test_0728_SECOND | | | | | 99.71 1 | 99.72 13 | 99.35 1 | 98.97 76 | 98.88 50 | | | | | 99.94 3 | 98.47 19 | 99.81 10 | 99.84 6 |
|
DPE-MVS |  | | 98.92 5 | 98.67 7 | 99.65 2 | 99.58 34 | 99.20 9 | 98.42 179 | 98.91 44 | 97.58 14 | 99.54 8 | 99.46 11 | 97.10 12 | 99.94 3 | 97.64 68 | 99.84 8 | 99.83 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS++ | | | 99.08 2 | 98.89 2 | 99.64 3 | 99.17 100 | 99.23 7 | 99.69 1 | 98.88 50 | 97.32 31 | 99.53 9 | 99.47 8 | 97.81 3 | 99.94 3 | 98.47 19 | 99.72 52 | 99.74 35 |
|
SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 4 | 99.71 21 | 99.24 5 | 99.02 66 | 98.87 57 | 97.65 9 | 99.73 1 | 99.48 6 | 97.53 7 | 99.94 3 | 98.43 23 | 99.81 10 | 99.70 52 |
|
DVP-MVS |  | | 99.03 3 | 98.83 4 | 99.63 4 | 99.72 13 | 99.25 2 | 98.97 76 | 98.58 152 | 97.62 11 | 99.45 11 | 99.46 11 | 97.42 9 | 99.94 3 | 98.47 19 | 99.81 10 | 99.69 55 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSC_two_6792asdad | | | | | 99.62 6 | 99.17 100 | 99.08 11 | | 98.63 142 | | | | | 99.94 3 | 98.53 11 | 99.80 17 | 99.86 2 |
|
No_MVS | | | | | 99.62 6 | 99.17 100 | 99.08 11 | | 98.63 142 | | | | | 99.94 3 | 98.53 11 | 99.80 17 | 99.86 2 |
|
SMA-MVS |  | | 98.58 24 | 98.25 39 | 99.56 8 | 99.51 41 | 99.04 15 | 98.95 80 | 98.80 90 | 93.67 207 | 99.37 16 | 99.52 3 | 96.52 20 | 99.89 38 | 98.06 39 | 99.81 10 | 99.76 28 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 98.61 18 | 98.30 35 | 99.55 9 | 99.62 32 | 98.95 17 | 98.82 106 | 98.81 79 | 95.80 100 | 99.16 30 | 99.47 8 | 95.37 60 | 99.92 24 | 97.89 49 | 99.75 40 | 99.79 12 |
|
HPM-MVS++ |  | | 98.58 24 | 98.25 39 | 99.55 9 | 99.50 43 | 99.08 11 | 98.72 130 | 98.66 135 | 97.51 17 | 98.15 91 | 98.83 115 | 95.70 47 | 99.92 24 | 97.53 78 | 99.67 58 | 99.66 69 |
|
APDe-MVS | | | 99.02 4 | 98.84 3 | 99.55 9 | 99.57 35 | 98.96 16 | 99.39 8 | 98.93 38 | 97.38 28 | 99.41 13 | 99.54 1 | 96.66 16 | 99.84 56 | 98.86 2 | 99.85 3 | 99.87 1 |
|
MP-MVS-pluss | | | 98.31 53 | 97.92 59 | 99.49 12 | 99.72 13 | 98.88 18 | 98.43 177 | 98.78 98 | 94.10 177 | 97.69 127 | 99.42 14 | 95.25 69 | 99.92 24 | 98.09 37 | 99.80 17 | 99.67 65 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MCST-MVS | | | 98.65 14 | 98.37 22 | 99.48 13 | 99.60 33 | 98.87 19 | 98.41 180 | 98.68 124 | 97.04 51 | 98.52 74 | 98.80 118 | 96.78 15 | 99.83 59 | 97.93 45 | 99.61 71 | 99.74 35 |
|
testtj | | | 98.33 51 | 97.95 57 | 99.47 14 | 99.49 47 | 98.70 23 | 98.83 103 | 98.86 63 | 95.48 115 | 98.91 49 | 99.17 61 | 95.48 53 | 99.93 18 | 95.80 151 | 99.53 89 | 99.76 28 |
|
zzz-MVS | | | 98.55 31 | 98.25 39 | 99.46 15 | 99.76 2 | 98.64 27 | 98.55 161 | 98.74 107 | 97.27 38 | 98.02 102 | 99.39 16 | 94.81 80 | 99.96 1 | 97.91 46 | 99.79 21 | 99.77 22 |
|
MTAPA | | | 98.58 24 | 98.29 36 | 99.46 15 | 99.76 2 | 98.64 27 | 98.90 87 | 98.74 107 | 97.27 38 | 98.02 102 | 99.39 16 | 94.81 80 | 99.96 1 | 97.91 46 | 99.79 21 | 99.77 22 |
|
CNVR-MVS | | | 98.78 7 | 98.56 10 | 99.45 17 | 99.32 70 | 98.87 19 | 98.47 171 | 98.81 79 | 97.72 6 | 98.76 57 | 99.16 66 | 97.05 13 | 99.78 99 | 98.06 39 | 99.66 61 | 99.69 55 |
|
APD-MVS |  | | 98.35 47 | 98.00 55 | 99.42 18 | 99.51 41 | 98.72 21 | 98.80 113 | 98.82 73 | 94.52 166 | 99.23 23 | 99.25 48 | 95.54 52 | 99.80 83 | 96.52 126 | 99.77 28 | 99.74 35 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SF-MVS | | | 98.59 21 | 98.32 34 | 99.41 19 | 99.54 37 | 98.71 22 | 99.04 58 | 98.81 79 | 95.12 137 | 99.32 18 | 99.39 16 | 96.22 23 | 99.84 56 | 97.72 60 | 99.73 45 | 99.67 65 |
|
ETH3D-3000-0.1 | | | 98.35 47 | 98.00 55 | 99.38 20 | 99.47 50 | 98.68 25 | 98.67 141 | 98.84 68 | 94.66 161 | 99.11 32 | 99.25 48 | 95.46 54 | 99.81 74 | 96.80 115 | 99.73 45 | 99.63 77 |
|
NCCC | | | 98.61 18 | 98.35 25 | 99.38 20 | 99.28 84 | 98.61 29 | 98.45 172 | 98.76 102 | 97.82 5 | 98.45 79 | 98.93 103 | 96.65 17 | 99.83 59 | 97.38 84 | 99.41 103 | 99.71 48 |
|
3Dnovator+ | | 94.38 6 | 97.43 95 | 96.78 110 | 99.38 20 | 97.83 210 | 98.52 32 | 99.37 10 | 98.71 117 | 97.09 50 | 92.99 284 | 99.13 70 | 89.36 182 | 99.89 38 | 96.97 96 | 99.57 79 | 99.71 48 |
|
OPU-MVS | | | | | 99.37 23 | 99.24 94 | 99.05 14 | 99.02 66 | | | | 99.16 66 | 97.81 3 | 99.37 163 | 97.24 87 | 99.73 45 | 99.70 52 |
|
SteuartSystems-ACMMP | | | 98.90 6 | 98.75 5 | 99.36 24 | 99.22 96 | 98.43 38 | 99.10 50 | 98.87 57 | 97.38 28 | 99.35 17 | 99.40 15 | 97.78 5 | 99.87 47 | 97.77 57 | 99.85 3 | 99.78 15 |
Skip Steuart: Steuart Systems R&D Blog. |
ZNCC-MVS | | | 98.49 37 | 98.20 45 | 99.35 25 | 99.73 12 | 98.39 39 | 99.19 36 | 98.86 63 | 95.77 101 | 98.31 89 | 99.10 75 | 95.46 54 | 99.93 18 | 97.57 75 | 99.81 10 | 99.74 35 |
|
ETH3 D test6400 | | | 97.59 84 | 97.01 99 | 99.34 26 | 99.40 61 | 98.56 30 | 98.20 209 | 98.81 79 | 91.63 279 | 98.44 80 | 98.85 111 | 93.98 102 | 99.82 67 | 94.11 206 | 99.69 56 | 99.64 74 |
|
GST-MVS | | | 98.43 41 | 98.12 48 | 99.34 26 | 99.72 13 | 98.38 40 | 99.09 51 | 98.82 73 | 95.71 104 | 98.73 60 | 99.06 84 | 95.27 67 | 99.93 18 | 97.07 93 | 99.63 68 | 99.72 44 |
|
XVS | | | 98.70 10 | 98.49 17 | 99.34 26 | 99.70 24 | 98.35 48 | 99.29 19 | 98.88 50 | 97.40 25 | 98.46 76 | 99.20 57 | 95.90 43 | 99.89 38 | 97.85 52 | 99.74 43 | 99.78 15 |
|
X-MVStestdata | | | 94.06 271 | 92.30 291 | 99.34 26 | 99.70 24 | 98.35 48 | 99.29 19 | 98.88 50 | 97.40 25 | 98.46 76 | 43.50 370 | 95.90 43 | 99.89 38 | 97.85 52 | 99.74 43 | 99.78 15 |
|
train_agg | | | 97.97 59 | 97.52 75 | 99.33 30 | 99.31 72 | 98.50 34 | 97.92 240 | 98.73 111 | 92.98 233 | 97.74 123 | 98.68 130 | 96.20 26 | 99.80 83 | 96.59 122 | 99.57 79 | 99.68 61 |
|
HFP-MVS | | | 98.63 17 | 98.40 19 | 99.32 31 | 99.72 13 | 98.29 51 | 99.23 26 | 98.96 32 | 96.10 92 | 98.94 43 | 99.17 61 | 96.06 33 | 99.92 24 | 97.62 69 | 99.78 25 | 99.75 30 |
|
#test# | | | 98.54 33 | 98.27 37 | 99.32 31 | 99.72 13 | 98.29 51 | 98.98 75 | 98.96 32 | 95.65 108 | 98.94 43 | 99.17 61 | 96.06 33 | 99.92 24 | 97.21 89 | 99.78 25 | 99.75 30 |
|
xxxxxxxxxxxxxcwj | | | 98.70 10 | 98.50 15 | 99.30 33 | 99.46 53 | 98.38 40 | 98.21 206 | 98.52 163 | 97.95 3 | 99.32 18 | 99.39 16 | 96.22 23 | 99.84 56 | 97.72 60 | 99.73 45 | 99.67 65 |
|
ETH3D cwj APD-0.16 | | | 97.96 60 | 97.52 75 | 99.29 34 | 99.05 110 | 98.52 32 | 98.33 189 | 98.68 124 | 93.18 225 | 98.68 62 | 99.13 70 | 94.62 84 | 99.83 59 | 96.45 128 | 99.55 87 | 99.52 92 |
|
MSP-MVS | | | 98.74 9 | 98.55 11 | 99.29 34 | 99.75 4 | 98.23 54 | 99.26 23 | 98.88 50 | 97.52 16 | 99.41 13 | 98.78 120 | 96.00 37 | 99.79 95 | 97.79 56 | 99.59 75 | 99.85 4 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
region2R | | | 98.61 18 | 98.38 21 | 99.29 34 | 99.74 8 | 98.16 60 | 99.23 26 | 98.93 38 | 96.15 87 | 98.94 43 | 99.17 61 | 95.91 42 | 99.94 3 | 97.55 76 | 99.79 21 | 99.78 15 |
|
ACMMPR | | | 98.59 21 | 98.36 23 | 99.29 34 | 99.74 8 | 98.15 61 | 99.23 26 | 98.95 34 | 96.10 92 | 98.93 47 | 99.19 60 | 95.70 47 | 99.94 3 | 97.62 69 | 99.79 21 | 99.78 15 |
|
agg_prior1 | | | 97.95 63 | 97.51 77 | 99.28 38 | 99.30 77 | 98.38 40 | 97.81 253 | 98.72 113 | 93.16 227 | 97.57 136 | 98.66 133 | 96.14 29 | 99.81 74 | 96.63 121 | 99.56 84 | 99.66 69 |
|
MP-MVS |  | | 98.33 51 | 98.01 54 | 99.28 38 | 99.75 4 | 98.18 58 | 99.22 30 | 98.79 95 | 96.13 89 | 97.92 115 | 99.23 50 | 94.54 87 | 99.94 3 | 96.74 120 | 99.78 25 | 99.73 40 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CDPH-MVS | | | 97.94 64 | 97.49 78 | 99.28 38 | 99.47 50 | 98.44 36 | 97.91 242 | 98.67 132 | 92.57 248 | 98.77 56 | 98.85 111 | 95.93 41 | 99.72 112 | 95.56 161 | 99.69 56 | 99.68 61 |
|
PGM-MVS | | | 98.49 37 | 98.23 43 | 99.27 41 | 99.72 13 | 98.08 64 | 98.99 72 | 99.49 5 | 95.43 118 | 99.03 37 | 99.32 35 | 95.56 50 | 99.94 3 | 96.80 115 | 99.77 28 | 99.78 15 |
|
mPP-MVS | | | 98.51 36 | 98.26 38 | 99.25 42 | 99.75 4 | 98.04 65 | 99.28 21 | 98.81 79 | 96.24 83 | 98.35 86 | 99.23 50 | 95.46 54 | 99.94 3 | 97.42 82 | 99.81 10 | 99.77 22 |
|
SR-MVS | | | 98.57 27 | 98.35 25 | 99.24 43 | 99.53 38 | 98.18 58 | 99.09 51 | 98.82 73 | 96.58 70 | 99.10 33 | 99.32 35 | 95.39 58 | 99.82 67 | 97.70 65 | 99.63 68 | 99.72 44 |
|
TSAR-MVS + MP. | | | 98.78 7 | 98.62 8 | 99.24 43 | 99.69 26 | 98.28 53 | 99.14 41 | 98.66 135 | 96.84 59 | 99.56 6 | 99.31 37 | 96.34 22 | 99.70 118 | 98.32 30 | 99.73 45 | 99.73 40 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 97.55 88 | 96.99 101 | 99.23 45 | 99.04 112 | 98.55 31 | 97.17 297 | 98.35 198 | 94.85 152 | 97.93 114 | 98.58 141 | 95.07 75 | 99.71 117 | 92.60 248 | 99.34 108 | 99.43 113 |
|
Regformer-2 | | | 98.69 12 | 98.52 13 | 99.19 46 | 99.35 62 | 98.01 67 | 98.37 183 | 98.81 79 | 97.48 19 | 99.21 24 | 99.21 53 | 96.13 30 | 99.80 83 | 98.40 27 | 99.73 45 | 99.75 30 |
|
test_prior3 | | | 98.22 56 | 97.90 60 | 99.19 46 | 99.31 72 | 98.22 55 | 97.80 254 | 98.84 68 | 96.12 90 | 97.89 117 | 98.69 128 | 95.96 39 | 99.70 118 | 96.89 104 | 99.60 72 | 99.65 71 |
|
test_prior | | | | | 99.19 46 | 99.31 72 | 98.22 55 | | 98.84 68 | | | | | 99.70 118 | | | 99.65 71 |
|
CP-MVS | | | 98.57 27 | 98.36 23 | 99.19 46 | 99.66 28 | 97.86 73 | 99.34 15 | 98.87 57 | 95.96 95 | 98.60 71 | 99.13 70 | 96.05 35 | 99.94 3 | 97.77 57 | 99.86 1 | 99.77 22 |
|
test12 | | | | | 99.18 50 | 99.16 104 | 98.19 57 | | 98.53 161 | | 98.07 96 | | 95.13 73 | 99.72 112 | | 99.56 84 | 99.63 77 |
|
PHI-MVS | | | 98.34 49 | 98.06 51 | 99.18 50 | 99.15 106 | 98.12 63 | 99.04 58 | 99.09 20 | 93.32 220 | 98.83 53 | 99.10 75 | 96.54 19 | 99.83 59 | 97.70 65 | 99.76 34 | 99.59 85 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 31 | 98.34 29 | 99.18 50 | 99.25 88 | 98.04 65 | 98.50 168 | 98.78 98 | 97.72 6 | 98.92 48 | 99.28 42 | 95.27 67 | 99.82 67 | 97.55 76 | 99.77 28 | 99.69 55 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test1172 | | | 98.56 29 | 98.35 25 | 99.16 53 | 99.53 38 | 97.94 71 | 99.09 51 | 98.83 71 | 96.52 73 | 99.05 36 | 99.34 33 | 95.34 62 | 99.82 67 | 97.86 51 | 99.64 66 | 99.73 40 |
