This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4398.08 173
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7399.40 54
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1299.56 29
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3499.64 1599.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
IU-MVS99.42 795.39 1197.94 10490.40 20198.94 897.41 2999.66 1299.74 8
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25190.69 16197.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11798.18 162
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2599.59 22
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1499.74 8
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14392.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4399.69 12
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 12990.72 16098.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11598.25 157
PC_three_145290.77 18298.89 1498.28 6596.24 198.35 22395.76 7999.58 2599.59 22
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19798.85 1598.94 993.33 2399.83 2696.72 4099.68 599.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18790.25 17397.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10598.15 166
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17297.97 6998.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10398.18 162
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 799.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16198.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4399.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7399.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24392.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5399.59 22
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 13098.27 2798.65 2993.33 2399.72 4596.49 4899.52 3299.51 37
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1999.65 15
Skip Steuart: Steuart Systems R&D Blog.
test_vis1_n_192094.17 12094.58 10392.91 28397.42 14482.02 34497.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1598.82 9697.40 207
test_part299.28 2595.74 898.10 29
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15698.01 3198.32 5992.33 3899.58 7794.85 10599.51 3599.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30596.98 17898.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3799.72 11
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28296.00 25698.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 4199.45 47
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5499.52 3299.67 13
9.1496.75 4198.93 4797.73 9698.23 5091.28 16697.88 3598.44 4493.00 2699.65 5895.76 7999.47 42
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 4099.57 26
test_vis1_n92.37 19492.26 17992.72 29094.75 30182.64 33698.02 5896.80 23791.18 17097.77 3797.93 8858.02 38498.29 22897.63 1998.21 12197.23 216
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18086.45 28697.63 11297.64 14293.32 9597.68 3898.36 5073.75 32099.08 14896.73 3999.05 8797.31 212
test_fmvsmconf0.01_n96.15 6695.85 7097.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 6099.80 1
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7895.27 19099.16 73
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5799.27 6699.54 33
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6699.55 8796.06 6699.25 7099.51 37
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24094.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13599.08 83
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6799.26 6899.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6799.26 6899.43 51
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32397.56 11897.51 15993.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3799.51 37
iter_conf05_1196.17 6596.16 6496.21 11497.48 14290.74 15998.14 4997.80 12292.80 11997.34 4897.29 13188.54 9999.10 14196.40 5099.64 1598.80 115
旧先验295.94 25981.66 36597.34 4898.82 17692.26 152
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10398.49 1994.66 4897.24 5098.41 4792.31 4098.94 16596.61 4399.46 4398.96 94
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4299.83 2695.63 8699.59 2199.54 33
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5799.86 895.63 8699.59 2199.62 18
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5299.87 795.46 9399.59 2199.64 16
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13497.14 5398.44 4491.17 6299.85 1894.35 11899.46 4399.57 26
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 21097.11 5598.01 8392.52 3599.69 5296.03 7099.53 3199.36 60
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7799.17 7799.56 29
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4698.71 19197.10 3199.17 7798.90 104
ZD-MVS99.05 3994.59 3198.08 7489.22 23097.03 5898.10 7392.52 3599.65 5894.58 11699.31 64
testdata95.46 16098.18 9788.90 22097.66 13882.73 35797.03 5898.07 7690.06 7698.85 17489.67 20898.98 9198.64 125
CS-MVS-test96.89 3597.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6097.97 8691.24 5998.75 18596.92 3599.33 6298.94 97
mvsany_test193.93 13593.98 11893.78 24994.94 29086.80 27594.62 30992.55 37388.77 25196.85 6198.49 3888.98 8898.08 25195.03 10195.62 18496.46 237
test_fmvs193.21 15993.53 13092.25 30296.55 19781.20 35197.40 13796.96 22090.68 18796.80 6298.04 7969.25 34598.40 21697.58 2198.50 10897.16 217
test_fmvs1_n92.73 18492.88 15392.29 30096.08 23081.05 35297.98 6397.08 20790.72 18596.79 6398.18 7063.07 37698.45 21397.62 2098.42 11497.36 208
MVSMamba_pp96.06 6795.92 6796.50 8997.00 16791.81 11097.33 14697.77 12492.49 12696.78 6497.19 14088.50 10299.07 15296.54 4699.67 798.60 126
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19796.77 6598.35 5190.21 7599.53 9194.80 10999.63 1899.38 58
h-mvs3394.15 12293.52 13296.04 12497.81 11990.22 17497.62 11497.58 15095.19 2096.74 6697.45 12483.67 17599.61 6995.85 7579.73 36898.29 155
hse-mvs293.45 15292.99 14894.81 19097.02 16588.59 22696.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21295.85 7579.13 37297.35 210
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5799.86 894.83 10699.28 6599.47 46
