS87.32 19386.88 17288.63 25192.99 21976.33 28095.33 8096.61 8988.22 8283.30 25193.07 18673.03 19995.79 28978.36 23781.00 29393.75 243
IterMVS84.88 25183.98 24987.60 27391.44 25776.03 28290.18 28192.41 26483.24 19281.06 27690.42 27066.60 26894.28 31579.46 22580.98 29492.48 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)89.80 11989.07 12392.01 12793.60 19984.52 8494.78 12197.47 889.26 5086.44 16892.32 20882.10 9397.39 19884.81 14580.84 29594.12 217
LF4IMVS80.37 29479.07 29684.27 31486.64 33269.87 32989.39 29291.05 29976.38 28574.97 31990.00 27847.85 34294.25 31674.55 27580.82 29688.69 332
v1087.25 19686.38 19089.85 21491.19 26979.50 21494.48 13895.45 17383.79 17783.62 24291.19 24875.13 16597.42 18881.94 18780.60 29792.63 283
tfpnnormal84.72 25483.23 25889.20 23592.79 22380.05 20294.48 13895.81 14382.38 20781.08 27591.21 24769.01 24796.95 23061.69 33180.59 29890.58 321
WR-MVS_H87.80 17287.37 16289.10 23893.23 20878.12 24695.61 7397.30 2687.90 8983.72 23892.01 22479.65 12196.01 27876.36 25680.54 29993.16 266
VPNet88.20 16287.47 16090.39 19293.56 20079.46 21594.04 17495.54 16588.67 6786.96 15694.58 13569.33 24097.15 21584.05 15580.53 30094.56 198
v7n86.81 20985.76 21789.95 21290.72 29279.25 22695.07 10195.92 13384.45 16782.29 25990.86 25972.60 20497.53 17779.42 22980.52 30193.08 270
v887.50 18886.71 17989.89 21391.37 26379.40 21794.50 13795.38 17984.81 16183.60 24391.33 24376.05 15397.42 18882.84 17180.51 30292.84 278
EU-MVSNet81.32 28780.95 27682.42 31988.50 32163.67 34293.32 20091.33 29264.02 33980.57 28292.83 19361.21 30392.27 33176.34 25780.38 30391.32 308
Patchmtry82.71 27180.93 27788.06 26690.05 30776.37 27984.74 32991.96 27872.28 32381.32 27387.87 31171.03 21795.50 29968.97 30280.15 30492.32 293
NR-MVSNet88.58 15487.47 16091.93 13493.04 21584.16 9794.77 12296.25 10989.05 5680.04 29193.29 17779.02 12597.05 22581.71 19580.05 30594.59 195
Baseline_NR-MVSNet87.07 20486.63 18488.40 25591.44 25777.87 25394.23 16092.57 26284.12 17185.74 17992.08 22077.25 14296.04 27582.29 18179.94 30691.30 309
dp81.47 28580.23 28285.17 30789.92 31065.49 34086.74 31890.10 31676.30 28781.10 27487.12 31962.81 29095.92 28168.13 30979.88 30794.09 220
TranMVSNet+NR-MVSNet88.84 14687.95 15091.49 15092.68 22583.01 12794.92 11196.31 10489.88 3685.53 18593.85 16376.63 15096.96 22981.91 18879.87 30894.50 202
miper_lstm_enhance85.27 24484.59 24187.31 28091.28 26774.63 28987.69 31394.09 23681.20 23981.36 27289.85 28274.97 16994.30 31481.03 20379.84 30993.01 272
v14887.04 20586.32 19589.21 23490.94 28177.26 26793.71 18994.43 22184.84 16084.36 22290.80 26276.04 15497.05 22582.12 18379.60 31093.31 258
IB-MVS80.51 1585.24 24583.26 25791.19 16092.13 23679.86 20991.75 25291.29 29483.28 19180.66 28088.49 30061.28 30098.46 11580.99 20479.46 31195.25 170
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
eth_miper_zixun_eth86.50 22185.77 21688.68 24991.94 24375.81 28490.47 27494.89 20582.05 21384.05 23090.46 26875.96 15596.77 23782.76 17479.36 31293.46 255
baseline188.10 16487.28 16590.57 18194.96 14380.07 20094.27 15791.29 29486.74 11787.41 14894.00 15376.77 14796.20 27080.77 20779.31 31395.44 164
test_part186.16 22784.40 24391.46 15292.63 22682.80 13296.42 3296.05 12573.47 31282.06 26391.43 24163.89 28797.43 18684.51 14979.11 31494.14 215
our_test_381.93 27780.46 27986.33 29988.46 32273.48 29888.46 30591.11 29676.46 28376.69 31088.25 30466.89 26394.36 31368.75 30379.08 31591.14 314
PEN-MVS86.80 21086.27 19788.40 25592.32 23275.71 28595.18 9596.38 10287.97 8682.82 25593.15 18273.39 19595.92 28176.15 26079.03 31693.59 248
pm-mvs186.61 21685.54 21989.82 21691.44 25780.18 19595.28 8894.85 20883.84 17681.66 26892.62 20072.45 20796.48 25679.67 22478.06 31792.82 279
