This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19499.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19598.52 2799.37 798.71 11397.09 4592.99 27099.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19798.81 7691.63 26598.44 7298.85 10493.98 9899.82 6394.11 19499.69 5299.64 70
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 25992.30 27999.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35295.90 4099.89 3597.85 4499.74 4199.78 13
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22798.73 10792.98 22097.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19498.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17798.68 12093.18 21298.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24098.72 10993.16 21497.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 22998.67 12892.57 23598.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28598.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23599.34 10299.43 106
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24198.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20798.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
新几何199.16 5099.34 6298.01 6298.69 11790.06 30098.13 8298.95 9594.60 8299.89 3591.97 25599.47 9099.59 80
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20198.68 12090.14 29998.01 9498.97 8794.80 7999.87 4493.36 21599.46 9399.61 75
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19797.64 7699.35 1099.06 2297.02 4793.75 24499.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17798.89 4692.62 23298.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24596.74 5598.00 9697.65 21790.80 15399.48 14998.37 2396.56 19099.19 132
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24598.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23792.26 11699.49 14598.28 2796.28 20299.08 147
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
QAPM96.29 13795.40 15498.96 6797.85 19497.60 7999.23 2198.93 3789.76 30393.11 26799.02 8089.11 18299.93 1591.99 25499.62 6699.34 111
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33297.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24398.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 22999.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21398.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21598.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18799.31 10499.02 151
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18398.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18598.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22895.99 18199.37 2292.12 12299.87 4493.67 20799.57 7598.97 156
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22699.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21097.81 10798.97 8795.18 6899.83 5593.84 20199.46 9399.50 91
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27098.57 14793.33 20696.67 15697.57 22594.30 9299.56 13691.05 27098.59 13399.47 98
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18898.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19398.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15097.00 10198.14 20898.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 30894.52 20499.35 2891.85 12899.85 4992.89 23198.88 11999.68 57
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23498.74 10293.84 17996.54 16598.18 17485.34 25999.75 10495.93 13396.35 19699.15 138
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31798.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EPNet97.28 10096.87 10398.51 9294.98 32596.14 13998.90 7897.02 30498.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20598.10 23492.92 22394.84 19598.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20398.87 12199.52 85
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22198.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32393.40 20498.62 6299.20 5274.99 33299.63 12897.72 5297.20 17699.46 102
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24297.07 13897.96 18891.54 13799.75 10493.68 20598.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24598.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20898.76 9892.41 24196.39 17298.31 16294.92 7699.78 9594.06 19698.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS93.45 1194.68 21693.43 25998.42 10198.62 14196.77 11195.48 33098.20 21484.63 33393.34 25898.32 16188.55 19899.81 7084.80 32798.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 24994.59 8399.39 15597.62 6199.10 11198.70 172
ETV-MVS97.96 5897.81 5998.40 10398.42 15197.27 9098.73 11798.55 15196.84 5198.38 7597.44 23495.39 5599.35 15897.62 6198.89 11898.58 184
Effi-MVS+97.12 10996.69 11398.39 10498.19 17196.72 11397.37 26898.43 17893.71 18797.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24798.07 24192.10 25294.79 19997.29 24291.75 13099.56 13694.17 19196.50 19399.58 82
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24697.32 8799.21 2898.97 3089.96 30191.14 30399.05 7986.64 23799.92 2193.38 21399.47 9097.73 208