xiu_mvs_v1_base_debu95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base_debi95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29996.65 7297.89 9091.99 4499.47 10292.26 15299.46 4399.39 56
EC-MVSNet96.42 5796.47 5396.26 11097.01 16691.52 12398.89 597.75 12694.42 5696.64 7397.68 10789.32 8498.60 20197.45 2699.11 8498.67 124
UA-Net95.95 7595.53 7697.20 6397.67 12592.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9099.51 9690.36 19497.35 14699.11 81
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3499.84 2395.95 7299.51 3599.40 54
bld_raw_dy_0_6495.63 8395.76 7395.24 16697.27 14788.36 23596.07 25297.73 12992.43 12796.59 7697.25 13688.50 10299.09 14596.32 5199.69 398.27 156
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4899.80 3095.66 8199.40 5499.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4899.80 3095.66 8199.40 5499.62 18
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 5999.64 6695.16 9799.52 3299.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mamv496.02 7095.84 7196.53 8197.05 16291.97 10597.30 14997.79 12392.32 13196.58 8097.14 14588.51 10199.06 15596.27 5399.64 1598.57 128
PS-MVSNAJ95.37 8995.33 8695.49 15697.35 14590.66 16395.31 29197.48 16293.85 7496.51 8195.70 22788.65 9599.65 5894.80 10998.27 11996.17 243
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18497.73 12994.74 4496.49 8298.49 3890.88 6899.58 7796.44 4998.32 11799.13 77
ETV-MVS96.02 7095.89 6996.40 9797.16 15292.44 8897.47 13097.77 12494.55 5096.48 8394.51 27891.23 6198.92 16795.65 8498.19 12297.82 187
alignmvs95.87 7895.23 8897.78 3197.56 14095.19 2197.86 8097.17 19994.39 5996.47 8496.40 18885.89 14599.20 12796.21 6195.11 19498.95 96
xiu_mvs_v2_base95.32 9195.29 8795.40 16197.22 14890.50 16695.44 28597.44 17693.70 7996.46 8596.18 19788.59 9899.53 9194.79 11197.81 13296.17 243
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8698.30 6291.90 4599.85 1895.61 8899.68 599.54 33
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17196.40 8797.99 8490.99 6599.58 7795.61 8899.61 2099.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8898.18 7091.61 5099.88 495.59 9199.55 2899.57 26
diffmvspermissive95.25 9395.13 9195.63 14696.43 20989.34 20495.99 25797.35 18892.83 11796.31 8997.37 12886.44 13798.67 19496.26 5497.19 15398.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3698.01 5994.09 35197.33 296.29 9098.79 2489.73 8299.86 899.36 299.42 5099.67 13
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19796.29 9098.31 6069.00 34699.16 13494.18 12095.87 17799.12 80
sasdasda96.02 7095.45 7997.75 3597.59 13595.15 2398.28 3197.60 14694.52 5296.27 9296.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
canonicalmvs96.02 7095.45 7997.75 3597.59 13595.15 2398.28 3197.60 14694.52 5296.27 9296.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
MVSFormer95.37 8995.16 9095.99 12996.34 21391.21 13698.22 4197.57 15191.42 16096.22 9497.32 12986.20 14297.92 28294.07 12199.05 8798.85 110
lupinMVS94.99 10394.56 10496.29 10896.34 21391.21 13695.83 26596.27 26788.93 24296.22 9496.88 15986.20 14298.85 17495.27 9599.05 8798.82 113
MGCFI-Net95.94 7695.40 8397.56 4697.59 13594.62 3098.21 4397.57 15194.41 5796.17 9696.16 20087.54 12099.17 13296.19 6494.73 20398.91 101
EI-MVSNet-UG-set96.34 6196.30 6096.47 9198.20 9390.93 15096.86 18697.72 13294.67 4796.16 9798.46 4290.43 7399.58 7796.23 5697.96 12998.90 104
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15598.08 7495.07 2796.11 9898.59 3090.88 6899.90 296.18 6599.50 3799.58 25
test_fmvsmvis_n_192096.70 4796.84 3396.31 10496.62 18891.73 11197.98 6398.30 3296.19 596.10 9998.95 889.42 8399.76 3898.90 1099.08 8597.43 205
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16898.07 7993.54 8596.08 10097.69 10693.86 1699.71 4696.50 4799.39 5699.55 32
TEST998.70 5694.19 4296.41 22598.02 9488.17 26796.03 10197.56 12192.74 3099.59 74
train_agg96.30 6295.83 7297.72 3898.70 5694.19 4296.41 22598.02 9488.58 25496.03 10197.56 12192.73 3199.59 7495.04 10099.37 6099.39 56
test_prior296.35 23392.80 11996.03 10197.59 11892.01 4395.01 10299.38 57
jason94.84 10894.39 11396.18 11795.52 24990.93 15096.09 25096.52 25689.28 22896.01 10497.32 12984.70 15998.77 18395.15 9898.91 9598.85 110
jason: jason.
test_898.67 5894.06 4996.37 23298.01 9788.58 25495.98 10597.55 12392.73 3199.58 77
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10698.33 5791.04 6499.88 495.20 9699.57 2799.60 21
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25898.18 5795.23 1995.87 10797.65 11191.45 5399.70 5195.87 7399.44 4999.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VDD-MVS93.82 14093.08 14696.02 12697.88 11689.96 18397.72 9995.85 28492.43 12795.86 10898.44 4468.42 35399.39 11196.31 5294.85 19698.71 121
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10897.74 10492.33 3899.38 11396.04 6999.42 5099.28 65
MVS_111021_LR96.24 6496.19 6396.39 9998.23 9191.35 13196.24 24498.79 693.99 6995.80 11097.65 11189.92 8099.24 12495.87 7399.20 7598.58 127
VDDNet93.05 16892.07 18296.02 12696.84 17490.39 17198.08 5395.85 28486.22 31395.79 11198.46 4267.59 35699.19 12894.92 10494.85 19698.47 140
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11297.85 9690.04 7799.67 5686.50 27399.13 8198.69 122
test_yl94.78 11094.23 11496.43 9597.74 12291.22 13496.85 18797.10 20491.23 16895.71 11396.93 15484.30 16599.31 11993.10 14195.12 19298.75 116
DCV-MVSNet94.78 11094.23 11496.43 9597.74 12291.22 13496.85 18797.10 20491.23 16895.71 11396.93 15484.30 16599.31 11993.10 14195.12 19298.75 116
agg_prior98.67 5893.79 5498.00 9895.68 11599.57 84
MG-MVS95.61 8495.38 8496.31 10498.42 7390.53 16596.04 25397.48 16293.47 8995.67 11698.10 7389.17 8699.25 12391.27 17998.77 9899.13 77
baseline95.58 8595.42 8296.08 12096.78 18090.41 17097.16 16597.45 17293.69 8095.65 11797.85 9687.29 12798.68 19395.66 8197.25 15199.13 77
MVS_Test94.89 10694.62 10195.68 14496.83 17689.55 19396.70 20197.17 19991.17 17195.60 11896.11 20687.87 11398.76 18493.01 14897.17 15498.72 119
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29497.62 14590.43 20095.55 11997.07 14991.72 4699.50 9989.62 21098.94 9398.82 113
