This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1699.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2398.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3398.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13198.35 1995.16 1598.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2999.01 398.55 1994.18 1197.41 29896.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12298.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5898.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14497.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10798.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15998.09 10586.63 26296.00 23298.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1799.48 3599.45 45
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3697.24 3698.41 3492.31 3798.94 15196.61 2199.46 3898.96 91
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16798.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11498.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5099.17 7299.56 22
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16498.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9597.97 9995.59 496.61 5797.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16497.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1699.29 5799.55 26
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5998.29 5091.70 5099.80 2795.66 5399.40 4599.62 13
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7697.18 3898.29 5092.08 3999.83 2295.63 5899.59 1599.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15298.01 9195.12 1897.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5697.35 3398.53 2191.40 5799.56 8196.30 2999.30 5699.55 26
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5797.45 2898.48 2591.43 5699.59 6896.22 3399.27 6199.54 29
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9198.19 4492.82 9597.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7997.14 4198.34 4191.59 5499.87 795.46 6699.59 1599.64 10
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7697.15 4098.33 4491.35 5999.86 895.63 5899.59 1599.62 13
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13998.07 7093.54 6696.08 7897.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8596.45 6798.30 4991.90 4599.85 1495.61 6099.68 499.54 29
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2291.40 5799.56 8196.05 4299.26 6399.43 49
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15297.76 11695.01 2297.08 4698.42 3191.71 4999.54 8696.80 1499.13 7599.48 41
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12498.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13798.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
9.1496.75 3398.93 4797.73 7398.23 3891.28 14397.88 2298.44 2893.00 2199.65 5395.76 5299.47 36
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10397.18 3898.29 5092.08 3999.83 2295.12 7299.59 1599.54 29
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12997.90 2198.37 3692.61 2999.66 5295.59 6399.51 2999.43 49
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8297.44 2998.55 1990.93 6899.55 8496.06 4199.25 6599.51 34
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10296.39 6998.18 5891.61 5299.88 495.59 6399.55 2199.57 19
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10698.04 8194.81 3096.59 5998.37 3691.24 6199.64 6195.16 7099.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7595.95 8598.33 4491.04 6699.88 495.20 6999.57 2099.60 16
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13198.01 1898.32 4692.33 3599.58 7194.85 8099.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22298.90 294.30 4595.86 8797.74 8792.33 3599.38 11296.04 4499.42 4399.28 65
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9897.59 2498.20 5791.96 4499.86 894.21 9499.25 6599.63 11
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 11097.14 4198.44 2891.17 6499.85 1494.35 9299.46 3899.57 19
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9996.70 5198.06 6491.35 5999.86 894.83 8299.28 5999.47 44
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16896.72 22594.17 4697.44 2997.66 9392.76 2399.33 11496.86 1397.76 11899.08 80
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15997.73 11994.74 3496.49 6398.49 2490.88 7099.58 7196.44 2798.32 10299.13 74
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17997.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7195.54 10298.34 4190.59 7599.88 494.83 8299.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14796.40 6897.99 6990.99 6799.58 7195.61 6099.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23498.18 4695.23 1295.87 8697.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16097.72 12294.67 3596.16 7598.46 2690.43 7699.58 7196.23 3297.96 11298.90 98
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15298.06 7390.67 15895.55 10098.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16796.77 4998.35 3890.21 7999.53 8994.80 8599.63 1299.38 56
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7497.22 3798.42 3187.93 10399.72 3595.10 7399.07 8099.02 83
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20798.00 9392.80 9696.03 7997.59 10192.01 4199.41 10795.01 7599.38 4899.29 62
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 22098.79 493.99 5095.80 8997.65 9489.92 8499.24 12195.87 4799.20 7098.58 118
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14998.05 8089.85 18197.26 3598.22 5691.80 4799.69 4494.84 8199.28 5999.27 66
CANet96.39 5596.02 5997.50 5097.62 12993.38 6797.02 14497.96 10095.42 794.86 11197.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8594.56 11598.39 3588.96 8999.85 1494.57 9197.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20193.97 12797.57 10392.62 2899.76 3094.66 8899.27 6199.15 72
ETV-MVS96.02 6495.89 6296.40 9697.16 14392.44 9297.47 10397.77 11594.55 3896.48 6494.51 25191.23 6298.92 15295.65 5698.19 10597.82 167
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19998.02 8888.58 21896.03 7997.56 10592.73 2599.59 6895.04 7499.37 5299.39 54
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21598.00 9388.76 21595.68 9497.55 10792.70 2799.57 7995.01 7599.32 5399.32 60
