This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 6098.87 5597.65 999.73 199.48 697.53 499.94 398.43 2099.81 1099.70 48
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 698.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 7098.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1799.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5499.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8298.85 6497.28 3199.72 399.39 1496.63 1597.60 32398.17 3199.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17498.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6599.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2799.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11298.71 12699.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1599.70 5199.47 98
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16698.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3699.66 5799.69 51
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5399.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17698.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17898.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2499.73 4399.75 28
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17898.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2299.73 4399.75 28
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 20198.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10298.40 17698.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7299.20 5295.90 4099.89 3597.85 4999.74 4199.78 13
DeepPCF-MVS96.37 297.93 6598.48 1796.30 24799.00 11089.54 31797.43 27098.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2899.77 2699.72 40
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8598.94 3999.17 5696.06 3099.92 2197.62 6699.78 2399.75 28
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12798.30 19298.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 8098.94 3999.17 5695.91 3999.94 397.55 7399.79 1999.78 13
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17598.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4299.61 6799.74 33
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8598.93 4399.19 5595.70 4499.94 397.62 6699.79 1999.78 13
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8998.60 6799.13 6496.05 3299.94 397.77 5499.86 199.77 20
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6799.05 3299.34 3195.34 5999.82 6497.86 4899.64 6299.73 36
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5799.65 5899.71 44
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6299.63 6499.72 40
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16798.76 9997.82 598.45 7598.93 9796.65 1499.83 5697.38 8099.41 9999.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5799.65 5899.71 44
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13598.28 19598.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 999.54 8499.73 36
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23799.58 397.20 3998.33 8299.00 8595.99 3599.64 12698.05 3899.76 3299.69 51
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16398.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7399.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5699.67 5499.72 40
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 13199.32 1599.39 1496.22 2099.84 5397.72 5799.73 4399.67 61
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 10198.81 7695.80 9499.16 2699.47 895.37 5799.92 2197.89 4699.75 3899.79 10
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8298.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6998.96 3295.65 10298.94 3999.17 5696.06 3099.92 2197.21 8599.78 2399.75 28
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8199.23 4595.46 5199.94 397.42 7899.81 1099.77 20
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7498.80 8793.67 20099.37 1399.52 396.52 1799.89 3598.06 3699.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15698.74 10497.27 3598.02 9499.39 1494.81 7799.96 197.91 4399.79 1999.77 20
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12598.66 13297.51 1698.15 8598.83 10895.70 4499.92 2197.53 7599.67 5499.66 65
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 22098.29 20797.19 4098.99 3899.02 8096.22 2099.67 12298.52 1598.56 13799.51 89
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6699.49 595.43 11299.03 3399.32 3395.56 4799.94 396.80 10999.77 2699.78 13
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10897.95 23399.58 397.14 4398.44 7699.01 8495.03 7399.62 13197.91 4399.75 3899.50 91
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9598.31 8499.10 6995.46 5199.93 1597.57 7299.81 1099.74 33
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25398.89 4697.71 898.33 8298.97 8794.97 7499.88 4398.42 2299.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 598.82 7094.46 16298.94 3999.20 5295.16 6999.74 10797.58 6999.85 399.77 20
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9898.73 5599.06 7895.27 6499.93 1597.07 8999.63 6499.72 40
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15598.61 6698.97 8795.13 7099.77 10197.65 6499.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1498.06 4999.47 4898.71 12698.82 7094.36 16499.16 2699.29 3996.05 3299.81 7197.00 9099.71 50
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21398.83 4899.10 6996.54 1699.83 5697.70 6299.76 3299.59 80
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8199.26 1899.37 2293.33 10499.93 1596.96 9499.67 5499.69 51
DROMVSNet98.12 5698.02 5298.42 10198.25 16997.23 9699.49 298.42 17996.55 6698.68 5798.70 12193.82 10199.01 20098.79 299.48 9099.03 152
MP-MVScopyleft98.33 5098.01 5399.28 3599.75 398.18 5399.22 2798.79 9296.13 8297.92 10899.23 4594.54 8499.94 396.74 11399.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETH3D-3000-0.198.35 4698.00 5499.38 1799.47 4898.68 2198.67 13698.84 6594.66 15499.11 2899.25 4395.46 5199.81 7196.80 10999.73 4399.63 73
APD-MVScopyleft98.35 4698.00 5499.42 1599.51 3998.72 1798.80 10898.82 7094.52 15999.23 2099.25 4395.54 4999.80 8096.52 11999.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj98.33 5097.95 5699.47 1199.49 4598.70 1998.83 9898.86 6195.48 10998.91 4599.17 5695.48 5099.93 1595.80 14499.53 8599.76 26
ACMMPcopyleft98.23 5497.95 5699.09 5999.74 797.62 7999.03 5799.41 695.98 8797.60 12899.36 2694.45 9099.93 1597.14 8698.85 12499.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17298.78 9594.10 17097.69 12099.42 1295.25 6699.92 2198.09 3599.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CS-MVS97.94 6397.90 5998.06 12798.04 18996.85 11199.04 5498.39 18596.17 7998.50 7198.29 16794.60 8299.02 19798.61 899.43 9798.30 197