casdiffmvs97.63 7797.41 8098.28 10898.33 16096.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
EIA-MVS97.75 7097.58 6798.27 10998.38 15396.44 12699.01 6098.60 13995.88 8797.26 13097.53 22894.97 7499.33 16097.38 7699.20 10799.05 149
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 22999.06 2293.72 18696.92 14698.06 18188.50 20099.65 12391.77 25999.00 11498.66 178
testdata98.26 11199.20 9795.36 17498.68 12091.89 25798.60 6499.10 6994.44 9099.82 6394.27 18899.44 9599.58 82
baseline97.64 7697.44 7998.25 11298.35 15596.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25195.39 10997.23 13198.99 8691.11 14798.93 20594.60 17598.59 13399.47 98
CANet_DTU96.96 11496.55 11998.21 11498.17 17596.07 14197.98 22498.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21797.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18898.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
UGNet96.78 12196.30 12798.19 11798.24 16595.89 15798.88 8598.93 3797.39 2396.81 15297.84 20082.60 29199.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27799.26 893.13 21597.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26699.65 292.34 24397.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
MVS_Test97.28 10097.00 9798.13 12098.33 16095.97 14798.74 11398.07 24194.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
diffmvs97.58 8297.40 8198.13 12098.32 16295.81 15998.06 21698.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18095.76 16097.68 25097.76 26194.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
MVS94.67 21993.54 25598.08 12396.88 26496.56 12198.19 20198.50 16678.05 34292.69 27898.02 18391.07 14999.63 12890.09 28198.36 14698.04 199
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21799.71 193.57 19897.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
jason97.32 9997.08 9398.06 12597.45 22795.59 16397.87 23597.91 25694.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16495.97 14798.58 14398.25 21091.74 26095.29 18897.23 24691.03 15099.15 17692.90 22997.96 15698.97 156
baseline195.84 15495.12 17198.01 12798.49 14995.98 14298.73 11797.03 30295.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19797.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
thisisatest053096.01 14695.36 15997.97 12998.38 15395.52 16998.88 8594.19 34394.04 16797.64 12098.31 16283.82 28799.46 15195.29 15897.70 16798.93 160
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21896.17 17798.58 13294.01 9699.81 7093.95 19898.90 11799.14 140
nrg03096.28 13995.72 14397.96 13196.90 26398.15 5699.39 598.31 19695.47 10594.42 21298.35 15592.09 12398.69 22897.50 7289.05 29897.04 226
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19399.49 8897.37 218
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18395.98 14298.20 19798.33 19393.67 19496.95 14298.49 14093.54 10098.42 25795.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet95.36 17994.53 19697.86 13498.10 17995.13 18498.85 9097.75 26290.46 29298.36 7699.39 1473.27 33899.64 12597.98 3696.58 18998.81 166
MVSFormer97.57 8397.49 7597.84 13598.07 18095.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26496.91 9299.59 7199.34 111
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24093.67 20798.60 13299.46 102
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 30998.37 18791.32 27694.43 21198.73 11890.27 16399.60 13190.05 28498.82 12498.52 185
131496.25 14195.73 14297.79 13897.13 24995.55 16898.19 20198.59 14193.47 20192.03 29597.82 20491.33 14299.49 14594.62 17498.44 14198.32 194
tttt051796.07 14395.51 15397.78 13998.41 15294.84 19799.28 1694.33 34194.26 16297.64 12098.64 12684.05 28099.47 15095.34 15497.60 17099.03 150
PAPM94.95 20494.00 22797.78 13997.04 25495.65 16296.03 32498.25 21091.23 28194.19 22497.80 20691.27 14498.86 21682.61 33197.61 16998.84 165
thisisatest051595.61 16794.89 18297.76 14198.15 17695.15 18396.77 31094.41 33992.95 22297.18 13397.43 23584.78 26799.45 15294.63 17297.73 16698.68 175
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 32996.64 15798.97 8778.73 31399.85 4996.27 12194.89 21699.12 142
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17798.64 13686.62 32196.29 17498.61 12794.00 9799.29 16280.00 33699.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15595.98 14297.86 23698.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 218
TAMVS97.02 11296.79 10697.70 14798.06 18295.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24695.33 15597.81 16199.29 122
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23897.27 9098.94 7499.23 1295.13 12595.51 18497.32 24085.73 25298.91 20797.33 7889.55 29196.89 241
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16294.64 20598.19 20197.45 28394.56 15196.03 17998.61 12785.02 26299.12 17990.68 27599.06 11299.30 120
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30190.66 28996.49 16898.80 11078.13 31699.83 5596.21 12495.36 21599.44 105
FIs96.51 13096.12 13397.67 15097.13 24997.54 8199.36 899.22 1495.89 8694.03 23298.35 15591.98 12698.44 25496.40 11992.76 25397.01 227
