This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1399.35 198.97 7698.88 5099.94 398.47 1999.81 1099.84 6
DPE-MVScopyleft98.92 598.67 799.65 299.58 3499.20 998.42 17998.91 4497.58 1499.54 899.46 1197.10 1299.94 397.64 6899.84 899.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.08 298.89 299.64 399.17 10099.23 799.69 198.88 5097.32 3199.53 999.47 897.81 399.94 398.47 1999.72 5299.74 35
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 6698.87 5797.65 999.73 199.48 697.53 799.94 398.43 2399.81 1099.70 52
DVP-MVScopyleft99.03 398.83 499.63 499.72 1399.25 298.97 7698.58 15297.62 1199.45 1199.46 1197.42 999.94 398.47 1999.81 1099.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSC_two_6792asdad99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
No_MVS99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
SMA-MVScopyleft98.58 2498.25 3999.56 899.51 4199.04 1598.95 8098.80 9093.67 20799.37 1699.52 396.52 2099.89 3898.06 3999.81 1099.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.61 1898.30 3599.55 999.62 3298.95 1798.82 10698.81 7995.80 10099.16 3099.47 895.37 6099.92 2497.89 4999.75 4099.79 12
HPM-MVS++copyleft98.58 2498.25 3999.55 999.50 4399.08 1198.72 13098.66 13597.51 1798.15 9198.83 11595.70 4799.92 2497.53 7899.67 5899.66 69
APDe-MVS99.02 498.84 399.55 999.57 3598.96 1699.39 898.93 3897.38 2899.41 1399.54 196.66 1699.84 5698.86 299.85 399.87 1
MP-MVS-pluss98.31 5397.92 5999.49 1299.72 1398.88 1898.43 17798.78 9894.10 17797.69 12799.42 1495.25 6999.92 2498.09 3799.80 1799.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1498.37 2299.48 1399.60 3398.87 1998.41 18098.68 12497.04 5198.52 7498.80 11896.78 1599.83 5997.93 4599.61 7199.74 35
testtj98.33 5197.95 5799.47 1499.49 4798.70 2398.83 10398.86 6395.48 11598.91 4999.17 6195.48 5399.93 1895.80 15199.53 8999.76 28
zzz-MVS98.55 3198.25 3999.46 1599.76 298.64 2798.55 16198.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
MTAPA98.58 2498.29 3699.46 1599.76 298.64 2798.90 8798.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
CNVR-MVS98.78 798.56 1099.45 1799.32 7098.87 1998.47 17198.81 7997.72 698.76 5799.16 6697.05 1399.78 9998.06 3999.66 6199.69 55
APD-MVScopyleft98.35 4798.00 5599.42 1899.51 4198.72 2198.80 11398.82 7394.52 16699.23 2399.25 4895.54 5299.80 8396.52 12699.77 2899.74 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2198.32 3499.41 1999.54 3798.71 2299.04 5898.81 7995.12 13799.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
ETH3D-3000-0.198.35 4798.00 5599.38 2099.47 5098.68 2598.67 14198.84 6894.66 16199.11 3299.25 4895.46 5499.81 7496.80 11599.73 4599.63 77
NCCC98.61 1898.35 2599.38 2099.28 8498.61 2998.45 17298.76 10297.82 598.45 7998.93 10396.65 1799.83 5997.38 8499.41 10399.71 48
3Dnovator+94.38 697.43 9596.78 11099.38 2097.83 21098.52 3299.37 1098.71 11797.09 5092.99 28499.13 7089.36 18299.89 3896.97 9699.57 7999.71 48
OPU-MVS99.37 2399.24 9499.05 1499.02 6699.16 6697.81 399.37 16397.24 8799.73 4599.70 52
SteuartSystems-ACMMP98.90 698.75 599.36 2499.22 9698.43 3899.10 5098.87 5797.38 2899.35 1799.40 1597.78 599.87 4797.77 5799.85 399.78 15
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3798.20 4599.35 2599.73 1298.39 3999.19 3698.86 6395.77 10198.31 8999.10 7595.46 5499.93 1897.57 7599.81 1099.74 35
ETH3 D test640097.59 8497.01 9999.34 2699.40 6198.56 3098.20 20998.81 7991.63 27998.44 8098.85 11193.98 10299.82 6794.11 20699.69 5699.64 74
GST-MVS98.43 4198.12 4899.34 2699.72 1398.38 4099.09 5198.82 7395.71 10498.73 6099.06 8495.27 6799.93 1897.07 9399.63 6899.72 44
XVS98.70 1098.49 1799.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7699.20 5795.90 4399.89 3897.85 5299.74 4399.78 15
X-MVStestdata94.06 27192.30 29199.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7643.50 37095.90 4399.89 3897.85 5299.74 4399.78 15
train_agg97.97 5997.52 7599.33 3099.31 7298.50 3497.92 24098.73 11192.98 23397.74 12398.68 13096.20 2699.80 8396.59 12299.57 7999.68 61
HFP-MVS98.63 1798.40 1999.32 3199.72 1398.29 5199.23 2698.96 3296.10 9298.94 4399.17 6196.06 3399.92 2497.62 6999.78 2599.75 30
#test#98.54 3398.27 3799.32 3199.72 1398.29 5198.98 7598.96 3295.65 10898.94 4399.17 6196.06 3399.92 2497.21 8999.78 2599.75 30
xxxxxxxxxxxxxcwj98.70 1098.50 1599.30 3399.46 5398.38 4098.21 20698.52 16397.95 399.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
ETH3D cwj APD-0.1697.96 6097.52 7599.29 3499.05 11098.52 3298.33 18998.68 12493.18 22598.68 6299.13 7094.62 8499.83 5996.45 12899.55 8799.52 92
MSP-MVS98.74 998.55 1199.29 3499.75 498.23 5499.26 2398.88 5097.52 1699.41 1398.78 12096.00 3799.79 9597.79 5699.59 7599.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.61 1898.38 2199.29 3499.74 898.16 6099.23 2698.93 3896.15 8798.94 4399.17 6195.91 4299.94 397.55 7699.79 2199.78 15
ACMMPR98.59 2198.36 2399.29 3499.74 898.15 6199.23 2698.95 3496.10 9298.93 4799.19 6095.70 4799.94 397.62 6999.79 2199.78 15
agg_prior197.95 6397.51 7799.28 3899.30 7798.38 4097.81 25398.72 11393.16 22797.57 13698.66 13396.14 2999.81 7496.63 12199.56 8499.66 69
MP-MVScopyleft98.33 5198.01 5499.28 3899.75 498.18 5899.22 3098.79 9596.13 8997.92 11599.23 5094.54 8799.94 396.74 12099.78 2599.73 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS97.94 6497.49 7899.28 3899.47 5098.44 3697.91 24298.67 13292.57 24898.77 5698.85 11195.93 4199.72 11295.56 16199.69 5699.68 61
PGM-MVS98.49 3798.23 4399.27 4199.72 1398.08 6498.99 7299.49 595.43 11899.03 3799.32 3595.56 5099.94 396.80 11599.77 2899.78 15
mPP-MVS98.51 3698.26 3899.25 4299.75 498.04 6599.28 2198.81 7996.24 8398.35 8699.23 5095.46 5499.94 397.42 8299.81 1099.77 22
SR-MVS98.57 2798.35 2599.24 4399.53 3898.18 5899.09 5198.82 7396.58 7099.10 3399.32 3595.39 5899.82 6797.70 6599.63 6899.72 44
TSAR-MVS + MP.98.78 798.62 899.24 4399.69 2698.28 5399.14 4198.66 13596.84 5999.56 699.31 3796.34 2299.70 11898.32 3099.73 4599.73 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS97.55 8896.99 10199.23 4599.04 11298.55 3197.17 29798.35 19894.85 15297.93 11498.58 14195.07 7599.71 11792.60 24899.34 10899.43 113
Regformer-298.69 1298.52 1399.19 4699.35 6298.01 6798.37 18398.81 7997.48 1999.21 2499.21 5396.13 3099.80 8398.40 2799.73 4599.75 30
test_prior398.22 5697.90 6099.19 4699.31 7298.22 5597.80 25498.84 6896.12 9097.89 11798.69 12895.96 3999.70 11896.89 10499.60 7299.65 71
test_prior99.19 4699.31 7298.22 5598.84 6899.70 11899.65 71
CP-MVS98.57 2798.36 2399.19 4699.66 2897.86 7399.34 1598.87 5795.96 9598.60 7199.13 7096.05 3599.94 397.77 5799.86 199.77 22
test1299.18 5099.16 10498.19 5798.53 16198.07 9695.13 7399.72 11299.56 8499.63 77
PHI-MVS98.34 4998.06 5199.18 5099.15 10698.12 6399.04 5899.09 2093.32 22098.83 5399.10 7596.54 1999.83 5997.70 6599.76 3499.59 85
DeepC-MVS_fast96.70 198.55 3198.34 2999.18 5099.25 8898.04 6598.50 16898.78 9897.72 698.92 4899.28 4295.27 6799.82 6797.55 7699.77 2899.69 55