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24998.84 6596.12 8397.89 11098.69 12295.96 3699.70 11596.89 9999.60 6899.65 67
ETV-MVS97.96 5997.81 6198.40 10398.42 15497.27 9198.73 12198.55 15296.84 5398.38 7997.44 24295.39 5599.35 15897.62 6698.89 12098.58 186
PS-MVSNAJ97.73 7397.77 6297.62 15998.68 13895.58 16897.34 27998.51 16197.29 3098.66 6397.88 20294.51 8599.90 3397.87 4799.17 11297.39 222
CANet98.05 5797.76 6398.90 7198.73 13097.27 9198.35 18198.78 9597.37 2897.72 11898.96 9391.53 14099.92 2198.79 299.65 5899.51 89
CSCG97.85 6897.74 6498.20 11599.67 2695.16 18499.22 2799.32 793.04 22497.02 14598.92 9995.36 5899.91 3097.43 7799.64 6299.52 85
xiu_mvs_v2_base97.66 7797.70 6597.56 16398.61 14495.46 17497.44 26898.46 17197.15 4298.65 6498.15 17994.33 9299.80 8097.84 5198.66 13397.41 220
CS-MVS-test97.78 7197.68 6698.09 12497.94 19597.19 9898.95 7498.37 18995.98 8797.99 10197.84 20794.50 8899.11 18298.30 2899.28 10897.97 207
UA-Net97.96 5997.62 6798.98 6598.86 12197.47 8498.89 8699.08 2196.67 6098.72 5699.54 193.15 10799.81 7194.87 17098.83 12599.65 67
MG-MVS97.81 6997.60 6898.44 9899.12 10395.97 15097.75 25398.78 9596.89 5298.46 7299.22 4793.90 10099.68 12194.81 17499.52 8799.67 61
EIA-MVS97.75 7297.58 6998.27 10998.38 15696.44 12999.01 6298.60 14095.88 9197.26 13497.53 23594.97 7499.33 16097.38 8099.20 11099.05 151
DeepC-MVS95.98 397.88 6697.58 6998.77 7599.25 8696.93 10698.83 9898.75 10296.96 5196.89 15299.50 490.46 16199.87 4497.84 5199.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
xiu_mvs_v1_base_debi97.60 8097.56 7197.72 14998.35 15895.98 14597.86 24498.51 16197.13 4499.01 3598.40 15291.56 13699.80 8098.53 1198.68 12997.37 224
ETH3D cwj APD-0.1697.96 5997.52 7499.29 3199.05 10598.52 2798.33 18498.68 12193.18 21898.68 5799.13 6494.62 8199.83 5696.45 12199.55 8399.52 85
train_agg97.97 5897.52 7499.33 2799.31 7098.50 2997.92 23598.73 10892.98 22697.74 11698.68 12496.20 2399.80 8096.59 11599.57 7599.68 57
agg_prior197.95 6297.51 7699.28 3599.30 7598.38 3597.81 24898.72 11093.16 22097.57 12998.66 12796.14 2699.81 7196.63 11499.56 8099.66 65
CDPH-MVS97.94 6397.49 7799.28 3599.47 4898.44 3197.91 23798.67 12992.57 24198.77 5198.85 10595.93 3899.72 10995.56 15499.69 5299.68 57
MVSFormer97.57 8597.49 7797.84 13898.07 18595.76 16499.47 398.40 18394.98 13898.79 4998.83 10892.34 11598.41 26996.91 9699.59 7199.34 112
PVSNet_Blended_VisFu97.70 7597.46 7998.44 9899.27 8395.91 15898.63 14299.16 1794.48 16197.67 12198.88 10292.80 11099.91 3097.11 8799.12 11399.50 91
DP-MVS Recon97.86 6797.46 7999.06 6199.53 3698.35 4398.33 18498.89 4692.62 23898.05 9098.94 9695.34 5999.65 12496.04 13599.42 9899.19 133
baseline97.64 7897.44 8198.25 11298.35 15896.20 13999.00 6498.32 19796.33 7598.03 9399.17 5691.35 14399.16 17398.10 3498.29 15199.39 109
casdiffmvs97.63 7997.41 8298.28 10898.33 16496.14 14298.82 10198.32 19796.38 7397.95 10399.21 4891.23 14799.23 16798.12 3398.37 14699.48 96
VNet97.79 7097.40 8398.96 6798.88 11997.55 8198.63 14298.93 3796.74 5799.02 3498.84 10790.33 16499.83 5698.53 1196.66 18999.50 91
diffmvs97.58 8497.40 8398.13 12098.32 16695.81 16398.06 22398.37 18996.20 7898.74 5398.89 10191.31 14599.25 16498.16 3298.52 13899.34 112
OMC-MVS97.55 8797.34 8598.20 11599.33 6595.92 15798.28 19598.59 14295.52 10897.97 10299.10 6993.28 10699.49 14695.09 16798.88 12199.19 133
CPTT-MVS97.72 7497.32 8698.92 6999.64 2897.10 10199.12 4398.81 7692.34 24998.09 8899.08 7693.01 10899.92 2196.06 13499.77 2699.75 28
EPP-MVSNet97.46 8997.28 8797.99 13198.64 14195.38 17699.33 1598.31 19993.61 20397.19 13699.07 7794.05 9699.23 16796.89 9998.43 14599.37 111
API-MVS97.41 9697.25 8897.91 13598.70 13596.80 11298.82 10198.69 11894.53 15798.11 8798.28 16894.50 8899.57 13594.12 19899.49 8897.37 224
canonicalmvs97.67 7697.23 8998.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 12197.40 24592.26 11899.49 14698.28 3096.28 20599.08 149
lupinMVS97.44 9397.22 9098.12 12298.07 18595.76 16497.68 25797.76 26894.50 16098.79 4998.61 13092.34 11599.30 16197.58 6999.59 7199.31 118
CHOSEN 280x42097.18 10897.18 9197.20 17798.81 12693.27 26195.78 33699.15 1895.25 12496.79 15898.11 18292.29 11799.07 18998.56 1099.85 399.25 127
PVSNet_Blended97.38 9897.12 9298.14 11899.25 8695.35 17997.28 28499.26 893.13 22197.94 10598.21 17592.74 11199.81 7196.88 10299.40 10199.27 125
Vis-MVSNetpermissive97.42 9597.11 9398.34 10698.66 13996.23 13899.22 2799.00 2796.63 6298.04 9299.21 4888.05 21699.35 15896.01 13799.21 10999.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR97.46 8997.11 9398.50 9399.50 4196.41 13198.63 14298.60 14095.18 12797.06 14398.06 18594.26 9499.57 13593.80 20898.87 12399.52 85
jason97.32 10197.08 9598.06 12797.45 23395.59 16797.87 24397.91 26394.79 14698.55 6998.83 10891.12 14899.23 16797.58 6999.60 6899.34 112
jason: jason.
alignmvs97.56 8697.07 9699.01 6298.66 13998.37 4198.83 9898.06 25296.74 5798.00 10097.65 22490.80 15599.48 15098.37 2596.56 19399.19 133
CNLPA97.45 9297.03 9798.73 7699.05 10597.44 8698.07 22298.53 15695.32 12096.80 15798.53 13993.32 10599.72 10994.31 19299.31 10699.02 154
ETH3 D test640097.59 8397.01 9899.34 2399.40 5998.56 2598.20 20498.81 7691.63 27298.44 7698.85 10593.98 9999.82 6494.11 19999.69 5299.64 70
MVS_Test97.28 10297.00 9998.13 12098.33 16495.97 15098.74 11798.07 24794.27 16698.44 7698.07 18492.48 11399.26 16396.43 12398.19 15299.16 138
DPM-MVS97.55 8796.99 10099.23 4299.04 10798.55 2697.17 29298.35 19394.85 14597.93 10798.58 13595.07 7299.71 11492.60 24199.34 10499.43 106
sss97.39 9796.98 10198.61 8398.60 14596.61 12098.22 20098.93 3793.97 17898.01 9898.48 14491.98 12899.85 5096.45 12198.15 15399.39 109
3Dnovator94.51 597.46 8996.93 10299.07 6097.78 20497.64 7799.35 1199.06 2297.02 4993.75 25199.16 6189.25 18299.92 2197.22 8499.75 3899.64 70
WTY-MVS97.37 9996.92 10398.72 7798.86 12196.89 11098.31 19098.71 11495.26 12397.67 12198.56 13892.21 12199.78 9695.89 13996.85 18499.48 96
IS-MVSNet97.22 10496.88 10498.25 11298.85 12396.36 13399.19 3397.97 25795.39 11497.23 13598.99 8691.11 14998.93 21194.60 18098.59 13599.47 98
EPNet97.28 10296.87 10598.51 9294.98 33196.14 14298.90 8297.02 31498.28 195.99 18699.11 6791.36 14299.89 3596.98 9199.19 11199.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.12 11196.80 10698.08 12599.30 7594.56 21798.05 22499.71 193.57 20497.09 13998.91 10088.17 21199.89 3596.87 10599.56 8099.81 8
