This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29696.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15798.09 10586.63 26096.00 22998.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11197.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16598.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
test117296.93 3396.86 2297.15 6799.10 3492.34 9397.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10796.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
9.1496.75 3398.93 4797.73 7398.23 3891.28 14197.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
RE-MVS-def96.72 3599.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12797.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9697.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 12998.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9696.20 21998.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10897.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22594.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17797.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14596.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS96.61 4896.38 5197.30 5797.79 11993.19 7295.96 23198.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14596.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15695.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16596.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
abl_696.40 5496.21 5596.98 7498.89 5492.20 10197.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20498.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 21798.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 17997.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
CANet96.39 5596.02 5997.50 5097.62 12793.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8698.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15898.30 2398.57 1189.01 19893.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
ETV-MVS96.02 6495.89 6296.40 9697.16 14192.44 9197.47 10297.77 11594.55 3796.48 6394.51 24891.23 6298.92 15195.65 5598.19 10597.82 166
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19698.02 8888.58 21596.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21298.00 9388.76 21295.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS95.80 7095.65 6696.24 11097.32 13591.43 12598.10 3997.91 10393.38 6995.16 10794.57 24690.21 7998.98 14795.53 6498.67 9498.30 145
UA-Net95.95 6795.53 6797.20 6697.67 12492.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16397.35 12999.11 78
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 22996.64 5597.70 8991.18 6399.67 4992.44 12499.47 3699.48 41
casdiffmvs95.64 7395.49 6996.08 11496.76 16390.45 15997.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
EIA-MVS95.53 7795.47 7095.71 13397.06 14989.63 17597.82 6497.87 10893.57 6193.92 12795.04 22490.61 7498.95 14994.62 8898.68 9398.54 120
canonicalmvs96.02 6495.45 7197.75 3797.59 13095.15 2198.28 2597.60 13494.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
baseline95.58 7595.42 7396.08 11496.78 16090.41 16197.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20497.88 10686.98 25996.65 5497.89 7291.99 4399.47 9992.26 12599.46 3899.39 54
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15696.04 22597.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
PS-MVSNAJ95.37 7995.33 7695.49 14697.35 13490.66 15495.31 25897.48 14693.85 5296.51 6195.70 19988.65 9499.65 5394.80 8498.27 10396.17 209
xiu_mvs_v2_base95.32 8195.29 7795.40 15197.22 13790.50 15795.44 25297.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 209
alignmvs95.87 6995.23 7897.78 3397.56 13295.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12198.33 2198.11 5987.79 24095.17 10698.03 6687.09 11899.61 6293.51 10899.42 4399.02 83
MVSFormer95.37 7995.16 8095.99 12096.34 18491.21 13298.22 3297.57 13891.42 13396.22 7297.32 11386.20 13097.92 25094.07 9599.05 8198.85 103
diffmvs95.25 8395.13 8195.63 13696.43 18089.34 19295.99 23097.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22295.09 10897.65 9489.97 8399.48 9892.08 13498.59 9798.44 135
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13389.56 17998.67 597.00 20590.69 15594.24 12097.62 9989.79 8598.81 16093.39 11396.49 14998.92 96
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26197.62 13390.43 16895.55 9997.07 12591.72 4899.50 9689.62 17898.94 8698.82 106
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14797.27 12198.25 3390.21 17094.18 12197.27 11587.48 11299.73 3293.53 10797.77 11798.55 119
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14091.58 11998.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19497.57 13892.04 11794.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
MVS_Test94.89 9694.62 9195.68 13496.83 15889.55 18096.70 17497.17 18591.17 14595.60 9896.11 17787.87 10498.76 16593.01 12197.17 13698.72 112
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15397.24 12397.73 11991.80 12292.93 15296.62 15389.13 8899.14 13089.21 19097.78 11698.97 90
lupinMVS94.99 9394.56 9396.29 10696.34 18491.21 13295.83 23796.27 24888.93 20396.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
EPNet95.20 8694.56 9397.14 6892.80 31892.68 8497.85 6294.87 30496.64 192.46 15597.80 8486.23 12799.65 5393.72 10598.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18695.47 25198.36 1688.84 20694.36 11796.09 17888.02 10099.58 7093.44 11098.18 10698.40 138