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test117298.56 2998.35 2599.16 5399.53 3897.94 7199.09 5198.83 7196.52 7399.05 3699.34 3395.34 6299.82 6797.86 5199.64 6699.73 40
新几何199.16 5399.34 6498.01 6798.69 12190.06 31698.13 9298.95 10194.60 8599.89 3891.97 26899.47 9599.59 85
112197.37 10096.77 11499.16 5399.34 6497.99 7098.19 21398.68 12490.14 31598.01 10698.97 9394.80 8299.87 4793.36 22799.46 9899.61 80
APD-MVS_3200maxsize98.53 3598.33 3399.15 5699.50 4397.92 7299.15 4098.81 7996.24 8399.20 2599.37 2495.30 6599.80 8397.73 5999.67 5899.72 44
SR-MVS-dyc-post98.54 3398.35 2599.13 5799.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.34 6299.82 6797.72 6099.65 6299.71 48
abl_698.30 5498.03 5399.13 5799.56 3697.76 8099.13 4498.82 7396.14 8899.26 2199.37 2493.33 10799.93 1896.96 9899.67 5899.69 55
HPM-MVScopyleft98.36 4698.10 5099.13 5799.74 897.82 7799.53 498.80 9094.63 16298.61 7098.97 9395.13 7399.77 10497.65 6799.83 999.79 12
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Regformer-198.66 1398.51 1499.12 6099.35 6297.81 7998.37 18398.76 10297.49 1899.20 2599.21 5396.08 3299.79 9598.42 2599.73 4599.75 30
HPM-MVS_fast98.38 4498.13 4799.12 6099.75 497.86 7399.44 798.82 7394.46 16998.94 4399.20 5795.16 7299.74 11097.58 7299.85 399.77 22
ACMMPcopyleft98.23 5597.95 5799.09 6299.74 897.62 8499.03 6299.41 695.98 9497.60 13599.36 2894.45 9299.93 1897.14 9098.85 13199.70 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator94.51 597.46 9096.93 10399.07 6397.78 21297.64 8299.35 1399.06 2297.02 5293.75 25899.16 6689.25 18599.92 2497.22 8899.75 4099.64 74
DP-MVS Recon97.86 6997.46 8099.06 6499.53 3898.35 4898.33 18998.89 4792.62 24598.05 9798.94 10295.34 6299.65 12796.04 14299.42 10299.19 140
alignmvs97.56 8797.07 9799.01 6598.66 14798.37 4698.83 10398.06 25796.74 6498.00 10897.65 23090.80 15899.48 15598.37 2896.56 20099.19 140
Regformer-498.64 1598.53 1298.99 6699.43 5997.37 9298.40 18198.79 9597.46 2299.09 3499.31 3795.86 4599.80 8398.64 499.76 3499.79 12
DELS-MVS98.40 4398.20 4598.99 6699.00 11797.66 8197.75 25898.89 4797.71 898.33 8798.97 9394.97 7799.88 4698.42 2599.76 3499.42 115
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
canonicalmvs97.67 7797.23 9098.98 6898.70 14398.38 4099.34 1598.39 19196.76 6397.67 12897.40 25192.26 12199.49 15198.28 3296.28 21299.08 157
UA-Net97.96 6097.62 6898.98 6898.86 12997.47 8998.89 9199.08 2196.67 6798.72 6199.54 193.15 11099.81 7494.87 17798.83 13299.65 71
VNet97.79 7297.40 8498.96 7098.88 12797.55 8698.63 14798.93 3896.74 6499.02 3898.84 11390.33 16799.83 5998.53 1196.66 19699.50 98
QAPM96.29 14195.40 16198.96 7097.85 20997.60 8599.23 2698.93 3889.76 32193.11 28199.02 8689.11 19099.93 1891.99 26799.62 7099.34 119
114514_t96.93 11896.27 13198.92 7299.50 4397.63 8398.85 9998.90 4584.80 35197.77 12099.11 7392.84 11299.66 12694.85 17899.77 2899.47 105
CPTT-MVS97.72 7597.32 8798.92 7299.64 3097.10 10599.12 4698.81 7992.34 25698.09 9599.08 8293.01 11199.92 2496.06 14199.77 2899.75 30
CANet98.05 5897.76 6598.90 7498.73 13897.27 9698.35 18698.78 9897.37 3097.72 12598.96 9991.53 14399.92 2498.79 399.65 6299.51 96
MVS_111021_HR98.47 3998.34 2998.88 7599.22 9697.32 9397.91 24299.58 397.20 4298.33 8799.00 9195.99 3899.64 12998.05 4199.76 3499.69 55
Regformer-398.59 2198.50 1598.86 7699.43 5997.05 10698.40 18198.68 12497.43 2499.06 3599.31 3795.80 4699.77 10498.62 699.76 3499.78 15
TSAR-MVS + GP.98.38 4498.24 4298.81 7799.22 9697.25 10198.11 22598.29 21297.19 4398.99 4299.02 8696.22 2399.67 12598.52 1798.56 14499.51 96
DeepC-MVS95.98 397.88 6897.58 7098.77 7899.25 8896.93 11098.83 10398.75 10596.96 5596.89 15999.50 490.46 16499.87 4797.84 5499.76 3499.52 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA97.45 9397.03 9898.73 7999.05 11097.44 9198.07 22798.53 16195.32 12696.80 16498.53 14593.32 10899.72 11294.31 19999.31 11099.02 161
WTY-MVS97.37 10096.92 10498.72 8098.86 12996.89 11498.31 19598.71 11795.26 12997.67 12898.56 14492.21 12499.78 9995.89 14696.85 19199.48 103
EI-MVSNet-Vis-set98.47 3998.39 2098.69 8199.46 5396.49 13198.30 19798.69 12197.21 4198.84 5199.36 2895.41 5799.78 9998.62 699.65 6299.80 11
LS3D97.16 11096.66 11998.68 8298.53 15797.19 10398.93 8498.90 4592.83 24195.99 19399.37 2492.12 12799.87 4793.67 21999.57 7998.97 166
MVS_111021_LR98.34 4998.23 4398.67 8399.27 8596.90 11297.95 23899.58 397.14 4698.44 8099.01 9095.03 7699.62 13497.91 4699.75 4099.50 98
原ACMM198.65 8499.32 7096.62 12298.67 13293.27 22397.81 11998.97 9395.18 7199.83 5993.84 21399.46 9899.50 98
PAPR96.84 12296.24 13398.65 8498.72 14296.92 11197.36 28298.57 15393.33 21996.67 16797.57 23894.30 9699.56 14091.05 28398.59 14299.47 105
EI-MVSNet-UG-set98.41 4298.34 2998.61 8699.45 5796.32 14098.28 20098.68 12497.17 4498.74 5899.37 2495.25 6999.79 9598.57 999.54 8899.73 40
sss97.39 9896.98 10298.61 8698.60 15396.61 12498.22 20598.93 3893.97 18598.01 10698.48 15091.98 13199.85 5396.45 12898.15 16099.39 116
HY-MVS93.96 896.82 12396.23 13498.57 8898.46 16197.00 10798.14 22098.21 22093.95 18696.72 16697.99 19891.58 13899.76 10694.51 19296.54 20198.95 169
DP-MVS96.59 13095.93 14298.57 8899.34 6496.19 14698.70 13598.39 19189.45 32694.52 21899.35 3091.85 13399.85 5392.89 24498.88 12899.68 61
MSLP-MVS++98.56 2998.57 998.55 9099.26 8796.80 11698.71 13199.05 2497.28 3498.84 5199.28 4296.47 2199.40 16198.52 1799.70 5599.47 105
ab-mvs96.42 13795.71 15198.55 9098.63 15096.75 11997.88 24798.74 10793.84 19196.54 17698.18 18585.34 26999.75 10895.93 14596.35 20699.15 147
test_yl97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
DCV-MVSNet97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
SD-MVS98.64 1598.68 698.53 9499.33 6798.36 4798.90 8798.85 6797.28 3499.72 399.39 1696.63 1897.60 33098.17 3399.85 399.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EPNet97.28 10396.87 10698.51 9594.98 33996.14 14798.90 8797.02 31998.28 195.99 19399.11 7391.36 14599.89 3896.98 9599.19 11599.50 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss96.63 12796.00 14198.50 9698.56 15496.37 13798.18 21798.10 24392.92 23694.84 20898.43 15492.14 12699.58 13794.35 19696.51 20299.56 91
PAPM_NR97.46 9097.11 9498.50 9699.50 4396.41 13698.63 14798.60 14595.18 13397.06 15098.06 19294.26 9799.57 13893.80 21598.87 13099.52 92
DROMVSNet98.21 5798.11 4998.49 9898.34 17197.26 10099.61 398.43 18396.78 6198.87 5098.84 11393.72 10499.01 20698.91 199.50 9299.19 140
AdaColmapbinary97.15 11196.70 11598.48 9999.16 10496.69 12198.01 23398.89 4794.44 17096.83 16098.68 13090.69 16199.76 10694.36 19599.29 11198.98 165
LFMVS95.86 16094.98 18698.47 10098.87 12896.32 14098.84 10296.02 33993.40 21798.62 6999.20 5774.99 35099.63 13297.72 6097.20 18699.46 109