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 12098.06 7393.92 5193.38 14098.66 1286.83 12099.73 3295.60 6299.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS95.80 7095.65 6696.24 11097.32 13791.43 12698.10 3997.91 10393.38 7095.16 10894.57 24990.21 7998.98 14895.53 6598.67 9498.30 145
UA-Net95.95 6795.53 6797.20 6697.67 12692.98 7897.65 8498.13 5494.81 3096.61 5798.35 3888.87 9099.51 9490.36 16697.35 12999.11 78
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14198.21 4088.16 23296.64 5697.70 8991.18 6399.67 4992.44 12699.47 3699.48 41
casdiffmvs95.64 7395.49 6996.08 11496.76 16690.45 16097.29 12197.44 16294.00 4995.46 10497.98 7087.52 11198.73 16895.64 5797.33 13099.08 80
EIA-MVS95.53 7795.47 7095.71 13497.06 15189.63 17897.82 6497.87 10893.57 6293.92 12895.04 22790.61 7498.95 15094.62 8998.68 9398.54 120
canonicalmvs96.02 6495.45 7197.75 3797.59 13295.15 2198.28 2597.60 13594.52 3996.27 7296.12 17687.65 10799.18 12696.20 3894.82 17698.91 97
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9898.15 5193.87 5297.52 2597.61 10085.29 14099.53 8995.81 5195.27 16899.16 70
baseline95.58 7595.42 7396.08 11496.78 16390.41 16297.16 13597.45 15893.69 6195.65 9897.85 7887.29 11598.68 17395.66 5397.25 13399.13 74
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20797.88 10686.98 26296.65 5597.89 7291.99 4399.47 10092.26 12799.46 3899.39 54
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22897.48 14793.47 6995.67 9798.10 6089.17 8799.25 12091.27 15498.77 9099.13 74
PS-MVSNAJ95.37 7995.33 7695.49 14897.35 13690.66 15595.31 26197.48 14793.85 5396.51 6295.70 20288.65 9499.65 5394.80 8598.27 10396.17 211
xiu_mvs_v2_base95.32 8195.29 7795.40 15397.22 13990.50 15895.44 25597.44 16293.70 6096.46 6696.18 17388.59 9799.53 8994.79 8797.81 11596.17 211
alignmvs95.87 6995.23 7897.78 3397.56 13495.19 1897.86 5997.17 18694.39 4296.47 6596.40 16585.89 13399.20 12396.21 3795.11 17298.95 93
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24395.17 10798.03 6687.09 11899.61 6293.51 11099.42 4399.02 83
MVSFormer95.37 7995.16 8095.99 12196.34 18791.21 13398.22 3297.57 13991.42 13596.22 7397.32 11486.20 13097.92 25194.07 9799.05 8198.85 103
diffmvs95.25 8395.13 8195.63 13796.43 18389.34 19495.99 23397.35 17492.83 9496.31 7097.37 11386.44 12598.67 17496.26 3097.19 13598.87 102
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14198.08 6488.35 22595.09 10997.65 9489.97 8399.48 9992.08 13698.59 9798.44 135
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18298.67 597.00 20590.69 15794.24 12197.62 9989.79 8598.81 16193.39 11596.49 14998.92 96
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26497.62 13490.43 17095.55 10097.07 12691.72 4899.50 9789.62 18098.94 8698.82 106
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12298.25 3390.21 17294.18 12297.27 11687.48 11299.73 3293.53 10997.77 11798.55 119
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14291.58 12098.26 2798.12 5694.38 4394.90 11098.15 5982.28 19298.92 15291.45 15198.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19797.57 13992.04 11994.77 11397.96 7187.01 11999.09 13791.31 15396.77 14198.36 142
MVS_Test94.89 9694.62 9195.68 13596.83 16189.55 18396.70 17697.17 18691.17 14795.60 9996.11 17987.87 10498.76 16693.01 12397.17 13698.72 112
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12497.73 11991.80 12492.93 15396.62 15489.13 8899.14 13189.21 19297.78 11698.97 90
lupinMVS94.99 9394.56 9396.29 10696.34 18791.21 13395.83 24096.27 25088.93 20696.22 7396.88 13586.20 13098.85 15895.27 6899.05 8198.82 106
EPNet95.20 8694.56 9397.14 6892.80 32092.68 8497.85 6294.87 31096.64 192.46 15697.80 8486.23 12799.65 5393.72 10798.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 18995.47 25498.36 1688.84 20994.36 11896.09 18088.02 10099.58 7193.44 11298.18 10698.40 138
IS-MVSNet94.90 9594.52 9696.05 11797.67 12690.56 15698.44 1696.22 25393.21 7693.99 12597.74 8785.55 13898.45 19189.98 16997.86 11399.14 73
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6697.48 14789.19 19794.81 11296.71 14088.84 9199.17 12788.91 19898.76 9196.53 202
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15795.34 1398.48 1597.87 10894.65 3788.53 25798.02 6783.69 16099.71 3893.18 11898.96 8599.44 47
Effi-MVS+94.93 9494.45 9996.36 10196.61 16891.47 12396.41 19997.41 16791.02 15294.50 11695.92 18587.53 11098.78 16393.89 10396.81 14098.84 105
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17493.36 6998.65 698.36 1694.12 4789.25 24198.06 6482.20 19499.77 2993.41 11499.32 5399.18 69
jason94.84 9894.39 10196.18 11295.52 22090.93 14696.09 22696.52 24189.28 19496.01 8397.32 11484.70 14798.77 16595.15 7198.91 8898.85 103
jason: jason.
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19097.35 17490.61 16494.64 11496.93 13086.41 12699.39 11091.20 15694.71 18098.94 94
PVSNet_BlendedMVS94.06 11693.92 10594.47 19098.27 8989.46 18996.73 17298.36 1690.17 17394.36 11895.24 22188.02 10099.58 7193.44 11290.72 23594.36 304
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17097.61 13087.92 23398.10 3995.80 26792.22 11093.02 14797.45 10984.53 15097.91 25488.24 20697.97 11199.02 83
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22897.73 11981.56 32595.68 9497.85 7890.23 7899.65 5387.68 22099.12 7898.73 111
sss94.51 10493.80 10896.64 7897.07 14891.97 11096.32 21198.06 7388.94 20594.50 11696.78 13784.60 14899.27 11991.90 13796.02 15398.68 116
mvs_anonymous93.82 12493.74 10994.06 20596.44 18285.41 28095.81 24197.05 19989.85 18190.09 21396.36 16787.44 11397.75 26893.97 9996.69 14599.02 83
FIs94.09 11593.70 11095.27 15595.70 21492.03 10798.10 3998.68 793.36 7390.39 19996.70 14287.63 10897.94 24892.25 12990.50 23995.84 225
mvs-test193.63 13093.69 11193.46 23896.02 20384.61 29297.24 12496.72 22593.85 5392.30 16395.76 19783.08 17198.89 15691.69 14596.54 14896.87 195
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19097.81 11489.87 17892.15 16697.06 12783.62 16299.54 8689.34 18698.07 10997.70 171
CANet_DTU94.37 10593.65 11396.55 8496.46 18192.13 10496.21 22196.67 23394.38 4393.53 13697.03 12879.34 24199.71 3890.76 16098.45 10097.82 167