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 18098.06 8290.67 18895.55 11998.78 2591.07 6399.86 896.58 4499.55 2899.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 12198.34 5490.59 7299.88 494.83 10699.54 3099.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test1297.65 4298.46 7094.26 3997.66 13895.52 12290.89 6799.46 10399.25 7099.22 70
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18590.45 16897.29 15197.44 17694.00 6895.46 12397.98 8587.52 12298.73 18795.64 8597.33 14799.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22298.24 8792.21 9695.33 28997.60 14679.22 37995.25 12497.84 9888.80 9299.15 7998.72 119
test250691.60 22490.78 23094.04 23197.66 12783.81 32698.27 3375.53 40993.43 9095.23 12598.21 6767.21 35999.07 15293.01 14898.49 10999.25 68
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29195.22 12697.68 10790.25 7499.54 8987.95 24199.12 8398.49 137
CPTT-MVS95.57 8695.19 8996.70 7399.27 2691.48 12598.33 2798.11 7087.79 28095.17 12798.03 8087.09 13099.61 6993.51 13399.42 5099.02 86
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8696.87 17291.49 12497.50 12497.56 15593.99 6995.13 12897.92 8987.89 11298.78 18095.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17198.08 7488.35 26395.09 12997.65 11189.97 7999.48 10192.08 16198.59 10698.44 145
Vis-MVSNetpermissive95.23 9494.81 9696.51 8697.18 15191.58 12198.26 3598.12 6794.38 6094.90 13098.15 7282.28 20898.92 16791.45 17698.58 10799.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet96.39 5996.02 6597.50 4797.62 13193.38 6397.02 17397.96 10295.42 1594.86 13197.81 9987.38 12699.82 2896.88 3699.20 7599.29 63
API-MVS94.84 10894.49 10995.90 13197.90 11592.00 10497.80 9097.48 16289.19 23194.81 13296.71 16488.84 9199.17 13288.91 22998.76 9996.53 232
OMC-MVS95.09 9894.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 14394.77 13397.96 8787.01 13199.09 14591.31 17896.77 16098.36 152
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12785.41 30398.21 4388.23 39493.43 9094.70 13498.21 6772.57 32499.07 15293.05 14598.49 10999.25 68
WTY-MVS94.71 11294.02 11696.79 7297.71 12492.05 10296.59 21697.35 18890.61 19494.64 13596.93 15486.41 13899.39 11191.20 18194.71 20498.94 97
test111193.19 16192.82 15594.30 22097.58 13984.56 31898.21 4389.02 39293.53 8694.58 13698.21 6772.69 32399.05 15793.06 14498.48 11199.28 65
ACMMPcopyleft96.27 6395.93 6697.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13798.39 4888.96 8999.85 1894.57 11797.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+94.93 10494.45 11196.36 10296.61 18991.47 12696.41 22597.41 18191.02 17794.50 13895.92 21187.53 12198.78 18093.89 12796.81 15998.84 112
sss94.51 11393.80 12196.64 7497.07 15791.97 10596.32 23698.06 8288.94 24194.50 13896.78 16184.60 16099.27 12291.90 16296.02 17398.68 123
PVSNet_BlendedMVS94.06 12893.92 11994.47 20898.27 8389.46 19996.73 19798.36 2490.17 20394.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
PVSNet_Blended94.87 10794.56 10495.81 13598.27 8389.46 19995.47 28498.36 2488.84 24594.36 14096.09 20788.02 10999.58 7793.44 13598.18 12398.40 148
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27894.53 31396.38 26384.78 33694.27 14295.12 25283.13 18698.40 21691.47 17596.49 16898.12 168
EPP-MVSNet95.22 9595.04 9395.76 13697.49 14189.56 19298.67 1097.00 21890.69 18694.24 14397.62 11689.79 8198.81 17893.39 13896.49 16898.92 100
FA-MVS(test-final)93.52 15092.92 15195.31 16396.77 18288.54 22994.82 30596.21 27289.61 21894.20 14495.25 24683.24 18299.14 13790.01 19896.16 17298.25 157
PVSNet_Blended_VisFu95.27 9294.91 9596.38 10098.20 9390.86 15297.27 15298.25 4590.21 20294.18 14597.27 13487.48 12399.73 4293.53 13297.77 13498.55 129
FE-MVS92.05 20991.05 21995.08 17396.83 17687.93 24993.91 33995.70 29086.30 31094.15 14694.97 25476.59 29399.21 12684.10 30696.86 15798.09 172
thisisatest053093.03 16992.21 18095.49 15697.07 15789.11 21697.49 12992.19 37590.16 20494.09 14796.41 18776.43 29799.05 15790.38 19395.68 18398.31 154
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16088.53 23095.28 29297.45 17291.68 15294.08 14897.68 10782.41 20698.90 17093.84 12992.47 23996.98 220
XVG-OURS93.72 14493.35 14194.80 19397.07 15788.61 22594.79 30697.46 16791.97 14693.99 14997.86 9581.74 21998.88 17192.64 15192.67 23896.92 224
IS-MVSNet94.90 10594.52 10896.05 12397.67 12590.56 16498.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21389.98 19997.86 13099.14 76
CSCG96.05 6995.91 6896.46 9399.24 2890.47 16798.30 2998.57 1889.01 23793.97 15197.57 11992.62 3399.76 3894.66 11299.27 6699.15 75
EIA-MVS95.53 8795.47 7895.71 14397.06 16089.63 18897.82 8797.87 11193.57 8193.92 15295.04 25390.61 7198.95 16494.62 11498.68 10198.54 130
tttt051792.96 17292.33 17794.87 18797.11 15587.16 26997.97 6992.09 37690.63 19293.88 15397.01 15276.50 29499.06 15590.29 19695.45 18798.38 150
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18494.58 31198.49 1985.06 33193.78 15495.78 22282.86 19498.67 19491.77 16795.71 18299.07 85
CHOSEN 1792x268894.15 12293.51 13396.06 12298.27 8389.38 20295.18 29898.48 2185.60 32193.76 15597.11 14683.15 18599.61 6991.33 17798.72 10099.19 71
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22297.58 11695.00 32486.00 31693.64 15697.45 12466.24 36799.53 9190.68 19092.71 23699.01 89
CDS-MVSNet94.14 12593.54 12995.93 13096.18 22091.46 12796.33 23597.04 21488.97 24093.56 15796.51 18287.55 11997.89 28689.80 20495.95 17598.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34693.55 15882.47 20586.25 27698.38 150
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20197.99 6297.72 13279.63 37793.54 15997.41 12769.94 34299.56 8591.04 18491.11 26598.22 159
CANet_DTU94.37 11593.65 12596.55 8096.46 20792.13 10096.21 24596.67 24794.38 6093.53 16097.03 15179.34 25799.71 4690.76 18798.45 11397.82 187
tpmrst91.44 23491.32 20891.79 31495.15 27879.20 37493.42 35395.37 30688.55 25793.49 16193.67 32082.49 20498.27 22990.41 19289.34 28697.90 180
TAMVS94.01 13193.46 13595.64 14596.16 22290.45 16896.71 20096.89 23089.27 22993.46 16296.92 15787.29 12797.94 27988.70 23395.74 18098.53 131
thisisatest051592.29 19991.30 21095.25 16596.60 19088.90 22094.36 32192.32 37487.92 27393.43 16394.57 27577.28 28999.00 16189.42 21495.86 17897.86 183
