This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17198.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6199.84 899.83 5
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19799.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9898.81 7695.80 9199.16 2699.47 895.37 5799.92 2197.89 4299.75 3899.79 10
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12298.66 13297.51 1698.15 8298.83 10795.70 4499.92 2197.53 7299.67 5499.66 65
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2599.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16998.78 9594.10 16797.69 11699.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17298.68 12197.04 4798.52 6898.80 11096.78 1299.83 5697.93 3899.61 6799.74 33
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9598.86 6195.48 10698.91 4599.17 5695.48 5099.93 1595.80 14199.53 8599.76 26
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15398.74 10497.27 3498.02 9199.39 1494.81 7799.96 197.91 3999.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7998.74 10497.27 3498.02 9199.39 1494.81 7799.96 197.91 3999.79 1999.77 20
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16398.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3399.66 5799.69 51
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10598.82 7094.52 15699.23 2099.25 4395.54 4999.80 8096.52 11699.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12899.32 1599.39 1496.22 2099.84 5397.72 5399.73 4399.67 61
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13398.84 6594.66 15199.11 2899.25 4395.46 5199.81 7196.80 10699.73 4399.63 73
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16498.76 9997.82 598.45 7298.93 9796.65 1499.83 5697.38 7799.41 9799.71 44
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19898.52 2799.37 798.71 11497.09 4692.99 27399.13 6489.36 17599.89 3596.97 8999.57 7599.71 44
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15897.24 8099.73 4399.70 48
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2599.35 1499.40 1397.78 399.87 4497.77 5099.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9298.31 8199.10 6995.46 5199.93 1597.57 6999.81 1099.74 33
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20098.81 7691.63 26898.44 7398.85 10493.98 9899.82 6494.11 19699.69 5299.64 70
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9598.73 5599.06 7895.27 6499.93 1597.07 8699.63 6499.72 40
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2298.46 6999.20 5295.90 4099.89 3597.85 4599.74 4199.78 13
X-MVStestdata94.06 26392.30 28399.34 2399.70 2398.35 4399.29 1498.88 4997.40 2298.46 6943.50 35995.90 4099.89 3597.85 4599.74 4199.78 13
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 23198.73 10892.98 22297.74 11298.68 12296.20 2399.80 8096.59 11299.57 7599.68 57
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8398.94 3999.17 5696.06 3099.92 2197.62 6299.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9998.94 3999.17 5696.06 3099.92 2197.21 8299.78 2399.75 28
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19798.52 15997.95 399.32 1599.39 1496.22 2099.84 5397.72 5399.73 4399.67 61
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 18098.68 12193.18 21598.68 5799.13 6494.62 8199.83 5696.45 11899.55 8399.52 85
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9297.79 4999.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7898.94 3999.17 5695.91 3999.94 397.55 7099.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8398.93 4399.19 5595.70 4499.94 397.62 6299.79 1999.78 13
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24498.72 11093.16 21797.57 12698.66 12596.14 2699.81 7196.63 11199.56 8099.66 65
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 8097.92 10499.23 4594.54 8499.94 396.74 11099.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23398.67 12992.57 23798.77 5198.85 10495.93 3899.72 10995.56 15199.69 5299.68 57
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10999.03 3399.32 3395.56 4799.94 396.80 10699.77 2699.78 13
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7498.35 7899.23 4595.46 5199.94 397.42 7599.81 1099.77 20
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6299.10 2999.32 3395.39 5599.82 6497.70 5899.63 6499.72 40
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13296.84 5299.56 599.31 3596.34 1999.70 11598.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28898.35 19194.85 14297.93 10398.58 13395.07 7299.71 11492.60 23799.34 10299.43 106
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17598.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2299.73 4399.75 28
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24598.84 6596.12 8197.89 10698.69 12095.96 3699.70 11596.89 9699.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8698.60 6599.13 6496.05 3299.94 397.77 5099.86 199.77 20
test1299.18 4799.16 9998.19 5298.53 15798.07 8695.13 7099.72 10999.56 8099.63 73
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 21098.83 4899.10 6996.54 1699.83 5697.70 5899.76 3299.59 80
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16098.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7099.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6599.05 3299.34 3195.34 5999.82 6497.86 4499.64 6299.73 36
新几何199.16 5099.34 6298.01 6298.69 11890.06 30598.13 8398.95 9594.60 8299.89 3591.97 25799.47 9099.59 80
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20498.68 12190.14 30498.01 9598.97 8794.80 7999.87 4493.36 21799.46 9399.61 75
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7499.20 2299.37 2295.30 6299.80 8097.73 5299.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6699.17 2499.35 2895.34 5999.82 6497.72 5399.65 5899.71 44
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7999.26 1899.37 2293.33 10299.93 1596.96 9199.67 5499.69 51
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15298.61 6498.97 8795.13 7099.77 10197.65 6099.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17598.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2099.73 4399.75 28
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15998.94 3999.20 5295.16 6999.74 10797.58 6699.85 399.77 20
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8597.60 12599.36 2694.45 8999.93 1597.14 8398.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20097.64 7799.35 1099.06 2297.02 4893.75 24799.16 6189.25 17899.92 2197.22 8199.75 3899.64 70
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 18098.89 4692.62 23498.05 8798.94 9695.34 5999.65 12496.04 13299.42 9699.19 132
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9598.06 24896.74 5698.00 9797.65 21990.80 15399.48 15098.37 2396.56 19099.19 132
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17398.79 9297.46 2099.09 3099.31 3595.86 4299.80 8098.64 399.76 3299.79 10
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 24998.89 4697.71 898.33 7998.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1198.39 18596.76 5597.67 11797.40 24092.26 11699.49 14698.28 2796.28 20299.08 148
UA-Net97.96 5897.62 6498.98 6598.86 12197.47 8498.89 8399.08 2196.67 5998.72 5699.54 193.15 10599.81 7194.87 16798.83 12399.65 67
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 13998.93 3796.74 5699.02 3498.84 10690.33 16299.83 5698.53 996.66 18699.50 91
QAPM96.29 13795.40 15598.96 6797.85 19797.60 8099.23 2198.93 3789.76 31093.11 27099.02 8089.11 18399.93 1591.99 25699.62 6699.34 111
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9198.90 4484.80 34097.77 10999.11 6792.84 10799.66 12394.85 16899.77 2699.47 98
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24598.09 8599.08 7693.01 10699.92 2196.06 13199.77 2699.75 28