IS-MVSNet94.90 9594.52 9696.05 11797.67 12490.56 15598.44 1696.22 25193.21 7593.99 12497.74 8785.55 13898.45 18989.98 16697.86 11399.14 73
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10897.80 6697.48 14689.19 19494.81 11196.71 13988.84 9199.17 12688.91 19698.76 9196.53 200
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15495.34 1398.48 1597.87 10894.65 3688.53 25398.02 6783.69 16099.71 3893.18 11698.96 8599.44 47
Effi-MVS+94.93 9494.45 9996.36 10196.61 16591.47 12296.41 19697.41 16691.02 15094.50 11595.92 18287.53 11098.78 16293.89 10196.81 14098.84 105
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17193.36 6998.65 698.36 1694.12 4689.25 23898.06 6482.20 19399.77 2993.41 11299.32 5399.18 69
jason94.84 9894.39 10196.18 11295.52 21790.93 14596.09 22396.52 24189.28 19096.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
test_yl94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
WTY-MVS94.71 10294.02 10496.79 7697.71 12392.05 10596.59 18797.35 17390.61 16294.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
PVSNet_BlendedMVS94.06 11593.92 10594.47 18798.27 8989.46 18696.73 17198.36 1690.17 17194.36 11795.24 21888.02 10099.58 7093.44 11090.72 23594.36 302
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16897.61 12887.92 23198.10 3995.80 26392.22 10893.02 14697.45 10984.53 15097.91 25388.24 20497.97 11199.02 83
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22597.73 11981.56 31795.68 9397.85 7890.23 7899.65 5387.68 21899.12 7898.73 111
sss94.51 10493.80 10896.64 7897.07 14691.97 10996.32 20898.06 7388.94 20294.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
mvs_anonymous93.82 12393.74 10994.06 20396.44 17985.41 27895.81 23897.05 19989.85 17990.09 21096.36 16687.44 11397.75 26693.97 9796.69 14599.02 83
FIs94.09 11493.70 11095.27 15395.70 21192.03 10698.10 3998.68 793.36 7290.39 19796.70 14187.63 10897.94 24692.25 12790.50 23995.84 223
mvs-test193.63 12993.69 11193.46 23696.02 20084.61 28897.24 12396.72 22593.85 5292.30 16295.76 19483.08 17098.89 15591.69 14496.54 14896.87 193
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11596.59 18797.81 11489.87 17692.15 16597.06 12683.62 16199.54 8589.34 18498.07 10997.70 170
CANet_DTU94.37 10593.65 11396.55 8496.46 17892.13 10396.21 21896.67 23394.38 4293.53 13597.03 12779.34 24099.71 3890.76 15798.45 10097.82 166
FC-MVSNet-test93.94 12093.57 11495.04 16195.48 21991.45 12498.12 3898.71 593.37 7090.23 20096.70 14187.66 10697.85 25691.49 14890.39 24095.83 224
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17497.06 14988.53 21595.28 25997.45 15791.68 12594.08 12397.68 9182.41 18998.90 15493.84 10392.47 20596.98 187
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19191.46 12396.33 20797.04 20188.97 20193.56 13296.51 15787.55 10997.89 25489.80 17295.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8896.59 18796.88 21690.13 17391.91 16997.24 11785.21 14199.09 13687.64 22197.83 11497.92 158
PS-MVSNAJss93.74 12693.51 11894.44 18893.91 29289.28 19897.75 7097.56 14192.50 10389.94 21396.54 15688.65 9498.18 20893.83 10490.90 23395.86 220
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19095.18 26598.48 1485.60 27793.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
TAMVS94.01 11893.46 12095.64 13596.16 19390.45 15996.71 17396.89 21589.27 19193.46 13796.92 13287.29 11597.94 24688.70 20095.74 16098.53 121
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10297.67 8197.47 14988.13 23193.00 14795.84 18684.86 14699.51 9387.99 20898.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HQP_MVS93.78 12593.43 12294.82 17296.21 18889.99 16797.74 7197.51 14494.85 2491.34 17896.64 14681.32 20798.60 17993.02 11992.23 20895.86 220
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 13996.69 17697.39 16787.29 25491.37 17796.71 13988.39 9899.52 9287.33 22897.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPR94.18 10993.42 12496.48 9097.64 12691.42 12695.55 24797.71 12688.99 19992.34 16195.82 18889.19 8699.11 13286.14 24697.38 12798.90 98
XVG-OURS93.72 12793.35 12594.80 17597.07 14688.61 21394.79 26997.46 15191.97 12093.99 12497.86 7781.74 20298.88 15692.64 12392.67 20396.92 191
nrg03094.05 11693.31 12696.27 10795.22 24094.59 2898.34 2097.46 15192.93 9191.21 18796.64 14687.23 11798.22 20294.99 7785.80 28195.98 218
UGNet94.04 11793.28 12796.31 10396.85 15591.19 13597.88 5897.68 12794.40 4093.00 14796.18 17273.39 29599.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu93.08 14593.21 12892.68 26496.02 20083.25 30297.14 13796.72 22593.85 5291.20 18893.44 29583.08 17098.30 19891.69 14495.73 16196.50 202
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17197.72 7695.85 26192.43 10495.86 8698.44 2868.42 31999.39 10996.31 2894.85 17498.71 114
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11697.46 10497.96 10077.99 33493.00 14797.57 10386.14 13299.33 11389.22 18999.15 7398.94 94
F-COLMAP93.58 13192.98 13195.37 15298.40 7888.98 20697.18 13297.29 17887.75 24390.49 19497.10 12485.21 14199.50 9686.70 23796.72 14497.63 172
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14592.49 9095.64 24596.64 23489.05 19793.00 14795.79 19285.77 13699.45 10289.16 19394.35 18297.96 155
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17294.58 27398.49 1285.06 28493.78 12995.78 19382.86 17798.67 17391.77 14095.71 16299.07 82