DeepC-MVS93.07 396.06 6795.66 7497.29 5597.96 10993.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9099.22 7298.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view792.49 18991.60 19895.18 16897.91 11489.47 19797.65 10694.66 33792.18 14093.33 16594.91 25878.06 28299.10 14181.61 32994.06 21996.98 220
thres100view90092.43 19091.58 19994.98 18097.92 11389.37 20397.71 10194.66 33792.20 13693.31 16694.90 25978.06 28299.08 14881.40 33294.08 21596.48 235
thres20092.23 20391.39 20594.75 19797.61 13289.03 21796.60 21595.09 32192.08 14293.28 16794.00 30778.39 27699.04 16081.26 33794.18 21196.19 242
tfpn200view992.38 19391.52 20294.95 18397.85 11789.29 20797.41 13394.88 33192.19 13893.27 16894.46 28378.17 27899.08 14881.40 33294.08 21596.48 235
thres40092.42 19191.52 20295.12 17297.85 11789.29 20797.41 13394.88 33192.19 13893.27 16894.46 28378.17 27899.08 14881.40 33294.08 21596.98 220
ab-mvs93.57 14892.55 16896.64 7497.28 14691.96 10795.40 28697.45 17289.81 21493.22 17096.28 19379.62 25499.46 10390.74 18893.11 23098.50 135
Vis-MVSNet (Re-imp)94.15 12293.88 12094.95 18397.61 13287.92 25098.10 5195.80 28692.22 13493.02 17197.45 12484.53 16297.91 28588.24 23797.97 12899.02 86
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11897.46 13297.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
UGNet94.04 13093.28 14396.31 10496.85 17391.19 13997.88 7997.68 13794.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11298.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15692.49 8795.64 27796.64 24889.05 23693.00 17295.79 22185.77 14899.45 10589.16 22594.35 20697.96 177
PVSNet86.66 1892.24 20291.74 19593.73 25097.77 12183.69 33092.88 36396.72 24087.91 27493.00 17294.86 26178.51 27399.05 15786.53 27197.45 14398.47 140
MAR-MVS94.22 11893.46 13596.51 8698.00 10892.19 9997.67 10397.47 16588.13 27093.00 17295.84 21584.86 15899.51 9687.99 24098.17 12497.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR95.01 9994.59 10296.26 11098.89 5190.68 16297.24 15597.73 12991.80 14892.93 17796.62 17889.13 8799.14 13789.21 22297.78 13398.97 93
MDTV_nov1_ep1390.76 23195.22 27380.33 36193.03 36195.28 31188.14 26992.84 17893.83 31181.34 22398.08 25182.86 31894.34 207
CostFormer91.18 25190.70 23692.62 29494.84 29781.76 34694.09 33294.43 34384.15 34292.72 17993.77 31579.43 25698.20 23490.70 18992.18 24597.90 180
EPNet95.20 9694.56 10497.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10499.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet90.82 26489.77 27593.95 23994.45 31487.19 26790.23 38395.68 29486.89 30192.40 18192.36 34980.91 22997.05 34081.09 33893.95 22097.60 199
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26790.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22097.60 199
EPMVS90.70 26989.81 27393.37 26794.73 30384.21 32193.67 34788.02 39589.50 22292.38 18393.49 32677.82 28697.78 29586.03 28392.68 23798.11 171
baseline192.82 18191.90 18995.55 15297.20 15090.77 15797.19 16294.58 34092.20 13692.36 18496.34 19184.16 16998.21 23389.20 22383.90 34897.68 193
PatchT88.87 30687.42 31093.22 27394.08 32585.10 31189.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22597.54 202
UWE-MVS89.91 28989.48 28591.21 32795.88 23378.23 37994.91 30490.26 38889.11 23392.35 18694.52 27768.76 34897.96 27483.95 31095.59 18597.42 206
ETVMVS90.52 27489.14 29394.67 19996.81 17987.85 25495.91 26193.97 35589.71 21692.34 18792.48 34465.41 37197.96 27481.37 33594.27 20998.21 160
PAPR94.18 11993.42 14096.48 9097.64 12991.42 12995.55 27997.71 13688.99 23892.34 18795.82 21789.19 8599.11 14086.14 27997.38 14498.90 104
iter_conf0594.01 13194.00 11794.04 23195.06 28388.46 23397.27 15296.57 25592.32 13192.26 18997.10 14788.54 9998.10 24695.10 9991.82 25295.57 272
SCA91.84 21591.18 21793.83 24595.59 24584.95 31494.72 30795.58 29990.82 18092.25 19093.69 31775.80 30198.10 24686.20 27795.98 17498.45 142
CVMVSNet91.23 24691.75 19389.67 35095.77 23974.69 38596.44 22194.88 33185.81 31892.18 19197.64 11479.07 26195.58 36988.06 23995.86 17898.74 118
AUN-MVS91.76 21790.75 23294.81 19097.00 16788.57 22796.65 20796.49 25889.63 21792.15 19296.12 20278.66 27198.50 20990.83 18579.18 37197.36 208
AdaColmapbinary94.34 11693.68 12496.31 10498.59 6691.68 11696.59 21697.81 12189.87 20992.15 19297.06 15083.62 17799.54 8989.34 21698.07 12697.70 192
GeoE93.89 13693.28 14395.72 14296.96 17089.75 18798.24 3996.92 22789.47 22392.12 19497.21 13984.42 16398.39 22087.71 24796.50 16799.01 89
PatchmatchNetpermissive91.91 21291.35 20693.59 25895.38 25784.11 32393.15 35895.39 30489.54 22092.10 19593.68 31982.82 19698.13 24184.81 29895.32 18998.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet93.24 15892.48 17395.51 15495.70 24192.39 8997.86 8098.66 1692.30 13392.09 19695.37 24180.49 23698.40 21693.95 12485.86 31695.75 266
tpm90.25 28189.74 27891.76 31793.92 32879.73 36893.98 33393.54 36288.28 26491.99 19793.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
CNLPA94.28 11793.53 13096.52 8398.38 7892.55 8596.59 21696.88 23190.13 20691.91 19897.24 13785.21 15399.09 14587.64 25397.83 13197.92 179
testing9191.90 21391.02 22094.53 20796.54 19886.55 28595.86 26395.64 29691.77 14991.89 19993.47 32869.94 34298.86 17290.23 19793.86 22298.18 162
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15287.99 24896.15 24895.60 29790.62 19391.87 20097.15 14478.41 27598.57 20583.16 31597.60 13798.36 152
PatchMatch-RL92.90 17692.02 18595.56 15098.19 9590.80 15595.27 29497.18 19787.96 27291.86 20195.68 22880.44 23798.99 16284.01 30897.54 13896.89 225
SDMVSNet94.17 12093.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20297.28 13279.13 26098.93 16694.61 11592.84 23397.28 213
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21196.89 18497.64 14293.18 10191.79 20297.28 13275.35 30698.65 19688.99 22792.84 23397.28 213
testing9991.62 22390.72 23594.32 21796.48 20586.11 29595.81 26694.76 33591.55 15491.75 20493.44 32968.55 35198.82 17690.43 19193.69 22398.04 175
testing22290.31 27888.96 29594.35 21496.54 19887.29 26195.50 28293.84 35990.97 17891.75 20492.96 33662.18 38098.00 26582.86 31894.08 21597.76 189
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15796.65 20797.18 19793.72 7791.68 20697.26 13579.33 25898.63 19892.13 15892.28 24195.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm289.96 28889.21 29092.23 30394.91 29381.25 34993.78 34294.42 34480.62 37391.56 20793.44 32976.44 29697.94 27985.60 28992.08 24997.49 203