|
æ–°å‡ ä½•1 | | | | | 99.16 53 | 99.34 64 | 98.01 67 | | 98.69 121 | 90.06 316 | 98.13 92 | 98.95 101 | 94.60 85 | 99.89 38 | 91.97 268 | 99.47 95 | 99.59 85 |
|
1121 | | | 97.37 100 | 96.77 114 | 99.16 53 | 99.34 64 | 97.99 70 | 98.19 213 | 98.68 124 | 90.14 315 | 98.01 106 | 98.97 93 | 94.80 82 | 99.87 47 | 93.36 227 | 99.46 98 | 99.61 80 |
|
APD-MVS_3200maxsize | | | 98.53 35 | 98.33 33 | 99.15 56 | 99.50 43 | 97.92 72 | 99.15 40 | 98.81 79 | 96.24 83 | 99.20 25 | 99.37 24 | 95.30 65 | 99.80 83 | 97.73 59 | 99.67 58 | 99.72 44 |
|
SR-MVS-dyc-post | | | 98.54 33 | 98.35 25 | 99.13 57 | 99.49 47 | 97.86 73 | 99.11 47 | 98.80 90 | 96.49 74 | 99.17 28 | 99.35 30 | 95.34 62 | 99.82 67 | 97.72 60 | 99.65 62 | 99.71 48 |
|
abl_6 | | | 98.30 54 | 98.03 53 | 99.13 57 | 99.56 36 | 97.76 80 | 99.13 44 | 98.82 73 | 96.14 88 | 99.26 21 | 99.37 24 | 93.33 107 | 99.93 18 | 96.96 98 | 99.67 58 | 99.69 55 |
|
HPM-MVS |  | | 98.36 46 | 98.10 50 | 99.13 57 | 99.74 8 | 97.82 77 | 99.53 4 | 98.80 90 | 94.63 162 | 98.61 70 | 98.97 93 | 95.13 73 | 99.77 104 | 97.65 67 | 99.83 9 | 99.79 12 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
Regformer-1 | | | 98.66 13 | 98.51 14 | 99.12 60 | 99.35 62 | 97.81 79 | 98.37 183 | 98.76 102 | 97.49 18 | 99.20 25 | 99.21 53 | 96.08 32 | 99.79 95 | 98.42 25 | 99.73 45 | 99.75 30 |
|
HPM-MVS_fast | | | 98.38 44 | 98.13 47 | 99.12 60 | 99.75 4 | 97.86 73 | 99.44 7 | 98.82 73 | 94.46 169 | 98.94 43 | 99.20 57 | 95.16 72 | 99.74 110 | 97.58 72 | 99.85 3 | 99.77 22 |
|
ACMMP |  | | 98.23 55 | 97.95 57 | 99.09 62 | 99.74 8 | 97.62 84 | 99.03 62 | 99.41 6 | 95.98 94 | 97.60 135 | 99.36 28 | 94.45 92 | 99.93 18 | 97.14 90 | 98.85 131 | 99.70 52 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator | | 94.51 5 | 97.46 90 | 96.93 103 | 99.07 63 | 97.78 212 | 97.64 82 | 99.35 13 | 99.06 22 | 97.02 52 | 93.75 258 | 99.16 66 | 89.25 185 | 99.92 24 | 97.22 88 | 99.75 40 | 99.64 74 |
|
DP-MVS Recon | | | 97.86 69 | 97.46 80 | 99.06 64 | 99.53 38 | 98.35 48 | 98.33 189 | 98.89 47 | 92.62 245 | 98.05 97 | 98.94 102 | 95.34 62 | 99.65 127 | 96.04 142 | 99.42 102 | 99.19 140 |
|
alignmvs | | | 97.56 87 | 97.07 97 | 99.01 65 | 98.66 147 | 98.37 46 | 98.83 103 | 98.06 257 | 96.74 64 | 98.00 108 | 97.65 230 | 90.80 158 | 99.48 155 | 98.37 28 | 96.56 200 | 99.19 140 |
|
Regformer-4 | | | 98.64 15 | 98.53 12 | 98.99 66 | 99.43 59 | 97.37 92 | 98.40 181 | 98.79 95 | 97.46 22 | 99.09 34 | 99.31 37 | 95.86 45 | 99.80 83 | 98.64 4 | 99.76 34 | 99.79 12 |
|
DELS-MVS | | | 98.40 43 | 98.20 45 | 98.99 66 | 99.00 117 | 97.66 81 | 97.75 258 | 98.89 47 | 97.71 8 | 98.33 87 | 98.97 93 | 94.97 77 | 99.88 46 | 98.42 25 | 99.76 34 | 99.42 115 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
canonicalmvs | | | 97.67 77 | 97.23 90 | 98.98 68 | 98.70 143 | 98.38 40 | 99.34 15 | 98.39 191 | 96.76 63 | 97.67 128 | 97.40 251 | 92.26 121 | 99.49 151 | 98.28 32 | 96.28 212 | 99.08 157 |
|
UA-Net | | | 97.96 60 | 97.62 68 | 98.98 68 | 98.86 129 | 97.47 89 | 98.89 91 | 99.08 21 | 96.67 67 | 98.72 61 | 99.54 1 | 93.15 110 | 99.81 74 | 94.87 177 | 98.83 132 | 99.65 71 |
|
VNet | | | 97.79 72 | 97.40 84 | 98.96 70 | 98.88 127 | 97.55 86 | 98.63 147 | 98.93 38 | 96.74 64 | 99.02 38 | 98.84 113 | 90.33 167 | 99.83 59 | 98.53 11 | 96.66 196 | 99.50 98 |
|
QAPM | | | 96.29 141 | 95.40 161 | 98.96 70 | 97.85 209 | 97.60 85 | 99.23 26 | 98.93 38 | 89.76 321 | 93.11 281 | 99.02 86 | 89.11 190 | 99.93 18 | 91.99 267 | 99.62 70 | 99.34 119 |
|
114514_t | | | 96.93 118 | 96.27 131 | 98.92 72 | 99.50 43 | 97.63 83 | 98.85 99 | 98.90 45 | 84.80 351 | 97.77 120 | 99.11 73 | 92.84 112 | 99.66 126 | 94.85 178 | 99.77 28 | 99.47 105 |
|
CPTT-MVS | | | 97.72 75 | 97.32 87 | 98.92 72 | 99.64 30 | 97.10 105 | 99.12 46 | 98.81 79 | 92.34 256 | 98.09 95 | 99.08 82 | 93.01 111 | 99.92 24 | 96.06 141 | 99.77 28 | 99.75 30 |
|
CANet | | | 98.05 58 | 97.76 65 | 98.90 74 | 98.73 138 | 97.27 96 | 98.35 186 | 98.78 98 | 97.37 30 | 97.72 125 | 98.96 99 | 91.53 143 | 99.92 24 | 98.79 3 | 99.65 62 | 99.51 96 |
|
MVS_111021_HR | | | 98.47 39 | 98.34 29 | 98.88 75 | 99.22 96 | 97.32 93 | 97.91 242 | 99.58 3 | 97.20 42 | 98.33 87 | 99.00 91 | 95.99 38 | 99.64 129 | 98.05 41 | 99.76 34 | 99.69 55 |
|
Regformer-3 | | | 98.59 21 | 98.50 15 | 98.86 76 | 99.43 59 | 97.05 106 | 98.40 181 | 98.68 124 | 97.43 24 | 99.06 35 | 99.31 37 | 95.80 46 | 99.77 104 | 98.62 6 | 99.76 34 | 99.78 15 |
|
TSAR-MVS + GP. | | | 98.38 44 | 98.24 42 | 98.81 77 | 99.22 96 | 97.25 101 | 98.11 225 | 98.29 212 | 97.19 43 | 98.99 42 | 99.02 86 | 96.22 23 | 99.67 125 | 98.52 17 | 98.56 144 | 99.51 96 |
|
DeepC-MVS | | 95.98 3 | 97.88 68 | 97.58 70 | 98.77 78 | 99.25 88 | 96.93 110 | 98.83 103 | 98.75 105 | 96.96 55 | 96.89 159 | 99.50 4 | 90.46 164 | 99.87 47 | 97.84 54 | 99.76 34 | 99.52 92 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CNLPA | | | 97.45 93 | 97.03 98 | 98.73 79 | 99.05 110 | 97.44 91 | 98.07 227 | 98.53 161 | 95.32 126 | 96.80 164 | 98.53 145 | 93.32 108 | 99.72 112 | 94.31 199 | 99.31 110 | 99.02 161 |
|
WTY-MVS | | | 97.37 100 | 96.92 104 | 98.72 80 | 98.86 129 | 96.89 114 | 98.31 195 | 98.71 117 | 95.26 129 | 97.67 128 | 98.56 144 | 92.21 124 | 99.78 99 | 95.89 146 | 96.85 191 | 99.48 103 |
|
EI-MVSNet-Vis-set | | | 98.47 39 | 98.39 20 | 98.69 81 | 99.46 53 | 96.49 131 | 98.30 197 | 98.69 121 | 97.21 41 | 98.84 51 | 99.36 28 | 95.41 57 | 99.78 99 | 98.62 6 | 99.65 62 | 99.80 11 |
|
LS3D | | | 97.16 110 | 96.66 119 | 98.68 82 | 98.53 157 | 97.19 103 | 98.93 84 | 98.90 45 | 92.83 241 | 95.99 193 | 99.37 24 | 92.12 127 | 99.87 47 | 93.67 219 | 99.57 79 | 98.97 166 |
|
MVS_111021_LR | | | 98.34 49 | 98.23 43 | 98.67 83 | 99.27 85 | 96.90 112 | 97.95 238 | 99.58 3 | 97.14 46 | 98.44 80 | 99.01 90 | 95.03 76 | 99.62 134 | 97.91 46 | 99.75 40 | 99.50 98 |
|
原ACMM1 | | | | | 98.65 84 | 99.32 70 | 96.62 122 | | 98.67 132 | 93.27 223 | 97.81 119 | 98.97 93 | 95.18 71 | 99.83 59 | 93.84 213 | 99.46 98 | 99.50 98 |
|
PAPR | | | 96.84 122 | 96.24 133 | 98.65 84 | 98.72 142 | 96.92 111 | 97.36 282 | 98.57 153 | 93.33 219 | 96.67 167 | 97.57 238 | 94.30 96 | 99.56 140 | 91.05 283 | 98.59 142 | 99.47 105 |
|
EI-MVSNet-UG-set | | | 98.41 42 | 98.34 29 | 98.61 86 | 99.45 57 | 96.32 140 | 98.28 200 | 98.68 124 | 97.17 44 | 98.74 58 | 99.37 24 | 95.25 69 | 99.79 95 | 98.57 9 | 99.54 88 | 99.73 40 |
|
sss | | | 97.39 98 | 96.98 102 | 98.61 86 | 98.60 153 | 96.61 124 | 98.22 205 | 98.93 38 | 93.97 185 | 98.01 106 | 98.48 150 | 91.98 131 | 99.85 53 | 96.45 128 | 98.15 160 | 99.39 116 |
|
HY-MVS | | 93.96 8 | 96.82 123 | 96.23 134 | 98.57 88 | 98.46 161 | 97.00 107 | 98.14 220 | 98.21 220 | 93.95 186 | 96.72 166 | 97.99 198 | 91.58 138 | 99.76 106 | 94.51 192 | 96.54 201 | 98.95 169 |
|
DP-MVS | | | 96.59 130 | 95.93 142 | 98.57 88 | 99.34 64 | 96.19 146 | 98.70 135 | 98.39 191 | 89.45 326 | 94.52 218 | 99.35 30 | 91.85 133 | 99.85 53 | 92.89 244 | 98.88 128 | 99.68 61 |
|
MSLP-MVS++ | | | 98.56 29 | 98.57 9 | 98.55 90 | 99.26 87 | 96.80 116 | 98.71 131 | 99.05 24 | 97.28 34 | 98.84 51 | 99.28 42 | 96.47 21 | 99.40 161 | 98.52 17 | 99.70 55 | 99.47 105 |
|
ab-mvs | | | 96.42 137 | 95.71 151 | 98.55 90 | 98.63 150 | 96.75 119 | 97.88 247 | 98.74 107 | 93.84 191 | 96.54 176 | 98.18 185 | 85.34 269 | 99.75 108 | 95.93 145 | 96.35 206 | 99.15 147 |
|
test_yl | | | 97.22 105 | 96.78 110 | 98.54 92 | 98.73 138 | 96.60 125 | 98.45 172 | 98.31 204 | 94.70 155 | 98.02 102 | 98.42 156 | 90.80 158 | 99.70 118 | 96.81 113 | 96.79 193 | 99.34 119 |
|
DCV-MVSNet | | | 97.22 105 | 96.78 110 | 98.54 92 | 98.73 138 | 96.60 125 | 98.45 172 | 98.31 204 | 94.70 155 | 98.02 102 | 98.42 156 | 90.80 158 | 99.70 118 | 96.81 113 | 96.79 193 | 99.34 119 |
|
SD-MVS | | | 98.64 15 | 98.68 6 | 98.53 94 | 99.33 67 | 98.36 47 | 98.90 87 | 98.85 67 | 97.28 34 | 99.72 3 | 99.39 16 | 96.63 18 | 97.60 330 | 98.17 33 | 99.85 3 | 99.64 74 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
EPNet | | | 97.28 103 | 96.87 106 | 98.51 95 | 94.98 339 | 96.14 147 | 98.90 87 | 97.02 319 | 98.28 1 | 95.99 193 | 99.11 73 | 91.36 145 | 99.89 38 | 96.98 95 | 99.19 115 | 99.50 98 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
1112_ss | | | 96.63 127 | 96.00 141 | 98.50 96 | 98.56 154 | 96.37 137 | 98.18 217 | 98.10 243 | 92.92 236 | 94.84 208 | 98.43 154 | 92.14 126 | 99.58 137 | 94.35 196 | 96.51 202 | 99.56 91 |
|
PAPM_NR | | | 97.46 90 | 97.11 94 | 98.50 96 | 99.50 43 | 96.41 136 | 98.63 147 | 98.60 145 | 95.18 133 | 97.06 150 | 98.06 192 | 94.26 97 | 99.57 138 | 93.80 215 | 98.87 130 | 99.52 92 |
|
DROMVSNet | | | 98.21 57 | 98.11 49 | 98.49 98 | 98.34 171 | 97.26 100 | 99.61 3 | 98.43 183 | 96.78 61 | 98.87 50 | 98.84 113 | 93.72 104 | 99.01 206 | 98.91 1 | 99.50 92 | 99.19 140 |
|
AdaColmap |  | | 97.15 111 | 96.70 115 | 98.48 99 | 99.16 104 | 96.69 121 | 98.01 233 | 98.89 47 | 94.44 170 | 96.83 160 | 98.68 130 | 90.69 161 | 99.76 106 | 94.36 195 | 99.29 111 | 98.98 165 |
|
LFMVS | | | 95.86 160 | 94.98 186 | 98.47 100 | 98.87 128 | 96.32 140 | 98.84 102 | 96.02 339 | 93.40 217 | 98.62 69 | 99.20 57 | 74.99 350 | 99.63 132 | 97.72 60 | 97.20 186 | 99.46 109 |
|
MAR-MVS | | | 96.91 119 | 96.40 127 | 98.45 101 | 98.69 145 | 96.90 112 | 98.66 144 | 98.68 124 | 92.40 255 | 97.07 149 | 97.96 201 | 91.54 142 | 99.75 108 | 93.68 217 | 98.92 125 | 98.69 184 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PVSNet_Blended_VisFu | | | 97.70 76 | 97.46 80 | 98.44 102 | 99.27 85 | 95.91 163 | 98.63 147 | 99.16 17 | 94.48 168 | 97.67 128 | 98.88 108 | 92.80 113 | 99.91 33 | 97.11 91 | 99.12 117 | 99.50 98 |