F-COLMAP97.09 11396.80 10697.97 13299.45 5594.95 19898.55 15698.62 13993.02 22596.17 18198.58 13594.01 9799.81 7193.95 20398.90 11999.14 141
TAMVS97.02 11496.79 10897.70 15298.06 18795.31 18198.52 15898.31 19993.95 17997.05 14498.61 13093.49 10398.52 25295.33 15997.81 16499.29 123
test_yl97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
DCV-MVSNet97.22 10496.78 10998.54 8998.73 13096.60 12198.45 16798.31 19994.70 14898.02 9498.42 15090.80 15599.70 11596.81 10796.79 18699.34 112
PLCcopyleft95.07 497.20 10796.78 10998.44 9899.29 7896.31 13798.14 21598.76 9992.41 24796.39 17698.31 16594.92 7699.78 9694.06 20198.77 12899.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+94.38 697.43 9496.78 10999.38 1797.83 20298.52 2799.37 898.71 11497.09 4792.99 27799.13 6489.36 17999.89 3596.97 9299.57 7599.71 44
112197.37 9996.77 11399.16 5099.34 6297.99 6598.19 20898.68 12190.14 30898.01 9898.97 8794.80 7999.87 4493.36 22099.46 9499.61 75
AdaColmapbinary97.15 11096.70 11498.48 9599.16 9996.69 11798.01 22898.89 4694.44 16396.83 15398.68 12490.69 15899.76 10394.36 18899.29 10798.98 158
Effi-MVS+97.12 11196.69 11598.39 10498.19 17696.72 11697.37 27598.43 17893.71 19397.65 12498.02 18792.20 12299.25 16496.87 10597.79 16599.19 133
CDS-MVSNet96.99 11596.69 11597.90 13698.05 18895.98 14598.20 20498.33 19693.67 20096.95 14698.49 14393.54 10298.42 26295.24 16597.74 16899.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs-test196.60 12796.68 11796.37 24297.89 19991.81 28198.56 15498.10 23896.57 6496.52 17197.94 19690.81 15399.45 15395.72 14798.01 15797.86 210
LS3D97.16 10996.66 11898.68 7998.53 14997.19 9898.93 7998.90 4492.83 23495.99 18699.37 2292.12 12499.87 4493.67 21299.57 7598.97 159
PVSNet_BlendedMVS96.73 12496.60 11997.12 18399.25 8695.35 17998.26 19899.26 894.28 16597.94 10597.46 23992.74 11199.81 7196.88 10293.32 24996.20 315
Effi-MVS+-dtu96.29 14096.56 12095.51 27597.89 19990.22 31098.80 10898.10 23896.57 6496.45 17596.66 29890.81 15398.91 21395.72 14797.99 15897.40 221
CANet_DTU96.96 11696.55 12198.21 11498.17 18096.07 14497.98 23198.21 21597.24 3797.13 13898.93 9786.88 24099.91 3095.00 16999.37 10398.66 180
Vis-MVSNet (Re-imp)96.87 12096.55 12197.83 13998.73 13095.46 17499.20 3198.30 20594.96 14096.60 16498.87 10390.05 16798.59 24693.67 21298.60 13499.46 102
mvs_anonymous96.70 12596.53 12397.18 17998.19 17693.78 23998.31 19098.19 21894.01 17594.47 21398.27 17192.08 12698.46 25797.39 7997.91 16099.31 118
HyFIR lowres test96.90 11996.49 12498.14 11899.33 6595.56 16997.38 27399.65 292.34 24997.61 12798.20 17689.29 18199.10 18696.97 9297.60 17399.77 20
XVG-OURS96.55 13296.41 12596.99 18998.75 12993.76 24097.50 26798.52 15895.67 10096.83 15399.30 3888.95 19599.53 14395.88 14096.26 20697.69 216
MAR-MVS96.91 11896.40 12698.45 9798.69 13796.90 10898.66 13998.68 12192.40 24897.07 14297.96 19491.54 13999.75 10593.68 21098.92 11898.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR96.51 13396.34 12797.02 18898.77 12893.76 24097.79 25198.50 16695.45 11196.94 14799.09 7487.87 22199.55 14296.76 11295.83 21597.74 213
PMMVS96.60 12796.33 12897.41 16997.90 19893.93 23597.35 27898.41 18192.84 23397.76 11497.45 24191.10 15099.20 17096.26 12797.91 16099.11 144
UGNet96.78 12396.30 12998.19 11798.24 17095.89 16098.88 8998.93 3797.39 2596.81 15697.84 20782.60 29999.90 3396.53 11899.49 8898.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t96.93 11796.27 13098.92 6999.50 4197.63 7898.85 9498.90 4484.80 34497.77 11399.11 6792.84 10999.66 12394.85 17199.77 2699.47 98
PS-MVSNAJss96.43 13596.26 13196.92 19895.84 31595.08 19099.16 3698.50 16695.87 9293.84 24798.34 16294.51 8598.61 24296.88 10293.45 24697.06 231
PAPR96.84 12196.24 13298.65 8198.72 13496.92 10797.36 27798.57 14893.33 21296.67 16097.57 23294.30 9399.56 13791.05 27698.59 13599.47 98
HY-MVS93.96 896.82 12296.23 13398.57 8598.46 15397.00 10398.14 21598.21 21593.95 17996.72 15997.99 19191.58 13599.76 10394.51 18596.54 19498.95 162
PVSNet91.96 1896.35 13896.15 13496.96 19399.17 9892.05 27896.08 32998.68 12193.69 19697.75 11597.80 21488.86 19699.69 12094.26 19499.01 11599.15 139
FIs96.51 13396.12 13597.67 15597.13 25597.54 8299.36 999.22 1495.89 9094.03 23998.35 15891.98 12898.44 26096.40 12492.76 25697.01 233
GeoE96.58 13196.07 13698.10 12398.35 15895.89 16099.34 1298.12 23393.12 22296.09 18298.87 10389.71 17398.97 20292.95 23398.08 15699.43 106
FC-MVSNet-test96.42 13696.05 13797.53 16596.95 26497.27 9199.36 999.23 1295.83 9393.93 24198.37 15692.00 12798.32 27896.02 13692.72 25797.00 234
CVMVSNet95.43 17796.04 13893.57 31897.93 19683.62 35098.12 21898.59 14295.68 9996.56 16599.02 8087.51 22797.51 32793.56 21697.44 17599.60 78
PatchMatch-RL96.59 12996.03 13998.27 10999.31 7096.51 12697.91 23799.06 2293.72 19296.92 15098.06 18588.50 20599.65 12491.77 26599.00 11698.66 180
1112_ss96.63 12696.00 14098.50 9398.56 14696.37 13298.18 21298.10 23892.92 22994.84 20198.43 14892.14 12399.58 13494.35 18996.51 19599.56 84
DP-MVS96.59 12995.93 14198.57 8599.34 6296.19 14198.70 13098.39 18589.45 31994.52 21199.35 2891.85 13099.85 5092.89 23798.88 12199.68 57
HQP_MVS96.14 14695.90 14296.85 20197.42 23494.60 21598.80 10898.56 15097.28 3195.34 19198.28 16887.09 23599.03 19496.07 13194.27 22296.92 240
Fast-Effi-MVS+-dtu95.87 15695.85 14395.91 26297.74 20891.74 28598.69 13298.15 22995.56 10594.92 19997.68 22388.98 19398.79 22993.19 22597.78 16697.20 228
EI-MVSNet95.96 15295.83 14496.36 24397.93 19693.70 24698.12 21898.27 20893.70 19595.07 19599.02 8092.23 12098.54 25094.68 17693.46 24496.84 254
131496.25 14495.73 14597.79 14397.13 25595.55 17198.19 20898.59 14293.47 20792.03 30397.82 21291.33 14499.49 14694.62 17998.44 14398.32 196
nrg03096.28 14295.72 14697.96 13496.90 26998.15 5699.39 698.31 19995.47 11094.42 21998.35 15892.09 12598.69 23497.50 7689.05 30297.04 232
BH-untuned95.95 15395.72 14696.65 21398.55 14892.26 27498.23 19997.79 26793.73 19194.62 20898.01 18988.97 19499.00 20193.04 23098.51 13998.68 177
MVSTER96.06 14895.72 14697.08 18698.23 17195.93 15698.73 12198.27 20894.86 14495.07 19598.09 18388.21 20998.54 25096.59 11593.46 24496.79 258
ab-mvs96.42 13695.71 14998.55 8798.63 14296.75 11597.88 24298.74 10493.84 18496.54 16998.18 17885.34 26699.75 10595.93 13896.35 19999.15 139
Fast-Effi-MVS+96.28 14295.70 15098.03 12998.29 16895.97 15098.58 14898.25 21391.74 26795.29 19497.23 25491.03 15299.15 17692.90 23597.96 15998.97 159