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31095.38 11096.63 15896.90 28084.29 27399.59 13288.65 30496.33 19798.40 189
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19998.40 189
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27298.51 16197.29 2898.66 6097.88 19594.51 8599.90 3397.87 4299.17 10997.39 216
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 28795.02 13297.95 9899.34 3174.37 33699.78 9598.64 396.80 18299.08 147
ET-MVSNet_ETH3D94.13 25292.98 26797.58 15698.22 16796.20 13697.31 27595.37 33094.53 15279.56 34097.63 22186.51 23897.53 32096.91 9290.74 27699.02 151
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25797.47 8398.79 10899.18 1695.60 9993.92 23597.04 26691.68 13198.48 24895.80 13987.66 31396.79 252
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26198.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 214
RRT_MVS96.04 14595.53 15197.56 15897.07 25397.32 8798.57 14898.09 23795.15 12495.02 19198.44 14488.20 20598.58 24296.17 12593.09 25096.79 252
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25897.27 9099.36 899.23 1295.83 8993.93 23498.37 15392.00 12598.32 27396.02 13192.72 25497.00 228
XXY-MVS95.20 18994.45 20397.46 16196.75 27196.56 12198.86 8998.65 13593.30 20993.27 26098.27 16784.85 26698.87 21494.82 16991.26 27096.96 230
NR-MVSNet94.98 20294.16 21797.44 16296.53 28197.22 9598.74 11398.95 3494.96 13589.25 31897.69 21389.32 17598.18 28594.59 17787.40 31696.92 233
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 30895.33 11396.55 16396.53 29784.23 27699.56 13688.11 30596.29 19997.76 205
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31095.38 11096.61 15996.88 28184.29 27399.56 13688.11 30596.29 19997.76 205
PMMVS96.60 12596.33 12697.41 16497.90 19193.93 23097.35 27198.41 18092.84 22797.76 10997.45 23391.10 14899.20 17096.26 12297.91 15799.11 143
VPNet94.99 20094.19 21497.40 16697.16 24796.57 12098.71 12298.97 3095.67 9694.84 19598.24 17080.36 30598.67 23296.46 11587.32 31796.96 230
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26696.97 10298.74 11399.24 1095.16 12393.88 23797.72 21191.68 13198.31 27595.81 13787.25 31996.92 233
DU-MVS95.42 17394.76 18697.40 16696.53 28196.97 10298.66 13598.99 2995.43 10793.88 23797.69 21388.57 19698.31 27595.81 13787.25 31996.92 233
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19797.11 29795.24 12196.54 16596.22 30984.58 27099.53 14287.93 30996.50 19397.39 216
RPMNet92.81 28191.34 28997.24 17097.00 25593.43 24894.96 33298.80 8682.27 33796.93 14492.12 33986.98 23299.82 6376.32 34496.65 18798.46 187
WR-MVS95.15 19194.46 20197.22 17196.67 27696.45 12598.21 19498.81 7694.15 16393.16 26397.69 21387.51 22298.30 27795.29 15888.62 30496.90 240
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25595.78 32899.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
IB-MVS91.98 1793.27 27291.97 28397.19 17397.47 22293.41 25097.09 28995.99 32493.32 20792.47 28695.73 31778.06 31799.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_anonymous96.70 12396.53 12197.18 17498.19 17193.78 23498.31 18398.19 21594.01 17094.47 20698.27 16792.08 12498.46 25197.39 7597.91 15799.31 117
TR-MVS94.94 20694.20 21397.17 17597.75 19894.14 22697.59 25697.02 30492.28 24795.75 18397.64 21983.88 28498.96 20089.77 28896.15 20798.40 189
GA-MVS94.81 21094.03 22397.14 17697.15 24893.86 23296.76 31197.58 26994.00 17194.76 20097.04 26680.91 30098.48 24891.79 25896.25 20499.09 144
gg-mvs-nofinetune92.21 28790.58 29497.13 17796.75 27195.09 18595.85 32689.40 35285.43 33194.50 20581.98 34680.80 30398.40 27092.16 24798.33 14797.88 202
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19199.26 894.28 16097.94 10097.46 23192.74 10999.81 7096.88 9893.32 24696.20 309
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28696.36 13099.03 5699.03 2595.04 13193.58 24797.93 19188.27 20398.03 29894.13 19286.90 32496.95 232
FMVSNet394.97 20394.26 21197.11 17998.18 17396.62 11598.56 14998.26 20993.67 19494.09 22897.10 25384.25 27598.01 29992.08 24992.14 25796.70 265
MVSTER96.06 14495.72 14397.08 18198.23 16695.93 15398.73 11798.27 20594.86 13995.07 18998.09 17988.21 20498.54 24496.59 11193.46 24196.79 252
FMVSNet294.47 23393.61 25297.04 18298.21 16896.43 12798.79 10898.27 20592.46 23693.50 25397.09 25781.16 29798.00 30191.09 26691.93 26196.70 265
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24398.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 207
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25898.59 14198.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
TestCases96.99 18499.25 8693.21 25898.18 21891.36 27293.52 25098.77 11484.67 26899.72 10889.70 29197.87 15998.02 200
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26098.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 210
UniMVSNet_ETH3D94.24 24593.33 26196.97 18797.19 24593.38 25298.74 11398.57 14791.21 28393.81 24198.58 13272.85 33998.77 22595.05 16493.93 23398.77 169
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27296.08 32198.68 12093.69 19097.75 11097.80 20688.86 19199.69 11994.26 18999.01 11399.15 138