|
MG-MVS | | | 97.81 71 | 97.60 69 | 98.44 102 | 99.12 108 | 95.97 155 | 97.75 258 | 98.78 98 | 96.89 58 | 98.46 76 | 99.22 52 | 93.90 103 | 99.68 124 | 94.81 181 | 99.52 91 | 99.67 65 |
|
PLC |  | 95.07 4 | 97.20 108 | 96.78 110 | 98.44 102 | 99.29 80 | 96.31 142 | 98.14 220 | 98.76 102 | 92.41 254 | 96.39 183 | 98.31 171 | 94.92 79 | 99.78 99 | 94.06 208 | 98.77 135 | 99.23 135 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PCF-MVS | | 93.45 11 | 94.68 226 | 93.43 271 | 98.42 105 | 98.62 151 | 96.77 118 | 95.48 346 | 98.20 222 | 84.63 352 | 93.34 272 | 98.32 170 | 88.55 206 | 99.81 74 | 84.80 342 | 98.96 124 | 98.68 185 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ETV-MVS | | | 97.96 60 | 97.81 63 | 98.40 106 | 98.42 162 | 97.27 96 | 98.73 126 | 98.55 157 | 96.84 59 | 98.38 83 | 97.44 248 | 95.39 58 | 99.35 164 | 97.62 69 | 98.89 127 | 98.58 194 |
|
Effi-MVS+ | | | 97.12 112 | 96.69 116 | 98.39 107 | 98.19 184 | 96.72 120 | 97.37 280 | 98.43 183 | 93.71 200 | 97.65 131 | 98.02 194 | 92.20 125 | 99.25 170 | 96.87 110 | 97.79 172 | 99.19 140 |
|
Test_1112_low_res | | | 96.34 140 | 95.66 156 | 98.36 108 | 98.56 154 | 95.94 158 | 97.71 260 | 98.07 252 | 92.10 266 | 94.79 212 | 97.29 256 | 91.75 135 | 99.56 140 | 94.17 203 | 96.50 203 | 99.58 89 |
|
Vis-MVSNet |  | | 97.42 96 | 97.11 94 | 98.34 109 | 98.66 147 | 96.23 143 | 99.22 30 | 99.00 27 | 96.63 69 | 98.04 99 | 99.21 53 | 88.05 219 | 99.35 164 | 96.01 144 | 99.21 112 | 99.45 111 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OpenMVS |  | 93.04 13 | 95.83 162 | 95.00 184 | 98.32 110 | 97.18 260 | 97.32 93 | 99.21 33 | 98.97 30 | 89.96 317 | 91.14 318 | 99.05 85 | 86.64 246 | 99.92 24 | 93.38 225 | 99.47 95 | 97.73 221 |
|
casdiffmvs | | | 97.63 80 | 97.41 83 | 98.28 111 | 98.33 173 | 96.14 147 | 98.82 106 | 98.32 202 | 96.38 79 | 97.95 110 | 99.21 53 | 91.23 150 | 99.23 173 | 98.12 35 | 98.37 153 | 99.48 103 |
|
EIA-MVS | | | 97.75 73 | 97.58 70 | 98.27 112 | 98.38 164 | 96.44 134 | 99.01 68 | 98.60 145 | 95.88 97 | 97.26 141 | 97.53 241 | 94.97 77 | 99.33 166 | 97.38 84 | 99.20 113 | 99.05 159 |
|
PatchMatch-RL | | | 96.59 130 | 96.03 140 | 98.27 112 | 99.31 72 | 96.51 130 | 97.91 242 | 99.06 22 | 93.72 199 | 96.92 157 | 98.06 192 | 88.50 208 | 99.65 127 | 91.77 272 | 99.00 123 | 98.66 188 |
|
testdata | | | | | 98.26 114 | 99.20 99 | 95.36 182 | | 98.68 124 | 91.89 271 | 98.60 71 | 99.10 75 | 94.44 93 | 99.82 67 | 94.27 200 | 99.44 100 | 99.58 89 |
|
baseline | | | 97.64 79 | 97.44 82 | 98.25 115 | 98.35 166 | 96.20 144 | 99.00 70 | 98.32 202 | 96.33 81 | 98.03 100 | 99.17 61 | 91.35 146 | 99.16 179 | 98.10 36 | 98.29 158 | 99.39 116 |
|
IS-MVSNet | | | 97.22 105 | 96.88 105 | 98.25 115 | 98.85 131 | 96.36 138 | 99.19 36 | 97.97 262 | 95.39 120 | 97.23 142 | 98.99 92 | 91.11 152 | 98.93 217 | 94.60 187 | 98.59 142 | 99.47 105 |
|
CANet_DTU | | | 96.96 117 | 96.55 122 | 98.21 117 | 98.17 188 | 96.07 149 | 97.98 236 | 98.21 220 | 97.24 40 | 97.13 145 | 98.93 103 | 86.88 243 | 99.91 33 | 95.00 176 | 99.37 107 | 98.66 188 |
|
CSCG | | | 97.85 70 | 97.74 66 | 98.20 118 | 99.67 27 | 95.16 189 | 99.22 30 | 99.32 7 | 93.04 231 | 97.02 152 | 98.92 105 | 95.36 61 | 99.91 33 | 97.43 81 | 99.64 66 | 99.52 92 |
|
OMC-MVS | | | 97.55 88 | 97.34 86 | 98.20 118 | 99.33 67 | 95.92 162 | 98.28 200 | 98.59 147 | 95.52 114 | 97.97 109 | 99.10 75 | 93.28 109 | 99.49 151 | 95.09 174 | 98.88 128 | 99.19 140 |
|
UGNet | | | 96.78 124 | 96.30 130 | 98.19 120 | 98.24 178 | 95.89 165 | 98.88 94 | 98.93 38 | 97.39 27 | 96.81 163 | 97.84 214 | 82.60 302 | 99.90 36 | 96.53 125 | 99.49 93 | 98.79 178 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_Blended | | | 97.38 99 | 97.12 93 | 98.14 121 | 99.25 88 | 95.35 184 | 97.28 289 | 99.26 8 | 93.13 228 | 97.94 112 | 98.21 182 | 92.74 114 | 99.81 74 | 96.88 107 | 99.40 105 | 99.27 132 |
|
HyFIR lowres test | | | 96.90 120 | 96.49 125 | 98.14 121 | 99.33 67 | 95.56 174 | 97.38 278 | 99.65 2 | 92.34 256 | 97.61 134 | 98.20 183 | 89.29 184 | 99.10 191 | 96.97 96 | 97.60 180 | 99.77 22 |
|
MVS_Test | | | 97.28 103 | 97.00 100 | 98.13 123 | 98.33 173 | 95.97 155 | 98.74 122 | 98.07 252 | 94.27 173 | 98.44 80 | 98.07 191 | 92.48 116 | 99.26 169 | 96.43 130 | 98.19 159 | 99.16 146 |
|
diffmvs | | | 97.58 85 | 97.40 84 | 98.13 123 | 98.32 175 | 95.81 168 | 98.06 228 | 98.37 195 | 96.20 85 | 98.74 58 | 98.89 107 | 91.31 148 | 99.25 170 | 98.16 34 | 98.52 145 | 99.34 119 |
|
lupinMVS | | | 97.44 94 | 97.22 91 | 98.12 125 | 98.07 194 | 95.76 169 | 97.68 262 | 97.76 273 | 94.50 167 | 98.79 54 | 98.61 136 | 92.34 118 | 99.30 167 | 97.58 72 | 99.59 75 | 99.31 125 |
|
CS-MVS-test | | | 97.90 67 | 97.83 62 | 98.11 126 | 98.14 190 | 96.49 131 | 99.35 13 | 98.40 188 | 96.31 82 | 98.27 90 | 98.31 171 | 94.42 94 | 99.05 195 | 98.07 38 | 99.20 113 | 98.80 177 |
|
GeoE | | | 96.58 132 | 96.07 137 | 98.10 127 | 98.35 166 | 95.89 165 | 99.34 15 | 98.12 238 | 93.12 229 | 96.09 189 | 98.87 109 | 89.71 176 | 98.97 208 | 92.95 240 | 98.08 163 | 99.43 113 |
|
MVS | | | 94.67 229 | 93.54 267 | 98.08 128 | 96.88 278 | 96.56 128 | 98.19 213 | 98.50 171 | 78.05 360 | 92.69 292 | 98.02 194 | 91.07 154 | 99.63 132 | 90.09 294 | 98.36 155 | 98.04 212 |
|
CHOSEN 1792x2688 | | | 97.12 112 | 96.80 107 | 98.08 128 | 99.30 77 | 94.56 222 | 98.05 229 | 99.71 1 | 93.57 211 | 97.09 146 | 98.91 106 | 88.17 214 | 99.89 38 | 96.87 110 | 99.56 84 | 99.81 10 |
|
CS-MVS | | | 97.94 64 | 97.90 60 | 98.06 130 | 98.04 198 | 96.85 115 | 99.04 58 | 98.39 191 | 96.17 86 | 98.50 75 | 98.29 174 | 94.60 85 | 99.02 203 | 98.61 8 | 99.43 101 | 98.30 205 |
|
jason | | | 97.32 102 | 97.08 96 | 98.06 130 | 97.45 241 | 95.59 172 | 97.87 248 | 97.91 268 | 94.79 153 | 98.55 73 | 98.83 115 | 91.12 151 | 99.23 173 | 97.58 72 | 99.60 72 | 99.34 119 |
jason: jason. |
Fast-Effi-MVS+ | | | 96.28 143 | 95.70 153 | 98.03 132 | 98.29 177 | 95.97 155 | 98.58 153 | 98.25 218 | 91.74 274 | 95.29 201 | 97.23 260 | 91.03 155 | 99.15 182 | 92.90 242 | 97.96 166 | 98.97 166 |
|
baseline1 | | | 95.84 161 | 95.12 179 | 98.01 133 | 98.49 160 | 95.98 150 | 98.73 126 | 97.03 317 | 95.37 123 | 96.22 186 | 98.19 184 | 89.96 172 | 99.16 179 | 94.60 187 | 87.48 326 | 98.90 172 |
|
EPP-MVSNet | | | 97.46 90 | 97.28 88 | 97.99 134 | 98.64 149 | 95.38 181 | 99.33 18 | 98.31 204 | 93.61 210 | 97.19 143 | 99.07 83 | 94.05 99 | 99.23 173 | 96.89 104 | 98.43 152 | 99.37 118 |
|
thisisatest0530 | | | 96.01 151 | 95.36 166 | 97.97 135 | 98.38 164 | 95.52 177 | 98.88 94 | 94.19 360 | 94.04 179 | 97.64 132 | 98.31 171 | 83.82 298 | 99.46 158 | 95.29 169 | 97.70 177 | 98.93 170 |
|
F-COLMAP | | | 97.09 114 | 96.80 107 | 97.97 135 | 99.45 57 | 94.95 203 | 98.55 161 | 98.62 144 | 93.02 232 | 96.17 188 | 98.58 141 | 94.01 100 | 99.81 74 | 93.95 210 | 98.90 126 | 99.14 149 |
|
nrg030 | | | 96.28 143 | 95.72 148 | 97.96 137 | 96.90 277 | 98.15 61 | 99.39 8 | 98.31 204 | 95.47 116 | 94.42 226 | 98.35 164 | 92.09 128 | 98.69 240 | 97.50 80 | 89.05 309 | 97.04 239 |
|
API-MVS | | | 97.41 97 | 97.25 89 | 97.91 138 | 98.70 143 | 96.80 116 | 98.82 106 | 98.69 121 | 94.53 164 | 98.11 93 | 98.28 175 | 94.50 91 | 99.57 138 | 94.12 205 | 99.49 93 | 97.37 231 |
|
CDS-MVSNet | | | 96.99 116 | 96.69 116 | 97.90 139 | 98.05 197 | 95.98 150 | 98.20 209 | 98.33 201 | 93.67 207 | 96.95 153 | 98.49 149 | 93.54 105 | 98.42 269 | 95.24 172 | 97.74 175 | 99.31 125 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VDDNet | | | 95.36 187 | 94.53 204 | 97.86 140 | 98.10 193 | 95.13 193 | 98.85 99 | 97.75 274 | 90.46 307 | 98.36 84 | 99.39 16 | 73.27 356 | 99.64 129 | 97.98 42 | 96.58 199 | 98.81 176 |
|
MVSFormer | | | 97.57 86 | 97.49 78 | 97.84 141 | 98.07 194 | 95.76 169 | 99.47 5 | 98.40 188 | 94.98 145 | 98.79 54 | 98.83 115 | 92.34 118 | 98.41 276 | 96.91 100 | 99.59 75 | 99.34 119 |
|
Vis-MVSNet (Re-imp) | | | 96.87 121 | 96.55 122 | 97.83 142 | 98.73 138 | 95.46 179 | 99.20 34 | 98.30 210 | 94.96 147 | 96.60 171 | 98.87 109 | 90.05 170 | 98.59 252 | 93.67 219 | 98.60 141 | 99.46 109 |
|
MSDG | | | 95.93 157 | 95.30 172 | 97.83 142 | 98.90 125 | 95.36 182 | 96.83 321 | 98.37 195 | 91.32 290 | 94.43 225 | 98.73 126 | 90.27 168 | 99.60 135 | 90.05 297 | 98.82 133 | 98.52 195 |
|
test_part1 | | | 94.82 218 | 93.82 249 | 97.82 144 | 98.84 132 | 97.82 77 | 99.03 62 | 98.81 79 | 92.31 260 | 92.51 299 | 97.89 208 | 81.96 305 | 98.67 244 | 94.80 182 | 88.24 318 | 96.98 242 |
|
h-mvs33 | | | 96.17 146 | 95.62 157 | 97.81 145 | 99.03 113 | 94.45 224 | 98.64 146 | 98.75 105 | 97.48 19 | 98.67 63 | 98.72 127 | 89.76 174 | 99.86 52 | 97.95 43 | 81.59 349 | 99.11 152 |
|
1314 | | | 96.25 145 | 95.73 147 | 97.79 146 | 97.13 263 | 95.55 176 | 98.19 213 | 98.59 147 | 93.47 214 | 92.03 310 | 97.82 218 | 91.33 147 | 99.49 151 | 94.62 186 | 98.44 150 | 98.32 204 |
|
tttt0517 | | | 96.07 148 | 95.51 160 | 97.78 147 | 98.41 163 | 94.84 206 | 99.28 21 | 94.33 358 | 94.26 174 | 97.64 132 | 98.64 135 | 84.05 291 | 99.47 157 | 95.34 165 | 97.60 180 | 99.03 160 |
|
PAPM | | | 94.95 212 | 94.00 236 | 97.78 147 | 97.04 268 | 95.65 171 | 96.03 337 | 98.25 218 | 91.23 295 | 94.19 238 | 97.80 220 | 91.27 149 | 98.86 228 | 82.61 349 | 97.61 179 | 98.84 175 |
|
thisisatest0515 | | | 95.61 175 | 94.89 190 | 97.76 149 | 98.15 189 | 95.15 191 | 96.77 322 | 94.41 356 | 92.95 235 | 97.18 144 | 97.43 249 | 84.78 277 | 99.45 159 | 94.63 184 | 97.73 176 | 98.68 185 |
|
Anonymous20240529 | | | 95.10 202 | 94.22 221 | 97.75 150 | 99.01 116 | 94.26 233 | 98.87 96 | 98.83 71 | 85.79 348 | 96.64 168 | 98.97 93 | 78.73 328 | 99.85 53 | 96.27 133 | 94.89 226 | 99.12 151 |