EI-MVSNet93.03 14892.88 13493.48 23495.77 20886.98 25196.44 19297.12 18990.66 15891.30 18197.64 9786.56 12298.05 22789.91 16890.55 23795.41 244
MVSTER93.20 14292.81 13594.37 19196.56 17189.59 17897.06 13997.12 18991.24 14291.30 18195.96 18082.02 19698.05 22793.48 10990.55 23795.47 240
OPM-MVS93.28 13992.76 13694.82 17294.63 27190.77 15196.65 17997.18 18393.72 5791.68 17297.26 11679.33 24198.63 17692.13 13192.28 20795.07 266
test_djsdf93.07 14692.76 13694.00 20693.49 30588.70 21298.22 3297.57 13891.42 13390.08 21195.55 20782.85 17897.92 25094.07 9591.58 22095.40 248
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16190.03 16496.81 16697.13 18888.19 22591.30 18194.27 26486.21 12998.63 17687.66 22096.46 15198.12 150
HQP-MVS93.19 14392.74 13994.54 18695.86 20389.33 19396.65 17997.39 16793.55 6290.14 20195.87 18480.95 21098.50 18692.13 13192.10 21395.78 227
CHOSEN 280x42093.12 14492.72 14094.34 19396.71 16487.27 24290.29 33297.72 12286.61 26591.34 17895.29 21584.29 15498.41 19093.25 11598.94 8697.35 183
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 14995.34 22892.83 8097.17 13398.58 1092.98 8990.13 20595.80 18988.37 9997.85 25691.71 14283.93 30795.73 233
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 12997.94 5493.39 32690.57 16596.29 7098.31 4769.00 31599.16 12794.18 9495.87 15799.12 77
BH-untuned92.94 15392.62 14393.92 21597.22 13786.16 26996.40 19996.25 25090.06 17489.79 21896.17 17483.19 16698.35 19587.19 23197.27 13297.24 184
LS3D93.57 13292.61 14496.47 9197.59 13091.61 11697.67 8197.72 12285.17 28290.29 19998.34 4184.60 14899.73 3283.85 27898.27 10398.06 154
LPG-MVS_test92.94 15392.56 14594.10 20196.16 19388.26 22197.65 8497.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22293.34 7097.39 10998.71 593.14 8090.10 20994.83 23387.71 10598.03 23191.67 14683.99 30695.46 241
ab-mvs93.57 13292.55 14696.64 7897.28 13691.96 11095.40 25397.45 15789.81 18193.22 14596.28 16979.62 23799.46 10090.74 15893.11 19798.50 125
CLD-MVS92.98 15092.53 14894.32 19496.12 19789.20 20095.28 25997.47 14992.66 9989.90 21495.62 20280.58 21798.40 19192.73 12292.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LCM-MVSNet-Re92.50 16592.52 14992.44 26796.82 15981.89 31196.92 15593.71 32392.41 10584.30 30994.60 24485.08 14397.03 30791.51 14797.36 12898.40 138
ACMM89.79 892.96 15192.50 15094.35 19296.30 18688.71 21197.58 9197.36 17291.40 13690.53 19396.65 14579.77 23398.75 16691.24 15491.64 21895.59 236
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21192.39 9297.86 5998.66 992.30 10792.09 16795.37 21380.49 21998.40 19193.95 9885.86 28095.75 231
1112_ss93.37 13692.42 15296.21 11197.05 15190.99 14196.31 20996.72 22586.87 26289.83 21796.69 14386.51 12499.14 13088.12 20693.67 19198.50 125
PMMVS92.86 15792.34 15394.42 19094.92 25586.73 25694.53 27596.38 24484.78 28994.27 11995.12 22383.13 16998.40 19191.47 14996.49 14998.12 150
tttt051792.96 15192.33 15494.87 17197.11 14487.16 24897.97 5292.09 33490.63 16093.88 12897.01 12876.50 27299.06 14190.29 16595.45 16598.38 140
RRT_MVS93.21 14192.32 15595.91 12294.92 25594.15 4396.92 15596.86 21991.42 13391.28 18496.43 16179.66 23698.10 21693.29 11490.06 24295.46 241
QAPM93.45 13592.27 15696.98 7496.77 16192.62 8698.39 1998.12 5684.50 29288.27 25997.77 8582.39 19099.81 2685.40 25998.81 8998.51 124
thisisatest053093.03 14892.21 15795.49 14697.07 14689.11 20497.49 10192.19 33390.16 17294.09 12296.41 16376.43 27599.05 14290.38 16295.68 16398.31 144
ACMP89.59 1092.62 16492.14 15894.05 20496.40 18188.20 22497.36 11297.25 18191.52 12888.30 25796.64 14678.46 25598.72 17091.86 13991.48 22295.23 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VDDNet93.05 14792.07 15996.02 11896.84 15690.39 16298.08 4295.85 26186.22 27095.79 8998.46 2667.59 32299.19 12394.92 7894.85 17498.47 130
DU-MVS92.90 15592.04 16095.49 14694.95 25392.83 8097.16 13498.24 3493.02 8390.13 20595.71 19783.47 16297.85 25691.71 14283.93 30795.78 227
131492.81 16192.03 16195.14 15895.33 23189.52 18396.04 22597.44 16187.72 24486.25 29395.33 21483.84 15898.79 16189.26 18797.05 13897.11 185
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 14995.27 26197.18 18387.96 23391.86 17195.68 20080.44 22098.99 14684.01 27497.54 12196.89 192
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24795.27 23685.52 27697.03 14096.63 23792.09 11589.11 24095.14 22180.33 22398.08 22187.54 22494.74 17996.03 217
BH-RMVSNet92.72 16391.97 16494.97 16697.16 14187.99 23096.15 22195.60 26990.62 16191.87 17097.15 12278.41 25698.57 18283.16 28097.60 12098.36 142
IterMVS-LS92.29 17691.94 16593.34 24196.25 18786.97 25296.57 19097.05 19990.67 15689.50 22994.80 23586.59 12197.64 27489.91 16886.11 27995.40 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline192.82 16091.90 16695.55 14297.20 13990.77 15197.19 13194.58 30992.20 11092.36 15996.34 16784.16 15598.21 20389.20 19183.90 31097.68 171
jajsoiax92.42 16991.89 16794.03 20593.33 31088.50 21697.73 7397.53 14292.00 11988.85 24596.50 15875.62 28198.11 21593.88 10291.56 22195.48 238
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15289.97 17095.53 24996.64 23485.38 27889.65 22395.18 21985.86 13499.10 13387.70 21593.58 19698.49 127
mvs_tets92.31 17491.76 16993.94 21393.41 30788.29 21997.63 8997.53 14292.04 11788.76 24896.45 16074.62 28598.09 22093.91 10091.48 22295.45 243
CVMVSNet91.23 21791.75 17089.67 31495.77 20874.69 34096.44 19294.88 30185.81 27492.18 16497.64 9779.07 24395.58 33088.06 20795.86 15898.74 110