MAR-MVS96.91 11996.40 12798.45 10198.69 14596.90 11298.66 14498.68 12492.40 25597.07 14997.96 20191.54 14299.75 10893.68 21798.92 12598.69 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu97.70 7697.46 8098.44 10299.27 8595.91 16398.63 14799.16 1794.48 16897.67 12898.88 10892.80 11399.91 3397.11 9199.12 11799.50 98
MG-MVS97.81 7197.60 6998.44 10299.12 10895.97 15597.75 25898.78 9896.89 5898.46 7699.22 5293.90 10399.68 12494.81 18199.52 9199.67 65
PLCcopyleft95.07 497.20 10896.78 11098.44 10299.29 8096.31 14298.14 22098.76 10292.41 25496.39 18398.31 17194.92 7999.78 9994.06 20898.77 13599.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS93.45 1194.68 22693.43 27198.42 10598.62 15196.77 11895.48 34698.20 22284.63 35293.34 27298.32 17088.55 20699.81 7484.80 34298.96 12498.68 185
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS97.96 6097.81 6398.40 10698.42 16297.27 9698.73 12698.55 15796.84 5998.38 8397.44 24895.39 5899.35 16497.62 6998.89 12798.58 194
Effi-MVS+97.12 11296.69 11698.39 10798.19 18496.72 12097.37 28098.43 18393.71 20097.65 13198.02 19492.20 12599.25 17096.87 11097.79 17299.19 140
Test_1112_low_res96.34 14095.66 15698.36 10898.56 15495.94 15897.71 26098.07 25292.10 26694.79 21297.29 25691.75 13599.56 14094.17 20396.50 20399.58 89
Vis-MVSNetpermissive97.42 9697.11 9498.34 10998.66 14796.23 14399.22 3099.00 2796.63 6998.04 9999.21 5388.05 21999.35 16496.01 14499.21 11299.45 111
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft93.04 1395.83 16295.00 18498.32 11097.18 26097.32 9399.21 3398.97 3089.96 31791.14 31899.05 8586.64 24699.92 2493.38 22599.47 9597.73 221
casdiffmvs97.63 8097.41 8398.28 11198.33 17396.14 14798.82 10698.32 20296.38 7997.95 11099.21 5391.23 15099.23 17398.12 3598.37 15399.48 103
EIA-MVS97.75 7397.58 7098.27 11298.38 16496.44 13499.01 6898.60 14595.88 9797.26 14197.53 24194.97 7799.33 16697.38 8499.20 11399.05 159
PatchMatch-RL96.59 13096.03 14098.27 11299.31 7296.51 13097.91 24299.06 2293.72 19996.92 15798.06 19288.50 20899.65 12791.77 27299.00 12398.66 188
testdata98.26 11499.20 9995.36 18298.68 12491.89 27198.60 7199.10 7594.44 9399.82 6794.27 20099.44 10099.58 89
baseline97.64 7997.44 8298.25 11598.35 16696.20 14499.00 7098.32 20296.33 8198.03 10099.17 6191.35 14699.16 17998.10 3698.29 15899.39 116
IS-MVSNet97.22 10596.88 10598.25 11598.85 13196.36 13899.19 3697.97 26295.39 12097.23 14298.99 9291.11 15298.93 21794.60 18798.59 14299.47 105
CANet_DTU96.96 11796.55 12298.21 11798.17 18896.07 14997.98 23698.21 22097.24 4097.13 14598.93 10386.88 24399.91 3395.00 17699.37 10798.66 188
CSCG97.85 7097.74 6698.20 11899.67 2795.16 18999.22 3099.32 793.04 23197.02 15298.92 10595.36 6199.91 3397.43 8199.64 6699.52 92
OMC-MVS97.55 8897.34 8698.20 11899.33 6795.92 16298.28 20098.59 14795.52 11497.97 10999.10 7593.28 10999.49 15195.09 17498.88 12899.19 140
UGNet96.78 12496.30 13098.19 12098.24 17895.89 16598.88 9498.93 3897.39 2796.81 16397.84 21482.60 30299.90 3696.53 12599.49 9398.79 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended97.38 9997.12 9398.14 12199.25 8895.35 18497.28 28999.26 893.13 22897.94 11298.21 18292.74 11499.81 7496.88 10799.40 10599.27 132
HyFIR lowres test96.90 12096.49 12598.14 12199.33 6795.56 17497.38 27899.65 292.34 25697.61 13498.20 18389.29 18499.10 19196.97 9697.60 18099.77 22
MVS_Test97.28 10397.00 10098.13 12398.33 17395.97 15598.74 12298.07 25294.27 17398.44 8098.07 19192.48 11699.26 16996.43 13098.19 15999.16 146
diffmvs97.58 8597.40 8498.13 12398.32 17595.81 16898.06 22898.37 19596.20 8598.74 5898.89 10791.31 14899.25 17098.16 3498.52 14599.34 119
lupinMVS97.44 9497.22 9198.12 12598.07 19495.76 16997.68 26297.76 27394.50 16798.79 5498.61 13692.34 11899.30 16797.58 7299.59 7599.31 125
CS-MVS-test97.90 6797.83 6298.11 12698.14 19096.49 13199.35 1398.40 18896.31 8298.27 9098.31 17194.42 9499.05 19598.07 3899.20 11398.80 177
GeoE96.58 13296.07 13798.10 12798.35 16695.89 16599.34 1598.12 23893.12 22996.09 18998.87 10989.71 17698.97 20892.95 24098.08 16399.43 113
MVS94.67 22993.54 26798.08 12896.88 27896.56 12898.19 21398.50 17178.05 36092.69 29298.02 19491.07 15499.63 13290.09 29498.36 15598.04 212
CHOSEN 1792x268897.12 11296.80 10798.08 12899.30 7794.56 22298.05 22999.71 193.57 21197.09 14698.91 10688.17 21499.89 3896.87 11099.56 8499.81 10
CS-MVS97.94 6497.90 6098.06 13098.04 19896.85 11599.04 5898.39 19196.17 8698.50 7598.29 17494.60 8599.02 20398.61 899.43 10198.30 205
jason97.32 10297.08 9698.06 13097.45 24195.59 17297.87 24897.91 26894.79 15398.55 7398.83 11591.12 15199.23 17397.58 7299.60 7299.34 119
jason: jason.
Fast-Effi-MVS+96.28 14395.70 15398.03 13298.29 17795.97 15598.58 15398.25 21891.74 27495.29 20197.23 26091.03 15599.15 18292.90 24297.96 16698.97 166
baseline195.84 16195.12 17998.01 13398.49 16095.98 15098.73 12697.03 31795.37 12396.22 18698.19 18489.96 17299.16 17994.60 18787.48 32698.90 172
EPP-MVSNet97.46 9097.28 8897.99 13498.64 14995.38 18199.33 1898.31 20493.61 21097.19 14399.07 8394.05 9999.23 17396.89 10498.43 15299.37 118
thisisatest053096.01 15195.36 16697.97 13598.38 16495.52 17798.88 9494.19 36094.04 17997.64 13298.31 17183.82 29899.46 15895.29 16997.70 17798.93 170
F-COLMAP97.09 11496.80 10797.97 13599.45 5794.95 20398.55 16198.62 14493.02 23296.17 18898.58 14194.01 10099.81 7493.95 21098.90 12699.14 149
nrg03096.28 14395.72 14897.96 13796.90 27798.15 6199.39 898.31 20495.47 11694.42 22698.35 16492.09 12898.69 24097.50 8089.05 30997.04 239
API-MVS97.41 9797.25 8997.91 13898.70 14396.80 11698.82 10698.69 12194.53 16498.11 9398.28 17594.50 9199.57 13894.12 20599.49 9397.37 231
CDS-MVSNet96.99 11696.69 11697.90 13998.05 19795.98 15098.20 20998.33 20193.67 20796.95 15398.49 14993.54 10598.42 26995.24 17297.74 17599.31 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet95.36 18794.53 20497.86 14098.10 19395.13 19398.85 9997.75 27490.46 30798.36 8499.39 1673.27 35699.64 12997.98 4296.58 19998.81 176
MVSFormer97.57 8697.49 7897.84 14198.07 19495.76 16999.47 598.40 18894.98 14598.79 5498.83 11592.34 11898.41 27696.91 10099.59 7599.34 119
Vis-MVSNet (Re-imp)96.87 12196.55 12297.83 14298.73 13895.46 17999.20 3498.30 21094.96 14796.60 17198.87 10990.05 17098.59 25293.67 21998.60 14199.46 109
MSDG95.93 15795.30 17297.83 14298.90 12595.36 18296.83 32198.37 19591.32 29094.43 22598.73 12690.27 16899.60 13590.05 29798.82 13398.52 195
test_part194.82 21893.82 24997.82 14498.84 13297.82 7799.03 6298.81 7992.31 26092.51 29997.89 20881.96 30598.67 24494.80 18288.24 31896.98 242
h-mvs3396.17 14695.62 15797.81 14599.03 11394.45 22498.64 14698.75 10597.48 1998.67 6398.72 12789.76 17499.86 5297.95 4381.59 34999.11 152
131496.25 14595.73 14797.79 14697.13 26395.55 17698.19 21398.59 14793.47 21492.03 31097.82 21891.33 14799.49 15194.62 18698.44 15098.32 204
tttt051796.07 14895.51 16097.78 14798.41 16394.84 20699.28 2194.33 35894.26 17497.64 13298.64 13584.05 29199.47 15795.34 16597.60 18099.03 160