|
TAPA-MVS | | 93.98 7 | 95.35 188 | 94.56 203 | 97.74 151 | 99.13 107 | 94.83 208 | 98.33 189 | 98.64 140 | 86.62 340 | 96.29 185 | 98.61 136 | 94.00 101 | 99.29 168 | 80.00 355 | 99.41 103 | 99.09 154 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
xiu_mvs_v1_base_debu | | | 97.60 81 | 97.56 72 | 97.72 152 | 98.35 166 | 95.98 150 | 97.86 249 | 98.51 166 | 97.13 47 | 99.01 39 | 98.40 158 | 91.56 139 | 99.80 83 | 98.53 11 | 98.68 136 | 97.37 231 |
|
xiu_mvs_v1_base | | | 97.60 81 | 97.56 72 | 97.72 152 | 98.35 166 | 95.98 150 | 97.86 249 | 98.51 166 | 97.13 47 | 99.01 39 | 98.40 158 | 91.56 139 | 99.80 83 | 98.53 11 | 98.68 136 | 97.37 231 |
|
xiu_mvs_v1_base_debi | | | 97.60 81 | 97.56 72 | 97.72 152 | 98.35 166 | 95.98 150 | 97.86 249 | 98.51 166 | 97.13 47 | 99.01 39 | 98.40 158 | 91.56 139 | 99.80 83 | 98.53 11 | 98.68 136 | 97.37 231 |
|
TAMVS | | | 97.02 115 | 96.79 109 | 97.70 155 | 98.06 196 | 95.31 186 | 98.52 163 | 98.31 204 | 93.95 186 | 97.05 151 | 98.61 136 | 93.49 106 | 98.52 258 | 95.33 166 | 97.81 171 | 99.29 130 |
|
VPA-MVSNet | | | 95.75 165 | 95.11 180 | 97.69 156 | 97.24 252 | 97.27 96 | 98.94 82 | 99.23 12 | 95.13 136 | 95.51 197 | 97.32 254 | 85.73 261 | 98.91 219 | 97.33 86 | 89.55 301 | 96.89 255 |
|
BH-RMVSNet | | | 95.92 158 | 95.32 170 | 97.69 156 | 98.32 175 | 94.64 214 | 98.19 213 | 97.45 298 | 94.56 163 | 96.03 191 | 98.61 136 | 85.02 272 | 99.12 185 | 90.68 288 | 99.06 118 | 99.30 128 |
|
Anonymous202405211 | | | 95.28 192 | 94.49 206 | 97.67 158 | 99.00 117 | 93.75 247 | 98.70 135 | 97.04 316 | 90.66 303 | 96.49 179 | 98.80 118 | 78.13 333 | 99.83 59 | 96.21 136 | 95.36 225 | 99.44 112 |
|
FIs | | | 96.51 134 | 96.12 136 | 97.67 158 | 97.13 263 | 97.54 87 | 99.36 11 | 99.22 14 | 95.89 96 | 94.03 246 | 98.35 164 | 91.98 131 | 98.44 267 | 96.40 131 | 92.76 263 | 97.01 240 |
|
thres600view7 | | | 95.49 176 | 94.77 193 | 97.67 158 | 98.98 121 | 95.02 196 | 98.85 99 | 96.90 325 | 95.38 121 | 96.63 169 | 96.90 293 | 84.29 284 | 99.59 136 | 88.65 317 | 96.33 207 | 98.40 199 |
|
thres400 | | | 95.38 184 | 94.62 200 | 97.65 161 | 98.94 123 | 94.98 200 | 98.68 138 | 96.93 323 | 95.33 124 | 96.55 174 | 96.53 310 | 84.23 287 | 99.56 140 | 88.11 318 | 96.29 209 | 98.40 199 |
|
PS-MVSNAJ | | | 97.73 74 | 97.77 64 | 97.62 162 | 98.68 146 | 95.58 173 | 97.34 284 | 98.51 166 | 97.29 33 | 98.66 67 | 97.88 209 | 94.51 88 | 99.90 36 | 97.87 50 | 99.17 116 | 97.39 229 |
|
VDD-MVS | | | 95.82 163 | 95.23 174 | 97.61 163 | 98.84 132 | 93.98 239 | 98.68 138 | 97.40 302 | 95.02 144 | 97.95 110 | 99.34 33 | 74.37 354 | 99.78 99 | 98.64 4 | 96.80 192 | 99.08 157 |
|
ET-MVSNet_ETH3D | | | 94.13 264 | 92.98 279 | 97.58 164 | 98.22 180 | 96.20 144 | 97.31 287 | 95.37 347 | 94.53 164 | 79.56 360 | 97.63 234 | 86.51 247 | 97.53 333 | 96.91 100 | 90.74 286 | 99.02 161 |
|
UniMVSNet (Re) | | | 95.78 164 | 95.19 176 | 97.58 164 | 96.99 271 | 97.47 89 | 98.79 117 | 99.18 16 | 95.60 109 | 93.92 249 | 97.04 279 | 91.68 136 | 98.48 260 | 95.80 151 | 87.66 325 | 96.79 265 |
|
xiu_mvs_v2_base | | | 97.66 78 | 97.70 67 | 97.56 166 | 98.61 152 | 95.46 179 | 97.44 273 | 98.46 176 | 97.15 45 | 98.65 68 | 98.15 186 | 94.33 95 | 99.80 83 | 97.84 54 | 98.66 140 | 97.41 227 |
|
RRT_MVS | | | 96.04 150 | 95.53 158 | 97.56 166 | 97.07 267 | 97.32 93 | 98.57 158 | 98.09 248 | 95.15 135 | 95.02 204 | 98.44 153 | 88.20 213 | 98.58 254 | 96.17 137 | 93.09 260 | 96.79 265 |
|
FC-MVSNet-test | | | 96.42 137 | 96.05 138 | 97.53 168 | 96.95 272 | 97.27 96 | 99.36 11 | 99.23 12 | 95.83 99 | 93.93 248 | 98.37 162 | 92.00 130 | 98.32 285 | 96.02 143 | 92.72 264 | 97.00 241 |
|
XXY-MVS | | | 95.20 197 | 94.45 211 | 97.46 169 | 96.75 285 | 96.56 128 | 98.86 98 | 98.65 139 | 93.30 222 | 93.27 274 | 98.27 178 | 84.85 276 | 98.87 226 | 94.82 180 | 91.26 280 | 96.96 244 |
|
NR-MVSNet | | | 94.98 210 | 94.16 226 | 97.44 170 | 96.53 295 | 97.22 102 | 98.74 122 | 98.95 34 | 94.96 147 | 89.25 335 | 97.69 226 | 89.32 183 | 98.18 298 | 94.59 189 | 87.40 328 | 96.92 247 |
|
tfpn200view9 | | | 95.32 191 | 94.62 200 | 97.43 171 | 98.94 123 | 94.98 200 | 98.68 138 | 96.93 323 | 95.33 124 | 96.55 174 | 96.53 310 | 84.23 287 | 99.56 140 | 88.11 318 | 96.29 209 | 97.76 218 |
|
thres100view900 | | | 95.38 184 | 94.70 197 | 97.41 172 | 98.98 121 | 94.92 204 | 98.87 96 | 96.90 325 | 95.38 121 | 96.61 170 | 96.88 294 | 84.29 284 | 99.56 140 | 88.11 318 | 96.29 209 | 97.76 218 |
|
PMMVS | | | 96.60 128 | 96.33 129 | 97.41 172 | 97.90 206 | 93.93 240 | 97.35 283 | 98.41 186 | 92.84 240 | 97.76 121 | 97.45 247 | 91.10 153 | 99.20 176 | 96.26 134 | 97.91 167 | 99.11 152 |
|
VPNet | | | 94.99 208 | 94.19 223 | 97.40 174 | 97.16 261 | 96.57 127 | 98.71 131 | 98.97 30 | 95.67 106 | 94.84 208 | 98.24 181 | 80.36 319 | 98.67 244 | 96.46 127 | 87.32 329 | 96.96 244 |
|
UniMVSNet_NR-MVSNet | | | 95.71 167 | 95.15 177 | 97.40 174 | 96.84 280 | 96.97 108 | 98.74 122 | 99.24 10 | 95.16 134 | 93.88 251 | 97.72 225 | 91.68 136 | 98.31 287 | 95.81 149 | 87.25 330 | 96.92 247 |
|
DU-MVS | | | 95.42 181 | 94.76 194 | 97.40 174 | 96.53 295 | 96.97 108 | 98.66 144 | 98.99 29 | 95.43 118 | 93.88 251 | 97.69 226 | 88.57 204 | 98.31 287 | 95.81 149 | 87.25 330 | 96.92 247 |
|
thres200 | | | 95.25 193 | 94.57 202 | 97.28 177 | 98.81 134 | 94.92 204 | 98.20 209 | 97.11 312 | 95.24 132 | 96.54 176 | 96.22 322 | 84.58 281 | 99.53 146 | 87.93 322 | 96.50 203 | 97.39 229 |
|
RPMNet | | | 92.81 292 | 91.34 300 | 97.24 178 | 97.00 269 | 93.43 259 | 94.96 348 | 98.80 90 | 82.27 355 | 96.93 155 | 92.12 357 | 86.98 241 | 99.82 67 | 76.32 363 | 96.65 197 | 98.46 197 |
|
WR-MVS | | | 95.15 199 | 94.46 209 | 97.22 179 | 96.67 290 | 96.45 133 | 98.21 206 | 98.81 79 | 94.15 175 | 93.16 277 | 97.69 226 | 87.51 230 | 98.30 289 | 95.29 169 | 88.62 315 | 96.90 254 |
|
CHOSEN 280x420 | | | 97.18 109 | 97.18 92 | 97.20 180 | 98.81 134 | 93.27 266 | 95.78 341 | 99.15 18 | 95.25 130 | 96.79 165 | 98.11 189 | 92.29 120 | 99.07 194 | 98.56 10 | 99.85 3 | 99.25 134 |
|
IB-MVS | | 91.98 17 | 93.27 284 | 91.97 295 | 97.19 181 | 97.47 236 | 93.41 261 | 97.09 301 | 95.99 340 | 93.32 220 | 92.47 301 | 95.73 330 | 78.06 334 | 99.53 146 | 94.59 189 | 82.98 344 | 98.62 191 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvs_anonymous | | | 96.70 126 | 96.53 124 | 97.18 182 | 98.19 184 | 93.78 244 | 98.31 195 | 98.19 223 | 94.01 182 | 94.47 220 | 98.27 178 | 92.08 129 | 98.46 264 | 97.39 83 | 97.91 167 | 99.31 125 |
|
TR-MVS | | | 94.94 214 | 94.20 222 | 97.17 183 | 97.75 213 | 94.14 236 | 97.59 268 | 97.02 319 | 92.28 261 | 95.75 196 | 97.64 232 | 83.88 295 | 98.96 212 | 89.77 301 | 96.15 217 | 98.40 199 |
|
GA-MVS | | | 94.81 220 | 94.03 232 | 97.14 184 | 97.15 262 | 93.86 242 | 96.76 323 | 97.58 283 | 94.00 183 | 94.76 213 | 97.04 279 | 80.91 314 | 98.48 260 | 91.79 271 | 96.25 214 | 99.09 154 |
|
gg-mvs-nofinetune | | | 92.21 298 | 90.58 305 | 97.13 185 | 96.75 285 | 95.09 194 | 95.85 339 | 89.40 371 | 85.43 350 | 94.50 219 | 81.98 364 | 80.80 317 | 98.40 282 | 92.16 260 | 98.33 156 | 97.88 215 |
|
PVSNet_BlendedMVS | | | 96.73 125 | 96.60 120 | 97.12 186 | 99.25 88 | 95.35 184 | 98.26 203 | 99.26 8 | 94.28 172 | 97.94 112 | 97.46 245 | 92.74 114 | 99.81 74 | 96.88 107 | 93.32 256 | 96.20 322 |
|
TranMVSNet+NR-MVSNet | | | 95.14 200 | 94.48 207 | 97.11 187 | 96.45 300 | 96.36 138 | 99.03 62 | 99.03 25 | 95.04 143 | 93.58 261 | 97.93 204 | 88.27 211 | 98.03 311 | 94.13 204 | 86.90 335 | 96.95 246 |
|
FMVSNet3 | | | 94.97 211 | 94.26 220 | 97.11 187 | 98.18 186 | 96.62 122 | 98.56 159 | 98.26 217 | 93.67 207 | 94.09 242 | 97.10 266 | 84.25 286 | 98.01 312 | 92.08 262 | 92.14 267 | 96.70 278 |
|
MVSTER | | | 96.06 149 | 95.72 148 | 97.08 189 | 98.23 179 | 95.93 161 | 98.73 126 | 98.27 213 | 94.86 151 | 95.07 202 | 98.09 190 | 88.21 212 | 98.54 256 | 96.59 122 | 93.46 251 | 96.79 265 |
|
FMVSNet2 | | | 94.47 244 | 93.61 264 | 97.04 190 | 98.21 181 | 96.43 135 | 98.79 117 | 98.27 213 | 92.46 249 | 93.50 267 | 97.09 270 | 81.16 311 | 98.00 314 | 91.09 279 | 91.93 270 | 96.70 278 |
|
XVG-OURS-SEG-HR | | | 96.51 134 | 96.34 128 | 97.02 191 | 98.77 136 | 93.76 245 | 97.79 256 | 98.50 171 | 95.45 117 | 96.94 154 | 99.09 80 | 87.87 224 | 99.55 145 | 96.76 119 | 95.83 222 | 97.74 220 |
|
AllTest | | | 95.24 194 | 94.65 199 | 96.99 192 | 99.25 88 | 93.21 269 | 98.59 151 | 98.18 226 | 91.36 286 | 93.52 264 | 98.77 122 | 84.67 279 | 99.72 112 | 89.70 304 | 97.87 169 | 98.02 213 |
|
TestCases | | | | | 96.99 192 | 99.25 88 | 93.21 269 | | 98.18 226 | 91.36 286 | 93.52 264 | 98.77 122 | 84.67 279 | 99.72 112 | 89.70 304 | 97.87 169 | 98.02 213 |
|
XVG-OURS | | | 96.55 133 | 96.41 126 | 96.99 192 | 98.75 137 | 93.76 245 | 97.50 272 | 98.52 163 | 95.67 106 | 96.83 160 | 99.30 40 | 88.95 198 | 99.53 146 | 95.88 147 | 96.26 213 | 97.69 223 |
|
UniMVSNet_ETH3D | | | 94.24 257 | 93.33 273 | 96.97 195 | 97.19 259 | 93.38 263 | 98.74 122 | 98.57 153 | 91.21 297 | 93.81 255 | 98.58 141 | 72.85 357 | 98.77 237 | 95.05 175 | 93.93 243 | 98.77 180 |
|
PVSNet | | 91.96 18 | 96.35 139 | 96.15 135 | 96.96 196 | 99.17 100 | 92.05 283 | 96.08 334 | 98.68 124 | 93.69 203 | 97.75 122 | 97.80 220 | 88.86 199 | 99.69 123 | 94.26 201 | 99.01 122 | 99.15 147 |
|
anonymousdsp | | | 95.42 181 | 94.91 189 | 96.94 197 | 95.10 338 | 95.90 164 | 99.14 41 | 98.41 186 | 93.75 195 | 93.16 277 | 97.46 245 | 87.50 232 | 98.41 276 | 95.63 160 | 94.03 239 | 96.50 308 |
|
hse-mvs2 | | | 95.71 167 | 95.30 172 | 96.93 198 | 98.50 158 | 93.53 256 | 98.36 185 | 98.10 243 | 97.48 19 | 98.67 63 | 97.99 198 | 89.76 174 | 99.02 203 | 97.95 43 | 80.91 353 | 98.22 207 |
|