FC-MVSNet-test93.94 12193.57 11495.04 16395.48 22291.45 12598.12 3898.71 593.37 7190.23 20296.70 14287.66 10697.85 25791.49 14990.39 24095.83 226
XVG-OURS-SEG-HR93.86 12393.55 11594.81 17697.06 15188.53 21795.28 26297.45 15891.68 12794.08 12497.68 9182.41 19098.90 15593.84 10592.47 20596.98 189
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19491.46 12496.33 21097.04 20188.97 20493.56 13396.51 15887.55 10997.89 25589.80 17495.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19096.88 21690.13 17591.91 17197.24 11885.21 14199.09 13787.64 22397.83 11497.92 159
hse-mvs394.15 11093.52 11896.04 11897.81 11990.22 16597.62 9097.58 13895.19 1496.74 5097.45 10983.67 16199.61 6295.85 4979.73 32998.29 146
PS-MVSNAJss93.74 12793.51 11994.44 19193.91 29489.28 19997.75 7097.56 14292.50 10489.94 21696.54 15788.65 9498.18 21093.83 10690.90 23395.86 222
CHOSEN 1792x268894.15 11093.51 11996.06 11698.27 8989.38 19295.18 26898.48 1485.60 28293.76 13197.11 12483.15 16999.61 6291.33 15298.72 9299.19 68
TAMVS94.01 11993.46 12195.64 13696.16 19690.45 16096.71 17596.89 21589.27 19593.46 13896.92 13387.29 11597.94 24888.70 20295.74 16098.53 121
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8197.47 15088.13 23493.00 14895.84 18984.86 14699.51 9487.99 21098.17 10797.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HQP_MVS93.78 12693.43 12394.82 17496.21 19189.99 17097.74 7197.51 14594.85 2591.34 18096.64 14781.32 20898.60 18093.02 12192.23 20895.86 222
PLCcopyleft91.00 694.11 11493.43 12396.13 11398.58 7191.15 14096.69 17897.39 16887.29 25791.37 17996.71 14088.39 9899.52 9387.33 23097.13 13797.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12795.55 25097.71 12688.99 20292.34 16295.82 19189.19 8699.11 13386.14 24897.38 12798.90 98
XVG-OURS93.72 12893.35 12694.80 17897.07 14888.61 21494.79 27297.46 15291.97 12293.99 12597.86 7781.74 20398.88 15792.64 12592.67 20396.92 193
nrg03094.05 11793.31 12796.27 10795.22 24294.59 2898.34 2097.46 15292.93 9291.21 18996.64 14787.23 11798.22 20494.99 7885.80 28195.98 220
UGNet94.04 11893.28 12896.31 10396.85 15891.19 13697.88 5897.68 12794.40 4193.00 14896.18 17373.39 30099.61 6291.72 14298.46 9998.13 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu93.08 14693.21 12992.68 26696.02 20383.25 30697.14 13896.72 22593.85 5391.20 19093.44 29883.08 17198.30 20091.69 14595.73 16196.50 204
VDD-MVS93.82 12493.08 13096.02 11997.88 11689.96 17497.72 7695.85 26592.43 10595.86 8798.44 2868.42 32499.39 11096.31 2894.85 17498.71 114
114514_t93.95 12093.06 13196.63 8099.07 3991.61 11797.46 10597.96 10077.99 34193.00 14897.57 10386.14 13299.33 11489.22 19199.15 7398.94 94
F-COLMAP93.58 13292.98 13295.37 15498.40 7888.98 20797.18 13397.29 17987.75 24690.49 19697.10 12585.21 14199.50 9786.70 23996.72 14497.63 173
HY-MVS89.66 993.87 12292.95 13396.63 8097.10 14792.49 9195.64 24896.64 23489.05 20093.00 14895.79 19585.77 13699.45 10389.16 19594.35 18297.96 156
HyFIR lowres test93.66 12992.92 13495.87 12598.24 9389.88 17594.58 27698.49 1285.06 29193.78 13095.78 19682.86 17898.67 17491.77 14195.71 16299.07 82
EI-MVSNet93.03 14992.88 13593.48 23695.77 21186.98 25396.44 19597.12 19090.66 16091.30 18397.64 9786.56 12298.05 23089.91 17190.55 23795.41 247
MVSTER93.20 14392.81 13694.37 19596.56 17489.59 18197.06 14097.12 19091.24 14491.30 18395.96 18382.02 19798.05 23093.48 11190.55 23795.47 243
OPM-MVS93.28 14092.76 13794.82 17494.63 27390.77 15296.65 18197.18 18493.72 5891.68 17497.26 11779.33 24298.63 17792.13 13392.28 20795.07 268
test_djsdf93.07 14792.76 13794.00 20893.49 30788.70 21398.22 3297.57 13991.42 13590.08 21495.55 21082.85 17997.92 25194.07 9791.58 22095.40 250
Fast-Effi-MVS+93.46 13592.75 13995.59 14096.77 16490.03 16796.81 16797.13 18988.19 22891.30 18394.27 26786.21 12998.63 17787.66 22296.46 15198.12 151
HQP-MVS93.19 14492.74 14094.54 18995.86 20689.33 19596.65 18197.39 16893.55 6390.14 20495.87 18780.95 21198.50 18792.13 13392.10 21395.78 229
CHOSEN 280x42093.12 14592.72 14194.34 19796.71 16787.27 24490.29 33997.72 12286.61 26991.34 18095.29 21884.29 15498.41 19293.25 11798.94 8697.35 185
UniMVSNet_NR-MVSNet93.37 13792.67 14295.47 15195.34 23192.83 8097.17 13498.58 1092.98 9090.13 20895.80 19288.37 9997.85 25791.71 14383.93 30995.73 235
LFMVS93.60 13192.63 14396.52 8598.13 10491.27 13097.94 5493.39 33390.57 16796.29 7198.31 4769.00 32099.16 12894.18 9695.87 15799.12 77
BH-untuned92.94 15492.62 14493.92 21797.22 13986.16 27196.40 20296.25 25290.06 17689.79 22196.17 17583.19 16798.35 19787.19 23397.27 13297.24 186
LS3D93.57 13392.61 14596.47 9197.59 13291.61 11797.67 8197.72 12285.17 28990.29 20198.34 4184.60 14899.73 3283.85 28098.27 10398.06 155
LPG-MVS_test92.94 15492.56 14694.10 20396.16 19688.26 22397.65 8497.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
UniMVSNet (Re)93.31 13992.55 14795.61 13995.39 22593.34 7097.39 11098.71 593.14 8190.10 21294.83 23687.71 10598.03 23491.67 14783.99 30895.46 244
ab-mvs93.57 13392.55 14796.64 7897.28 13891.96 11195.40 25697.45 15889.81 18393.22 14696.28 17079.62 23899.46 10190.74 16193.11 19798.50 125
CLD-MVS92.98 15192.53 14994.32 19896.12 20089.20 20195.28 26297.47 15092.66 10089.90 21795.62 20580.58 21898.40 19392.73 12492.40 20695.38 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LCM-MVSNet-Re92.50 16692.52 15092.44 26996.82 16281.89 31596.92 15693.71 32992.41 10684.30 31394.60 24885.08 14397.03 30991.51 14897.36 12898.40 138
ACMM89.79 892.96 15292.50 15194.35 19696.30 18988.71 21297.58 9297.36 17391.40 13890.53 19596.65 14679.77 23498.75 16791.24 15591.64 21895.59 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet93.24 14192.48 15295.51 14595.70 21492.39 9397.86 5998.66 992.30 10892.09 16995.37 21680.49 22098.40 19393.95 10085.86 28095.75 233
1112_ss93.37 13792.42 15396.21 11197.05 15390.99 14296.31 21296.72 22586.87 26589.83 22096.69 14486.51 12499.14 13188.12 20893.67 19198.50 125
PMMVS92.86 15892.34 15494.42 19494.92 25786.73 25894.53 27896.38 24684.78 29694.27 12095.12 22683.13 17098.40 19391.47 15096.49 14998.12 151