PAPM94.95 21294.00 23697.78 14797.04 26895.65 17196.03 33798.25 21891.23 29594.19 23897.80 22091.27 14998.86 22882.61 34997.61 17998.84 175
thisisatest051595.61 17594.89 19097.76 14998.15 18995.15 19196.77 32294.41 35692.95 23597.18 14497.43 24984.78 27799.45 15994.63 18497.73 17698.68 185
Anonymous2024052995.10 20294.22 22197.75 15099.01 11694.26 23398.87 9698.83 7185.79 34896.64 16898.97 9378.73 32899.85 5396.27 13394.89 22699.12 151
TAPA-MVS93.98 795.35 18894.56 20397.74 15199.13 10794.83 20898.33 18998.64 14086.62 34096.29 18598.61 13694.00 10199.29 16880.00 35599.41 10399.09 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
xiu_mvs_v1_base_debu97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base_debi97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
TAMVS97.02 11596.79 10997.70 15598.06 19695.31 18698.52 16398.31 20493.95 18697.05 15198.61 13693.49 10698.52 25895.33 16697.81 17199.29 130
VPA-MVSNet95.75 16595.11 18097.69 15697.24 25297.27 9698.94 8299.23 1295.13 13695.51 19797.32 25485.73 26198.91 21997.33 8689.55 30196.89 255
BH-RMVSNet95.92 15895.32 17097.69 15698.32 17594.64 21498.19 21397.45 29894.56 16396.03 19198.61 13685.02 27299.12 18590.68 28899.06 11899.30 128
Anonymous20240521195.28 19294.49 20697.67 15899.00 11793.75 24798.70 13597.04 31690.66 30396.49 17998.80 11878.13 33399.83 5996.21 13695.36 22599.44 112
FIs96.51 13496.12 13697.67 15897.13 26397.54 8799.36 1199.22 1495.89 9694.03 24698.35 16491.98 13198.44 26796.40 13192.76 26397.01 240
thres600view795.49 17694.77 19397.67 15898.98 12195.02 19698.85 9996.90 32595.38 12196.63 16996.90 29384.29 28499.59 13688.65 31796.33 20798.40 199
thres40095.38 18494.62 20097.65 16198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20998.40 199
PS-MVSNAJ97.73 7497.77 6497.62 16298.68 14695.58 17397.34 28498.51 16697.29 3398.66 6797.88 20994.51 8899.90 3697.87 5099.17 11697.39 229
VDD-MVS95.82 16395.23 17497.61 16398.84 13293.98 23998.68 13897.40 30295.02 14497.95 11099.34 3374.37 35499.78 9998.64 496.80 19299.08 157
ET-MVSNet_ETH3D94.13 26492.98 27997.58 16498.22 18096.20 14497.31 28795.37 34794.53 16479.56 36097.63 23486.51 24797.53 33396.91 10090.74 28699.02 161
UniMVSNet (Re)95.78 16495.19 17697.58 16496.99 27197.47 8998.79 11799.18 1695.60 10993.92 24997.04 27991.68 13698.48 26095.80 15187.66 32596.79 265
xiu_mvs_v2_base97.66 7897.70 6797.56 16698.61 15295.46 17997.44 27398.46 17697.15 4598.65 6898.15 18694.33 9599.80 8397.84 5498.66 14097.41 227
RRT_MVS96.04 15095.53 15897.56 16697.07 26797.32 9398.57 15898.09 24895.15 13595.02 20498.44 15388.20 21398.58 25496.17 13793.09 26096.79 265
FC-MVSNet-test96.42 13796.05 13897.53 16896.95 27297.27 9699.36 1199.23 1295.83 9993.93 24898.37 16292.00 13098.32 28596.02 14392.72 26497.00 241
XXY-MVS95.20 19794.45 21197.46 16996.75 28596.56 12898.86 9898.65 13993.30 22293.27 27498.27 17884.85 27698.87 22694.82 18091.26 28096.96 244
NR-MVSNet94.98 21094.16 22697.44 17096.53 29597.22 10298.74 12298.95 3494.96 14789.25 33597.69 22689.32 18398.18 29894.59 18987.40 32896.92 247
tfpn200view995.32 19194.62 20097.43 17198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20997.76 218
thres100view90095.38 18494.70 19797.41 17298.98 12194.92 20498.87 9696.90 32595.38 12196.61 17096.88 29484.29 28499.56 14088.11 31896.29 20997.76 218
PMMVS96.60 12896.33 12997.41 17297.90 20693.93 24097.35 28398.41 18692.84 24097.76 12197.45 24791.10 15399.20 17696.26 13497.91 16799.11 152
VPNet94.99 20894.19 22397.40 17497.16 26196.57 12798.71 13198.97 3095.67 10694.84 20898.24 18180.36 31998.67 24496.46 12787.32 32996.96 244
UniMVSNet_NR-MVSNet95.71 16795.15 17797.40 17496.84 28096.97 10898.74 12299.24 1095.16 13493.88 25197.72 22591.68 13698.31 28795.81 14987.25 33096.92 247
DU-MVS95.42 18194.76 19497.40 17496.53 29596.97 10898.66 14498.99 2995.43 11893.88 25197.69 22688.57 20498.31 28795.81 14987.25 33096.92 247
thres20095.25 19394.57 20297.28 17798.81 13494.92 20498.20 20997.11 31295.24 13296.54 17696.22 32284.58 28199.53 14687.93 32296.50 20397.39 229
RPMNet92.81 29291.34 30097.24 17897.00 26993.43 25994.96 34898.80 9082.27 35596.93 15592.12 35786.98 24199.82 6776.32 36396.65 19798.46 197
WR-MVS95.15 19994.46 20997.22 17996.67 29096.45 13398.21 20698.81 7994.15 17593.16 27797.69 22687.51 23098.30 28995.29 16988.62 31596.90 254
CHOSEN 280x42097.18 10997.18 9297.20 18098.81 13493.27 26695.78 34199.15 1895.25 13096.79 16598.11 18992.29 12099.07 19498.56 1099.85 399.25 134
IB-MVS91.98 1793.27 28491.97 29597.19 18197.47 23693.41 26197.09 30195.99 34093.32 22092.47 30195.73 33078.06 33499.53 14694.59 18982.98 34498.62 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_anonymous96.70 12696.53 12497.18 18298.19 18493.78 24498.31 19598.19 22394.01 18294.47 22098.27 17892.08 12998.46 26497.39 8397.91 16799.31 125
TR-MVS94.94 21494.20 22297.17 18397.75 21394.14 23697.59 26897.02 31992.28 26195.75 19697.64 23283.88 29598.96 21289.77 30196.15 21798.40 199
GA-MVS94.81 22094.03 23297.14 18497.15 26293.86 24296.76 32397.58 28394.00 18394.76 21397.04 27980.91 31498.48 26091.79 27196.25 21499.09 154
gg-mvs-nofinetune92.21 29890.58 30597.13 18596.75 28595.09 19495.85 33989.40 37185.43 35094.50 21981.98 36480.80 31798.40 28292.16 26098.33 15697.88 215
PVSNet_BlendedMVS96.73 12596.60 12097.12 18699.25 8895.35 18498.26 20399.26 894.28 17297.94 11297.46 24592.74 11499.81 7496.88 10793.32 25696.20 322
TranMVSNet+NR-MVSNet95.14 20094.48 20797.11 18796.45 30096.36 13899.03 6299.03 2595.04 14393.58 26197.93 20488.27 21198.03 31194.13 20486.90 33596.95 246
FMVSNet394.97 21194.26 22097.11 18798.18 18696.62 12298.56 15998.26 21793.67 20794.09 24297.10 26684.25 28698.01 31292.08 26292.14 26796.70 278
MVSTER96.06 14995.72 14897.08 18998.23 17995.93 16198.73 12698.27 21394.86 15195.07 20298.09 19088.21 21298.54 25696.59 12293.46 25196.79 265
FMVSNet294.47 24493.61 26497.04 19098.21 18196.43 13598.79 11798.27 21392.46 24993.50 26797.09 27081.16 31198.00 31491.09 27991.93 27096.70 278
XVG-OURS-SEG-HR96.51 13496.34 12897.02 19198.77 13693.76 24597.79 25698.50 17195.45 11796.94 15499.09 8087.87 22499.55 14596.76 11995.83 22297.74 220
AllTest95.24 19494.65 19996.99 19299.25 8893.21 26998.59 15198.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
TestCases96.99 19299.25 8893.21 26998.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
XVG-OURS96.55 13396.41 12696.99 19298.75 13793.76 24597.50 27298.52 16395.67 10696.83 16099.30 4088.95 19899.53 14695.88 14796.26 21397.69 223
UniMVSNet_ETH3D94.24 25793.33 27396.97 19597.19 25993.38 26398.74 12298.57 15391.21 29793.81 25598.58 14172.85 35798.77 23795.05 17593.93 24398.77 180
PVSNet91.96 1896.35 13996.15 13596.96 19699.17 10092.05 28396.08 33498.68 12493.69 20397.75 12297.80 22088.86 19999.69 12394.26 20199.01 12299.15 147