BH-w/o92.14 18491.75 17093.31 24296.99 15385.73 27395.67 24295.69 26588.73 21389.26 23794.82 23482.97 17598.07 22485.26 26196.32 15296.13 213
PVSNet86.66 1892.24 17991.74 17293.73 22197.77 12083.69 29992.88 31696.72 22587.91 23593.00 14794.86 23178.51 25499.05 14286.53 23897.45 12698.47 130
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 22892.73 8398.27 2698.12 5684.86 28785.78 29797.75 8678.89 25199.74 3187.50 22598.65 9596.73 197
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15894.76 26492.07 10497.53 9598.11 5992.90 9289.56 22696.12 17583.16 16797.60 27989.30 18583.20 31695.75 231
thres600view792.49 16791.60 17595.18 15697.91 11489.47 18497.65 8494.66 30692.18 11493.33 14094.91 22878.06 26299.10 13381.61 29294.06 18896.98 187
thres100view90092.43 16891.58 17694.98 16597.92 11389.37 19197.71 7894.66 30692.20 11093.31 14194.90 22978.06 26299.08 13881.40 29594.08 18596.48 203
anonymousdsp92.16 18291.55 17793.97 20992.58 32289.55 18097.51 9697.42 16589.42 18788.40 25494.84 23280.66 21697.88 25591.87 13891.28 22694.48 298
WR-MVS92.34 17291.53 17894.77 17795.13 24590.83 14896.40 19997.98 9891.88 12189.29 23595.54 20882.50 18697.80 26189.79 17385.27 28895.69 234
tfpn200view992.38 17191.52 17994.95 16897.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.48 203
thres40092.42 16991.52 17995.12 16097.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.98 187
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14197.38 11196.08 25582.38 31089.29 23597.87 7583.77 15999.69 4481.37 29896.69 14598.89 100
thres20092.23 18091.39 18294.75 17997.61 12889.03 20596.60 18695.09 29292.08 11693.28 14294.00 27678.39 25799.04 14481.26 29994.18 18496.19 208
WR-MVS_H92.00 18691.35 18393.95 21195.09 24789.47 18498.04 4598.68 791.46 13188.34 25594.68 24085.86 13497.56 28185.77 25484.24 30494.82 283
PatchmatchNetpermissive91.91 18891.35 18393.59 22995.38 22384.11 29393.15 31295.39 27589.54 18392.10 16693.68 28882.82 17998.13 21184.81 26595.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 20591.32 18591.79 28495.15 24379.20 33293.42 30795.37 27788.55 21893.49 13693.67 28982.49 18798.27 19990.41 16189.34 24997.90 159
VPNet92.23 18091.31 18694.99 16395.56 21590.96 14397.22 12997.86 11192.96 9090.96 18996.62 15375.06 28398.20 20591.90 13683.65 31295.80 226
thisisatest051592.29 17691.30 18795.25 15496.60 16688.90 20894.36 28292.32 33287.92 23493.43 13894.57 24677.28 26999.00 14589.42 18295.86 15897.86 162
EPNet_dtu91.71 19291.28 18892.99 25393.76 29783.71 29796.69 17695.28 28293.15 7987.02 28595.95 18183.37 16597.38 29879.46 30996.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NR-MVSNet92.34 17291.27 18995.53 14394.95 25393.05 7597.39 10998.07 7092.65 10084.46 30795.71 19785.00 14497.77 26589.71 17483.52 31395.78 227
CP-MVSNet91.89 18991.24 19093.82 21895.05 24888.57 21497.82 6498.19 4491.70 12488.21 26195.76 19481.96 19797.52 28787.86 21084.65 29795.37 252
XXY-MVS92.16 18291.23 19194.95 16894.75 26590.94 14497.47 10297.43 16489.14 19588.90 24296.43 16179.71 23498.24 20089.56 17987.68 26395.67 235
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17796.79 16797.65 13081.83 31491.52 17497.23 11887.94 10298.91 15371.31 33698.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test-LLR91.42 20691.19 19392.12 27494.59 27280.66 31794.29 28692.98 32891.11 14790.76 19192.37 30979.02 24698.07 22488.81 19796.74 14297.63 172
SCA91.84 19091.18 19493.83 21795.59 21384.95 28494.72 27095.58 27190.82 15192.25 16393.69 28675.80 27898.10 21686.20 24495.98 15498.45 132
miper_ehance_all_eth91.59 19691.13 19592.97 25495.55 21686.57 26194.47 27696.88 21687.77 24188.88 24494.01 27586.22 12897.54 28389.49 18086.93 27094.79 288
miper_enhance_ethall91.54 20191.01 19693.15 24895.35 22787.07 25093.97 29496.90 21386.79 26389.17 23993.43 29786.55 12397.64 27489.97 16786.93 27094.74 292
D2MVS91.30 21590.95 19792.35 27094.71 26785.52 27696.18 22098.21 4088.89 20486.60 29093.82 28279.92 23197.95 24589.29 18690.95 23293.56 316
cl_fuxian91.38 20890.89 19892.88 25795.58 21486.30 26494.68 27196.84 22188.17 22788.83 24794.23 26785.65 13797.47 29089.36 18384.63 29894.89 278
V4291.58 19890.87 19993.73 22194.05 28988.50 21697.32 11696.97 20688.80 21189.71 21994.33 25982.54 18598.05 22789.01 19485.07 29294.64 296
baseline291.63 19590.86 20093.94 21394.33 28186.32 26395.92 23391.64 33889.37 18886.94 28694.69 23981.62 20498.69 17188.64 20194.57 18196.81 195
RPSCF90.75 23890.86 20090.42 30896.84 15676.29 33895.61 24696.34 24583.89 29891.38 17697.87 7576.45 27398.78 16287.16 23392.23 20896.20 207
v2v48291.59 19690.85 20293.80 21993.87 29488.17 22696.94 15496.88 21689.54 18389.53 22794.90 22981.70 20398.02 23289.25 18885.04 29495.20 263
PS-CasMVS91.55 20090.84 20393.69 22594.96 25288.28 22097.84 6398.24 3491.46 13188.04 26595.80 18979.67 23597.48 28987.02 23484.54 30195.31 255
Anonymous20240521192.07 18590.83 20495.76 12798.19 10088.75 21097.58 9195.00 29586.00 27393.64 13197.45 10966.24 32999.53 8890.68 16092.71 20199.01 87
RRT_test8_iter0591.19 22290.78 20592.41 26995.76 21083.14 30397.32 11697.46 15191.37 13789.07 24195.57 20470.33 30898.21 20393.56 10686.62 27595.89 219
MDTV_nov1_ep1390.76 20695.22 24080.33 32293.03 31595.28 28288.14 23092.84 15393.83 28081.34 20698.08 22182.86 28394.34 183
Anonymous2024052991.98 18790.73 20795.73 13298.14 10389.40 18997.99 4797.72 12279.63 32793.54 13497.41 11169.94 31299.56 8091.04 15691.11 22898.22 146