tttt051792.96 15292.33 15594.87 17397.11 14687.16 25097.97 5292.09 34190.63 16293.88 12997.01 12976.50 27799.06 14290.29 16895.45 16598.38 140
RRT_MVS93.21 14292.32 15695.91 12394.92 25794.15 4396.92 15696.86 21991.42 13591.28 18696.43 16279.66 23798.10 21993.29 11690.06 24295.46 244
QAPM93.45 13692.27 15796.98 7496.77 16492.62 8798.39 1998.12 5684.50 29988.27 26397.77 8582.39 19199.81 2685.40 26198.81 8998.51 124
thisisatest053093.03 14992.21 15895.49 14897.07 14889.11 20597.49 10292.19 34090.16 17494.09 12396.41 16476.43 28099.05 14390.38 16595.68 16398.31 144
ACMP89.59 1092.62 16592.14 15994.05 20696.40 18488.20 22697.36 11397.25 18291.52 13088.30 26196.64 14778.46 25798.72 17191.86 14091.48 22295.23 264
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VDDNet93.05 14892.07 16096.02 11996.84 15990.39 16398.08 4295.85 26586.22 27495.79 9098.46 2667.59 32799.19 12494.92 7994.85 17498.47 130
DU-MVS92.90 15692.04 16195.49 14894.95 25592.83 8097.16 13598.24 3493.02 8490.13 20895.71 20083.47 16397.85 25791.71 14383.93 30995.78 229
131492.81 16292.03 16295.14 16095.33 23489.52 18696.04 22897.44 16287.72 24786.25 29795.33 21783.84 15898.79 16289.26 18997.05 13897.11 187
PatchMatch-RL92.90 15692.02 16395.56 14198.19 10090.80 15095.27 26497.18 18487.96 23691.86 17395.68 20380.44 22198.99 14784.01 27697.54 12196.89 194
Fast-Effi-MVS+-dtu92.29 17791.99 16493.21 24995.27 23885.52 27897.03 14196.63 23792.09 11789.11 24395.14 22480.33 22498.08 22487.54 22694.74 17996.03 219
BH-RMVSNet92.72 16491.97 16594.97 16897.16 14387.99 23296.15 22495.60 27590.62 16391.87 17297.15 12378.41 25998.57 18383.16 28297.60 12098.36 142
IterMVS-LS92.29 17791.94 16693.34 24396.25 19086.97 25496.57 19397.05 19990.67 15889.50 23294.80 23886.59 12197.64 27689.91 17186.11 27995.40 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline192.82 16191.90 16795.55 14397.20 14190.77 15297.19 13294.58 31592.20 11292.36 16096.34 16884.16 15598.21 20589.20 19383.90 31297.68 172
jajsoiax92.42 17091.89 16894.03 20793.33 31288.50 21897.73 7397.53 14392.00 12188.85 24896.50 15975.62 28698.11 21893.88 10491.56 22195.48 241
Test_1112_low_res92.84 16091.84 16995.85 12697.04 15489.97 17395.53 25296.64 23485.38 28589.65 22695.18 22285.86 13499.10 13487.70 21793.58 19698.49 127
mvs_tets92.31 17591.76 17093.94 21593.41 30988.29 22197.63 8997.53 14392.04 11988.76 25296.45 16174.62 29098.09 22393.91 10291.48 22295.45 246
CVMVSNet91.23 22191.75 17189.67 31995.77 21174.69 34796.44 19594.88 30785.81 27992.18 16597.64 9779.07 24495.58 33588.06 20995.86 15898.74 110
BH-w/o92.14 18691.75 17193.31 24496.99 15685.73 27595.67 24595.69 27188.73 21689.26 24094.82 23782.97 17698.07 22785.26 26396.32 15296.13 215
PVSNet86.66 1892.24 18091.74 17393.73 22397.77 12283.69 30392.88 32096.72 22587.91 23893.00 14894.86 23478.51 25699.05 14386.53 24097.45 12698.47 130
OpenMVScopyleft89.19 1292.86 15891.68 17496.40 9695.34 23192.73 8398.27 2698.12 5684.86 29485.78 30097.75 8678.89 25299.74 3187.50 22798.65 9596.73 199
TranMVSNet+NR-MVSNet92.50 16691.63 17595.14 16094.76 26692.07 10597.53 9698.11 5992.90 9389.56 22996.12 17683.16 16897.60 28189.30 18783.20 31895.75 233
thres600view792.49 16891.60 17695.18 15897.91 11489.47 18797.65 8494.66 31292.18 11693.33 14194.91 23178.06 26699.10 13481.61 29494.06 18896.98 189
thres100view90092.43 16991.58 17794.98 16797.92 11389.37 19397.71 7894.66 31292.20 11293.31 14294.90 23278.06 26699.08 13981.40 29794.08 18596.48 205
anonymousdsp92.16 18491.55 17893.97 21192.58 32489.55 18397.51 9797.42 16689.42 19188.40 25894.84 23580.66 21797.88 25691.87 13991.28 22694.48 300
WR-MVS92.34 17391.53 17994.77 18095.13 24790.83 14996.40 20297.98 9891.88 12389.29 23895.54 21182.50 18797.80 26289.79 17585.27 28995.69 236
tfpn200view992.38 17291.52 18094.95 17097.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.48 205
thres40092.42 17091.52 18095.12 16297.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.98 189
DP-MVS92.76 16391.51 18296.52 8598.77 5790.99 14297.38 11296.08 25882.38 31889.29 23897.87 7583.77 15999.69 4481.37 30096.69 14598.89 100
thres20092.23 18191.39 18394.75 18297.61 13089.03 20696.60 18995.09 29892.08 11893.28 14394.00 27978.39 26099.04 14581.26 30194.18 18496.19 210
WR-MVS_H92.00 18891.35 18493.95 21395.09 24989.47 18798.04 4598.68 791.46 13388.34 25994.68 24485.86 13497.56 28385.77 25684.24 30594.82 285
PatchmatchNetpermissive91.91 19091.35 18493.59 23195.38 22684.11 29793.15 31695.39 28189.54 18792.10 16893.68 29182.82 18098.13 21484.81 26795.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 20991.32 18691.79 28695.15 24579.20 33893.42 31195.37 28388.55 22193.49 13793.67 29282.49 18898.27 20190.41 16489.34 24997.90 160
VPNet92.23 18191.31 18794.99 16595.56 21890.96 14497.22 13097.86 11192.96 9190.96 19196.62 15475.06 28898.20 20791.90 13783.65 31495.80 228
thisisatest051592.29 17791.30 18895.25 15696.60 16988.90 20994.36 28592.32 33987.92 23793.43 13994.57 24977.28 27399.00 14689.42 18495.86 15897.86 163
EPNet_dtu91.71 19591.28 18992.99 25593.76 29983.71 30196.69 17895.28 28893.15 8087.02 28995.95 18483.37 16697.38 30079.46 31296.84 13997.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NR-MVSNet92.34 17391.27 19095.53 14494.95 25593.05 7597.39 11098.07 7092.65 10184.46 31195.71 20085.00 14497.77 26789.71 17683.52 31595.78 229
CP-MVSNet91.89 19191.24 19193.82 22095.05 25088.57 21597.82 6498.19 4491.70 12688.21 26595.76 19781.96 19897.52 28987.86 21284.65 29895.37 253
XXY-MVS92.16 18491.23 19294.95 17094.75 26790.94 14597.47 10397.43 16589.14 19888.90 24596.43 16279.71 23598.24 20289.56 18187.68 26395.67 238
TAPA-MVS90.10 792.30 17691.22 19395.56 14198.33 8589.60 18096.79 16897.65 13181.83 32291.52 17697.23 11987.94 10298.91 15471.31 34398.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test-LLR91.42 21091.19 19492.12 27694.59 27480.66 32294.29 28992.98 33591.11 14990.76 19392.37 31279.02 24798.07 22788.81 19996.74 14297.63 173
SCA91.84 19291.18 19593.83 21995.59 21684.95 28894.72 27395.58 27790.82 15392.25 16493.69 28975.80 28398.10 21986.20 24695.98 15498.45 132
miper_ehance_all_eth91.59 19991.13 19692.97 25695.55 21986.57 26394.47 27996.88 21687.77 24488.88 24794.01 27886.22 12897.54 28589.49 18286.93 27094.79 290