testing_290.61 30088.50 30696.95 18990.08 34595.57 16597.69 24998.06 24593.02 21876.55 34192.48 33761.18 34898.44 25495.45 15391.98 26096.84 248
anonymousdsp95.42 17394.91 18196.94 19095.10 32495.90 15699.14 3698.41 18093.75 18293.16 26397.46 23187.50 22498.41 26495.63 14894.03 22996.50 295
test_djsdf96.00 14795.69 14896.93 19195.72 31195.49 17099.47 298.40 18294.98 13394.58 20297.86 19789.16 18098.41 26496.91 9294.12 22796.88 242
cascas94.63 22193.86 23796.93 19196.91 26294.27 22296.00 32598.51 16185.55 33094.54 20396.23 30784.20 27898.87 21495.80 13996.98 18097.66 211
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 30995.08 18699.16 3498.50 16695.87 8893.84 24098.34 15994.51 8598.61 23596.88 9893.45 24397.06 225
baseline295.11 19394.52 19796.87 19496.65 27793.56 24398.27 19094.10 34593.45 20292.02 29697.43 23587.45 22699.19 17193.88 20097.41 17497.87 203
HQP_MVS96.14 14295.90 13996.85 19597.42 22894.60 21198.80 10498.56 14997.28 2995.34 18598.28 16487.09 22999.03 19396.07 12694.27 21996.92 233
CP-MVSNet94.94 20694.30 21096.83 19696.72 27395.56 16699.11 4298.95 3493.89 17692.42 28897.90 19387.19 22898.12 29094.32 18688.21 30796.82 251
pmmvs494.69 21493.99 22996.81 19795.74 31095.94 15097.40 26497.67 26590.42 29493.37 25797.59 22389.08 18398.20 28492.97 22791.67 26496.30 307
WR-MVS_H95.05 19794.46 20196.81 19796.86 26595.82 15899.24 2099.24 1093.87 17892.53 28396.84 28590.37 16098.24 28393.24 21887.93 31096.38 302
OPM-MVS95.69 16295.33 16296.76 19996.16 29894.63 20698.43 16798.39 18496.64 5995.02 19198.78 11285.15 26199.05 18995.21 16294.20 22296.60 276
jajsoiax95.45 17195.03 17596.73 20095.42 32294.63 20699.14 3698.52 15895.74 9293.22 26198.36 15483.87 28598.65 23396.95 9194.04 22896.91 238
PS-CasMVS94.67 21993.99 22996.71 20196.68 27595.26 17999.13 3999.03 2593.68 19292.33 28997.95 18985.35 25898.10 29193.59 20988.16 30996.79 252
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20199.29 7893.24 25798.58 14398.11 23289.92 30293.57 24899.10 6986.37 24399.79 9190.78 27398.10 15397.09 223
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4294.78 21294.14 21996.70 20396.33 29195.22 18098.97 6898.09 23792.32 24594.31 21797.06 26388.39 20198.55 24392.90 22988.87 30296.34 303
HQP-MVS95.72 15995.40 15496.69 20497.20 24294.25 22498.05 21798.46 17196.43 6794.45 20797.73 20986.75 23598.96 20095.30 15694.18 22396.86 246
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20597.41 23194.42 21698.52 15398.59 14191.69 26391.21 30298.35 15584.87 26599.04 19291.06 26893.44 24496.60 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets95.41 17595.00 17696.65 20695.58 31594.42 21699.00 6298.55 15195.73 9393.21 26298.38 15283.45 28998.63 23497.09 8494.00 23096.91 238
v2v48294.69 21494.03 22396.65 20696.17 29694.79 20298.67 13298.08 23992.72 22994.00 23397.16 25187.69 22198.45 25292.91 22888.87 30296.72 261
BH-untuned95.95 14995.72 14396.65 20698.55 14692.26 26898.23 19297.79 26093.73 18594.62 20198.01 18588.97 18999.00 19693.04 22598.51 13798.68 175
Patchmatch-test94.42 23593.68 25096.63 20997.60 20991.76 27794.83 33697.49 28089.45 30894.14 22697.10 25388.99 18598.83 21985.37 32598.13 15299.29 122
ADS-MVSNet95.00 19994.45 20396.63 20998.00 18491.91 27496.04 32297.74 26390.15 29796.47 16996.64 29487.89 21498.96 20090.08 28297.06 17799.02 151
Anonymous2023121194.10 25593.26 26496.61 21199.11 10494.28 22199.01 6098.88 4986.43 32392.81 27397.57 22581.66 29698.68 23194.83 16889.02 30096.88 242
ACMM93.85 995.69 16295.38 15896.61 21197.61 20893.84 23398.91 7798.44 17595.25 11994.28 21898.47 14286.04 25099.12 17995.50 15193.95 23296.87 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114494.59 22493.92 23296.60 21396.21 29394.78 20398.59 14198.14 22891.86 25994.21 22397.02 26887.97 21298.41 26491.72 26089.57 28996.61 275
GG-mvs-BLEND96.59 21496.34 29094.98 19196.51 31988.58 35393.10 26894.34 33080.34 30698.05 29789.53 29496.99 17996.74 258
pm-mvs193.94 26293.06 26696.59 21496.49 28495.16 18198.95 7298.03 24892.32 24591.08 30497.84 20084.54 27198.41 26492.16 24786.13 33096.19 310
CR-MVSNet94.76 21394.15 21896.59 21497.00 25593.43 24894.96 33297.56 27092.46 23696.93 14496.24 30588.15 20797.88 31187.38 31196.65 18798.46 187
v894.47 23393.77 24396.57 21796.36 28994.83 19999.05 5298.19 21591.92 25693.16 26396.97 27388.82 19398.48 24891.69 26187.79 31196.39 301
GBi-Net94.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
test194.49 23193.80 24096.56 21898.21 16895.00 18898.82 9798.18 21892.46 23694.09 22897.07 26081.16 29797.95 30392.08 24992.14 25796.72 261
FMVSNet193.19 27692.07 28196.56 21897.54 21795.00 18898.82 9798.18 21890.38 29592.27 29097.07 26073.68 33797.95 30389.36 29891.30 26896.72 261
tfpnnormal93.66 26492.70 27396.55 22196.94 25995.94 15098.97 6899.19 1591.04 28691.38 30197.34 23884.94 26498.61 23585.45 32489.02 30095.11 325
v119294.32 24093.58 25396.53 22296.10 29994.45 21598.50 15898.17 22391.54 26794.19 22497.06 26386.95 23398.43 25690.14 28089.57 28996.70 265