test_djsdf96.00 15195.69 15196.93 19595.72 31795.49 17399.47 398.40 18394.98 13894.58 20997.86 20489.16 18598.41 26996.91 9694.12 23096.88 249
tpmrst95.63 16995.69 15195.44 27997.54 22388.54 33296.97 30197.56 27993.50 20697.52 13196.93 28689.49 17599.16 17395.25 16496.42 19898.64 182
Test_1112_low_res96.34 13995.66 15398.36 10598.56 14695.94 15397.71 25598.07 24792.10 25994.79 20597.29 25091.75 13299.56 13794.17 19696.50 19699.58 82
hse-mvs396.17 14595.62 15497.81 14299.03 10894.45 21998.64 14198.75 10297.48 1898.67 5998.72 12089.76 17199.86 4997.95 4081.59 34299.11 144
RRT_MVS96.04 14995.53 15597.56 16397.07 25997.32 8898.57 15398.09 24395.15 12995.02 19798.44 14788.20 21098.58 24896.17 13093.09 25396.79 258
PatchmatchNetpermissive95.71 16495.52 15696.29 24897.58 21890.72 30496.84 31597.52 28694.06 17197.08 14096.96 28289.24 18398.90 21692.03 25998.37 14699.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051796.07 14795.51 15797.78 14498.41 15594.84 20199.28 1894.33 35394.26 16797.64 12598.64 12984.05 28899.47 15195.34 15897.60 17399.03 152
MDTV_nov1_ep1395.40 15897.48 22788.34 33596.85 31497.29 30193.74 19097.48 13297.26 25189.18 18499.05 19091.92 26297.43 176
HQP-MVS95.72 16395.40 15896.69 21197.20 24894.25 22998.05 22498.46 17196.43 7094.45 21497.73 21786.75 24198.96 20695.30 16094.18 22696.86 253
QAPM96.29 14095.40 15898.96 6797.85 20197.60 8099.23 2398.93 3789.76 31493.11 27499.02 8089.11 18799.93 1591.99 26099.62 6699.34 112
RPSCF94.87 21495.40 15893.26 32498.89 11882.06 35598.33 18498.06 25290.30 30596.56 16599.26 4287.09 23599.49 14693.82 20796.32 20198.24 198
ACMM93.85 995.69 16795.38 16296.61 21897.61 21593.84 23898.91 8198.44 17595.25 12494.28 22598.47 14586.04 25699.12 17995.50 15693.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053096.01 15095.36 16397.97 13298.38 15695.52 17298.88 8994.19 35594.04 17297.64 12598.31 16583.82 29599.46 15295.29 16297.70 17098.93 163
LPG-MVS_test95.62 17095.34 16496.47 23497.46 22993.54 24998.99 6698.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
CLD-MVS95.62 17095.34 16496.46 23797.52 22693.75 24297.27 28598.46 17195.53 10694.42 21998.00 19086.21 25198.97 20296.25 12894.37 22096.66 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS95.69 16795.33 16696.76 20596.16 30494.63 21098.43 17298.39 18596.64 6195.02 19798.78 11385.15 26899.05 19095.21 16694.20 22596.60 282
LCM-MVSNet-Re95.22 19295.32 16794.91 29398.18 17887.85 34198.75 11495.66 34095.11 13288.96 32996.85 29190.26 16697.65 32195.65 15298.44 14399.22 129
BH-RMVSNet95.92 15595.32 16797.69 15398.32 16694.64 20998.19 20897.45 29394.56 15696.03 18498.61 13085.02 26999.12 17990.68 28199.06 11499.30 121
hse-mvs295.71 16495.30 16996.93 19598.50 15093.53 25198.36 18098.10 23897.48 1898.67 5997.99 19189.76 17199.02 19797.95 4080.91 34698.22 199
MSDG95.93 15495.30 16997.83 13998.90 11795.36 17796.83 31698.37 18991.32 28394.43 21898.73 11990.27 16599.60 13290.05 29098.82 12698.52 187
VDD-MVS95.82 16095.23 17197.61 16098.84 12493.98 23498.68 13397.40 29795.02 13797.95 10399.34 3174.37 34899.78 9698.64 496.80 18599.08 149
IterMVS-LS95.46 17495.21 17296.22 25098.12 18293.72 24598.32 18998.13 23293.71 19394.26 22697.31 24992.24 11998.10 29794.63 17790.12 28596.84 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)95.78 16195.19 17397.58 16196.99 26397.47 8498.79 11299.18 1695.60 10393.92 24297.04 27391.68 13398.48 25495.80 14487.66 31896.79 258
UniMVSNet_NR-MVSNet95.71 16495.15 17497.40 17196.84 27296.97 10498.74 11799.24 1095.16 12893.88 24497.72 21991.68 13398.31 28095.81 14287.25 32396.92 240
SCA95.46 17495.13 17596.46 23797.67 21191.29 29597.33 28097.60 27794.68 15196.92 15097.10 26083.97 29098.89 21792.59 24398.32 15099.20 130
baseline195.84 15895.12 17698.01 13098.49 15295.98 14598.73 12197.03 31295.37 11796.22 17998.19 17789.96 16999.16 17394.60 18087.48 31998.90 165
VPA-MVSNet95.75 16295.11 17797.69 15397.24 24497.27 9198.94 7799.23 1295.13 13095.51 19097.32 24885.73 25898.91 21397.33 8289.55 29496.89 248
D2MVS95.18 19595.08 17895.48 27697.10 25792.07 27798.30 19299.13 1994.02 17492.90 27896.73 29589.48 17698.73 23394.48 18693.60 24395.65 328
BH-w/o95.38 18195.08 17896.26 24998.34 16391.79 28297.70 25697.43 29592.87 23294.24 22897.22 25588.66 19998.84 22391.55 26997.70 17098.16 202
jajsoiax95.45 17695.03 18096.73 20795.42 32894.63 21099.14 3898.52 15895.74 9693.22 26898.36 15783.87 29398.65 24096.95 9594.04 23196.91 245
mvs_tets95.41 18095.00 18196.65 21395.58 32194.42 22199.00 6498.55 15295.73 9793.21 26998.38 15583.45 29798.63 24197.09 8894.00 23396.91 245
OpenMVScopyleft93.04 1395.83 15995.00 18198.32 10797.18 25297.32 8899.21 3098.97 3089.96 31091.14 31199.05 7986.64 24399.92 2193.38 21899.47 9197.73 214
LFMVS95.86 15794.98 18398.47 9698.87 12096.32 13598.84 9796.02 33493.40 21098.62 6599.20 5274.99 34499.63 12997.72 5797.20 17999.46 102
ACMP93.49 1095.34 18694.98 18396.43 23997.67 21193.48 25398.73 12198.44 17594.94 14392.53 29098.53 13984.50 28099.14 17795.48 15794.00 23396.66 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet_dtu95.21 19394.95 18595.99 25796.17 30290.45 30898.16 21497.27 30396.77 5593.14 27398.33 16390.34 16398.42 26285.57 32898.81 12799.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
anonymousdsp95.42 17894.91 18696.94 19495.10 33095.90 15999.14 3898.41 18193.75 18893.16 27097.46 23987.50 22998.41 26995.63 15394.03 23296.50 301
thisisatest051595.61 17294.89 18797.76 14698.15 18195.15 18696.77 31794.41 35192.95 22897.18 13797.43 24384.78 27499.45 15394.63 17797.73 16998.68 177
test-LLR95.10 19994.87 18895.80 26796.77 27489.70 31496.91 30695.21 34395.11 13294.83 20395.72 32687.71 22398.97 20293.06 22898.50 14098.72 173
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20899.29 7893.24 26398.58 14898.11 23689.92 31193.57 25599.10 6986.37 24999.79 9290.78 27998.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thres600view795.49 17394.77 19097.67 15598.98 11395.02 19198.85 9496.90 32095.38 11596.63 16296.90 28784.29 28199.59 13388.65 31096.33 20098.40 191
DU-MVS95.42 17894.76 19197.40 17196.53 28796.97 10498.66 13998.99 2995.43 11293.88 24497.69 22088.57 20198.31 28095.81 14287.25 32396.92 240
miper_enhance_ethall95.10 19994.75 19296.12 25597.53 22593.73 24496.61 32398.08 24592.20 25893.89 24396.65 30092.44 11498.30 28294.21 19591.16 27496.34 309
CostFormer94.95 20994.73 19395.60 27497.28 24289.06 32497.53 26696.89 32289.66 31696.82 15596.72 29686.05 25498.95 21095.53 15596.13 21198.79 170