test_djsdf | | | 96.00 152 | 95.69 154 | 96.93 198 | 95.72 325 | 95.49 178 | 99.47 5 | 98.40 188 | 94.98 145 | 94.58 216 | 97.86 211 | 89.16 188 | 98.41 276 | 96.91 100 | 94.12 237 | 96.88 256 |
|
cascas | | | 94.63 231 | 93.86 247 | 96.93 198 | 96.91 276 | 94.27 232 | 96.00 338 | 98.51 166 | 85.55 349 | 94.54 217 | 96.23 320 | 84.20 289 | 98.87 226 | 95.80 151 | 96.98 190 | 97.66 224 |
|
AUN-MVS | | | 94.53 239 | 93.73 258 | 96.92 201 | 98.50 158 | 93.52 257 | 98.34 187 | 98.10 243 | 93.83 193 | 95.94 195 | 97.98 200 | 85.59 264 | 99.03 200 | 94.35 196 | 80.94 352 | 98.22 207 |
|
PS-MVSNAJss | | | 96.43 136 | 96.26 132 | 96.92 201 | 95.84 323 | 95.08 195 | 99.16 39 | 98.50 171 | 95.87 98 | 93.84 254 | 98.34 168 | 94.51 88 | 98.61 248 | 96.88 107 | 93.45 253 | 97.06 238 |
|
baseline2 | | | 95.11 201 | 94.52 205 | 96.87 203 | 96.65 291 | 93.56 253 | 98.27 202 | 94.10 362 | 93.45 215 | 92.02 311 | 97.43 249 | 87.45 234 | 99.19 177 | 93.88 212 | 97.41 184 | 97.87 216 |
|
HQP_MVS | | | 96.14 147 | 95.90 143 | 96.85 204 | 97.42 242 | 94.60 220 | 98.80 113 | 98.56 155 | 97.28 34 | 95.34 198 | 98.28 175 | 87.09 238 | 99.03 200 | 96.07 138 | 94.27 229 | 96.92 247 |
|
CP-MVSNet | | | 94.94 214 | 94.30 218 | 96.83 205 | 96.72 287 | 95.56 174 | 99.11 47 | 98.95 34 | 93.89 188 | 92.42 303 | 97.90 206 | 87.19 236 | 98.12 303 | 94.32 198 | 88.21 319 | 96.82 264 |
|
pmmvs4 | | | 94.69 224 | 93.99 238 | 96.81 206 | 95.74 324 | 95.94 158 | 97.40 276 | 97.67 277 | 90.42 309 | 93.37 271 | 97.59 236 | 89.08 191 | 98.20 297 | 92.97 239 | 91.67 273 | 96.30 320 |
|
WR-MVS_H | | | 95.05 205 | 94.46 209 | 96.81 206 | 96.86 279 | 95.82 167 | 99.24 25 | 99.24 10 | 93.87 190 | 92.53 297 | 96.84 298 | 90.37 165 | 98.24 296 | 93.24 230 | 87.93 322 | 96.38 315 |
|
OPM-MVS | | | 95.69 170 | 95.33 169 | 96.76 208 | 96.16 312 | 94.63 215 | 98.43 177 | 98.39 191 | 96.64 68 | 95.02 204 | 98.78 120 | 85.15 271 | 99.05 195 | 95.21 173 | 94.20 232 | 96.60 289 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
bset_n11_16_dypcd | | | 94.89 216 | 94.27 219 | 96.76 208 | 94.41 346 | 95.15 191 | 95.67 342 | 95.64 346 | 95.53 112 | 94.65 214 | 97.52 242 | 87.10 237 | 98.29 292 | 96.58 124 | 91.35 276 | 96.83 263 |
|
jajsoiax | | | 95.45 179 | 95.03 183 | 96.73 210 | 95.42 336 | 94.63 215 | 99.14 41 | 98.52 163 | 95.74 102 | 93.22 275 | 98.36 163 | 83.87 296 | 98.65 246 | 96.95 99 | 94.04 238 | 96.91 252 |
|
PS-CasMVS | | | 94.67 229 | 93.99 238 | 96.71 211 | 96.68 289 | 95.26 187 | 99.13 44 | 99.03 25 | 93.68 205 | 92.33 304 | 97.95 202 | 85.35 268 | 98.10 304 | 93.59 221 | 88.16 321 | 96.79 265 |
|
COLMAP_ROB |  | 93.27 12 | 95.33 190 | 94.87 191 | 96.71 211 | 99.29 80 | 93.24 268 | 98.58 153 | 98.11 241 | 89.92 318 | 93.57 262 | 99.10 75 | 86.37 252 | 99.79 95 | 90.78 286 | 98.10 162 | 97.09 236 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
V42 | | | 94.78 222 | 94.14 228 | 96.70 213 | 96.33 305 | 95.22 188 | 98.97 76 | 98.09 248 | 92.32 258 | 94.31 231 | 97.06 276 | 88.39 209 | 98.55 255 | 92.90 242 | 88.87 313 | 96.34 316 |
|
HQP-MVS | | | 95.72 166 | 95.40 161 | 96.69 214 | 97.20 256 | 94.25 234 | 98.05 229 | 98.46 176 | 96.43 76 | 94.45 221 | 97.73 223 | 86.75 244 | 98.96 212 | 95.30 167 | 94.18 233 | 96.86 260 |
|
LTVRE_ROB | | 92.95 15 | 94.60 232 | 93.90 244 | 96.68 215 | 97.41 245 | 94.42 226 | 98.52 163 | 98.59 147 | 91.69 277 | 91.21 317 | 98.35 164 | 84.87 275 | 99.04 199 | 91.06 281 | 93.44 254 | 96.60 289 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ECVR-MVS |  | | 95.95 154 | 95.71 151 | 96.65 216 | 99.02 114 | 90.86 305 | 99.03 62 | 91.80 367 | 96.96 55 | 98.10 94 | 99.26 45 | 81.31 310 | 99.51 150 | 96.90 103 | 99.04 119 | 99.59 85 |
|
mvs_tets | | | 95.41 183 | 95.00 184 | 96.65 216 | 95.58 329 | 94.42 226 | 99.00 70 | 98.55 157 | 95.73 103 | 93.21 276 | 98.38 161 | 83.45 300 | 98.63 247 | 97.09 92 | 94.00 240 | 96.91 252 |
|
v2v482 | | | 94.69 224 | 94.03 232 | 96.65 216 | 96.17 310 | 94.79 211 | 98.67 141 | 98.08 250 | 92.72 242 | 94.00 247 | 97.16 264 | 87.69 229 | 98.45 265 | 92.91 241 | 88.87 313 | 96.72 274 |
|
BH-untuned | | | 95.95 154 | 95.72 148 | 96.65 216 | 98.55 156 | 92.26 279 | 98.23 204 | 97.79 272 | 93.73 198 | 94.62 215 | 98.01 196 | 88.97 197 | 99.00 207 | 93.04 237 | 98.51 146 | 98.68 185 |
|
Patchmatch-test | | | 94.42 247 | 93.68 262 | 96.63 220 | 97.60 224 | 91.76 288 | 94.83 352 | 97.49 295 | 89.45 326 | 94.14 240 | 97.10 266 | 88.99 193 | 98.83 231 | 85.37 338 | 98.13 161 | 99.29 130 |
|
ADS-MVSNet | | | 95.00 207 | 94.45 211 | 96.63 220 | 98.00 199 | 91.91 285 | 96.04 335 | 97.74 275 | 90.15 313 | 96.47 180 | 96.64 307 | 87.89 222 | 98.96 212 | 90.08 295 | 97.06 187 | 99.02 161 |
|
Anonymous20231211 | | | 94.10 267 | 93.26 276 | 96.61 222 | 99.11 109 | 94.28 231 | 99.01 68 | 98.88 50 | 86.43 342 | 92.81 287 | 97.57 238 | 81.66 308 | 98.68 243 | 94.83 179 | 89.02 311 | 96.88 256 |
|
ACMM | | 93.85 9 | 95.69 170 | 95.38 165 | 96.61 222 | 97.61 223 | 93.84 243 | 98.91 86 | 98.44 180 | 95.25 130 | 94.28 232 | 98.47 151 | 86.04 259 | 99.12 185 | 95.50 163 | 93.95 242 | 96.87 258 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v1144 | | | 94.59 234 | 93.92 241 | 96.60 224 | 96.21 307 | 94.78 212 | 98.59 151 | 98.14 236 | 91.86 273 | 94.21 237 | 97.02 281 | 87.97 220 | 98.41 276 | 91.72 273 | 89.57 299 | 96.61 288 |
|
GG-mvs-BLEND | | | | | 96.59 225 | 96.34 304 | 94.98 200 | 96.51 331 | 88.58 372 | | 93.10 282 | 94.34 348 | 80.34 320 | 98.05 310 | 89.53 307 | 96.99 189 | 96.74 271 |
|
pm-mvs1 | | | 93.94 274 | 93.06 278 | 96.59 225 | 96.49 298 | 95.16 189 | 98.95 80 | 98.03 259 | 92.32 258 | 91.08 319 | 97.84 214 | 84.54 282 | 98.41 276 | 92.16 260 | 86.13 341 | 96.19 323 |
|
CR-MVSNet | | | 94.76 223 | 94.15 227 | 96.59 225 | 97.00 269 | 93.43 259 | 94.96 348 | 97.56 284 | 92.46 249 | 96.93 155 | 96.24 318 | 88.15 215 | 97.88 324 | 87.38 324 | 96.65 197 | 98.46 197 |
|
v8 | | | 94.47 244 | 93.77 254 | 96.57 228 | 96.36 303 | 94.83 208 | 99.05 57 | 98.19 223 | 91.92 270 | 93.16 277 | 96.97 286 | 88.82 201 | 98.48 260 | 91.69 274 | 87.79 323 | 96.39 314 |
|
GBi-Net | | | 94.49 242 | 93.80 251 | 96.56 229 | 98.21 181 | 95.00 197 | 98.82 106 | 98.18 226 | 92.46 249 | 94.09 242 | 97.07 273 | 81.16 311 | 97.95 316 | 92.08 262 | 92.14 267 | 96.72 274 |
|
test1 | | | 94.49 242 | 93.80 251 | 96.56 229 | 98.21 181 | 95.00 197 | 98.82 106 | 98.18 226 | 92.46 249 | 94.09 242 | 97.07 273 | 81.16 311 | 97.95 316 | 92.08 262 | 92.14 267 | 96.72 274 |
|
FMVSNet1 | | | 93.19 288 | 92.07 293 | 96.56 229 | 97.54 231 | 95.00 197 | 98.82 106 | 98.18 226 | 90.38 310 | 92.27 305 | 97.07 273 | 73.68 355 | 97.95 316 | 89.36 311 | 91.30 278 | 96.72 274 |
|
tfpnnormal | | | 93.66 276 | 92.70 285 | 96.55 232 | 96.94 273 | 95.94 158 | 98.97 76 | 99.19 15 | 91.04 300 | 91.38 316 | 97.34 252 | 84.94 274 | 98.61 248 | 85.45 337 | 89.02 311 | 95.11 343 |
|
v1192 | | | 94.32 252 | 93.58 265 | 96.53 233 | 96.10 313 | 94.45 224 | 98.50 168 | 98.17 231 | 91.54 281 | 94.19 238 | 97.06 276 | 86.95 242 | 98.43 268 | 90.14 293 | 89.57 299 | 96.70 278 |
|
EPMVS | | | 94.99 208 | 94.48 207 | 96.52 234 | 97.22 254 | 91.75 289 | 97.23 291 | 91.66 368 | 94.11 176 | 97.28 140 | 96.81 299 | 85.70 262 | 98.84 229 | 93.04 237 | 97.28 185 | 98.97 166 |
|
v10 | | | 94.29 254 | 93.55 266 | 96.51 235 | 96.39 302 | 94.80 210 | 98.99 72 | 98.19 223 | 91.35 288 | 93.02 283 | 96.99 284 | 88.09 217 | 98.41 276 | 90.50 290 | 88.41 317 | 96.33 318 |
|
PEN-MVS | | | 94.42 247 | 93.73 258 | 96.49 236 | 96.28 306 | 94.84 206 | 99.17 38 | 99.00 27 | 93.51 212 | 92.23 306 | 97.83 217 | 86.10 256 | 97.90 320 | 92.55 253 | 86.92 334 | 96.74 271 |
|
v144192 | | | 94.39 249 | 93.70 260 | 96.48 237 | 96.06 315 | 94.35 230 | 98.58 153 | 98.16 233 | 91.45 283 | 94.33 230 | 97.02 281 | 87.50 232 | 98.45 265 | 91.08 280 | 89.11 308 | 96.63 286 |
|
v7n | | | 94.19 260 | 93.43 271 | 96.47 238 | 95.90 320 | 94.38 229 | 99.26 23 | 98.34 200 | 91.99 268 | 92.76 289 | 97.13 265 | 88.31 210 | 98.52 258 | 89.48 309 | 87.70 324 | 96.52 303 |
|
LPG-MVS_test | | | 95.62 173 | 95.34 167 | 96.47 238 | 97.46 237 | 93.54 254 | 98.99 72 | 98.54 159 | 94.67 159 | 94.36 228 | 98.77 122 | 85.39 266 | 99.11 188 | 95.71 156 | 94.15 235 | 96.76 269 |
|
LGP-MVS_train | | | | | 96.47 238 | 97.46 237 | 93.54 254 | | 98.54 159 | 94.67 159 | 94.36 228 | 98.77 122 | 85.39 266 | 99.11 188 | 95.71 156 | 94.15 235 | 96.76 269 |
|
SCA | | | 95.46 177 | 95.13 178 | 96.46 241 | 97.67 219 | 91.29 300 | 97.33 285 | 97.60 282 | 94.68 158 | 96.92 157 | 97.10 266 | 83.97 293 | 98.89 223 | 92.59 250 | 98.32 157 | 99.20 137 |
|
CLD-MVS | | | 95.62 173 | 95.34 167 | 96.46 241 | 97.52 234 | 93.75 247 | 97.27 290 | 98.46 176 | 95.53 112 | 94.42 226 | 98.00 197 | 86.21 254 | 98.97 208 | 96.25 135 | 94.37 227 | 96.66 284 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ACMP | | 93.49 10 | 95.34 189 | 94.98 186 | 96.43 243 | 97.67 219 | 93.48 258 | 98.73 126 | 98.44 180 | 94.94 150 | 92.53 297 | 98.53 145 | 84.50 283 | 99.14 183 | 95.48 164 | 94.00 240 | 96.66 284 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test1111 | | | 95.94 156 | 95.78 146 | 96.41 244 | 98.99 120 | 90.12 317 | 99.04 58 | 92.45 366 | 96.99 54 | 98.03 100 | 99.27 44 | 81.40 309 | 99.48 155 | 96.87 110 | 99.04 119 | 99.63 77 |
|
MIMVSNet | | | 93.26 285 | 92.21 292 | 96.41 244 | 97.73 217 | 93.13 271 | 95.65 343 | 97.03 317 | 91.27 294 | 94.04 245 | 96.06 325 | 75.33 348 | 97.19 338 | 86.56 328 | 96.23 215 | 98.92 171 |
|
v1921920 | | | 94.20 259 | 93.47 270 | 96.40 246 | 95.98 318 | 94.08 237 | 98.52 163 | 98.15 234 | 91.33 289 | 94.25 234 | 97.20 263 | 86.41 251 | 98.42 269 | 90.04 298 | 89.39 305 | 96.69 283 |
|