CANet98.05 5697.76 6198.90 7198.73 13097.27 9198.35 17798.78 9597.37 2797.72 11498.96 9391.53 13899.92 2198.79 299.65 5899.51 89
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23399.58 397.20 3898.33 7999.00 8595.99 3599.64 12698.05 3599.76 3299.69 51
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17398.68 12197.43 2199.06 3199.31 3595.80 4399.77 10198.62 599.76 3299.78 13
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21698.29 20597.19 3998.99 3899.02 8096.22 2099.67 12298.52 1398.56 13599.51 89
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9598.75 10296.96 5096.89 14999.50 490.46 15999.87 4497.84 4799.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21898.53 15795.32 11796.80 15498.53 13793.32 10399.72 10994.31 18999.31 10499.02 152
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18698.71 11495.26 12097.67 11798.56 13692.21 11999.78 9695.89 13696.85 18199.48 96
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18898.69 11897.21 3798.84 4699.36 2695.41 5499.78 9698.62 599.65 5899.80 9
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7698.90 4492.83 23095.99 18299.37 2292.12 12299.87 4493.67 20999.57 7598.97 157
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22999.58 397.14 4298.44 7399.01 8495.03 7399.62 13197.91 3999.75 3899.50 91
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21397.81 10898.97 8795.18 6899.83 5693.84 20399.46 9399.50 91
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27398.57 14893.33 20996.67 15797.57 22794.30 9299.56 13791.05 27298.59 13399.47 98
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19198.68 12197.17 4098.74 5399.37 2295.25 6699.79 9298.57 799.54 8499.73 36
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19698.93 3793.97 17598.01 9598.48 14291.98 12699.85 5096.45 11898.15 15199.39 108
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21198.21 21393.95 17696.72 15697.99 18891.58 13399.76 10394.51 18296.54 19198.95 160
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12798.39 18589.45 31594.52 20799.35 2891.85 12899.85 5092.89 23398.88 11999.68 57
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12399.05 2497.28 3098.84 4699.28 4096.47 1899.40 15598.52 1399.70 5199.47 98
ab-mvs96.42 13395.71 14698.55 8798.63 14296.75 11397.88 23898.74 10493.84 18196.54 16698.18 17585.34 26299.75 10595.93 13596.35 19699.15 138
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16498.31 19794.70 14598.02 9198.42 14890.80 15399.70 11596.81 10496.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16498.31 19794.70 14598.02 9198.42 14890.80 15399.70 11596.81 10496.79 18399.34 111
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7998.85 6497.28 3099.72 399.39 1496.63 1597.60 31998.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EPNet97.28 10096.87 10398.51 9294.98 32796.14 14098.90 7997.02 31098.28 195.99 18299.11 6791.36 14099.89 3596.98 8899.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss96.63 12496.00 13798.50 9398.56 14696.37 13098.18 20898.10 23592.92 22594.84 19798.43 14692.14 12199.58 13494.35 18696.51 19299.56 84
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13998.60 14095.18 12497.06 14098.06 18294.26 9399.57 13593.80 20598.87 12199.52 85
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22498.89 4694.44 16096.83 15098.68 12290.69 15699.76 10394.36 18599.29 10598.98 156
LFMVS95.86 15494.98 17998.47 9698.87 12096.32 13398.84 9496.02 32993.40 20798.62 6399.20 5274.99 34099.63 12997.72 5397.20 17699.46 102
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13698.68 12192.40 24497.07 13997.96 19091.54 13799.75 10593.68 20798.92 11698.69 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13999.16 1794.48 15897.67 11798.88 10292.80 10899.91 3097.11 8499.12 11099.50 91
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24998.78 9596.89 5198.46 6999.22 4793.90 9999.68 12194.81 17199.52 8799.67 61
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21198.76 9992.41 24396.39 17398.31 16394.92 7699.78 9694.06 19898.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS93.45 1194.68 21993.43 26398.42 10198.62 14396.77 11295.48 33798.20 21584.63 34193.34 26198.32 16288.55 19999.81 7184.80 33198.96 11598.68 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CS-MVS97.81 6797.61 6598.41 10298.52 15097.15 9999.09 4698.55 15296.18 7797.61 12397.20 25294.59 8399.39 15697.62 6299.10 11198.70 173
ETV-MVS97.96 5897.81 5998.40 10398.42 15497.27 9198.73 11898.55 15296.84 5298.38 7697.44 23795.39 5599.35 15997.62 6298.89 11898.58 185
Effi-MVS+97.12 10996.69 11398.39 10498.19 17496.72 11497.37 27198.43 17993.71 19097.65 12098.02 18492.20 12099.25 16596.87 10297.79 16299.19 132
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14695.94 15197.71 25198.07 24392.10 25594.79 20197.29 24591.75 13099.56 13794.17 19396.50 19399.58 82
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13996.23 13699.22 2599.00 2796.63 6198.04 8999.21 4888.05 21299.35 15996.01 13499.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft93.04 1395.83 15695.00 17798.32 10797.18 24897.32 8899.21 2898.97 3089.96 30691.14 30799.05 7986.64 23999.92 2193.38 21599.47 9097.73 210
casdiffmvs97.63 7797.41 8098.28 10898.33 16396.14 14098.82 9898.32 19596.38 7197.95 9999.21 4891.23 14599.23 16898.12 3098.37 14499.48 96
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6098.60 14095.88 8897.26 13197.53 23094.97 7499.33 16197.38 7799.20 10799.05 150
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23399.06 2293.72 18996.92 14798.06 18288.50 20199.65 12491.77 26199.00 11498.66 179
testdata98.26 11199.20 9795.36 17498.68 12191.89 26098.60 6599.10 6994.44 9099.82 6494.27 19099.44 9599.58 82
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6298.32 19596.33 7398.03 9099.17 5691.35 14199.16 17498.10 3198.29 14999.39 108
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3197.97 25395.39 11197.23 13298.99 8691.11 14798.93 20794.60 17798.59 13399.47 98
CANet_DTU96.96 11496.55 11998.21 11498.17 17896.07 14297.98 22798.21 21397.24 3697.13 13598.93 9786.88 23699.91 3095.00 16699.37 10198.66 179
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 22097.02 14298.92 9995.36 5899.91 3097.43 7499.64 6299.52 85
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19198.59 14295.52 10597.97 9899.10 6993.28 10499.49 14695.09 16498.88 11999.19 132
UGNet96.78 12196.30 12798.19 11798.24 16895.89 15898.88 8698.93 3797.39 2496.81 15397.84 20382.60 29599.90 3396.53 11599.49 8898.79 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 28099.26 893.13 21897.94 10198.21 17292.74 10999.81 7196.88 9999.40 9999.27 124
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26999.65 292.34 24597.61 12398.20 17389.29 17799.10 18696.97 8997.60 17099.77 20
MVS_Test97.28 10097.00 9798.13 12098.33 16395.97 14898.74 11498.07 24394.27 16398.44 7398.07 18192.48 11199.26 16496.43 12098.19 15099.16 137
diffmvs97.58 8297.40 8198.13 12098.32 16595.81 16098.06 21998.37 18896.20 7698.74 5398.89 10191.31 14399.25 16598.16 2998.52 13699.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18395.76 16197.68 25397.76 26494.50 15798.79 4998.61 12892.34 11399.30 16297.58 6699.59 7199.31 117
MVS94.67 22293.54 25998.08 12396.88 26696.56 12298.19 20498.50 16778.05 34992.69 28198.02 18491.07 14999.63 12990.09 28398.36 14698.04 201
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 22099.71 193.57 20197.09 13698.91 10088.17 20799.89 3596.87 10299.56 8099.81 8
jason97.32 9997.08 9398.06 12597.45 22995.59 16497.87 23997.91 25994.79 14398.55 6798.83 10791.12 14699.23 16897.58 6699.60 6899.34 111
jason: jason.