thres100view90095.38 18194.70 19497.41 16998.98 11394.92 19998.87 9196.90 32095.38 11596.61 16396.88 28884.29 28199.56 13788.11 31196.29 20297.76 211
miper_ehance_all_eth95.01 20394.69 19595.97 25997.70 21093.31 26097.02 29998.07 24792.23 25593.51 25996.96 28291.85 13098.15 29393.68 21091.16 27496.44 306
AllTest95.24 19194.65 19696.99 18999.25 8693.21 26498.59 14698.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
tfpn200view995.32 18894.62 19797.43 16898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20297.76 211
thres40095.38 18194.62 19797.65 15898.94 11594.98 19598.68 13396.93 31895.33 11896.55 16796.53 30484.23 28499.56 13788.11 31196.29 20298.40 191
thres20095.25 19094.57 19997.28 17498.81 12694.92 19998.20 20497.11 30795.24 12696.54 16996.22 31684.58 27899.53 14387.93 31596.50 19697.39 222
TAPA-MVS93.98 795.35 18594.56 20097.74 14899.13 10294.83 20398.33 18498.64 13786.62 33396.29 17898.61 13094.00 9899.29 16280.00 34899.41 9999.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDDNet95.36 18494.53 20197.86 13798.10 18495.13 18898.85 9497.75 26990.46 30098.36 8099.39 1473.27 35099.64 12697.98 3996.58 19298.81 169
baseline295.11 19894.52 20296.87 20096.65 28393.56 24898.27 19794.10 35793.45 20892.02 30497.43 24387.45 23199.19 17193.88 20597.41 17797.87 209
Anonymous20240521195.28 18994.49 20397.67 15599.00 11093.75 24298.70 13097.04 31190.66 29696.49 17298.80 11178.13 32899.83 5696.21 12995.36 21899.44 105
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 18496.45 29296.36 13399.03 5799.03 2595.04 13693.58 25497.93 19788.27 20898.03 30494.13 19786.90 32896.95 239
EPMVS94.99 20594.48 20496.52 23097.22 24691.75 28497.23 28691.66 36194.11 16997.28 13396.81 29385.70 25998.84 22393.04 23097.28 17898.97 159
WR-MVS_H95.05 20294.46 20696.81 20396.86 27195.82 16299.24 2299.24 1093.87 18392.53 29096.84 29290.37 16298.24 28993.24 22387.93 31596.38 308
WR-MVS95.15 19694.46 20697.22 17696.67 28296.45 12898.21 20198.81 7694.15 16893.16 27097.69 22087.51 22798.30 28295.29 16288.62 30896.90 247
ADS-MVSNet95.00 20494.45 20896.63 21698.00 19091.91 28096.04 33097.74 27090.15 30696.47 17396.64 30187.89 21998.96 20690.08 28897.06 18099.02 154
XXY-MVS95.20 19494.45 20897.46 16696.75 27796.56 12498.86 9398.65 13693.30 21593.27 26798.27 17184.85 27398.87 22094.82 17391.26 27396.96 237
cl_fuxian94.79 21894.43 21095.89 26497.75 20593.12 26797.16 29398.03 25492.23 25593.46 26297.05 27291.39 14198.01 30593.58 21589.21 30096.53 293
eth_miper_zixun_eth94.68 22394.41 21195.47 27797.64 21391.71 28696.73 32098.07 24792.71 23693.64 25297.21 25690.54 16098.17 29293.38 21889.76 28996.54 291
ADS-MVSNet294.58 23294.40 21295.11 28898.00 19088.74 32996.04 33097.30 30090.15 30696.47 17396.64 30187.89 21997.56 32590.08 28897.06 18099.02 154
tpmvs94.60 22994.36 21395.33 28297.46 22988.60 33196.88 31297.68 27191.29 28593.80 24996.42 30988.58 20099.24 16691.06 27496.04 21398.17 201
DWT-MVSNet_test94.82 21594.36 21396.20 25197.35 23990.79 30298.34 18296.57 33392.91 23095.33 19396.44 30882.00 30199.12 17994.52 18495.78 21698.70 175
CP-MVSNet94.94 21194.30 21596.83 20296.72 27995.56 16999.11 4498.95 3493.89 18192.42 29697.90 19987.19 23398.12 29694.32 19188.21 31296.82 257
bset_n11_16_dypcd94.89 21394.27 21696.76 20594.41 33895.15 18695.67 33795.64 34195.53 10694.65 20797.52 23687.10 23498.29 28596.58 11791.35 26996.83 256
FMVSNet394.97 20894.26 21797.11 18498.18 17896.62 11898.56 15498.26 21293.67 20094.09 23597.10 26084.25 28398.01 30592.08 25592.14 26096.70 271
Anonymous2024052995.10 19994.22 21897.75 14799.01 10994.26 22898.87 9198.83 6885.79 34196.64 16198.97 8778.73 32399.85 5096.27 12694.89 21999.12 143
TR-MVS94.94 21194.20 21997.17 18097.75 20594.14 23197.59 26397.02 31492.28 25495.75 18997.64 22683.88 29298.96 20689.77 29496.15 21098.40 191
cl-mvsnet294.68 22394.19 22096.13 25498.11 18393.60 24796.94 30398.31 19992.43 24693.32 26696.87 29086.51 24498.28 28794.10 20091.16 27496.51 299
VPNet94.99 20594.19 22097.40 17197.16 25396.57 12398.71 12698.97 3095.67 10094.84 20198.24 17480.36 31498.67 23896.46 12087.32 32296.96 237
RRT_test8_iter0594.56 23394.19 22095.67 27297.60 21691.34 29198.93 7998.42 17994.75 14793.39 26397.87 20379.00 32298.61 24296.78 11190.99 27797.07 230
NR-MVSNet94.98 20794.16 22397.44 16796.53 28797.22 9798.74 11798.95 3494.96 14089.25 32897.69 22089.32 18098.18 29194.59 18287.40 32196.92 240
CR-MVSNet94.76 22094.15 22496.59 22197.00 26193.43 25494.96 34397.56 27992.46 24296.93 14896.24 31288.15 21297.88 31787.38 31796.65 19098.46 189
V4294.78 21994.14 22596.70 21096.33 29795.22 18398.97 7098.09 24392.32 25194.31 22497.06 27088.39 20698.55 24992.90 23588.87 30696.34 309
EU-MVSNet93.66 27294.14 22592.25 33095.96 31183.38 35198.52 15898.12 23394.69 15092.61 28798.13 18187.36 23296.39 34691.82 26390.00 28796.98 235
XVG-ACMP-BASELINE94.54 23594.14 22595.75 27096.55 28691.65 28798.11 22098.44 17594.96 14094.22 22997.90 19979.18 32199.11 18294.05 20293.85 23796.48 303
miper_lstm_enhance94.33 24794.07 22895.11 28897.75 20590.97 29997.22 28798.03 25491.67 27192.76 28296.97 28090.03 16897.78 31992.51 24889.64 29196.56 288
cl-mvsnet194.52 23794.03 22995.99 25797.57 22293.38 25897.05 29797.94 26091.74 26792.81 28097.10 26089.12 18698.07 30192.60 24190.30 28396.53 293
v2v48294.69 22194.03 22996.65 21396.17 30294.79 20698.67 13698.08 24592.72 23594.00 24097.16 25887.69 22698.45 25892.91 23488.87 30696.72 267
GA-MVS94.81 21794.03 22997.14 18197.15 25493.86 23796.76 31897.58 27894.00 17694.76 20697.04 27380.91 30998.48 25491.79 26496.25 20799.09 146
cl-mvsnet____94.51 23894.01 23296.02 25697.58 21893.40 25797.05 29797.96 25991.73 26992.76 28297.08 26689.06 18998.13 29592.61 24090.29 28496.52 296
OurMVSNet-221017-094.21 25494.00 23394.85 29695.60 32089.22 32298.89 8697.43 29595.29 12192.18 30098.52 14282.86 29898.59 24693.46 21791.76 26596.74 264
PAPM94.95 20994.00 23397.78 14497.04 26095.65 16696.03 33298.25 21391.23 28894.19 23197.80 21491.27 14698.86 22282.61 34297.61 17298.84 168
pmmvs494.69 22193.99 23596.81 20395.74 31695.94 15397.40 27197.67 27290.42 30293.37 26497.59 23089.08 18898.20 29092.97 23291.67 26696.30 313
PS-CasMVS94.67 22693.99 23596.71 20896.68 28195.26 18299.13 4199.03 2593.68 19892.33 29797.95 19585.35 26598.10 29793.59 21488.16 31496.79 258