anonymousdsp95.42 18194.91 18996.94 19795.10 33895.90 16499.14 4198.41 18693.75 19593.16 27797.46 24587.50 23298.41 27695.63 16094.03 23996.50 308
hse-mvs295.71 16795.30 17296.93 19898.50 15893.53 25698.36 18598.10 24397.48 1998.67 6397.99 19889.76 17499.02 20397.95 4380.91 35398.22 207
test_djsdf96.00 15295.69 15496.93 19895.72 32595.49 17899.47 598.40 18894.98 14594.58 21697.86 21189.16 18898.41 27696.91 10094.12 23796.88 256
cascas94.63 23193.86 24796.93 19896.91 27694.27 23296.00 33898.51 16685.55 34994.54 21796.23 32084.20 28998.87 22695.80 15196.98 19097.66 224
AUN-MVS94.53 23993.73 25896.92 20198.50 15893.52 25798.34 18798.10 24393.83 19395.94 19597.98 20085.59 26499.03 20094.35 19680.94 35298.22 207
PS-MVSNAJss96.43 13696.26 13296.92 20195.84 32395.08 19599.16 3998.50 17195.87 9893.84 25498.34 16894.51 8898.61 24896.88 10793.45 25397.06 238
baseline295.11 20194.52 20596.87 20396.65 29193.56 25398.27 20294.10 36293.45 21592.02 31197.43 24987.45 23499.19 17793.88 21297.41 18497.87 216
HQP_MVS96.14 14795.90 14396.85 20497.42 24294.60 22098.80 11398.56 15597.28 3495.34 19898.28 17587.09 23899.03 20096.07 13894.27 22996.92 247
CP-MVSNet94.94 21494.30 21896.83 20596.72 28795.56 17499.11 4798.95 3493.89 18892.42 30397.90 20687.19 23698.12 30394.32 19888.21 31996.82 264
pmmvs494.69 22493.99 23896.81 20695.74 32495.94 15897.40 27697.67 27790.42 30993.37 27197.59 23689.08 19198.20 29792.97 23991.67 27396.30 320
WR-MVS_H95.05 20594.46 20996.81 20696.86 27995.82 16799.24 2599.24 1093.87 19092.53 29796.84 29890.37 16598.24 29693.24 23087.93 32296.38 315
OPM-MVS95.69 17095.33 16996.76 20896.16 31294.63 21598.43 17798.39 19196.64 6895.02 20498.78 12085.15 27199.05 19595.21 17394.20 23296.60 289
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
bset_n11_16_dypcd94.89 21694.27 21996.76 20894.41 34695.15 19195.67 34295.64 34695.53 11294.65 21497.52 24287.10 23798.29 29296.58 12491.35 27696.83 263
jajsoiax95.45 17995.03 18396.73 21095.42 33694.63 21599.14 4198.52 16395.74 10293.22 27598.36 16383.87 29698.65 24696.95 9994.04 23896.91 252
PS-CasMVS94.67 22993.99 23896.71 21196.68 28995.26 18799.13 4499.03 2593.68 20592.33 30497.95 20285.35 26898.10 30493.59 22188.16 32196.79 265
COLMAP_ROBcopyleft93.27 1295.33 19094.87 19196.71 21199.29 8093.24 26898.58 15398.11 24189.92 31893.57 26299.10 7586.37 25299.79 9590.78 28698.10 16297.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4294.78 22294.14 22896.70 21396.33 30595.22 18898.97 7698.09 24892.32 25894.31 23197.06 27688.39 20998.55 25592.90 24288.87 31396.34 316
HQP-MVS95.72 16695.40 16196.69 21497.20 25694.25 23498.05 22998.46 17696.43 7694.45 22197.73 22386.75 24498.96 21295.30 16794.18 23396.86 260
LTVRE_ROB92.95 1594.60 23293.90 24496.68 21597.41 24594.42 22698.52 16398.59 14791.69 27791.21 31798.35 16484.87 27599.04 19991.06 28193.44 25496.60 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ECVR-MVScopyleft95.95 15495.71 15196.65 21699.02 11490.86 30599.03 6291.80 36796.96 5598.10 9499.26 4581.31 31099.51 15096.90 10399.04 11999.59 85
mvs_tets95.41 18395.00 18496.65 21695.58 32994.42 22699.00 7098.55 15795.73 10393.21 27698.38 16183.45 30098.63 24797.09 9294.00 24096.91 252
v2v48294.69 22494.03 23296.65 21696.17 31094.79 21198.67 14198.08 25092.72 24294.00 24797.16 26487.69 22998.45 26592.91 24188.87 31396.72 274
BH-untuned95.95 15495.72 14896.65 21698.55 15692.26 27998.23 20497.79 27293.73 19894.62 21598.01 19688.97 19799.00 20793.04 23798.51 14698.68 185
Patchmatch-test94.42 24793.68 26296.63 22097.60 22491.76 28894.83 35297.49 29589.45 32694.14 24097.10 26688.99 19398.83 23185.37 33898.13 16199.29 130
ADS-MVSNet95.00 20794.45 21196.63 22098.00 19991.91 28596.04 33597.74 27590.15 31396.47 18096.64 30787.89 22298.96 21290.08 29597.06 18799.02 161
Anonymous2023121194.10 26793.26 27696.61 22299.11 10994.28 23199.01 6898.88 5086.43 34292.81 28797.57 23881.66 30898.68 24394.83 17989.02 31196.88 256
ACMM93.85 995.69 17095.38 16596.61 22297.61 22393.84 24398.91 8698.44 18095.25 13094.28 23298.47 15186.04 25999.12 18595.50 16393.95 24296.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114494.59 23493.92 24196.60 22496.21 30794.78 21298.59 15198.14 23691.86 27394.21 23797.02 28187.97 22098.41 27691.72 27389.57 29996.61 288
GG-mvs-BLEND96.59 22596.34 30494.98 20096.51 33188.58 37293.10 28294.34 34880.34 32098.05 31089.53 30796.99 18996.74 271
pm-mvs193.94 27493.06 27896.59 22596.49 29895.16 18998.95 8098.03 25992.32 25891.08 31997.84 21484.54 28298.41 27692.16 26086.13 34196.19 323
CR-MVSNet94.76 22394.15 22796.59 22597.00 26993.43 25994.96 34897.56 28492.46 24996.93 15596.24 31888.15 21597.88 32487.38 32496.65 19798.46 197
v894.47 24493.77 25496.57 22896.36 30394.83 20899.05 5798.19 22391.92 27093.16 27796.97 28688.82 20198.48 26091.69 27487.79 32396.39 314
GBi-Net94.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
test194.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
FMVSNet193.19 28892.07 29396.56 22997.54 23195.00 19798.82 10698.18 22690.38 31092.27 30597.07 27373.68 35597.95 31689.36 31191.30 27896.72 274
tfpnnormal93.66 27692.70 28596.55 23296.94 27395.94 15898.97 7699.19 1591.04 30091.38 31697.34 25284.94 27498.61 24885.45 33789.02 31195.11 343
v119294.32 25293.58 26596.53 23396.10 31394.45 22498.50 16898.17 23191.54 28194.19 23897.06 27686.95 24298.43 26890.14 29389.57 29996.70 278
EPMVS94.99 20894.48 20796.52 23497.22 25491.75 28997.23 29191.66 36894.11 17697.28 14096.81 29985.70 26298.84 22993.04 23797.28 18598.97 166
v1094.29 25493.55 26696.51 23596.39 30294.80 21098.99 7298.19 22391.35 28893.02 28396.99 28488.09 21798.41 27690.50 29088.41 31796.33 318
PEN-MVS94.42 24793.73 25896.49 23696.28 30694.84 20699.17 3899.00 2793.51 21292.23 30697.83 21786.10 25697.90 32092.55 25386.92 33496.74 271
v14419294.39 24993.70 26096.48 23796.06 31594.35 23098.58 15398.16 23391.45 28394.33 23097.02 28187.50 23298.45 26591.08 28089.11 30896.63 286
v7n94.19 26093.43 27196.47 23895.90 32094.38 22999.26 2398.34 20091.99 26892.76 28997.13 26588.31 21098.52 25889.48 30987.70 32496.52 303
LPG-MVS_test95.62 17395.34 16796.47 23897.46 23793.54 25498.99 7298.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
LGP-MVS_train96.47 23897.46 23793.54 25498.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
SCA95.46 17795.13 17896.46 24197.67 21991.29 30097.33 28597.60 28294.68 15896.92 15797.10 26683.97 29398.89 22392.59 25098.32 15799.20 137
CLD-MVS95.62 17395.34 16796.46 24197.52 23493.75 24797.27 29098.46 17695.53 11294.42 22698.00 19786.21 25498.97 20896.25 13594.37 22796.66 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP93.49 1095.34 18994.98 18696.43 24397.67 21993.48 25898.73 12698.44 18094.94 15092.53 29798.53 14584.50 28399.14 18395.48 16494.00 24096.66 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test111195.94 15695.78 14696.41 24498.99 12090.12 31799.04 5892.45 36696.99 5498.03 10099.27 4481.40 30999.48 15596.87 11099.04 11999.63 77