TAPA-MVS90.10 792.30 19891.22 21595.56 15098.33 8089.60 19096.79 19297.65 14081.83 36391.52 20897.23 13887.94 11198.91 16971.31 38498.37 11598.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38297.64 11095.90 28189.84 21391.49 20996.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
TR-MVS91.48 23390.59 24094.16 22596.40 21087.33 26095.67 27395.34 31087.68 28591.46 21095.52 23776.77 29298.35 22382.85 32093.61 22796.79 228
RPSCF90.75 26690.86 22590.42 34296.84 17476.29 38395.61 27896.34 26483.89 34591.38 21197.87 9376.45 29598.78 18087.16 26592.23 24296.20 241
PLCcopyleft91.00 694.11 12693.43 13896.13 11998.58 6891.15 14496.69 20397.39 18287.29 29491.37 21296.71 16488.39 10499.52 9587.33 26097.13 15597.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18687.27 26390.29 38297.72 13286.61 30691.34 21395.29 24384.29 16798.41 21593.25 13998.94 9397.35 210
HQP_MVS93.78 14293.43 13894.82 18896.21 21789.99 17997.74 9497.51 15994.85 3491.34 21396.64 17181.32 22498.60 20193.02 14692.23 24295.86 253
plane_prior390.00 17794.46 5591.34 213
Fast-Effi-MVS+93.46 15192.75 15995.59 14996.77 18290.03 17696.81 19197.13 20188.19 26691.30 21694.27 29486.21 14198.63 19887.66 25296.46 17098.12 168
EI-MVSNet93.03 16992.88 15393.48 26395.77 23986.98 27296.44 22197.12 20290.66 19091.30 21697.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
MVSTER93.20 16092.81 15694.37 21396.56 19589.59 19197.06 17097.12 20291.24 16791.30 21695.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15398.55 1495.49 30294.24 6391.29 21996.97 15383.04 18998.14 24095.56 9291.17 26395.78 261
ADS-MVSNet289.45 29888.59 30092.03 30695.86 23482.26 34290.93 37894.32 34983.23 35491.28 22091.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
ADS-MVSNet89.89 29188.68 29993.53 26195.86 23484.89 31590.93 37895.07 32283.23 35491.28 22091.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
testing1191.68 22190.75 23294.47 20896.53 20086.56 28495.76 27094.51 34291.10 17591.24 22293.59 32368.59 35098.86 17291.10 18294.29 20898.00 176
nrg03094.05 12993.31 14296.27 10995.22 27394.59 3198.34 2697.46 16792.93 11591.21 22396.64 17187.23 12998.22 23294.99 10385.80 31795.98 252
Effi-MVS+-dtu93.08 16693.21 14592.68 29396.02 23183.25 33397.14 16796.72 24093.85 7491.20 22493.44 32983.08 18798.30 22791.69 17195.73 18196.50 234
VPNet92.23 20391.31 20994.99 17895.56 24790.96 14897.22 16097.86 11592.96 11490.96 22596.62 17875.06 30798.20 23491.90 16283.65 35095.80 259
JIA-IIPM88.26 31387.04 31791.91 30893.52 34181.42 34889.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 238
WB-MVSnew89.88 29289.56 28290.82 33494.57 31183.06 33495.65 27692.85 36887.86 27690.83 22794.10 30379.66 25396.88 34776.34 36394.19 21092.54 367
test-LLR91.42 23591.19 21692.12 30494.59 30880.66 35594.29 32692.98 36691.11 17390.76 22892.37 34679.02 26498.07 25588.81 23096.74 16197.63 194
test-mter90.19 28589.54 28392.12 30494.59 30880.66 35594.29 32692.98 36687.68 28590.76 22892.37 34667.67 35598.07 25588.81 23096.74 16197.63 194
ACMM89.79 892.96 17292.50 17294.35 21496.30 21588.71 22397.58 11697.36 18791.40 16290.53 23096.65 17079.77 25098.75 18591.24 18091.64 25395.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
F-COLMAP93.58 14792.98 14995.37 16298.40 7588.98 21897.18 16397.29 19387.75 28390.49 23197.10 14785.21 15399.50 9986.70 27096.72 16397.63 194
TESTMET0.1,190.06 28789.42 28691.97 30794.41 31680.62 35794.29 32691.97 37887.28 29590.44 23292.47 34568.79 34797.67 30388.50 23696.60 16697.61 198
FIs94.09 12793.70 12395.27 16495.70 24192.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 256
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25894.34 32296.19 27390.73 18490.35 23493.83 31171.84 32797.96 27487.22 26293.61 22798.21 160
LS3D93.57 14892.61 16696.47 9197.59 13591.61 11897.67 10397.72 13285.17 32990.29 23598.34 5484.60 16099.73 4283.85 31398.27 11998.06 174
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25191.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 257
HQP-NCC95.86 23496.65 20793.55 8290.14 237
ACMP_Plane95.86 23496.65 20793.55 8290.14 237
HQP4-MVS90.14 23798.50 20995.78 261
HQP-MVS93.19 16192.74 16094.54 20695.86 23489.33 20596.65 20797.39 18293.55 8290.14 23795.87 21380.95 22798.50 20992.13 15892.10 24795.78 261
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 15995.34 26292.83 7697.17 16498.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 268
DU-MVS92.90 17692.04 18395.49 15694.95 28892.83 7697.16 16598.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 261
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22288.26 23997.65 10697.46 16791.29 16390.12 24397.16 14279.05 26298.73 18792.25 15491.89 25095.31 289
LGP-MVS_train94.10 22796.16 22288.26 23997.46 16791.29 16390.12 24397.16 14279.05 26298.73 18792.25 15491.89 25095.31 289
UniMVSNet (Re)93.31 15692.55 16895.61 14895.39 25693.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
mvs_anonymous93.82 14093.74 12294.06 22996.44 20885.41 30395.81 26697.05 21289.85 21290.09 24696.36 19087.44 12497.75 29893.97 12396.69 16499.02 86
test_djsdf93.07 16792.76 15794.00 23493.49 34388.70 22498.22 4197.57 15191.42 16090.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
dp88.90 30588.26 30590.81 33594.58 31076.62 38192.85 36494.93 32885.12 33090.07 24893.07 33475.81 30098.12 24480.53 34087.42 30497.71 191
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 20997.75 9397.56 15592.50 12589.94 24996.54 18188.65 9598.18 23793.83 13090.90 27095.86 253
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25397.23 15997.46 16787.99 27189.90 25096.92 15766.35 36598.23 23190.30 19590.99 26897.96 177
CLD-MVS92.98 17192.53 17094.32 21796.12 22789.20 21295.28 29297.47 16592.66 12289.90 25095.62 23180.58 23498.40 21692.73 15092.40 24095.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21091.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15296.51 233
1112_ss93.37 15492.42 17596.21 11497.05 16290.99 14696.31 23796.72 24086.87 30289.83 25396.69 16886.51 13699.14 13788.12 23893.67 22498.50 135