EPMVS94.99 20094.48 19996.52 22397.22 24091.75 27897.23 27991.66 34994.11 16497.28 12996.81 28685.70 25398.84 21793.04 22597.28 17598.97 156
v1094.29 24293.55 25496.51 22496.39 28894.80 20198.99 6498.19 21591.35 27493.02 26996.99 27188.09 20998.41 26490.50 27788.41 30696.33 305
PEN-MVS94.42 23593.73 24796.49 22596.28 29294.84 19799.17 3399.00 2793.51 19992.23 29197.83 20386.10 24797.90 30792.55 24086.92 32396.74 258
v14419294.39 23793.70 24896.48 22696.06 30194.35 22098.58 14398.16 22591.45 26994.33 21697.02 26887.50 22498.45 25291.08 26789.11 29796.63 273
v7n94.19 24893.43 25996.47 22795.90 30694.38 21999.26 1898.34 19291.99 25492.76 27597.13 25288.31 20298.52 24689.48 29687.70 31296.52 290
LPG-MVS_test95.62 16595.34 16096.47 22797.46 22393.54 24498.99 6498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
LGP-MVS_train96.47 22797.46 22393.54 24498.54 15494.67 14794.36 21498.77 11485.39 25699.11 18295.71 14494.15 22596.76 256
SCA95.46 16995.13 17096.46 23097.67 20491.29 28797.33 27397.60 26894.68 14696.92 14697.10 25383.97 28298.89 21192.59 23798.32 14899.20 129
CLD-MVS95.62 16595.34 16096.46 23097.52 22093.75 23797.27 27898.46 17195.53 10294.42 21298.00 18686.21 24598.97 19796.25 12394.37 21796.66 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP93.49 1095.34 18194.98 17896.43 23297.67 20493.48 24798.73 11798.44 17594.94 13892.53 28398.53 13684.50 27299.14 17795.48 15294.00 23096.66 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet93.26 27392.21 28096.41 23397.73 20293.13 26095.65 32997.03 30291.27 28094.04 23196.06 31275.33 33097.19 32586.56 31596.23 20598.92 161
v192192094.20 24793.47 25896.40 23495.98 30494.08 22798.52 15398.15 22691.33 27594.25 22097.20 24986.41 24298.42 25790.04 28589.39 29496.69 270
mvs-test196.60 12596.68 11596.37 23597.89 19291.81 27598.56 14998.10 23496.57 6296.52 16797.94 19090.81 15199.45 15295.72 14298.01 15497.86 204
EI-MVSNet95.96 14895.83 14196.36 23697.93 18993.70 24198.12 21198.27 20593.70 18995.07 18999.02 8092.23 11898.54 24494.68 17193.46 24196.84 248
PatchT93.06 27891.97 28396.35 23796.69 27492.67 26594.48 33897.08 29886.62 32197.08 13692.23 33887.94 21397.90 30778.89 34096.69 18598.49 186
v124094.06 25993.29 26396.34 23896.03 30393.90 23198.44 16598.17 22391.18 28494.13 22797.01 27086.05 24898.42 25789.13 30189.50 29296.70 265
ACMH92.88 1694.55 22793.95 23196.34 23897.63 20793.26 25698.81 10398.49 17093.43 20389.74 31498.53 13681.91 29499.08 18793.69 20493.30 24796.70 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part192.87 28091.72 28696.32 24097.55 21693.50 24699.04 5398.74 10283.31 33590.81 30797.70 21276.61 32598.60 23994.43 18287.30 31896.85 247
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24199.00 10989.54 30997.43 26398.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
PatchmatchNetpermissive95.71 16095.52 15296.29 24297.58 21190.72 29696.84 30897.52 27694.06 16697.08 13696.96 27589.24 17898.90 21092.03 25398.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
BH-w/o95.38 17695.08 17396.26 24398.34 15991.79 27697.70 24897.43 28592.87 22694.24 22197.22 24788.66 19498.84 21791.55 26397.70 16798.16 197
IterMVS-LS95.46 16995.21 16796.22 24498.12 17793.72 24098.32 18298.13 22993.71 18794.26 21997.31 24192.24 11798.10 29194.63 17290.12 28296.84 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test94.82 20994.36 20896.20 24597.35 23390.79 29498.34 17696.57 32292.91 22495.33 18796.44 30182.00 29399.12 17994.52 17995.78 21398.70 172
TransMVSNet (Re)92.67 28391.51 28896.15 24696.58 27994.65 20498.90 7896.73 31690.86 28889.46 31797.86 19785.62 25498.09 29386.45 31681.12 33895.71 319
DTE-MVSNet93.98 26193.26 26496.14 24796.06 30194.39 21899.20 2998.86 6193.06 21691.78 29797.81 20585.87 25197.58 31890.53 27686.17 32896.46 299
cl-mvsnet294.68 21694.19 21496.13 24898.11 17893.60 24296.94 29698.31 19692.43 24093.32 25996.87 28386.51 23898.28 28194.10 19591.16 27196.51 293
miper_enhance_ethall95.10 19494.75 18796.12 24997.53 21993.73 23996.61 31698.08 23992.20 25193.89 23696.65 29392.44 11298.30 27794.21 19091.16 27196.34 303
cl-mvsnet_94.51 23094.01 22696.02 25097.58 21193.40 25197.05 29097.96 25391.73 26292.76 27597.08 25989.06 18498.13 28992.61 23490.29 28196.52 290
cl-mvsnet194.52 22994.03 22395.99 25197.57 21593.38 25297.05 29097.94 25491.74 26092.81 27397.10 25389.12 18198.07 29592.60 23590.30 28096.53 287
EPNet_dtu95.21 18894.95 18095.99 25196.17 29690.45 30098.16 20797.27 29396.77 5393.14 26698.33 16090.34 16198.42 25785.57 32298.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth95.01 19894.69 19095.97 25397.70 20393.31 25497.02 29298.07 24192.23 24893.51 25296.96 27591.85 12898.15 28793.68 20591.16 27196.44 300
Baseline_NR-MVSNet94.35 23893.81 23995.96 25496.20 29494.05 22898.61 14096.67 32091.44 27093.85 23997.60 22288.57 19698.14 28894.39 18386.93 32295.68 320
JIA-IIPM93.35 26992.49 27695.92 25596.48 28590.65 29795.01 33196.96 30685.93 32796.08 17887.33 34387.70 22098.78 22491.35 26595.58 21498.34 192