ACMH92.88 1694.55 23493.95 23796.34 24597.63 21493.26 26298.81 10798.49 17093.43 20989.74 32398.53 13981.91 30399.08 18893.69 20993.30 25096.70 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo94.28 25293.92 23895.35 28194.95 33292.60 27297.97 23297.65 27391.61 27390.68 31697.09 26486.32 25098.42 26289.70 29799.34 10495.02 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114494.59 23193.92 23896.60 22096.21 29994.78 20798.59 14698.14 23191.86 26694.21 23097.02 27587.97 21798.41 26991.72 26689.57 29296.61 281
dp94.15 25993.90 24094.90 29497.31 24186.82 34696.97 30197.19 30691.22 28996.02 18596.61 30385.51 26299.02 19790.00 29294.30 22198.85 166
LTVRE_ROB92.95 1594.60 22993.90 24096.68 21297.41 23794.42 22198.52 15898.59 14291.69 27091.21 31098.35 15884.87 27299.04 19391.06 27493.44 24796.60 282
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 26293.87 24294.85 29697.98 19490.56 30797.18 29098.11 23693.75 18892.58 28897.48 23883.97 29097.41 32892.48 25091.30 27196.58 284
cascas94.63 22893.86 24396.93 19596.91 26894.27 22796.00 33398.51 16185.55 34294.54 21096.23 31484.20 28698.87 22095.80 14496.98 18397.66 217
IterMVS94.09 26493.85 24494.80 29997.99 19290.35 30997.18 29098.12 23393.68 19892.46 29597.34 24684.05 28897.41 32892.51 24891.33 27096.62 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part194.82 21593.82 24597.82 14198.84 12497.82 7299.03 5798.81 7692.31 25392.51 29297.89 20181.96 30298.67 23894.80 17588.24 31196.98 235
Baseline_NR-MVSNet94.35 24693.81 24695.96 26096.20 30094.05 23398.61 14596.67 33191.44 27793.85 24697.60 22988.57 20198.14 29494.39 18786.93 32695.68 327
tpm94.13 26093.80 24795.12 28796.50 28987.91 34097.44 26895.89 33992.62 23896.37 17796.30 31184.13 28798.30 28293.24 22391.66 26799.14 141
GBi-Net94.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
test194.49 23993.80 24796.56 22598.21 17395.00 19298.82 10198.18 22192.46 24294.09 23597.07 26781.16 30697.95 30992.08 25592.14 26096.72 267
v894.47 24193.77 25096.57 22496.36 29594.83 20399.05 5398.19 21891.92 26393.16 27096.97 28088.82 19898.48 25491.69 26787.79 31696.39 307
ACMH+92.99 1494.30 24993.77 25095.88 26597.81 20392.04 27998.71 12698.37 18993.99 17790.60 31798.47 14580.86 31199.05 19092.75 23992.40 25996.55 290
v14894.29 25093.76 25295.91 26296.10 30592.93 26998.58 14897.97 25792.59 24093.47 26196.95 28488.53 20498.32 27892.56 24587.06 32596.49 302
tpm294.19 25693.76 25295.46 27897.23 24589.04 32597.31 28296.85 32687.08 33296.21 18096.79 29483.75 29698.74 23292.43 25196.23 20898.59 184
AUN-MVS94.53 23693.73 25496.92 19898.50 15093.52 25298.34 18298.10 23893.83 18695.94 18897.98 19385.59 26199.03 19494.35 18980.94 34598.22 199
PEN-MVS94.42 24393.73 25496.49 23296.28 29894.84 20199.17 3599.00 2793.51 20592.23 29997.83 21186.10 25397.90 31392.55 24686.92 32796.74 264
v14419294.39 24593.70 25696.48 23396.06 30794.35 22598.58 14898.16 22891.45 27694.33 22397.02 27587.50 22998.45 25891.08 27389.11 30196.63 279
TESTMET0.1,194.18 25893.69 25795.63 27396.92 26689.12 32396.91 30694.78 34893.17 21994.88 20096.45 30778.52 32498.92 21293.09 22798.50 14098.85 166
Patchmatch-test94.42 24393.68 25896.63 21697.60 21691.76 28394.83 34797.49 29089.45 31994.14 23397.10 26088.99 19098.83 22585.37 33198.13 15499.29 123
MS-PatchMatch93.84 27193.63 25994.46 31096.18 30189.45 31897.76 25298.27 20892.23 25592.13 30197.49 23779.50 31898.69 23489.75 29599.38 10295.25 332
FMVSNet294.47 24193.61 26097.04 18798.21 17396.43 13098.79 11298.27 20892.46 24293.50 26097.09 26481.16 30698.00 30791.09 27291.93 26396.70 271
v119294.32 24893.58 26196.53 22996.10 30594.45 21998.50 16398.17 22691.54 27494.19 23197.06 27086.95 23998.43 26190.14 28689.57 29296.70 271
v1094.29 25093.55 26296.51 23196.39 29494.80 20598.99 6698.19 21891.35 28193.02 27696.99 27888.09 21498.41 26990.50 28388.41 31096.33 311
MVS94.67 22693.54 26398.08 12596.88 27096.56 12498.19 20898.50 16678.05 35392.69 28598.02 18791.07 15199.63 12990.09 28798.36 14898.04 204
test-mter94.08 26593.51 26495.80 26796.77 27489.70 31496.91 30695.21 34392.89 23194.83 20395.72 32677.69 33198.97 20293.06 22898.50 14098.72 173
test0.0.03 194.08 26593.51 26495.80 26795.53 32392.89 27097.38 27395.97 33695.11 13292.51 29296.66 29887.71 22396.94 33587.03 31993.67 23997.57 218
v192192094.20 25593.47 26696.40 24195.98 31094.08 23298.52 15898.15 22991.33 28294.25 22797.20 25786.41 24898.42 26290.04 29189.39 29896.69 276
v7n94.19 25693.43 26796.47 23495.90 31294.38 22499.26 2098.34 19591.99 26192.76 28297.13 25988.31 20798.52 25289.48 30287.70 31796.52 296
PCF-MVS93.45 1194.68 22393.43 26798.42 10198.62 14396.77 11495.48 34198.20 21784.63 34593.34 26598.32 16488.55 20399.81 7184.80 33598.96 11798.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_ETH3D94.24 25393.33 26996.97 19297.19 25193.38 25898.74 11798.57 14891.21 29093.81 24898.58 13572.85 35198.77 23195.05 16893.93 23698.77 172
our_test_393.65 27493.30 27094.69 30195.45 32689.68 31696.91 30697.65 27391.97 26291.66 30796.88 28889.67 17497.93 31288.02 31491.49 26896.48 303
v124094.06 26793.29 27196.34 24596.03 30993.90 23698.44 17098.17 22691.18 29194.13 23497.01 27786.05 25498.42 26289.13 30789.50 29696.70 271
Anonymous2023121194.10 26393.26 27296.61 21899.11 10494.28 22699.01 6298.88 4986.43 33592.81 28097.57 23281.66 30598.68 23794.83 17289.02 30496.88 249
DTE-MVSNet93.98 26993.26 27296.14 25396.06 30794.39 22399.20 3198.86 6193.06 22391.78 30597.81 21385.87 25797.58 32490.53 28286.17 33296.46 305
pm-mvs193.94 27093.06 27496.59 22196.49 29095.16 18498.95 7498.03 25492.32 25191.08 31297.84 20784.54 27998.41 26992.16 25386.13 33496.19 316
ET-MVSNet_ETH3D94.13 26092.98 27597.58 16198.22 17296.20 13997.31 28295.37 34294.53 15779.56 35397.63 22886.51 24497.53 32696.91 9690.74 27999.02 154
pmmvs593.65 27492.97 27695.68 27195.49 32492.37 27398.20 20497.28 30289.66 31692.58 28897.26 25182.14 30098.09 29993.18 22690.95 27896.58 284
SixPastTwentyTwo93.34 27892.86 27794.75 30095.67 31889.41 32098.75 11496.67 33193.89 18190.15 32198.25 17380.87 31098.27 28890.90 27790.64 28096.57 286
tpm cat193.36 27692.80 27895.07 29097.58 21887.97 33996.76 31897.86 26582.17 34993.53 25696.04 32086.13 25299.13 17889.24 30595.87 21498.10 203
LF4IMVS93.14 28592.79 27994.20 31395.88 31388.67 33097.66 25997.07 30993.81 18791.71 30697.65 22477.96 33098.81 22791.47 27091.92 26495.12 335
USDC93.33 27992.71 28095.21 28496.83 27390.83 30196.91 30697.50 28893.84 18490.72 31598.14 18077.69 33198.82 22689.51 30193.21 25295.97 321
tfpnnormal93.66 27292.70 28196.55 22896.94 26595.94 15398.97 7099.19 1591.04 29391.38 30997.34 24684.94 27198.61 24285.45 33089.02 30495.11 336
ppachtmachnet_test93.22 28292.63 28294.97 29295.45 32690.84 30096.88 31297.88 26490.60 29792.08 30297.26 25188.08 21597.86 31885.12 33290.33 28296.22 314