SixPastTwentyTwo83.91 26282.90 26286.92 29190.99 27770.67 32393.48 19691.99 27585.54 14377.62 30792.11 21860.59 30796.87 23576.05 26177.75 31893.20 264
ppachtmachnet_test81.84 27880.07 28587.15 28888.46 32274.43 29189.04 29892.16 26975.33 29577.75 30588.99 29166.20 27395.37 30265.12 32177.60 31991.65 302
MIMVSNet179.38 30077.28 30285.69 30386.35 33373.67 29791.61 25892.75 25878.11 27572.64 32988.12 30648.16 34091.97 33460.32 33477.49 32091.43 307
DTE-MVSNet86.11 22885.48 22187.98 26791.65 25574.92 28894.93 11095.75 14887.36 10482.26 26093.04 18772.85 20095.82 28774.04 27677.46 32193.20 264
N_pmnet68.89 31268.44 31570.23 32889.07 31628.79 35888.06 30819.50 35869.47 33271.86 33284.93 32661.24 30291.75 33554.70 34177.15 32290.15 322
test20.0379.95 29679.08 29582.55 31885.79 33467.74 33591.09 26791.08 29781.23 23874.48 32289.96 28061.63 29790.15 33960.08 33576.38 32389.76 323
FPMVS64.63 31462.55 31670.88 32770.80 34956.71 34684.42 33084.42 34151.78 34549.57 34581.61 33523.49 35181.48 34740.61 34776.25 32474.46 343
pmmvs683.42 26681.60 27088.87 24388.01 32877.87 25394.96 10794.24 22974.67 30378.80 29991.09 25560.17 31096.49 25577.06 25375.40 32592.23 295
new_pmnet72.15 31070.13 31378.20 32382.95 34365.68 33883.91 33282.40 34462.94 34064.47 34079.82 33742.85 34686.26 34457.41 34074.44 32682.65 340
MDA-MVSNet_test_wron79.21 30277.19 30485.29 30588.22 32672.77 30585.87 32390.06 31774.34 30562.62 34287.56 31466.14 27491.99 33366.90 31573.01 32791.10 316
YYNet179.22 30177.20 30385.28 30688.20 32772.66 30785.87 32390.05 31974.33 30662.70 34187.61 31366.09 27592.03 33266.94 31272.97 32891.15 313
Patchmatch-RL test81.67 28079.96 28686.81 29585.42 33571.23 31782.17 33887.50 33678.47 26877.19 30982.50 33470.81 22093.48 32282.66 17572.89 32995.71 158
pmmvs-eth3d80.97 29178.72 29887.74 27084.99 33879.97 20790.11 28291.65 28475.36 29473.51 32586.03 32259.45 31493.96 31875.17 26872.21 33089.29 326
PM-MVS78.11 30476.12 30884.09 31583.54 34170.08 32788.97 29985.27 34079.93 25174.73 32086.43 32034.70 34893.48 32279.43 22872.06 33188.72 331
Gipumacopyleft57.99 31754.91 31967.24 33088.51 32065.59 33952.21 35090.33 31343.58 34842.84 34851.18 34920.29 35485.07 34534.77 34870.45 33251.05 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
K. test v381.59 28280.15 28485.91 30289.89 31169.42 33092.57 23087.71 33485.56 14273.44 32689.71 28455.58 32395.52 29677.17 25069.76 33392.78 280
TDRefinement79.81 29777.34 30187.22 28679.24 34675.48 28793.12 21292.03 27376.45 28475.01 31891.58 23749.19 33996.44 26070.22 29569.18 33489.75 324
MDA-MVSNet-bldmvs78.85 30376.31 30686.46 29689.76 31273.88 29588.79 30090.42 31079.16 25859.18 34388.33 30360.20 30994.04 31762.00 33068.96 33591.48 306
ambc83.06 31779.99 34563.51 34377.47 34392.86 25474.34 32384.45 32728.74 34995.06 30873.06 28368.89 33690.61 318
TransMVSNet (Re)84.43 25783.06 26088.54 25291.72 25078.44 23895.18 9592.82 25682.73 20279.67 29492.12 21673.49 19195.96 28071.10 29168.73 33791.21 312
PMVScopyleft47.18 2252.22 31848.46 32163.48 33145.72 35746.20 35473.41 34678.31 34941.03 34930.06 35165.68 3456.05 35883.43 34630.04 34965.86 33860.80 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
lessismore_v086.04 30088.46 32268.78 33280.59 34673.01 32890.11 27555.39 32596.43 26175.06 27065.06 33992.90 275
new-patchmatchnet76.41 30775.17 30980.13 32182.65 34459.61 34487.66 31491.08 29778.23 27369.85 33483.22 33154.76 32791.63 33764.14 32564.89 34089.16 328
pmmvs371.81 31168.71 31481.11 32075.86 34770.42 32586.74 31883.66 34258.95 34268.64 33780.89 33636.93 34789.52 34063.10 32863.59 34183.39 338
UnsupCasMVSNet_eth80.07 29578.27 29985.46 30485.24 33672.63 30888.45 30694.87 20782.99 19671.64 33388.07 30756.34 32291.75 33573.48 28163.36 34292.01 298
LCM-MVSNet66.00 31362.16 31777.51 32564.51 35358.29 34583.87 33390.90 30448.17 34654.69 34473.31 34116.83 35786.75 34365.47 31861.67 34387.48 337