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25697.74 20191.74 27998.69 12898.15 22695.56 10194.92 19397.68 21688.98 18898.79 22393.19 22097.78 16397.20 222
v14894.29 24293.76 24595.91 25696.10 29992.93 26398.58 14397.97 25192.59 23493.47 25496.95 27788.53 19998.32 27392.56 23987.06 32196.49 296
cl_fuxian94.79 21194.43 20595.89 25897.75 19893.12 26197.16 28698.03 24892.23 24893.46 25597.05 26591.39 13998.01 29993.58 21089.21 29696.53 287
ACMH+92.99 1494.30 24193.77 24395.88 25997.81 19692.04 27398.71 12298.37 18793.99 17290.60 31098.47 14280.86 30299.05 18992.75 23392.40 25696.55 284
Patchmtry93.22 27492.35 27895.84 26096.77 26893.09 26294.66 33797.56 27087.37 31992.90 27196.24 30588.15 20797.90 30787.37 31290.10 28396.53 287
test-LLR95.10 19494.87 18395.80 26196.77 26889.70 30696.91 29995.21 33195.11 12794.83 19795.72 31987.71 21898.97 19793.06 22398.50 13898.72 170
test-mter94.08 25793.51 25695.80 26196.77 26889.70 30696.91 29995.21 33192.89 22594.83 19795.72 31977.69 31998.97 19793.06 22398.50 13898.72 170
test0.0.03 194.08 25793.51 25695.80 26195.53 31792.89 26497.38 26695.97 32595.11 12792.51 28596.66 29187.71 21896.94 32887.03 31393.67 23697.57 212
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26496.55 28091.65 28198.11 21398.44 17594.96 13594.22 22297.90 19379.18 31199.11 18294.05 19793.85 23496.48 297
pmmvs593.65 26692.97 26895.68 26595.49 31892.37 26798.20 19797.28 29289.66 30592.58 28197.26 24382.14 29298.09 29393.18 22190.95 27596.58 278
RRT_test8_iter0594.56 22694.19 21495.67 26697.60 20991.34 28398.93 7598.42 17994.75 14293.39 25697.87 19679.00 31298.61 23596.78 10790.99 27497.07 224
TESTMET0.1,194.18 25093.69 24995.63 26796.92 26089.12 31596.91 29994.78 33693.17 21394.88 19496.45 30078.52 31498.92 20693.09 22298.50 13898.85 163
CostFormer94.95 20494.73 18895.60 26897.28 23689.06 31697.53 25996.89 31289.66 30596.82 15196.72 28986.05 24898.95 20495.53 15096.13 20898.79 167
Effi-MVS+-dtu96.29 13796.56 11895.51 26997.89 19290.22 30298.80 10498.10 23496.57 6296.45 17196.66 29190.81 15198.91 20795.72 14297.99 15597.40 215
D2MVS95.18 19095.08 17395.48 27097.10 25192.07 27198.30 18599.13 1994.02 16992.90 27196.73 28889.48 17198.73 22794.48 18193.60 24095.65 321
eth_miper_zixun_eth94.68 21694.41 20695.47 27197.64 20691.71 28096.73 31398.07 24192.71 23093.64 24597.21 24890.54 15898.17 28693.38 21389.76 28696.54 285
tpm294.19 24893.76 24595.46 27297.23 23989.04 31797.31 27596.85 31587.08 32096.21 17696.79 28783.75 28898.74 22692.43 24596.23 20598.59 182
tpmrst95.63 16495.69 14895.44 27397.54 21788.54 32396.97 29497.56 27093.50 20097.52 12796.93 27989.49 17099.16 17395.25 16096.42 19598.64 180
ITE_SJBPF95.44 27397.42 22891.32 28697.50 27895.09 13093.59 24698.35 15581.70 29598.88 21389.71 29093.39 24596.12 311
MVP-Stereo94.28 24493.92 23295.35 27594.95 32692.60 26697.97 22597.65 26691.61 26690.68 30997.09 25786.32 24498.42 25789.70 29199.34 10295.02 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs94.60 22294.36 20895.33 27697.46 22388.60 32296.88 30597.68 26491.29 27893.80 24296.42 30288.58 19599.24 16691.06 26896.04 21098.17 196
MVS_030492.81 28192.01 28295.23 27797.46 22391.33 28598.17 20698.81 7691.13 28593.80 24295.68 32266.08 34598.06 29690.79 27296.13 20896.32 306
TDRefinement91.06 29589.68 30095.21 27885.35 34891.49 28298.51 15797.07 29991.47 26888.83 32097.84 20077.31 32399.09 18692.79 23277.98 34195.04 327
USDC93.33 27192.71 27295.21 27896.83 26790.83 29396.91 29997.50 27893.84 17990.72 30898.14 17677.69 31998.82 22089.51 29593.21 24995.97 315
pmmvs691.77 28990.63 29395.17 28094.69 33191.24 28898.67 13297.92 25586.14 32589.62 31597.56 22775.79 32998.34 27190.75 27484.56 33295.94 316
tpm94.13 25293.80 24095.12 28196.50 28387.91 32997.44 26195.89 32892.62 23296.37 17396.30 30484.13 27998.30 27793.24 21891.66 26599.14 140
miper_lstm_enhance94.33 23994.07 22295.11 28297.75 19890.97 29197.22 28098.03 24891.67 26492.76 27596.97 27390.03 16697.78 31392.51 24289.64 28896.56 282
ADS-MVSNet294.58 22594.40 20795.11 28298.00 18488.74 32096.04 32297.30 29090.15 29796.47 16996.64 29487.89 21497.56 31990.08 28297.06 17799.02 151
tpm cat193.36 26892.80 27095.07 28497.58 21187.97 32896.76 31197.86 25882.17 33893.53 24996.04 31386.13 24699.13 17889.24 29995.87 21198.10 198
PVSNet_088.72 1991.28 29390.03 29895.00 28597.99 18687.29 33394.84 33598.50 16692.06 25389.86 31395.19 32479.81 30799.39 15592.27 24669.79 34698.33 193
ppachtmachnet_test93.22 27492.63 27494.97 28695.45 32090.84 29296.88 30597.88 25790.60 29092.08 29497.26 24388.08 21097.86 31285.12 32690.33 27996.22 308
LCM-MVSNet-Re95.22 18795.32 16394.91 28798.18 17387.85 33098.75 11095.66 32995.11 12788.96 31996.85 28490.26 16497.65 31595.65 14798.44 14199.22 128
dp94.15 25193.90 23494.90 28897.31 23586.82 33596.97 29497.19 29691.22 28296.02 18096.61 29685.51 25599.02 19590.00 28694.30 21898.85 163
testgi93.06 27892.45 27794.88 28996.43 28789.90 30398.75 11097.54 27595.60 9991.63 30097.91 19274.46 33597.02 32786.10 31893.67 23697.72 209