DSMNet-mixed92.52 29292.58 28392.33 32994.15 34082.65 35398.30 19294.26 35489.08 32392.65 28695.73 32485.01 27095.76 34886.24 32397.76 16798.59 184
JIA-IIPM93.35 27792.49 28495.92 26196.48 29190.65 30595.01 34296.96 31685.93 33996.08 18387.33 35587.70 22598.78 23091.35 27195.58 21798.34 194
testgi93.06 28692.45 28594.88 29596.43 29389.90 31198.75 11497.54 28595.60 10391.63 30897.91 19874.46 34797.02 33386.10 32493.67 23997.72 215
Patchmtry93.22 28292.35 28695.84 26696.77 27493.09 26894.66 34897.56 27987.37 33192.90 27896.24 31288.15 21297.90 31387.37 31890.10 28696.53 293
X-MVStestdata94.06 26792.30 28799.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7243.50 36495.90 4099.89 3597.85 4999.74 4199.78 13
MIMVSNet93.26 28192.21 28896.41 24097.73 20993.13 26695.65 33897.03 31291.27 28794.04 23896.06 31975.33 34297.19 33186.56 32196.23 20898.92 164
FMVSNet193.19 28492.07 28996.56 22597.54 22395.00 19298.82 10198.18 22190.38 30392.27 29897.07 26773.68 34997.95 30989.36 30491.30 27196.72 267
MVS_030492.81 28892.01 29095.23 28397.46 22991.33 29398.17 21398.81 7691.13 29293.80 24995.68 32966.08 35798.06 30290.79 27896.13 21196.32 312
PatchT93.06 28691.97 29196.35 24496.69 28092.67 27194.48 34997.08 30886.62 33397.08 14092.23 35087.94 21897.90 31378.89 35296.69 18898.49 188
IB-MVS91.98 1793.27 28091.97 29197.19 17897.47 22893.41 25697.09 29695.99 33593.32 21392.47 29495.73 32478.06 32999.53 14394.59 18282.98 33798.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v392.55 29191.91 29394.48 30895.64 31989.24 32199.07 5194.88 34794.04 17286.78 33997.59 23077.64 33497.64 32292.08 25589.43 29796.57 286
TinyColmap92.31 29391.53 29494.65 30396.92 26689.75 31396.92 30496.68 33090.45 30189.62 32497.85 20676.06 34098.81 22786.74 32092.51 25895.41 330
TransMVSNet (Re)92.67 29091.51 29596.15 25296.58 28594.65 20898.90 8296.73 32790.86 29589.46 32797.86 20485.62 26098.09 29986.45 32281.12 34395.71 326
RPMNet92.81 28891.34 29697.24 17597.00 26193.43 25494.96 34398.80 8782.27 34896.93 14892.12 35186.98 23899.82 6476.32 35696.65 19098.46 189
Anonymous2023120691.66 29791.10 29793.33 32294.02 34487.35 34398.58 14897.26 30490.48 29990.16 32096.31 31083.83 29496.53 34479.36 35089.90 28896.12 317
FMVSNet591.81 29590.92 29894.49 30797.21 24792.09 27698.00 23097.55 28489.31 32190.86 31495.61 33074.48 34695.32 35185.57 32889.70 29096.07 319
Patchmatch-RL test91.49 29890.85 29993.41 32091.37 35384.40 34892.81 35395.93 33891.87 26587.25 33794.87 33688.99 19096.53 34492.54 24782.00 33999.30 121
pmmvs691.77 29690.63 30095.17 28694.69 33791.24 29698.67 13697.92 26286.14 33789.62 32497.56 23475.79 34198.34 27690.75 28084.56 33695.94 322
gg-mvs-nofinetune92.21 29490.58 30197.13 18296.75 27795.09 18995.85 33489.40 36485.43 34394.50 21281.98 35880.80 31298.40 27592.16 25398.33 14997.88 208
Anonymous2024052191.18 30190.44 30293.42 31993.70 34588.47 33398.94 7797.56 27988.46 32689.56 32695.08 33577.15 33796.97 33483.92 33889.55 29494.82 341
test20.0390.89 30590.38 30392.43 32893.48 34688.14 33898.33 18497.56 27993.40 21087.96 33596.71 29780.69 31394.13 35679.15 35186.17 33295.01 340
test_040291.32 29990.27 30494.48 30896.60 28491.12 29798.50 16397.22 30586.10 33888.30 33496.98 27977.65 33397.99 30878.13 35492.94 25594.34 343
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 33689.00 32698.13 21797.81 26689.22 32285.32 34696.46 30667.71 35498.42 26287.89 31693.82 23895.08 337
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19287.29 34494.84 34698.50 16692.06 26089.86 32295.19 33279.81 31799.39 15692.27 25269.79 35698.33 195
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34189.83 31297.13 29598.67 12993.69 19685.83 34496.19 31775.15 34396.74 33889.14 30679.41 34796.00 320
TDRefinement91.06 30389.68 30895.21 28485.35 36091.49 29098.51 16297.07 30991.47 27588.83 33297.84 20777.31 33599.09 18792.79 23877.98 34995.04 338
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33493.19 34776.56 35797.00 30098.35 19380.97 35081.57 35197.75 21674.75 34598.61 24289.85 29393.63 24194.17 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet190.70 30789.39 31094.62 30494.79 33590.65 30597.20 28897.46 29187.54 33072.54 35795.74 32386.51 24496.66 34286.00 32586.76 33096.54 291
DIV-MVS_2432*160090.38 30889.38 31193.40 32192.85 34988.94 32797.95 23397.94 26090.35 30490.25 31993.96 34379.82 31695.94 34784.62 33776.69 35195.33 331
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 33490.78 30397.19 28997.46 29187.60 32972.41 35895.72 32686.51 24496.71 34185.92 32686.80 32996.56 288
CL-MVSNet_2432*160090.11 31089.14 31393.02 32691.86 35288.23 33796.51 32698.07 24790.49 29890.49 31894.41 33884.75 27595.34 35080.79 34674.95 35395.50 329
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 35492.12 27597.63 26296.95 31788.86 32484.91 34793.13 34678.32 32596.74 33888.70 30981.81 34194.09 347
new_pmnet90.06 31189.00 31593.22 32594.18 33988.32 33696.42 32896.89 32286.19 33685.67 34593.62 34477.18 33697.10 33281.61 34489.29 29994.23 344
MVS-HIRNet89.46 31788.40 31692.64 32797.58 21882.15 35494.16 35293.05 36075.73 35590.90 31382.52 35779.42 31998.33 27783.53 34098.68 12997.43 219
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 32991.34 29197.64 26097.51 28788.36 32771.17 35996.13 31879.22 32096.63 34383.65 33986.27 33196.52 296
MIMVSNet189.67 31488.28 31893.82 31692.81 35091.08 29898.01 22897.45 29387.95 32887.90 33695.87 32267.63 35594.56 35578.73 35388.18 31395.83 324
KD-MVS_2432*160089.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
miper_refine_blended89.61 31587.96 31994.54 30594.06 34291.59 28895.59 33997.63 27589.87 31288.95 33094.38 34078.28 32696.82 33684.83 33368.05 35795.21 333
N_pmnet87.12 32287.77 32185.17 33995.46 32561.92 36497.37 27570.66 37085.83 34088.73 33396.04 32085.33 26797.76 32080.02 34790.48 28195.84 323
new-patchmatchnet88.50 31987.45 32291.67 33290.31 35685.89 34797.16 29397.33 29989.47 31883.63 34992.77 34776.38 33895.06 35382.70 34177.29 35094.06 348
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32393.69 31793.08 34889.42 31997.91 23796.89 32278.58 35285.86 34394.69 33769.48 35398.29 28577.13 35593.29 25193.36 352
PM-MVS87.77 32086.55 32491.40 33391.03 35583.36 35296.92 30495.18 34591.28 28686.48 34293.42 34553.27 36196.74 33889.43 30381.97 34094.11 346
UnsupCasMVSNet_bld87.17 32185.12 32593.31 32391.94 35188.77 32894.92 34598.30 20584.30 34682.30 35090.04 35263.96 35997.25 33085.85 32774.47 35593.93 350
