This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25695.78 33099.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19599.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33497.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31097.43 26598.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20898.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19897.64 7699.35 1099.06 2297.02 4793.75 24599.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26092.30 28099.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35495.90 4099.89 3597.85 4499.74 4199.78 13
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26698.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21897.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
QAPM96.29 13795.40 15498.96 6797.85 19597.60 7999.23 2198.93 3789.76 30593.11 26899.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
jason97.32 9997.08 9398.06 12597.45 22895.59 16397.87 23797.91 25894.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
MVSFormer97.57 8397.49 7597.84 13598.07 18195.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26596.91 9299.59 7199.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18195.76 16097.68 25297.76 26394.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
ZD-MVS99.46 5198.70 1998.79 9193.21 21298.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
test9_res96.39 12099.57 7599.69 51
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
agg_prior295.87 13699.57 7599.68 57
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19698.52 2799.37 798.71 11397.09 4592.99 27199.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21597.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21899.71 193.57 19997.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21398.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
test22299.23 9397.17 9797.40 26698.66 13188.68 31698.05 8698.96 9394.14 9499.53 8599.61 75
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24798.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
UGNet96.78 12196.30 12798.19 11798.24 16695.89 15798.88 8598.93 3797.39 2396.81 15297.84 20182.60 29299.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
新几何199.16 5099.34 6298.01 6298.69 11790.06 30298.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8799.21 2898.97 3089.96 30391.14 30499.05 7986.64 23799.92 2193.38 21499.47 9097.73 209
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21197.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30198.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
testdata98.26 11199.20 9795.36 17498.68 12091.89 25898.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17898.64 13686.62 32396.29 17498.61 12794.00 9799.29 16280.00 33899.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27999.26 893.13 21697.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
MS-PatchMatch93.84 26493.63 25294.46 30396.18 29689.45 31197.76 24698.27 20592.23 24992.13 29497.49 23079.50 31098.69 22989.75 29099.38 10095.25 325
CANet_DTU96.96 11496.55 11998.21 11498.17 17696.07 14197.98 22598.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28798.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
MVP-Stereo94.28 24593.92 23295.35 27694.95 32792.60 26797.97 22697.65 26891.61 26790.68 31097.09 25886.32 24498.42 25889.70 29299.34 10295.02 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21698.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22298.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 7097.58 6798.27 10998.38 15496.44 12699.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
EPNet97.28 10096.87 10398.51 9294.98 32696.14 13998.90 7897.02 30698.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27498.51 16197.29 2898.66 6097.88 19694.51 8599.90 3397.87 4299.17 10997.39 217
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 25094.59 8399.39 15597.62 6199.10 11198.70 172
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16394.64 20598.19 20297.45 28594.56 15196.03 17998.61 12785.02 26399.12 17990.68 27699.06 11299.30 120
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27396.08 32398.68 12093.69 19197.75 11097.80 20788.86 19199.69 11994.26 19099.01 11399.15 138
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 23199.06 2293.72 18796.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
PCF-MVS93.45 1194.68 21693.43 26098.42 10198.62 14196.77 11195.48 33298.20 21484.63 33593.34 25998.32 16188.55 19899.81 7084.80 32898.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21996.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
ETV-MVS97.96 5897.81 5998.40 10398.42 15297.27 9098.73 11798.55 15196.84 5198.38 7597.44 23595.39 5599.35 15897.62 6198.89 11898.58 184