BH-untuned92.94 17492.62 16593.92 24397.22 14886.16 29496.40 22996.25 26990.06 20789.79 25496.17 19983.19 18398.35 22387.19 26397.27 15097.24 215
V4291.58 22790.87 22493.73 25094.05 32688.50 23197.32 14796.97 21988.80 25089.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
Baseline_NR-MVSNet91.20 24890.62 23892.95 28293.83 33288.03 24797.01 17695.12 32088.42 26189.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
v14419291.06 25490.28 25193.39 26693.66 33887.23 26696.83 19097.07 20987.43 29089.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
v114491.37 23990.60 23993.68 25593.89 33088.23 24196.84 18997.03 21688.37 26289.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16489.97 18295.53 28196.64 24885.38 32489.65 25995.18 24885.86 14699.10 14187.70 24893.58 22998.49 137
v119291.07 25390.23 25593.58 25993.70 33587.82 25596.73 19797.07 20987.77 28189.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
v124090.70 26989.85 27193.23 27293.51 34286.80 27596.61 21397.02 21787.16 29789.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 266
v2v48291.59 22590.85 22793.80 24793.87 33188.17 24496.94 18196.88 23189.54 22089.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
v192192090.85 26390.03 26693.29 27093.55 33986.96 27496.74 19697.04 21487.36 29289.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
IterMVS-LS92.29 19991.94 18893.34 26896.25 21686.97 27396.57 21997.05 21290.67 18889.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cascas91.20 24890.08 26194.58 20494.97 28689.16 21593.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22292.14 15794.75 20196.23 239
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27794.31 32085.89 29695.33 28997.26 19491.06 17689.38 26795.44 24068.61 34998.60 20189.46 21391.05 26694.79 324
GBi-Net91.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24789.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24789.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet391.78 21690.69 23795.03 17696.53 20092.27 9597.02 17396.93 22389.79 21589.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
WR-MVS92.34 19591.53 20194.77 19595.13 28090.83 15496.40 22997.98 10091.88 14789.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 269
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14096.08 27682.38 35989.29 27197.87 9383.77 17399.69 5281.37 33596.69 16498.89 107
BH-w/o92.14 20791.75 19393.31 26996.99 16985.73 29895.67 27395.69 29288.73 25289.26 27394.82 26482.97 19298.07 25585.26 29496.32 17196.13 247
3Dnovator91.36 595.19 9794.44 11297.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6399.18 72
tt080591.09 25290.07 26494.16 22595.61 24488.31 23697.56 11896.51 25789.56 21989.17 27595.64 23067.08 36398.38 22191.07 18388.44 29595.80 259
miper_enhance_ethall91.54 23091.01 22193.15 27595.35 26187.07 27193.97 33496.90 22886.79 30389.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27495.27 26985.52 30197.03 17196.63 25192.09 14189.11 27795.14 25080.33 24098.08 25187.54 25694.74 20296.03 251
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 14997.47 13097.43 17989.14 23288.90 27896.43 18679.71 25198.24 23089.56 21187.68 30095.67 270
PCF-MVS89.48 1191.56 22889.95 26796.36 10296.60 19092.52 8692.51 36897.26 19479.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 14997.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_ehance_all_eth91.59 22591.13 21892.97 28195.55 24886.57 28394.47 31596.88 23187.77 28188.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
jajsoiax92.42 19191.89 19094.03 23393.33 34988.50 23197.73 9697.53 15792.00 14588.85 28196.50 18375.62 30498.11 24593.88 12891.56 25695.48 274
eth_miper_zixun_eth91.02 25690.59 24092.34 29995.33 26584.35 31994.10 33196.90 22888.56 25688.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
c3_l91.38 23790.89 22392.88 28595.58 24686.30 28994.68 30896.84 23588.17 26788.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
mvs_tets92.31 19791.76 19293.94 24193.41 34688.29 23797.63 11297.53 15792.04 14388.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
v14890.99 25790.38 24692.81 28893.83 33285.80 29796.78 19496.68 24589.45 22488.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
FMVSNet291.31 24390.08 26194.99 17896.51 20292.21 9697.41 13396.95 22188.82 24788.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
PAPM91.52 23190.30 25095.20 16795.30 26889.83 18593.38 35496.85 23486.26 31288.59 28795.80 21884.88 15798.15 23975.67 36795.93 17697.63 194
cl2291.21 24790.56 24293.14 27696.09 22986.80 27594.41 31996.58 25487.80 27988.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
3Dnovator+91.43 495.40 8894.48 11098.16 1696.90 17195.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9299.44 49
dmvs_re90.21 28389.50 28492.35 29795.47 25485.15 30995.70 27294.37 34690.94 17988.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 240
anonymousdsp92.16 20591.55 20093.97 23792.58 36289.55 19397.51 12397.42 18089.42 22588.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
WR-MVS_H92.00 21091.35 20693.95 23995.09 28289.47 19798.04 5798.68 1391.46 15888.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
v891.29 24590.53 24393.57 26094.15 32288.12 24697.34 14397.06 21188.99 23888.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21088.20 24297.36 14197.25 19691.52 15588.30 29496.64 17178.46 27498.72 19091.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1091.04 25590.23 25593.49 26294.12 32388.16 24597.32 14797.08 20788.26 26588.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
QAPM93.45 15292.27 17896.98 7196.77 18292.62 8298.39 2598.12 6784.50 33988.27 29697.77 10282.39 20799.81 2985.40 29298.81 9798.51 134
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21498.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24189.70 20785.14 32795.49 273
CP-MVSNet91.89 21491.24 21393.82 24695.05 28488.57 22797.82 8798.19 5591.70 15188.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
DIV-MVS_self_test90.97 25990.33 24792.88 28595.36 26086.19 29394.46 31796.63 25187.82 27788.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
cl____90.96 26090.32 24892.89 28495.37 25986.21 29294.46 31796.64 24887.82 27788.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