test_part192.21 18391.10 19795.51 14597.80 12092.66 8598.02 4697.68 12789.79 18488.80 25196.02 18176.85 27598.18 21090.86 15884.11 30795.69 236
miper_enhance_ethall91.54 20591.01 19893.15 25095.35 23087.07 25293.97 29796.90 21386.79 26689.17 24293.43 30086.55 12397.64 27689.97 17086.93 27094.74 294
D2MVS91.30 21990.95 19992.35 27294.71 26985.52 27896.18 22398.21 4088.89 20786.60 29493.82 28579.92 23297.95 24789.29 18890.95 23293.56 318
cl_fuxian91.38 21290.89 20092.88 25995.58 21786.30 26694.68 27496.84 22188.17 23088.83 25094.23 27085.65 13797.47 29289.36 18584.63 29994.89 280
V4291.58 20190.87 20193.73 22394.05 29188.50 21897.32 11796.97 20688.80 21489.71 22294.33 26282.54 18698.05 23089.01 19685.07 29394.64 298
baseline291.63 19890.86 20293.94 21594.33 28386.32 26595.92 23691.64 34589.37 19286.94 29094.69 24381.62 20598.69 17288.64 20394.57 18196.81 197
RPSCF90.75 24290.86 20290.42 31296.84 15976.29 34595.61 24996.34 24783.89 30591.38 17897.87 7576.45 27898.78 16387.16 23592.23 20896.20 209
v2v48291.59 19990.85 20493.80 22193.87 29688.17 22896.94 15596.88 21689.54 18789.53 23094.90 23281.70 20498.02 23589.25 19085.04 29595.20 265
PS-CasMVS91.55 20390.84 20593.69 22794.96 25488.28 22297.84 6398.24 3491.46 13388.04 26995.80 19279.67 23697.48 29187.02 23684.54 30295.31 256
Anonymous20240521192.07 18790.83 20695.76 12898.19 10088.75 21197.58 9295.00 30186.00 27793.64 13297.45 10966.24 33699.53 8990.68 16392.71 20199.01 87
RRT_test8_iter0591.19 22690.78 20792.41 27195.76 21383.14 30797.32 11797.46 15291.37 13989.07 24495.57 20770.33 31398.21 20593.56 10886.62 27595.89 221
MDTV_nov1_ep1390.76 20895.22 24280.33 32793.03 31995.28 28888.14 23392.84 15493.83 28381.34 20798.08 22482.86 28594.34 183
AUN-MVS91.76 19490.75 20994.81 17697.00 15588.57 21596.65 18196.49 24289.63 18692.15 16696.12 17678.66 25498.50 18790.83 15979.18 33297.36 184
Anonymous2024052991.98 18990.73 21095.73 13398.14 10389.40 19197.99 4797.72 12279.63 33593.54 13597.41 11269.94 31899.56 8191.04 15791.11 22898.22 147
CostFormer91.18 22790.70 21192.62 26794.84 26381.76 31694.09 29594.43 31784.15 30292.72 15593.77 28779.43 24098.20 20790.70 16292.18 21197.90 160
FMVSNet391.78 19390.69 21295.03 16496.53 17692.27 9997.02 14496.93 20989.79 18489.35 23594.65 24677.01 27497.47 29286.12 24988.82 25295.35 254
Baseline_NR-MVSNet91.20 22390.62 21392.95 25793.83 29788.03 23197.01 14895.12 29788.42 22389.70 22395.13 22583.47 16397.44 29589.66 17983.24 31793.37 322
v114491.37 21490.60 21493.68 22893.89 29588.23 22596.84 16397.03 20388.37 22489.69 22494.39 25882.04 19697.98 23887.80 21485.37 28694.84 282
eth_miper_zixun_eth91.02 23190.59 21592.34 27395.33 23484.35 29394.10 29496.90 21388.56 22088.84 24994.33 26284.08 15697.60 28188.77 20184.37 30495.06 269
bset_n11_16_dypcd91.55 20390.59 21594.44 19191.51 33290.25 16492.70 32393.42 33292.27 10990.22 20394.74 24178.42 25897.80 26294.19 9587.86 26295.29 263
TR-MVS91.48 20890.59 21594.16 20296.40 18487.33 24295.67 24595.34 28787.68 24891.46 17795.52 21276.77 27698.35 19782.85 28693.61 19496.79 198
cl-mvsnet291.21 22290.56 21893.14 25196.09 20286.80 25694.41 28396.58 24087.80 24288.58 25693.99 28080.85 21697.62 27989.87 17386.93 27094.99 271
v891.29 22090.53 21993.57 23394.15 28788.12 23097.34 11497.06 19888.99 20288.32 26094.26 26983.08 17198.01 23687.62 22483.92 31194.57 299
MVS91.71 19590.44 22095.51 14595.20 24491.59 11996.04 22897.45 15873.44 34887.36 28295.60 20685.42 13999.10 13485.97 25397.46 12295.83 226
PEN-MVS91.20 22390.44 22093.48 23694.49 27787.91 23597.76 6998.18 4691.29 14087.78 27495.74 19980.35 22397.33 30285.46 26082.96 31995.19 266
v14890.99 23290.38 22292.81 26293.83 29785.80 27496.78 17096.68 23189.45 19088.75 25393.93 28282.96 17797.82 26187.83 21383.25 31694.80 288
cl-mvsnet190.97 23490.33 22392.88 25995.36 22986.19 27094.46 28196.63 23787.82 24088.18 26694.23 27082.99 17497.53 28787.72 21585.57 28394.93 276
cl-mvsnet_90.96 23590.32 22492.89 25895.37 22886.21 26994.46 28196.64 23487.82 24088.15 26794.18 27382.98 17597.54 28587.70 21785.59 28294.92 278
GA-MVS91.38 21290.31 22594.59 18494.65 27187.62 24094.34 28696.19 25590.73 15690.35 20093.83 28371.84 30397.96 24587.22 23293.61 19498.21 148
PAPM91.52 20690.30 22695.20 15795.30 23789.83 17693.38 31296.85 22086.26 27388.59 25595.80 19284.88 14598.15 21375.67 33095.93 15697.63 173
v14419291.06 22990.28 22793.39 24093.66 30287.23 24796.83 16497.07 19687.43 25389.69 22494.28 26681.48 20698.00 23787.18 23484.92 29794.93 276
GBi-Net91.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
test191.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
MSDG91.42 21090.24 23094.96 16997.15 14588.91 20893.69 30596.32 24885.72 28186.93 29196.47 16080.24 22598.98 14880.57 30395.05 17396.98 189
v119291.07 22890.23 23193.58 23293.70 30087.82 23796.73 17297.07 19687.77 24489.58 22794.32 26480.90 21597.97 24186.52 24185.48 28494.95 272
v1091.04 23090.23 23193.49 23594.12 28888.16 22997.32 11797.08 19588.26 22788.29 26294.22 27282.17 19597.97 24186.45 24384.12 30694.33 305
UniMVSNet_ETH3D91.34 21790.22 23394.68 18394.86 26287.86 23697.23 12997.46 15287.99 23589.90 21796.92 13366.35 33498.23 20390.30 16790.99 23197.96 156
XVG-ACMP-BASELINE90.93 23690.21 23493.09 25294.31 28585.89 27395.33 25997.26 18091.06 15189.38 23495.44 21568.61 32298.60 18089.46 18391.05 22994.79 290
OurMVSNet-221017-090.51 25090.19 23591.44 29593.41 30981.25 31996.98 15196.28 24991.68 12786.55 29596.30 16974.20 29397.98 23888.96 19787.40 26895.09 267
ET-MVSNet_ETH3D91.49 20790.11 23695.63 13796.40 18491.57 12195.34 25893.48 33190.60 16675.58 34595.49 21380.08 22896.79 31894.25 9389.76 24698.52 122
MVP-Stereo90.74 24390.08 23792.71 26493.19 31488.20 22695.86 23896.27 25086.07 27684.86 30994.76 23977.84 26997.75 26883.88 27998.01 11092.17 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet291.31 21890.08 23794.99 16596.51 17792.21 10097.41 10696.95 20788.82 21188.62 25494.75 24073.87 29497.42 29785.20 26488.55 25795.35 254
cascas91.20 22390.08 23794.58 18894.97 25389.16 20493.65 30797.59 13779.90 33489.40 23392.92 30475.36 28798.36 19692.14 13294.75 17896.23 208