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 31094.52 20599.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18998.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31198.37 18791.32 27794.43 21298.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30198.16 20897.27 29596.77 5393.14 26798.33 16090.34 16198.42 25885.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20998.76 9892.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
MVS-HIRNet89.46 30888.40 30992.64 31897.58 21282.15 34594.16 34393.05 35075.73 34690.90 30682.52 34779.42 31198.33 27383.53 33198.68 12797.43 214
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26398.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25295.39 10997.23 13198.99 8691.11 14798.93 20694.60 17598.59 13399.47 98
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27298.57 14793.33 20796.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
diffmvs97.58 8297.40 8198.13 12098.32 16395.81 15998.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
BH-untuned95.95 14995.72 14396.65 20798.55 14692.26 26998.23 19397.79 26293.73 18694.62 20298.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30796.91 30195.21 33395.11 12794.83 19895.72 32087.71 21898.97 19893.06 22498.50 13898.72 170
TESTMET0.1,194.18 25193.69 25095.63 26896.92 26189.12 31696.91 30194.78 33893.17 21494.88 19596.45 30178.52 31698.92 20793.09 22398.50 13898.85 163
test-mter94.08 25893.51 25795.80 26296.77 26989.70 30796.91 30195.21 33392.89 22694.83 19895.72 32077.69 32198.97 19893.06 22498.50 13898.72 170
131496.25 14195.73 14297.79 13897.13 25095.55 16898.19 20298.59 14193.47 20292.03 29697.82 20591.33 14299.49 14594.62 17498.44 14198.32 194
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17487.85 33298.75 11095.66 33195.11 12788.96 32196.85 28590.26 16497.65 31695.65 14798.44 14199.22 128
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19897.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
casdiffmvs97.63 7797.41 8098.28 10898.33 16196.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21290.72 29796.84 31097.52 27894.06 16697.08 13696.96 27689.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS94.67 21993.54 25698.08 12396.88 26596.56 12198.19 20298.50 16678.05 34492.69 27998.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
gg-mvs-nofinetune92.21 28890.58 29597.13 17796.75 27295.09 18595.85 32889.40 35485.43 33394.50 20681.98 34880.80 30498.40 27192.16 24898.33 14797.88 203
SCA95.46 16995.13 17096.46 23197.67 20591.29 28897.33 27597.60 27094.68 14696.92 14697.10 25483.97 28398.89 21292.59 23898.32 14899.20 129
baseline97.64 7697.44 7998.25 11298.35 15696.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
MVS_Test97.28 10097.00 9798.13 12098.33 16195.97 14798.74 11398.07 24294.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19498.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
Patchmatch-test94.42 23693.68 25196.63 21097.60 21091.76 27894.83 33897.49 28289.45 31094.14 22797.10 25488.99 18598.83 22085.37 32698.13 15299.29 122
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20299.29 7893.24 25898.58 14398.11 23289.92 30493.57 24999.10 6986.37 24399.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs-test196.60 12596.68 11596.37 23697.89 19391.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14298.01 15497.86 205
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19390.22 30398.80 10498.10 23496.57 6296.45 17196.66 29290.81 15198.91 20895.72 14297.99 15597.40 216
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16595.97 14798.58 14398.25 21091.74 26195.29 18997.23 24791.03 15099.15 17692.90 23097.96 15698.97 156
mvs_anonymous96.70 12396.53 12197.18 17498.19 17293.78 23498.31 18498.19 21594.01 17094.47 20798.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
PMMVS96.60 12596.33 12697.41 16497.90 19293.93 23097.35 27398.41 18092.84 22897.76 10997.45 23491.10 14899.20 17096.26 12297.91 15799.11 143
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25998.59 14198.18 21891.36 27393.52 25198.77 11484.67 26999.72 10889.70 29297.87 15998.02 201
TestCases96.99 18499.25 8693.21 25998.18 21891.36 27393.52 25198.77 11484.67 26999.72 10889.70 29297.87 15998.02 201
TAMVS97.02 11296.79 10697.70 14798.06 18395.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
Effi-MVS+97.12 10996.69 11398.39 10498.19 17296.72 11397.37 27098.43 17893.71 18897.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20291.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
DSMNet-mixed92.52 28692.58 27692.33 32094.15 33482.65 34498.30 18694.26 34489.08 31492.65 28095.73 31885.01 26495.76 34086.24 31897.76 16498.59 182