IterMVS-SCA-FT94.11 25493.87 23694.85 29097.98 18890.56 29997.18 28398.11 23293.75 18292.58 28197.48 23083.97 28297.41 32292.48 24491.30 26896.58 278
OurMVSNet-221017-094.21 24694.00 22794.85 29095.60 31489.22 31498.89 8297.43 28595.29 11692.18 29298.52 13982.86 29098.59 24093.46 21291.76 26396.74 258
MDA-MVSNet-bldmvs89.97 30388.35 30894.83 29295.21 32391.34 28397.64 25397.51 27788.36 31571.17 34796.13 31179.22 31096.63 33483.65 32886.27 32796.52 290
IterMVS94.09 25693.85 23894.80 29397.99 18690.35 30197.18 28398.12 23093.68 19292.46 28797.34 23884.05 28097.41 32292.51 24291.33 26796.62 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo93.34 27092.86 26994.75 29495.67 31289.41 31298.75 11096.67 32093.89 17690.15 31298.25 16980.87 30198.27 28290.90 27190.64 27796.57 280
our_test_393.65 26693.30 26294.69 29595.45 32089.68 30896.91 29997.65 26691.97 25591.66 29996.88 28189.67 16997.93 30688.02 30891.49 26696.48 297
MDA-MVSNet_test_wron90.71 29889.38 30394.68 29694.83 32890.78 29597.19 28297.46 28187.60 31772.41 34695.72 31986.51 23896.71 33285.92 32086.80 32596.56 282
TinyColmap92.31 28691.53 28794.65 29796.92 26089.75 30596.92 29796.68 31990.45 29389.62 31597.85 19976.06 32898.81 22186.74 31492.51 25595.41 322
YYNet190.70 29989.39 30294.62 29894.79 32990.65 29797.20 28197.46 28187.54 31872.54 34595.74 31686.51 23896.66 33386.00 31986.76 32696.54 285
FMVSNet591.81 28890.92 29194.49 29997.21 24192.09 27098.00 22397.55 27489.31 31090.86 30695.61 32374.48 33495.32 34085.57 32289.70 28796.07 313
K. test v392.55 28491.91 28594.48 30095.64 31389.24 31399.07 5094.88 33594.04 16786.78 32797.59 22377.64 32297.64 31692.08 24989.43 29396.57 280
test_040291.32 29290.27 29694.48 30096.60 27891.12 28998.50 15897.22 29586.10 32688.30 32296.98 27277.65 32197.99 30278.13 34292.94 25294.34 331
MS-PatchMatch93.84 26393.63 25194.46 30296.18 29589.45 31097.76 24498.27 20592.23 24892.13 29397.49 22979.50 30898.69 22889.75 28999.38 10095.25 323
lessismore_v094.45 30394.93 32788.44 32491.03 35086.77 32897.64 21976.23 32798.42 25790.31 27985.64 33196.51 293
pmmvs-eth3d90.36 30189.05 30494.32 30491.10 34292.12 26997.63 25596.95 30788.86 31384.91 33593.13 33378.32 31596.74 32988.70 30381.81 33794.09 335
LF4IMVS93.14 27792.79 27194.20 30595.88 30788.67 32197.66 25297.07 29993.81 18191.71 29897.65 21777.96 31898.81 22191.47 26491.92 26295.12 324
UnsupCasMVSNet_eth90.99 29689.92 29994.19 30694.08 33489.83 30497.13 28898.67 12893.69 19085.83 33296.19 31075.15 33196.74 32989.14 30079.41 34096.00 314
EG-PatchMatch MVS91.13 29490.12 29794.17 30794.73 33089.00 31898.13 21097.81 25989.22 31185.32 33496.46 29967.71 34298.42 25787.89 31093.82 23595.08 326
MIMVSNet189.67 30588.28 30993.82 30892.81 33991.08 29098.01 22197.45 28387.95 31687.90 32495.87 31567.63 34394.56 34378.73 34188.18 30895.83 318
OpenMVS_ROBcopyleft86.42 2089.00 30787.43 31293.69 30993.08 33889.42 31197.91 22996.89 31278.58 34185.86 33194.69 32869.48 34198.29 28077.13 34393.29 24893.36 340
CVMVSNet95.43 17296.04 13593.57 31097.93 18983.62 33998.12 21198.59 14195.68 9596.56 16199.02 8087.51 22297.51 32193.56 21197.44 17299.60 78
Patchmatch-RL test91.49 29190.85 29293.41 31191.37 34184.40 33792.81 34295.93 32791.87 25887.25 32594.87 32788.99 18596.53 33592.54 24182.00 33599.30 120
Anonymous2023120691.66 29091.10 29093.33 31294.02 33587.35 33298.58 14397.26 29490.48 29190.16 31196.31 30383.83 28696.53 33579.36 33889.90 28596.12 311
UnsupCasMVSNet_bld87.17 31085.12 31493.31 31391.94 34088.77 31994.92 33498.30 20284.30 33482.30 33890.04 34063.96 34797.25 32485.85 32174.47 34593.93 338
RPSCF94.87 20895.40 15493.26 31498.89 11782.06 34498.33 17798.06 24590.30 29696.56 16199.26 4287.09 22999.49 14593.82 20296.32 19898.24 195
new_pmnet90.06 30289.00 30593.22 31594.18 33288.32 32696.42 32096.89 31286.19 32485.67 33393.62 33177.18 32497.10 32681.61 33389.29 29594.23 332
MVS-HIRNet89.46 30688.40 30792.64 31697.58 21182.15 34394.16 34193.05 34875.73 34490.90 30582.52 34579.42 30998.33 27283.53 32998.68 12797.43 213
test20.0390.89 29790.38 29592.43 31793.48 33688.14 32798.33 17797.56 27093.40 20487.96 32396.71 29080.69 30494.13 34479.15 33986.17 32895.01 329
DSMNet-mixed92.52 28592.58 27592.33 31894.15 33382.65 34298.30 18594.26 34289.08 31292.65 27995.73 31785.01 26395.76 33886.24 31797.76 16498.59 182
EU-MVSNet93.66 26494.14 21992.25 31995.96 30583.38 34098.52 15398.12 23094.69 14592.61 28098.13 17787.36 22796.39 33791.82 25790.00 28496.98 229
pmmvs386.67 31284.86 31592.11 32088.16 34687.19 33496.63 31594.75 33779.88 34087.22 32692.75 33566.56 34495.20 34181.24 33476.56 34393.96 337
new-patchmatchnet88.50 30887.45 31191.67 32190.31 34485.89 33697.16 28697.33 28989.47 30783.63 33792.77 33476.38 32695.06 34282.70 33077.29 34294.06 336
PM-MVS87.77 30986.55 31391.40 32291.03 34383.36 34196.92 29795.18 33391.28 27986.48 33093.42 33253.27 34996.74 32989.43 29781.97 33694.11 334