MIMVSNet93.26 28592.21 29296.41 24497.73 21793.13 27195.65 34397.03 31791.27 29494.04 24596.06 32575.33 34897.19 33886.56 32896.23 21598.92 171
v192192094.20 25993.47 27096.40 24695.98 31894.08 23798.52 16398.15 23491.33 28994.25 23497.20 26386.41 25198.42 26990.04 29889.39 30596.69 283
mvs-test196.60 12896.68 11896.37 24797.89 20791.81 28698.56 15998.10 24396.57 7196.52 17897.94 20390.81 15699.45 15995.72 15498.01 16497.86 217
EI-MVSNet95.96 15395.83 14596.36 24897.93 20493.70 25198.12 22398.27 21393.70 20295.07 20299.02 8692.23 12398.54 25694.68 18393.46 25196.84 261
PatchT93.06 29091.97 29596.35 24996.69 28892.67 27694.48 35497.08 31386.62 34097.08 14792.23 35687.94 22197.90 32078.89 35996.69 19598.49 196
v124094.06 27193.29 27596.34 25096.03 31793.90 24198.44 17598.17 23191.18 29894.13 24197.01 28386.05 25798.42 26989.13 31489.50 30396.70 278
ACMH92.88 1694.55 23793.95 24096.34 25097.63 22293.26 26798.81 11298.49 17593.43 21689.74 33098.53 14581.91 30699.08 19393.69 21693.30 25796.70 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DeepPCF-MVS96.37 297.93 6698.48 1896.30 25299.00 11789.54 32497.43 27598.87 5798.16 299.26 2199.38 2396.12 3199.64 12998.30 3199.77 2899.72 44
PatchmatchNetpermissive95.71 16795.52 15996.29 25397.58 22690.72 31096.84 32097.52 29194.06 17897.08 14796.96 28889.24 18698.90 22292.03 26698.37 15399.26 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
BH-w/o95.38 18495.08 18196.26 25498.34 17191.79 28797.70 26197.43 30092.87 23994.24 23597.22 26188.66 20298.84 22991.55 27697.70 17798.16 210
IterMVS-LS95.46 17795.21 17596.22 25598.12 19193.72 25098.32 19498.13 23793.71 20094.26 23397.31 25592.24 12298.10 30494.63 18490.12 29296.84 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test94.82 21894.36 21696.20 25697.35 24790.79 30898.34 18796.57 33892.91 23795.33 20096.44 31482.00 30499.12 18594.52 19195.78 22398.70 183
TransMVSNet (Re)92.67 29491.51 29996.15 25796.58 29394.65 21398.90 8796.73 33290.86 30289.46 33497.86 21185.62 26398.09 30686.45 32981.12 35095.71 333
DTE-MVSNet93.98 27393.26 27696.14 25896.06 31594.39 22899.20 3498.86 6393.06 23091.78 31297.81 21985.87 26097.58 33190.53 28986.17 33996.46 312
cl2294.68 22694.19 22396.13 25998.11 19293.60 25296.94 30898.31 20492.43 25393.32 27396.87 29686.51 24798.28 29494.10 20791.16 28196.51 306
miper_enhance_ethall95.10 20294.75 19596.12 26097.53 23393.73 24996.61 32898.08 25092.20 26593.89 25096.65 30692.44 11798.30 28994.21 20291.16 28196.34 316
test250694.44 24693.91 24396.04 26199.02 11488.99 33499.06 5579.47 37796.96 5598.36 8499.26 4577.21 34199.52 14996.78 11799.04 11999.59 85
cl____94.51 24194.01 23596.02 26297.58 22693.40 26297.05 30297.96 26491.73 27692.76 28997.08 27289.06 19298.13 30292.61 24790.29 29196.52 303
DIV-MVS_self_test94.52 24094.03 23295.99 26397.57 23093.38 26397.05 30297.94 26591.74 27492.81 28797.10 26689.12 18998.07 30892.60 24890.30 29096.53 300
EPNet_dtu95.21 19694.95 18895.99 26396.17 31090.45 31498.16 21997.27 30896.77 6293.14 28098.33 16990.34 16698.42 26985.57 33598.81 13499.09 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth95.01 20694.69 19895.97 26597.70 21893.31 26597.02 30498.07 25292.23 26293.51 26696.96 28891.85 13398.15 30093.68 21791.16 28196.44 313
Baseline_NR-MVSNet94.35 25093.81 25095.96 26696.20 30894.05 23898.61 15096.67 33691.44 28493.85 25397.60 23588.57 20498.14 30194.39 19486.93 33395.68 334
JIA-IIPM93.35 28192.49 28895.92 26796.48 29990.65 31195.01 34796.96 32185.93 34696.08 19087.33 36187.70 22898.78 23691.35 27895.58 22498.34 202
Fast-Effi-MVS+-dtu95.87 15995.85 14495.91 26897.74 21691.74 29098.69 13798.15 23495.56 11194.92 20697.68 22988.98 19698.79 23593.19 23297.78 17397.20 235
v14894.29 25493.76 25695.91 26896.10 31392.93 27498.58 15397.97 26292.59 24793.47 26896.95 29088.53 20798.32 28592.56 25287.06 33296.49 309
c3_l94.79 22194.43 21395.89 27097.75 21393.12 27297.16 29898.03 25992.23 26293.46 26997.05 27891.39 14498.01 31293.58 22289.21 30796.53 300
ACMH+92.99 1494.30 25393.77 25495.88 27197.81 21192.04 28498.71 13198.37 19593.99 18490.60 32498.47 15180.86 31699.05 19592.75 24692.40 26696.55 297
Patchmtry93.22 28692.35 29095.84 27296.77 28293.09 27394.66 35397.56 28487.37 33892.90 28596.24 31888.15 21597.90 32087.37 32590.10 29396.53 300
test-LLR95.10 20294.87 19195.80 27396.77 28289.70 32196.91 31195.21 34895.11 13894.83 21095.72 33287.71 22698.97 20893.06 23598.50 14798.72 181
test-mter94.08 26993.51 26895.80 27396.77 28289.70 32196.91 31195.21 34892.89 23894.83 21095.72 33277.69 33698.97 20893.06 23598.50 14798.72 181
test0.0.03 194.08 26993.51 26895.80 27395.53 33192.89 27597.38 27895.97 34195.11 13892.51 29996.66 30487.71 22696.94 34287.03 32693.67 24697.57 225
XVG-ACMP-BASELINE94.54 23894.14 22895.75 27696.55 29491.65 29298.11 22598.44 18094.96 14794.22 23697.90 20679.18 32699.11 18894.05 20993.85 24496.48 310
pmmvs593.65 27892.97 28095.68 27795.49 33292.37 27898.20 20997.28 30789.66 32392.58 29597.26 25782.14 30398.09 30693.18 23390.95 28596.58 291
RRT_test8_iter0594.56 23694.19 22395.67 27897.60 22491.34 29698.93 8498.42 18594.75 15493.39 27097.87 21079.00 32798.61 24896.78 11790.99 28497.07 237
TESTMET0.1,194.18 26293.69 26195.63 27996.92 27489.12 33096.91 31194.78 35393.17 22694.88 20796.45 31378.52 32998.92 21893.09 23498.50 14798.85 173
CostFormer94.95 21294.73 19695.60 28097.28 25089.06 33197.53 27196.89 32789.66 32396.82 16296.72 30286.05 25798.95 21695.53 16296.13 21898.79 178
Effi-MVS+-dtu96.29 14196.56 12195.51 28197.89 20790.22 31698.80 11398.10 24396.57 7196.45 18296.66 30490.81 15698.91 21995.72 15497.99 16597.40 228
D2MVS95.18 19895.08 18195.48 28297.10 26592.07 28298.30 19799.13 1994.02 18192.90 28596.73 30189.48 17998.73 23994.48 19393.60 25095.65 335
eth_miper_zixun_eth94.68 22694.41 21495.47 28397.64 22191.71 29196.73 32598.07 25292.71 24393.64 25997.21 26290.54 16398.17 29993.38 22589.76 29696.54 298
tpm294.19 26093.76 25695.46 28497.23 25389.04 33297.31 28796.85 33187.08 33996.21 18796.79 30083.75 29998.74 23892.43 25896.23 21598.59 192
tpmrst95.63 17295.69 15495.44 28597.54 23188.54 34096.97 30697.56 28493.50 21397.52 13896.93 29289.49 17899.16 17995.25 17196.42 20598.64 190
ITE_SJBPF95.44 28597.42 24291.32 29997.50 29395.09 14193.59 26098.35 16481.70 30798.88 22589.71 30393.39 25596.12 324
MVP-Stereo94.28 25693.92 24195.35 28794.95 34092.60 27797.97 23797.65 27891.61 28090.68 32397.09 27086.32 25398.42 26989.70 30499.34 10895.02 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs94.60 23294.36 21695.33 28897.46 23788.60 33996.88 31797.68 27691.29 29293.80 25696.42 31588.58 20399.24 17291.06 28196.04 22098.17 209