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18495.98 14298.20 19898.33 19393.67 19596.95 14298.49 14093.54 10098.42 25895.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest051595.61 16794.89 18297.76 14198.15 17795.15 18396.77 31294.41 34192.95 22397.18 13397.43 23684.78 26899.45 15294.63 17297.73 16698.68 175
thisisatest053096.01 14695.36 15997.97 12998.38 15495.52 16998.88 8594.19 34594.04 16797.64 12098.31 16283.82 28899.46 15195.29 15897.70 16798.93 160
BH-w/o95.38 17695.08 17396.26 24498.34 16091.79 27797.70 25097.43 28792.87 22794.24 22297.22 24888.66 19498.84 21891.55 26497.70 16798.16 198
PAPM94.95 20494.00 22797.78 13997.04 25595.65 16296.03 32698.25 21091.23 28294.19 22597.80 20791.27 14498.86 21782.61 33397.61 16998.84 165
tttt051796.07 14395.51 15397.78 13998.41 15394.84 19799.28 1694.33 34394.26 16297.64 12098.64 12684.05 28199.47 15095.34 15497.60 17099.03 150
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26899.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
CVMVSNet95.43 17296.04 13593.57 31197.93 19083.62 34198.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
MDTV_nov1_ep1395.40 15497.48 22288.34 32796.85 30997.29 29393.74 18597.48 12897.26 24489.18 17999.05 18991.92 25797.43 173
baseline295.11 19394.52 19796.87 19596.65 27893.56 24398.27 19194.10 34793.45 20392.02 29797.43 23687.45 22699.19 17193.88 20197.41 17497.87 204
EPMVS94.99 20094.48 19996.52 22497.22 24191.75 27997.23 28191.66 35194.11 16497.28 12996.81 28785.70 25398.84 21893.04 22697.28 17598.97 156
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32593.40 20598.62 6299.20 5274.99 33499.63 12897.72 5297.20 17699.46 102
ADS-MVSNet294.58 22594.40 20795.11 28398.00 18588.74 32296.04 32497.30 29290.15 29996.47 16996.64 29587.89 21497.56 32090.08 28397.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 21098.00 18591.91 27596.04 32497.74 26590.15 29996.47 16996.64 29587.89 21498.96 20190.08 28397.06 17799.02 151
GG-mvs-BLEND96.59 21596.34 29194.98 19196.51 32188.58 35593.10 26994.34 33180.34 30798.05 29889.53 29596.99 17996.74 259
cascas94.63 22193.86 23796.93 19196.91 26394.27 22296.00 32798.51 16185.55 33294.54 20496.23 30884.20 27998.87 21595.80 13996.98 18097.66 212
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18498.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 28995.02 13297.95 9899.34 3174.37 33899.78 9598.64 396.80 18299.08 147
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
PatchT93.06 27991.97 28496.35 23896.69 27592.67 26694.48 34097.08 30086.62 32397.08 13692.23 34087.94 21397.90 30878.89 34296.69 18598.49 186
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
CR-MVSNet94.76 21394.15 21896.59 21597.00 25693.43 24994.96 33497.56 27292.46 23796.93 14496.24 30688.15 20797.88 31287.38 31296.65 18798.46 187
RPMNet92.81 28291.34 29097.24 17097.00 25693.43 24994.96 33498.80 8682.27 33996.93 14492.12 34186.98 23299.82 6376.32 34696.65 18798.46 187
VDDNet95.36 17994.53 19697.86 13498.10 18095.13 18498.85 9097.75 26490.46 29398.36 7699.39 1473.27 34099.64 12597.98 3696.58 18998.81 166
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24696.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15197.00 10198.14 20998.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19897.11 29995.24 12196.54 16596.22 31084.58 27199.53 14287.93 31096.50 19397.39 217
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24998.07 24292.10 25394.79 20097.29 24391.75 13099.56 13694.17 19296.50 19399.58 82
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32596.97 29697.56 27293.50 20197.52 12796.93 28089.49 17099.16 17395.25 16096.42 19598.64 180
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23698.74 10293.84 17996.54 16598.18 17485.34 26099.75 10495.93 13396.35 19699.15 138
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31295.38 11096.63 15896.90 28184.29 27499.59 13288.65 30596.33 19798.40 189
RPSCF94.87 20895.40 15493.26 31698.89 11782.06 34698.33 17898.06 24690.30 29896.56 16199.26 4287.09 22999.49 14593.82 20396.32 19898.24 195
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31295.38 11096.61 15996.88 28284.29 27499.56 13688.11 30696.29 19997.76 206
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 31095.33 11396.55 16396.53 29884.23 27799.56 13688.11 30696.29 19997.76 206
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 31095.33 11396.55 16396.53 29884.23 27799.56 13688.11 30696.29 19998.40 189
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23892.26 11699.49 14598.28 2796.28 20299.08 147
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26298.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 211
GA-MVS94.81 21094.03 22397.14 17697.15 24993.86 23296.76 31397.58 27194.00 17194.76 20197.04 26780.91 30198.48 24991.79 25996.25 20499.09 144