tpmvs89.83 29589.15 29291.89 30994.92 29180.30 36293.11 35995.46 30386.28 31188.08 30192.65 33980.44 23798.52 20881.47 33189.92 28096.84 226
PS-CasMVS91.55 22990.84 22893.69 25494.96 28788.28 23897.84 8498.24 4791.46 15888.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
MIMVSNet88.50 31086.76 32093.72 25294.84 29787.77 25691.39 37394.05 35286.41 30987.99 30392.59 34263.27 37595.82 36377.44 35692.84 23397.57 201
GG-mvs-BLEND93.62 25693.69 33689.20 21292.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18894.80 322
miper_lstm_enhance90.50 27690.06 26591.83 31195.33 26583.74 32793.86 34096.70 24487.56 28887.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
PEN-MVS91.20 24890.44 24493.48 26394.49 31287.91 25297.76 9298.18 5791.29 16387.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
ITE_SJBPF92.43 29695.34 26285.37 30695.92 27991.47 15787.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
v7n90.76 26589.86 27093.45 26593.54 34087.60 25997.70 10297.37 18588.85 24487.65 30894.08 30581.08 22698.10 24684.68 30083.79 34994.66 331
Patchmtry88.64 30987.25 31292.78 28994.09 32486.64 27989.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
testing387.67 31886.88 31990.05 34696.14 22580.71 35497.10 16992.85 36890.15 20587.54 31094.55 27655.70 38994.10 38173.77 37694.10 21495.35 286
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15694.60 31096.02 27784.62 33787.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
tpm cat188.36 31187.21 31491.81 31395.13 28080.55 35892.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23880.39 34188.74 29296.72 230
FMVSNet189.88 29288.31 30394.59 20095.41 25591.18 14097.50 12496.93 22386.62 30587.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
IterMVS-SCA-FT90.31 27889.81 27391.82 31295.52 24984.20 32294.30 32596.15 27490.61 19487.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
MVS91.71 21890.44 24495.51 15495.20 27591.59 12096.04 25397.45 17273.44 39287.36 31595.60 23285.42 15199.10 14185.97 28497.46 13995.83 257
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38696.63 21294.22 35085.18 32887.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
IterMVS90.15 28689.67 27991.61 31995.48 25183.72 32894.33 32396.12 27589.99 20887.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs589.86 29488.87 29792.82 28792.86 35586.23 29196.26 24095.39 30484.24 34187.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
DTE-MVSNet90.56 27289.75 27793.01 27993.95 32787.25 26497.64 11097.65 14090.74 18387.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
Patchmatch-test89.42 29987.99 30693.70 25395.27 26985.11 31088.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20098.48 139
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27287.70 25795.12 30093.95 35689.35 22787.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu91.71 21891.28 21192.99 28093.76 33483.71 32996.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15897.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Syy-MVS87.13 32387.02 31887.47 36195.16 27673.21 38995.00 30193.93 35788.55 25786.96 32391.99 35475.90 29994.00 38261.59 39594.11 21295.20 297
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27679.53 36995.00 30193.93 35788.55 25786.96 32391.99 35456.23 38894.00 38275.47 36994.11 21295.20 297
baseline291.63 22290.86 22593.94 24194.33 31886.32 28895.92 26091.64 38089.37 22686.94 32594.69 26981.62 22198.69 19288.64 23494.57 20596.81 227
MSDG91.42 23590.24 25494.96 18297.15 15488.91 21993.69 34696.32 26585.72 32086.93 32696.47 18480.24 24198.98 16380.57 33995.05 19596.98 220
test0.0.03 189.37 30088.70 29891.41 32492.47 36485.63 29995.22 29792.70 37191.11 17386.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24897.95 11087.13 27096.92 18295.89 28382.83 35686.88 32897.18 14173.77 31999.29 12178.44 35393.62 22694.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
D2MVS91.30 24490.95 22292.35 29794.71 30485.52 30196.18 24798.21 5188.89 24386.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
OurMVSNet-221017-090.51 27590.19 25991.44 32393.41 34681.25 34996.98 17896.28 26691.68 15286.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
MS-PatchMatch90.27 28089.77 27591.78 31594.33 31884.72 31795.55 27996.73 23986.17 31486.36 33195.28 24571.28 33197.80 29384.09 30798.14 12592.81 362
131492.81 18292.03 18495.14 17095.33 26589.52 19696.04 25397.44 17687.72 28486.25 33295.33 24283.84 17298.79 17989.26 21997.05 15697.11 218
tfpnnormal89.70 29788.40 30293.60 25795.15 27890.10 17597.56 11898.16 6187.28 29586.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
pm-mvs190.72 26889.65 28193.96 23894.29 32189.63 18897.79 9196.82 23689.07 23486.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9795.34 26292.73 8098.27 3398.12 6784.86 33485.78 33597.75 10378.89 26999.74 4187.50 25798.65 10296.73 229
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22089.55 19396.31 23797.09 20687.88 27585.67 33695.91 21278.79 27098.57 20581.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testgi87.97 31487.21 31490.24 34492.86 35580.76 35396.67 20694.97 32691.74 15085.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
AllTest90.23 28288.98 29493.98 23597.94 11186.64 27996.51 22095.54 30085.38 32485.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
TestCases93.98 23597.94 11186.64 27995.54 30085.38 32485.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19196.62 231
ppachtmachnet_test88.35 31287.29 31191.53 32092.45 36583.57 33193.75 34395.97 27884.28 34085.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34793.93 33796.22 27086.67 30485.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
our_test_388.78 30787.98 30791.20 32992.45 36582.53 33893.61 35095.69 29285.77 31984.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
MVP-Stereo90.74 26790.08 26192.71 29193.19 35188.20 24295.86 26396.27 26786.07 31584.86 34494.76 26677.84 28597.75 29883.88 31298.01 12792.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+87.92 1490.20 28489.18 29193.25 27196.48 20586.45 28696.99 17796.68 24588.83 24684.79 34596.22 19670.16 33998.53 20784.42 30488.04 29794.77 327
NR-MVSNet92.34 19591.27 21295.53 15394.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 261