MVS_030492.81 29292.01 29495.23 28997.46 23791.33 29898.17 21898.81 7991.13 29993.80 25695.68 33566.08 36398.06 30990.79 28596.13 21896.32 319
TDRefinement91.06 30789.68 31295.21 29085.35 36891.49 29598.51 16797.07 31491.47 28288.83 33997.84 21477.31 34099.09 19292.79 24577.98 35695.04 345
USDC93.33 28392.71 28495.21 29096.83 28190.83 30796.91 31197.50 29393.84 19190.72 32298.14 18777.69 33698.82 23289.51 30893.21 25995.97 328
pmmvs691.77 30090.63 30495.17 29294.69 34591.24 30198.67 14197.92 26786.14 34489.62 33197.56 24075.79 34798.34 28390.75 28784.56 34395.94 329
tpm94.13 26493.80 25195.12 29396.50 29787.91 34897.44 27395.89 34492.62 24596.37 18496.30 31784.13 29098.30 28993.24 23091.66 27499.14 149
miper_lstm_enhance94.33 25194.07 23195.11 29497.75 21390.97 30497.22 29298.03 25991.67 27892.76 28996.97 28690.03 17197.78 32692.51 25589.64 29896.56 295
ADS-MVSNet294.58 23594.40 21595.11 29498.00 19988.74 33796.04 33597.30 30590.15 31396.47 18096.64 30787.89 22297.56 33290.08 29597.06 18799.02 161
tpm cat193.36 28092.80 28295.07 29697.58 22687.97 34796.76 32397.86 27082.17 35693.53 26396.04 32686.13 25599.13 18489.24 31295.87 22198.10 211
PVSNet_088.72 1991.28 30490.03 31095.00 29797.99 20187.29 35294.84 35198.50 17192.06 26789.86 32995.19 33879.81 32299.39 16292.27 25969.79 36398.33 203
ppachtmachnet_test93.22 28692.63 28694.97 29895.45 33490.84 30696.88 31797.88 26990.60 30492.08 30997.26 25788.08 21897.86 32585.12 33990.33 28996.22 321
LCM-MVSNet-Re95.22 19595.32 17094.91 29998.18 18687.85 34998.75 11995.66 34595.11 13888.96 33696.85 29790.26 16997.65 32895.65 15998.44 15099.22 136
dp94.15 26393.90 24494.90 30097.31 24986.82 35496.97 30697.19 31191.22 29696.02 19296.61 30985.51 26599.02 20390.00 29994.30 22898.85 173
testgi93.06 29092.45 28994.88 30196.43 30189.90 31898.75 11997.54 29095.60 10991.63 31597.91 20574.46 35397.02 34086.10 33193.67 24697.72 222
IterMVS-SCA-FT94.11 26693.87 24694.85 30297.98 20390.56 31397.18 29598.11 24193.75 19592.58 29597.48 24483.97 29397.41 33592.48 25791.30 27896.58 291
OurMVSNet-221017-094.21 25894.00 23694.85 30295.60 32889.22 32998.89 9197.43 30095.29 12792.18 30798.52 14882.86 30198.59 25293.46 22491.76 27296.74 271
MDA-MVSNet-bldmvs89.97 31688.35 32194.83 30495.21 33791.34 29697.64 26597.51 29288.36 33471.17 36696.13 32479.22 32596.63 35083.65 34686.27 33896.52 303
IterMVS94.09 26893.85 24894.80 30597.99 20190.35 31597.18 29598.12 23893.68 20592.46 30297.34 25284.05 29197.41 33592.51 25591.33 27796.62 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo93.34 28292.86 28194.75 30695.67 32689.41 32798.75 11996.67 33693.89 18890.15 32898.25 18080.87 31598.27 29590.90 28490.64 28796.57 293
our_test_393.65 27893.30 27494.69 30795.45 33489.68 32396.91 31197.65 27891.97 26991.66 31496.88 29489.67 17797.93 31988.02 32191.49 27596.48 310
MDA-MVSNet_test_wron90.71 31089.38 31594.68 30894.83 34290.78 30997.19 29497.46 29687.60 33672.41 36595.72 33286.51 24796.71 34885.92 33386.80 33696.56 295
TinyColmap92.31 29791.53 29894.65 30996.92 27489.75 32096.92 30996.68 33590.45 30889.62 33197.85 21376.06 34698.81 23386.74 32792.51 26595.41 337
YYNet190.70 31189.39 31494.62 31094.79 34390.65 31197.20 29397.46 29687.54 33772.54 36495.74 32986.51 24796.66 34986.00 33286.76 33796.54 298
KD-MVS_2432*160089.61 31987.96 32394.54 31194.06 35091.59 29395.59 34497.63 28089.87 31988.95 33794.38 34678.28 33196.82 34384.83 34068.05 36495.21 340
miper_refine_blended89.61 31987.96 32394.54 31194.06 35091.59 29395.59 34497.63 28089.87 31988.95 33794.38 34678.28 33196.82 34384.83 34068.05 36495.21 340
FMVSNet591.81 29990.92 30294.49 31397.21 25592.09 28198.00 23597.55 28989.31 32890.86 32195.61 33674.48 35295.32 35885.57 33589.70 29796.07 326
K. test v392.55 29591.91 29794.48 31495.64 32789.24 32899.07 5494.88 35294.04 17986.78 34697.59 23677.64 33997.64 32992.08 26289.43 30496.57 293
test_040291.32 30390.27 30894.48 31496.60 29291.12 30298.50 16897.22 31086.10 34588.30 34196.98 28577.65 33897.99 31578.13 36192.94 26294.34 350
MS-PatchMatch93.84 27593.63 26394.46 31696.18 30989.45 32597.76 25798.27 21392.23 26292.13 30897.49 24379.50 32398.69 24089.75 30299.38 10695.25 339
lessismore_v094.45 31794.93 34188.44 34291.03 36986.77 34797.64 23276.23 34598.42 26990.31 29285.64 34296.51 306
pmmvs-eth3d90.36 31389.05 31894.32 31891.10 36292.12 28097.63 26796.95 32288.86 33184.91 35493.13 35278.32 33096.74 34588.70 31681.81 34894.09 354
LF4IMVS93.14 28992.79 28394.20 31995.88 32188.67 33897.66 26497.07 31493.81 19491.71 31397.65 23077.96 33598.81 23391.47 27791.92 27195.12 342
UnsupCasMVSNet_eth90.99 30889.92 31194.19 32094.08 34989.83 31997.13 30098.67 13293.69 20385.83 35196.19 32375.15 34996.74 34589.14 31379.41 35496.00 327
EG-PatchMatch MVS91.13 30690.12 30994.17 32194.73 34489.00 33398.13 22297.81 27189.22 32985.32 35396.46 31267.71 36098.42 26987.89 32393.82 24595.08 344
MIMVSNet189.67 31888.28 32293.82 32292.81 35891.08 30398.01 23397.45 29887.95 33587.90 34395.87 32867.63 36194.56 36278.73 36088.18 32095.83 331
OpenMVS_ROBcopyleft86.42 2089.00 32287.43 32793.69 32393.08 35689.42 32697.91 24296.89 32778.58 35985.86 35094.69 34369.48 35998.29 29277.13 36293.29 25893.36 359
CVMVSNet95.43 18096.04 13993.57 32497.93 20483.62 35898.12 22398.59 14795.68 10596.56 17299.02 8687.51 23097.51 33493.56 22397.44 18299.60 83
Anonymous2024052191.18 30590.44 30693.42 32593.70 35388.47 34198.94 8297.56 28488.46 33389.56 33395.08 34177.15 34396.97 34183.92 34589.55 30194.82 348
Patchmatch-RL test91.49 30290.85 30393.41 32691.37 36184.40 35692.81 35895.93 34391.87 27287.25 34494.87 34288.99 19396.53 35192.54 25482.00 34699.30 128
KD-MVS_self_test90.38 31289.38 31593.40 32792.85 35788.94 33597.95 23897.94 26590.35 31190.25 32693.96 34979.82 32195.94 35484.62 34476.69 35895.33 338
Anonymous2023120691.66 30191.10 30193.33 32894.02 35287.35 35198.58 15397.26 30990.48 30690.16 32796.31 31683.83 29796.53 35179.36 35789.90 29596.12 324
UnsupCasMVSNet_bld87.17 32585.12 32993.31 32991.94 35988.77 33694.92 35098.30 21084.30 35382.30 35790.04 35863.96 36597.25 33785.85 33474.47 36293.93 357
RPSCF94.87 21795.40 16193.26 33098.89 12682.06 36398.33 18998.06 25790.30 31296.56 17299.26 4587.09 23899.49 15193.82 21496.32 20898.24 206
new_pmnet90.06 31589.00 31993.22 33194.18 34788.32 34496.42 33396.89 32786.19 34385.67 35293.62 35077.18 34297.10 33981.61 35189.29 30694.23 351
CL-MVSNet_self_test90.11 31489.14 31793.02 33291.86 36088.23 34596.51 33198.07 25290.49 30590.49 32594.41 34484.75 27895.34 35780.79 35374.95 36095.50 336
MVS-HIRNet89.46 32188.40 32092.64 33397.58 22682.15 36294.16 35793.05 36575.73 36290.90 32082.52 36379.42 32498.33 28483.53 34798.68 13697.43 226
test20.0390.89 30990.38 30792.43 33493.48 35488.14 34698.33 18997.56 28493.40 21787.96 34296.71 30380.69 31894.13 36379.15 35886.17 33995.01 347