tpm294.19 24993.76 24595.46 27397.23 24089.04 31897.31 27796.85 31787.08 32296.21 17696.79 28883.75 28998.74 22792.43 24696.23 20598.59 182
MIMVSNet93.26 27492.21 28196.41 23497.73 20393.13 26195.65 33197.03 30491.27 28194.04 23296.06 31375.33 33297.19 32686.56 31696.23 20598.92 161
TR-MVS94.94 20694.20 21397.17 17597.75 19994.14 22697.59 25897.02 30692.28 24895.75 18497.64 22083.88 28598.96 20189.77 28996.15 20798.40 189
MVS_030492.81 28292.01 28395.23 27897.46 22491.33 28698.17 20798.81 7691.13 28693.80 24395.68 32366.08 34798.06 29790.79 27396.13 20896.32 307
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31797.53 26196.89 31489.66 30796.82 15196.72 29086.05 24898.95 20595.53 15096.13 20898.79 167
tpmvs94.60 22294.36 20895.33 27797.46 22488.60 32496.88 30797.68 26691.29 27993.80 24396.42 30388.58 19599.24 16691.06 26996.04 21098.17 197
tpm cat193.36 26992.80 27195.07 28597.58 21287.97 33096.76 31397.86 26082.17 34093.53 25096.04 31486.13 24699.13 17889.24 30095.87 21198.10 199
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24598.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
DWT-MVSNet_test94.82 20994.36 20896.20 24697.35 23490.79 29598.34 17696.57 32492.91 22595.33 18896.44 30282.00 29499.12 17994.52 17995.78 21398.70 172
JIA-IIPM93.35 27092.49 27795.92 25696.48 28690.65 29895.01 33396.96 30885.93 32996.08 17887.33 34587.70 22098.78 22591.35 26695.58 21498.34 192
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30390.66 29096.49 16898.80 11078.13 31899.83 5596.21 12495.36 21599.44 105
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 33196.64 15798.97 8778.73 31599.85 4996.27 12194.89 21699.12 142
CLD-MVS95.62 16595.34 16096.46 23197.52 22193.75 23797.27 28098.46 17195.53 10294.42 21398.00 18686.21 24598.97 19896.25 12394.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp94.15 25293.90 23494.90 28997.31 23686.82 33796.97 29697.19 29891.22 28396.02 18096.61 29785.51 25699.02 19690.00 28794.30 21898.85 163
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21198.80 10498.56 14997.28 2995.34 18698.28 16487.09 22999.03 19396.07 12694.27 21996.92 234
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 234
plane_prior94.60 21198.44 16596.74 5594.22 221
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20698.43 16798.39 18496.64 5995.02 19298.78 11285.15 26299.05 18995.21 16294.20 22296.60 277
HQP3-MVS98.46 17194.18 223
HQP-MVS95.72 15995.40 15496.69 20597.20 24394.25 22498.05 21898.46 17196.43 6794.45 20897.73 21086.75 23598.96 20195.30 15694.18 22396.86 247
LPG-MVS_test95.62 16595.34 16096.47 22897.46 22493.54 24498.99 6498.54 15494.67 14794.36 21598.77 11485.39 25799.11 18295.71 14494.15 22596.76 257
LGP-MVS_train96.47 22897.46 22493.54 24498.54 15494.67 14794.36 21598.77 11485.39 25799.11 18295.71 14494.15 22596.76 257
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13394.58 20397.86 19889.16 18098.41 26596.91 9294.12 22796.88 243
jajsoiax95.45 17195.03 17596.73 20195.42 32394.63 20699.14 3698.52 15895.74 9293.22 26298.36 15483.87 28698.65 23496.95 9194.04 22896.91 239
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15699.14 3698.41 18093.75 18393.16 26497.46 23287.50 22498.41 26595.63 14894.03 22996.50 296
mvs_tets95.41 17595.00 17696.65 20795.58 31694.42 21699.00 6298.55 15195.73 9393.21 26398.38 15283.45 29098.63 23597.09 8494.00 23096.91 239
ACMP93.49 1095.34 18194.98 17896.43 23397.67 20593.48 24898.73 11798.44 17594.94 13892.53 28498.53 13684.50 27399.14 17795.48 15294.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 16295.38 15896.61 21297.61 20993.84 23398.91 7798.44 17595.25 11994.28 21998.47 14286.04 25099.12 17995.50 15193.95 23296.87 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D94.24 24693.33 26296.97 18797.19 24693.38 25398.74 11398.57 14791.21 28493.81 24298.58 13272.85 34198.77 22695.05 16493.93 23398.77 169
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26596.55 28191.65 28298.11 21498.44 17594.96 13594.22 22397.90 19479.18 31399.11 18294.05 19893.85 23496.48 298
EG-PatchMatch MVS91.13 29590.12 29894.17 30894.73 33189.00 31998.13 21197.81 26189.22 31385.32 33696.46 30067.71 34498.42 25887.89 31193.82 23595.08 328
testgi93.06 27992.45 27894.88 29096.43 28889.90 30498.75 11097.54 27795.60 9991.63 30197.91 19374.46 33797.02 32886.10 31993.67 23697.72 210
test0.0.03 194.08 25893.51 25795.80 26295.53 31892.89 26597.38 26895.97 32795.11 12792.51 28696.66 29287.71 21896.94 32987.03 31493.67 23697.57 213
CMPMVSbinary66.06 2189.70 30689.67 30289.78 32593.19 33876.56 34897.00 29598.35 19080.97 34181.57 34197.75 20974.75 33598.61 23689.85 28893.63 23894.17 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++93.61 239