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36694.38 32095.25 31487.59 28784.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
LCM-MVSNet-Re92.50 18792.52 17192.44 29596.82 17881.89 34596.92 18293.71 36192.41 12984.30 34894.60 27485.08 15597.03 34191.51 17397.36 14598.40 148
TransMVSNet (Re)88.94 30387.56 30993.08 27894.35 31788.45 23497.73 9695.23 31587.47 28984.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 36096.11 24995.35 30783.57 35184.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
SixPastTwentyTwo89.15 30188.54 30190.98 33193.49 34380.28 36396.70 20194.70 33690.78 18184.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30784.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
TDRefinement86.53 32784.76 33891.85 31082.23 40284.25 32096.38 23195.35 30784.97 33384.09 35394.94 25665.76 37098.34 22684.60 30274.52 38292.97 359
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37595.13 29996.42 26185.91 31784.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
pmmvs687.81 31786.19 32492.69 29291.32 37286.30 28997.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
ACMH87.59 1690.53 27389.42 28693.87 24496.21 21787.92 25097.24 15596.94 22288.45 26083.91 35696.27 19471.92 32698.62 20084.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet587.29 32185.79 32791.78 31594.80 29987.28 26295.49 28395.28 31184.09 34383.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
USDC88.94 30387.83 30892.27 30194.66 30584.96 31393.86 34095.90 28187.34 29383.40 35895.56 23467.43 35798.19 23682.64 32589.67 28393.66 351
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36796.73 19795.92 27983.71 34983.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
KD-MVS_2432*160084.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32283.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32283.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
PVSNet_082.17 1985.46 34083.64 34390.92 33295.27 26979.49 37190.55 38195.60 29783.76 34883.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38793.70 34490.92 38686.42 30882.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
test_040286.46 32884.79 33791.45 32295.02 28585.55 30096.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
Patchmatch-RL test87.38 32086.24 32390.81 33588.74 38978.40 37888.12 39593.17 36587.11 29882.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
TinyColmap86.82 32685.35 33291.21 32794.91 29382.99 33593.94 33694.02 35483.58 35081.56 36694.68 27062.34 37998.13 24175.78 36587.35 30692.52 368
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36595.90 26295.20 31688.59 25381.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25769.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18692.18 373
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 38093.43 35291.75 37986.91 30080.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
MIMVSNet184.93 34283.05 34490.56 34089.56 38384.84 31695.40 28695.35 30783.91 34480.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
lessismore_v090.45 34191.96 37079.09 37687.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37296.61 21392.08 37790.66 19080.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33390.06 37984.05 32595.73 27194.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
EG-PatchMatch MVS87.02 32585.44 32991.76 31792.67 35985.00 31296.08 25196.45 26083.41 35379.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
pmmvs-eth3d86.22 33284.45 33991.53 32088.34 39087.25 26494.47 31595.01 32383.47 35279.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35996.41 22586.61 40085.22 32779.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37392.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33989.97 38082.40 34193.62 34997.37 18589.86 21078.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23478.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38493.70 34495.18 31785.02 33277.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33990.89 38096.62 25378.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21091.57 12295.34 28893.48 36390.60 19675.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36491.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23773.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35871.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
YYNet185.87 33784.23 34190.78 33892.38 36782.46 34093.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33792.38 36782.57 33793.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 33093.13 35383.33 33294.56 31295.00 32484.57 33865.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38866.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34393.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15984.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 950.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36975.56 368
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 799.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 799.77 2
eth-test20.00 419
eth-test0.00 419
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9499.59 2199.56 29
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 799.75 6
GSMVS98.45 142
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 246
MTMP97.86 8082.03 406
gm-plane-assit93.22 35078.89 37784.82 33593.52 32598.64 19787.72 245
test9_res94.81 10899.38 5799.45 47
agg_prior293.94 12599.38 5799.50 40
test_prior493.66 5796.42 224
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
新几何295.79 268
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4199.01 9099.16 73
无先验95.79 26897.87 11183.87 34799.65 5887.68 25198.89 107
原ACMM295.67 273
testdata299.67 5685.96 285
segment_acmp92.89 27
testdata195.26 29693.10 106
plane_prior796.21 21789.98 181
plane_prior696.10 22890.00 17781.32 224
plane_prior597.51 15998.60 20193.02 14692.23 24295.86 253
plane_prior496.64 171
plane_prior297.74 9494.85 34
plane_prior196.14 225
plane_prior89.99 17997.24 15594.06 6792.16 246
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP5-MVS89.33 205
BP-MVS92.13 158
HQP3-MVS97.39 18292.10 247
HQP2-MVS80.95 227
NP-MVS95.99 23289.81 18695.87 213
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 94