mvs-test1 | | | 96.60 128 | 96.68 118 | 96.37 247 | 97.89 207 | 91.81 286 | 98.56 159 | 98.10 243 | 96.57 71 | 96.52 178 | 97.94 203 | 90.81 156 | 99.45 159 | 95.72 154 | 98.01 164 | 97.86 217 |
|
EI-MVSNet | | | 95.96 153 | 95.83 145 | 96.36 248 | 97.93 204 | 93.70 251 | 98.12 223 | 98.27 213 | 93.70 202 | 95.07 202 | 99.02 86 | 92.23 123 | 98.54 256 | 94.68 183 | 93.46 251 | 96.84 261 |
|
PatchT | | | 93.06 290 | 91.97 295 | 96.35 249 | 96.69 288 | 92.67 276 | 94.48 354 | 97.08 313 | 86.62 340 | 97.08 147 | 92.23 356 | 87.94 221 | 97.90 320 | 78.89 359 | 96.69 195 | 98.49 196 |
|
v1240 | | | 94.06 271 | 93.29 275 | 96.34 250 | 96.03 317 | 93.90 241 | 98.44 175 | 98.17 231 | 91.18 298 | 94.13 241 | 97.01 283 | 86.05 257 | 98.42 269 | 89.13 314 | 89.50 303 | 96.70 278 |
|
ACMH | | 92.88 16 | 94.55 237 | 93.95 240 | 96.34 250 | 97.63 222 | 93.26 267 | 98.81 112 | 98.49 175 | 93.43 216 | 89.74 330 | 98.53 145 | 81.91 306 | 99.08 193 | 93.69 216 | 93.30 257 | 96.70 278 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DeepPCF-MVS | | 96.37 2 | 97.93 66 | 98.48 18 | 96.30 252 | 99.00 117 | 89.54 324 | 97.43 275 | 98.87 57 | 98.16 2 | 99.26 21 | 99.38 23 | 96.12 31 | 99.64 129 | 98.30 31 | 99.77 28 | 99.72 44 |
|
PatchmatchNet |  | | 95.71 167 | 95.52 159 | 96.29 253 | 97.58 226 | 90.72 310 | 96.84 320 | 97.52 291 | 94.06 178 | 97.08 147 | 96.96 288 | 89.24 186 | 98.90 222 | 92.03 266 | 98.37 153 | 99.26 133 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
BH-w/o | | | 95.38 184 | 95.08 181 | 96.26 254 | 98.34 171 | 91.79 287 | 97.70 261 | 97.43 300 | 92.87 239 | 94.24 235 | 97.22 261 | 88.66 202 | 98.84 229 | 91.55 276 | 97.70 177 | 98.16 210 |
|
IterMVS-LS | | | 95.46 177 | 95.21 175 | 96.22 255 | 98.12 191 | 93.72 250 | 98.32 194 | 98.13 237 | 93.71 200 | 94.26 233 | 97.31 255 | 92.24 122 | 98.10 304 | 94.63 184 | 90.12 292 | 96.84 261 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DWT-MVSNet_test | | | 94.82 218 | 94.36 216 | 96.20 256 | 97.35 247 | 90.79 308 | 98.34 187 | 96.57 338 | 92.91 237 | 95.33 200 | 96.44 314 | 82.00 304 | 99.12 185 | 94.52 191 | 95.78 223 | 98.70 183 |
|
TransMVSNet (Re) | | | 92.67 294 | 91.51 299 | 96.15 257 | 96.58 293 | 94.65 213 | 98.90 87 | 96.73 332 | 90.86 302 | 89.46 334 | 97.86 211 | 85.62 263 | 98.09 306 | 86.45 329 | 81.12 350 | 95.71 333 |
|
DTE-MVSNet | | | 93.98 273 | 93.26 276 | 96.14 258 | 96.06 315 | 94.39 228 | 99.20 34 | 98.86 63 | 93.06 230 | 91.78 312 | 97.81 219 | 85.87 260 | 97.58 331 | 90.53 289 | 86.17 339 | 96.46 312 |
|
cl22 | | | 94.68 226 | 94.19 223 | 96.13 259 | 98.11 192 | 93.60 252 | 96.94 308 | 98.31 204 | 92.43 253 | 93.32 273 | 96.87 296 | 86.51 247 | 98.28 294 | 94.10 207 | 91.16 281 | 96.51 306 |
|
miper_enhance_ethall | | | 95.10 202 | 94.75 195 | 96.12 260 | 97.53 233 | 93.73 249 | 96.61 328 | 98.08 250 | 92.20 265 | 93.89 250 | 96.65 306 | 92.44 117 | 98.30 289 | 94.21 202 | 91.16 281 | 96.34 316 |
|
test2506 | | | 94.44 246 | 93.91 243 | 96.04 261 | 99.02 114 | 88.99 334 | 99.06 55 | 79.47 377 | 96.96 55 | 98.36 84 | 99.26 45 | 77.21 341 | 99.52 149 | 96.78 117 | 99.04 119 | 99.59 85 |
|
cl____ | | | 94.51 241 | 94.01 235 | 96.02 262 | 97.58 226 | 93.40 262 | 97.05 302 | 97.96 264 | 91.73 276 | 92.76 289 | 97.08 272 | 89.06 192 | 98.13 302 | 92.61 247 | 90.29 291 | 96.52 303 |
|
DIV-MVS_self_test | | | 94.52 240 | 94.03 232 | 95.99 263 | 97.57 230 | 93.38 263 | 97.05 302 | 97.94 265 | 91.74 274 | 92.81 287 | 97.10 266 | 89.12 189 | 98.07 308 | 92.60 248 | 90.30 290 | 96.53 300 |
|
EPNet_dtu | | | 95.21 196 | 94.95 188 | 95.99 263 | 96.17 310 | 90.45 314 | 98.16 219 | 97.27 308 | 96.77 62 | 93.14 280 | 98.33 169 | 90.34 166 | 98.42 269 | 85.57 335 | 98.81 134 | 99.09 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_ehance_all_eth | | | 95.01 206 | 94.69 198 | 95.97 265 | 97.70 218 | 93.31 265 | 97.02 304 | 98.07 252 | 92.23 262 | 93.51 266 | 96.96 288 | 91.85 133 | 98.15 300 | 93.68 217 | 91.16 281 | 96.44 313 |
|
Baseline_NR-MVSNet | | | 94.35 250 | 93.81 250 | 95.96 266 | 96.20 308 | 94.05 238 | 98.61 150 | 96.67 336 | 91.44 284 | 93.85 253 | 97.60 235 | 88.57 204 | 98.14 301 | 94.39 194 | 86.93 333 | 95.68 334 |
|
JIA-IIPM | | | 93.35 281 | 92.49 288 | 95.92 267 | 96.48 299 | 90.65 311 | 95.01 347 | 96.96 321 | 85.93 346 | 96.08 190 | 87.33 361 | 87.70 228 | 98.78 236 | 91.35 278 | 95.58 224 | 98.34 202 |
|
Fast-Effi-MVS+-dtu | | | 95.87 159 | 95.85 144 | 95.91 268 | 97.74 216 | 91.74 290 | 98.69 137 | 98.15 234 | 95.56 111 | 94.92 206 | 97.68 229 | 88.98 196 | 98.79 235 | 93.19 232 | 97.78 173 | 97.20 235 |
|
v148 | | | 94.29 254 | 93.76 256 | 95.91 268 | 96.10 313 | 92.93 274 | 98.58 153 | 97.97 262 | 92.59 247 | 93.47 268 | 96.95 290 | 88.53 207 | 98.32 285 | 92.56 252 | 87.06 332 | 96.49 309 |
|
c3_l | | | 94.79 221 | 94.43 213 | 95.89 270 | 97.75 213 | 93.12 272 | 97.16 298 | 98.03 259 | 92.23 262 | 93.46 269 | 97.05 278 | 91.39 144 | 98.01 312 | 93.58 222 | 89.21 307 | 96.53 300 |
|
ACMH+ | | 92.99 14 | 94.30 253 | 93.77 254 | 95.88 271 | 97.81 211 | 92.04 284 | 98.71 131 | 98.37 195 | 93.99 184 | 90.60 324 | 98.47 151 | 80.86 316 | 99.05 195 | 92.75 246 | 92.40 266 | 96.55 297 |
|
Patchmtry | | | 93.22 286 | 92.35 290 | 95.84 272 | 96.77 282 | 93.09 273 | 94.66 353 | 97.56 284 | 87.37 338 | 92.90 285 | 96.24 318 | 88.15 215 | 97.90 320 | 87.37 325 | 90.10 293 | 96.53 300 |
|
test-LLR | | | 95.10 202 | 94.87 191 | 95.80 273 | 96.77 282 | 89.70 321 | 96.91 311 | 95.21 348 | 95.11 138 | 94.83 210 | 95.72 332 | 87.71 226 | 98.97 208 | 93.06 235 | 98.50 147 | 98.72 181 |
|
test-mter | | | 94.08 269 | 93.51 268 | 95.80 273 | 96.77 282 | 89.70 321 | 96.91 311 | 95.21 348 | 92.89 238 | 94.83 210 | 95.72 332 | 77.69 336 | 98.97 208 | 93.06 235 | 98.50 147 | 98.72 181 |
|
test0.0.03 1 | | | 94.08 269 | 93.51 268 | 95.80 273 | 95.53 331 | 92.89 275 | 97.38 278 | 95.97 341 | 95.11 138 | 92.51 299 | 96.66 304 | 87.71 226 | 96.94 342 | 87.03 326 | 93.67 246 | 97.57 225 |
|
XVG-ACMP-BASELINE | | | 94.54 238 | 94.14 228 | 95.75 276 | 96.55 294 | 91.65 292 | 98.11 225 | 98.44 180 | 94.96 147 | 94.22 236 | 97.90 206 | 79.18 326 | 99.11 188 | 94.05 209 | 93.85 244 | 96.48 310 |
|
pmmvs5 | | | 93.65 278 | 92.97 280 | 95.68 277 | 95.49 332 | 92.37 278 | 98.20 209 | 97.28 307 | 89.66 323 | 92.58 295 | 97.26 257 | 82.14 303 | 98.09 306 | 93.18 233 | 90.95 285 | 96.58 291 |
|
RRT_test8_iter05 | | | 94.56 236 | 94.19 223 | 95.67 278 | 97.60 224 | 91.34 296 | 98.93 84 | 98.42 185 | 94.75 154 | 93.39 270 | 97.87 210 | 79.00 327 | 98.61 248 | 96.78 117 | 90.99 284 | 97.07 237 |
|
TESTMET0.1,1 | | | 94.18 262 | 93.69 261 | 95.63 279 | 96.92 274 | 89.12 330 | 96.91 311 | 94.78 353 | 93.17 226 | 94.88 207 | 96.45 313 | 78.52 329 | 98.92 218 | 93.09 234 | 98.50 147 | 98.85 173 |
|
CostFormer | | | 94.95 212 | 94.73 196 | 95.60 280 | 97.28 250 | 89.06 331 | 97.53 271 | 96.89 327 | 89.66 323 | 96.82 162 | 96.72 302 | 86.05 257 | 98.95 216 | 95.53 162 | 96.13 218 | 98.79 178 |
|
Effi-MVS+-dtu | | | 96.29 141 | 96.56 121 | 95.51 281 | 97.89 207 | 90.22 316 | 98.80 113 | 98.10 243 | 96.57 71 | 96.45 182 | 96.66 304 | 90.81 156 | 98.91 219 | 95.72 154 | 97.99 165 | 97.40 228 |
|
D2MVS | | | 95.18 198 | 95.08 181 | 95.48 282 | 97.10 265 | 92.07 282 | 98.30 197 | 99.13 19 | 94.02 181 | 92.90 285 | 96.73 301 | 89.48 179 | 98.73 239 | 94.48 193 | 93.60 250 | 95.65 335 |
|
eth_miper_zixun_eth | | | 94.68 226 | 94.41 214 | 95.47 283 | 97.64 221 | 91.71 291 | 96.73 325 | 98.07 252 | 92.71 243 | 93.64 259 | 97.21 262 | 90.54 163 | 98.17 299 | 93.38 225 | 89.76 296 | 96.54 298 |
|
tpm2 | | | 94.19 260 | 93.76 256 | 95.46 284 | 97.23 253 | 89.04 332 | 97.31 287 | 96.85 331 | 87.08 339 | 96.21 187 | 96.79 300 | 83.75 299 | 98.74 238 | 92.43 258 | 96.23 215 | 98.59 192 |
|
tpmrst | | | 95.63 172 | 95.69 154 | 95.44 285 | 97.54 231 | 88.54 340 | 96.97 306 | 97.56 284 | 93.50 213 | 97.52 138 | 96.93 292 | 89.49 178 | 99.16 179 | 95.25 171 | 96.42 205 | 98.64 190 |
|
ITE_SJBPF | | | | | 95.44 285 | 97.42 242 | 91.32 299 | | 97.50 293 | 95.09 141 | 93.59 260 | 98.35 164 | 81.70 307 | 98.88 225 | 89.71 303 | 93.39 255 | 96.12 324 |
|
MVP-Stereo | | | 94.28 256 | 93.92 241 | 95.35 287 | 94.95 340 | 92.60 277 | 97.97 237 | 97.65 278 | 91.61 280 | 90.68 323 | 97.09 270 | 86.32 253 | 98.42 269 | 89.70 304 | 99.34 108 | 95.02 346 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tpmvs | | | 94.60 232 | 94.36 216 | 95.33 288 | 97.46 237 | 88.60 339 | 96.88 317 | 97.68 276 | 91.29 292 | 93.80 256 | 96.42 315 | 88.58 203 | 99.24 172 | 91.06 281 | 96.04 220 | 98.17 209 |
|
MVS_0304 | | | 92.81 292 | 92.01 294 | 95.23 289 | 97.46 237 | 91.33 298 | 98.17 218 | 98.81 79 | 91.13 299 | 93.80 256 | 95.68 335 | 66.08 363 | 98.06 309 | 90.79 285 | 96.13 218 | 96.32 319 |
|
TDRefinement | | | 91.06 307 | 89.68 312 | 95.21 290 | 85.35 368 | 91.49 295 | 98.51 167 | 97.07 314 | 91.47 282 | 88.83 339 | 97.84 214 | 77.31 340 | 99.09 192 | 92.79 245 | 77.98 356 | 95.04 345 |
|
USDC | | | 93.33 283 | 92.71 284 | 95.21 290 | 96.83 281 | 90.83 307 | 96.91 311 | 97.50 293 | 93.84 191 | 90.72 322 | 98.14 187 | 77.69 336 | 98.82 232 | 89.51 308 | 93.21 259 | 95.97 328 |
|
pmmvs6 | | | 91.77 300 | 90.63 304 | 95.17 292 | 94.69 345 | 91.24 301 | 98.67 141 | 97.92 267 | 86.14 344 | 89.62 331 | 97.56 240 | 75.79 347 | 98.34 283 | 90.75 287 | 84.56 343 | 95.94 329 |
|
tpm | | | 94.13 264 | 93.80 251 | 95.12 293 | 96.50 297 | 87.91 348 | 97.44 273 | 95.89 344 | 92.62 245 | 96.37 184 | 96.30 317 | 84.13 290 | 98.30 289 | 93.24 230 | 91.66 274 | 99.14 149 |
|
miper_lstm_enhance | | | 94.33 251 | 94.07 231 | 95.11 294 | 97.75 213 | 90.97 304 | 97.22 292 | 98.03 259 | 91.67 278 | 92.76 289 | 96.97 286 | 90.03 171 | 97.78 326 | 92.51 255 | 89.64 298 | 96.56 295 |