CostFormer91.18 22390.70 20892.62 26594.84 26181.76 31294.09 29294.43 31184.15 29592.72 15493.77 28479.43 23998.20 20590.70 15992.18 21197.90 159
FMVSNet391.78 19190.69 20995.03 16296.53 17392.27 9897.02 14396.93 20989.79 18289.35 23294.65 24277.01 27097.47 29086.12 24788.82 25295.35 253
Baseline_NR-MVSNet91.20 21990.62 21092.95 25593.83 29588.03 22997.01 14795.12 29188.42 22089.70 22095.13 22283.47 16297.44 29389.66 17783.24 31593.37 320
v114491.37 21090.60 21193.68 22693.89 29388.23 22396.84 16297.03 20388.37 22189.69 22194.39 25582.04 19597.98 23687.80 21285.37 28694.84 280
eth_miper_zixun_eth91.02 22790.59 21292.34 27195.33 23184.35 28994.10 29196.90 21388.56 21788.84 24694.33 25984.08 15697.60 27988.77 19984.37 30395.06 267
TR-MVS91.48 20490.59 21294.16 20096.40 18187.33 24095.67 24295.34 28187.68 24591.46 17595.52 20976.77 27198.35 19582.85 28493.61 19496.79 196
cl-mvsnet291.21 21890.56 21493.14 24996.09 19986.80 25494.41 28096.58 24087.80 23988.58 25293.99 27780.85 21597.62 27789.87 17186.93 27094.99 269
v891.29 21690.53 21593.57 23194.15 28588.12 22897.34 11397.06 19888.99 19988.32 25694.26 26683.08 17098.01 23387.62 22283.92 30994.57 297
MVS91.71 19290.44 21695.51 14495.20 24291.59 11896.04 22597.45 15773.44 34187.36 27895.60 20385.42 13999.10 13385.97 25197.46 12295.83 224
PEN-MVS91.20 21990.44 21693.48 23494.49 27587.91 23397.76 6998.18 4691.29 13887.78 27095.74 19680.35 22297.33 30085.46 25882.96 31795.19 264
v14890.99 22890.38 21892.81 26093.83 29585.80 27296.78 16996.68 23189.45 18688.75 24993.93 27982.96 17697.82 26087.83 21183.25 31494.80 286
cl-mvsnet190.97 23090.33 21992.88 25795.36 22686.19 26894.46 27896.63 23787.82 23788.18 26294.23 26782.99 17397.53 28587.72 21385.57 28394.93 274
cl-mvsnet_90.96 23190.32 22092.89 25695.37 22586.21 26794.46 27896.64 23487.82 23788.15 26394.18 27082.98 17497.54 28387.70 21585.59 28294.92 276
GA-MVS91.38 20890.31 22194.59 18194.65 26987.62 23894.34 28396.19 25290.73 15490.35 19893.83 28071.84 29897.96 24387.22 23093.61 19498.21 147
PAPM91.52 20290.30 22295.20 15595.30 23589.83 17393.38 30896.85 22086.26 26988.59 25195.80 18984.88 14598.15 21075.67 32495.93 15697.63 172
v14419291.06 22590.28 22393.39 23893.66 30087.23 24596.83 16397.07 19687.43 25089.69 22194.28 26381.48 20598.00 23587.18 23284.92 29694.93 274
GBi-Net91.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
test191.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
MSDG91.42 20690.24 22694.96 16797.15 14388.91 20793.69 30196.32 24685.72 27686.93 28796.47 15980.24 22498.98 14780.57 30195.05 17396.98 187
v119291.07 22490.23 22793.58 23093.70 29887.82 23596.73 17197.07 19687.77 24189.58 22494.32 26180.90 21497.97 23986.52 23985.48 28494.95 270
v1091.04 22690.23 22793.49 23394.12 28688.16 22797.32 11697.08 19588.26 22488.29 25894.22 26982.17 19497.97 23986.45 24184.12 30594.33 303
UniMVSNet_ETH3D91.34 21390.22 22994.68 18094.86 26087.86 23497.23 12897.46 15187.99 23289.90 21496.92 13266.35 32798.23 20190.30 16490.99 23197.96 155
XVG-ACMP-BASELINE90.93 23290.21 23093.09 25094.31 28385.89 27195.33 25697.26 17991.06 14989.38 23195.44 21268.61 31798.60 17989.46 18191.05 22994.79 288
OurMVSNet-221017-090.51 24690.19 23191.44 29393.41 30781.25 31496.98 15096.28 24791.68 12586.55 29196.30 16874.20 28897.98 23688.96 19587.40 26895.09 265
ET-MVSNet_ETH3D91.49 20390.11 23295.63 13696.40 18191.57 12095.34 25593.48 32590.60 16475.58 33795.49 21080.08 22796.79 31694.25 9289.76 24698.52 122
MVP-Stereo90.74 23990.08 23392.71 26293.19 31288.20 22495.86 23596.27 24886.07 27284.86 30594.76 23677.84 26597.75 26683.88 27798.01 11092.17 331
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet291.31 21490.08 23394.99 16396.51 17492.21 9997.41 10596.95 20788.82 20888.62 25094.75 23773.87 28997.42 29585.20 26288.55 25895.35 253
cascas91.20 21990.08 23394.58 18594.97 25189.16 20393.65 30397.59 13679.90 32689.40 23092.92 30175.36 28298.36 19492.14 13094.75 17896.23 206
miper_lstm_enhance90.50 24790.06 23691.83 28195.33 23183.74 29593.86 29696.70 23087.56 24887.79 26993.81 28383.45 16496.92 31387.39 22684.62 29994.82 283
v192192090.85 23490.03 23793.29 24393.55 30186.96 25396.74 17097.04 20187.36 25289.52 22894.34 25880.23 22597.97 23986.27 24285.21 28994.94 272
PCF-MVS89.48 1191.56 19989.95 23896.36 10196.60 16692.52 8992.51 32197.26 17979.41 32888.90 24296.56 15584.04 15799.55 8377.01 32097.30 13197.01 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB88.41 1390.99 22889.92 23994.19 19896.18 19189.55 18096.31 20997.09 19487.88 23685.67 29895.91 18378.79 25298.57 18281.50 29389.98 24394.44 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DWT-MVSNet_test90.76 23689.89 24093.38 23995.04 24983.70 29895.85 23694.30 31788.19 22590.46 19592.80 30273.61 29398.50 18688.16 20590.58 23697.95 157
v7n90.76 23689.86 24193.45 23793.54 30287.60 23997.70 7997.37 17088.85 20587.65 27294.08 27481.08 20998.10 21684.68 26783.79 31194.66 295
v124090.70 24189.85 24293.23 24593.51 30486.80 25496.61 18497.02 20487.16 25789.58 22494.31 26279.55 23897.98 23685.52 25785.44 28594.90 277
pmmvs490.93 23289.85 24294.17 19993.34 30990.79 15094.60 27296.02 25684.62 29087.45 27495.15 22081.88 20097.45 29287.70 21587.87 26294.27 307
IterMVS-SCA-FT90.31 24989.81 24491.82 28295.52 21784.20 29294.30 28596.15 25390.61 16287.39 27794.27 26475.80 27896.44 31987.34 22786.88 27494.82 283