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 16992.90 27296.73 28989.48 17198.73 22894.48 18193.60 24095.65 322
EI-MVSNet95.96 14895.83 14196.36 23797.93 19093.70 24198.12 21298.27 20593.70 19095.07 19099.02 8092.23 11898.54 24594.68 17193.46 24196.84 249
MVSTER96.06 14495.72 14397.08 18198.23 16795.93 15398.73 11798.27 20594.86 13995.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18699.16 3498.50 16695.87 8893.84 24198.34 15994.51 8598.61 23696.88 9893.45 24397.06 226
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20697.41 23294.42 21698.52 15398.59 14191.69 26491.21 30398.35 15584.87 26699.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF95.44 27497.42 22991.32 28797.50 28095.09 13093.59 24798.35 15581.70 29698.88 21489.71 29193.39 24596.12 312
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19299.26 894.28 16097.94 10097.46 23292.74 10999.81 7096.88 9893.32 24696.20 310
ACMH92.88 1694.55 22793.95 23196.34 23997.63 20893.26 25798.81 10398.49 17093.43 20489.74 31698.53 13681.91 29599.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft86.42 2089.00 30987.43 31493.69 31093.08 33989.42 31297.91 23196.89 31478.58 34385.86 33394.69 32969.48 34398.29 28177.13 34593.29 24893.36 342
USDC93.33 27292.71 27395.21 27996.83 26890.83 29496.91 30197.50 28093.84 17990.72 30998.14 17677.69 32198.82 22189.51 29693.21 24995.97 316
RRT_MVS96.04 14595.53 15197.56 15897.07 25497.32 8798.57 14898.09 23895.15 12495.02 19298.44 14488.20 20598.58 24396.17 12593.09 25096.79 253
ACMMP++_ref92.97 251
test_040291.32 29390.27 29794.48 30196.60 27991.12 29098.50 15897.22 29786.10 32888.30 32496.98 27377.65 32397.99 30378.13 34492.94 25294.34 333
FIs96.51 13096.12 13397.67 15097.13 25097.54 8199.36 899.22 1495.89 8694.03 23398.35 15591.98 12698.44 25596.40 11992.76 25397.01 228
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25997.27 9099.36 899.23 1295.83 8993.93 23598.37 15392.00 12598.32 27496.02 13192.72 25497.00 229
TinyColmap92.31 28791.53 28894.65 29896.92 26189.75 30696.92 29996.68 32190.45 29489.62 31797.85 20076.06 33098.81 22286.74 31592.51 25595.41 323
ACMH+92.99 1494.30 24293.77 24395.88 26097.81 19792.04 27498.71 12298.37 18793.99 17290.60 31198.47 14280.86 30399.05 18992.75 23492.40 25696.55 285
GBi-Net94.49 23293.80 24096.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 22997.07 26181.16 29897.95 30492.08 25092.14 25796.72 262
test194.49 23293.80 24096.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 22997.07 26181.16 29897.95 30492.08 25092.14 25796.72 262
FMVSNet394.97 20394.26 21197.11 17998.18 17496.62 11598.56 14998.26 20993.67 19594.09 22997.10 25484.25 27698.01 30092.08 25092.14 25796.70 266
testing_290.61 30188.50 30896.95 18990.08 34795.57 16597.69 25198.06 24693.02 21976.55 34392.48 33961.18 35098.44 25595.45 15391.98 26096.84 249
FMVSNet294.47 23493.61 25397.04 18298.21 16996.43 12798.79 10898.27 20592.46 23793.50 25497.09 25881.16 29898.00 30291.09 26791.93 26196.70 266
LF4IMVS93.14 27892.79 27294.20 30695.88 30888.67 32397.66 25497.07 30193.81 18291.71 29997.65 21877.96 32098.81 22291.47 26591.92 26295.12 326
OurMVSNet-221017-094.21 24794.00 22794.85 29195.60 31589.22 31598.89 8297.43 28795.29 11692.18 29398.52 13982.86 29198.59 24193.46 21391.76 26396.74 259
pmmvs494.69 21493.99 22996.81 19895.74 31195.94 15097.40 26697.67 26790.42 29593.37 25897.59 22489.08 18398.20 28592.97 22891.67 26496.30 308
tpm94.13 25393.80 24095.12 28296.50 28487.91 33197.44 26395.89 33092.62 23396.37 17396.30 30584.13 28098.30 27893.24 21991.66 26599.14 140
our_test_393.65 26793.30 26394.69 29695.45 32189.68 30996.91 30197.65 26891.97 25691.66 30096.88 28289.67 16997.93 30788.02 30991.49 26696.48 298
IterMVS94.09 25793.85 23894.80 29497.99 18790.35 30297.18 28598.12 23093.68 19392.46 28897.34 23984.05 28197.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 25593.87 23694.85 29197.98 18990.56 30097.18 28598.11 23293.75 18392.58 28297.48 23183.97 28397.41 32392.48 24591.30 26896.58 279
FMVSNet193.19 27792.07 28296.56 21997.54 21895.00 18898.82 9798.18 21890.38 29692.27 29197.07 26173.68 33997.95 30489.36 29991.30 26896.72 262
XXY-MVS95.20 18994.45 20397.46 16196.75 27296.56 12198.86 8998.65 13593.30 21093.27 26198.27 16784.85 26798.87 21594.82 16991.26 27096.96 231
cl-mvsnet294.68 21694.19 21496.13 24998.11 17993.60 24296.94 29898.31 19692.43 24193.32 26096.87 28486.51 23898.28 28294.10 19691.16 27196.51 294
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20493.31 25597.02 29498.07 24292.23 24993.51 25396.96 27691.85 12898.15 28893.68 20691.16 27196.44 301
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 23996.61 31898.08 24092.20 25293.89 23796.65 29492.44 11298.30 27894.21 19191.16 27196.34 304