|
ADS-MVSNet2 | | | 94.58 235 | 94.40 215 | 95.11 294 | 98.00 199 | 88.74 337 | 96.04 335 | 97.30 305 | 90.15 313 | 96.47 180 | 96.64 307 | 87.89 222 | 97.56 332 | 90.08 295 | 97.06 187 | 99.02 161 |
|
tpm cat1 | | | 93.36 280 | 92.80 282 | 95.07 296 | 97.58 226 | 87.97 347 | 96.76 323 | 97.86 270 | 82.17 356 | 93.53 263 | 96.04 326 | 86.13 255 | 99.13 184 | 89.24 312 | 95.87 221 | 98.10 211 |
|
PVSNet_0 | | 88.72 19 | 91.28 304 | 90.03 310 | 95.00 297 | 97.99 201 | 87.29 352 | 94.84 351 | 98.50 171 | 92.06 267 | 89.86 329 | 95.19 338 | 79.81 322 | 99.39 162 | 92.27 259 | 69.79 363 | 98.33 203 |
|
ppachtmachnet_test | | | 93.22 286 | 92.63 286 | 94.97 298 | 95.45 334 | 90.84 306 | 96.88 317 | 97.88 269 | 90.60 304 | 92.08 309 | 97.26 257 | 88.08 218 | 97.86 325 | 85.12 339 | 90.33 289 | 96.22 321 |
|
LCM-MVSNet-Re | | | 95.22 195 | 95.32 170 | 94.91 299 | 98.18 186 | 87.85 349 | 98.75 119 | 95.66 345 | 95.11 138 | 88.96 336 | 96.85 297 | 90.26 169 | 97.65 328 | 95.65 159 | 98.44 150 | 99.22 136 |
|
dp | | | 94.15 263 | 93.90 244 | 94.90 300 | 97.31 249 | 86.82 354 | 96.97 306 | 97.19 311 | 91.22 296 | 96.02 192 | 96.61 309 | 85.51 265 | 99.02 203 | 90.00 299 | 94.30 228 | 98.85 173 |
|
testgi | | | 93.06 290 | 92.45 289 | 94.88 301 | 96.43 301 | 89.90 318 | 98.75 119 | 97.54 290 | 95.60 109 | 91.63 315 | 97.91 205 | 74.46 353 | 97.02 340 | 86.10 331 | 93.67 246 | 97.72 222 |
|
IterMVS-SCA-FT | | | 94.11 266 | 93.87 246 | 94.85 302 | 97.98 203 | 90.56 313 | 97.18 295 | 98.11 241 | 93.75 195 | 92.58 295 | 97.48 244 | 83.97 293 | 97.41 335 | 92.48 257 | 91.30 278 | 96.58 291 |
|
OurMVSNet-221017-0 | | | 94.21 258 | 94.00 236 | 94.85 302 | 95.60 328 | 89.22 329 | 98.89 91 | 97.43 300 | 95.29 127 | 92.18 307 | 98.52 148 | 82.86 301 | 98.59 252 | 93.46 224 | 91.76 272 | 96.74 271 |
|
MDA-MVSNet-bldmvs | | | 89.97 316 | 88.35 321 | 94.83 304 | 95.21 337 | 91.34 296 | 97.64 265 | 97.51 292 | 88.36 334 | 71.17 366 | 96.13 324 | 79.22 325 | 96.63 350 | 83.65 346 | 86.27 338 | 96.52 303 |
|
IterMVS | | | 94.09 268 | 93.85 248 | 94.80 305 | 97.99 201 | 90.35 315 | 97.18 295 | 98.12 238 | 93.68 205 | 92.46 302 | 97.34 252 | 84.05 291 | 97.41 335 | 92.51 255 | 91.33 277 | 96.62 287 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
SixPastTwentyTwo | | | 93.34 282 | 92.86 281 | 94.75 306 | 95.67 326 | 89.41 327 | 98.75 119 | 96.67 336 | 93.89 188 | 90.15 328 | 98.25 180 | 80.87 315 | 98.27 295 | 90.90 284 | 90.64 287 | 96.57 293 |
|
our_test_3 | | | 93.65 278 | 93.30 274 | 94.69 307 | 95.45 334 | 89.68 323 | 96.91 311 | 97.65 278 | 91.97 269 | 91.66 314 | 96.88 294 | 89.67 177 | 97.93 319 | 88.02 321 | 91.49 275 | 96.48 310 |
|
MDA-MVSNet_test_wron | | | 90.71 310 | 89.38 315 | 94.68 308 | 94.83 342 | 90.78 309 | 97.19 294 | 97.46 296 | 87.60 336 | 72.41 365 | 95.72 332 | 86.51 247 | 96.71 348 | 85.92 333 | 86.80 336 | 96.56 295 |
|
TinyColmap | | | 92.31 297 | 91.53 298 | 94.65 309 | 96.92 274 | 89.75 320 | 96.92 309 | 96.68 335 | 90.45 308 | 89.62 331 | 97.85 213 | 76.06 346 | 98.81 233 | 86.74 327 | 92.51 265 | 95.41 337 |
|
YYNet1 | | | 90.70 311 | 89.39 314 | 94.62 310 | 94.79 343 | 90.65 311 | 97.20 293 | 97.46 296 | 87.54 337 | 72.54 364 | 95.74 329 | 86.51 247 | 96.66 349 | 86.00 332 | 86.76 337 | 96.54 298 |
|
KD-MVS_2432*1600 | | | 89.61 319 | 87.96 323 | 94.54 311 | 94.06 350 | 91.59 293 | 95.59 344 | 97.63 280 | 89.87 319 | 88.95 337 | 94.38 346 | 78.28 331 | 96.82 343 | 84.83 340 | 68.05 364 | 95.21 340 |
|
miper_refine_blended | | | 89.61 319 | 87.96 323 | 94.54 311 | 94.06 350 | 91.59 293 | 95.59 344 | 97.63 280 | 89.87 319 | 88.95 337 | 94.38 346 | 78.28 331 | 96.82 343 | 84.83 340 | 68.05 364 | 95.21 340 |
|
FMVSNet5 | | | 91.81 299 | 90.92 302 | 94.49 313 | 97.21 255 | 92.09 281 | 98.00 235 | 97.55 289 | 89.31 328 | 90.86 321 | 95.61 336 | 74.48 352 | 95.32 358 | 85.57 335 | 89.70 297 | 96.07 326 |
|
K. test v3 | | | 92.55 295 | 91.91 297 | 94.48 314 | 95.64 327 | 89.24 328 | 99.07 54 | 94.88 352 | 94.04 179 | 86.78 346 | 97.59 236 | 77.64 339 | 97.64 329 | 92.08 262 | 89.43 304 | 96.57 293 |
|
test_0402 | | | 91.32 303 | 90.27 308 | 94.48 314 | 96.60 292 | 91.12 302 | 98.50 168 | 97.22 310 | 86.10 345 | 88.30 341 | 96.98 285 | 77.65 338 | 97.99 315 | 78.13 361 | 92.94 262 | 94.34 350 |
|
MS-PatchMatch | | | 93.84 275 | 93.63 263 | 94.46 316 | 96.18 309 | 89.45 325 | 97.76 257 | 98.27 213 | 92.23 262 | 92.13 308 | 97.49 243 | 79.50 323 | 98.69 240 | 89.75 302 | 99.38 106 | 95.25 339 |
|
lessismore_v0 | | | | | 94.45 317 | 94.93 341 | 88.44 342 | | 91.03 369 | | 86.77 347 | 97.64 232 | 76.23 345 | 98.42 269 | 90.31 292 | 85.64 342 | 96.51 306 |
|
pmmvs-eth3d | | | 90.36 313 | 89.05 318 | 94.32 318 | 91.10 362 | 92.12 280 | 97.63 267 | 96.95 322 | 88.86 331 | 84.91 354 | 93.13 352 | 78.32 330 | 96.74 345 | 88.70 316 | 81.81 348 | 94.09 354 |
|
LF4IMVS | | | 93.14 289 | 92.79 283 | 94.20 319 | 95.88 321 | 88.67 338 | 97.66 264 | 97.07 314 | 93.81 194 | 91.71 313 | 97.65 230 | 77.96 335 | 98.81 233 | 91.47 277 | 91.92 271 | 95.12 342 |
|
UnsupCasMVSNet_eth | | | 90.99 308 | 89.92 311 | 94.19 320 | 94.08 349 | 89.83 319 | 97.13 300 | 98.67 132 | 93.69 203 | 85.83 351 | 96.19 323 | 75.15 349 | 96.74 345 | 89.14 313 | 79.41 354 | 96.00 327 |
|
EG-PatchMatch MVS | | | 91.13 306 | 90.12 309 | 94.17 321 | 94.73 344 | 89.00 333 | 98.13 222 | 97.81 271 | 89.22 329 | 85.32 353 | 96.46 312 | 67.71 360 | 98.42 269 | 87.89 323 | 93.82 245 | 95.08 344 |
|
MIMVSNet1 | | | 89.67 318 | 88.28 322 | 93.82 322 | 92.81 358 | 91.08 303 | 98.01 233 | 97.45 298 | 87.95 335 | 87.90 343 | 95.87 328 | 67.63 361 | 94.56 362 | 78.73 360 | 88.18 320 | 95.83 331 |
|
OpenMVS_ROB |  | 86.42 20 | 89.00 322 | 87.43 327 | 93.69 323 | 93.08 356 | 89.42 326 | 97.91 242 | 96.89 327 | 78.58 359 | 85.86 350 | 94.69 343 | 69.48 359 | 98.29 292 | 77.13 362 | 93.29 258 | 93.36 359 |
|
CVMVSNet | | | 95.43 180 | 96.04 139 | 93.57 324 | 97.93 204 | 83.62 358 | 98.12 223 | 98.59 147 | 95.68 105 | 96.56 172 | 99.02 86 | 87.51 230 | 97.51 334 | 93.56 223 | 97.44 182 | 99.60 83 |
|
Anonymous20240521 | | | 91.18 305 | 90.44 306 | 93.42 325 | 93.70 353 | 88.47 341 | 98.94 82 | 97.56 284 | 88.46 333 | 89.56 333 | 95.08 341 | 77.15 343 | 96.97 341 | 83.92 345 | 89.55 301 | 94.82 348 |
|
Patchmatch-RL test | | | 91.49 302 | 90.85 303 | 93.41 326 | 91.37 361 | 84.40 356 | 92.81 358 | 95.93 343 | 91.87 272 | 87.25 344 | 94.87 342 | 88.99 193 | 96.53 351 | 92.54 254 | 82.00 346 | 99.30 128 |
|
KD-MVS_self_test | | | 90.38 312 | 89.38 315 | 93.40 327 | 92.85 357 | 88.94 335 | 97.95 238 | 97.94 265 | 90.35 311 | 90.25 326 | 93.96 349 | 79.82 321 | 95.94 354 | 84.62 344 | 76.69 358 | 95.33 338 |
|
Anonymous20231206 | | | 91.66 301 | 91.10 301 | 93.33 328 | 94.02 352 | 87.35 351 | 98.58 153 | 97.26 309 | 90.48 306 | 90.16 327 | 96.31 316 | 83.83 297 | 96.53 351 | 79.36 357 | 89.90 295 | 96.12 324 |
|
UnsupCasMVSNet_bld | | | 87.17 325 | 85.12 329 | 93.31 329 | 91.94 359 | 88.77 336 | 94.92 350 | 98.30 210 | 84.30 353 | 82.30 357 | 90.04 358 | 63.96 365 | 97.25 337 | 85.85 334 | 74.47 362 | 93.93 357 |
|
RPSCF | | | 94.87 217 | 95.40 161 | 93.26 330 | 98.89 126 | 82.06 363 | 98.33 189 | 98.06 257 | 90.30 312 | 96.56 172 | 99.26 45 | 87.09 238 | 99.49 151 | 93.82 214 | 96.32 208 | 98.24 206 |
|
new_pmnet | | | 90.06 315 | 89.00 319 | 93.22 331 | 94.18 347 | 88.32 344 | 96.42 333 | 96.89 327 | 86.19 343 | 85.67 352 | 93.62 350 | 77.18 342 | 97.10 339 | 81.61 351 | 89.29 306 | 94.23 351 |
|
CL-MVSNet_self_test | | | 90.11 314 | 89.14 317 | 93.02 332 | 91.86 360 | 88.23 345 | 96.51 331 | 98.07 252 | 90.49 305 | 90.49 325 | 94.41 344 | 84.75 278 | 95.34 357 | 80.79 353 | 74.95 360 | 95.50 336 |
|
MVS-HIRNet | | | 89.46 321 | 88.40 320 | 92.64 333 | 97.58 226 | 82.15 362 | 94.16 357 | 93.05 365 | 75.73 362 | 90.90 320 | 82.52 363 | 79.42 324 | 98.33 284 | 83.53 347 | 98.68 136 | 97.43 226 |
|
test20.03 | | | 90.89 309 | 90.38 307 | 92.43 334 | 93.48 354 | 88.14 346 | 98.33 189 | 97.56 284 | 93.40 217 | 87.96 342 | 96.71 303 | 80.69 318 | 94.13 363 | 79.15 358 | 86.17 339 | 95.01 347 |
|
DSMNet-mixed | | | 92.52 296 | 92.58 287 | 92.33 335 | 94.15 348 | 82.65 361 | 98.30 197 | 94.26 359 | 89.08 330 | 92.65 293 | 95.73 330 | 85.01 273 | 95.76 355 | 86.24 330 | 97.76 174 | 98.59 192 |
|
EU-MVSNet | | | 93.66 276 | 94.14 228 | 92.25 336 | 95.96 319 | 83.38 359 | 98.52 163 | 98.12 238 | 94.69 157 | 92.61 294 | 98.13 188 | 87.36 235 | 96.39 353 | 91.82 270 | 90.00 294 | 96.98 242 |
|
pmmvs3 | | | 86.67 327 | 84.86 330 | 92.11 337 | 88.16 365 | 87.19 353 | 96.63 327 | 94.75 354 | 79.88 358 | 87.22 345 | 92.75 354 | 66.56 362 | 95.20 359 | 81.24 352 | 76.56 359 | 93.96 356 |
|
new-patchmatchnet | | | 88.50 323 | 87.45 326 | 91.67 338 | 90.31 364 | 85.89 355 | 97.16 298 | 97.33 304 | 89.47 325 | 83.63 356 | 92.77 353 | 76.38 344 | 95.06 360 | 82.70 348 | 77.29 357 | 94.06 355 |
|
PM-MVS | | | 87.77 324 | 86.55 328 | 91.40 339 | 91.03 363 | 83.36 360 | 96.92 309 | 95.18 350 | 91.28 293 | 86.48 349 | 93.42 351 | 53.27 367 | 96.74 345 | 89.43 310 | 81.97 347 | 94.11 353 |
|
CMPMVS |  | 66.06 21 | 89.70 317 | 89.67 313 | 89.78 340 | 93.19 355 | 76.56 365 | 97.00 305 | 98.35 198 | 80.97 357 | 81.57 358 | 97.75 222 | 74.75 351 | 98.61 248 | 89.85 300 | 93.63 248 | 94.17 352 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ambc | | | | | 89.49 341 | 86.66 366 | 75.78 366 | 92.66 359 | 96.72 333 | | 86.55 348 | 92.50 355 | 46.01 368 | 97.90 320 | 90.32 291 | 82.09 345 | 94.80 349 |
|
DeepMVS_CX |  | | | | 86.78 342 | 97.09 266 | 72.30 368 | | 95.17 351 | 75.92 361 | 84.34 355 | 95.19 338 | 70.58 358 | 95.35 356 | 79.98 356 | 89.04 310 | 92.68 360 |