miper_lstm_enhance90.50 25190.06 24091.83 28395.33 23483.74 29993.86 30096.70 23087.56 25187.79 27393.81 28683.45 16596.92 31587.39 22884.62 30094.82 285
v192192090.85 23890.03 24193.29 24593.55 30386.96 25596.74 17197.04 20187.36 25589.52 23194.34 26180.23 22697.97 24186.27 24485.21 29094.94 274
PCF-MVS89.48 1191.56 20289.95 24296.36 10196.60 16992.52 9092.51 32697.26 18079.41 33688.90 24596.56 15684.04 15799.55 8477.01 32697.30 13197.01 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB88.41 1390.99 23289.92 24394.19 20096.18 19489.55 18396.31 21297.09 19487.88 23985.67 30195.91 18678.79 25398.57 18381.50 29589.98 24394.44 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DWT-MVSNet_test90.76 24089.89 24493.38 24195.04 25183.70 30295.85 23994.30 32388.19 22890.46 19792.80 30573.61 29898.50 18788.16 20790.58 23697.95 158
v7n90.76 24089.86 24593.45 23993.54 30487.60 24197.70 7997.37 17188.85 20887.65 27694.08 27781.08 21098.10 21984.68 26983.79 31394.66 297
v124090.70 24589.85 24693.23 24793.51 30686.80 25696.61 18797.02 20487.16 26089.58 22794.31 26579.55 23997.98 23885.52 25985.44 28594.90 279
pmmvs490.93 23689.85 24694.17 20193.34 31190.79 15194.60 27596.02 25984.62 29787.45 27895.15 22381.88 20197.45 29487.70 21787.87 26194.27 309
IterMVS-SCA-FT90.31 25389.81 24891.82 28495.52 22084.20 29694.30 28896.15 25690.61 16487.39 28194.27 26775.80 28396.44 32187.34 22986.88 27494.82 285
EPMVS90.70 24589.81 24893.37 24294.73 26884.21 29593.67 30688.02 35289.50 18992.38 15993.49 29677.82 27097.78 26586.03 25292.68 20298.11 154
MS-PatchMatch90.27 25489.77 25091.78 28794.33 28384.72 29195.55 25096.73 22486.17 27586.36 29695.28 22071.28 30797.80 26284.09 27598.14 10892.81 327
CR-MVSNet90.82 23989.77 25093.95 21394.45 27987.19 24890.23 34095.68 27386.89 26492.40 15792.36 31580.91 21397.05 30881.09 30293.95 18997.60 178
DTE-MVSNet90.56 24889.75 25293.01 25493.95 29287.25 24597.64 8897.65 13190.74 15587.12 28595.68 20379.97 23197.00 31383.33 28181.66 32494.78 292
tpm90.25 25589.74 25391.76 28993.92 29379.73 33493.98 29693.54 33088.28 22691.99 17093.25 30177.51 27297.44 29587.30 23187.94 26098.12 151
X-MVStestdata91.71 19589.67 25497.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5932.69 35991.70 5099.80 2795.66 5399.40 4599.62 13
IterMVS90.15 25989.67 25491.61 29195.48 22283.72 30094.33 28796.12 25789.99 17787.31 28494.15 27575.78 28596.27 32486.97 23786.89 27394.83 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pm-mvs190.72 24489.65 25693.96 21294.29 28689.63 17897.79 6796.82 22289.07 19986.12 29995.48 21478.61 25597.78 26586.97 23781.67 32394.46 301
test-mter90.19 25889.54 25792.12 27694.59 27480.66 32294.29 28992.98 33587.68 24890.76 19392.37 31267.67 32698.07 22788.81 19996.74 14297.63 173
Anonymous2023121190.63 24789.42 25894.27 19998.24 9389.19 20398.05 4497.89 10479.95 33388.25 26494.96 22872.56 30198.13 21489.70 17785.14 29195.49 240
TESTMET0.1,190.06 26089.42 25891.97 27994.41 28180.62 32494.29 28991.97 34387.28 25890.44 19892.47 31168.79 32197.67 27388.50 20596.60 14797.61 177
ACMH87.59 1690.53 24989.42 25893.87 21896.21 19187.92 23397.24 12496.94 20888.45 22283.91 32096.27 17171.92 30298.62 17984.43 27389.43 24895.05 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft87.81 1590.40 25289.28 26193.79 22297.95 11087.13 25196.92 15695.89 26482.83 31686.88 29397.18 12073.77 29799.29 11878.44 31793.62 19394.95 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm289.96 26189.21 26292.23 27594.91 26081.25 31993.78 30294.42 31880.62 33191.56 17593.44 29876.44 27997.94 24885.60 25892.08 21597.49 182
ACMH+87.92 1490.20 25789.18 26393.25 24696.48 18086.45 26496.99 14996.68 23188.83 21084.79 31096.22 17270.16 31698.53 18584.42 27488.04 25994.77 293
tpmvs89.83 26689.15 26491.89 28194.92 25780.30 32893.11 31795.46 28086.28 27288.08 26892.65 30780.44 22198.52 18681.47 29689.92 24496.84 196
AllTest90.23 25688.98 26593.98 20997.94 11186.64 25996.51 19495.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
EU-MVSNet88.72 27988.90 26688.20 32493.15 31574.21 34896.63 18694.22 32485.18 28887.32 28395.97 18276.16 28194.98 33985.27 26286.17 27795.41 247
pmmvs589.86 26588.87 26792.82 26192.86 31886.23 26896.26 21695.39 28184.24 30187.12 28594.51 25174.27 29297.36 30187.61 22587.57 26494.86 281
test0.0.03 189.37 27088.70 26891.41 29692.47 32585.63 27695.22 26792.70 33791.11 14986.91 29293.65 29379.02 24793.19 34978.00 31989.18 25095.41 247
ADS-MVSNet89.89 26388.68 26993.53 23495.86 20684.89 28990.93 33595.07 29983.23 31491.28 18691.81 32279.01 24997.85 25779.52 30991.39 22497.84 164
ADS-MVSNet289.45 26888.59 27092.03 27895.86 20682.26 31490.93 33594.32 32283.23 31491.28 18691.81 32279.01 24995.99 32679.52 30991.39 22497.84 164
SixPastTwentyTwo89.15 27188.54 27190.98 30293.49 30780.28 32996.70 17694.70 31190.78 15484.15 31695.57 20771.78 30497.71 27184.63 27085.07 29394.94 274
tfpnnormal89.70 26788.40 27293.60 23095.15 24590.10 16697.56 9498.16 5087.28 25886.16 29894.63 24777.57 27198.05 23074.48 33284.59 30192.65 330
FMVSNet189.88 26488.31 27394.59 18495.41 22491.18 13797.50 9896.93 20986.62 26887.41 28094.51 25165.94 33897.29 30483.04 28487.43 26695.31 256
IB-MVS87.33 1789.91 26288.28 27494.79 17995.26 24187.70 23995.12 27093.95 32889.35 19387.03 28892.49 31070.74 31199.19 12489.18 19481.37 32597.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.90 27588.26 27590.81 30594.58 27676.62 34492.85 32194.93 30585.12 29090.07 21593.07 30275.81 28298.12 21780.53 30487.42 26797.71 170
Patchmatch-test89.42 26987.99 27693.70 22695.27 23885.11 28488.98 34694.37 32081.11 32687.10 28793.69 28982.28 19297.50 29074.37 33494.76 17798.48 129
our_test_388.78 27887.98 27791.20 30092.45 32682.53 31093.61 30995.69 27185.77 28084.88 30893.71 28879.99 23096.78 31979.47 31186.24 27694.28 308
USDC88.94 27387.83 27892.27 27494.66 27084.96 28793.86 30095.90 26387.34 25683.40 32295.56 20967.43 32898.19 20982.64 29089.67 24793.66 317
MVS_030488.79 27787.57 27992.46 26894.65 27186.15 27296.40 20297.17 18686.44 27088.02 27091.71 32456.68 35197.03 30984.47 27292.58 20494.19 310