EPMVS90.70 24189.81 24493.37 24094.73 26684.21 29193.67 30288.02 34589.50 18592.38 15893.49 29377.82 26697.78 26386.03 25092.68 20298.11 153
MS-PatchMatch90.27 25089.77 24691.78 28594.33 28184.72 28795.55 24796.73 22486.17 27186.36 29295.28 21771.28 30297.80 26184.09 27398.14 10892.81 323
CR-MVSNet90.82 23589.77 24693.95 21194.45 27787.19 24690.23 33395.68 26786.89 26192.40 15692.36 31280.91 21297.05 30681.09 30093.95 18997.60 177
DTE-MVSNet90.56 24489.75 24893.01 25293.95 29087.25 24397.64 8897.65 13090.74 15387.12 28195.68 20079.97 23097.00 31183.33 27981.66 32394.78 290
tpm90.25 25189.74 24991.76 28793.92 29179.73 32893.98 29393.54 32488.28 22391.99 16893.25 29877.51 26897.44 29387.30 22987.94 26198.12 150
X-MVStestdata91.71 19289.67 25097.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35291.70 5099.80 2795.66 5299.40 4599.62 13
IterMVS90.15 25589.67 25091.61 28995.48 21983.72 29694.33 28496.12 25489.99 17587.31 28094.15 27275.78 28096.27 32286.97 23586.89 27394.83 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pm-mvs190.72 24089.65 25293.96 21094.29 28489.63 17597.79 6796.82 22289.07 19686.12 29595.48 21178.61 25397.78 26386.97 23581.67 32294.46 299
test-mter90.19 25489.54 25392.12 27494.59 27280.66 31794.29 28692.98 32887.68 24590.76 19192.37 30967.67 32198.07 22488.81 19796.74 14297.63 172
Anonymous2023121190.63 24389.42 25494.27 19598.24 9389.19 20298.05 4497.89 10479.95 32588.25 26094.96 22572.56 29698.13 21189.70 17585.14 29095.49 237
TESTMET0.1,190.06 25689.42 25491.97 27794.41 27980.62 31994.29 28691.97 33687.28 25590.44 19692.47 30868.79 31697.67 27188.50 20396.60 14797.61 176
ACMH87.59 1690.53 24589.42 25493.87 21696.21 18887.92 23197.24 12396.94 20888.45 21983.91 31596.27 17071.92 29798.62 17884.43 27189.43 24895.05 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft87.81 1590.40 24889.28 25793.79 22097.95 11087.13 24996.92 15595.89 26082.83 30886.88 28997.18 11973.77 29299.29 11778.44 31493.62 19394.95 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm289.96 25789.21 25892.23 27394.91 25881.25 31493.78 29894.42 31280.62 32391.56 17393.44 29576.44 27497.94 24685.60 25692.08 21597.49 181
ACMH+87.92 1490.20 25389.18 25993.25 24496.48 17786.45 26296.99 14896.68 23188.83 20784.79 30696.22 17170.16 31198.53 18484.42 27288.04 26094.77 291
tpmvs89.83 26289.15 26091.89 27994.92 25580.30 32393.11 31395.46 27486.28 26888.08 26492.65 30480.44 22098.52 18581.47 29489.92 24496.84 194
AllTest90.23 25288.98 26193.98 20797.94 11186.64 25796.51 19195.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
EU-MVSNet88.72 27688.90 26288.20 31793.15 31374.21 34196.63 18394.22 31885.18 28187.32 27995.97 17976.16 27694.98 33485.27 26086.17 27795.41 244
pmmvs589.86 26188.87 26392.82 25992.86 31686.23 26696.26 21395.39 27584.24 29487.12 28194.51 24874.27 28797.36 29987.61 22387.57 26494.86 279
test0.0.03 189.37 26788.70 26491.41 29492.47 32385.63 27495.22 26492.70 33091.11 14786.91 28893.65 29079.02 24693.19 34278.00 31589.18 25095.41 244
ADS-MVSNet89.89 25988.68 26593.53 23295.86 20384.89 28590.93 32895.07 29383.23 30691.28 18491.81 31979.01 24897.85 25679.52 30691.39 22497.84 163
ADS-MVSNet289.45 26588.59 26692.03 27695.86 20382.26 31090.93 32894.32 31683.23 30691.28 18491.81 31979.01 24895.99 32379.52 30691.39 22497.84 163
SixPastTwentyTwo89.15 26888.54 26790.98 29893.49 30580.28 32496.70 17494.70 30590.78 15284.15 31295.57 20471.78 29997.71 26984.63 26885.07 29294.94 272
tfpnnormal89.70 26388.40 26893.60 22895.15 24390.10 16397.56 9398.16 5087.28 25586.16 29494.63 24377.57 26798.05 22774.48 32584.59 30092.65 324
FMVSNet189.88 26088.31 26994.59 18195.41 22191.18 13697.50 9796.93 20986.62 26487.41 27694.51 24865.94 33197.29 30283.04 28287.43 26695.31 255
IB-MVS87.33 1789.91 25888.28 27094.79 17695.26 23987.70 23795.12 26693.95 32289.35 18987.03 28492.49 30770.74 30699.19 12389.18 19281.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.90 27288.26 27190.81 30194.58 27476.62 33792.85 31794.93 29985.12 28390.07 21293.07 29975.81 27798.12 21480.53 30287.42 26797.71 169
test_part189.59 26488.03 27294.27 19595.32 23489.42 18898.03 4697.58 13778.01 33386.10 29694.59 24569.87 31398.01 23389.88 17082.85 31995.40 248
Patchmatch-test89.42 26687.99 27393.70 22495.27 23685.11 28088.98 33994.37 31481.11 31887.10 28393.69 28682.28 19197.50 28874.37 32794.76 17798.48 129
our_test_388.78 27587.98 27491.20 29692.45 32482.53 30693.61 30595.69 26585.77 27584.88 30493.71 28579.99 22996.78 31779.47 30886.24 27694.28 306
USDC88.94 27087.83 27592.27 27294.66 26884.96 28393.86 29695.90 25987.34 25383.40 31795.56 20667.43 32398.19 20782.64 28889.67 24793.66 315
MVS_030488.79 27487.57 27692.46 26694.65 26986.15 27096.40 19997.17 18586.44 26688.02 26691.71 32156.68 34397.03 30784.47 27092.58 20494.19 308
TransMVSNet (Re)88.94 27087.56 27793.08 25194.35 28088.45 21897.73 7395.23 28687.47 24984.26 31095.29 21579.86 23297.33 30079.44 31074.44 33893.45 319
PatchT88.87 27387.42 27893.22 24694.08 28885.10 28189.51 33794.64 30881.92 31392.36 15988.15 33580.05 22897.01 31072.43 33293.65 19297.54 180
ppachtmachnet_test88.35 28087.29 27991.53 29092.45 32483.57 30093.75 29995.97 25784.28 29385.32 30394.18 27079.00 25096.93 31275.71 32384.99 29594.10 309
Patchmtry88.64 27787.25 28092.78 26194.09 28786.64 25789.82 33695.68 26780.81 32287.63 27392.36 31280.91 21297.03 30778.86 31285.12 29194.67 294