UnsupCasMVSNet_bld76.23 30873.27 31185.09 30883.79 34072.92 30285.65 32693.47 24771.52 32568.84 33679.08 33849.77 33693.21 32566.81 31660.52 34489.13 330
DeepMVS_CXcopyleft56.31 33374.23 34851.81 35156.67 35644.85 34748.54 34775.16 33927.87 35058.74 35340.92 34652.22 34558.39 346
PVSNet_073.20 2077.22 30574.83 31084.37 31290.70 29371.10 31983.09 33689.67 32672.81 32073.93 32483.13 33260.79 30593.70 32068.54 30450.84 34688.30 335
PMMVS259.60 31556.40 31869.21 32968.83 35046.58 35373.02 34777.48 35155.07 34449.21 34672.95 34217.43 35680.04 34849.32 34444.33 34780.99 342
MVEpermissive39.65 2343.39 31938.59 32557.77 33256.52 35548.77 35255.38 34958.64 35529.33 35228.96 35252.65 3484.68 35964.62 35228.11 35033.07 34859.93 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 32042.29 32246.03 33465.58 35237.41 35573.51 34564.62 35233.99 35028.47 35347.87 35019.90 35567.91 35022.23 35124.45 34932.77 348
ANet_high58.88 31654.22 32072.86 32656.50 35656.67 34780.75 34186.00 33773.09 31737.39 34964.63 34622.17 35279.49 34943.51 34523.96 35082.43 341
EMVS42.07 32141.12 32344.92 33563.45 35435.56 35773.65 34463.48 35333.05 35126.88 35445.45 35121.27 35367.14 35119.80 35223.02 35132.06 349
tmp_tt35.64 32239.24 32424.84 33614.87 35823.90 35962.71 34851.51 3576.58 35436.66 35062.08 34744.37 34530.34 35552.40 34222.00 35220.27 350
wuyk23d21.27 32420.48 32723.63 33768.59 35136.41 35649.57 3516.85 3599.37 3537.89 3554.46 3574.03 36031.37 35417.47 35316.07 3533.12 351
testmvs8.92 32511.52 3281.12 3391.06 3590.46 36186.02 3220.65 3600.62 3552.74 3569.52 3550.31 3620.45 3572.38 3540.39 3542.46 353
test1238.76 32611.22 3291.39 3380.85 3600.97 36085.76 3250.35 3610.54 3562.45 3578.14 3560.60 3610.48 3562.16 3550.17 3552.71 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k22.14 32329.52 3260.00 3400.00 3610.00 3620.00 35295.76 1470.00 3570.00 35894.29 14275.66 1610.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas6.64 3288.86 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35879.70 1170.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re7.82 32710.43 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35893.88 1610.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
save fliter97.85 4885.63 6895.21 9296.82 6789.44 44
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
GSMVS96.12 139
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21096.12 139
sam_mvs70.60 222
MTGPAbinary96.97 49
test_post188.00 3099.81 35469.31 24295.53 29576.65 254
test_post10.29 35370.57 22695.91 283
patchmatchnet-post83.76 32971.53 21196.48 256
MTMP96.16 4460.64 354
gm-plane-assit89.60 31468.00 33377.28 28088.99 29197.57 17479.44 227
TEST997.53 5886.49 3994.07 17196.78 7081.61 23092.77 6396.20 8087.71 2699.12 55
test_897.49 6186.30 4894.02 17696.76 7381.86 22392.70 6796.20 8087.63 2799.02 68
agg_prior97.38 6485.92 6096.72 7992.16 7898.97 79
test_prior485.96 5794.11 166
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8798.11 61
旧先验293.36 19971.25 32794.37 2697.13 21886.74 126
新几何293.11 214
无先验93.28 20696.26 10773.95 30899.05 6080.56 21296.59 125
原ACMM292.94 221
testdata298.75 9978.30 238
segment_acmp87.16 35
testdata192.15 24387.94 87
plane_prior794.70 15682.74 136
plane_prior694.52 16282.75 13474.23 177
plane_prior494.86 122
plane_prior382.75 13490.26 3086.91 158
plane_prior295.85 6190.81 17
plane_prior194.59 160
n20.00 362
nn0.00 362
door-mid85.49 338
test1196.57 92
door85.33 339
HQP5-MVS81.56 160
HQP-NCC94.17 17594.39 14888.81 6185.43 194
ACMP_Plane94.17 17594.39 14888.81 6185.43 194
BP-MVS87.11 123
HQP4-MVS85.43 19497.96 15494.51 201
HQP2-MVS73.83 187
NP-MVS94.37 17082.42 14493.98 154
MDTV_nov1_ep13_2view55.91 35087.62 31573.32 31484.59 21270.33 22974.65 27395.50 161
Test By Simon80.02 112