RRT_test8_iter0594.56 22694.19 21495.67 26797.60 21091.34 28498.93 7598.42 17994.75 14293.39 25797.87 19779.00 31498.61 23696.78 10790.99 27497.07 225
pmmvs593.65 26792.97 26995.68 26695.49 31992.37 26898.20 19897.28 29489.66 30792.58 28297.26 24482.14 29398.09 29493.18 22290.95 27596.58 279
ET-MVSNet_ETH3D94.13 25392.98 26897.58 15698.22 16896.20 13697.31 27795.37 33294.53 15279.56 34297.63 22286.51 23897.53 32196.91 9290.74 27699.02 151
SixPastTwentyTwo93.34 27192.86 27094.75 29595.67 31389.41 31398.75 11096.67 32293.89 17690.15 31498.25 16980.87 30298.27 28390.90 27290.64 27796.57 281
N_pmnet87.12 31387.77 31285.17 33095.46 32061.92 35597.37 27070.66 36085.83 33088.73 32396.04 31485.33 26197.76 31580.02 33790.48 27895.84 318
ppachtmachnet_test93.22 27592.63 27594.97 28795.45 32190.84 29396.88 30797.88 25990.60 29192.08 29597.26 24488.08 21097.86 31385.12 32790.33 27996.22 309
cl-mvsnet194.52 23094.03 22395.99 25297.57 21693.38 25397.05 29297.94 25591.74 26192.81 27497.10 25489.12 18198.07 29692.60 23690.30 28096.53 288
cl-mvsnet_94.51 23194.01 22696.02 25197.58 21293.40 25297.05 29297.96 25491.73 26392.76 27697.08 26089.06 18498.13 29092.61 23590.29 28196.52 291
IterMVS-LS95.46 16995.21 16796.22 24598.12 17893.72 24098.32 18398.13 22993.71 18894.26 22097.31 24292.24 11798.10 29294.63 17290.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry93.22 27592.35 27995.84 26196.77 26993.09 26394.66 33997.56 27287.37 32192.90 27296.24 30688.15 20797.90 30887.37 31390.10 28396.53 288
EU-MVSNet93.66 26594.14 21992.25 32195.96 30683.38 34298.52 15398.12 23094.69 14592.61 28198.13 17787.36 22796.39 33891.82 25890.00 28496.98 230
Anonymous2023120691.66 29191.10 29193.33 31494.02 33687.35 33498.58 14397.26 29690.48 29290.16 31396.31 30483.83 28796.53 33679.36 34089.90 28596.12 312
eth_miper_zixun_eth94.68 21694.41 20695.47 27297.64 20791.71 28196.73 31598.07 24292.71 23193.64 24697.21 24990.54 15898.17 28793.38 21489.76 28696.54 286
FMVSNet591.81 28990.92 29294.49 30097.21 24292.09 27198.00 22497.55 27689.31 31290.86 30795.61 32474.48 33695.32 34285.57 32389.70 28796.07 314
miper_lstm_enhance94.33 24094.07 22295.11 28397.75 19990.97 29297.22 28298.03 24991.67 26592.76 27696.97 27490.03 16697.78 31492.51 24389.64 28896.56 283
v119294.32 24193.58 25496.53 22396.10 30094.45 21598.50 15898.17 22391.54 26894.19 22597.06 26486.95 23398.43 25790.14 28189.57 28996.70 266
v114494.59 22493.92 23296.60 21496.21 29494.78 20398.59 14198.14 22891.86 26094.21 22497.02 26987.97 21298.41 26591.72 26189.57 28996.61 276
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23997.27 9098.94 7499.23 1295.13 12595.51 18597.32 24185.73 25298.91 20897.33 7889.55 29196.89 242
v124094.06 26093.29 26496.34 23996.03 30493.90 23198.44 16598.17 22391.18 28594.13 22897.01 27186.05 24898.42 25889.13 30289.50 29296.70 266
K. test v392.55 28591.91 28694.48 30195.64 31489.24 31499.07 5094.88 33794.04 16786.78 32997.59 22477.64 32497.64 31792.08 25089.43 29396.57 281
v192192094.20 24893.47 25996.40 23595.98 30594.08 22798.52 15398.15 22691.33 27694.25 22197.20 25086.41 24298.42 25890.04 28689.39 29496.69 271
new_pmnet90.06 30489.00 30793.22 31794.18 33388.32 32896.42 32296.89 31486.19 32685.67 33593.62 33377.18 32697.10 32781.61 33589.29 29594.23 334
cl_fuxian94.79 21194.43 20595.89 25997.75 19993.12 26297.16 28898.03 24992.23 24993.46 25697.05 26691.39 13998.01 30093.58 21189.21 29696.53 288
v14419294.39 23893.70 24996.48 22796.06 30294.35 22098.58 14398.16 22591.45 27094.33 21797.02 26987.50 22498.45 25391.08 26889.11 29796.63 274
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10594.42 21398.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
DeepMVS_CXcopyleft86.78 32797.09 25372.30 35195.17 33675.92 34584.34 33895.19 32570.58 34295.35 34179.98 33989.04 29992.68 343
tfpnnormal93.66 26592.70 27496.55 22296.94 26095.94 15098.97 6899.19 1591.04 28791.38 30297.34 23984.94 26598.61 23685.45 32589.02 30095.11 327
Anonymous2023121194.10 25693.26 26596.61 21299.11 10494.28 22199.01 6098.88 4986.43 32592.81 27497.57 22681.66 29798.68 23294.83 16889.02 30096.88 243
v2v48294.69 21494.03 22396.65 20796.17 29794.79 20298.67 13298.08 24092.72 23094.00 23497.16 25287.69 22198.45 25392.91 22988.87 30296.72 262
V4294.78 21294.14 21996.70 20496.33 29295.22 18098.97 6898.09 23892.32 24694.31 21897.06 26488.39 20198.55 24492.90 23088.87 30296.34 304
WR-MVS95.15 19194.46 20197.22 17196.67 27796.45 12598.21 19598.81 7694.15 16393.16 26497.69 21487.51 22298.30 27895.29 15888.62 30496.90 241
FPMVS77.62 31877.14 31879.05 33379.25 35460.97 35695.79 32995.94 32865.96 34867.93 35094.40 33037.73 35688.88 35168.83 34888.46 30587.29 345