DSMNet-mixed92.52 29692.58 28792.33 33594.15 34882.65 36198.30 19794.26 35989.08 33092.65 29395.73 33085.01 27395.76 35586.24 33097.76 17498.59 192
EU-MVSNet93.66 27694.14 22892.25 33695.96 31983.38 35998.52 16398.12 23894.69 15792.61 29498.13 18887.36 23596.39 35391.82 27090.00 29496.98 242
pmmvs386.67 32784.86 33092.11 33788.16 36587.19 35396.63 32794.75 35479.88 35887.22 34592.75 35466.56 36295.20 35981.24 35276.56 35993.96 356
new-patchmatchnet88.50 32387.45 32691.67 33890.31 36485.89 35597.16 29897.33 30489.47 32583.63 35692.77 35376.38 34495.06 36082.70 34877.29 35794.06 355
PM-MVS87.77 32486.55 32891.40 33991.03 36383.36 36096.92 30995.18 35091.28 29386.48 34993.42 35153.27 36796.74 34589.43 31081.97 34794.11 353
CMPMVSbinary66.06 2189.70 31789.67 31389.78 34093.19 35576.56 36597.00 30598.35 19880.97 35781.57 35897.75 22274.75 35198.61 24889.85 30093.63 24894.17 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 34186.66 36675.78 36692.66 35996.72 33386.55 34892.50 35546.01 36897.90 32090.32 29182.09 34594.80 349
DeepMVS_CXcopyleft86.78 34297.09 26672.30 36895.17 35175.92 36184.34 35595.19 33870.58 35895.35 35679.98 35689.04 31092.68 360
LCM-MVSNet78.70 32976.24 33486.08 34377.26 37471.99 36994.34 35596.72 33361.62 36676.53 36189.33 35933.91 37492.78 36581.85 35074.60 36193.46 358
PMMVS277.95 33175.44 33585.46 34482.54 36974.95 36794.23 35693.08 36472.80 36374.68 36287.38 36036.36 37391.56 36673.95 36463.94 36689.87 361
N_pmnet87.12 32687.77 32585.17 34595.46 33361.92 37297.37 28070.66 37885.83 34788.73 34096.04 32685.33 27097.76 32780.02 35490.48 28895.84 330
Gipumacopyleft78.40 33076.75 33383.38 34695.54 33080.43 36479.42 36797.40 30264.67 36573.46 36380.82 36545.65 36993.14 36466.32 36687.43 32776.56 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method79.03 32878.17 33181.63 34786.06 36754.40 37782.75 36696.89 32739.54 37180.98 35995.57 33758.37 36694.73 36184.74 34378.61 35595.75 332
ANet_high69.08 33365.37 33780.22 34865.99 37671.96 37090.91 36290.09 37082.62 35449.93 37278.39 36629.36 37581.75 36962.49 36738.52 37086.95 364
FPMVS77.62 33277.14 33279.05 34979.25 37260.97 37395.79 34095.94 34265.96 36467.93 36794.40 34537.73 37288.88 36868.83 36588.46 31687.29 362
MVEpermissive62.14 2263.28 33859.38 34174.99 35074.33 37565.47 37185.55 36480.50 37652.02 36951.10 37175.00 36910.91 37980.50 37051.60 36953.40 36778.99 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt68.90 33466.97 33674.68 35150.78 37859.95 37487.13 36383.47 37538.80 37262.21 36896.23 32064.70 36476.91 37388.91 31530.49 37187.19 363
PMVScopyleft61.03 2365.95 33563.57 33973.09 35257.90 37751.22 37885.05 36593.93 36354.45 36744.32 37383.57 36213.22 37689.15 36758.68 36881.00 35178.91 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 33664.25 33867.02 35382.28 37059.36 37591.83 36185.63 37352.69 36860.22 36977.28 36741.06 37180.12 37146.15 37041.14 36861.57 369
EMVS64.07 33763.26 34066.53 35481.73 37158.81 37691.85 36084.75 37451.93 37059.09 37075.13 36843.32 37079.09 37242.03 37139.47 36961.69 368
wuyk23d30.17 33930.18 34330.16 35578.61 37343.29 37966.79 36814.21 37917.31 37314.82 37611.93 37511.55 37841.43 37437.08 37219.30 3725.76 372
test12320.95 34223.72 34512.64 35613.54 3808.19 38096.55 3306.13 3817.48 37516.74 37537.98 37212.97 3776.05 37516.69 3735.43 37423.68 370
testmvs21.48 34124.95 34411.09 35714.89 3796.47 38196.56 3299.87 3807.55 37417.93 37439.02 3719.43 3805.90 37616.56 37412.72 37320.91 371
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k23.98 34031.98 3420.00 3580.00 3810.00 3820.00 36998.59 1470.00 3760.00 37798.61 13690.60 1620.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas7.88 34410.50 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37694.51 880.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re8.20 34310.94 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37798.43 1540.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
FOURS199.82 198.66 2699.69 198.95 3497.46 2299.39 15
PC_three_145295.08 14299.60 599.16 6697.86 298.47 26397.52 7999.72 5299.74 35
test_one_060199.66 2899.25 298.86 6397.55 1599.20 2599.47 897.57 6
eth-test20.00 381
eth-test0.00 381
ZD-MVS99.46 5398.70 2398.79 9593.21 22498.67 6398.97 9395.70 4799.83 5996.07 13899.58 78
RE-MVS-def98.34 2999.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.29 6697.72 6099.65 6299.71 48
IU-MVS99.71 2199.23 798.64 14095.28 12899.63 498.35 2999.81 1099.83 7
test_241102_TWO98.87 5797.65 999.53 999.48 697.34 1199.94 398.43 2399.80 1799.83 7
test_241102_ONE99.71 2199.24 598.87 5797.62 1199.73 199.39 1697.53 799.74 110
9.1498.06 5199.47 5098.71 13198.82 7394.36 17199.16 3099.29 4196.05 3599.81 7497.00 9499.71 54
save fliter99.46 5398.38 4098.21 20698.71 11797.95 3
test_0728_THIRD97.32 3199.45 1199.46 1197.88 199.94 398.47 1999.86 199.85 4
test072699.72 1399.25 299.06 5598.88 5097.62 1199.56 699.50 497.42 9
GSMVS99.20 137
test_part299.63 3199.18 1099.27 20
sam_mvs189.45 18099.20 137
sam_mvs88.99 193
MTGPAbinary98.74 107
test_post196.68 32630.43 37487.85 22598.69 24092.59 250
test_post31.83 37388.83 20098.91 219
patchmatchnet-post95.10 34089.42 18198.89 223
MTMP98.89 9194.14 361
gm-plane-assit95.88 32187.47 35089.74 32296.94 29199.19 17793.32 229
test9_res96.39 13299.57 7999.69 55
TEST999.31 7298.50 3497.92 24098.73 11192.63 24497.74 12398.68 13096.20 2699.80 83
test_899.29 8098.44 3697.89 24698.72 11392.98 23397.70 12698.66 13396.20 2699.80 83
agg_prior295.87 14899.57 7999.68 61
agg_prior99.30 7798.38 4098.72 11397.57 13699.81 74
test_prior498.01 6797.86 249
test_prior297.80 25496.12 9097.89 11798.69 12895.96 3996.89 10499.60 72
旧先验297.57 27091.30 29198.67 6399.80 8395.70 158
新几何297.64 265
旧先验199.29 8097.48 8898.70 12099.09 8095.56 5099.47 9599.61 80
无先验97.58 26998.72 11391.38 28599.87 4793.36 22799.60 83
原ACMM297.67 263
test22299.23 9597.17 10497.40 27698.66 13588.68 33298.05 9798.96 9994.14 9899.53 8999.61 80
testdata299.89 3891.65 275
segment_acmp96.85 14
testdata197.32 28696.34 80
plane_prior797.42 24294.63 215
plane_prior697.35 24794.61 21887.09 238
plane_prior598.56 15599.03 20096.07 13894.27 22996.92 247
plane_prior498.28 175
plane_prior394.61 21897.02 5295.34 198
plane_prior298.80 11397.28 34
plane_prior197.37 246
plane_prior94.60 22098.44 17596.74 6494.22 231
n20.00 382
nn0.00 382
door-mid94.37 357
test1198.66 135
door94.64 355
HQP5-MVS94.25 234
HQP-NCC97.20 25698.05 22996.43 7694.45 221
ACMP_Plane97.20 25698.05 22996.43 7694.45 221
BP-MVS95.30 167
HQP4-MVS94.45 22198.96 21296.87 258
HQP3-MVS98.46 17694.18 233
HQP2-MVS86.75 244
NP-MVS97.28 25094.51 22397.73 223
MDTV_nov1_ep13_2view84.26 35796.89 31690.97 30197.90 11689.89 17393.91 21199.18 145
MDTV_nov1_ep1395.40 16197.48 23588.34 34396.85 31997.29 30693.74 19797.48 13997.26 25789.18 18799.05 19591.92 26997.43 183
ACMMP++_ref92.97 261
ACMMP++93.61 249
Test By Simon94.64 83