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16795.97 14898.58 14598.25 21191.74 26395.29 19097.23 24991.03 15099.15 17792.90 23197.96 15698.97 157
baseline195.84 15595.12 17298.01 12798.49 15295.98 14398.73 11897.03 30895.37 11496.22 17698.19 17489.96 16799.16 17494.60 17787.48 31698.90 163
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14195.38 17399.33 1398.31 19793.61 20097.19 13399.07 7794.05 9599.23 16896.89 9698.43 14399.37 110
thisisatest053096.01 14795.36 16097.97 12998.38 15695.52 16998.88 8694.19 35094.04 16997.64 12198.31 16383.82 29199.46 15295.29 15997.70 16798.93 161
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15398.62 13993.02 22196.17 17898.58 13394.01 9699.81 7193.95 20098.90 11799.14 140
nrg03096.28 13995.72 14397.96 13196.90 26598.15 5699.39 598.31 19795.47 10794.42 21598.35 15692.09 12398.69 23097.50 7389.05 29997.04 228
API-MVS97.41 9497.25 8697.91 13298.70 13596.80 11098.82 9898.69 11894.53 15498.11 8498.28 16594.50 8899.57 13594.12 19599.49 8897.37 220
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18695.98 14398.20 20098.33 19493.67 19796.95 14398.49 14193.54 10098.42 25895.24 16297.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet95.36 18094.53 19797.86 13498.10 18295.13 18598.85 9197.75 26590.46 29698.36 7799.39 1473.27 34699.64 12697.98 3696.58 18998.81 167
MVSFormer97.57 8397.49 7597.84 13598.07 18395.76 16199.47 298.40 18394.98 13598.79 4998.83 10792.34 11398.41 26596.91 9399.59 7199.34 111
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 13095.46 17199.20 2998.30 20394.96 13796.60 16198.87 10390.05 16598.59 24293.67 20998.60 13299.46 102
MSDG95.93 15195.30 16697.83 13698.90 11795.36 17496.83 31298.37 18891.32 27994.43 21498.73 11890.27 16399.60 13290.05 28698.82 12498.52 186
test_part194.82 21193.82 24197.82 13898.84 12497.82 7299.03 5598.81 7692.31 24992.51 28897.89 19781.96 29898.67 23494.80 17288.24 30896.98 231
hse-mvs396.17 14295.62 15197.81 13999.03 10894.45 21698.64 13898.75 10297.48 1898.67 5898.72 11989.76 16999.86 4997.95 3781.59 33999.11 143
131496.25 14195.73 14297.79 14097.13 25195.55 16898.19 20498.59 14293.47 20492.03 29997.82 20791.33 14299.49 14694.62 17698.44 14198.32 195
tttt051796.07 14495.51 15497.78 14198.41 15594.84 19899.28 1694.33 34894.26 16497.64 12198.64 12784.05 28499.47 15195.34 15597.60 17099.03 151
PAPM94.95 20594.00 22997.78 14197.04 25695.65 16396.03 32898.25 21191.23 28494.19 22797.80 20991.27 14498.86 21882.61 33797.61 16998.84 166
thisisatest051595.61 16894.89 18397.76 14398.15 17995.15 18396.77 31394.41 34692.95 22497.18 13497.43 23884.78 27099.45 15394.63 17497.73 16698.68 176
Anonymous2024052995.10 19594.22 21497.75 14499.01 10994.26 22598.87 8898.83 6885.79 33796.64 15898.97 8778.73 31999.85 5096.27 12394.89 21699.12 142
TAPA-MVS93.98 795.35 18194.56 19697.74 14599.13 10294.83 20098.33 18098.64 13786.62 32996.29 17598.61 12894.00 9799.29 16380.00 34399.41 9799.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
xiu_mvs_v1_base97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
TAMVS97.02 11296.79 10697.70 14998.06 18595.31 17898.52 15598.31 19793.95 17697.05 14198.61 12893.49 10198.52 24895.33 15697.81 16199.29 122
VPA-MVSNet95.75 15995.11 17397.69 15097.24 24097.27 9198.94 7499.23 1295.13 12795.51 18697.32 24385.73 25498.91 20997.33 7989.55 29196.89 244
BH-RMVSNet95.92 15295.32 16497.69 15098.32 16594.64 20698.19 20497.45 28994.56 15396.03 18098.61 12885.02 26599.12 18090.68 27799.06 11299.30 120
Anonymous20240521195.28 18594.49 19997.67 15299.00 11093.75 23998.70 12797.04 30790.66 29296.49 16998.80 11078.13 32499.83 5696.21 12695.36 21599.44 105
FIs96.51 13096.12 13397.67 15297.13 25197.54 8299.36 899.22 1495.89 8794.03 23598.35 15691.98 12698.44 25696.40 12192.76 25397.01 229
thres600view795.49 16994.77 18697.67 15298.98 11395.02 18898.85 9196.90 31695.38 11296.63 15996.90 28384.29 27799.59 13388.65 30696.33 19798.40 190
thres40095.38 17794.62 19397.65 15598.94 11594.98 19298.68 13096.93 31495.33 11596.55 16496.53 30084.23 28099.56 13788.11 30796.29 19998.40 190
PS-MVSNAJ97.73 7197.77 6097.62 15698.68 13895.58 16597.34 27598.51 16297.29 2998.66 6197.88 19894.51 8599.90 3397.87 4399.17 10997.39 218
VDD-MVS95.82 15795.23 16797.61 15798.84 12493.98 23198.68 13097.40 29395.02 13497.95 9999.34 3174.37 34499.78 9698.64 396.80 18299.08 148
ET-MVSNet_ETH3D94.13 25692.98 27197.58 15898.22 17096.20 13797.31 27895.37 33794.53 15479.56 34897.63 22386.51 24097.53 32296.91 9390.74 27699.02 152
UniMVSNet (Re)95.78 15895.19 16997.58 15896.99 25997.47 8498.79 10999.18 1695.60 10093.92 23897.04 26991.68 13198.48 25095.80 14187.66 31596.79 254
xiu_mvs_v2_base97.66 7597.70 6397.56 16098.61 14495.46 17197.44 26498.46 17297.15 4198.65 6298.15 17694.33 9199.80 8097.84 4798.66 13197.41 216
RRT_MVS96.04 14695.53 15297.56 16097.07 25597.32 8898.57 15098.09 23995.15 12695.02 19398.44 14588.20 20698.58 24496.17 12793.09 25096.79 254
FC-MVSNet-test96.42 13396.05 13497.53 16296.95 26097.27 9199.36 899.23 1295.83 9093.93 23798.37 15492.00 12598.32 27496.02 13392.72 25497.00 230
XXY-MVS95.20 19094.45 20497.46 16396.75 27396.56 12298.86 9098.65 13693.30 21293.27 26398.27 16884.85 26998.87 21694.82 17091.26 27096.96 233
NR-MVSNet94.98 20394.16 21997.44 16496.53 28397.22 9698.74 11498.95 3494.96 13789.25 32497.69 21589.32 17698.18 28794.59 17987.40 31896.92 236
tfpn200view995.32 18494.62 19397.43 16598.94 11594.98 19298.68 13096.93 31495.33 11596.55 16496.53 30084.23 28099.56 13788.11 30796.29 19997.76 207
thres100view90095.38 17794.70 19097.41 16698.98 11394.92 19698.87 8896.90 31695.38 11296.61 16096.88 28484.29 27799.56 13788.11 30796.29 19997.76 207
PMMVS96.60 12596.33 12697.41 16697.90 19493.93 23297.35 27498.41 18192.84 22997.76 11097.45 23691.10 14899.20 17196.26 12497.91 15799.11 143
VPNet94.99 20194.19 21697.40 16897.16 24996.57 12198.71 12398.97 3095.67 9794.84 19798.24 17180.36 31098.67 23496.46 11787.32 31996.96 233