pmmvs386.67 32384.86 32692.11 33188.16 35787.19 34596.63 32294.75 34979.88 35187.22 33892.75 34866.56 35695.20 35281.24 34576.56 35293.96 349
test_method79.03 32478.17 32781.63 34186.06 35954.40 36982.75 36196.89 32239.54 36480.98 35295.57 33158.37 36094.73 35484.74 33678.61 34895.75 325
FPMVS77.62 32877.14 32879.05 34379.25 36460.97 36595.79 33595.94 33765.96 35767.93 36094.40 33937.73 36688.88 36168.83 35888.46 30987.29 355
Gipumacopyleft78.40 32676.75 32983.38 34095.54 32280.43 35679.42 36297.40 29764.67 35873.46 35680.82 35945.65 36393.14 35766.32 35987.43 32076.56 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 32576.24 33086.08 33777.26 36671.99 36194.34 35096.72 32861.62 35976.53 35489.33 35333.91 36892.78 35881.85 34374.60 35493.46 351
PMMVS277.95 32775.44 33185.46 33882.54 36174.95 35994.23 35193.08 35972.80 35674.68 35587.38 35436.36 36791.56 35973.95 35763.94 35989.87 354
tmp_tt68.90 33066.97 33274.68 34550.78 37059.95 36687.13 35883.47 36838.80 36562.21 36196.23 31464.70 35876.91 36688.91 30830.49 36487.19 356
ANet_high69.08 32965.37 33380.22 34265.99 36871.96 36290.91 35790.09 36382.62 34749.93 36578.39 36029.36 36981.75 36262.49 36038.52 36386.95 357
E-PMN64.94 33264.25 33467.02 34782.28 36259.36 36791.83 35685.63 36652.69 36160.22 36277.28 36141.06 36580.12 36446.15 36341.14 36161.57 362
PMVScopyleft61.03 2365.95 33163.57 33573.09 34657.90 36951.22 37085.05 36093.93 35854.45 36044.32 36683.57 35613.22 37089.15 36058.68 36181.00 34478.91 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS64.07 33363.26 33666.53 34881.73 36358.81 36891.85 35584.75 36751.93 36359.09 36375.13 36243.32 36479.09 36542.03 36439.47 36261.69 361
MVEpermissive62.14 2263.28 33459.38 33774.99 34474.33 36765.47 36385.55 35980.50 36952.02 36251.10 36475.00 36310.91 37380.50 36351.60 36253.40 36078.99 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k23.98 33631.98 3380.00 3520.00 3730.00 3740.00 36498.59 1420.00 3690.00 37098.61 13090.60 1590.00 3700.00 3680.00 3680.00 366
wuyk23d30.17 33530.18 33930.16 34978.61 36543.29 37166.79 36314.21 37117.31 36614.82 36911.93 36911.55 37241.43 36737.08 36519.30 3655.76 365
testmvs21.48 33724.95 34011.09 35114.89 3716.47 37396.56 3249.87 3727.55 36717.93 36739.02 3659.43 3745.90 36916.56 36712.72 36620.91 364
test12320.95 33823.72 34112.64 35013.54 3728.19 37296.55 3256.13 3737.48 36816.74 36837.98 36612.97 3716.05 36816.69 3665.43 36723.68 363
ab-mvs-re8.20 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.43 1480.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.88 34010.50 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37094.51 850.00 3700.00 3680.00 3680.00 366
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.46 5198.70 1998.79 9293.21 21798.67 5998.97 8795.70 4499.83 5696.07 13199.58 74
IU-MVS99.71 2099.23 698.64 13795.28 12299.63 498.35 2699.81 1099.83 5
OPU-MVS99.37 2099.24 9299.05 1099.02 6099.16 6197.81 299.37 15797.24 8399.73 4399.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 2099.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
save fliter99.46 5198.38 3598.21 20198.71 11497.95 3
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1799.86 199.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 7098.88 4999.94 398.47 1799.81 1099.84 4
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
GSMVS99.20 130
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17799.20 130
sam_mvs88.99 190
ambc89.49 33586.66 35875.78 35892.66 35496.72 32886.55 34192.50 34946.01 36297.90 31390.32 28482.09 33894.80 342
MTGPAbinary98.74 104
test_post196.68 32130.43 36887.85 22298.69 23492.59 243
test_post31.83 36788.83 19798.91 213
patchmatchnet-post95.10 33489.42 17898.89 217
GG-mvs-BLEND96.59 22196.34 29694.98 19596.51 32688.58 36593.10 27594.34 34280.34 31598.05 30389.53 30096.99 18296.74 264
MTMP98.89 8694.14 356
gm-plane-assit95.88 31387.47 34289.74 31596.94 28599.19 17193.32 222
test9_res96.39 12599.57 7599.69 51
TEST999.31 7098.50 2997.92 23598.73 10892.63 23797.74 11698.68 12496.20 2399.80 80
test_899.29 7898.44 3197.89 24198.72 11092.98 22697.70 11998.66 12796.20 2399.80 80
agg_prior295.87 14199.57 7599.68 57
agg_prior99.30 7598.38 3598.72 11097.57 12999.81 71
TestCases96.99 18999.25 8693.21 26498.18 22191.36 27993.52 25798.77 11584.67 27699.72 10989.70 29797.87 16298.02 205
test_prior498.01 6297.86 244
test_prior297.80 24996.12 8397.89 11098.69 12295.96 3696.89 9999.60 68
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
旧先验297.57 26591.30 28498.67 5999.80 8095.70 151
新几何297.64 260
新几何199.16 5099.34 6298.01 6298.69 11890.06 30998.13 8698.95 9594.60 8299.89 3591.97 26199.47 9199.59 80
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9199.61 75
无先验97.58 26498.72 11091.38 27899.87 4493.36 22099.60 78
原ACMM297.67 258
原ACMM198.65 8199.32 6896.62 11898.67 12993.27 21697.81 11298.97 8795.18 6899.83 5693.84 20699.46 9499.50 91
test22299.23 9397.17 10097.40 27198.66 13288.68 32598.05 9098.96 9394.14 9599.53 8599.61 75
testdata299.89 3591.65 268
segment_acmp96.85 11
testdata98.26 11199.20 9795.36 17798.68 12191.89 26498.60 6799.10 6994.44 9199.82 6494.27 19399.44 9699.58 82
testdata197.32 28196.34 74
test1299.18 4799.16 9998.19 5298.53 15698.07 8995.13 7099.72 10999.56 8099.63 73
plane_prior797.42 23494.63 210
plane_prior697.35 23994.61 21387.09 235
plane_prior598.56 15099.03 19496.07 13194.27 22296.92 240
plane_prior498.28 168
plane_prior394.61 21397.02 4995.34 191
plane_prior298.80 10897.28 31
plane_prior197.37 238
plane_prior94.60 21598.44 17096.74 5794.22 224
n20.00 374
nn0.00 374
door-mid94.37 352
lessismore_v094.45 31194.93 33388.44 33491.03 36286.77 34097.64 22676.23 33998.42 26290.31 28585.64 33596.51 299
LGP-MVS_train96.47 23497.46 22993.54 24998.54 15494.67 15294.36 22198.77 11585.39 26399.11 18295.71 14994.15 22896.76 262
test1198.66 132
door94.64 350
HQP5-MVS94.25 229
HQP-NCC97.20 24898.05 22496.43 7094.45 214
ACMP_Plane97.20 24898.05 22496.43 7094.45 214
BP-MVS95.30 160
HQP4-MVS94.45 21498.96 20696.87 251
HQP3-MVS98.46 17194.18 226
HQP2-MVS86.75 241
NP-MVS97.28 24294.51 21897.73 217
MDTV_nov1_ep13_2view84.26 34996.89 31190.97 29497.90 10989.89 17093.91 20499.18 137
ACMMP++_ref92.97 254
ACMMP++93.61 242
Test By Simon94.64 80
ITE_SJBPF95.44 27997.42 23491.32 29497.50 28895.09 13593.59 25398.35 15881.70 30498.88 21989.71 29693.39 24896.12 317
DeepMVS_CXcopyleft86.78 33697.09 25872.30 36095.17 34675.92 35484.34 34895.19 33270.58 35295.35 34979.98 34989.04 30392.68 353