v1094.29 24393.55 25596.51 22596.39 28994.80 20198.99 6498.19 21591.35 27593.02 27096.99 27288.09 20998.41 26590.50 27888.41 30696.33 306
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17692.42 28997.90 19487.19 22898.12 29194.32 18788.21 30796.82 252
MIMVSNet189.67 30788.28 31193.82 30992.81 34191.08 29198.01 22297.45 28587.95 31887.90 32695.87 31667.63 34594.56 34578.73 34388.18 30895.83 319
PS-CasMVS94.67 21993.99 22996.71 20296.68 27695.26 17999.13 3999.03 2593.68 19392.33 29097.95 19085.35 25998.10 29293.59 21088.16 30996.79 253
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15899.24 2099.24 1093.87 17892.53 28496.84 28690.37 16098.24 28493.24 21987.93 31096.38 303
v894.47 23493.77 24396.57 21896.36 29094.83 19999.05 5298.19 21591.92 25793.16 26496.97 27488.82 19398.48 24991.69 26287.79 31196.39 302
v7n94.19 24993.43 26096.47 22895.90 30794.38 21999.26 1898.34 19291.99 25592.76 27697.13 25388.31 20298.52 24789.48 29787.70 31296.52 291
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25897.47 8398.79 10899.18 1695.60 9993.92 23697.04 26791.68 13198.48 24995.80 13987.66 31396.79 253
baseline195.84 15495.12 17198.01 12798.49 15095.98 14298.73 11797.03 30495.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
Gipumacopyleft78.40 31676.75 31983.38 33195.54 31780.43 34779.42 35297.40 28964.67 34973.46 34680.82 34945.65 35393.14 34766.32 34987.43 31576.56 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet94.98 20294.16 21797.44 16296.53 28297.22 9598.74 11398.95 3494.96 13589.25 32097.69 21489.32 17598.18 28694.59 17787.40 31696.92 234
VPNet94.99 20094.19 21497.40 16697.16 24896.57 12098.71 12298.97 3095.67 9694.84 19698.24 17080.36 30698.67 23396.46 11587.32 31796.96 231
test_part192.87 28191.72 28796.32 24197.55 21793.50 24799.04 5398.74 10283.31 33790.81 30897.70 21376.61 32798.60 24094.43 18287.30 31896.85 248
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26796.97 10298.74 11399.24 1095.16 12393.88 23897.72 21291.68 13198.31 27695.81 13787.25 31996.92 234
DU-MVS95.42 17394.76 18697.40 16696.53 28296.97 10298.66 13598.99 2995.43 10793.88 23897.69 21488.57 19698.31 27695.81 13787.25 31996.92 234
v14894.29 24393.76 24595.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25596.95 27888.53 19998.32 27492.56 24087.06 32196.49 297
Baseline_NR-MVSNet94.35 23993.81 23995.96 25596.20 29594.05 22898.61 14096.67 32291.44 27193.85 24097.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
PEN-MVS94.42 23693.73 24796.49 22696.28 29394.84 19799.17 3399.00 2793.51 20092.23 29297.83 20486.10 24797.90 30892.55 24186.92 32396.74 259
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28796.36 13099.03 5699.03 2595.04 13193.58 24897.93 19288.27 20398.03 29994.13 19386.90 32496.95 233
MDA-MVSNet_test_wron90.71 29989.38 30494.68 29794.83 32990.78 29697.19 28497.46 28387.60 31972.41 34895.72 32086.51 23896.71 33385.92 32186.80 32596.56 283
YYNet190.70 30089.39 30394.62 29994.79 33090.65 29897.20 28397.46 28387.54 32072.54 34795.74 31786.51 23896.66 33486.00 32086.76 32696.54 286
MDA-MVSNet-bldmvs89.97 30588.35 31094.83 29395.21 32491.34 28497.64 25597.51 27988.36 31771.17 34996.13 31279.22 31296.63 33583.65 33086.27 32796.52 291
test20.0390.89 29890.38 29692.43 31993.48 33788.14 32998.33 17897.56 27293.40 20587.96 32596.71 29180.69 30594.13 34679.15 34186.17 32895.01 331
DTE-MVSNet93.98 26293.26 26596.14 24896.06 30294.39 21899.20 2998.86 6193.06 21791.78 29897.81 20685.87 25197.58 31990.53 27786.17 32896.46 300
pm-mvs193.94 26393.06 26796.59 21596.49 28595.16 18198.95 7298.03 24992.32 24691.08 30597.84 20184.54 27298.41 26592.16 24886.13 33096.19 311
lessismore_v094.45 30494.93 32888.44 32691.03 35286.77 33097.64 22076.23 32998.42 25890.31 28085.64 33196.51 294
pmmvs691.77 29090.63 29495.17 28194.69 33291.24 28998.67 13297.92 25786.14 32789.62 31797.56 22875.79 33198.34 27290.75 27584.56 33295.94 317
IB-MVS91.98 1793.27 27391.97 28497.19 17397.47 22393.41 25197.09 29195.99 32693.32 20892.47 28795.73 31878.06 31999.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc89.49 32686.66 34975.78 34992.66 34596.72 31986.55 33192.50 33846.01 35297.90 30890.32 27982.09 33494.80 332
Patchmatch-RL test91.49 29290.85 29393.41 31291.37 34384.40 33992.81 34495.93 32991.87 25987.25 32794.87 32888.99 18596.53 33692.54 24282.00 33599.30 120
PM-MVS87.77 31186.55 31591.40 32491.03 34583.36 34396.92 29995.18 33591.28 28086.48 33293.42 33453.27 35196.74 33089.43 29881.97 33694.11 336
pmmvs-eth3d90.36 30389.05 30694.32 30591.10 34492.12 27097.63 25796.95 30988.86 31584.91 33793.13 33578.32 31796.74 33088.70 30481.81 33794.09 337
TransMVSNet (Re)92.67 28491.51 28996.15 24796.58 28094.65 20498.90 7896.73 31890.86 28989.46 31997.86 19885.62 25498.09 29486.45 31781.12 33895.71 320