UniMVSNet_NR-MVSNet95.71 16195.15 17097.40 16896.84 26896.97 10398.74 11499.24 1095.16 12593.88 24097.72 21491.68 13198.31 27695.81 13987.25 32096.92 236
DU-MVS95.42 17494.76 18797.40 16896.53 28396.97 10398.66 13698.99 2995.43 10993.88 24097.69 21588.57 19798.31 27695.81 13987.25 32096.92 236
thres20095.25 18694.57 19597.28 17198.81 12694.92 19698.20 20097.11 30395.24 12396.54 16696.22 31284.58 27499.53 14387.93 31196.50 19397.39 218
RPMNet92.81 28491.34 29297.24 17297.00 25793.43 25094.96 33998.80 8782.27 34496.93 14592.12 34686.98 23499.82 6476.32 35196.65 18798.46 188
WR-MVS95.15 19294.46 20297.22 17396.67 27896.45 12698.21 19798.81 7694.15 16593.16 26697.69 21587.51 22398.30 27895.29 15988.62 30596.90 243
CHOSEN 280x42097.18 10697.18 8997.20 17498.81 12693.27 25795.78 33299.15 1895.25 12196.79 15598.11 17992.29 11599.07 18998.56 899.85 399.25 126
IB-MVS91.98 1793.27 27691.97 28797.19 17597.47 22493.41 25297.09 29295.99 33093.32 21092.47 29095.73 32078.06 32599.53 14394.59 17982.98 33498.62 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_anonymous96.70 12396.53 12197.18 17698.19 17493.78 23698.31 18698.19 21694.01 17294.47 20998.27 16892.08 12498.46 25397.39 7697.91 15799.31 117
TR-MVS94.94 20794.20 21597.17 17797.75 20194.14 22897.59 25997.02 31092.28 25095.75 18597.64 22183.88 28898.96 20289.77 29096.15 20798.40 190
GA-MVS94.81 21394.03 22597.14 17897.15 25093.86 23496.76 31497.58 27494.00 17394.76 20297.04 26980.91 30598.48 25091.79 26096.25 20499.09 145
gg-mvs-nofinetune92.21 29090.58 29797.13 17996.75 27395.09 18695.85 33089.40 35985.43 33994.50 20881.98 35380.80 30898.40 27192.16 24998.33 14797.88 204
PVSNet_BlendedMVS96.73 12296.60 11797.12 18099.25 8695.35 17698.26 19499.26 894.28 16297.94 10197.46 23492.74 10999.81 7196.88 9993.32 24696.20 311
TranMVSNet+NR-MVSNet95.14 19394.48 20097.11 18196.45 28896.36 13199.03 5599.03 2595.04 13393.58 25097.93 19388.27 20498.03 30094.13 19486.90 32596.95 235
FMVSNet394.97 20494.26 21397.11 18198.18 17696.62 11698.56 15198.26 21093.67 19794.09 23197.10 25684.25 27998.01 30192.08 25192.14 25796.70 267
MVSTER96.06 14595.72 14397.08 18398.23 16995.93 15498.73 11898.27 20694.86 14195.07 19198.09 18088.21 20598.54 24696.59 11293.46 24196.79 254
FMVSNet294.47 23793.61 25697.04 18498.21 17196.43 12898.79 10998.27 20692.46 23893.50 25697.09 26081.16 30298.00 30391.09 26891.93 26096.70 267
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18598.77 12893.76 23797.79 24798.50 16795.45 10896.94 14499.09 7487.87 21799.55 14296.76 10995.83 21297.74 209
AllTest95.24 18794.65 19296.99 18699.25 8693.21 26098.59 14398.18 21991.36 27593.52 25398.77 11484.67 27299.72 10989.70 29397.87 15998.02 202
TestCases96.99 18699.25 8693.21 26098.18 21991.36 27593.52 25398.77 11484.67 27299.72 10989.70 29397.87 15998.02 202
XVG-OURS96.55 12996.41 12396.99 18698.75 12993.76 23797.50 26398.52 15995.67 9796.83 15099.30 3888.95 19199.53 14395.88 13796.26 20397.69 212
UniMVSNet_ETH3D94.24 24993.33 26596.97 18997.19 24793.38 25498.74 11498.57 14891.21 28693.81 24498.58 13372.85 34798.77 22795.05 16593.93 23398.77 170
PVSNet91.96 1896.35 13596.15 13296.96 19099.17 9892.05 27496.08 32598.68 12193.69 19397.75 11197.80 20988.86 19299.69 12094.26 19199.01 11399.15 138
anonymousdsp95.42 17494.91 18296.94 19195.10 32695.90 15799.14 3698.41 18193.75 18593.16 26697.46 23487.50 22598.41 26595.63 15094.03 22996.50 297
test_djsdf96.00 14895.69 14896.93 19295.72 31395.49 17099.47 298.40 18394.98 13594.58 20597.86 20089.16 18198.41 26596.91 9394.12 22796.88 245
cascas94.63 22493.86 23996.93 19296.91 26494.27 22496.00 32998.51 16285.55 33894.54 20696.23 31084.20 28298.87 21695.80 14196.98 18097.66 213
AUN-MVS94.53 23293.73 25096.92 19498.50 15193.52 24898.34 17898.10 23593.83 18395.94 18497.98 18985.59 25799.03 19494.35 18680.94 34298.22 197
PS-MVSNAJss96.43 13296.26 12996.92 19495.84 31195.08 18799.16 3498.50 16795.87 8993.84 24398.34 16094.51 8598.61 23896.88 9993.45 24397.06 227
baseline295.11 19494.52 19896.87 19696.65 27993.56 24598.27 19394.10 35293.45 20592.02 30097.43 23887.45 22799.19 17293.88 20297.41 17497.87 205
HQP_MVS96.14 14395.90 13996.85 19797.42 23094.60 21298.80 10598.56 15097.28 3095.34 18798.28 16587.09 23199.03 19496.07 12894.27 21996.92 236
CP-MVSNet94.94 20794.30 21196.83 19896.72 27595.56 16699.11 4298.95 3493.89 17892.42 29297.90 19587.19 22998.12 29294.32 18888.21 30996.82 253
pmmvs494.69 21793.99 23196.81 19995.74 31295.94 15197.40 26797.67 26890.42 29893.37 26097.59 22589.08 18498.20 28692.97 22991.67 26396.30 309
WR-MVS_H95.05 19894.46 20296.81 19996.86 26795.82 15999.24 2099.24 1093.87 18092.53 28696.84 28890.37 16098.24 28593.24 22087.93 31296.38 304
OPM-MVS95.69 16395.33 16396.76 20196.16 30094.63 20798.43 16998.39 18596.64 6095.02 19398.78 11285.15 26499.05 19095.21 16394.20 22296.60 278
bset_n11_16_dypcd94.89 20994.27 21296.76 20194.41 33495.15 18395.67 33395.64 33695.53 10394.65 20397.52 23187.10 23098.29 28196.58 11491.35 26696.83 252
jajsoiax95.45 17295.03 17696.73 20395.42 32494.63 20799.14 3698.52 15995.74 9393.22 26498.36 15583.87 28998.65 23696.95 9294.04 22896.91 241
PS-CasMVS94.67 22293.99 23196.71 20496.68 27795.26 17999.13 3999.03 2593.68 19592.33 29397.95 19185.35 26198.10 29393.59 21188.16 31196.79 254
COLMAP_ROBcopyleft93.27 1295.33 18394.87 18496.71 20499.29 7893.24 25998.58 14598.11 23389.92 30793.57 25199.10 6986.37 24599.79 9290.78 27598.10 15397.09 225
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4294.78 21594.14 22196.70 20696.33 29395.22 18098.97 6898.09 23992.32 24794.31 22097.06 26688.39 20298.55 24592.90 23188.87 30396.34 305
HQP-MVS95.72 16095.40 15596.69 20797.20 24494.25 22698.05 22098.46 17296.43 6894.45 21097.73 21286.75 23798.96 20295.30 15794.18 22396.86 249