LF4IMVS87.94 28387.25 28089.98 31292.38 32680.05 32794.38 28195.25 28587.59 24784.34 30894.74 23864.31 33497.66 27384.83 26487.45 26592.23 329
testgi87.97 28287.21 28290.24 31092.86 31680.76 31696.67 17894.97 29791.74 12385.52 29995.83 18762.66 33794.47 33676.25 32188.36 25995.48 238
tpm cat188.36 27987.21 28291.81 28395.13 24580.55 32092.58 32095.70 26474.97 33887.45 27491.96 31778.01 26498.17 20980.39 30388.74 25596.72 198
RPMNet88.98 26987.05 28494.77 17794.45 27787.19 24690.23 33398.03 8477.87 33692.40 15687.55 33780.17 22699.51 9368.84 34093.95 18997.60 177
JIA-IIPM88.26 28187.04 28591.91 27893.52 30381.42 31389.38 33894.38 31380.84 32190.93 19080.74 34279.22 24297.92 25082.76 28591.62 21996.38 205
MIMVSNet88.50 27886.76 28693.72 22394.84 26187.77 23691.39 32594.05 31986.41 26787.99 26792.59 30663.27 33595.82 32677.44 31692.84 20097.57 179
K. test v387.64 28686.75 28790.32 30993.02 31579.48 33096.61 18492.08 33590.66 15880.25 32994.09 27367.21 32596.65 31885.96 25280.83 32694.83 281
Patchmatch-RL test87.38 28786.24 28890.81 30188.74 34078.40 33588.12 34193.17 32787.11 25882.17 32089.29 32981.95 19895.60 32988.64 20177.02 33298.41 137
pmmvs687.81 28586.19 28992.69 26391.32 33086.30 26497.34 11396.41 24380.59 32484.05 31494.37 25767.37 32497.67 27184.75 26679.51 32994.09 311
Anonymous2023120687.09 29086.14 29089.93 31391.22 33180.35 32196.11 22295.35 27883.57 30384.16 31193.02 30073.54 29495.61 32872.16 33386.14 27893.84 314
DSMNet-mixed86.34 29586.12 29187.00 32289.88 33670.43 34494.93 26890.08 34377.97 33585.42 30292.78 30374.44 28693.96 33874.43 32695.14 16996.62 199
FMVSNet587.29 28985.79 29291.78 28594.80 26387.28 24195.49 25095.28 28284.09 29683.85 31691.82 31862.95 33694.17 33778.48 31385.34 28793.91 313
gg-mvs-nofinetune87.82 28485.61 29394.44 18894.46 27689.27 19991.21 32784.61 35080.88 32089.89 21674.98 34471.50 30097.53 28585.75 25597.21 13496.51 201
EG-PatchMatch MVS87.02 29185.44 29491.76 28792.67 32085.00 28296.08 22496.45 24283.41 30579.52 33193.49 29357.10 34297.72 26879.34 31190.87 23492.56 325
test20.0386.14 29785.40 29588.35 31590.12 33380.06 32695.90 23495.20 28788.59 21481.29 32293.62 29171.43 30192.65 34371.26 33781.17 32592.34 328
TinyColmap86.82 29285.35 29691.21 29594.91 25882.99 30493.94 29594.02 32183.58 30281.56 32194.68 24062.34 33898.13 21175.78 32287.35 26992.52 326
testing_287.33 28885.03 29794.22 19787.77 34489.32 19594.97 26797.11 19189.22 19271.64 34088.73 33055.16 34597.94 24691.95 13588.73 25695.41 244
CMPMVSbinary62.92 2185.62 30184.92 29887.74 31989.14 33973.12 34394.17 28996.80 22373.98 33973.65 33994.93 22766.36 32697.61 27883.95 27691.28 22692.48 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040286.46 29484.79 29991.45 29295.02 25085.55 27596.29 21194.89 30080.90 31982.21 31993.97 27868.21 32097.29 30262.98 34488.68 25791.51 334
TDRefinement86.53 29384.76 30091.85 28082.23 34884.25 29096.38 20295.35 27884.97 28684.09 31394.94 22665.76 33298.34 19784.60 26974.52 33792.97 321
pmmvs-eth3d86.22 29684.45 30191.53 29088.34 34187.25 24394.47 27695.01 29483.47 30479.51 33289.61 32869.75 31495.71 32783.13 28176.73 33491.64 332
UnsupCasMVSNet_eth85.99 29884.45 30190.62 30589.97 33582.40 30993.62 30497.37 17089.86 17778.59 33492.37 30965.25 33395.35 33382.27 29070.75 34194.10 309
YYNet185.87 29984.23 30390.78 30492.38 32682.46 30893.17 31095.14 29082.12 31267.69 34192.36 31278.16 26195.50 33277.31 31879.73 32894.39 301
MDA-MVSNet_test_wron85.87 29984.23 30390.80 30392.38 32682.57 30593.17 31095.15 28982.15 31167.65 34292.33 31578.20 25895.51 33177.33 31779.74 32794.31 305
PVSNet_082.17 1985.46 30283.64 30590.92 29995.27 23679.49 32990.55 33195.60 26983.76 30183.00 31889.95 32571.09 30397.97 23982.75 28660.79 34695.31 255
MIMVSNet184.93 30483.05 30690.56 30689.56 33884.84 28695.40 25395.35 27883.91 29780.38 32792.21 31657.23 34193.34 34170.69 33982.75 32193.50 317
MDA-MVSNet-bldmvs85.00 30382.95 30791.17 29793.13 31483.33 30194.56 27495.00 29584.57 29165.13 34592.65 30470.45 30795.85 32473.57 33077.49 33194.33 303
OpenMVS_ROBcopyleft81.14 2084.42 30582.28 30890.83 30090.06 33484.05 29495.73 24194.04 32073.89 34080.17 33091.53 32359.15 34097.64 27466.92 34289.05 25190.80 337
new-patchmatchnet83.18 30781.87 30987.11 32186.88 34575.99 33993.70 30095.18 28885.02 28577.30 33588.40 33265.99 33093.88 33974.19 32970.18 34291.47 336
PM-MVS83.48 30681.86 31088.31 31687.83 34377.59 33693.43 30691.75 33786.91 26080.63 32589.91 32644.42 34995.84 32585.17 26376.73 33491.50 335
MVS-HIRNet82.47 30981.21 31186.26 32495.38 22369.21 34788.96 34089.49 34466.28 34380.79 32474.08 34668.48 31897.39 29771.93 33495.47 16492.18 330
new_pmnet82.89 30881.12 31288.18 31889.63 33780.18 32591.77 32492.57 33176.79 33775.56 33888.23 33461.22 33994.48 33571.43 33582.92 31889.87 339
UnsupCasMVSNet_bld82.13 31079.46 31390.14 31188.00 34282.47 30790.89 33096.62 23978.94 33075.61 33684.40 34056.63 34496.31 32177.30 31966.77 34591.63 333
N_pmnet78.73 31278.71 31478.79 32792.80 31846.50 35694.14 29043.71 35878.61 33180.83 32391.66 32274.94 28496.36 32067.24 34184.45 30293.50 317
pmmvs379.97 31177.50 31587.39 32082.80 34779.38 33192.70 31990.75 34270.69 34278.66 33387.47 33851.34 34793.40 34073.39 33169.65 34389.38 340
FPMVS71.27 31469.85 31675.50 32974.64 35059.03 35291.30 32691.50 33958.80 34657.92 34788.28 33329.98 35385.53 34853.43 34682.84 32081.95 343