PMVScopyleft61.03 2365.95 32163.57 32573.09 33657.90 35951.22 36085.05 35193.93 34854.45 35144.32 35683.57 34613.22 36089.15 35058.68 35181.00 33978.91 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
AUN-MVS94.53 22993.73 24796.92 19398.50 14993.52 24698.34 17698.10 23493.83 18195.94 18397.98 18885.59 25599.03 19394.35 18580.94 34098.22 196
UnsupCasMVSNet_eth90.99 29789.92 30094.19 30794.08 33589.83 30597.13 29098.67 12893.69 19185.83 33496.19 31175.15 33396.74 33089.14 30179.41 34196.00 315
TDRefinement91.06 29689.68 30195.21 27985.35 35091.49 28398.51 15797.07 30191.47 26988.83 32297.84 20177.31 32599.09 18692.79 23377.98 34295.04 329
new-patchmatchnet88.50 31087.45 31391.67 32390.31 34685.89 33897.16 28897.33 29189.47 30983.63 33992.77 33676.38 32895.06 34482.70 33277.29 34394.06 338
CL-MVSNet_2432*160090.38 30289.38 30493.40 31392.85 34088.94 32097.95 22797.94 25590.35 29790.25 31293.96 33279.82 30895.94 33984.62 32976.69 34495.33 324
pmmvs386.67 31484.86 31792.11 32288.16 34887.19 33696.63 31794.75 33979.88 34287.22 32892.75 33766.56 34695.20 34381.24 33676.56 34593.96 339
LCM-MVSNet78.70 31576.24 32086.08 32877.26 35671.99 35294.34 34196.72 31961.62 35076.53 34489.33 34333.91 35892.78 34881.85 33474.60 34693.46 341
UnsupCasMVSNet_bld87.17 31285.12 31693.31 31591.94 34288.77 32194.92 33698.30 20284.30 33682.30 34090.04 34263.96 34997.25 32585.85 32274.47 34793.93 340
PVSNet_088.72 1991.28 29490.03 29995.00 28697.99 18787.29 33594.84 33798.50 16692.06 25489.86 31595.19 32579.81 30999.39 15592.27 24769.79 34898.33 193
PMMVS277.95 31775.44 32185.46 32982.54 35174.95 35094.23 34293.08 34972.80 34774.68 34587.38 34436.36 35791.56 34973.95 34763.94 34989.87 344
MVEpermissive62.14 2263.28 32459.38 32774.99 33474.33 35765.47 35485.55 35080.50 35952.02 35351.10 35475.00 35310.91 36380.50 35351.60 35253.40 35078.99 348
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 32264.25 32467.02 33782.28 35259.36 35891.83 34785.63 35652.69 35260.22 35277.28 35141.06 35580.12 35446.15 35341.14 35161.57 352
EMVS64.07 32363.26 32666.53 33881.73 35358.81 35991.85 34684.75 35751.93 35459.09 35375.13 35243.32 35479.09 35542.03 35439.47 35261.69 351
ANet_high69.08 31965.37 32380.22 33265.99 35871.96 35390.91 34890.09 35382.62 33849.93 35578.39 35029.36 35981.75 35262.49 35038.52 35386.95 347
tmp_tt68.90 32066.97 32274.68 33550.78 36059.95 35787.13 34983.47 35838.80 35562.21 35196.23 30864.70 34876.91 35688.91 30330.49 35487.19 346
wuyk23d30.17 32530.18 32930.16 33978.61 35543.29 36166.79 35314.21 36117.31 35614.82 35911.93 35911.55 36241.43 35737.08 35519.30 3555.76 355
testmvs21.48 32724.95 33011.09 34114.89 3616.47 36396.56 3199.87 3627.55 35717.93 35739.02 3559.43 3645.90 35916.56 35712.72 35620.91 354
test12320.95 32823.72 33112.64 34013.54 3628.19 36296.55 3206.13 3637.48 35816.74 35837.98 35612.97 3616.05 35816.69 3565.43 35723.68 353
uanet_test0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
cdsmvs_eth3d_5k23.98 32631.98 3280.00 3420.00 3630.00 3640.00 35498.59 1410.00 3590.00 36098.61 12790.60 1570.00 3600.00 3580.00 3580.00 356
pcd_1.5k_mvsjas7.88 33010.50 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 36094.51 850.00 3600.00 3580.00 3580.00 356
sosnet-low-res0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
Regformer0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.20 32910.94 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36098.43 1450.00 3650.00 3600.00 3580.00 3580.00 356
uanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 102
test_post196.68 31630.43 35887.85 21798.69 22992.59 238
test_post31.83 35788.83 19298.91 208
patchmatchnet-post95.10 32789.42 17398.89 212
MTMP98.89 8294.14 346
gm-plane-assit95.88 30887.47 33389.74 30696.94 27999.19 17193.32 218
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
test_prior498.01 6297.86 238
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
旧先验297.57 26091.30 27898.67 5899.80 7995.70 146
新几何297.64 255
无先验97.58 25998.72 10991.38 27299.87 4493.36 21699.60 78
原ACMM297.67 253
testdata299.89 3591.65 263
segment_acmp96.85 11
testdata197.32 27696.34 71
plane_prior797.42 22994.63 206
plane_prior697.35 23494.61 20987.09 229
plane_prior498.28 164
plane_prior394.61 20997.02 4795.34 186
plane_prior298.80 10497.28 29
plane_prior197.37 233
n20.00 364
nn0.00 364
door-mid94.37 342
test1198.66 131
door94.64 340
HQP5-MVS94.25 224
HQP-NCC97.20 24398.05 21896.43 6794.45 208
ACMP_Plane97.20 24398.05 21896.43 6794.45 208
BP-MVS95.30 156
HQP4-MVS94.45 20898.96 20196.87 245
HQP2-MVS86.75 235
NP-MVS97.28 23794.51 21497.73 210
MDTV_nov1_ep13_2view84.26 34096.89 30690.97 28897.90 10489.89 16893.91 20099.18 136
Test By Simon94.64 80