LTVRE_ROB92.95 1594.60 22593.90 23696.68 20897.41 23394.42 21898.52 15598.59 14291.69 26691.21 30698.35 15684.87 26899.04 19391.06 27093.44 24496.60 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets95.41 17695.00 17796.65 20995.58 31794.42 21899.00 6298.55 15295.73 9493.21 26598.38 15383.45 29398.63 23797.09 8594.00 23096.91 241
v2v48294.69 21794.03 22596.65 20996.17 29894.79 20398.67 13398.08 24192.72 23194.00 23697.16 25487.69 22298.45 25492.91 23088.87 30396.72 263
BH-untuned95.95 15095.72 14396.65 20998.55 14892.26 27098.23 19597.79 26393.73 18894.62 20498.01 18688.97 19099.00 19893.04 22798.51 13798.68 176
Patchmatch-test94.42 23993.68 25496.63 21297.60 21291.76 27994.83 34397.49 28689.45 31594.14 22997.10 25688.99 18698.83 22185.37 32798.13 15299.29 122
ADS-MVSNet95.00 20094.45 20496.63 21298.00 18791.91 27696.04 32697.74 26690.15 30296.47 17096.64 29787.89 21598.96 20290.08 28497.06 17799.02 152
Anonymous2023121194.10 25993.26 26896.61 21499.11 10494.28 22399.01 6098.88 4986.43 33192.81 27697.57 22781.66 30198.68 23394.83 16989.02 30196.88 245
ACMM93.85 995.69 16395.38 15996.61 21497.61 21193.84 23598.91 7898.44 17695.25 12194.28 22198.47 14386.04 25299.12 18095.50 15393.95 23296.87 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114494.59 22793.92 23496.60 21696.21 29594.78 20498.59 14398.14 22991.86 26294.21 22697.02 27187.97 21398.41 26591.72 26289.57 28996.61 277
GG-mvs-BLEND96.59 21796.34 29294.98 19296.51 32288.58 36093.10 27194.34 33780.34 31198.05 29989.53 29696.99 17996.74 260
pm-mvs193.94 26693.06 27096.59 21796.49 28695.16 18198.95 7298.03 25092.32 24791.08 30897.84 20384.54 27598.41 26592.16 24986.13 33196.19 312
CR-MVSNet94.76 21694.15 22096.59 21797.00 25793.43 25094.96 33997.56 27592.46 23896.93 14596.24 30888.15 20897.88 31387.38 31396.65 18798.46 188
v894.47 23793.77 24696.57 22096.36 29194.83 20099.05 5298.19 21691.92 25993.16 26696.97 27688.82 19498.48 25091.69 26387.79 31396.39 303
GBi-Net94.49 23593.80 24396.56 22198.21 17195.00 18998.82 9898.18 21992.46 23894.09 23197.07 26381.16 30297.95 30592.08 25192.14 25796.72 263
test194.49 23593.80 24396.56 22198.21 17195.00 18998.82 9898.18 21992.46 23894.09 23197.07 26381.16 30297.95 30592.08 25192.14 25796.72 263
FMVSNet193.19 28092.07 28596.56 22197.54 21995.00 18998.82 9898.18 21990.38 29992.27 29497.07 26373.68 34597.95 30589.36 30091.30 26896.72 263
tfpnnormal93.66 26892.70 27796.55 22496.94 26195.94 15198.97 6899.19 1591.04 28991.38 30597.34 24184.94 26798.61 23885.45 32689.02 30195.11 331
v119294.32 24493.58 25796.53 22596.10 30194.45 21698.50 16098.17 22491.54 27094.19 22797.06 26686.95 23598.43 25790.14 28289.57 28996.70 267
EPMVS94.99 20194.48 20096.52 22697.22 24291.75 28097.23 28291.66 35694.11 16697.28 13096.81 28985.70 25598.84 21993.04 22797.28 17598.97 157
v1094.29 24693.55 25896.51 22796.39 29094.80 20298.99 6498.19 21691.35 27793.02 27296.99 27488.09 21098.41 26590.50 27988.41 30796.33 307
PEN-MVS94.42 23993.73 25096.49 22896.28 29494.84 19899.17 3399.00 2793.51 20292.23 29597.83 20686.10 24997.90 30992.55 24286.92 32496.74 260
v14419294.39 24193.70 25296.48 22996.06 30394.35 22298.58 14598.16 22691.45 27294.33 21997.02 27187.50 22598.45 25491.08 26989.11 29896.63 275
v7n94.19 25293.43 26396.47 23095.90 30894.38 22199.26 1898.34 19391.99 25792.76 27897.13 25588.31 20398.52 24889.48 29887.70 31496.52 292
LPG-MVS_test95.62 16695.34 16196.47 23097.46 22593.54 24698.99 6498.54 15594.67 14994.36 21798.77 11485.39 25999.11 18395.71 14694.15 22596.76 258
LGP-MVS_train96.47 23097.46 22593.54 24698.54 15594.67 14994.36 21798.77 11485.39 25999.11 18395.71 14694.15 22596.76 258
SCA95.46 17095.13 17196.46 23397.67 20791.29 29197.33 27697.60 27394.68 14896.92 14797.10 25683.97 28698.89 21392.59 23998.32 14899.20 129
CLD-MVS95.62 16695.34 16196.46 23397.52 22293.75 23997.27 28198.46 17295.53 10394.42 21598.00 18786.21 24798.97 19996.25 12594.37 21796.66 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP93.49 1095.34 18294.98 17996.43 23597.67 20793.48 24998.73 11898.44 17694.94 14092.53 28698.53 13784.50 27699.14 17895.48 15494.00 23096.66 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet93.26 27792.21 28496.41 23697.73 20593.13 26295.65 33497.03 30891.27 28394.04 23496.06 31575.33 33897.19 32786.56 31796.23 20598.92 162
v192192094.20 25193.47 26296.40 23795.98 30694.08 22998.52 15598.15 22791.33 27894.25 22397.20 25286.41 24498.42 25890.04 28789.39 29596.69 272
mvs-test196.60 12596.68 11596.37 23897.89 19591.81 27798.56 15198.10 23596.57 6396.52 16897.94 19290.81 15199.45 15395.72 14498.01 15497.86 206
EI-MVSNet95.96 14995.83 14196.36 23997.93 19293.70 24398.12 21498.27 20693.70 19295.07 19199.02 8092.23 11898.54 24694.68 17393.46 24196.84 250
PatchT93.06 28291.97 28796.35 24096.69 27692.67 26794.48 34597.08 30486.62 32997.08 13792.23 34587.94 21497.90 30978.89 34796.69 18598.49 187
v124094.06 26393.29 26796.34 24196.03 30593.90 23398.44 16798.17 22491.18 28794.13 23097.01 27386.05 25098.42 25889.13 30389.50 29396.70 267
ACMH92.88 1694.55 23093.95 23396.34 24197.63 21093.26 25898.81 10498.49 17193.43 20689.74 31998.53 13781.91 29999.08 18893.69 20693.30 24796.70 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24399.00 11089.54 31397.43 26698.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2699.77 2699.72 40
PatchmatchNetpermissive95.71 16195.52 15396.29 24497.58 21490.72 30096.84 31197.52 28294.06 16897.08 13796.96 27889.24 17998.90 21292.03 25598.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
BH-w/o95.38 17795.08 17496.26 24598.34 16291.79 27897.70 25297.43 29192.87 22894.24 22497.22 25088.66 19598.84 21991.55 26597.70 16798.16 199
IterMVS-LS95.46 17095.21 16896.22 24698.12 18093.72 24298.32 18598.13 23093.71 19094.26 22297.31 24492.24 11798.10 29394.63 17490.12 28296.84 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test94.82 21194.36 20996.20 24797.35 23590.79 29898.34 17896.57 32892.91 22695.33 18996.44 30482.00 29799.12 18094.52 18195.78 21398.70 173