CMPMVSbinary66.06 2189.70 30489.67 30189.78 32393.19 33776.56 34697.00 29398.35 19080.97 33981.57 33997.75 20874.75 33398.61 23589.85 28793.63 23894.17 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 32486.66 34775.78 34792.66 34396.72 31786.55 32992.50 33646.01 35097.90 30790.32 27882.09 33494.80 330
DeepMVS_CXcopyleft86.78 32597.09 25272.30 34995.17 33475.92 34384.34 33695.19 32470.58 34095.35 33979.98 33789.04 29992.68 341
LCM-MVSNet78.70 31376.24 31886.08 32677.26 35471.99 35094.34 33996.72 31761.62 34876.53 34289.33 34133.91 35692.78 34681.85 33274.60 34493.46 339
PMMVS277.95 31575.44 31985.46 32782.54 34974.95 34894.23 34093.08 34772.80 34574.68 34387.38 34236.36 35591.56 34773.95 34563.94 34789.87 342
N_pmnet87.12 31187.77 31085.17 32895.46 31961.92 35397.37 26870.66 35885.83 32888.73 32196.04 31385.33 26097.76 31480.02 33590.48 27895.84 317
Gipumacopyleft78.40 31476.75 31783.38 32995.54 31680.43 34579.42 35097.40 28764.67 34773.46 34480.82 34745.65 35193.14 34566.32 34787.43 31576.56 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 31765.37 32180.22 33065.99 35671.96 35190.91 34690.09 35182.62 33649.93 35378.39 34829.36 35781.75 35062.49 34838.52 35186.95 345
FPMVS77.62 31677.14 31679.05 33179.25 35260.97 35495.79 32795.94 32665.96 34667.93 34894.40 32937.73 35488.88 34968.83 34688.46 30587.29 343
MVEpermissive62.14 2263.28 32259.38 32574.99 33274.33 35565.47 35285.55 34880.50 35752.02 35151.10 35275.00 35110.91 36180.50 35151.60 35053.40 34878.99 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt68.90 31866.97 32074.68 33350.78 35859.95 35587.13 34783.47 35638.80 35362.21 34996.23 30764.70 34676.91 35488.91 30230.49 35287.19 344
PMVScopyleft61.03 2365.95 31963.57 32373.09 33457.90 35751.22 35885.05 34993.93 34654.45 34944.32 35483.57 34413.22 35889.15 34858.68 34981.00 33978.91 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 32064.25 32267.02 33582.28 35059.36 35691.83 34585.63 35452.69 35060.22 35077.28 34941.06 35380.12 35246.15 35141.14 34961.57 350
EMVS64.07 32163.26 32466.53 33681.73 35158.81 35791.85 34484.75 35551.93 35259.09 35175.13 35043.32 35279.09 35342.03 35239.47 35061.69 349
wuyk23d30.17 32330.18 32730.16 33778.61 35343.29 35966.79 35114.21 35917.31 35414.82 35711.93 35711.55 36041.43 35537.08 35319.30 3535.76 353
test12320.95 32623.72 32912.64 33813.54 3608.19 36096.55 3186.13 3617.48 35616.74 35637.98 35412.97 3596.05 35616.69 3545.43 35523.68 351
testmvs21.48 32524.95 32811.09 33914.89 3596.47 36196.56 3179.87 3607.55 35517.93 35539.02 3539.43 3625.90 35716.56 35512.72 35420.91 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k23.98 32431.98 3260.00 3400.00 3610.00 3620.00 35298.59 1410.00 3570.00 35898.61 12790.60 1570.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.88 32810.50 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35894.51 850.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.20 32710.94 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35898.43 1450.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS99.46 5198.70 1998.79 9193.21 21198.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
save fliter99.46 5198.38 3598.21 19498.71 11397.95 3
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 102
test_post196.68 31430.43 35687.85 21798.69 22892.59 237
test_post31.83 35588.83 19298.91 207
patchmatchnet-post95.10 32689.42 17398.89 211
MTMP98.89 8294.14 344
gm-plane-assit95.88 30787.47 33189.74 30496.94 27899.19 17193.32 217
test9_res96.39 12099.57 7599.69 51
TEST999.31 7098.50 2997.92 22798.73 10792.63 23197.74 11198.68 12196.20 2399.80 79
test_899.29 7898.44 3197.89 23398.72 10992.98 22097.70 11498.66 12496.20 2399.80 79
agg_prior295.87 13699.57 7599.68 57
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
test_prior498.01 6297.86 236
test_prior297.80 24196.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
旧先验297.57 25891.30 27798.67 5899.80 7995.70 146
新几何297.64 253
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
无先验97.58 25798.72 10991.38 27199.87 4493.36 21599.60 78
原ACMM297.67 251
test22299.23 9397.17 9797.40 26498.66 13188.68 31498.05 8698.96 9394.14 9499.53 8599.61 75
testdata299.89 3591.65 262
segment_acmp96.85 11
testdata197.32 27496.34 71
plane_prior797.42 22894.63 206
plane_prior697.35 23394.61 20987.09 229
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 233
plane_prior498.28 164
plane_prior394.61 20997.02 4795.34 185
plane_prior298.80 10497.28 29
plane_prior197.37 232
plane_prior94.60 21198.44 16596.74 5594.22 221
n20.00 362
nn0.00 362
door-mid94.37 340
test1198.66 131
door94.64 338
HQP5-MVS94.25 224
HQP-NCC97.20 24298.05 21796.43 6794.45 207
ACMP_Plane97.20 24298.05 21796.43 6794.45 207
BP-MVS95.30 156
HQP4-MVS94.45 20798.96 20096.87 244
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 235
NP-MVS97.28 23694.51 21497.73 209
MDTV_nov1_ep13_2view84.26 33896.89 30490.97 28797.90 10489.89 16893.91 19999.18 136
MDTV_nov1_ep1395.40 15497.48 22188.34 32596.85 30797.29 29193.74 18497.48 12897.26 24389.18 17999.05 18991.92 25697.43 173
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80