TransMVSNet (Re)88.94 27387.56 28093.08 25394.35 28288.45 22097.73 7395.23 29287.47 25284.26 31495.29 21879.86 23397.33 30279.44 31374.44 34193.45 321
PatchT88.87 27687.42 28193.22 24894.08 29085.10 28589.51 34494.64 31481.92 32192.36 16088.15 34280.05 22997.01 31272.43 33993.65 19297.54 181
ppachtmachnet_test88.35 28387.29 28291.53 29292.45 32683.57 30493.75 30395.97 26084.28 30085.32 30694.18 27379.00 25196.93 31475.71 32984.99 29694.10 311
Patchmtry88.64 28087.25 28392.78 26394.09 28986.64 25989.82 34395.68 27380.81 33087.63 27792.36 31580.91 21397.03 30978.86 31585.12 29294.67 296
LF4IMVS87.94 28687.25 28389.98 31692.38 32880.05 33294.38 28495.25 29187.59 25084.34 31294.74 24164.31 34197.66 27584.83 26687.45 26592.23 335
testgi87.97 28587.21 28590.24 31492.86 31880.76 32196.67 18094.97 30391.74 12585.52 30295.83 19062.66 34594.47 34376.25 32788.36 25895.48 241
tpm cat188.36 28287.21 28591.81 28595.13 24780.55 32592.58 32595.70 27074.97 34587.45 27891.96 32078.01 26898.17 21280.39 30588.74 25596.72 200
RPMNet88.98 27287.05 28794.77 18094.45 27987.19 24890.23 34098.03 8477.87 34392.40 15787.55 34480.17 22799.51 9468.84 34793.95 18997.60 178
JIA-IIPM88.26 28487.04 28891.91 28093.52 30581.42 31889.38 34594.38 31980.84 32990.93 19280.74 34979.22 24397.92 25182.76 28791.62 21996.38 207
MIMVSNet88.50 28186.76 28993.72 22594.84 26387.77 23891.39 33094.05 32586.41 27187.99 27192.59 30963.27 34395.82 33177.44 32092.84 20097.57 180
K. test v387.64 28986.75 29090.32 31393.02 31779.48 33696.61 18792.08 34290.66 16080.25 33794.09 27667.21 33096.65 32085.96 25480.83 32794.83 283
Patchmatch-RL test87.38 29086.24 29190.81 30588.74 34878.40 34288.12 34893.17 33487.11 26182.17 32889.29 33781.95 19995.60 33488.64 20377.02 33598.41 137
pmmvs687.81 28886.19 29292.69 26591.32 33386.30 26697.34 11496.41 24580.59 33284.05 31994.37 26067.37 32997.67 27384.75 26879.51 33194.09 313
Anonymous2023120687.09 29286.14 29389.93 31791.22 33480.35 32696.11 22595.35 28483.57 31184.16 31593.02 30373.54 29995.61 33372.16 34086.14 27893.84 316
DSMNet-mixed86.34 29886.12 29487.00 32989.88 34270.43 35194.93 27190.08 35077.97 34285.42 30592.78 30674.44 29193.96 34574.43 33395.14 16996.62 201
FMVSNet587.29 29185.79 29591.78 28794.80 26587.28 24395.49 25395.28 28884.09 30383.85 32191.82 32162.95 34494.17 34478.48 31685.34 28893.91 315
gg-mvs-nofinetune87.82 28785.61 29694.44 19194.46 27889.27 20091.21 33484.61 35780.88 32889.89 21974.98 35171.50 30597.53 28785.75 25797.21 13496.51 203
Anonymous2024052186.42 29785.44 29789.34 32090.33 33879.79 33396.73 17295.92 26183.71 30983.25 32391.36 32763.92 34296.01 32578.39 31885.36 28792.22 336
EG-PatchMatch MVS87.02 29385.44 29791.76 28992.67 32285.00 28696.08 22796.45 24383.41 31379.52 33993.49 29657.10 35097.72 27079.34 31490.87 23492.56 331
test20.0386.14 30185.40 29988.35 32290.12 33980.06 33195.90 23795.20 29388.59 21781.29 33093.62 29471.43 30692.65 35071.26 34481.17 32692.34 334
TinyColmap86.82 29485.35 30091.21 29994.91 26082.99 30893.94 29894.02 32783.58 31081.56 32994.68 24462.34 34698.13 21475.78 32887.35 26992.52 332
CL-MVSNet_2432*160086.31 29985.15 30189.80 31888.83 34781.74 31793.93 29996.22 25386.67 26785.03 30790.80 32878.09 26594.50 34174.92 33171.86 34593.15 323
DIV-MVS_2432*160085.95 30384.95 30288.96 32189.55 34579.11 33995.13 26996.42 24485.91 27884.07 31890.48 32970.03 31794.82 34080.04 30672.94 34492.94 325
CMPMVSbinary62.92 2185.62 30684.92 30387.74 32689.14 34673.12 35094.17 29296.80 22373.98 34673.65 34794.93 23066.36 33397.61 28083.95 27891.28 22692.48 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040286.46 29684.79 30491.45 29495.02 25285.55 27796.29 21494.89 30680.90 32782.21 32793.97 28168.21 32597.29 30462.98 35188.68 25691.51 341
TDRefinement86.53 29584.76 30591.85 28282.23 35584.25 29496.38 20595.35 28484.97 29384.09 31794.94 22965.76 33998.34 19984.60 27174.52 34092.97 324
pmmvs-eth3d86.22 30084.45 30691.53 29288.34 34987.25 24594.47 27995.01 30083.47 31279.51 34089.61 33669.75 31995.71 33283.13 28376.73 33791.64 339
UnsupCasMVSNet_eth85.99 30284.45 30690.62 30989.97 34182.40 31393.62 30897.37 17189.86 17978.59 34292.37 31265.25 34095.35 33882.27 29270.75 34694.10 311
YYNet185.87 30484.23 30890.78 30892.38 32882.46 31293.17 31495.14 29682.12 32067.69 34892.36 31578.16 26495.50 33777.31 32279.73 32994.39 303
MDA-MVSNet_test_wron85.87 30484.23 30890.80 30792.38 32882.57 30993.17 31495.15 29582.15 31967.65 34992.33 31878.20 26195.51 33677.33 32179.74 32894.31 307
PVSNet_082.17 1985.46 30783.64 31090.92 30395.27 23879.49 33590.55 33895.60 27583.76 30883.00 32689.95 33371.09 30897.97 24182.75 28860.79 35395.31 256
MIMVSNet184.93 30983.05 31190.56 31089.56 34484.84 29095.40 25695.35 28483.91 30480.38 33592.21 31957.23 34993.34 34870.69 34682.75 32293.50 319
MDA-MVSNet-bldmvs85.00 30882.95 31291.17 30193.13 31683.33 30594.56 27795.00 30184.57 29865.13 35292.65 30770.45 31295.85 32973.57 33777.49 33494.33 305
KD-MVS_2432*160084.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
miper_refine_blended84.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
OpenMVS_ROBcopyleft81.14 2084.42 31282.28 31590.83 30490.06 34084.05 29895.73 24494.04 32673.89 34780.17 33891.53 32659.15 34897.64 27666.92 34989.05 25190.80 344
new-patchmatchnet83.18 31481.87 31687.11 32886.88 35275.99 34693.70 30495.18 29485.02 29277.30 34388.40 33965.99 33793.88 34674.19 33670.18 34791.47 343
PM-MVS83.48 31381.86 31788.31 32387.83 35177.59 34393.43 31091.75 34486.91 26380.63 33389.91 33444.42 35695.84 33085.17 26576.73 33791.50 342
MVS-HIRNet82.47 31681.21 31886.26 33195.38 22669.21 35488.96 34789.49 35166.28 35080.79 33274.08 35368.48 32397.39 29971.93 34195.47 16492.18 337
new_pmnet82.89 31581.12 31988.18 32589.63 34380.18 33091.77 32992.57 33876.79 34475.56 34688.23 34161.22 34794.48 34271.43 34282.92 32089.87 346
UnsupCasMVSNet_bld82.13 31779.46 32090.14 31588.00 35082.47 31190.89 33796.62 23978.94 33875.61 34484.40 34756.63 35296.31 32377.30 32366.77 35091.63 340
N_pmnet78.73 31978.71 32178.79 33492.80 32046.50 36394.14 29343.71 36578.61 33980.83 33191.66 32574.94 28996.36 32267.24 34884.45 30393.50 319