TransMVSNet (Re)92.67 28691.51 29196.15 24896.58 28194.65 20598.90 7996.73 32290.86 29189.46 32397.86 20085.62 25698.09 29586.45 31881.12 34095.71 321
DTE-MVSNet93.98 26593.26 26896.14 24996.06 30394.39 22099.20 2998.86 6193.06 21991.78 30197.81 20885.87 25397.58 32090.53 27886.17 32996.46 301
cl-mvsnet294.68 21994.19 21696.13 25098.11 18193.60 24496.94 29998.31 19792.43 24293.32 26296.87 28686.51 24098.28 28394.10 19791.16 27196.51 295
miper_enhance_ethall95.10 19594.75 18896.12 25197.53 22193.73 24196.61 31998.08 24192.20 25493.89 23996.65 29692.44 11298.30 27894.21 19291.16 27196.34 305
cl-mvsnet_94.51 23494.01 22896.02 25297.58 21493.40 25397.05 29397.96 25591.73 26592.76 27897.08 26289.06 18598.13 29192.61 23690.29 28196.52 292
cl-mvsnet194.52 23394.03 22595.99 25397.57 21893.38 25497.05 29397.94 25691.74 26392.81 27697.10 25689.12 18298.07 29792.60 23790.30 28096.53 289
EPNet_dtu95.21 18994.95 18195.99 25396.17 29890.45 30498.16 21097.27 29996.77 5493.14 26998.33 16190.34 16198.42 25885.57 32498.81 12599.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth95.01 19994.69 19195.97 25597.70 20693.31 25697.02 29598.07 24392.23 25193.51 25596.96 27891.85 12898.15 28993.68 20791.16 27196.44 302
Baseline_NR-MVSNet94.35 24293.81 24295.96 25696.20 29694.05 23098.61 14296.67 32691.44 27393.85 24297.60 22488.57 19798.14 29094.39 18486.93 32395.68 322
JIA-IIPM93.35 27392.49 28095.92 25796.48 28790.65 30195.01 33896.96 31285.93 33596.08 17987.33 35087.70 22198.78 22691.35 26795.58 21498.34 193
Fast-Effi-MVS+-dtu95.87 15395.85 14095.91 25897.74 20491.74 28198.69 12998.15 22795.56 10294.92 19597.68 21888.98 18998.79 22593.19 22297.78 16397.20 224
v14894.29 24693.76 24895.91 25896.10 30192.93 26598.58 14597.97 25392.59 23693.47 25796.95 28088.53 20098.32 27492.56 24187.06 32296.49 298
cl_fuxian94.79 21494.43 20695.89 26097.75 20193.12 26397.16 28998.03 25092.23 25193.46 25897.05 26891.39 13998.01 30193.58 21289.21 29796.53 289
ACMH+92.99 1494.30 24593.77 24695.88 26197.81 19992.04 27598.71 12398.37 18893.99 17490.60 31398.47 14380.86 30799.05 19092.75 23592.40 25696.55 286
Patchmtry93.22 27892.35 28295.84 26296.77 27093.09 26494.66 34497.56 27587.37 32792.90 27496.24 30888.15 20897.90 30987.37 31490.10 28396.53 289
test-LLR95.10 19594.87 18495.80 26396.77 27089.70 31096.91 30295.21 33895.11 12994.83 19995.72 32287.71 21998.97 19993.06 22598.50 13898.72 171
test-mter94.08 26193.51 26095.80 26396.77 27089.70 31096.91 30295.21 33892.89 22794.83 19995.72 32277.69 32798.97 19993.06 22598.50 13898.72 171
test0.0.03 194.08 26193.51 26095.80 26395.53 31992.89 26697.38 26995.97 33195.11 12992.51 28896.66 29487.71 21996.94 33187.03 31593.67 23697.57 214
XVG-ACMP-BASELINE94.54 23194.14 22195.75 26696.55 28291.65 28398.11 21698.44 17694.96 13794.22 22597.90 19579.18 31799.11 18394.05 19993.85 23496.48 299
pmmvs593.65 27092.97 27295.68 26795.49 32092.37 26998.20 20097.28 29889.66 31292.58 28497.26 24682.14 29698.09 29593.18 22390.95 27596.58 280
RRT_test8_iter0594.56 22994.19 21695.67 26897.60 21291.34 28798.93 7698.42 18094.75 14493.39 25997.87 19979.00 31898.61 23896.78 10890.99 27497.07 226
TESTMET0.1,194.18 25493.69 25395.63 26996.92 26289.12 31996.91 30294.78 34393.17 21694.88 19696.45 30378.52 32098.92 20893.09 22498.50 13898.85 164
CostFormer94.95 20594.73 18995.60 27097.28 23889.06 32097.53 26296.89 31889.66 31296.82 15296.72 29286.05 25098.95 20695.53 15296.13 20898.79 168
Effi-MVS+-dtu96.29 13796.56 11895.51 27197.89 19590.22 30698.80 10598.10 23596.57 6396.45 17296.66 29490.81 15198.91 20995.72 14497.99 15597.40 217
D2MVS95.18 19195.08 17495.48 27297.10 25392.07 27398.30 18899.13 1994.02 17192.90 27496.73 29189.48 17298.73 22994.48 18393.60 24095.65 323
eth_miper_zixun_eth94.68 21994.41 20795.47 27397.64 20991.71 28296.73 31698.07 24392.71 23293.64 24897.21 25190.54 15898.17 28893.38 21589.76 28696.54 287
tpm294.19 25293.76 24895.46 27497.23 24189.04 32197.31 27896.85 32187.08 32896.21 17796.79 29083.75 29298.74 22892.43 24796.23 20598.59 183
tpmrst95.63 16595.69 14895.44 27597.54 21988.54 32896.97 29797.56 27593.50 20397.52 12896.93 28289.49 17199.16 17495.25 16196.42 19598.64 181
ITE_SJBPF95.44 27597.42 23091.32 29097.50 28495.09 13293.59 24998.35 15681.70 30098.88 21589.71 29293.39 24596.12 313
MVP-Stereo94.28 24893.92 23495.35 27794.95 32892.60 26897.97 22897.65 26991.61 26990.68 31297.09 26086.32 24698.42 25889.70 29399.34 10295.02 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs94.60 22594.36 20995.33 27897.46 22588.60 32796.88 30897.68 26791.29 28193.80 24596.42 30588.58 19699.24 16791.06 27096.04 21098.17 198
MVS_030492.81 28492.01 28695.23 27997.46 22591.33 28998.17 20998.81 7691.13 28893.80 24595.68 32566.08 35398.06 29890.79 27496.13 20896.32 308
TDRefinement91.06 29989.68 30495.21 28085.35 35591.49 28698.51 15997.07 30591.47 27188.83 32897.84 20377.31 33199.09 18792.79 23477.98 34495.04 333
USDC93.33 27592.71 27695.21 28096.83 26990.83 29796.91 30297.50 28493.84 18190.72 31198.14 17777.69 32798.82 22289.51 29793.21 24995.97 317
pmmvs691.77 29290.63 29695.17 28294.69 33391.24 29298.67 13397.92 25886.14 33389.62 32097.56 22975.79 33798.34 27290.75 27684.56 33395.94 318
tpm94.13 25693.80 24395.12 28396.50 28587.91 33697.44 26495.89 33492.62 23496.37 17496.30 30784.13 28398.30 27893.24 22091.66 26499.14 140
miper_lstm_enhance94.33 24394.07 22495.11 28497.75 20190.97 29597.22 28398.03 25091.67 26792.76 27896.97 27690.03 16697.78 31592.51 24489.64 28896.56 284
ADS-MVSNet294.58 22894.40 20895.11 28498.00 18788.74 32596.04 32697.30 29690.15 30296.47 17096.64 29787.89 21597.56 32190.08 28497.06 17799.02 152
tpm cat193.36 27292.80 27495.07 28697.58 21487.97 33596.76 31497.86 26182.17 34593.53 25296.04 31686.13 24899.13 17989.24 30195.87 21198.10 200
PVSNet_088.72 1991.28 29690.03 30295.00 28797.99 18987.29 34094.84 34298.50 16792.06 25689.86 31895.19 32779.81 31399.39 15692.27 24869.79 35198.33 194