|
LCM-MVSNet | | | 78.70 329 | 76.24 334 | 86.08 343 | 77.26 374 | 71.99 369 | 94.34 355 | 96.72 333 | 61.62 366 | 76.53 361 | 89.33 359 | 33.91 374 | 92.78 365 | 81.85 350 | 74.60 361 | 93.46 358 |
|
PMMVS2 | | | 77.95 331 | 75.44 335 | 85.46 344 | 82.54 369 | 74.95 367 | 94.23 356 | 93.08 364 | 72.80 363 | 74.68 362 | 87.38 360 | 36.36 373 | 91.56 366 | 73.95 364 | 63.94 366 | 89.87 361 |
|
N_pmnet | | | 87.12 326 | 87.77 325 | 85.17 345 | 95.46 333 | 61.92 372 | 97.37 280 | 70.66 378 | 85.83 347 | 88.73 340 | 96.04 326 | 85.33 270 | 97.76 327 | 80.02 354 | 90.48 288 | 95.84 330 |
|
Gipuma |  | | 78.40 330 | 76.75 333 | 83.38 346 | 95.54 330 | 80.43 364 | 79.42 367 | 97.40 302 | 64.67 365 | 73.46 363 | 80.82 365 | 45.65 369 | 93.14 364 | 66.32 366 | 87.43 327 | 76.56 367 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 79.03 328 | 78.17 331 | 81.63 347 | 86.06 367 | 54.40 377 | 82.75 366 | 96.89 327 | 39.54 371 | 80.98 359 | 95.57 337 | 58.37 366 | 94.73 361 | 84.74 343 | 78.61 355 | 95.75 332 |
|
ANet_high | | | 69.08 333 | 65.37 337 | 80.22 348 | 65.99 376 | 71.96 370 | 90.91 362 | 90.09 370 | 82.62 354 | 49.93 372 | 78.39 366 | 29.36 375 | 81.75 369 | 62.49 367 | 38.52 370 | 86.95 364 |
|
FPMVS | | | 77.62 332 | 77.14 332 | 79.05 349 | 79.25 372 | 60.97 373 | 95.79 340 | 95.94 342 | 65.96 364 | 67.93 367 | 94.40 345 | 37.73 372 | 88.88 368 | 68.83 365 | 88.46 316 | 87.29 362 |
|
MVE |  | 62.14 22 | 63.28 338 | 59.38 341 | 74.99 350 | 74.33 375 | 65.47 371 | 85.55 364 | 80.50 376 | 52.02 369 | 51.10 371 | 75.00 369 | 10.91 379 | 80.50 370 | 51.60 369 | 53.40 367 | 78.99 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 68.90 334 | 66.97 336 | 74.68 351 | 50.78 378 | 59.95 374 | 87.13 363 | 83.47 375 | 38.80 372 | 62.21 368 | 96.23 320 | 64.70 364 | 76.91 373 | 88.91 315 | 30.49 371 | 87.19 363 |
|
PMVS |  | 61.03 23 | 65.95 335 | 63.57 339 | 73.09 352 | 57.90 377 | 51.22 378 | 85.05 365 | 93.93 363 | 54.45 367 | 44.32 373 | 83.57 362 | 13.22 376 | 89.15 367 | 58.68 368 | 81.00 351 | 78.91 366 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 64.94 336 | 64.25 338 | 67.02 353 | 82.28 370 | 59.36 375 | 91.83 361 | 85.63 373 | 52.69 368 | 60.22 369 | 77.28 367 | 41.06 371 | 80.12 371 | 46.15 370 | 41.14 368 | 61.57 369 |
|
EMVS | | | 64.07 337 | 63.26 340 | 66.53 354 | 81.73 371 | 58.81 376 | 91.85 360 | 84.75 374 | 51.93 370 | 59.09 370 | 75.13 368 | 43.32 370 | 79.09 372 | 42.03 371 | 39.47 369 | 61.69 368 |
|
wuyk23d | | | 30.17 339 | 30.18 343 | 30.16 355 | 78.61 373 | 43.29 379 | 66.79 368 | 14.21 379 | 17.31 373 | 14.82 376 | 11.93 375 | 11.55 378 | 41.43 374 | 37.08 372 | 19.30 372 | 5.76 372 |
|
test123 | | | 20.95 342 | 23.72 345 | 12.64 356 | 13.54 380 | 8.19 380 | 96.55 330 | 6.13 381 | 7.48 375 | 16.74 375 | 37.98 372 | 12.97 377 | 6.05 375 | 16.69 373 | 5.43 374 | 23.68 370 |
|
testmvs | | | 21.48 341 | 24.95 344 | 11.09 357 | 14.89 379 | 6.47 381 | 96.56 329 | 9.87 380 | 7.55 374 | 17.93 374 | 39.02 371 | 9.43 380 | 5.90 376 | 16.56 374 | 12.72 373 | 20.91 371 |
|
test_blank | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet_test | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
cdsmvs_eth3d_5k | | | 23.98 340 | 31.98 342 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 98.59 147 | 0.00 376 | 0.00 377 | 98.61 136 | 90.60 162 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
pcd_1.5k_mvsjas | | | 7.88 344 | 10.50 347 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 94.51 88 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet-low-res | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uncertanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
Regformer | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
ab-mvs-re | | | 8.20 343 | 10.94 346 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 98.43 154 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
FOURS1 | | | | | | 99.82 1 | 98.66 26 | 99.69 1 | 98.95 34 | 97.46 22 | 99.39 15 | | | | | | |
|
PC_three_1452 | | | | | | | | | | 95.08 142 | 99.60 5 | 99.16 66 | 97.86 2 | 98.47 263 | 97.52 79 | 99.72 52 | 99.74 35 |
|
test_one_0601 | | | | | | 99.66 28 | 99.25 2 | | 98.86 63 | 97.55 15 | 99.20 25 | 99.47 8 | 97.57 6 | | | | |
|
eth-test2 | | | | | | 0.00 381 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 381 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.46 53 | 98.70 23 | | 98.79 95 | 93.21 224 | 98.67 63 | 98.97 93 | 95.70 47 | 99.83 59 | 96.07 138 | 99.58 78 | |
|
RE-MVS-def | | | | 98.34 29 | | 99.49 47 | 97.86 73 | 99.11 47 | 98.80 90 | 96.49 74 | 99.17 28 | 99.35 30 | 95.29 66 | | 97.72 60 | 99.65 62 | 99.71 48 |
|
IU-MVS | | | | | | 99.71 21 | 99.23 7 | | 98.64 140 | 95.28 128 | 99.63 4 | | | | 98.35 29 | 99.81 10 | 99.83 7 |
|
test_241102_TWO | | | | | | | | | 98.87 57 | 97.65 9 | 99.53 9 | 99.48 6 | 97.34 11 | 99.94 3 | 98.43 23 | 99.80 17 | 99.83 7 |
|
test_241102_ONE | | | | | | 99.71 21 | 99.24 5 | | 98.87 57 | 97.62 11 | 99.73 1 | 99.39 16 | 97.53 7 | 99.74 110 | | | |
|
9.14 | | | | 98.06 51 | | 99.47 50 | | 98.71 131 | 98.82 73 | 94.36 171 | 99.16 30 | 99.29 41 | 96.05 35 | 99.81 74 | 97.00 94 | 99.71 54 | |
|
save fliter | | | | | | 99.46 53 | 98.38 40 | 98.21 206 | 98.71 117 | 97.95 3 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 97.32 31 | 99.45 11 | 99.46 11 | 97.88 1 | 99.94 3 | 98.47 19 | 99.86 1 | 99.85 4 |
|
test0726 | | | | | | 99.72 13 | 99.25 2 | 99.06 55 | 98.88 50 | 97.62 11 | 99.56 6 | 99.50 4 | 97.42 9 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 137 |
|
test_part2 | | | | | | 99.63 31 | 99.18 10 | | | | 99.27 20 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 180 | | | | 99.20 137 |
|
sam_mvs | | | | | | | | | | | | | 88.99 193 | | | | |
|
MTGPA |  | | | | | | | | 98.74 107 | | | | | | | | |
|
test_post1 | | | | | | | | 96.68 326 | | | | 30.43 374 | 87.85 225 | 98.69 240 | 92.59 250 | | |
|
test_post | | | | | | | | | | | | 31.83 373 | 88.83 200 | 98.91 219 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 340 | 89.42 181 | 98.89 223 | | | |
|
MTMP | | | | | | | | 98.89 91 | 94.14 361 | | | | | | | | |
|
gm-plane-assit | | | | | | 95.88 321 | 87.47 350 | | | 89.74 322 | | 96.94 291 | | 99.19 177 | 93.32 229 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 132 | 99.57 79 | 99.69 55 |
|
TEST9 | | | | | | 99.31 72 | 98.50 34 | 97.92 240 | 98.73 111 | 92.63 244 | 97.74 123 | 98.68 130 | 96.20 26 | 99.80 83 | | | |
|
test_8 | | | | | | 99.29 80 | 98.44 36 | 97.89 246 | 98.72 113 | 92.98 233 | 97.70 126 | 98.66 133 | 96.20 26 | 99.80 83 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 148 | 99.57 79 | 99.68 61 |
|
agg_prior | | | | | | 99.30 77 | 98.38 40 | | 98.72 113 | | 97.57 136 | | | 99.81 74 | | | |
|
test_prior4 | | | | | | | 98.01 67 | 97.86 249 | | | | | | | | | |
|
test_prior2 | | | | | | | | 97.80 254 | | 96.12 90 | 97.89 117 | 98.69 128 | 95.96 39 | | 96.89 104 | 99.60 72 | |
|
旧先验2 | | | | | | | | 97.57 270 | | 91.30 291 | 98.67 63 | | | 99.80 83 | 95.70 158 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 97.64 265 | | | | | | | | | |
|
旧先验1 | | | | | | 99.29 80 | 97.48 88 | | 98.70 120 | | | 99.09 80 | 95.56 50 | | | 99.47 95 | 99.61 80 |
|
æ— å…ˆéªŒ | | | | | | | | 97.58 269 | 98.72 113 | 91.38 285 | | | | 99.87 47 | 93.36 227 | | 99.60 83 |
|
原ACMM2 | | | | | | | | 97.67 263 | | | | | | | | | |
|
test222 | | | | | | 99.23 95 | 97.17 104 | 97.40 276 | 98.66 135 | 88.68 332 | 98.05 97 | 98.96 99 | 94.14 98 | | | 99.53 89 | 99.61 80 |
|
testdata2 | | | | | | | | | | | | | | 99.89 38 | 91.65 275 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
testdata1 | | | | | | | | 97.32 286 | | 96.34 80 | | | | | | | |
|
plane_prior7 | | | | | | 97.42 242 | 94.63 215 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 247 | 94.61 218 | | | | | | 87.09 238 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 155 | | | | | 99.03 200 | 96.07 138 | 94.27 229 | 96.92 247 |
|
plane_prior4 | | | | | | | | | | | | 98.28 175 | | | | | |
|
plane_prior3 | | | | | | | 94.61 218 | | | 97.02 52 | 95.34 198 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 113 | | 97.28 34 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 246 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 220 | 98.44 175 | | 96.74 64 | | | | | | 94.22 231 | |
|
n2 | | | | | | | | | 0.00 382 | | | | | | | | |
|
nn | | | | | | | | | 0.00 382 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 357 | | | | | | | | |
|
test11 | | | | | | | | | 98.66 135 | | | | | | | | |
|
door | | | | | | | | | 94.64 355 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 234 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.20 256 | | 98.05 229 | | 96.43 76 | 94.45 221 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 256 | | 98.05 229 | | 96.43 76 | 94.45 221 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 167 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 221 | | | 98.96 212 | | | 96.87 258 |
|
HQP3-MVS | | | | | | | | | 98.46 176 | | | | | | | 94.18 233 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 244 | | | | |
|
NP-MVS | | | | | | 97.28 250 | 94.51 223 | | | | | 97.73 223 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 357 | 96.89 316 | | 90.97 301 | 97.90 116 | | 89.89 173 | | 93.91 211 | | 99.18 145 |
|
MDTV_nov1_ep13 | | | | 95.40 161 | | 97.48 235 | 88.34 343 | 96.85 319 | 97.29 306 | 93.74 197 | 97.48 139 | 97.26 257 | 89.18 187 | 99.05 195 | 91.92 269 | 97.43 183 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 261 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 249 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 83 | | | | |
|