LCM-MVSNet72.55 31369.39 31782.03 32570.81 35465.42 35090.12 33594.36 31555.02 34765.88 34481.72 34124.16 35789.96 34474.32 32868.10 34490.71 338
PMMVS270.19 31566.92 31880.01 32676.35 34965.67 34986.22 34287.58 34764.83 34562.38 34680.29 34326.78 35588.49 34663.79 34354.07 34785.88 341
Gipumacopyleft67.86 31665.41 31975.18 33092.66 32173.45 34266.50 35094.52 31053.33 34857.80 34866.07 34830.81 35189.20 34548.15 34878.88 33062.90 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high63.94 31759.58 32077.02 32861.24 35666.06 34885.66 34487.93 34678.53 33242.94 35071.04 34725.42 35680.71 34952.60 34730.83 35084.28 342
PMVScopyleft53.92 2258.58 31855.40 32168.12 33251.00 35748.64 35478.86 34787.10 34946.77 34935.84 35474.28 3458.76 35886.34 34742.07 34973.91 33969.38 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 32253.82 32246.29 33633.73 35845.30 35878.32 34867.24 35718.02 35350.93 34987.05 33952.99 34653.11 35470.76 33825.29 35240.46 350
E-PMN53.28 31952.56 32355.43 33474.43 35147.13 35583.63 34676.30 35442.23 35042.59 35162.22 35028.57 35474.40 35131.53 35131.51 34944.78 348
EMVS52.08 32151.31 32454.39 33572.62 35345.39 35783.84 34575.51 35541.13 35140.77 35259.65 35130.08 35273.60 35228.31 35229.90 35144.18 349
MVEpermissive50.73 2353.25 32048.81 32566.58 33365.34 35557.50 35372.49 34970.94 35640.15 35239.28 35363.51 3496.89 36073.48 35338.29 35042.38 34868.76 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k23.24 32430.99 3260.00 3400.00 3610.00 3620.00 35297.63 1320.00 3570.00 35896.88 13484.38 1510.00 3580.00 3560.00 3560.00 354
wuyk23d25.11 32324.57 32726.74 33773.98 35239.89 35957.88 3519.80 35912.27 35410.39 3556.97 3577.03 35936.44 35525.43 35317.39 3533.89 353
testmvs13.36 32516.33 3284.48 3395.04 3592.26 36193.18 3093.28 3602.70 3558.24 35621.66 3532.29 3622.19 3567.58 3542.96 3549.00 352
test12313.04 32615.66 3295.18 3384.51 3603.45 36092.50 3221.81 3612.50 3567.58 35720.15 3543.67 3612.18 3577.13 3551.07 3559.90 351
ab-mvs-re8.06 32710.74 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35896.69 1430.00 3630.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.39 3289.85 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35888.65 940.00 3580.00 3560.00 3560.00 354
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS99.05 4194.59 2898.08 6489.22 19297.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
IU-MVS99.42 695.39 997.94 10290.40 16998.94 597.41 799.66 899.74 5
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18098.45 132
sam_mvs81.94 199
ambc86.56 32383.60 34670.00 34685.69 34394.97 29780.60 32688.45 33137.42 35096.84 31582.69 28775.44 33692.86 322
MTGPAbinary98.08 64
test_post192.81 31816.58 35680.53 21897.68 27086.20 244
test_post17.58 35581.76 20198.08 221
patchmatchnet-post90.45 32482.65 18498.10 216
GG-mvs-BLEND93.62 22793.69 29989.20 20092.39 32383.33 35187.98 26889.84 32771.00 30496.87 31482.08 29195.40 16694.80 286
MTMP97.86 5982.03 352
gm-plane-assit93.22 31178.89 33484.82 28893.52 29298.64 17587.72 213
test9_res94.81 8399.38 4899.45 45
TEST998.70 6094.19 4096.41 19698.02 8888.17 22796.03 7897.56 10592.74 2499.59 67
test_898.67 6294.06 4996.37 20398.01 9188.58 21595.98 8397.55 10792.73 2599.58 70
agg_prior293.94 9999.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
TestCases93.98 20797.94 11186.64 25795.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
test_prior493.66 5996.42 195
test_prior296.35 20492.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
旧先验295.94 23281.66 31597.34 3498.82 15992.26 125
新几何295.79 239
新几何197.32 5698.60 6893.59 6197.75 11781.58 31695.75 9097.85 7890.04 8299.67 4986.50 24099.13 7598.69 115
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
无先验95.79 23997.87 10883.87 30099.65 5387.68 21898.89 100
原ACMM295.67 242
原ACMM196.38 9998.59 6991.09 14097.89 10487.41 25195.22 10597.68 9190.25 7799.54 8587.95 20999.12 7898.49 127
test22298.24 9392.21 9995.33 25697.60 13479.22 32995.25 10497.84 8188.80 9299.15 7398.72 112
testdata299.67 4985.96 252
segment_acmp92.89 22
testdata95.46 15098.18 10288.90 20897.66 12882.73 30997.03 4798.07 6390.06 8198.85 15789.67 17698.98 8498.64 117
testdata195.26 26393.10 82
test1297.65 4498.46 7494.26 3797.66 12895.52 10290.89 6999.46 10099.25 6599.22 67
plane_prior796.21 18889.98 169
plane_prior696.10 19890.00 16581.32 207
plane_prior597.51 14498.60 17993.02 11992.23 20895.86 220
plane_prior496.64 146
plane_prior390.00 16594.46 3991.34 178
plane_prior297.74 7194.85 24
plane_prior196.14 196
plane_prior89.99 16797.24 12394.06 4792.16 212
n20.00 362
nn0.00 362
door-mid91.06 341
lessismore_v090.45 30791.96 32979.09 33387.19 34880.32 32894.39 25566.31 32897.55 28284.00 27576.84 33394.70 293
LGP-MVS_train94.10 20196.16 19388.26 22197.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
test1197.88 106
door91.13 340
HQP5-MVS89.33 193
HQP-NCC95.86 20396.65 17993.55 6290.14 201
ACMP_Plane95.86 20396.65 17993.55 6290.14 201
BP-MVS92.13 131
HQP4-MVS90.14 20198.50 18695.78 227
HQP3-MVS97.39 16792.10 213
HQP2-MVS80.95 210
NP-MVS95.99 20289.81 17495.87 184
MDTV_nov1_ep13_2view70.35 34593.10 31483.88 29993.55 13382.47 18886.25 24398.38 140
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93
ITE_SJBPF92.43 26895.34 22885.37 27995.92 25891.47 13087.75 27196.39 16571.00 30497.96 24382.36 28989.86 24593.97 312
DeepMVS_CXcopyleft74.68 33190.84 33264.34 35181.61 35365.34 34467.47 34388.01 33648.60 34880.13 35062.33 34573.68 34079.58 344