ppachtmachnet_test93.22 27892.63 27894.97 28895.45 32290.84 29696.88 30897.88 26090.60 29392.08 29897.26 24688.08 21197.86 31485.12 32890.33 27996.22 310
LCM-MVSNet-Re95.22 18895.32 16494.91 28998.18 17687.85 33798.75 11195.66 33595.11 12988.96 32596.85 28790.26 16497.65 31795.65 14998.44 14199.22 128
dp94.15 25593.90 23694.90 29097.31 23786.82 34296.97 29797.19 30291.22 28596.02 18196.61 29985.51 25899.02 19790.00 28894.30 21898.85 164
testgi93.06 28292.45 28194.88 29196.43 28989.90 30798.75 11197.54 28195.60 10091.63 30497.91 19474.46 34397.02 32986.10 32093.67 23697.72 211
IterMVS-SCA-FT94.11 25893.87 23894.85 29297.98 19190.56 30397.18 28698.11 23393.75 18592.58 28497.48 23383.97 28697.41 32492.48 24691.30 26896.58 280
OurMVSNet-221017-094.21 25094.00 22994.85 29295.60 31689.22 31898.89 8397.43 29195.29 11892.18 29698.52 14082.86 29498.59 24293.46 21491.76 26296.74 260
MDA-MVSNet-bldmvs89.97 30888.35 31394.83 29495.21 32591.34 28797.64 25697.51 28388.36 32371.17 35496.13 31479.22 31696.63 33983.65 33486.27 32896.52 292
IterMVS94.09 26093.85 24094.80 29597.99 18990.35 30597.18 28698.12 23193.68 19592.46 29197.34 24184.05 28497.41 32492.51 24491.33 26796.62 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo93.34 27492.86 27394.75 29695.67 31489.41 31698.75 11196.67 32693.89 17890.15 31798.25 17080.87 30698.27 28490.90 27390.64 27796.57 282
our_test_393.65 27093.30 26694.69 29795.45 32289.68 31296.91 30297.65 26991.97 25891.66 30396.88 28489.67 17097.93 30888.02 31091.49 26596.48 299
MDA-MVSNet_test_wron90.71 30289.38 30794.68 29894.83 33090.78 29997.19 28597.46 28787.60 32572.41 35395.72 32286.51 24096.71 33785.92 32286.80 32696.56 284
TinyColmap92.31 28991.53 29094.65 29996.92 26289.75 30996.92 30096.68 32590.45 29789.62 32097.85 20276.06 33698.81 22386.74 31692.51 25595.41 325
YYNet190.70 30389.39 30694.62 30094.79 33190.65 30197.20 28497.46 28787.54 32672.54 35295.74 31986.51 24096.66 33886.00 32186.76 32796.54 287
KD-MVS_2432*160089.61 31187.96 31594.54 30194.06 33891.59 28495.59 33597.63 27189.87 30888.95 32694.38 33578.28 32296.82 33284.83 32968.05 35295.21 328
miper_refine_blended89.61 31187.96 31594.54 30194.06 33891.59 28495.59 33597.63 27189.87 30888.95 32694.38 33578.28 32296.82 33284.83 32968.05 35295.21 328
FMVSNet591.81 29190.92 29494.49 30397.21 24392.09 27298.00 22697.55 28089.31 31790.86 31095.61 32674.48 34295.32 34785.57 32489.70 28796.07 315
K. test v392.55 28791.91 28994.48 30495.64 31589.24 31799.07 5094.88 34294.04 16986.78 33597.59 22577.64 33097.64 31892.08 25189.43 29496.57 282
test_040291.32 29590.27 30094.48 30496.60 28091.12 29398.50 16097.22 30186.10 33488.30 33096.98 27577.65 32997.99 30478.13 34992.94 25294.34 338
MS-PatchMatch93.84 26793.63 25594.46 30696.18 29789.45 31497.76 24898.27 20692.23 25192.13 29797.49 23279.50 31498.69 23089.75 29199.38 10095.25 327
lessismore_v094.45 30794.93 32988.44 33091.03 35786.77 33697.64 22176.23 33598.42 25890.31 28185.64 33296.51 295
pmmvs-eth3d90.36 30589.05 31094.32 30891.10 35092.12 27197.63 25896.95 31388.86 32084.91 34393.13 34178.32 32196.74 33488.70 30581.81 33894.09 342
LF4IMVS93.14 28192.79 27594.20 30995.88 30988.67 32697.66 25597.07 30593.81 18491.71 30297.65 21977.96 32698.81 22391.47 26691.92 26195.12 330
UnsupCasMVSNet_eth90.99 30089.92 30394.19 31094.08 33789.83 30897.13 29198.67 12993.69 19385.83 34096.19 31375.15 33996.74 33489.14 30279.41 34396.00 316
EG-PatchMatch MVS91.13 29890.12 30194.17 31194.73 33289.00 32298.13 21397.81 26289.22 31885.32 34296.46 30267.71 35098.42 25887.89 31293.82 23595.08 332
MIMVSNet189.67 31088.28 31493.82 31292.81 34691.08 29498.01 22497.45 28987.95 32487.90 33295.87 31867.63 35194.56 35078.73 34888.18 31095.83 320
OpenMVS_ROBcopyleft86.42 2089.00 31487.43 31993.69 31393.08 34489.42 31597.91 23396.89 31878.58 34885.86 33994.69 33269.48 34998.29 28177.13 35093.29 24893.36 347
CVMVSNet95.43 17396.04 13593.57 31497.93 19283.62 34698.12 21498.59 14295.68 9696.56 16299.02 8087.51 22397.51 32393.56 21397.44 17299.60 78
Anonymous2024052191.18 29790.44 29893.42 31593.70 34188.47 32998.94 7497.56 27588.46 32289.56 32295.08 33077.15 33396.97 33083.92 33389.55 29194.82 336
Patchmatch-RL test91.49 29490.85 29593.41 31691.37 34984.40 34492.81 34995.93 33391.87 26187.25 33394.87 33188.99 18696.53 34092.54 24382.00 33699.30 120
DIV-MVS_2432*160090.38 30489.38 30793.40 31792.85 34588.94 32397.95 22997.94 25690.35 30090.25 31593.96 33879.82 31295.94 34384.62 33276.69 34695.33 326
Anonymous2023120691.66 29391.10 29393.33 31894.02 34087.35 33998.58 14597.26 30090.48 29590.16 31696.31 30683.83 29096.53 34079.36 34589.90 28596.12 313
UnsupCasMVSNet_bld87.17 31785.12 32193.31 31991.94 34788.77 32494.92 34198.30 20384.30 34282.30 34690.04 34763.96 35597.25 32685.85 32374.47 35093.93 345
RPSCF94.87 21095.40 15593.26 32098.89 11882.06 35198.33 18098.06 24890.30 30196.56 16299.26 4287.09 23199.49 14693.82 20496.32 19898.24 196
new_pmnet90.06 30789.00 31193.22 32194.18 33588.32 33296.42 32496.89 31886.19 33285.67 34193.62 33977.18 33297.10 32881.61 33989.29 29694.23 339
CL-MVSNet_2432*160090.11 30689.14 30993.02 32291.86 34888.23 33396.51 32298.07 24390.49 29490.49 31494.41 33384.75 27195.34 34680.79 34174.95 34895.50 324
MVS-HIRNet89.46 31388.40 31292.64 32397.58 21482.15 35094.16 34893.05 35575.73 35190.90 30982.52 35279.42 31598.33 27383.53 33598.68 12797.43 215
test20.0390.89 30190.38 29992.43 32493.48 34288.14 33498.33 18097.56 27593.40 20787.96 33196.71 29380.69 30994.13 35179.15 34686.17 32995.01 335
DSMNet-mixed92.52 28892.58 27992.33 32594.15 33682.65 34998.30 18894.26 34989.08 31992.65 28295.73 32085.01 26695.76 34486.24 31997.76 16498.59 183
EU-MVSNet93.66 26894.14 22192.25 32695.96 30783.38 34798.52 15598.12 23194.69 14792.61 28398.13 17887.36 22896.39 34291.82 25990.00 28496.98 231
pmmvs386.67 31984.86 32292.11 32788.16 35387.19 34196.63 31894.75 34479.88 34787.22 33492.75 34366.56 35295.20 34881.24 34076.56 34793.96 344