pmmvs379.97 31877.50 32287.39 32782.80 35479.38 33792.70 32390.75 34970.69 34978.66 34187.47 34551.34 35493.40 34773.39 33869.65 34889.38 347
FPMVS71.27 32169.85 32375.50 33674.64 35759.03 35991.30 33191.50 34658.80 35357.92 35488.28 34029.98 36085.53 35553.43 35382.84 32181.95 350
LCM-MVSNet72.55 32069.39 32482.03 33270.81 36165.42 35790.12 34294.36 32155.02 35465.88 35181.72 34824.16 36489.96 35174.32 33568.10 34990.71 345
PMMVS270.19 32266.92 32580.01 33376.35 35665.67 35686.22 34987.58 35464.83 35262.38 35380.29 35026.78 36288.49 35363.79 35054.07 35485.88 348
Gipumacopyleft67.86 32365.41 32675.18 33792.66 32373.45 34966.50 35794.52 31653.33 35557.80 35566.07 35530.81 35889.20 35248.15 35578.88 33362.90 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high63.94 32459.58 32777.02 33561.24 36366.06 35585.66 35187.93 35378.53 34042.94 35771.04 35425.42 36380.71 35652.60 35430.83 35784.28 349
PMVScopyleft53.92 2258.58 32555.40 32868.12 33951.00 36448.64 36178.86 35487.10 35646.77 35635.84 36174.28 3528.76 36586.34 35442.07 35673.91 34269.38 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 32953.82 32946.29 34333.73 36545.30 36578.32 35567.24 36418.02 36050.93 35687.05 34652.99 35353.11 36170.76 34525.29 35940.46 357
E-PMN53.28 32652.56 33055.43 34174.43 35847.13 36283.63 35376.30 36142.23 35742.59 35862.22 35728.57 36174.40 35831.53 35831.51 35644.78 355
EMVS52.08 32851.31 33154.39 34272.62 36045.39 36483.84 35275.51 36241.13 35840.77 35959.65 35830.08 35973.60 35928.31 35929.90 35844.18 356
MVEpermissive50.73 2353.25 32748.81 33266.58 34065.34 36257.50 36072.49 35670.94 36340.15 35939.28 36063.51 3566.89 36773.48 36038.29 35742.38 35568.76 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k23.24 33130.99 3330.00 3470.00 3680.00 3690.00 35997.63 1330.00 3640.00 36596.88 13584.38 1510.00 3650.00 3630.00 3630.00 361
wuyk23d25.11 33024.57 33426.74 34473.98 35939.89 36657.88 3589.80 36612.27 36110.39 3626.97 3647.03 36636.44 36225.43 36017.39 3603.89 360
testmvs13.36 33216.33 3354.48 3465.04 3662.26 36893.18 3133.28 3672.70 3628.24 36321.66 3602.29 3692.19 3637.58 3612.96 3619.00 359
test12313.04 33315.66 3365.18 3454.51 3673.45 36792.50 3271.81 3682.50 3637.58 36420.15 3613.67 3682.18 3647.13 3621.07 3629.90 358
ab-mvs-re8.06 33410.74 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36596.69 1440.00 3700.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.39 3359.85 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36588.65 940.00 3650.00 3630.00 3630.00 361
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ZD-MVS99.05 4194.59 2898.08 6489.22 19697.03 4798.10 6092.52 3299.65 5394.58 9099.31 55
IU-MVS99.42 695.39 997.94 10290.40 17198.94 597.41 799.66 899.74 5
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12195.36 6799.59 1599.56 22
test_241102_TWO98.27 2895.13 1698.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 1999.19 198.81 895.54 399.65 53
save fliter98.91 4994.28 3597.02 14498.02 8895.35 8
test_0728_THIRD94.78 3298.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2298.29 2494.92 2398.99 498.92 295.08 5
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18198.45 132
sam_mvs81.94 200
ambc86.56 33083.60 35370.00 35385.69 35094.97 30380.60 33488.45 33837.42 35796.84 31782.69 28975.44 33992.86 326
MTGPAbinary98.08 64
test_post192.81 32216.58 36380.53 21997.68 27286.20 246
test_post17.58 36281.76 20298.08 224
patchmatchnet-post90.45 33082.65 18598.10 219
GG-mvs-BLEND93.62 22993.69 30189.20 20192.39 32883.33 35887.98 27289.84 33571.00 30996.87 31682.08 29395.40 16694.80 288
MTMP97.86 5982.03 359
gm-plane-assit93.22 31378.89 34184.82 29593.52 29598.64 17687.72 215
test9_res94.81 8499.38 4899.45 45
TEST998.70 6094.19 4096.41 19998.02 8888.17 23096.03 7997.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 20698.01 9188.58 21895.98 8497.55 10792.73 2599.58 71
agg_prior293.94 10199.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9499.57 79
TestCases93.98 20997.94 11186.64 25995.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
test_prior493.66 5996.42 198
test_prior296.35 20792.80 9696.03 7997.59 10192.01 4195.01 7599.38 48
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
旧先验295.94 23581.66 32397.34 3498.82 16092.26 127
新几何295.79 242
新几何197.32 5698.60 6893.59 6197.75 11781.58 32495.75 9197.85 7890.04 8299.67 4986.50 24299.13 7598.69 115
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
无先验95.79 24297.87 10883.87 30799.65 5387.68 22098.89 100
原ACMM295.67 245
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25495.22 10697.68 9190.25 7799.54 8687.95 21199.12 7898.49 127
test22298.24 9392.21 10095.33 25997.60 13579.22 33795.25 10597.84 8188.80 9299.15 7398.72 112
testdata299.67 4985.96 254
segment_acmp92.89 22
testdata95.46 15298.18 10288.90 20997.66 12982.73 31797.03 4798.07 6390.06 8198.85 15889.67 17898.98 8498.64 117
testdata195.26 26693.10 83
test1297.65 4498.46 7494.26 3797.66 12995.52 10390.89 6999.46 10199.25 6599.22 67
plane_prior796.21 19189.98 172
plane_prior696.10 20190.00 16881.32 208
plane_prior597.51 14598.60 18093.02 12192.23 20895.86 222
plane_prior496.64 147
plane_prior390.00 16894.46 4091.34 180
plane_prior297.74 7194.85 25
plane_prior196.14 199
plane_prior89.99 17097.24 12494.06 4892.16 212
n20.00 369
nn0.00 369
door-mid91.06 348
lessismore_v090.45 31191.96 33179.09 34087.19 35580.32 33694.39 25866.31 33597.55 28484.00 27776.84 33694.70 295
LGP-MVS_train94.10 20396.16 19688.26 22397.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
test1197.88 106
door91.13 347
HQP5-MVS89.33 195
HQP-NCC95.86 20696.65 18193.55 6390.14 204
ACMP_Plane95.86 20696.65 18193.55 6390.14 204
BP-MVS92.13 133
HQP4-MVS90.14 20498.50 18795.78 229
HQP3-MVS97.39 16892.10 213
HQP2-MVS80.95 211
NP-MVS95.99 20589.81 17795.87 187
MDTV_nov1_ep13_2view70.35 35293.10 31883.88 30693.55 13482.47 18986.25 24598.38 140
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93
ITE_SJBPF92.43 27095.34 23185.37 28195.92 26191.47 13287.75 27596.39 16671.00 30997.96 24582.36 29189.86 24593.97 314
DeepMVS_CXcopyleft74.68 33890.84 33764.34 35881.61 36065.34 35167.47 35088.01 34348.60 35580.13 35762.33 35273.68 34379.58 351