new-patchmatchnet88.50 31587.45 31891.67 32890.31 35285.89 34397.16 28997.33 29589.47 31483.63 34592.77 34276.38 33495.06 34982.70 33677.29 34594.06 343
PM-MVS87.77 31686.55 32091.40 32991.03 35183.36 34896.92 30095.18 34091.28 28286.48 33893.42 34053.27 35696.74 33489.43 29981.97 33794.11 341
CMPMVSbinary66.06 2189.70 30989.67 30589.78 33093.19 34376.56 35397.00 29698.35 19180.97 34681.57 34797.75 21174.75 34198.61 23889.85 28993.63 23894.17 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 33186.66 35475.78 35492.66 35096.72 32386.55 33792.50 34446.01 35797.90 30990.32 28082.09 33594.80 337
DeepMVS_CXcopyleft86.78 33297.09 25472.30 35695.17 34175.92 35084.34 34495.19 32770.58 34895.35 34579.98 34489.04 30092.68 348
LCM-MVSNet78.70 32076.24 32586.08 33377.26 36171.99 35794.34 34696.72 32361.62 35576.53 34989.33 34833.91 36392.78 35381.85 33874.60 34993.46 346
PMMVS277.95 32275.44 32685.46 33482.54 35674.95 35594.23 34793.08 35472.80 35274.68 35087.38 34936.36 36291.56 35473.95 35263.94 35489.87 349
N_pmnet87.12 31887.77 31785.17 33595.46 32161.92 36097.37 27170.66 36585.83 33688.73 32996.04 31685.33 26397.76 31680.02 34290.48 27895.84 319
Gipumacopyleft78.40 32176.75 32483.38 33695.54 31880.43 35279.42 35797.40 29364.67 35473.46 35180.82 35445.65 35893.14 35266.32 35487.43 31776.56 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 32465.37 32880.22 33765.99 36371.96 35890.91 35390.09 35882.62 34349.93 36078.39 35529.36 36481.75 35762.49 35538.52 35886.95 352
FPMVS77.62 32377.14 32379.05 33879.25 35960.97 36195.79 33195.94 33265.96 35367.93 35594.40 33437.73 36188.88 35668.83 35388.46 30687.29 350
MVEpermissive62.14 2263.28 32959.38 33274.99 33974.33 36265.47 35985.55 35580.50 36452.02 35851.10 35975.00 35810.91 36880.50 35851.60 35753.40 35578.99 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt68.90 32566.97 32774.68 34050.78 36559.95 36287.13 35483.47 36338.80 36062.21 35696.23 31064.70 35476.91 36188.91 30430.49 35987.19 351
PMVScopyleft61.03 2365.95 32663.57 33073.09 34157.90 36451.22 36585.05 35693.93 35354.45 35644.32 36183.57 35113.22 36589.15 35558.68 35681.00 34178.91 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 32764.25 32967.02 34282.28 35759.36 36391.83 35285.63 36152.69 35760.22 35777.28 35641.06 36080.12 35946.15 35841.14 35661.57 357
EMVS64.07 32863.26 33166.53 34381.73 35858.81 36491.85 35184.75 36251.93 35959.09 35875.13 35743.32 35979.09 36042.03 35939.47 35761.69 356
wuyk23d30.17 33030.18 33430.16 34478.61 36043.29 36666.79 35814.21 36617.31 36114.82 36411.93 36411.55 36741.43 36237.08 36019.30 3605.76 360
test12320.95 33323.72 33612.64 34513.54 3678.19 36796.55 3216.13 3687.48 36316.74 36337.98 36112.97 3666.05 36316.69 3615.43 36223.68 358
testmvs21.48 33224.95 33511.09 34614.89 3666.47 36896.56 3209.87 3677.55 36217.93 36239.02 3609.43 3695.90 36416.56 36212.72 36120.91 359
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k23.98 33131.98 3330.00 3470.00 3680.00 3690.00 35998.59 1420.00 3640.00 36598.61 12890.60 1570.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.88 33510.50 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36594.51 850.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.20 33410.94 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36598.43 1460.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS99.46 5198.70 1998.79 9293.21 21498.67 5898.97 8795.70 4499.83 5696.07 12899.58 74
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6699.17 2499.35 2895.29 6397.72 5399.65 5899.71 44
IU-MVS99.71 2099.23 698.64 13795.28 11999.63 498.35 2499.81 1099.83 5
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
9.1498.06 4999.47 4898.71 12398.82 7094.36 16199.16 2699.29 3996.05 3299.81 7197.00 8799.71 50
save fliter99.46 5198.38 3598.21 19798.71 11497.95 3
test_0728_THIRD97.32 2899.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 129
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17399.20 129
sam_mvs88.99 186
MTGPAbinary98.74 104
test_post196.68 31730.43 36387.85 21898.69 23092.59 239
test_post31.83 36288.83 19398.91 209
patchmatchnet-post95.10 32989.42 17498.89 213
MTMP98.89 8394.14 351
gm-plane-assit95.88 30987.47 33889.74 31196.94 28199.19 17293.32 219
test9_res96.39 12299.57 7599.69 51
TEST999.31 7098.50 2997.92 23198.73 10892.63 23397.74 11298.68 12296.20 2399.80 80
test_899.29 7898.44 3197.89 23798.72 11092.98 22297.70 11598.66 12596.20 2399.80 80
agg_prior295.87 13899.57 7599.68 57
agg_prior99.30 7598.38 3598.72 11097.57 12699.81 71
test_prior498.01 6297.86 240
test_prior297.80 24596.12 8197.89 10698.69 12095.96 3696.89 9699.60 68
旧先验297.57 26191.30 28098.67 5899.80 8095.70 148
新几何297.64 256
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
无先验97.58 26098.72 11091.38 27499.87 4493.36 21799.60 78
原ACMM297.67 254
test22299.23 9397.17 9897.40 26798.66 13288.68 32198.05 8798.96 9394.14 9499.53 8599.61 75
testdata299.89 3591.65 264
segment_acmp96.85 11
testdata197.32 27796.34 72
plane_prior797.42 23094.63 207
plane_prior697.35 23594.61 21087.09 231
plane_prior598.56 15099.03 19496.07 12894.27 21996.92 236
plane_prior498.28 165
plane_prior394.61 21097.02 4895.34 187
plane_prior298.80 10597.28 30
plane_prior197.37 234
plane_prior94.60 21298.44 16796.74 5694.22 221
n20.00 369
nn0.00 369
door-mid94.37 347
test1198.66 132
door94.64 345
HQP5-MVS94.25 226
HQP-NCC97.20 24498.05 22096.43 6894.45 210
ACMP_Plane97.20 24498.05 22096.43 6894.45 210
BP-MVS95.30 157
HQP4-MVS94.45 21098.96 20296.87 247
HQP3-MVS98.46 17294.18 223
HQP2-MVS86.75 237
NP-MVS97.28 23894.51 21597.73 212
MDTV_nov1_ep13_2view84.26 34596.89 30790.97 29097.90 10589.89 16893.91 20199.18 136
MDTV_nov1_ep1395.40 15597.48 22388.34 33196.85 31097.29 29793.74 18797.48 12997.26 24689.18 18099.05 19091.92 25897.43 173
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80